Sample records for element binding protein-1

  1. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  2. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks. PMID:18460914

  3. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    PubMed

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p < 0.0001). Sterol regulatory element binding protein-1 gene expression was positively correlated with body mass index (r = 0.017, p = 0.921) and waist-hip ratio (r = 0.023, p = 0.544) in polycystic ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element binding protein-1 gene correlated with endometrial gene expression (p < 0.05). Sterol regulatory element binding protein-1 gene expression is significantly increased in the endometrium of women with polycystic ovary syndrome and women with endometrial cancer compared with controls and positively correlates with serum triglyceride in both polycystic ovary syndrome and endometrial cancer. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  4. Transcriptional regulation of human MUC4 gene: identification of a novel inhibitory element and its nuclear binding protein.

    PubMed

    Zhang, Jing-Jing; Zhu, Yi; Zhang, Xiong-Fei; Liang, Wen-Biao; Xie, Kun-Ling; Tao, Jin-Qiu; Peng, Yun-Peng; Xu, Ze-Kuan; Miao, Yi

    2013-08-01

    The human mucin 4 (MUC4) is aberrantly expressed in pancreatic adenocarcinoma and tumor cell lines, while remaining undetectable in normal pancreas, indicating its important role in pancreatic cancer development. Although its transcriptional regulation has been investigated in considerable detail, some important elements remain unknown. The aim of the present study was to demonstrate the existence of a novel inhibitory element in the MUC4 promoter and characterize some of its binding proteins. By luciferase reporter assay, we located the inhibitory element between nucleotides -2530 and -2521 in the MUC4 promoter using a series of deletion and mutant reporter constructs. Electrophoretic mobility shift assay (EMSA) with Bxpc-3 cell nuclear extracts revealed that one protein or protein complex bind to this element. The proteins binding to this element were purified and identified as Yin Yang 1 (YY1) by mass spectrometry. Supershift assay and chromatin immunoprecipitation (ChIP) assay confirmed that YY1 binds to this element in vitro and in vivo. Moreover, transient YY1 overexpression significantly inhibited MUC4 promoter activity and endogenous MUC4 protein expression. In conclusion, we reported here a novel inhibitory element in the human MUC4 promoter. This provides additional data on MUC4 gene regulation and indicates that YY1 may be a potential target for abnormal MUC4 expression.

  5. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis.

    PubMed

    Liu, Chune; Yang, Zhihong; Wu, Jianguo; Zhang, Li; Lee, Sangmin; Shin, Dong-Ju; Tran, Melanie; Wang, Li

    2018-05-01

    H19 is an imprinted long noncoding RNA abundantly expressed in embryonic liver and repressed after birth. We show that H19 serves as a lipid sensor by synergizing with the RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to modulate hepatic metabolic homeostasis. H19 RNA interacts with PTBP1 to facilitate its association with sterol regulatory element-binding protein 1c mRNA and protein, leading to increased stability and nuclear transcriptional activity. H19 and PTBP1 are up-regulated by fatty acids in hepatocytes and in diet-induced fatty liver, which further augments lipid accumulation. Ectopic expression of H19 induces steatosis and pushes the liver into a "pseudo-fed" state in response to fasting by promoting sterol regulatory element-binding protein 1c protein cleavage and nuclear translocation. Deletion of H19 or knockdown of PTBP1 abolishes high-fat and high-sucrose diet-induced steatosis. Our study unveils an H19/PTBP1/sterol regulatory element-binding protein 1 feedforward amplifying signaling pathway to exacerbate the development of fatty liver. (Hepatology 2018;67:1768-1783). © 2017 by the American Association for the Study of Liver Diseases.

  6. Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus.

    PubMed Central

    Marciniak, R A; Garcia-Blanco, M A; Sharp, P A

    1990-01-01

    Human immunodeficiency virus type 1 RNAs contain a sequence, trans-activation-response (TAR) element, which is required for tat protein-mediated trans-activation of viral gene expression. We have identified a nuclear protein from extracts of HeLa cells that binds to the TAR element RNA in a sequence-specific manner. The binding of this 68-kDa polypeptide was detected by UV cross-linking proteins to TAR element RNA transcribed in vitro. Competition experiments were performed by using a partially purified preparation of the protein to quantify the relative binding affinities of TAR element RNA mutants. The binding affinity of the TAR mutants paralleled the reported ability of those mutants to support tat trans-activation in vivo. We propose that this cellular protein moderates TAR activity in vivo. Images PMID:2333305

  7. Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site.

    PubMed

    Means, A L; Farnham, P J

    1990-02-01

    We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).

  8. Evolutionarily Conserved, Growth Plate Zone-Specific Regulation of the Matrilin-1 Promoter: L-Sox5/Sox6 and Nfi Factors Bound near TATA Finely Tune Activation by Sox9 ▿

    PubMed Central

    Nagy, Andrea; Kénesi, Erzsébet; Rentsendorj, Otgonchimeg; Molnár, Annamária; Szénási, Tibor; Sinkó, Ildikó; Zvara, Ágnes; Thottathil Oommen, Sajit; Barta, Endre; Puskás, László G.; Lefebvre, Veronique; Kiss, Ibolya

    2011-01-01

    To help uncover the mechanisms underlying the staggered expression of cartilage-specific genes in the growth plate, we dissected the transcriptional mechanisms driving expression of the matrilin-1 gene (Matn1). We show that a unique assembly of evolutionarily conserved cis-acting elements in the Matn1 proximal promoter restricts expression to the proliferative and prehypertrophic zones of the growth plate. These elements functionally interact with distal elements and likewise are capable of restricting the domain of activity of a pancartilaginous Col2a1 enhancer. The proximal elements include a Pe1 element binding the chondrogenic L-Sox5, Sox6, and Sox9 proteins, a SI element binding Nfi proteins, and an initiator Ine element binding the Sox trio and other factors. Sox9 binding to Pe1 is indispensable for functional interaction with the distal promoter. Binding of L-Sox5/Sox6 to Ine and Nfib to SI modulates Sox9 transactivation in a protein dose-dependent manner, possibly to enhance Sox9 activity in early stages of chondrogenesis and repress it at later stages. Hence, our data suggest a novel model whereby Sox and Nfi proteins bind to conserved Matn1 proximal elements and functionally interact with each other to finely tune gene expression in specific zones of the cartilage growth plate. PMID:21173167

  9. Suppression of grp78 core promoter element-mediated stress induction by the dbpA and dbpB (YB-1) cold shock domain proteins.

    PubMed Central

    Li, W W; Hsiung, Y; Wong, V; Galvin, K; Zhou, Y; Shi, Y; Lee, A S

    1997-01-01

    The highly conserved grp78 core promoter element plays an important role in the induction of grp78 under diverse stress signals. Previous studies have established a functional region in the 3' half of the core (stress-inducible change region [SICR]) which exhibits stress-inducible changes in stressed nuclei. The human transcription factor YY1 is shown to bind the SICR and transactivate the core element under stress conditions. Here we report that expression library screening with the core element has identified two new core binding proteins, YB-1 and dbpA. Both proteins belong to the Y-box family of proteins characterized by an evolutionarily conserved DNA binding motif, the cold shock domain (CSD). In contrast to YY1, which binds only double-stranded SICR, the Y-box/CSD proteins much prefer the lower strand of the SICR. The Y-box proteins can repress the inducibility of the grp78 core element mediated by treatment of cells with A23187, thapsigargin, and tunicamycin. In gel shift assays, YY1 binding to the core element is inhibited by either YB-1 or dbpA. A yeast interaction trap screen using LexA-YY1 as a bait and a HeLa cell cDNA-acid patch fusion library identified YB-1 as a YY1-interacting protein. In cotransfection experiments, the Y-box proteins antagonize the YY1-mediated enhancement of transcription directed by the grp78 core in stressed cells. Thus, the CSD proteins may be part of the stress signal transduction mechanism in the mammalian system. PMID:8972186

  10. Multivalent DNA-binding properties of the HMG-1 proteins.

    PubMed Central

    Maher, J F; Nathans, D

    1996-01-01

    HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungsoo, E-mail: sungsoo.lee@utsouthwestern.edu; Wang, Ping-Yuan; Jeong, Yangsik

    Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to themore » nucleus and promotes LXR-dependent gene transcription through select enhancer elements. -- Highlights: Black-Right-Pointing-Pointer ORP1S translocates to the nucleus in response to sterol binding. Black-Right-Pointing-Pointer The sterols that best promote nuclear import of ORP1S are LXR agonists. Black-Right-Pointing-Pointer ORP1S binds to LXRs, enhances binding of LXRs to LXREs and promotes LXR-dependent transcription of apoE.« less

  12. Transcriptional switches in the control of macronutrient metabolism.

    PubMed

    Wise, Alan

    2008-06-01

    This review shows how some transcription factors respond to alterations in macronutrients. Carbohydrates induce enzymes for their metabolism and fatty acid synthesis. Fatty acids reduce carbohydrate processing, induce enzymes for their metabolism, and increase both gluconeogenesis and storage of fat. Fat stores help control carbohydrate uptake by other cells. The following main transcription factors are discussed: carbohydrate response element-binding protein; sterol regulatory element-binding protein-1c, cyclic AMP response element-binding protein, peroxisome proliferator-activated receptor-alpha, and peroxisome proliferator-activated receptor-gamma.

  13. Regulation of the yeast RAD2 gene: DNA damage-dependent induction correlates with protein binding to regulatory sequences and their deletion influences survival.

    PubMed

    Siede, W; Friedberg, E C

    1992-03-01

    In the yeast Saccharomyces cerevisiae the RAD2 gene is absolutely required for damage-specific incision of DNA during nucleotide excision repair and is inducible by DNA-damaging agents. In the present study we correlated sensitivity to killing by DNA-damaging agents with the deletion of previously defined specific promoter elements. Deletion of the element DRE2 increased the UV sensitivity of cells in both the G1/early S and S/G2 phases of the cell cycle as well as in stationary phase. On the other hand, increased UV sensitivity associated with deletion of the sequence-related element DRE1 was restricted to cells irradiated in G1/S. Specific binding of protein(s) to the promoter elements DRE1 and DRE2 was observed under non-inducing conditions using gel retardation assays. Exposure of cells to DNA-damaging agents resulted in increased protein binding that was dependent on de novo protein synthesis.

  14. Ternary Complex Factors and Cofactors Are Essential for Human T-Cell Leukemia Virus Type 1 Tax Transactivation of the Serum Response Element

    PubMed Central

    Shuh, Maureen; Derse, David

    2000-01-01

    The human T-cell leukemia virus type 1 Tax protein activates the expression of cellular immediate early genes controlled by the serum response element (SRE), which contains both the serum response factor (SRF) binding element (CArG box) and the ternary complex factor (TCF) binding element (Ets box). We show that TCF binding is necessary for Tax activation of the SRE and that Tax directly interacts with TCFs in vitro. In addition, Tax interactions with CREB binding protein (CBP) and p300- and CBP-associated factor were found to be essential for Tax activation of SRF-mediated transcription. PMID:11070040

  15. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    PubMed

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  16. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM).

    PubMed

    Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L

    2017-07-18

    Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.

  17. The high mobility group protein 1 enhances binding of the estrogen receptor DNA binding domain to the estrogen response element.

    PubMed

    Romine, L E; Wood, J R; Lamia, L A; Prendergast, P; Edwards, D P; Nardulli, A M

    1998-05-01

    We have examined the ability of the high-mobility group protein 1 (HMG1) to alter binding of the estrogen receptor DNA-binding domain (DBD) to the estrogen response element (ERE). HMG1 dramatically enhanced binding of purified, bacterially expressed DBD to the consensus vitellogenin A2 ERE in a dose-dependent manner. The ability of HMG1 to stabilize the DBD-ERE complex resulted in part from a decrease in the dissociation rate of the DBD from the ERE. Antibody supershift experiments demonstrated that HMG1 was also capable of forming a ternary complex with the ERE-bound DBD in the presence of HMG1-specific antibody. HMG1 did not substantially affect DBD-ERE contacts as assessed by methylation interference assays, nor did it alter the ability of the DBD to induce distortion in ERE-containing DNA fragments. Because HMG1 dramatically enhanced estrogen receptor DBD binding to the ERE, and the DBD is the most highly conserved region among the nuclear receptor superfamily members, HMG1 may function to enhance binding of other nuclear receptors to their respective response elements and act in concert with coactivator proteins to regulate expression of hormone-responsive genes.

  18. Specificity determinants for the abscisic acid response element.

    PubMed

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.

  19. Long-Lasting Impairment of mGluR5-Activated Intracellular Pathways in the Striatum After Withdrawal of Cocaine Self-Administration

    PubMed Central

    Hoffmann, Hanne Mette; Crouzin, Nadine; Moreno, Estefanía; Raivio, Noora; Fuentes, Silvia; McCormick, Peter J.; Vignes, Michel

    2017-01-01

    Abstract Background: Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors, with allosteric modulators showing particular promise. Methods: We evaluated the capacity of group I metabotropic glutamate receptors to induce functional responses in ex vivo striatal slices from rats with (1) acute cocaine self-administration, (2) chronic cocaine self-administration, and (3) 60 days cocaine self-administration withdrawal by Western blot and extracellular recordings of synaptic transmission. Results: We found that striatal group I metabotropic glutamate receptors are the principal mediator of the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine-induced cAMP responsive-element binding protein phosphorylation. Both acute and chronic cocaine self-administration blunted group I metabotropic glutamate receptor effects on cAMP responsive-element binding protein phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect that was maintained 60 days after chronic cocaine self-administration withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic cocaine self-administration blunted group I metabotropic glutamate receptor stimulation of extracellular signal-regulated protein kinases 1/2 and cAMP responsive-element binding protein. Interestingly, the group I metabotropic glutamate receptor antagonist/inverse-agonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride, led to a specific increase in cAMP responsive-element binding protein phosphorylation after chronic cocaine self-administration, specifically in the nucleus accumbens, but not in the striatum. Conclusions: Prolonged cocaine self-administration, through withdrawal, leads to a blunting of group I metabotropic glutamate receptor responses in the striatum. In addition, specifically in the accumbens, group I metabotropic glutamate receptor signaling to cAMP responsive-element binding protein shifts from an agonist-induced to an antagonist-induced cAMP responsive-element binding protein phosphorylation. PMID:27744406

  20. The VBP and a1/EBP leucine zipper factors bind overlapping subsets of avian retroviral long terminal repeat CCAAT/enhancer elements.

    PubMed

    Smith, C D; Baglia, L A; Curristin, S M; Ruddell, A

    1994-10-01

    Two long terminal repeat (LTR) enhancer-binding proteins which may regulate high rates of avian leukosis virus (ALV) LTR-enhanced c-myc transcription during bursal lymphomagenesis have been identified (A. Ruddell, M. Linial, and M. Groudine, Mol. Cell. Biol. 9:5660-5668, 1989). The genes encoding the a1/EBP and a3/EBP binding factors were cloned by expression screening of a lambda gt11 cDNA library from chicken bursal lymphoma cells. The a1/EBP cDNA encodes a novel leucine zipper transcription factor (W. Bowers and A. Ruddell, J. Virol. 66:6578-6586, 1992). The partial a3/EBP cDNA clone encodes amino acids 84 to 313 of vitellogenin gene-binding protein (VBP), a leucine zipper factor that binds the avian vitellogenin II gene promoter (S. Iyer, D. Davis, and J. Burch, Mol. Cell. Biol. 11:4863-4875, 1991). Multiple VBP mRNAs are expressed in B cells in a pattern identical to that previously observed for VBP in other cell types. The LTR-binding activities of VBP, a1/EBP, and B-cell nuclear extract protein were compared and mapped by gel shift, DNase I footprinting, and methylation interference assays. The purified VBP and a1/EBP bacterial fusion proteins bind overlapping but distinct subsets of CCAAT/enhancer elements in the closely related ALV and Rous sarcoma virus (RSV) LTR enhancers. Protein binding to these CCAAT/enhancer elements accounts for most of the labile LTR enhancer-binding activity observed in B-cell nuclear extracts. VBP and a1/EBP could mediate the high rates of ALV and RSV LTR-enhanced transcription in bursal lymphoma cells and many other cell types.

  1. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    PubMed

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  2. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauen, Thomas; Frye, Bjoern C.; Pneumology, University Medical Center, University of Freiburg, Freiburg

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPOmore » production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.« less

  3. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins.

    PubMed

    Vishnivetskiy, Sergey A; Gimenez, Luis E; Francis, Derek J; Hanson, Susan M; Hubbell, Wayne L; Klug, Candice S; Gurevich, Vsevolod V

    2011-07-08

    Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.

  4. Few Residues within an Extensive Binding Interface Drive Receptor Interaction and Determine the Specificity of Arrestin Proteins*

    PubMed Central

    Vishnivetskiy, Sergey A.; Gimenez, Luis E.; Francis, Derek J.; Hanson, Susan M.; Hubbell, Wayne L.; Klug, Candice S.; Gurevich, Vsevolod V.

    2011-01-01

    Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements. PMID:21471193

  5. Concerted formation of macromolecular Suppressor–mutator transposition complexes

    PubMed Central

    Raina, Ramesh; Schläppi, Michael; Karunanandaa, Balasulojini; Elhofy, Adam; Fedoroff, Nina

    1998-01-01

    Transposition of the maize Suppressor–mutator (Spm) transposon requires two element-encoded proteins, TnpA and TnpD. Although there are multiple TnpA binding sites near each element end, binding of TnpA to DNA is not cooperative, and the binding affinity is not markedly affected by the number of binding sites per DNA fragment. However, intermolecular complexes form cooperatively between DNA fragments with three or more TnpA binding sites. TnpD, itself not a sequence-specific DNA-binding protein, binds to TnpA and stabilizes the TnpA–DNA complex. The high redundancy of TnpA binding sites at both element ends and the protein–protein interactions between DNA-bound TnpA complexes and between these and TnpD imply a concerted transition of the element from a linear to a protein crosslinked transposition complex within a very narrow protein concentration range. PMID:9671711

  6. Synergistic Interactions between Chemokine Receptor Elements in Recognition of Interleukin-8 by Soluble Receptor Mimics†

    PubMed Central

    Barter, Emily F.; Stone, Martin J.

    2012-01-01

    Interleukin-8 (IL-8 or CXCL8), the archetypal member of the CXC chemokine subfamily, stimulates neutrophil chemotaxis by activation of the receptors CXCR1/IL8RA and CXCR2/IL8RB. Previous mutational studies have implicated both the N-terminal and third extracellular loop (E3) regions of these receptors in binding to IL-8. To investigate the interactions of these receptor elements with IL-8, we have constructed soluble proteins in which the N-terminal and E3 elements of either CXCR1 or CXCR2 are juxtaposed on a soluble scaffold protein; these are referred to as CROSS-NX1E3X1 and CROSS-NX2E3X2, respectively. Isothermal titration calorimetry (ITC) and NMR spectroscopy were used to compare the IL-8 binding properties of the receptor mimics to those of control proteins containing only the N-terminal or the E3 receptor element. CROSS-NX2E3X2 bound to monomeric IL-8 with the same affinity and induced the same chemical shift changes as the control protein containing only the N-terminal element of CXCR2, indicating that the E3 element of CXCR2 did not contribute to IL-8 binding. In contrast, CROSS-NX1E3X1 bound to IL-8 with ~10-fold increased affinity and induced different chemical shift changes compared to the control protein containing only the N-terminal element of CXCR1, suggesting that the E3 region of CXCR1 was interacting with IL-8. However, a chimeric protein containing the N-terminal region of CXCR1 and the E3 region of CXCR2 (CROSS-NX1E3X2) bound to IL-8 with thermodynamic properties and induced chemical shift changes indistinguishable from those of CROSS-NX1E3X1 and substantially different from those of CROSS-NX2E3X2. These results indicate that the N-terminal and E3 regions of CXCR1 interact synergistically to achieve optimal binding interactions with IL-8. PMID:22242662

  7. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription.

    PubMed

    Rauen, Thomas; Frye, Bjoern C; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R

    2016-09-16

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3' enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3' adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin.

    PubMed

    Senetar, Melissa A; Foster, Stanley J; McCann, Richard O

    2004-12-14

    The I/LWEQ module superfamily is a class of actin-binding proteins that contains a conserved C-terminal actin-binding element known as the I/LWEQ module. I/LWEQ module proteins include the metazoan talins, the cellular slime mold talin homologues TalA and TalB, fungal Sla2p, and the metazoan Sla2 homologues Hip1 and Hip12 (Hip1R). These proteins possess a similar modular organization that includes an I/LWEQ module at their C-termini and either a FERM domain or an ENTH domain at their N-termini. As a result of this modular organization, I/LWEQ module proteins may serve as linkers between cellular compartments, such as the plasma membrane and the endocytic machinery, and the actin cytoskeleton. Previous studies have shown that I/LWEQ module proteins bind to F-actin. In this report, we have determined the affinity of the I/LWEQ module proteins Talin1, Talin2, huntingtin interacting protein-1 (Hip1), and the Hip1-related protein (Hip1R/Hip12) for F-actin and identified a conserved structural element that interferes with the actin binding capacity of these proteins. Our data support the hypothesis that the actin-binding determinants in native talin and other I/LWEQ module proteins are cryptic and indicate that the actin binding capacities of Talin1, Talin2, Hip1, and Hip12 are regulated by intrasteric occlusion of primary actin-binding determinants within the I/LWEQ module. We have also found that the I/LWEQ module contains a dimerization motif and stabilizes actin filaments against depolymerization. This activity may contribute to the function of talin in cell adhesion and the roles of Hip1, Hip12 (Hip1R), and Sla2p in endocytosis.

  9. Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Pur alpha, Pur beta, and MSY1.

    PubMed

    Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J

    2002-03-08

    An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.

  10. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed Central

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-01-01

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266

  12. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-12-20

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.

  13. Repeated administration of CGP 46381, a gamma-aminobutyric acidB antagonist, and ethosuximide suppresses seizure-associated cyclic adenosine 3'5' monophosphate response element- and activator protein-1 DNA-binding activities in lethargic (lh/lh) mice.

    PubMed

    Ishige, K; Endo, H; Saito, H; Ito, Y

    2001-01-19

    To characterize seizure-associated increases in cerebral cortical and thalamic cyclic AMP responsive element (CRE)- and activator protein 1 (AP-1) DNA-binding activities in lethargic (lh/lh) mice, a genetic model of absence seizures, we examined the effects of ethosuximide and CGP 46381 on these DNA-binding activities. Repeated administration (twice a day for 5 days) of ethosuximide (200 mg/kg) or CGP 46381 (60 mg/kg) attenuated both seizure behavior and the increased DNA-binding activities, and was more effective than a single administration of these drugs. These treatments did not affect either normal behavior or basal DNA-binding activities in non-epileptic control (+/+) mice. Gel supershift assays revealed that the increased CRE-binding activity was attributable to activation of the binding activity of CREB, and that the c-Fos-c-Jun complex was a component of the increased AP-1 DNA-binding activity.

  14. Localization and physical mapping of genes encoding the A+U-rich element RNA-binding protein AUF1 to human chromosomes 4 and X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, B.J.; Long, L.; Pettenati, M.J.

    Messenger RNAs encoding many oncoproteins and cytokines are relatively unstable. Their instability, which ensures appropriate levels and timing of expression, is controlled in part by proteins that bind to A + U-rich instability elements (AREs) present in the 3{prime}-untranslated regions of the mRNAs. cDNAs encoding the AUF1 family of ARE-binding proteins were cloned from human and murine cDNA libraries. In the present study monochromosomal somatic cell hybrids were used to localize two AUF1 loci to human chromosomes 4 and X. In situ hybridization analyses using P1 clones as probes identified the 4q21.1-q21.2 and Xq12 regions as the locations of themore » AUF1 genes. 10 refs., 2 figs.« less

  15. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus.

    PubMed

    Wang, Yafei; Peng, Wei; Zhou, Xu; Huang, Fei; Shao, Lingyun; Luo, Meizhong

    2014-09-01

    Agrobacterium exports at least five virulence proteins (VirE2, VirE3, VirF, VirD2, VirD5) into host cells and hijacks some host plant factors to facilitate its transformation process. Random DNA binding selection assays (RDSAs), electrophoretic mobility shift assays (EMSAs) and yeast one-hybrid systems were used to identify protein-bound DNA elements. Bimolecular fluorescence complementation, glutathione S-transferase pull-down and yeast two-hybrid assays were used to detect protein interactions. Protoplast transformation, coprecipitation, competitive binding and cell-free degradation assays were used to analyze the relationships among proteins. We found that Agrobacterium VirD5 exhibits transcriptional activation activity in yeast, is located in the plant cell nucleus, and forms homodimers. A specific VirD5-bound DNA element designated D5RE (VirD5 response element) was identified. VirD5 interacted directly with Arabidopsis VirE2 Interacting Protein 1 (AtVIP1). However, the ternary complex of VirD5-AtVIP1-VirE2 could be detected, whereas that of VirD5-AtVIP1-VBF (AtVIP1 Binding F-box protein) could not. We demonstrated that VirD5 competes with VBF for binding to AtVIP1 and stabilizes AtVIP1 and VirE2 in the cell-free degradation system. Our results indicated that VirD5 may act as both a transcriptional activator-like effector to regulate host gene expression and a protector preventing the coat proteins of the T-complex from being quickly degraded by the host's ubiquitin proteasome system (UPS). © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Parathyroid hormone regulation of the human bone sialoprotein gene transcription is mediated through two cAMP response elements.

    PubMed

    Araki, Shouta; Mezawa, Masaru; Sasaki, Yoko; Yang, Li; Li, Zhengyang; Takai, Hideki; Nakayama, Youhei; Ogata, Yorimasa

    2009-03-01

    Parathyroid hormone (PTH) regulates serum calcium and inorganic phosphate levels through its actions on kidney and bone. Bone sialoprotein (BSP) is an early marker of osteoblast differentiation and bone metabolism. We here report that two cAMP response elements (CRE) in the human BSP gene promoter are target of PTH. In human osteoblast-like Saos2 cells, PTH (human 1-34 PTH, 10 nM) increased BSP mRNA and protein levels at 3 h. From transient transfection assays, 2- to 2.5-fold increase in transcription by PTH was observed at 3 and 6 h in -184, -211, -428, -868, and -927 luciferase constructs that included the human BSP gene promoter. Effect of PTH was abrogated by 2 bp mutations in either the CRE1 (-79 to -72) or CRE2 (-674 to -667). Luciferase activities induced by PTH were blocked by protein kinase A inhibitor H89 and tyrosine kinase inhibitor herbimycin A. Gel shift analyses showed that PTH increased binding of nuclear proteins to the CRE1 and CRE2 elements. The CRE1-protein and CRE2-protein complexes were disrupted by CRE binding protein 1 (CREB1) antibodies and supershifted by phospho-CREB1 antibody. ChIP assays detected binding of CREB1 and phospho-CREB1 to a chromatin fragment containing CRE1 and CRE2, and increased binding of phospho-CREB1 to the both sites. These studies demonstrate that PTH stimulates human BSP gene transcription by targeting the two CREs in the promoter of the human BSP gene.

  17. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    NASA Astrophysics Data System (ADS)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  18. Isolation and functional characterization of CE1 binding proteins.

    PubMed

    Lee, Sun-ji; Park, Ji Hye; Lee, Mi Hun; Yu, Ji-hyun; Kim, Soo Young

    2010-12-16

    Abscisic acid (ABA) is a plant hormone that controls seed germination, protective responses to various abiotic stresses and seed maturation. The ABA-dependent processes entail changes in gene expression. Numerous genes are regulated by ABA, and promoter analyses of the genes revealed that cis-elements sharing the ACGTGGC consensus sequence are ubiquitous among ABA-regulated gene promoters. The importance of the core sequence, which is generally known as ABA response element (ABRE), has been demonstrated by various experiments, and its cognate transcription factors known as ABFs/AREBs have been identified. Although necessary, ABRE alone is not sufficient, and another cis-element known as "coupling element (CE)" is required for full range ABA-regulation of gene expression. Several CEs are known. However, despite their importance, the cognate transcription factors mediating ABA response via CEs have not been reported to date. Here, we report the isolation of transcription factors that bind one of the coupling elements, CE1. To isolate CE1 binding proteins, we carried out yeast one-hybrid screens. Reporter genes containing a trimer of the CE1 element were prepared and introduced into a yeast strain. The yeast was transformed with library DNA that represents RNA isolated from ABA-treated Arabidopsis seedlings. From the screen of 3.6 million yeast transformants, we isolated 78 positive clones. Analysis of the clones revealed that a group of AP2/ERF domain proteins binds the CE1 element. We investigated their expression patterns and analyzed their overexpression lines to investigate the in vivo functions of the CE element binding factors (CEBFs). Here, we show that one of the CEBFs, AtERF13, confers ABA hypersensitivity in Arabidopsis, whereas two other CEBFs enhance sugar sensitivity. Our results indicate that a group of AP2/ERF superfamily proteins interacts with CE1. Several CEBFs are known to mediate defense or abiotic stress response, but the physiological functions of other CEBFs remain to be determined. Our in vivo functional analysis of several CEBFs suggests that they are likely to be involved in ABA and/or sugar response. Together with previous results reported by others, our current data raise an interesting possibility that the coupling element CE1 may function not only as an ABRE but also as an element mediating biotic and abiotic stress responses.

  19. Identification and characterization of TF1(phox), a DNA-binding protein that increases expression of gp91(phox) in PLB985 myeloid leukemia cells.

    PubMed

    Eklund, E A; Kakar, R

    1997-04-04

    The CYBB gene encodes gp91(phox), the heavy chain of the phagocyte-specific NADPH oxidase. CYBB is transcriptionally inactive until the promyelocyte stage of myelopoiesis, and in mature phagocytes, expression of gp91(phox) is further increased by interferon-gamma (IFN-gamma) and other inflammatory mediators. The CYBB promoter region contains several lineage-specific cis-elements involved in the IFN-gamma response. We screened a leukocyte cDNA expression library for proteins able to bind to one of these cis-elements (-214 to -262 base pairs) and identified TF1(phox), a protein with sequence-specific binding to the CYBB promoter. Electrophoretic mobility shift assay with nuclear proteins from a variety of cell lines demonstrated binding of a protein to the CYBB promoter that was cross-immunoreactive with TF1(phox). DNA binding of this protein was increased by IFN-gamma treatment in the myeloid cell line PLB985, but not in the non-myeloid cell line HeLa. Overexpression of recombinant TF1(phox) in PLB985 cells increased endogenous gp91(phox) message abundance, but did not lead to cellular differentiation. Overexpression of TF1(phox) in myeloid leukemia cell lines increased reporter gene expression from artificial promoter constructs containing CYBB promoter sequence. These data suggested that TF1(phox) increased expression of gp91(phox).

  20. Spatial Memory in the Morris Water Maze and Activation of Cyclic AMP Response Element-Binding (CREB) Protein within the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.

    2008-01-01

    We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…

  1. Sinensetin enhances adipogenesis and lipolysis by increasing cyclic adenosine monophosphate levels in 3T3-L1 adipocytes.

    PubMed

    Kang, Seong-Il; Shin, Hye-Sun; Kim, Se-Jae

    2015-01-01

    Sinensetin is a rare polymethoxylated flavone (PMF) found in certain citrus fruits. In this study, we investigated the effects of sinensetin on lipid metabolism in 3T3-L1 cells. Sinensetin promoted adipogenesis in 3T3-L1 preadipocytes growing in incomplete differentiation medium, which did not contain 3-isobutyl-1-methylxanthine. Sinensetin up-regulated expression of the adipogenic transcription factors peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and sterol regulatory element-binding protein 1c. It also potentiated expression of C/EBPβ and activation of cAMP-responsive element-binding protein. Sinensetin enhanced activation of protein kinase A and increased intracellular cAMP levels in 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, sinensetin stimulated lipolysis via a cAMP pathway. Taken together, these results suggest that sinensetin enhances adipogenesis and lipolysis by increasing cAMP levels in adipocytes.

  2. Four regulatory elements in the human c-fos promoter mediate transactivation by HTLV-1 Tax protein.

    PubMed

    Alexandre, C; Verrier, B

    1991-04-01

    Expression of the human c-fos proto-oncogene is activated in trans by the Tax protein encoded by human T-cell leukemia virus type-1 (HTLV-1). Indeed, we show here that a HeLa clone stably transfected by Tax expresses Fos at a high level. We also show that multiple elements of the human c-fos promoter, i.e. the v-sis conditioned medium inducible element (SIE), the dyad symmetry element (DSE) necessary for growth factor induction, the octanucleotide direct repeat element (DR), and the cyclic AMP response element (CRE) centred at -60, can all mediate Tax transactivation. In the DSE, the 10bp central core that binds the serum response factor (SRF) is, by itself, sufficient to mediate Tax transactivation. Moreover, a CRE-binding protein is involved in Tax activation through the CRE-60 element. Since Fos is a transregulator of cellular genes, our results suggest that the oncoprotein plays a crucial role in T-cell transformation by HTLV-1 in conjunction with other Tax-inducible genes.

  3. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells.

    PubMed

    Kota, Venkatesh; Sommer, Gunhild; Durette, Chantal; Thibault, Pierre; van Niekerk, Erna A; Twiss, Jeffery L; Heise, Tilman

    2016-01-01

    The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5' untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.

  4. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells

    PubMed Central

    Kota, Venkatesh; Sommer, Gunhild; Durette, Chantal; Thibault, Pierre; van Niekerk, Erna A.; Twiss, Jeffery L.

    2016-01-01

    The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5’ untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5’ UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality. PMID:27224031

  5. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.

    PubMed

    Rim, Jong S; Kozak, Leslie P

    2002-09-13

    Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.

  6. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    PubMed

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  7. The HILDA Complex Coordinates a Conditional Switch in the 3′-Untranslated Region of the VEGFA mRNA

    PubMed Central

    Yao, Peng; Potdar, Alka A.; Ray, Partho Sarothi; Eswarappa, Sandeepa M.; Flagg, Andrew C.; Willard, Belinda; Fox, Paul L.

    2013-01-01

    Cell regulatory circuits integrate diverse, and sometimes conflicting, environmental cues to generate appropriate, condition-dependent responses. Here, we elucidate the components and mechanisms driving a protein-directed RNA switch in the 3′UTR of vascular endothelial growth factor (VEGF)-A. We describe a novel HILDA (hypoxia-inducible hnRNP L–DRBP76–hnRNP A2/B1) complex that coordinates a three-element RNA switch, enabling VEGFA mRNA translation during combined hypoxia and inflammation. In addition to binding the CA-rich element (CARE), heterogeneous nuclear ribonucleoprotein (hnRNP) L regulates switch assembly and function. hnRNP L undergoes two previously unrecognized, condition-dependent posttranslational modifications: IFN-γ induces prolyl hydroxylation and von Hippel-Lindau (VHL)-mediated proteasomal degradation, whereas hypoxia stimulates hnRNP L phosphorylation at Tyr359, inducing binding to hnRNP A2/B1, which stabilizes the protein. Also, phospho-hnRNP L recruits DRBP76 (double-stranded RNA binding protein 76) to the 3′UTR, where it binds an adjacent AU-rich stem-loop (AUSL) element, “flipping” the RNA switch by disrupting the GAIT (interferon-gamma-activated inhibitor of translation) element, preventing GAIT complex binding, and driving robust VEGFA mRNA translation. The signal-dependent, HILDA complex coordinates the function of a trio of neighboring RNA elements, thereby regulating translation of VEGFA and potentially other mRNA targets. The VEGFA RNA switch might function to ensure appropriate angiogenesis and tissue oxygenation during conflicting signals from combined inflammation and hypoxia. We propose the VEGFA RNA switch as an archetype for signal-activated, protein-directed, multi-element RNA switches that regulate posttranscriptional gene expression in complex environments. PMID:23976881

  8. Identification of a TAAT-containing motif required for high level expression of the COL1A1 promoter in differentiated osteoblasts of transgenic mice

    NASA Technical Reports Server (NTRS)

    Dodig, M.; Kronenberg, M. S.; Bedalov, A.; Kream, B. E.; Gronowicz, G.; Clark, S. H.; Mack, K.; Liu, Y. H.; Maxon, R.; Pan, Z. Z.; hide

    1996-01-01

    Our previous studies have shown that the 49-base pair region of promoter DNA between -1719 and -1670 base pairs is necessary for transcription of the rat COL1A1 gene in transgenic mouse calvariae. In this study, we further define this element to the 13-base pair region between -1683 and -1670. This element contains a TAAT motif that binds homeodomain-containing proteins. Site-directed mutagenesis of this element in the context of a COL1A1-chloramphenicol acetyltransferase construct extending to -3518 base pairs decreased the ratio of reporter gene activity in calvariae to tendon from 3:1 to 1:1, suggesting a preferential effect on activity in calvariae. Moreover, chloramphenicol acetyltransferase-specific immunofluorescence microscopy of transgenic calvariae showed that the mutation preferentially reduced levels of chloramphenicol acetyltransferase protein in differentiated osteoblasts. Gel mobility shift assays demonstrate that differentiated osteoblasts contain a nuclear factor that binds to this site. This binding activity is not present in undifferentiated osteoblasts. We show that Msx2, a homeodomain protein, binds to this motif; however, Northern blot analysis revealed that Msx2 mRNA is present in undifferentiated bone cells but not in fully differentiated osteoblasts. In addition, cotransfection studies in ROS 17/2.8 osteosarcoma cells using an Msx2 expression vector showed that Msx2 inhibits a COL1A1 promoter-chloramphenicol acetyltransferase construct. Our results suggest that high COL1A1 expression in bone is mediated by a protein that is induced during osteoblast differentiation. This protein may contain a homeodomain; however, it is distinct from homeodomain proteins reported previously to be present in bone.

  9. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolf, Jeffrey D.; Bigelow, Lance; Chang, Changsoo

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA,more » is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.« less

  10. Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae

    PubMed Central

    Ito, Yoichiro; Kitagawa, Takao; Yamanishi, Mamoru; Katahira, Satoshi; Izawa, Shingo; Irie, Kenji; Furutani-Seiki, Makoto; Matsuyama, Takashi

    2016-01-01

    Post-transcriptional upregulation is an effective way to increase the expression of transgenes and thus maximize the yields of target chemicals from metabolically engineered organisms. Refractory elements in the 3′ untranslated region (UTR) that increase mRNA half-life might be available. In Saccharomyces cerevisiae, several terminator regions have shown activity in increasing the production of proteins by upstream coding genes; among these terminators the DIT1 terminator has the highest activity. Here, we found in Saccharomyces cerevisiae that two resident trans-acting RNA-binding proteins (Nab6p and Pap1p) enhance the activity of the DIT1 terminator through the cis element GUUCG/U within the 3′-UTR. These two RNA-binding proteins could upregulate a battery of cell-wall–related genes. Mutagenesis of the DIT1 terminator improved its activity by a maximum of 500% of that of the standard PGK1 terminator. Further understanding and improvement of this system will facilitate inexpensive and stable production of complicated organism-derived drugs worldwide. PMID:27845367

  11. Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae.

    PubMed

    Ito, Yoichiro; Kitagawa, Takao; Yamanishi, Mamoru; Katahira, Satoshi; Izawa, Shingo; Irie, Kenji; Furutani-Seiki, Makoto; Matsuyama, Takashi

    2016-11-15

    Post-transcriptional upregulation is an effective way to increase the expression of transgenes and thus maximize the yields of target chemicals from metabolically engineered organisms. Refractory elements in the 3' untranslated region (UTR) that increase mRNA half-life might be available. In Saccharomyces cerevisiae, several terminator regions have shown activity in increasing the production of proteins by upstream coding genes; among these terminators the DIT1 terminator has the highest activity. Here, we found in Saccharomyces cerevisiae that two resident trans-acting RNA-binding proteins (Nab6p and Pap1p) enhance the activity of the DIT1 terminator through the cis element GUUCG/U within the 3'-UTR. These two RNA-binding proteins could upregulate a battery of cell-wall-related genes. Mutagenesis of the DIT1 terminator improved its activity by a maximum of 500% of that of the standard PGK1 terminator. Further understanding and improvement of this system will facilitate inexpensive and stable production of complicated organism-derived drugs worldwide.

  12. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    PubMed

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  13. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene.

    PubMed

    De Santa Barbara, P; Bonneaud, N; Boizet, B; Desclozeaux, M; Moniot, B; Sudbeck, P; Scherer, G; Poulat, F; Berta, P

    1998-11-01

    For proper male sexual differentiation, anti-Müllerian hormone (AMH) must be tightly regulated during embryonic development to promote regression of the Müllerian duct. However, the molecular mechanisms specifying the onset of AMH in male mammals are not yet clearly defined. A DNA-binding element for the steroidogenic factor 1 (SF-1), a member of the orphan nuclear receptor family, located in the AMH proximal promoter has recently been characterized and demonstrated as being essential for AMH gene activation. However, the requirement for a specific promoter environment for SF-1 activation as well as the presence of conserved cis DNA-binding elements in the AMH promoter suggest that SF-1 is a member of a combinatorial protein-protein and protein-DNA complex. In this study, we demonstrate that the canonical SOX-binding site within the human AMH proximal promoter can bind the transcription factor SOX9, a Sertoli cell factor closely associated with Sertoli cell differentiation and AMH expression. Transfection studies with COS-7 cells revealed that SOX9 can cooperate with SF-1 in this activation process. In vitro and in vivo protein-binding studies indicate that SOX9 and SF-1 interact directly via the SOX9 DNA-binding domain and the SF-1 C-terminal region, respectively. We propose that the two transcription factors SOX9 and SF-1 could both be involved in the expression of the AMH gene, in part as a result of their respective binding to the AMH promoter and in part because of their ability to interact with each other. Our work thus identifies SOX9 as an interaction partner of SF-1 that could be involved in the Sertoli cell-specific expression of AMH during embryogenesis.

  14. Direct Interaction of SRY-Related Protein SOX9 and Steroidogenic Factor 1 Regulates Transcription of the Human Anti-Müllerian Hormone Gene

    PubMed Central

    De Santa Barbara, Pascal; Bonneaud, Nathalie; Boizet, Brigitte; Desclozeaux, Marion; Moniot, Brigitte; Sudbeck, Peter; Scherer, Gerd; Poulat, Francis; Berta, Philippe

    1998-01-01

    For proper male sexual differentiation, anti-Müllerian hormone (AMH) must be tightly regulated during embryonic development to promote regression of the Müllerian duct. However, the molecular mechanisms specifying the onset of AMH in male mammals are not yet clearly defined. A DNA-binding element for the steroidogenic factor 1 (SF-1), a member of the orphan nuclear receptor family, located in the AMH proximal promoter has recently been characterized and demonstrated as being essential for AMH gene activation. However, the requirement for a specific promoter environment for SF-1 activation as well as the presence of conserved cis DNA-binding elements in the AMH promoter suggest that SF-1 is a member of a combinatorial protein-protein and protein-DNA complex. In this study, we demonstrate that the canonical SOX-binding site within the human AMH proximal promoter can bind the transcription factor SOX9, a Sertoli cell factor closely associated with Sertoli cell differentiation and AMH expression. Transfection studies with COS-7 cells revealed that SOX9 can cooperate with SF-1 in this activation process. In vitro and in vivo protein-binding studies indicate that SOX9 and SF-1 interact directly via the SOX9 DNA-binding domain and the SF-1 C-terminal region, respectively. We propose that the two transcription factors SOX9 and SF-1 could both be involved in the expression of the AMH gene, in part as a result of their respective binding to the AMH promoter and in part because of their ability to interact with each other. Our work thus identifies SOX9 as an interaction partner of SF-1 that could be involved in the Sertoli cell-specific expression of AMH during embryogenesis. PMID:9774680

  15. The trehalose/maltose-binding protein as the sensitive element of a glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fonin, A. V.; Povarova, O. I.; Staiano, M.; D'Auria, S.; Turoverov, K. K.; Kuznetsova, I. M.

    2014-08-01

    The promising direction of the development of a modern glucometer is the construction of sensing element on the basis of stained (dyed) protein which changes its fluorescence upon glucose binding. One of the proteins that can be used for this purpose is the D-trehalose/D-maltose-binding protein (TMBP) from the thermophilic bacteria Thermococcus litoralis. We investigated the physical-chemical properties of the protein and evaluated its stability to the denaturing action of GdnHCl and heating. It was confirmed that TMBP is an extremely stable protein. In vivo, the intrinsic ligands of TMBP are trehalose and maltose, but TMBP can also bind glucose. The dissociation constant of the TMBP-glucose complex is in the range of 3-8 mM. The binding of glucose does not noticeably change the intrinsic fluorescence of the TMBP. To register protein-glucose binding, we used the fluorescence of the thiol-reactive dye BADAN attached to TMBP. Because the fluorescence of BADAN attached to the cysteine Cys182 of TMBP does not change upon glucose binding, the mutant forms ТМВР/C182S/X_Cys were created. In these mutant proteins, Cys182 is replaced by Ser, removing intrinsic binding site of BADAN and a new dye binding sites were introduced. The largest increase (by 1.4 times) in the intensity of the dye fluorescence was observed upon TMBP/C182S/A14C-BADAN-Glc complex formation. The dissociation constant of this complex is 3.4 ± 0.1 mM. We consider TMBP/C182S/A14C mutant form with attached fluorescent dye BADAN as a good basis for further research aimed to develop of series of TMBP mutant forms with different affinities to glucose labeled with fluorescent dyes.

  16. β-Amylase–Like Proteins Function as Transcription Factors in Arabidopsis, Controlling Shoot Growth and Development[C][W][OA

    PubMed Central

    Reinhold, Heike; Soyk, Sebastian; Šimková, Klára; Hostettler, Carmen; Marafino, John; Mainiero, Samantha; Vaughan, Cara K.; Monroe, Jonathan D.; Zeeman, Samuel C.

    2011-01-01

    Plants contain β-amylase–like proteins (BAMs; enzymes usually associated with starch breakdown) present in the nucleus rather than targeted to the chloroplast. They possess BRASSINAZOLE RESISTANT1 (BZR1)-type DNA binding domains—also found in transcription factors mediating brassinosteroid (BR) responses. The two Arabidopsis thaliana BZR1-BAM proteins (BAM7 and BAM8) bind a cis-regulatory element that both contains a G box and resembles a BR-responsive element. In protoplast transactivation assays, these BZR1-BAMs activate gene expression. Structural modeling suggests that the BAM domain’s glucan binding cleft is intact, but the recombinant proteins are at least 1000 times less active than chloroplastic β-amylases. Deregulation of BZR1-BAMs (the bam7bam8 double mutant and BAM8-overexpressing plants) causes altered leaf growth and development. Of the genes upregulated in plants overexpressing BAM8 and downregulated in bam7bam8 plants, many carry the cis-regulatory element in their promoters. Many genes that respond to BRs are inversely regulated by BZR1-BAMs. We propose a role for BZR1-BAMs in controlling plant growth and development through crosstalk with BR signaling. Furthermore, we speculate that BZR1-BAMs may transmit metabolic signals by binding a ligand in their BAM domain, although diurnal changes in the concentration of maltose, a candidate ligand produced by chloroplastic β-amylases, do not influence their transcription factor function. PMID:21487098

  17. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development.

    PubMed

    Reinhold, Heike; Soyk, Sebastian; Simková, Klára; Hostettler, Carmen; Marafino, John; Mainiero, Samantha; Vaughan, Cara K; Monroe, Jonathan D; Zeeman, Samuel C

    2011-04-01

    Plants contain β-amylase-like proteins (BAMs; enzymes usually associated with starch breakdown) present in the nucleus rather than targeted to the chloroplast. They possess BRASSINAZOLE RESISTANT1 (BZR1)-type DNA binding domains--also found in transcription factors mediating brassinosteroid (BR) responses. The two Arabidopsis thaliana BZR1-BAM proteins (BAM7 and BAM8) bind a cis-regulatory element that both contains a G box and resembles a BR-responsive element. In protoplast transactivation assays, these BZR1-BAMs activate gene expression. Structural modeling suggests that the BAM domain's glucan binding cleft is intact, but the recombinant proteins are at least 1000 times less active than chloroplastic β-amylases. Deregulation of BZR1-BAMs (the bam7bam8 double mutant and BAM8-overexpressing plants) causes altered leaf growth and development. Of the genes upregulated in plants overexpressing BAM8 and downregulated in bam7bam8 plants, many carry the cis-regulatory element in their promoters. Many genes that respond to BRs are inversely regulated by BZR1-BAMs. We propose a role for BZR1-BAMs in controlling plant growth and development through crosstalk with BR signaling. Furthermore, we speculate that BZR1-BAMs may transmit metabolic signals by binding a ligand in their BAM domain, although diurnal changes in the concentration of maltose, a candidate ligand produced by chloroplastic β-amylases, do not influence their transcription factor function.

  18. Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42

    PubMed Central

    Guallar, D.; Pérez-Palacios, R.; Climent, M.; Martínez-Abadía, I.; Larraga, A.; Fernández-Juan, M.; Vallejo, C.; Muniesa, P.; Schoorlemmer, J.

    2012-01-01

    Rex1/Zfp42 is a Yy1-related zinc-finger protein whose expression is frequently used to identify pluripotent stem cells. We show that depletion of Rex1 levels notably affected self-renewal of mouse embryonic stem (ES) cells in clonal assays, in the absence of evident differences in expression of marker genes for pluripotency or differentiation. By contrast, marked differences in expression of several endogenous retroviral elements (ERVs) were evident upon Rex1 depletion. We demonstrate association of REX1 to specific elements in chromatin-immunoprecipitation assays, most strongly to muERV-L and to a lower extent to IAP and musD elements. Rex1 regulates muERV-L expression in vivo, as we show altered levels upon transient gain-and-loss of Rex1 function in pre-implantation embryos. We also find REX1 can associate with the lysine-demethylase LSD1/KDM1A, suggesting they act in concert. Similar to REX1 binding to retrotransposable elements (REs) in ES cells, we also detected binding of the REX1 related proteins YY1 and YY2 to REs, although the binding preferences of the two proteins were slightly different. Altogether, we show that Rex1 regulates ERV expression in mouse ES cells and during pre-implantation development and suggest that Rex1 and its relatives have evolved as regulators of endogenous retroviral transcription. PMID:22844087

  19. Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway

    PubMed Central

    He, Yonghan; Li, Ying; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. Conclusions Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity. PMID:23922935

  20. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms.

    PubMed Central

    Zhao, Xiangshan; Gan, Lixia; Pan, Haiyun; Kan, Donghui; Majeski, Michael; Adam, Stephen A; Unterman, Terry G

    2004-01-01

    FOXO1, a Forkhead transcription factor, is an important target of insulin and growth factor action. Phosphorylation of Thr-24, Ser-256 and Ser-319 promotes nuclear exclusion of FOXO1, yet the mechanisms regulating nuclear/cytoplasmic shuttling of FOXO1 are poorly understood. Previous studies have identified an NLS (nuclear localization signal) in the C-terminal basic region of the DBD (DNA-binding domain), and a leucine-rich, leptomycin-B sensitive NES (nuclear export signal) located further downstream. Here, we find that other elements in the DBD also contribute to nuclear localization, and that multiple mechanisms contribute to nuclear exclusion of FOXO1. Phosphorylation of Ser-319 and a cluster of nearby residues (Ser-322, Ser-325 and Ser-329) functions co-operatively with the nearby NES to promote nuclear exclusion. The N-terminal region of FOXO1 (amino acids 1-149) also is sufficient to promote nuclear exclusion, and does so through multiple mechanisms. Amino acids 1-50 are sufficient to promote nuclear exclusion of green fluorescent protein fusion proteins, and the phosphorylation of Thr-24 is required for this effect. A leucine-rich, leptomycin B-sensitive export signal is also present nearby. Phosphorylated FOXO1 binds 14-3-3 proteins, and co-precipitation studies with tagged proteins indicate that 14-3-3 binding involves co-operative interactions with both Thr-24 and Ser-256. Ser-256 is located in the C-terminal region of the DBD, where 14-3-3 proteins may interfere both with DNA-binding and with nuclear-localization functions. Together, these studies demonstrate that multiple elements contribute to nuclear/cytoplasmic shuttling of FOXO1, and that phosphorylation and 14-3-3 binding regulate the cellular distribution and function of FOXO1 through multiple mechanisms. The presence of these redundant mechanisms supports the concept that the regulation of FOXO1 function plays a critical role in insulin and growth factor action. PMID:14664696

  1. Participation of Xenopus Elr-type Proteins in Vegetal mRNA Localization during Oogenesis*

    PubMed Central

    Arthur, Patrick K.; Claussen, Maike; Koch, Susanne; Tarbashevich, Katsiaryna; Jahn, Olaf; Pieler, Tomas

    2009-01-01

    Directional transport of specific mRNAs is of primary biological relevance. In Xenopus oocytes, mRNA localization to the vegetal pole is important for germ layer formation and germ cell development. Using a biochemical approach, we identified Xenopus Elr-type proteins, homologs of the Hu/ELAV proteins, as novel components of the vegetal mRNA localization machinery. They bind specifically to the localization elements of several different vegetally localizing Xenopus mRNAs, and they are part of one RNP together with other localization proteins, such as Vg1RBP and XStaufen 1. Blocking Elr-type protein binding by either localization element mutagenesis or antisense morpholino oligonucleotide-mediated masking of their target RNA structures, as well as overexpression of wild type and mutant ElrB proteins, interferes with vegetal localization in Xenopus oocytes. PMID:19458392

  2. AP1 binding site is another target of FGF2 regulation of bone sialoprotein gene transcription.

    PubMed

    Takai, Hideki; Araki, Shouta; Mezawa, Masaru; Kim, Dong-Soon; Li, Xinyue; Yang, Li; Li, Zhengyang; Wang, Zhitao; Nakayama, Youhei; Ogata, Yorimasa

    2008-02-29

    Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. We previously reported that fibroblast growth factor 2 (FGF2) regulates BSP gene transcription via FGF2 response element (FRE) in the proximal promoter of rat BSP gene. We here report that activator protein 1 (AP1) binding site overlapping with glucocorticoid response element (GRE) AP1/GRE in the rat BSP gene promoter is another target of FGF2. Using the osteoblastic cell line ROS17/2.8, we determined that BSP mRNA levels increased by 10 ng/ml FGF2 at 6 and 12 h. Runx2 protein levels increased by FGF2 (10 ng/ml) at 3 h. Treatment of ROS17/2.8 cells with FGF2 (10 ng/ml, 12 h) increased luciferase activities of constructs including -116 to +60 and -938 to +60 of the rat BSP gene promoter. Effects of FGF2 abrogated in constructs included 2 bp mutations in the FRE and AP1/GRE elements. Luciferase activities induced by FGF2 were blocked by tyrosine kinase inhibitor herbimycin A, src-tyrosine kinase inhibitor PP1 and MAP kinase kinase inhibitor U0126. Gel shift analyses showed that FGF2 increased binding of FRE and AP1/GRE elements. Notably, the AP1/GRE-protein complexes were supershifted by Smad1 and c-Fos antibodies, c-Jun and Dlx5 antibodies disrupted the complexes formation, on the other hand AP1/GRE-protein complexes did not change by Runx2 antibody. These studies demonstrate that FGF2 stimulates BSP gene transcription by targeting the FRE and AP1/GRE elements in the rat BSP gene promoter.

  3. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation.

    PubMed

    Verrier, C S; Roodi, N; Yee, C J; Bailey, L R; Jensen, R A; Bustin, M; Parl, F F

    1997-07-01

    The estrogen receptor (ER) belongs to a family of ligand-inducible nuclear receptors that exert their effects by binding to cis-acting DNA elements in the regulatory region of target genes. The detailed mechanisms by which ER interacts with the estrogen response element (ERE) and affects transcription still remain to be elucidated. To study the ER-ERE interaction and transcription initiation, we employed purified recombinant ER expressed in both the baculovirus-Sf9 and his-tagged bacterial systems. The effect of high-mobility group (HMG) protein HMG-1 and purified recombinant TATA-binding protein-associated factor TAF(II)30 on ER-ERE binding and transcription initiation were assessed by electrophoretic mobility shift assay and in vitro transcription from an ERE-containing template (pERE2LovTATA), respectively. We find that purified, recombinant ER fails to bind to ERE in spite of high ligand-binding activity and electrophoretic and immunological properties identical to ER in MCF-7 breast cancer cells. HMG-1 interacts with ER and promotes ER-ERE binding in a concentration- and time-dependent manner. The effectiveness of HMG-1 to stimulate ER-ERE binding in the electrophoretic mobility shift assay depends on the sequence flanking the ERE consensus as well as the position of the latter in the oligonucleotide. We find that TAF(II)30 has no effect on ER-ERE binding either alone or in combination with ER and HMG-1. Although HMG-1 promotes ER-ERE binding, it fails to stimulate transcription initiation either in the presence or absence of hormone. In contrast, TAF(II)30, while not affecting ER-ERE binding, stimulates transcription initiation 20-fold in the presence of HMG-1. These results indicate that HMG-1 and TAF(II)30 act in sequence, the former acting to promote ER-ERE binding followed by the latter to stimulate transcription initiation.

  4. Cross-linking of surface Ig receptors on murine B lymphocytes stimulates the expression of nuclear tetradecanoyl phorbol acetate-response element-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiles, T.C.; Liu, J.L.; Rothstein, T.L.

    1991-03-15

    Cross-linking of sIg on primary B lymphocytes leads to increased nuclear DNA-binding activity specific for the tetradecanoyl phorbol acetate-response element (TRE), as judged by gel mobility shift assays. Stimulation of B cells to enter S phase of the cell cycle by treatment with the combination of phorbol ester plus calcium ionophore also stimulated nuclear TRE-binding activity within 2 h, with maximal expression at 4 h; however, phorbol ester and calcium ionophore were not as effective in stimulating binding activity when examined separately. Stimulated nuclear expression of TRE-binding activity appears to require protein synthesis. Fos- and Jun/AP-1-related proteins participate directly inmore » the identified nucleoprotein complex, as shown by the ability of c-fos- and c-jun-specific antisera to either alter or completely abolish electrophoretic migration of the complex in native gels. Further, UV photo-cross-linking studies identified two major TRE-binding protein species, whose sizes correspond to TRE-binding proteins derived from HeLa cell nuclear extracts. The results suggest that in primary B cells nuclear TRE-binding activity represents a downstream signaling event that occurs subsequent to changes in protein kinase C activity and intracellular Ca2+ but that can be triggered physiologically through sIg.« less

  5. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder☆

    PubMed Central

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression. PMID:25206732

  6. BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response.

    PubMed

    da Costa e Silva, O; Klein, L; Schmelzer, E; Trezzini, G F; Hahlbrock, K

    1993-07-01

    The mechanisms by which plants restrict the growth of pathogens include transient activation of numerous defense-related genes. Box P is a putative cis-acting element of a distinct group of such genes, including those encoding the enzyme phenylalanine ammonialyase (PAL). A DNA-binding activity to Box P was identified in nuclear extracts from cultured parsley cells and a cDNA encoding the protein BPF-1 (Box P-binding Factor) partially characterized. BPF-1 binds to this element with specificity similar to that of the binding activity in nuclear extracts. BPF-1 mRNA accumulates rapidly in elicitor-treated parsley cells and around fungal infection sites on parsley leaves. This accumulation is, at least partly, due to a rapid and transient increase in the transcription rate of BPF-1. Moreover, tight correlation between the relative amounts of BPF-1 and PAL mRNAs was observed in different organs of a parsley plant. These results are consistent with the hypothesis that BPF-1 is involved in disease resistance by modulating plant defense gene expression.

  7. The pig CYP2E1 promoter is activated by COUP-TF1 and HNF-1 and is inhibited by androstenone.

    PubMed

    Tambyrajah, Winston S; Doran, Elena; Wood, Jeffrey D; McGivan, John D

    2004-11-15

    Functional analysis of the pig cytochrome P4502E1 (CYP2E1) promoter identified two major activating elements. One corresponded to the hepatic nuclear factor 1 (HNF-1) consensus binding sequence at nucleotides -128/-98 and the other was located in the region -292/-266. The binding of proteins in pig liver nuclear extracts to a synthetic double-stranded oligonucleotide corresponding to this more distal activating sequence was studied by electrophoretic mobility shift assay. The minimum protein binding sequence was identified as TGTTCTGACCTCTGGG. Gel super-shift assays identified the protein binding to this site as chick ovalbumin upstream promoter transcription factor 1 (COUP-TF1). Androstenone inhibited promoter activity in transfection experiments only with constructs which included the COUP-TF1 binding site. Androstenone inhibited COUP-TF1 binding to synthetic oligonucleotides but did not affect HNF-1 binding. The results offer an explanation for the inhibition of CYP2E1 protein expression by androstenone in isolated pig hepatocytes and may be relevant to the low expression of hepatic CYP2E1 in those pigs which accumulate high levels of androstenone in vivo.

  8. The pure estrogen receptor antagonist ICI 182,780 promotes a novel interaction of estrogen receptor-alpha with the 3',5'-cyclic adenosine monophosphate response element-binding protein-binding protein/p300 coactivators.

    PubMed

    Jaber, Basem M; Gao, Tong; Huang, Luping; Karmakar, Sudipan; Smith, Carolyn L

    2006-11-01

    Estrogen receptor-alpha (ERalpha) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Abundant evidence demonstrates that ERalpha agonists promote, whereas antagonists inhibit, receptor binding to coactivators. In this report we demonstrate that binding of the ICI 182,780 (ICI) pure antiestrogen to ERalpha promotes its interaction with the cAMP response element-binding protein-binding protein (CBP)/p300 but not the p160 family of coactivators, demonstrating the specificity of this interaction. Amino acid mutations within the coactivator binding surface of the ERalpha ligand-binding domain revealed that CBP binds to this region of the ICI-liganded receptor. The carboxy-terminal cysteine-histidine rich domain 3 of CBP, rather than its amino-terminal nuclear interacting domain, shown previously to mediate agonist-dependent interactions of CBP with nuclear receptors, is required for binding to ICI-liganded ERalpha. Chromatin immunoprecipitation assays revealed that ICI but not the partial agonist/antagonist 4-hydroxytamoxifen is able to recruit CBP to the pS2 promoter, and this distinguishes ICI from this class of antiestrogens. Chromatin immunoprecipitation assays for pS2 and cytochrome P450 1B1 promoter regions revealed that ICI-dependent recruitment of CBP, but not receptor, to ERalpha targets is gene specific. ICI treatment did not recruit the steroid receptor coactivator 1 to the pS2 promoter, and it failed to induce the expression of this gene. Taken together, these data indicate that recruitment of the CBP coactivator/cointegrator without steroid receptor coactivator 1 to ERalpha is insufficient to promote transcription of ERalpha target genes.

  9. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type β transforming growth factor

    PubMed Central

    Xu, Weidong; Angelis, Konstantina; Danielpour, David; Haddad, Maher M.; Bischof, Oliver; Campisi, Judith; Stavnezer, Ed; Medrano, Estela E.

    2000-01-01

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type β transforming growth factor (TGF-β) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-β. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-β-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-β-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-β-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-β-mediated growth inhibition in a prostate-derived epithelial cell line. PMID:10811875

  10. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor.

    PubMed

    Xu, W; Angelis, K; Danielpour, D; Haddad, M M; Bischof, O; Campisi, J; Stavnezer, E; Medrano, E E

    2000-05-23

    The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.

  11. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs.

    PubMed

    Lahr, Roni M; Fonseca, Bruno D; Ciotti, Gabrielle E; Al-Ashtal, Hiba A; Jia, Jian-Jun; Niklaus, Marius R; Blagden, Sarah P; Alain, Tommy; Berman, Andrea J

    2017-04-07

    The 5'terminal oligopyrimidine (5'TOP) motif is a cis -regulatory RNA element located immediately downstream of the 7-methylguanosine [m 7 G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5'TOP motif, a cap analog (m 7 GTP), and a capped cytidine (m 7 GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5'TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5'TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.

  12. Interaction of the alpha-subunit of Escherichia coli RNA polymerase with DNA: rigid body nature of the protein-DNA contact.

    PubMed

    Heyduk, E; Baichoo, N; Heyduk, T

    2001-11-30

    The alpha-subunit of Escherichia coli RNA polymerase plays an important role in the activity of many promoters by providing a direct protein-DNA contact with a specific sequence (UP element) located upstream of the core promoter sequence. To obtain insight into the nature of thermodynamic forces involved in the formation of this protein-DNA contact, the binding of the alpha-subunit of E. coli RNA polymerase to a fluorochrome-labeled DNA fragment containing the rrnB P1 promoter UP element sequence was quantitatively studied using fluorescence polarization. The alpha dimer and DNA formed a 1:1 complex in solution. Complex formation at 25 degrees C was enthalpy-driven, the binding was accompanied by a net release of 1-2 ions, and no significant specific ion effects were observed. The van't Hoff plot of temperature dependence of binding was linear suggesting that the heat capacity change (Deltac(p)) was close to zero. Protein footprinting with hydroxyradicals showed that the protein did not change its conformation upon protein-DNA contact formation. No conformational changes in the DNA molecule were detected by CD spectroscopy upon protein-DNA complex formation. The thermodynamic characteristics of the binding together with the lack of significant conformational changes in the protein and in the DNA suggested that the alpha-subunit formed a rigid body-like contact with the DNA in which a tight complementary recognition interface between alpha-subunit and DNA was not formed.

  13. Interactions of trans-acting factor(s) with the estradiol response element and nuclear factor 1 of the vitellogenin II gene of Japanese quail.

    PubMed

    Gupta, S; Upadhayay, R; Kanungo, M S

    1996-08-01

    This study was directed at achieving an understanding of the mechanisms by which steroid hormones control the synthesis of vitellogenin (VTG) protein in the liver of the Japanese quail. Northern hybridization shows that administration of estradiol alone or with progesterone stimulates the synthesis of VTG mRNA. Gel mobility shift assay of DNA fragments containing the ERE and NF 1 shows that estradiol alone or with progesterone increases the levels of nuclear proteins that bind to these cis-acting elements of the promoter of the VTG gene. The cooperative effect of the two hormones seen at the level of expression of the VTG gene may be due to protein-protein interactions of trans-acting factors that bind to ERE and NF 1.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walden, William E.; Selezneva, Anna I.; Dupuy, Jérôme

    Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by {approx}30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator ormore » enzyme.« less

  15. Extended HSR/CARD domain mediates AIRE binding to DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslovskaja, Julia, E-mail: julia.maslovskaja@ut.ee; Saare, Mario; Liiv, Ingrid

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved inmore » AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.« less

  16. The adenovirus L4-22K protein regulates transcription and RNA splicing via a sequence-specific single-stranded RNA binding.

    PubMed

    Lan, Susan; Kamel, Wael; Punga, Tanel; Akusjärvi, Göran

    2017-02-28

    The adenovirus L4-22K protein both activates and suppresses transcription from the adenovirus major late promoter (MLP) by binding to DNA elements located downstream of the MLP transcriptional start site: the so-called DE element (positive) and the R1 region (negative). Here we show that L4-22K preferentially binds to the RNA form of the R1 region, both to the double-stranded RNA and the single-stranded RNA of the same polarity as the nascent MLP transcript. Further, L4-22K binds to a 5΄-CAAA-3΄ motif in the single-stranded RNA, which is identical to the sequence motif characterized for L4-22K DNA binding. L4-22K binding to single-stranded RNA results in an enhancement of U1 snRNA recruitment to the major late first leader 5΄ splice site. This increase in U1 snRNA binding results in a suppression of MLP transcription and a concurrent stimulation of major late first intron splicing. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase.

    PubMed

    Rawat, Reetika; Xu, Zeng-Fu; Yao, Kwok-Ming; Chye, Mee-Len

    2005-03-01

    We have previously shown that the expression of SmCP which encodes Solanum melongena cysteine proteinase is ethylene-inducible and is under circadian control. To understand the regulation of SmCP, a 1.34-kb SmCP 5'-flanking region and its deletion derivatives were analyzed for cis-elements using GUS and luc fusions and by in vitro binding assays. Analysis of transgenic tobacco transformed with SmCP promoter-GUS constructs confirmed that the promoter region -415/+54 containing Ethylene Responsive Element ERE(-355/-348) conferred threefold ethylene-induction of GUS expression, while -827/+54 which also contains ERE(-683/-676), produced fivefold induction. Using gel mobility shift assays, we demonstrated that each ERE binds nuclear proteins from both ethephon-treated and untreated 5-week-old seedlings, suggesting that different transcriptions factors bind each ERE under varying physiological conditions. Binding was also observed in extracts from senescent, but not young, fruits. The variation in binding at the EREs in fruits and seedlings imply that organ-specific factors may participate in binding. Analysis of transgenic tobacco expressing various SmCP promoter-luc constructs containing wild-type or mutant Evening Elements (EEs) confirmed that both conserved EEs at -795/-787 and -785/-777 are important in circadian control. We confirmed the binding of total nuclear proteins to EEs in gel mobility shift assays and in DNase I footprinting. Our results suggest that multiple proteins bind the EEs which are conserved in plants other than Arabidopsis and that functional EEs and EREs are present in the 5'-flanking region of a gene encoding cysteine proteinase.

  18. Genomic Heat Shock Element Sequences Drive Cooperative Human Heat Shock Factor 1 DNA Binding and Selectivity*

    PubMed Central

    Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.

    2014-01-01

    The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655

  19. Bi-functional, substrate mimicking RNA inhibits MSK1-mediated cAMP-response element-binding protein phosphorylation and reveals magnesium ion-dependent conformational changes of the kinase.

    PubMed

    Hamm, Jorg; Alessi, Dario R; Biondi, Ricardo M

    2002-11-29

    The design of specific inhibitors for protein kinases is an important step toward elucidation of intracellular signal transduction pathways and to guide drug discovery programs. We devised a model approach to generate specific, competitive kinase inhibitors by isolating substrate mimics containing two independent binding sites with an anti-idiotype strategy from combinatorial RNA libraries. As a general test for the ability to generate highly specific kinase inhibitors, we selected the transcription factor cAMP-response element-binding protein (CREB) that is phosphorylated on the same serine residue by the protein kinase MSK1 as well as by RSK1. The sequences and structures of these kinases are very similar, about 60% of their amino acids are identical. Nevertheless, we can demonstrate that the selected RNA inhibitors inhibit specifically CREB phosphorylation by MSK1 but do not affect CREB phosphorylation by RSK1. The inhibitors interact preferentially with the inactive form of MSK1. Furthermore, we demonstrate that RNA ligands can be conformation-specific probes, and this feature allowed us to describe magnesium ion-dependent conformational changes of MSK1 upon activation.

  20. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    PubMed

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. Transcription factor ThWRKY4 binds to a novel WLS motif and a RAV1A element in addition to the W-box to regulate gene expression.

    PubMed

    Xu, Hongyun; Shi, Xinxin; Wang, Zhibo; Gao, Caiqiu; Wang, Chao; Wang, Yucheng

    2017-08-01

    WRKY transcription factors play important roles in many biological processes, and mainly bind to the W-box element to regulate gene expression. Previously, we characterized a WRKY gene from Tamarix hispida, ThWRKY4, in response to abiotic stress, and showed that it bound to the W-box motif. However, whether ThWRKY4 could bind to other motifs remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ThWRKY4. In addition to the W-box core cis-element (termed W-box), we identified that ThWRKY4 could bind to two other motifs: the RAV1A element (CAACA) and a novel motif with sequence of GTCTA (W-box like sequence, WLS). The distributions of these motifs were screened in the promoter regions of genes regulated by some WRKYs. The results showed that the W-box, RAV1A, and WLS motifs were all present in high numbers, suggesting that they play key roles in gene expression mediated by WRKYs. Furthermore, five WRKY proteins from different WRKY subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the RAV1A and WLS motifs, indicating that they are recognized commonly by WRKYs. These findings will help to further reveal the functions of WRKY proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites.

    PubMed

    Li, Yang Eric; Xiao, Mu; Shi, Binbin; Yang, Yu-Cheng T; Wang, Dong; Wang, Fei; Marcia, Marco; Lu, Zhi John

    2017-09-08

    Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA regulatory elements. Furthermore, we validate two RBP-RBP interactions in cell lines. Our approach links proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA regulatory elements.

  3. Regulatory elements involved in tax-mediated transactivation of the HTLV-I LTR.

    PubMed

    Seeler, J S; Muchardt, C; Podar, M; Gaynor, R B

    1993-10-01

    HTLV-I is the etiologic agent of adult T-cell leukemia. In this study, we investigated the regulatory elements and cellular transcription factors which function in modulating HTLV-I gene expression in response to the viral transactivator protein, tax. Transfection experiments into Jurkat cells of a variety of site-directed mutants in the HTLV-1 LTR indicated that each of the three motifs A, B, and C within the 21-bp repeats, the binding sites for the Ets family of proteins, and the TATA box all influenced the degree of tax-mediated activation. Tax is also able to activate gene expression of other viral and cellular promoters. Tax activation of the IL-2 receptor and the HIV-1 LTR is mediated through NF-kappa B motifs. Interestingly, sequences in the 21-bp repeat B and C motifs contain significant homology with NF-kappa B regulatory elements. We demonstrated that an NF-kappa B binding protein, PRDII-BF1, but not the rel protein, bound to the B and C motifs in the 21-bp repeat. PRDII-BF1 was also able to stimulate activation of HTLV-I gene expression by tax. The role of the Ets proteins on modulating tax activation was also studied. Ets 1 but not Ets 2 was capable of increasing the degree of tax activation of the HTLV-I LTR. These results suggest that tax activates gene expression by either direct or indirect interaction with several cellular transcription factors that bind to the HTLV-I LTR.

  4. Cloning, expression, purification and preliminary crystallographic studies of the adenylate/uridylate-rich element-binding protein HuR complexed with its target RNA

    PubMed Central

    Iyaguchi, Daisuke; Yao, Min; Tanaka, Isao; Toyota, Eiko

    2009-01-01

    Adenylate/uridylate-rich elements (AREs), which are found in the 3′-untrans­lated region (UTR) of many mRNAs, influence the stability of cytoplasmic mRNA. HuR (human antigen R) binds to AREs and regulates various genes. In order to reveal the RNA-recognition mechanism of HuR protein, an RNA-binding region of human HuR containing two N-terminal RNA-recognition motif domains bound to an 11-­base RNA fragment has been crystallized. The crystals belonged to space group P212121, with unit-cell parameters a = 42.4, b = 44.9, c = 91.1 Å. X-­ray diffraction data were collected to 1.8 Å resolution. PMID:19255485

  5. Characterization of a Smad motif similar to Drosophila mad in the mouse Msx 1 promoter.

    PubMed

    Alvarez Martinez, Cristina E; Binato, Renata; Gonzalez, Sayonara; Pereira, Monica; Robert, Benoit; Abdelhay, Eliana

    2002-03-01

    Mouse Msx 1 gene, orthologous of the Drosophila msh, is involved in several developmental processes. BMP family members are major proteins in the regulation of Msx 1 expression. BMP signaling activates Smad 1/5/8 proteins, which associate to Smad 4 before translocating to the nucleus. Analysis of Msx 1 promoter revealed the presence of three elements similar to the consensus established for Mad, the Smad 1 Drosophila counterpart. Notably, such an element was identified in an enhancer important for Msx 1 regulation. Gel shift analysis demonstrated that proteins from 13.5 dpc embryo associate to this enhancer. Remarkably, supershift assays showed that Smad proteins are present in the complex. Purified Smad 1 and 4 also bind to this fragment. We demonstrate that functional binding sites in this enhancer are confined to the Mad motif and flanking region. Our data suggest that this Mad motif may be functional in response to BMP signaling. ©2002 Elsevier Science (USA).

  6. Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA.

    PubMed

    Dionne, Isabelle; Larose, Stéphanie; Dandjinou, Alain T; Abou Elela, Sherif; Wellinger, Raymund J

    2013-07-01

    Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.

  7. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  8. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs

    PubMed Central

    Lahr, Roni M; Fonseca, Bruno D; Ciotti, Gabrielle E; Al-Ashtal, Hiba A; Jia, Jian-Jun; Niklaus, Marius R; Blagden, Sarah P; Alain, Tommy; Berman, Andrea J

    2017-01-01

    The 5’terminal oligopyrimidine (5’TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methylguanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5’TOP motif, a cap analog (m7GTP), and a capped cytidine (m7GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5’TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5’TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis. DOI: http://dx.doi.org/10.7554/eLife.24146.001 PMID:28379136

  9. Functional organization of DNA elements regulating SM30alpha, a spicule matrix gene of sea urchin embryos.

    PubMed

    Yamasu, K; Wilt, F H

    1999-02-01

    The SM30a gene encodes a protein in the embryonic endoskeleton of the sea urchin Strongylocentrotus purpuratus, and is specifically expressed in the skeletogenic primary mesenchyme cell lineage. To clarify the mechanism for the differentiation of this cell lineage, which proceeds rather autonomously in the embryo, regulation of the SM30alpha gene was investigated previously and it was shown that the distal DNA region upstream of this gene from - 1.6 to - 1.0 kb contained numerous negative regulatory elements that suppressed the ectopic expression of the gene in the gut. Here we study the influence of the proximal region from - 303 to + 104 bp. Analysis of the expression of reporter constructs indicated that a strong positive enhancer element existed in the region from -142 to -105bp. This element worked both in forward and reverse orientations and additively when placed tandemly upstream to the reporter gene. In addition, other weaker positive and negative regulatory sites were also detected throughout the proximal region. Electrophoretic gel mobility shift analyses showed that multiple nuclear proteins were bound to the putative strong enhancer region. One of the proteins binding to this region was present in ear y blastulae, a time when the SM30 gene was still silent, but it was not in prism embryos actively expressing the gene. The binding region for this blastula-specific protein was narrowed down to the region from - 132 to -122 bp, which included the consensus binding site for the mammalian proto-oncogene product, Ets. Two possible SpGCF1 binding sites were identified in the vicinity of the enhancer region. This information was used to make a comparison of the general regulatory architecture of genes that contribute to the formation of the skeletal spicule.

  10. Nature and function of insulator protein binding sites in the Drosophila genome

    PubMed Central

    Schwartz, Yuri B.; Linder-Basso, Daniela; Kharchenko, Peter V.; Tolstorukov, Michael Y.; Kim, Maria; Li, Hua-Bing; Gorchakov, Andrey A.; Minoda, Aki; Shanower, Gregory; Alekseyenko, Artyom A.; Riddle, Nicole C.; Jung, Youngsook L.; Gu, Tingting; Plachetka, Annette; Elgin, Sarah C.R.; Kuroda, Mitzi I.; Park, Peter J.; Savitsky, Mikhail; Karpen, Gary H.; Pirrotta, Vincenzo

    2012-01-01

    Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes. PMID:22767387

  11. Conserved Regulation of MAP Kinase Expression by PUF RNA-Binding Proteins

    PubMed Central

    Lee, Myon-Hee; Hook, Brad; Pan, Guangjin; Kershner, Aaron M; Merritt, Christopher; Seydoux, Geraldine; Thomson, James A; Wickens, Marvin; Kimble, Judith

    2007-01-01

    Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3′ untranslated region (3′ UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3′UTR elements in both Erk2 and p38α mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38α 3′ UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression. PMID:18166083

  12. The interaction between the yeast telomerase RNA and the Est1 protein requires three structural elements.

    PubMed

    Lubin, Johnathan W; Tucey, Timothy M; Lundblad, Victoria

    2012-09-01

    In the budding yeast Saccharomyces cerevisiae, the telomerase enzyme is composed of a 1.3-kb TLC1 RNA that forms a complex with Est2 (the catalytic subunit) and two regulatory proteins, Est1 and Est3. Previous work has identified a conserved 5-nt bulge, present in a long helical arm of TLC1, which mediates binding of Est1 to TLC1. However, increased expression of Est1 can bypass the consequences of removal of this RNA bulge, indicating that there are additional binding site(s) for Est1 on TLC1. We report here that a conserved single-stranded internal loop immediately adjacent to the bulge is also required for the Est1-RNA interaction; furthermore, a TLC1 variant that lacks this internal loop but retains the bulge cannot be suppressed by Est1 overexpression, arguing that the internal loop may be a more critical element for Est1 binding. An additional structural feature consisting of a single-stranded region at the base of the helix containing the bulge and internal loop also contributes to recognition of TLC1 by Est1, potentially by providing flexibility to this helical arm. Association of Est1 with each of these TLC1 motifs was assessed using a highly sensitive biochemical assay that simultaneously monitors the relative levels of the Est1 and Est2 proteins in the telomerase complex. The identification of three elements of TLC1 that are required for Est1 association provides a detailed view of this particular protein-RNA interaction.

  13. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    PubMed

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  14. Iron Homeostasis and Nutritional Iron Deficiency123

    PubMed Central

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe2+ and O2 (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  15. HMG-D is an architecture-specific protein that preferentially binds to DNA containing the dinucleotide TG.

    PubMed Central

    Churchill, M E; Jones, D N; Glaser, T; Hefner, H; Searles, M A; Travers, A A

    1995-01-01

    The high mobility group (HMG) protein HMG-D from Drosophila melanogaster is a highly abundant chromosomal protein that is closely related to the vertebrate HMG domain proteins HMG1 and HMG2. In general, chromosomal HMG domain proteins lack sequence specificity. However, using both NMR spectroscopy and standard biochemical techniques we show that binding of HMG-D to a single DNA site is sequence selective. The preferred duplex DNA binding site comprises at least 5 bp and contains the deformable dinucleotide TG embedded in A/T-rich sequences. The TG motif constitutes a common core element in the binding sites of the well-characterized sequence-specific HMG domain proteins. We show that a conserved aromatic residue in helix 1 of the HMG domain may be involved in recognition of this core sequence. In common with other HMG domain proteins HMG-D binds preferentially to DNA sites that are stably bent and underwound, therefore HMG-D can be considered an architecture-specific protein. Finally, we show that HMG-D bends DNA and may confer a superhelical DNA conformation at a natural DNA binding site in the Drosophila fushi tarazu scaffold-associated region. Images PMID:7720717

  16. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress.

    PubMed

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-10-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Computational characterization of chromatin domain boundary-associated genomic elements

    PubMed Central

    Hong, Seungpyo

    2017-01-01

    Abstract Topologically associated domains (TADs) are 3D genomic structures with high internal interactions that play important roles in genome compaction and gene regulation. Their genomic locations and their association with CCCTC-binding factor (CTCF)-binding sites and transcription start sites (TSSs) were recently reported. However, the relationship between TADs and other genomic elements has not been systematically evaluated. This was addressed in the present study, with a focus on the enrichment of these genomic elements and their ability to predict the TAD boundary region. We found that consensus CTCF-binding sites were strongly associated with TAD boundaries as well as with the transcription factors (TFs) Zinc finger protein (ZNF)143 and Yin Yang (YY)1. TAD boundary-associated genomic elements include DNase I-hypersensitive sites, H3K36 trimethylation, TSSs, RNA polymerase II, and TFs such as Specificity protein 1, ZNF274 and SIX homeobox 5. Computational modeling with these genomic elements suggests that they have distinct roles in TAD boundary formation. We propose a structural model of TAD boundaries based on these findings that provides a basis for studying the mechanism of chromatin structure formation and gene regulation. PMID:28977568

  18. Robust Translation of the Nucleoid Protein Fis Requires a Remote Upstream AU Element and Is Enhanced by RNA Secondary Structure

    PubMed Central

    Nafissi, Maryam; Chau, Jeannette; Xu, Jimin

    2012-01-01

    Synthesis of the Fis nucleoid protein rapidly increases in response to nutrient upshifts, and Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions. Previous work has shown that control of Fis synthesis occurs at transcription initiation of the dusB-fis operon. We show here that while translation of the dihydrouridine synthase gene dusB is low, unusual mechanisms operate to enable robust translation of fis. At least two RNA sequence elements located within the dusB coding region are responsible for high fis translation. The most important is an AU element centered 35 nucleotides (nt) upstream of the fis AUG, which may function as a binding site for ribosomal protein S1. In addition, a 44-nt segment located upstream of the AU element and predicted to form a stem-loop secondary structure plays a prominent role in enhancing fis translation. On the other hand, mutations close to the AUG, including over a potential Shine-Dalgarno sequence, have little effect on Fis protein levels. The AU element and stem-loop regions are phylogenetically conserved within dusB-fis operons of representative enteric bacteria. PMID:22389479

  19. Amino Acid Change in the Carbohydrate Response Element Binding Protein is associated with lower triglycerides and myocardial infarction incidence depending on level of adherence to the Mediterranean diet in the PREDIMED trial

    USDA-ARS?s Scientific Manuscript database

    A variant (rs3812316, C771G, and Gln241His) in the MLXIPL (Max-like protein X interacting protein-like) gene encoding the carbohydrate response element binding protein has been associated with lower triglycerides. However, its association with cardiovascular diseases and gene-diet interactions modul...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahabieh, Matthew S., E-mail: dahabieh@interchange.ubc.ca; Ooms, Marcel, E-mail: marcel.ooms@mssm.edu; Malcolm, Tom, E-mail: tmalc1@yahoo.com

    Transcription from the HIV-1 long terminal repeat (LTR) is mediated by numerous host transcription factors. In this study we characterized an E-box motif (RBE1) within the core promoter that was previously implicated in both transcriptional activation and repression. We show that RBE1 is a binding site for the RBF-2 transcription factor complex (USF1, USF2, and TFII-I), previously shown to bind an upstream viral element, RBE3. The RBE1 and RBE3 elements formed complexes of identical mobility and protein constituents in gel shift assays, both with Jurkat T-cell nuclear extracts and recombinant USF/TFII-I. Furthermore, both elements are regulators of HIV-1 expression; mutationsmore » in LTR-luciferase reporters and in HIV-1 molecular clones resulted in decreased transcription, virion production, and proviral expression in infected cells. Collectively, our data indicate that RBE1 is a bona fide RBF-2 binding site and that the RBE1 and RBE3 elements are necessary for mediating proper transcription from the HIV-1 LTR.« less

  1. Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore.

    PubMed

    Fry, H Christopher; Lehmann, Andreas; Saven, Jeffery G; DeGrado, William F; Therien, Michael J

    2010-03-24

    The first example of a computationally de novo designed protein that binds an emissive abiological chromophore is presented, in which a sophisticated level of cofactor discrimination is pre-engineered. This heterotetrameric, C(2)-symmetric bundle, A(His):B(Thr), uniquely binds (5,15-di[(4-carboxymethyleneoxy)phenyl]porphinato)zinc [(DPP)Zn] via histidine coordination and complementary noncovalent interactions. The A(2)B(2) heterotetrameric protein reflects ligand-directed elements of both positive and negative design, including hydrogen bonds to second-shell ligands. Experimental support for the appropriate formulation of [(DPP)Zn:A(His):B(Thr)](2) is provided by UV/visible and circular dichroism spectroscopies, size exclusion chromatography, and analytical ultracentrifugation. Time-resolved transient absorption and fluorescence spectroscopic data reveal classic excited-state singlet and triplet PZn photophysics for the A(His):B(Thr):(DPP)Zn protein (k(fluorescence) = 4 x 10(8) s(-1); tau(triplet) = 5 ms). The A(2)B(2) apoprotein has immeasurably low binding affinities for related [porphinato]metal chromophores that include a (DPP)Fe(III) cofactor and the zinc metal ion hemin derivative [(PPIX)Zn], underscoring the exquisite active-site binding discrimination realized in this computationally designed protein. Importantly, elements of design in the A(His):B(Thr) protein ensure that interactions within the tetra-alpha-helical bundle are such that only the heterotetramer is stable in solution; corresponding homomeric bundles present unfavorable ligand-binding environments and thus preclude protein structural rearrangements that could lead to binding of (porphinato)iron cofactors.

  2. The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins.

    PubMed

    Norman, Michael; Rivers, Caroline; Lee, Youn-Bok; Idris, Jalilah; Uney, James

    2016-12-01

    RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins. © 2016 The Author(s).

  3. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease.

    PubMed

    Cho, Kyu-hyang; Kim, Hyun-ju; Kamanna, Vaijinath S; Vaziri, Nosratola D

    2010-01-01

    Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF. Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats. CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-alpha, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-alpha and L-FABP. Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.

  4. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    PubMed

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  5. Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells.

    PubMed

    Chen, L; Smith, L; Johnson, M R; Wang, K; Diasio, R B; Smith, J B

    2000-10-13

    Treatment of human promyelocytic leukemia cells (HL-60) with phorbol 12-myristate 13-acetate (PMA) is known to decrease c-myc mRNA by blocking transcription elongation at sites near the first exon/intron border. Treatment of HL-60 cells with either PMA or bryostatin 1, which acutely activates protein kinase C (PKC), decreased the levels of myc mRNA and Myc protein. The inhibition of Myc synthesis accounted for the drop in Myc protein, because PMA treatment had no effect on Myc turnover. Treatment with PMA or bryostatin 1 increased nuclear protein binding to MIE1, a c-myc intron 1 element that defines an RFX1-binding X box. RFX1 antiserum supershifted MIE1-protein complexes. Increased MIE1 binding was independent of protein synthesis and abolished by a selective PKC inhibitor, which also prevented the effect of PMA on myc mRNA and protein levels and Myc synthesis. PMA treatment increased RFX1 in the nuclear fraction and decreased it in the cytosol without affecting total RFX1. Transfection of HL-60 cells with myc reporter gene constructs showed that the RFX1-binding X box was required for the down-regulation of reporter gene expression by PMA. These findings suggest that nuclear translocation and binding of RFX1 to the X box cause the down-regulation of myc expression, which follows acute PKC activation in undifferentiated HL-60 cells.

  6. Insulin-like growth factor-I increases bone sialoprotein (BSP) expression through fibroblast growth factor-2 response element and homeodomain protein-binding site in the proximal promoter of the BSP gene.

    PubMed

    Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Mezawa, Masaru; Araki, Shouta; Sodek, Jaro; Ogata, Yorimasa

    2006-08-01

    Insulin-like growth factor-I (IGF-I) promotes bone formation by stimulating proliferation and differentiation of osteoblasts. Bone sialoprotein (BSP), is thought to function in the initial mineralization of bone, is selectively expressed by differentiated osteoblast. To determine the molecular mechanism of IGF-I regulation of osteogenesis, we analyzed the effects of IGF-I on the expression of BSP in osteoblast-like Saos2 and in rat stromal bone marrow (RBMC-D8) cells. IGF-I (50 ng/ml) increased BSP mRNA levels at 12 h in Saos2 cells. In RBMC-D8 cells, IGF-I increased BSP mRNA levels at 3 h. From transient transfection assays, a twofold increase in transcription by IGF-I was observed at 12 h in pLUC3 construct that included the promoter sequence from -116 to +60. Effect of IGF-I was abrogated by 2-bp mutations in either the FGF2 response element (FRE) or homeodomain protein-binding site (HOX). Gel shift analyses showed that IGF-I increased binding of nuclear proteins to the FRE and HOX elements. Notably, the HOX-protein complex was supershifted by Smad1 antibody, while the FRE-protein complex was shifted by Smad1 and Cbfa1 antibodies. Dlx2 and Dlx5 antibodies disrupted the formation of the FRE- and HOX-protein complexes. The IGF-I effects on the formation of FRE-protein complexes were abolished by tyrosine kinase inhibitor herbimycin A (HA), PI3-kinase/Akt inhibitor LY249002, and MAP kinase kinase inhibitor U0126, while IGF-I effects on HOX-protein complexes were abolished by HA and LY249002. These studies demonstrate that IGF-I stimulates BSP transcription by targeting the FRE and HOX elements in the proximal promoter of BSP gene.

  7. Iron regulatory protein 1 is not required for the modulation of ferritin and transferrin receptor expression by iron in a murine pro-B lymphocyte cell line

    PubMed Central

    Schalinske, Kevin L.; Blemings, Kenneth P.; Steffen, Daniel W.; Chen, Opal S.; Eisenstein, Richard S.

    1997-01-01

    Iron regulatory proteins (IRPs) are cytoplasmic RNA binding proteins that are central components of a sensory and regulatory network that modulates vertebrate iron homeostasis. IRPs regulate iron metabolism by binding to iron responsive element(s) (IREs) in the 5′ or 3′ untranslated region of ferritin or transferrin receptor (TfR) mRNAs. Two IRPs, IRP1 and IRP2, have been identified previously. IRP1 exhibits two mutually exclusive functions as an RNA binding protein or as the cytosolic isoform of aconitase. We demonstrate that the Ba/F3 family of murine pro-B lymphocytes represents the first example of a mammalian cell line that fails to express IRP1 protein or mRNA. First, all of the IRE binding activity in Ba/F3-gp55 cells is attributable to IRP2. Second, synthesis of IRP2, but not of IRP1, is detectable in Ba/F3-gp55 cells. Third, the Ba/F3 family of cells express IRP2 mRNA at a level similar to other murine cell lines, but IRP1 mRNA is not detectable. In the Ba/F3 family of cells, alterations in iron status modulated ferritin biosynthesis and TfR mRNA level over as much as a 20- and 14-fold range, respectively. We conclude that IRP1 is not essential for regulation of ferritin or TfR expression by iron and that IRP2 can act as the sole IRE-dependent mediator of cellular iron homeostasis. PMID:9380695

  8. Non-native, N-terminal Hsp70 Molecular Motor Recognition Elements in Transit Peptides Support Plastid Protein Translocation*

    PubMed Central

    Chotewutmontri, Prakitchai; Bruce, Barry D.

    2015-01-01

    Previously, we identified the N-terminal domain of transit peptides (TPs) as a major determinant for the translocation step in plastid protein import. Analysis of Arabidopsis TP dataset revealed that this domain has two overlapping characteristics, highly uncharged and Hsp70-interacting. To investigate these two properties, we replaced the N-terminal domains of the TP of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its reverse peptide with a series of unrelated peptides whose affinities to the chloroplast stromal Hsp70 have been determined. Bioinformatic analysis indicated that eight out of nine peptides in this series are not similar to the TP N terminus. Using in vivo and in vitro protein import assays, the majority of the precursors containing Hsp70-binding elements were targeted to plastids, whereas none of the chimeric precursors lacking an N-terminal Hsp70-binding element were targeted to the plastids. Moreover, a pulse-chase assay showed that two chimeric precursors with the most uncharged peptides failed to translocate into the stroma. The ability of multiple unrelated Hsp70-binding elements to support protein import verified that the majority of TPs utilize an N-terminal Hsp70-binding domain during translocation and expand the mechanistic view of the import process. This work also indicates that synthetic biology may be utilized to create de novo TPs that exceed the targeting activity of naturally occurring sequences. PMID:25645915

  9. Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity.

    PubMed

    Jacobs, Y; Schnabel, C A; Cleary, M L

    1999-07-01

    Pbx/exd proteins modulate the DNA binding affinities and specificities of Hox proteins and contribute to the execution of Hox-dependent developmental programs in arthropods and vertebrates. Pbx proteins also stably heterodimerize and bind DNA with Meis and Pknox1-Prep1, additional members of the TALE (three-amino-acid loop extension) superclass of homeodomain proteins that function on common genetic pathways with a subset of Hox proteins. In this study, we demonstrated that Pbx and Meis bind DNA as heterotrimeric complexes with Hoxb1 on a genetically defined Hoxb2 enhancer, r4, that mediates the cross-regulatory transcriptional effects of Hoxb1 in vivo. The DNA binding specificity of the heterotrimeric complex for r4 is mediated by a Pbx-Hox site in conjunction with a distal Meis site, which we showed to be required for ternary complex formation and Meis-enhanced transcription. Formation of heterotrimeric complexes in which all three homeodomains bind their cognate DNA sites is topologically facilitated by the ability of Pbx and Meis to interact through their amino termini and bind DNA without stringent half-site orientation and spacing requirements. Furthermore, Meis site mutation in the Hoxb2 enhancer phenocopies Pbx-Hox site mutation to abrogate enhancer-directed expression of a reporter transgene in the murine embryonic hindbrain, demonstrating that DNA binding by all three proteins is required for trimer function in vivo. Our data provide in vitro and in vivo evidence for the combinatorial regulation of Hox and TALE protein functions that are mediated, in part, by their interdependent DNA binding activities as ternary complexes. As a consequence, Hoxb1 employs Pbx and Meis-related proteins, as a pair of essential cofactors in a higher-order molecular complex, to mediate its transcriptional effects on an endogenous Hox response element.

  10. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP)

    PubMed Central

    Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R. Max; Tu, Benjamin P.; MacMillan, John B.; De Brabander, Jef K.; Veech, Richard L.; Uyeda, Kosaku

    2016-01-01

    The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. PMID:26984404

  11. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    PubMed

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  12. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets

    PubMed Central

    Farazi, Thalia A.; Leonhardt, Carl S.; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E.A.; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol; Jacobs, Nicholas C.; Gerstberger, Stefanie; Bognanni, Claudia; Larsson, Erik; Ohler, Uwe; Tuschl, Thomas

    2014-01-01

    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed. PMID:24860013

  13. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter.

    PubMed

    Borghaei, Ruth C; Rawlings, P Lyle; Javadi, Masoud; Woloshin, Joanna

    2004-03-26

    A 5T/6T polymorphic site in the matrix metalloproteinase-3 (MMP-3) promoter has been identified as a repressor element involved in inhibiting induction of MMP-3 transcription by interleukin 1; and the 6T allele has been associated with decreased expression of MMP-3 as compared to the 5T allele. Zinc-binding protein-89 (ZBP-89) was cloned from a yeast one-hybrid assay via its ability to interact with this site, but when the protein was over-expressed, it resulted in activation of the MMP-3 promoter rather than repression. Here we show that in nuclear extracts isolated from human gingival fibroblasts stimulated with IL-1, this site is bound by p50 and p65 components of NF-kappaB in addition to ZBP-89, and that recombinant p50 binds preferentially to the 6T binding site. These results are consistent with a role for NF-kappaB in limiting the cytokine induced expression of MMP-3.

  14. [Metabolism of cholesterol and fatty acids in nephrotic syndrome and its regulation by sterol regulatory element binding proteins (SREBP's). Effect of soy protein consumption].

    PubMed

    Tovar, Armando; Manzano, Natalia; Torres, Nimbe

    2005-01-01

    Hyperlipidemia occurs during nephrotic syndrome (NS). It is known that cholesterol and fatty acid biosynthesis is controlled by the transcription factors sterol regulatory element binding proteins (SREBPs). Soy protein consumption reduces the concentration of these lipids, although its mechanism of action is not well known. The aim of the present study was to establish whether soy protein consumption reduces cholesterol and triglycerides levels by regulating of SREBPs. Male Wistar rats with experimental NS were studied for 64 days. The results showed that rats fed with soy protein had significantly lower plasma cholesterol and triglyceride concentrations as well as proteinuria than rats fed with casein diet. These decrements were associated with a decrease in the expression of SREBP-1 and fatty acid biosynthetic enzymes. In addition, Western blot analysis revealed that in nuclear extracts from hepatocytes of rats fed with soy protein, there was a lower concentration of SREBP-1 than in rats fed with casein. The results of this study indicate that consumption of a soy protein diet has beneficial effects on nephrotic syndrome.

  15. Preparation of oligoribonucleotides containing 4-thiouridine using Fpmp chemistry. Photo-crosslinking to RNA binding proteins using 350 nm irradiation.

    PubMed Central

    McGregor, A; Rao, M V; Duckworth, G; Stockley, P G; Connolly, B A

    1996-01-01

    The preparation of a 4-thiouridine phosphoramidite suitable for RNA synthesis and its subsequent incorporation into oligoribonucleotides is described. The thiol group is protected with a 2-cyanoethyl group and the 2'-OH with a 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl function. Thiouridine-containing oligoribonucleotides were used as 350 nm UV crosslinking probes for the photoaffinity labelling of RNA binding proteins. Specific crosslinking was demonstrated between the Rev protein of HIV-1 (as a glutathione S-transferase fusion protein) and its RNA target, the Rev-responsive element. It was not possible to generate crosslinks between the RNA bacteriophage MS2 coat protein and the initiator stem-loop of the replicase gene, to which it binds. These results are consistent with the structural data available on both systems. PMID:8774897

  16. Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction.

    PubMed

    Cang, Zixuan; Wei, Guo-Wei

    2018-02-01

    Protein-ligand binding is a fundamental biological process that is paramount to many other biological processes, such as signal transduction, metabolic pathways, enzyme construction, cell secretion, and gene expression. Accurate prediction of protein-ligand binding affinities is vital to rational drug design and the understanding of protein-ligand binding and binding induced function. Existing binding affinity prediction methods are inundated with geometric detail and involve excessively high dimensions, which undermines their predictive power for massive binding data. Topology provides the ultimate level of abstraction and thus incurs too much reduction in geometric information. Persistent homology embeds geometric information into topological invariants and bridges the gap between complex geometry and abstract topology. However, it oversimplifies biological information. This work introduces element specific persistent homology (ESPH) or multicomponent persistent homology to retain crucial biological information during topological simplification. The combination of ESPH and machine learning gives rise to a powerful paradigm for macromolecular analysis. Tests on 2 large data sets indicate that the proposed topology-based machine-learning paradigm outperforms other existing methods in protein-ligand binding affinity predictions. ESPH reveals protein-ligand binding mechanism that can not be attained from other conventional techniques. The present approach reveals that protein-ligand hydrophobic interactions are extended to 40Å  away from the binding site, which has a significant ramification to drug and protein design. Copyright © 2017 John Wiley & Sons, Ltd.

  17. AtSPX1 affects the AtPHR1-DNA-binding equilibrium by binding monomeric AtPHR1 in solution.

    PubMed

    Qi, Wanjun; Manfield, Iain W; Muench, Stephen P; Baker, Alison

    2017-10-23

    Phosphorus is an essential macronutrient for plant growth and is deficient in ∼50% of agricultural soils. The transcription factor phosphate starvation response 1 (PHR1) plays a central role in regulating the expression of a subset of phosphate starvation-induced (PSI) genes through binding to a cis -acting DNA element termed P1BS (PHR1-binding sequences). In Arabidopsis and rice, activity of AtPHR1/OsPHR2 is regulated in part by their downstream target SPX ( S yg1, P ho81, X pr1) proteins through protein-protein interaction. Here, we provide kinetic and affinity data for interaction between AtPHR1 and P1BS sites. Using surface plasmon resonance, a tandem P1BS sequence showed ∼50-fold higher affinity for MBPAtdPHR1 (a fusion protein comprising the DNA-binding domain and coiled-coil domain of AtPHR1 fused to maltose-binding protein) than a single site. The affinity difference was largely reflected in a much slower dissociation rate from the 2× P1BS-binding site, suggesting an important role for protein co-operativity. Injection of AtSPX1 in the presence of phosphate or inositol hexakisphosphate (InsP6) failed to alter the MBPAtdPHR1-P1BS dissociation rate, while pre-mixing of these two proteins in the presence of either 5 mM Pi or 500 µM InsP6 resulted in a much lower DNA-binding signal from MBPAtdPHR1. These data suggest that, in the Pi-restored condition, AtSPX1 can bind to monomeric AtPHR1 in solution and therefore regulate PSI gene expression by tuning the AtPHR1-DNA-binding equilibrium. This Pi-dependent regulation of AtPHR1-DNA-binding equilibrium also generates a negative feedback loop on the expression of AtSPX1 itself, providing a tight control of PSI gene expression. © 2017 The Author(s).

  18. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  19. Specific DNA binding of the two chicken Deformed family homeodomain proteins, Chox-1.4 and Chox-a.

    PubMed Central

    Sasaki, H; Yokoyama, E; Kuroiwa, A

    1990-01-01

    The cDNA clones encoding two chicken Deformed (Dfd) family homeobox containing genes Chox-1.4 and Chox-a were isolated. Comparison of their amino acid sequences with another chicken Dfd family homeodomain protein and with those of mouse homologues revealed that strong homologies are located in the amino terminal regions and around the homeodomains. Although homologies in other regions were relatively low, some short conserved sequences were also identified. E. coli-made full length proteins were purified and used for the production of specific antibodies and for DNA binding studies. The binding profiles of these proteins to the 5'-leader and 5'-upstream sequences of Chox-1.4 and Chox-a coding regions were analyzed by immunoprecipitation and DNase I footprint assays. These two Chox proteins bound to the same sites in the 5'-flanking sequences of their coding regions with various affinities and their binding affinities to each site were nearly the same. The consensus sequences of the high and low affinity binding sites were TAATGA(C/G) and CTAATTTT, respectively. A clustered binding site was identified in the 5'-upstream of the Chox-a gene, suggesting that this clustered binding site works as a cis-regulatory element for auto- and/or cross-regulation of Chox-a gene expression. Images PMID:1970866

  20. Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2.

    PubMed

    Kim, S; Ponka, P

    2000-03-03

    Iron regulatory proteins (IRP-1 and IRP-2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements, which are located in the 3'-untranslated region and the 5'-untranslated region of their respective mRNAs. Cellular iron levels affect binding of IRPs to iron-responsive elements and consequently expression of TfR and ferritin. Moreover, NO(*), a redox species of nitric oxide that interacts primarily with iron, can activate IRP-1 RNA binding activity resulting in an increase in TfR mRNA levels. Recently we found that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA binding of IRP-2 followed by IRP-2 degradation, and these changes were associated with a decrease in TfR mRNA levels (Kim, S., and Ponka, P. (1999) J. Biol. Chem. 274, 33035-33042). In this study, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP-1 binding activity, whereas RNA binding of IRP-2 decreased and was followed by a degradation of this protein. Moreover, the decrease of IRP-2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. Furthermore, LPS/IFN-gamma-stimulated RAW 264.7 cells showed increased rates of ferritin synthesis. These results suggest that NO(+)-mediated degradation of IRP-2 plays a major role in iron metabolism during inflammation.

  1. Genetically designed biosensing systems for high-throughput screening of pharmaceuticals, clinical diagnostics, and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Wenner, Brett R.; Douglass, Phillip; Shrestha, Suresh; Sharma, Bethel V.; Lai, Siyi; Madou, Marc J.; Daunert, Sylvia

    2001-05-01

    The genetically-modified binding proteins calmodulin, the phosphate binding protein, the sulfate binding protein, and the galactose/glucose binding protein have been successfully employed as biosensing elements for the detection of phenothiazines, phosphate, sulfate, and glucose, respectively. Mutant proteins containing unique cysteine residues were utilized in the site-specific labeling of environment-sensitive fluorescent probes. Changes in the environment of the probes upon ligand-induced conformational changes of the proteins result in changes in fluorescence intensity.

  2. SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner

    PubMed Central

    Bollinger, Lance M.; Witczak, Carol A.; Houmard, Joseph A.

    2014-01-01

    Muscle-specific RING finger-1 (MuRF-1), a ubiquitin ligase and key regulator of proteasome-dependent protein degradation, is highly expressed during skeletal muscle atrophy. The transcription factor forkhead box O3 (FoxO3) induces MuRF-1 expression, but the direct role of other major atrophy-related transcription factors, such as SMAD3, is largely unknown. The goal of this study was to determine whether SMAD3 individually regulates, or with FoxO3 coordinately regulates, MuRF-1 expression. In cultured myotubes or human embryonic kidney cells, MuRF-1 mRNA content and promoter activity were increased by FoxO3 but not by SMAD3 overexpression. However, FoxO3 and SMAD3 coexpression synergistically increased MuRF-1 mRNA and promoter activity. Mutation of the SMAD-binding element (SBE) in the proximal MuRF-1 promoter or overexpression of a SMAD3 DNA-binding mutant attenuated FoxO3-dependent MuRF-1 promoter activation, showing that SMAD binding to DNA is required for optimal activation of FoxO3-induced transcription of MuRF-1. Using chromatin immunoprecipitation, SMAD3 DNA binding increased FoxO3 abundance and SBE mutation reduced FoxO3 abundance on the MuRF-1 promoter. Furthermore, SMAD3 overexpression dose-dependently increased FoxO3 protein content, and coexpression of FoxO3 and SMAD3 synergistically increased FoxO-dependent gene transcription [assessed with a FoxO response element (FRE)-driven reporter]. Collectively, these results show that SMAD3 regulates transcription of MuRF-1 by increasing FoxO3 binding at a conserved FRE-SBE motif within the proximal promoter region, and by increasing FoxO3 protein content and transcriptional activity. These data are the first to indicate that two major transcription factors regulating protein degradation, FoxO3 and SMAD3, converge to coordinately and directly regulate transcription of MuRF-1. PMID:24920680

  3. Human HMG box transcription factor HBP1: a role in hCD2 LCR function.

    PubMed Central

    Zhuma, T; Tyrrell, R; Sekkali, B; Skavdis, G; Saveliev, A; Tolaini, M; Roderick, K; Norton, T; Smerdon, S; Sedgwick, S; Festenstein, R; Kioussis, D

    1999-01-01

    The locus control region (LCR) of the human CD2 gene (hCD2) confers T cell-specific, copy-dependent and position-independent gene expression in transgenic mice. This LCR consists of a strong T cell-specific enhancer and an element without enhancer activity (designated HSS3), which is required for prevention of position effect variegation (PEV) in transgenic mice. Here, we identified the HMG box containing protein-1 (HBP1) as a factor binding to HSS3 of the hCD2 LCR. Within the LCR, HBP1 binds to a novel TTCATTCATTCA sequence that is higher in affinity than other recently reported HBP1-binding sites. Mice transgenic for a hCD2 LCR construct carrying a deletion of the HBP1-binding sequences show a propensity for PEV if the transgene integrates in a heterochromatic region of the chromosome such as the centromere or telomere. We propose that HBP1 plays an important role in chromatin opening and remodelling activities by binding to and bending the DNA, thus allowing DNA-protein and/or protein-protein interactions, which increase the probability of establishing an active locus. PMID:10562551

  4. Myostatin inhibits porcine intramuscular preadipocyte differentiation in vitro.

    PubMed

    Sun, W X; Dodson, M V; Jiang, Z H; Yu, S G; Chu, W W; Chen, J

    2016-04-01

    This study assessed the effect of myostatin on adipogenesis by porcine intramuscular preadipocytes. Intramuscular preadipocytes were isolated from the longissimus dorsi muscle of newborn pigs. Myostatin inhibited intramuscular preadipocyte differentiation in a dose-dependent manner. Myostatin treatment during preadipocyte differentiation significantly (P < 0.05) inhibited the expression of the adipogenic marker genes CCAAT/enhancer-binding protein β, CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, fatty acid-binding protein, and adiponectin. Myostatin also significantly (P < 0.05) reduced the release of glycerol and decreased both adipose triglyceride lipase and hormone-sensitive lipase expression in intramuscular adipocytes. Our study suggests that myostatin acts as an extrinsic regulatory factor in regulating intramuscular adipogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Translational co-regulation of a ligand and inhibitor by a conserved RNA element

    PubMed Central

    Zaucker, Andreas; Nagorska, Agnieszka; Kumari, Pooja; Hecker, Nikolai; Wang, Yin; Huang, Sizhou; Cooper, Ledean; Sivashanmugam, Lavanya; VijayKumar, Shruthi; Brosens, Jan; Gorodkin, Jan

    2018-01-01

    Abstract In many organisms, transcriptional and post-transcriptional regulation of components of pathways or processes has been reported. However, to date, there are few reports of translational co-regulation of multiple components of a developmental signaling pathway. Here, we show that an RNA element which we previously identified as a dorsal localization element (DLE) in the 3′UTR of zebrafish nodal-related1/squint (ndr1/sqt) ligand mRNA, is shared by the related ligand nodal-related2/cyclops (ndr2/cyc) and the nodal inhibitors, lefty1 (lft1) and lefty2 mRNAs. We investigated the activity of the DLEs through functional assays in live zebrafish embryos. The lft1 DLE localizes fluorescently labeled RNA similarly to the ndr1/sqt DLE. Similar to the ndr1/sqt 3′UTR, the lft1 and lft2 3′UTRs are bound by the RNA-binding protein (RBP) and translational repressor, Y-box binding protein 1 (Ybx1), whereas deletions in the DLE abolish binding to Ybx1. Analysis of zebrafish ybx1 mutants shows that Ybx1 represses lefty1 translation in embryos. CRISPR/Cas9-mediated inactivation of human YBX1 also results in human NODAL translational de-repression, suggesting broader conservation of the DLE RNA element/Ybx1 RBP module in regulation of Nodal signaling. Our findings demonstrate translational co-regulation of components of a signaling pathway by an RNA element conserved in both sequence and structure and an RBP, revealing a ‘translational regulon’. PMID:29059375

  6. HIV-1, HTLV-I and the interleukin-2 receptor: insights into transcriptional control.

    PubMed

    Böhnlein, E; Lowenthal, J W; Wano, Y; Franza, B R; Ballard, D W; Greene, W C

    1989-01-01

    In this study, we present direct evidence for the binding of the inducible cellular protein, HIVEN86A, to a 12-bp element present in the IL-2R alpha promoter. This element shares significant sequence similarity with the NF-kappa B binding sites present in the HIV-1 and kappa immunoglobulin enhancers. Transient transfection studies indicate that this kappa B element is both necessary and sufficient to confer tax or mitogen inducibility to a heterologous promoter. As summarized schematically in Fig. 5, the findings suggest that the HIVEN86A protein may play a central role in the activation of cellular genes required for T-cell growth, specifically the IL-2R alpha gene. In addition, the induced HIVEN86A protein also binds to a similar sequence present in the HIV-1 LTR leading to enhanced viral gene expression and ultimately T-cell death. Thus, mitogen activation of the HIV-1 LTR appears to involve the same inducible transcription factor(s) that normally regulates IL-2R alpha gene expression and T-cell growth. These findings further underscore the importance of the state of T-cell activation in the regulation of HIV-1 replication. Our results also demonstrate that HIVEN86A is induced by the tax protein of HTLV-I. Thus, in HTLV-I infected cells, normally the tight control of the transient expression of the IL-2R alpha gene is lost. The constitutive high-level display of IL-2 receptors may play a role in leukemic transformation mediated by HTLV-I (ATL). Apparently by the same mechanism, the tax protein also activates the HIV-1 LTR through the induction of HIVEN86A.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. High-Mobility Group Chromatin Proteins 1 and 2 Functionally Interact with Steroid Hormone Receptors To Enhance Their DNA Binding In Vitro and Transcriptional Activity in Mammalian Cells

    PubMed Central

    Boonyaratanakornkit, Viroj; Melvin, Vida; Prendergast, Paul; Altmann, Magda; Ronfani, Lorenza; Bianchi, Marco E.; Taraseviciene, Laima; Nordeen, Steven K.; Allegretto, Elizabeth A.; Edwards, Dean P.

    1998-01-01

    We previously reported that the chromatin high-mobility group protein 1 (HMG-1) enhances the sequence-specific DNA binding activity of progesterone receptor (PR) in vitro, thus providing the first evidence that HMG-1 may have a coregulatory role in steroid receptor-mediated gene transcription. Here we show that HMG-1 and the highly related HMG-2 stimulate DNA binding by other steroid receptors, including estrogen, androgen, and glucocorticoid receptors, but have no effect on DNA binding by several nonsteroid nuclear receptors, including retinoid acid receptor (RAR), retinoic X receptor (RXR), and vitamin D receptor (VDR). As highly purified recombinant full-length proteins, all steroid receptors tested exhibited weak binding affinity for their optimal palindromic hormone response elements (HREs), and the addition of purified HMG-1 or -2 substantially increased their affinity for HREs. Purified RAR, RXR, and VDR also exhibited little to no detectable binding to their cognate direct repeat HREs but, in contrast to results with steroid receptors, the addition of HMG-1 or HMG-2 had no stimulatory effect. Instead, the addition of purified RXR enhanced RAR and VDR DNA binding through a heterodimerization mechanism and HMG-1 or HMG-2 had no further effect on DNA binding by RXR-RAR or RXR-VDR heterodimers. HMG-1 and HMG-2 (HMG-1/-2) themselves do not bind to progesterone response elements, but in the presence of PR they were detected as part of an HMG-PR-DNA ternary complex. HMG-1/-2 can also interact transiently in vitro with PR in the absence of DNA; however, no direct protein interaction was detected with VDR. These results, taken together with the fact that PR can bend its target DNA and that HMG-1/-2 are non-sequence-specific DNA binding proteins that recognize DNA structure, suggest that HMG-1/-2 are recruited to the PR-DNA complex by the combined effect of transient protein interaction and DNA bending. In transient-transfection assays, coexpression of HMG-1 or HMG-2 increased PR-mediated transcription in mammalian cells by as much as 7- to 10-fold without altering the basal promoter activity of target reporter genes. This increase in PR-mediated gene activation by coexpression of HMG-1/-2 was observed in different cell types and with different target promoters, suggesting a generality to the functional interaction between HMG-1/-2 and PR in vivo. Cotransfection of HMG-1 also increased reporter gene activation mediated by other steroid receptors, including glucocorticoid and androgen receptors, but it had a minimal influence on VDR-dependent transcription in vivo. These results support the conclusion that HMG-1/-2 are coregulatory proteins that increase the DNA binding and transcriptional activity of the steroid hormone class of receptors but that do not functionally interact with certain nonsteroid classes of nuclear receptors. PMID:9671457

  8. Role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of Dr+ Escherichia coli receptor protein Decay Accelerating Factor (DAF or CD55) by Nitric oxide

    PubMed Central

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2012-01-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121

  9. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    PubMed

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  10. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1.

    PubMed

    Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin

    2017-06-01

    RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.

  11. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway.

    PubMed

    Kizis, Dimosthenis; Pagès, Montserrat

    2002-06-01

    The abscisic acid-responsive gene rab17 of maize is expressed during late embryogenesis, and is induced by ABA and desiccation in embryo and vegetative tissues. ABRE and DRE cis-elements are involved in regulation of the gene by ABA and drought. Using yeast one-hybrid screening, we isolated two cDNAs encoding two new DRE-binding proteins, designated DBF1 and DBF2, that are members of the AP2/EREBP transcription factor family. Analysis of mRNA accumulation profiles showed that DBF1 is induced during maize embryogenesis and after desiccation, NaCl and ABA treatments in plant seedlings, whereas the DBF2 mRNA is not induced. DNA-binding preferences of DBFs were analysed by electrophoretic mobility shift assays, and showed that both DBF1 and DBF2 bound to the wild-type DRE2 element, but not to the DRE2 mutant or to the DRE1 element which differs only in a single nucleotide. Transactivation activity using particle bombardment showed that DBF1 functioned as activator of DRE2-dependent transcription of rab17 promoter by ABA, whereas DBF2 overexpression had a repression action downregulating not only the basal promoter activity, but also the ABA effect. These results show that ABA plays a role in the regulation of DBF activity, and suggests the existence of an ABA-dependent pathway for the regulation of genes through the C-repeat/DRE element.

  12. Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter.

    PubMed

    Lenzmeier, B A; Giebler, H A; Nyborg, J K

    1998-02-01

    Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CREB footprint into the GC-rich DNA flanking sequences of the viral CRE. The Tax-CREB footprint was enhanced but not extended by the KIX domain of CBP, suggesting that the coactivator increased the stability of the nucleoprotein complex. Conversely, the footprint pattern of CREB on a cellular CRE lacking GC-rich flanking sequences did not change in the presence of Tax or Tax plus KIX. The minor-groove DNA binding drug chromomycin A3 bound to the GC-rich flanking sequences and inhibited the association of Tax and the Tax-CBP complex without affecting CREB binding. Tax specifically cross-linked to the viral CRE in the 5'-flanking sequence, and this cross-link was blocked by chromomycin A3. Together, these data support a model where Tax interacts directly with both CREB and the minor-groove viral CRE-flanking sequences to form a high-affinity binding site for the recruitment of CBP to the HTLV-1 promoter.

  13. Dynamic Modeling of GAIT System Reveals Transcriptome Expansion and Translational Trickle Control Device

    PubMed Central

    Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.

    2012-01-01

    SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318

  14. Regulation of cyclic adenosine monophosphate response element binding protein on renin expression in kidney via complex cyclic adenosine monophosphate response element-binding-protein-binding protein/P300 recruitment.

    PubMed

    Li, Pei; Zhang, Jing; Zhu, Yuanfang; Liu, Ming; Xuan, Jin

    2015-11-01

    Renin synthesis and release is the rate-limiting step in the renin-angiotensin system, because cyclic adenosine monophosphate (cAMP) has been identified as dominant pathway for renin gene expression, and cAMP response element-binding protein (CREB) is found in the human and mouse renin promoter. This study aimed to evaluate the role of CREB in expression of the renin gene. We created conditional deletion of CREB in mice with low-sodium diet, specifically in renin cells of the kidney. To assess the effect of CREB on renin expression, immunostaining of renin was used in samples from wild-type mice and mice with gene knock-down of CREB. Cyclic AMP response element-binding-protein-binding protein (CBP) and p300 were measured in cultured renin cells of the mice, and RNA detection was done with real-time polymerase chain reaction. With low-sodium diet, renin was expressed along the whole wall of the afferent glomerular arterioles in wild-type mice, while there was no increase or even decrease in renin expression in CREB-specific deletion mice; RNA level of renin in cultured cells decreased by 50% with single knock-down of CREB, CBP, or p300, and decreased 70% with triple knock-down of CREB, CBP, and p300. This study found that CREB was important for renin synthesis and the role of CREB can be achieved through the recruitment of co-activators CBP and p300.

  15. Negative modulation of the chicken infectious anemia virus promoter by COUP-TF1 and an E box-like element at the transcription start site binding deltaEF1.

    PubMed

    Miller, Myrna M; Jarosinski, Keith W; Schat, Karel A

    2008-12-01

    Expression of enhanced green fluorescent protein (EGFP) under control of the promoter-enhancer of chicken infectious anemia virus (CAV) is increased in an oestrogen receptor-enhanced cell line when treated with oestrogen and the promoter-enhancer binds unidentified proteins that recognize a consensus oestrogen response element (ERE). Co-transfection assays with the CAV promoter and the nuclear receptor chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1) showed that expression of EGFP was decreased by 50 to 60 % in DF-1 and LMH cells. The CAV promoter that included sequences at and downstream of the transcription start point had less expression than a short promoter construct. Mutation of a putative E box at this site restored expression levels. Electromobility shift assays showed that the transcription regulator delta-EF1 (deltaEF1) binds to this E box region. These findings indicate that the CAV promoter activity can be affected directly or indirectly by COUP-TF1 and deltaEF1.

  16. The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism

    USDA-ARS?s Scientific Manuscript database

    The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that responds to oxidative stress by binding to the antioxidant response element (ARE) in the promoter of genes coding for antioxidant enzymes like NAD(P)H:quinone oxidoreductase 1 (NQO1) and proteins for glutathione synthesis. ...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi

    Highlights: {yields} The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. {yields} The core promoter was located in the 5F-1. {yields} Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. {yields} These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, butmore » little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.« less

  18. Characterisation of single domain ATP-binding cassette protien homologues of Theileria parva.

    PubMed

    Kibe, M K; Macklin, M; Gobright, E; Bishop, R; Urakawa, T; ole-MoiYoi, O K

    2001-09-01

    Two distinct genes encoding single domain, ATP-binding cassette transport protein homologues of Theileria parva were cloned and sequenced. Neither of the genes is tandemly duplicated. One gene, TpABC1, encodes a predicted protein of 593 amino acids with an N-terminal hydrophobic domain containing six potential membrane-spanning segments. A single discontinuous ATP-binding element was located in the C-terminal region of TpABC1. The second gene, TpABC2, also contains a single C-terminal ATP-binding motif. Copies of TpABC2 were present at four loci in the T. parva genome on three different chromosomes. TpABC1 exhibited allelic polymorphism between stocks of the parasite. Comparison of cDNA and genomic sequences revealed that TpABC1 contained seven short introns, between 29 and 84 bp in length. The full-length TpABC1 protein was expressed in insect cells using the baculovirus system. Application of antibodies raised against the recombinant antigen to western blots of T. parva piroplasm lysates detected an 85 kDa protein in this life-cycle stage.

  19. Inositol polyphosphate multikinase is a coactivator for serum response factor-dependent induction of immediate early genes

    PubMed Central

    Kim, Eunha; Tyagi, Richa; Lee, Joo-Young; Park, Jina; Kim, Young-ran; Beon, Jiyoon; Chen, Po Yu; Cha, Jiyoung Y.; Snyder, Solomon H.; Kim, Seyun

    2013-01-01

    Inositol polyphosphate multikinase (IPMK) is a notably pleiotropic protein. It displays both inositol phosphate kinase and phosphatidylinositol kinase catalytic activities. Noncatalytically, IPMK stabilizes the mammalian target of rapamycin complex 1 and acts as a transcriptional coactivator for CREB-binding protein/E1A binding protein p300 and tumor suppressor protein p53. Serum response factor (SRF) is a major transcription factor for a wide range of immediate early genes. We report that IPMK, in a noncatalytic role, is a transcriptional coactivator for SRF mediating the transcription of immediate early genes. Stimulation by serum of many immediate early genes is greatly reduced by IPMK deletion. IPMK stimulates expression of these genes, an influence also displayed by catalytically inactive IPMK. IPMK acts by binding directly to SRF and thereby enhancing interactions of SRF with the serum response element of diverse genes. PMID:24248338

  20. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding tomore » the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.« less

  1. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs

    PubMed Central

    Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne

    2015-01-01

    Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses. PMID:25668122

  2. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs.

    PubMed

    Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne

    2015-01-01

    Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.

  3. BIPAD: A web server for modeling bipartite sequence elements

    PubMed Central

    Bi, Chengpeng; Rogan, Peter K

    2006-01-01

    Background Many dimeric protein complexes bind cooperatively to families of bipartite nucleic acid sequence elements, which consist of pairs of conserved half-site sequences separated by intervening distances that vary among individual sites. Results We introduce the Bipad Server [1], a web interface to predict sequence elements embedded within unaligned sequences. Either a bipartite model, consisting of a pair of one-block position weight matrices (PWM's) with a gap distribution, or a single PWM matrix for contiguous single block motifs may be produced. The Bipad program performs multiple local alignment by entropy minimization and cyclic refinement using a stochastic greedy search strategy. The best models are refined by maximizing incremental information contents among a set of potential models with varying half site and gap lengths. Conclusion The web service generates information positional weight matrices, identifies binding site motifs, graphically represents the set of discovered elements as a sequence logo, and depicts the gap distribution as a histogram. Server performance was evaluated by generating a collection of bipartite models for distinct DNA binding proteins. PMID:16503993

  4. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation.

    PubMed

    Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B

    2013-12-06

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.

  5. Presenilins Regulate Neurotrypsin Gene Expression and Neurotrypsin-dependent Agrin Cleavage via Cyclic AMP Response Element-binding Protein (CREB) Modulation*

    PubMed Central

    Almenar-Queralt, Angels; Kim, Sonia N.; Benner, Christopher; Herrera, Cheryl M.; Kang, David E.; Garcia-Bassets, Ivan; Goldstein, Lawrence S. B.

    2013-01-01

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment. PMID:24145027

  6. Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions.

    PubMed

    Pugacheva, Elena M; Rivero-Hinojosa, Samuel; Espinoza, Celso A; Méndez-Catalá, Claudia Fabiola; Kang, Sungyun; Suzuki, Teruhiko; Kosaka-Suzuki, Natsuki; Robinson, Susan; Nagarajan, Vijayaraj; Ye, Zhen; Boukaba, Abdelhalim; Rasko, John E J; Strunnikov, Alexander V; Loukinov, Dmitri; Ren, Bing; Lobanenkov, Victor V

    2015-08-14

    CTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation. Here we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells. We discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells.

  7. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  8. Regulation of the plasma cell transcription factor Blimp-1 gene by Bach2 and Bcl6.

    PubMed

    Ochiai, Kyoko; Muto, Akihiko; Tanaka, Hiromu; Takahashi, Shinichiro; Igarashi, Kazuhiko

    2008-03-01

    B lymphocyte-induced maturation protein 1 (Blimp-1) is a key regulator for plasma cell differentiation. Prior to the terminal differentiation into plasma cells, Blimp-1 expression is suppressed in B cells by transcription repressors BTB and CNC homology 2 (Bach2) and B cell lymphoma 6 (Bcl6). Bach2 binds to the Maf recognition element (MARE) of the promoter upstream region of the Blimp-1 gene (Prdm1) by forming a heterodimer with MafK. Bach2 and Bcl6 were found to interact with each other in B cells. While both Bach2 and Bcl6 possess the BTB domain which mediates protein-protein interactions, they interacted in a BTB-independent manner. Bcl6 is known to repress Prdm1 through a Bcl6 recognition element 1 in the intron 5, in which a putative, evolutionarily conserved MARE was identified. Both repressed the expression of a reporter gene containing the intron 5 region depending on the presence of the respective binding sites in 18-81 pre-B cells. Co-expression of Bach2 and Bcl6 resulted in further repression of the reporter plasmid. Chromatin immunoprecipitation assays showed MafK to bind to the intron MARE in various B cell lines, thus suggesting that it binds as a heterodimer with Bach2. Therefore, the interaction between Bach2 and Bcl6 might be crucial for the proper repression of Prdm1 in B cells.

  9. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis.

    PubMed

    Tsutsui, Tomokazu; Kato, Wataru; Asada, Yutaka; Sako, Kaori; Sato, Takeo; Sonoda, Yutaka; Kidokoro, Satoshi; Yamaguchi-Shinozaki, Kazuko; Tamaoki, Masanori; Arakawa, Keita; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Shinozaki, Kazuo; Matsui, Minami; Ikeda, Akira; Yamaguchi, Junji

    2009-11-01

    Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the EAR (ethylene response factor-associated amphiphilic repression) motif. We show here that DEAR1 mRNA accumulates in response to both pathogen infection and cold treatment. Transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) showed a dwarf phenotype and lesion-like cell death, together with constitutive expression of PR genes and accumulation of salicylic acid. DEAR1ox also showed more limited P. syringae pathogen growth compared to wild-type, consistent with an activated defense phenotype. In addition, transient expression experiments revealed that the DEAR1 protein represses DRE/CRT (dehydration-responsive element/C-repeat)-dependent transcription, which is regulated by low temperature. Furthermore, the induction of DREB1/CBF family genes by cold treatment was suppressed in DEAR1ox, leading to a reduction in freezing tolerance. These results suggest that DEAR1 has an upstream regulatory role in mediating crosstalk between signaling pathways for biotic and abiotic stress responses.

  10. Conserved structures formed by heterogeneous RNA sequences drive silencing of an inflammation responsive post-transcriptional operon

    PubMed Central

    Basu, Abhijit; Jain, Niyati; Tolbert, Blanton S.; Komar, Anton A.

    2017-01-01

    Abstract RNA–protein interactions with physiological outcomes usually rely on conserved sequences within the RNA element. By contrast, activity of the diverse gamma-interferon-activated inhibitor of translation (GAIT)-elements relies on the conserved RNA folding motifs rather than the conserved sequence motifs. These elements drive the translational silencing of a group of chemokine (CC/CXC) and chemokine receptor (CCR) mRNAs, thereby helping to resolve physiological inflammation. Despite sequence dissimilarity, these RNA elements adopt common secondary structures (as revealed by 2D-1H NMR spectroscopy), providing a basis for their interaction with the RNA-binding GAIT complex. However, many of these elements (e.g. those derived from CCL22, CXCL13, CCR4 and ceruloplasmin (Cp) mRNAs) have substantially different affinities for GAIT complex binding. Toeprinting analysis shows that different positions within the overall conserved GAIT element structure contribute to differential affinities of the GAIT protein complex towards the elements. Thus, heterogeneity of GAIT elements may provide hierarchical fine-tuning of the resolution of inflammation. PMID:29069516

  11. The Drosophila Tis11 protein and its effects on mRNA expression in flies.

    PubMed

    Choi, Youn-Jeong; Lai, Wi S; Fedic, Robert; Stumpo, Deborah J; Huang, Weichun; Li, Leping; Perera, Lalith; Brewer, Brandy Y; Wilson, Gerald M; Mason, James M; Blackshear, Perry J

    2014-12-19

    Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with "target" RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain. Drosophila Tis11 promoted both deadenylation and decay of a target transcript in this heterologous cell system. We used chromosome deletion/duplication and P element insertion to produce two types of Tis11 deficiency in adult flies, both of which were viable and fertile. To address the hypothesis that Tis11 deficiency would lead to the abnormal accumulation of potential target transcripts, we analyzed gene expression in adult flies by deep mRNA sequencing. We identified 69 transcripts from 56 genes that were significantly up-regulated more than 1.5-fold in both types of Tis11-deficient flies. Ten of the up-regulated transcripts encoded probable proteases, but many other functional classes of proteins were represented. Many of the up-regulated transcripts contained potential binding sites for tristetraprolin family member proteins that were conserved in other Drosophila species. Tis11 is thus an ARE-binding, mRNA-destabilizing protein that may play a role in post-transcriptional gene expression in Drosophila and other insects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The Drosophila Tis11 Protein and Its Effects on mRNA Expression in Flies*

    PubMed Central

    Choi, Youn-Jeong; Lai, Wi S.; Fedic, Robert; Stumpo, Deborah J.; Huang, Weichun; Li, Leping; Perera, Lalith; Brewer, Brandy Y.; Wilson, Gerald M.; Mason, James M.; Blackshear, Perry J.

    2014-01-01

    Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with “target” RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain. Drosophila Tis11 promoted both deadenylation and decay of a target transcript in this heterologous cell system. We used chromosome deletion/duplication and P element insertion to produce two types of Tis11 deficiency in adult flies, both of which were viable and fertile. To address the hypothesis that Tis11 deficiency would lead to the abnormal accumulation of potential target transcripts, we analyzed gene expression in adult flies by deep mRNA sequencing. We identified 69 transcripts from 56 genes that were significantly up-regulated more than 1.5-fold in both types of Tis11-deficient flies. Ten of the up-regulated transcripts encoded probable proteases, but many other functional classes of proteins were represented. Many of the up-regulated transcripts contained potential binding sites for tristetraprolin family member proteins that were conserved in other Drosophila species. Tis11 is thus an ARE-binding, mRNA-destabilizing protein that may play a role in post-transcriptional gene expression in Drosophila and other insects. PMID:25342740

  13. Transcriptional regulation of hepatic lipogenesis.

    PubMed

    Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook

    2015-11-01

    Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.

  14. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR.

    PubMed

    Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R Max; Tu, Benjamin P; MacMillan, John B; De Brabander, Jef K; Veech, Richard L; Uyeda, Kosaku

    2016-05-13

    The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei-Yao; Hsieh, Tsai-Yuan; Liu, Shu-Ting

    2011-12-10

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity bymore » interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.« less

  16. A novel role for CRTC2 in hepatic cholesterol synthesis through SREBP‐2

    PubMed Central

    Li, Yujie; Song, Yongfeng; Zhao, Meng; Guo, Yanjing; Yu, Chunxiao; Chen, Wenbin; Shao, Shanshan; Xu, Chao; Zhou, Xinli; Zhao, Lifang; Zhang, Zhenhai; Bo, Tao; Xia, Yu; Proud, Christopher G.; Wang, Xuemin; Wang, Li; Zhao, Jiajun

    2017-01-01

    Cholesterol synthesis is regulated by the transcription factor sterol regulatory element binding protein 2 (SREBP‐2) and its target gene 3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase (HMGCR), which is the rate‐limiting enzyme in cholesterol synthesis. Cyclic adenosine monophosphate–responsive element (CRE) binding protein–regulated transcription coactivator (CRTC) 2 is the master regulator of glucose metabolism. However, the effect of CRTC2 on cholesterol and its potential molecular mechanism remain unclear. Here, we demonstrated that CRTC2 expression and liver cholesterol content were increased in patients with high serum cholesterol levels who underwent resection of liver hemangiomas, as well as in mice fed a 4% cholesterol diet. Mice with adenovirus‐mediated CRTC2 overexpression also showed elevated lipid levels in both serum and liver tissues. Intriguingly, hepatic de novo cholesterol synthesis was markedly increased under these conditions. In contrast, CRTC2 ablation in mice fed a 4% cholesterol diet (18 weeks) showed decreased lipid levels in serum and liver tissues compared with those in littermate wild‐type mice. The expression of lipogenic genes (SREBP‐2 and HMGCR) was consistent with hepatic CRTC2 levels. In vivo imaging showed enhanced adenovirus‐mediated HMGCR‐luciferase activity in adenovirus‐mediated CRTC2 mouse livers; however, the activity was attenuated after mutation of CRE or sterol regulatory element sequences in the HMGCR reporter construct. The effect of CRTC2 on HMGCR in mouse livers was alleviated upon SREBP‐2 knockdown. CRTC2 modulated SREBP‐2 transcription by CRE binding protein, which recognizes the half‐site CRE sequence in the SREBP‐2 promoter. CRTC2 reduced the nuclear protein expression of forkhead box O1 and subsequently increased SREBP‐2 transcription by binding insulin response element 1, rather than insulin response element 2, in the SREBP‐2 promoter. Conclusion: CRTC2 regulates the transcription of SREBP‐2 by interfering with the recognition of insulin response element 1 in the SREBP‐2 promoter by forkhead box O1, thus inducing SREBP‐2/HMGCR signaling and subsequently facilitating hepatic cholesterol synthesis. (Hepatology 2017;66:481–497). PMID:28395113

  17. Long-Term Memory for Place Learning Is Facilitated by Expression of cAMP Response Element-Binding Protein in the Dorsal Hippocampus

    ERIC Educational Resources Information Center

    Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.

    2007-01-01

    Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…

  18. Isolation and functional characterization of TIF-IB, a factor that confers promoter specificity to mouse RNA polymerase I.

    PubMed

    Schnapp, A; Clos, J; Hädelt, W; Schreck, R; Cvekl, A; Grummt, I

    1990-03-25

    The murine ribosomal gene promoter contains two cis-acting control elements which operate in concert to promote efficient and accurate transcription initiation by RNA polymerase I. The start site proximal core element which is indispensable for promoter recognition by RNA polymerase I (pol I) encompasses sequences from position -39 to -1. An upstream control element (UCE) which is located between nucleotides -142 and -112 stimulates the efficiency of transcription initiation both in vivo and in vitro. Here we report the isolation and functional characterization of a specific rDNA binding protein, the transcription initiation factor TIF-IB, which specifically interacts with the core region of the mouse ribosomal RNA gene promoter. Highly purified TIF-IB complements transcriptional activity in the presence of two other essential initiation factors TIF-IA and TIF-IC. We demonstrate that the binding efficiency of purified TIF-IB to the core promoter is strongly enhanced by the presence in cis of the UCE. This positive effect of upstream sequences on TIF-IB binding is observed throughout the purification procedure suggesting that the synergistic action of the two distant promoter elements is not mediated by a protein different from TIF-IB. Increasing the distance between both control elements still facilitates stable factor binding but eliminates transcriptional activation. The results demonstrate that TIF-IB binding to the rDNA promoter is an essential early step in the assembly of a functional transcription initiation complex. The subsequent interaction of TIF-IB with other auxiliary transcription initiation factors, however, requires the correct spacing between the UCE and the core promoter element.

  19. Biochemical and redox characterization of the mediator complex and its associated transcription factor GeBPL, a GLABROUS1 enhancer binding protein.

    PubMed

    Shaikhali, Jehad; Davoine, Céline; Brännström, Kristoffer; Rouhier, Nicolas; Bygdell, Joakim; Björklund, Stefan; Wingsle, Gunnar

    2015-06-15

    The eukaryotic mediator integrates regulatory signals from promoter-bound transcription factors (TFs) and transmits them to RNA polymerase II (Pol II) machinery. Although redox signalling is important in adjusting plant metabolism and development, nothing is known about a possible redox regulation of mediator. In the present study, using pull-down and yeast two-hybrid assays, we demonstrate the association of mediator (MED) subunits MED10a, MED28 and MED32 with the GLABROUS1 (GL1) enhancer-binding protein-like (GeBPL), a plant-specific TF that binds a promoter containing cryptochrome 1 response element 2 (CryR2) element. All the corresponding recombinant proteins form various types of covalent oligomers linked by intermolecular disulfide bonds that are reduced in vitro by the thioredoxin (TRX) and/or glutathione/glutaredoxin (GRX) systems. The presence of recombinant MED10a, MED28 and MED32 subunits or changes of its redox state affect the DNA-binding capacity of GeBPL suggesting that redox-driven conformational changes might modulate its activity. Overall, these results advance our understanding of how redox signalling affects transcription and identify mediator as a novel actor in redox signalling pathways, relaying or integrating redox changes in combination with specific TFs as GeBPL. © The Authors Journal compilation © 2015 Biochemical Society.

  20. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.

    PubMed

    Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter

    2004-02-11

    In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.

  1. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase

    PubMed Central

    Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter

    2004-01-01

    In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity. PMID:14749727

  2. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene.

    PubMed Central

    Walker, M D; Park, C W; Rosen, A; Aronheim, A

    1990-01-01

    Cell specific expression of the insulin gene is achieved through transcriptional mechanisms operating on multiple DNA sequence elements located in the 5' flanking region of the gene. Of particular importance in the rat insulin I gene are two closely similar 9 bp sequences (IEB1 and IEB2): mutation of either of these leads to 5-10 fold reduction in transcriptional activity. We have screened an expression cDNA library derived from mouse pancreatic endocrine beta cells with a radioactive DNA probe containing multiple copies of the IEB1 sequence. A cDNA clone (A1) isolated by this procedure encodes a protein which shows efficient binding to the IEB1 probe, but much weaker binding to either an unrelated DNA probe or to a probe bearing a single base pair insertion within the recognition sequence. DNA sequence analysis indicates a protein belonging to the helix-loop-helix family of DNA-binding proteins. The ability of the protein encoded by clone A1 to recognize a number of wild type and mutant DNA sequences correlates closely with the ability of each sequence element to support transcription in vivo in the context of the insulin 5' flanking DNA. We conclude that the isolated cDNA may encode a transcription factor that participates in control of insulin gene expression. Images PMID:2181401

  3. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions

    PubMed Central

    Uno, Yuichi; Furihata, Takashi; Abe, Hiroshi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2000-01-01

    The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins. PMID:11005831

  4. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.

    PubMed

    Uno, Y; Furihata, T; Abe, H; Yoshida, R; Shinozaki, K; Yamaguchi-Shinozaki, K

    2000-10-10

    The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins.

  5. A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway.

    PubMed

    van der Fits, L; Zhang, H; Menke, F L; Deneka, M; Memelink, J

    2000-11-01

    Plants respond to pathogen attack by induction of various defence responses, including the biosynthesis of protective secondary metabolites. In Catharanthus roseus, the elicitor-induced expression of the terpenoid indole alkaloid biosynthetic gene Strictosidine synthase (Str) is mediated via the plant stress hormonejasmonate. In the promoters of several defence-related genes, cis-acting elements have been identified that are important for transcriptional regulation upon stress signals. Here we show that an upstream region in the Str promoter confers responsiveness to partially purified yeast elicitor and jasmonate. Yeast one-hybrid screening with this element as a bait identified a MYB-like protein, which shows high homology to parsley box P-binding factor-1 (PcBPF-1). In vitro analyses showed that the Str promoter fragment contained a novel binding site for BPF-1-like proteins with higher binding affinity than the previously described box P. CrBPF-1 mRNA accumulated rapidly in elicitor-treated C. roseus suspension cells, whereas no induction was observed with jasmonate. Inhibitor studies indicated that CrBPF-1 plays a role in an elicitor-responsive but jasmonate-independent signal transduction pathway, acting downstream of protein phosphorylation and calcium influx.

  6. Trimeric Association of Hox and TALE Homeodomain Proteins Mediates Hoxb2 Hindbrain Enhancer Activity

    PubMed Central

    Jacobs, Yakop; Schnabel, Catherine A.; Cleary, Michael L.

    1999-01-01

    Pbx/exd proteins modulate the DNA binding affinities and specificities of Hox proteins and contribute to the execution of Hox-dependent developmental programs in arthropods and vertebrates. Pbx proteins also stably heterodimerize and bind DNA with Meis and Pknox1-Prep1, additional members of the TALE (three-amino-acid loop extension) superclass of homeodomain proteins that function on common genetic pathways with a subset of Hox proteins. In this study, we demonstrated that Pbx and Meis bind DNA as heterotrimeric complexes with Hoxb1 on a genetically defined Hoxb2 enhancer, r4, that mediates the cross-regulatory transcriptional effects of Hoxb1 in vivo. The DNA binding specificity of the heterotrimeric complex for r4 is mediated by a Pbx-Hox site in conjunction with a distal Meis site, which we showed to be required for ternary complex formation and Meis-enhanced transcription. Formation of heterotrimeric complexes in which all three homeodomains bind their cognate DNA sites is topologically facilitated by the ability of Pbx and Meis to interact through their amino termini and bind DNA without stringent half-site orientation and spacing requirements. Furthermore, Meis site mutation in the Hoxb2 enhancer phenocopies Pbx-Hox site mutation to abrogate enhancer-directed expression of a reporter transgene in the murine embryonic hindbrain, demonstrating that DNA binding by all three proteins is required for trimer function in vivo. Our data provide in vitro and in vivo evidence for the combinatorial regulation of Hox and TALE protein functions that are mediated, in part, by their interdependent DNA binding activities as ternary complexes. As a consequence, Hoxb1 employs Pbx and Meis-related proteins, as a pair of essential cofactors in a higher-order molecular complex, to mediate its transcriptional effects on an endogenous Hox response element. PMID:10373562

  7. Molecular cloning and preliminary function study of iron responsive element binding protein 1 gene from cypermethrin-resistant Culex pipiens pallens

    PubMed Central

    2011-01-01

    Background Insecticide resistance jeopardizes the control of mosquito populations and mosquito-borne disease control, which creates a major public health concern. Two-dimensional electrophoresis identified one protein segment with high sequence homology to part of Aedes aegypti iron-responsive element binding protein (IRE-BP). Method RT-PCR and RACE (rapid amplification of cDNA end) were used to clone a cDNA encoding full length IRE-BP 1. Real-time quantitative RT-PCR was used to evaluate the transcriptional level changes in the Cr-IRE strain Aedes aegypti compared to the susceptible strain of Cx. pipiens pallens. The expression profile of the gene was established in the mosquito life cycle. Methyl tritiated thymidine (3H-TdR) was used to observe the cypermethrin resistance changes in C6/36 cells containing the stably transfected IRE-BP 1 gene of Cx. pipiens pallens. Results The complete sequence of iron responsive element binding protein 1 (IRE-BP 1) has been cloned from the cypermethrin-resistant strain of Culex pipiens pallens (Cr-IRE strain). Quantitative RT-PCR analysis indicated that the IRE-BP 1 transcription level was 6.7 times higher in the Cr-IRE strain than in the susceptible strain of 4th instar larvae. The IRE-BP 1 expression was also found to be consistently higher throughout the life cycle of the Cr-IRE strain. A protein of predicted size 109.4 kDa has been detected by Western blotting in IRE-BP 1-transfected mosquito C6/36 cells. These IRE-BP 1-transfected cells also showed enhanced cypermethrin resistance compared to null-transfected or plasmid vector-transfected cells as determined by 3H-TdR incorporation. Conclusion IRE-BP 1 is expressed at higher levels in the Cr-IRE strain, and may confer some insecticide resistance in Cx. pipiens pallens. PMID:22075242

  8. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-03-15

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions.

  9. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed Central

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-01-01

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions. Images PMID:7720715

  10. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

    PubMed

    Narusaka, Yoshihiro; Nakashima, Kazuo; Shinwari, Zabta K; Sakuma, Yoh; Furihata, Takashi; Abe, Hiroshi; Narusaka, Mari; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-04-01

    Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.

  11. Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins.

    PubMed

    Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J

    2012-10-01

    3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  13. Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prep1, Pbx and Hox proteins.

    PubMed

    Ferretti, E; Marshall, H; Pöpperl, H; Maconochie, M; Krumlauf, R; Blasi, F

    2000-01-01

    Direct auto- and cross-regulatory interactions between Hox genes serve to establish and maintain segmentally restricted patterns in the developing hindbrain. Rhombomere r4-specific expression of both Hoxb1 and Hoxb2 depends upon bipartite cis Hox response elements for the group 1 paralogous proteins, Hoxal and Hoxbl. The DNA-binding ability and selectivity of these proteins depend upon the formation of specific heterodimeric complexes with members of the PBC homeodomain protein family (Pbx genes). The r4 enhancers from Hoxb1 and Hoxb2 have the same activity, but differ with respect to the number and organisation of bipartite Pbx/Hox (PH) sites required, suggesting the intervention of other components/sequences. We report here that another family of homeodomain proteins (TALE, Three-Amino acids-Loop-Extension: Prep1, Meis, HTH), capable of dimerizing with Pbx/EXD, is involved in the mechanisms of r4-restricted expression. We show that: (1) the r4-specific Hoxb1 and Hoxb2 enhancers are complex elements containing separate PH and Prep/Meis (PM) sites; (2) the PM site of the Hoxb2, but not Hoxb1, enhancer is essential in vivo for r4 expression and also influences other sites of expression; (3) both PM and PH sites are required for in vitro binding of Prepl-Pbx and formation and binding of a ternary Hoxbl-Pbxla (or 1b)-Prepl complex. (4) A similar ternary association forms in nuclear extracts from embryonal P19 cells, but only upon retinoic acid induction. This requires synthesis of Hoxbl and also contains Pbx with either Prepl or Meisl. Together these findings highlight the fact that PM sites are found in close proximity to bipartite PH motifs in several Hox responsive elements shown to be important in vivo and that such sites play an essential role in potentiating regulatory activity in combination with the PH motifs.

  14. Sequestration of cAMP response element-binding proteins by transcription factor decoys causes collateral elaboration of regenerating Aplysia motor neuron axons.

    PubMed

    Dash, P K; Tian, L M; Moore, A N

    1998-07-07

    Axonal injury increases intracellular Ca2+ and cAMP and has been shown to induce gene expression, which is thought to be a key event for regeneration. Increases in intracellular Ca2+ and/or cAMP can alter gene expression via activation of a family of transcription factors that bind to and modulate the expression of CRE (Ca2+/cAMP response element) sequence-containing genes. We have used Aplysia motor neurons to examine the role of CRE-binding proteins in axonal regeneration after injury. We report that axonal injury increases the binding of proteins to a CRE sequence-containing probe. In addition, Western blot analysis revealed that the level of ApCREB2, a CRE sequence-binding repressor, was enhanced as a result of axonal injury. The sequestration of CRE-binding proteins by microinjection of CRE sequence-containing plasmids enhanced axon collateral formation (both number and length) as compared with control plasmid injections. These findings show that Ca2+/cAMP-mediated gene expression via CRE-binding transcription factors participates in the regeneration of motor neuron axons.

  15. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less

  16. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs

    PubMed Central

    Glinsky, Gennadi V.

    2015-01-01

    Despite significant progress in the structural and functional characterization of the human genome, understanding of the mechanisms underlying the genetic basis of human phenotypic uniqueness remains limited. Here, I report that transposable element-derived sequences, most notably LTR7/HERV-H, LTR5_Hs, and L1HS, harbor 99.8% of the candidate human-specific regulatory loci (HSRL) with putative transcription factor-binding sites in the genome of human embryonic stem cells (hESC). A total of 4,094 candidate HSRL display selective and site-specific binding of critical regulators (NANOG [Nanog homeobox], POU5F1 [POU class 5 homeobox 1], CCCTC-binding factor [CTCF], Lamin B1), and are preferentially located within the matrix of transcriptionally active DNA segments that are hypermethylated in hESC. hESC-specific NANOG-binding sites are enriched near the protein-coding genes regulating brain size, pluripotency long noncoding RNAs, hESC enhancers, and 5-hydroxymethylcytosine-harboring regions immediately adjacent to binding sites. Sequences of only 4.3% of hESC-specific NANOG-binding sites are present in Neanderthals’ genome, suggesting that a majority of these regulatory elements emerged in Modern Humans. Comparisons of estimated creation rates of novel TF-binding sites revealed that there was 49.7-fold acceleration of creation rates of NANOG-binding sites in genomes of Chimpanzees compared with the mouse genomes and further 5.7-fold acceleration in genomes of Modern Humans compared with the Chimpanzees genomes. Preliminary estimates suggest that emergence of one novel NANOG-binding site detectable in hESC required 466 years of evolution. Pathway analysis of coding genes that have hESC-specific NANOG-binding sites within gene bodies or near gene boundaries revealed their association with physiological development and functions of nervous and cardiovascular systems, embryonic development, behavior, as well as development of a diverse spectrum of pathological conditions such as cancer, diseases of cardiovascular and reproductive systems, metabolic diseases, multiple neurological and psychological disorders. A proximity placement model is proposed explaining how a 33–47% excess of NANOG, CTCF, and POU5F1 proteins immobilized on a DNA scaffold may play a functional role at distal regulatory elements. PMID:25956794

  17. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.

    PubMed

    Jones, Christopher P; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-02-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNA(Lys3). Host cell tRNA(Lys) is selectively packaged into HIV-1 through a specific interaction between the major tRNA(Lys)-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNA(Lys3) is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNA(Lys) and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNA(Lys3) in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNA(Lys) to increase the efficiency of tRNA(Lys3) annealing to viral RNA.

  18. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing

    PubMed Central

    Jones, Christopher P.; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-01-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNALys3. Host cell tRNALys is selectively packaged into HIV-1 through a specific interaction between the major tRNALys-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNALys3 is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNALys and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNALys3 in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNALys to increase the efficiency of tRNALys3 annealing to viral RNA. PMID:23264568

  19. Promoter activity of polypyrimidine tract-binding protein genes of potato responds to environmental cues.

    PubMed

    Butler, Nathaniel M; Hannapel, David J

    2012-12-01

    Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that target specific RNAs for post-transcriptional processing by binding cytosine/uracil motifs. PTBs have established functions in a range of RNA processes including splicing, translation, stability and long-distance transport. Six PTB-like genes identified in potato have been grouped into two clades based on homology to other known plant PTBs. StPTB1 and StPTB6 are closely related to a PTB protein discovered in pumpkin, designated CmRBP50, and contain four canonical RNA-recognition motifs. CmRBP50 is expressed in phloem tissues and functions as the core protein of a phloem-mobile RNA/protein complex. Sequence from the potato genome database was used to clone the upstream sequence of these two PTB genes and analyzed to identify conserved cis-elements. The promoter of StPTB6 was enriched for regulatory elements for light and sucrose induction and defense. Upstream sequence of both PTB genes was fused to β-glucuronidase and monitored in transgenic potato lines. In whole plants, the StPTB1 promoter was most active in leaf veins and petioles, whereas StPTB6 was most active in leaf mesophyll. Both genes are active in new tubers and tuber sprouts. StPTB6 expression was induced in stems and stolon sections in response to sucrose and in leaves or petioles in response to light, heat, drought and mechanical wounding. These results show that CmRBP50-like genes of potato exhibit distinct expression patterns and respond to both developmental and environmental cues.

  20. Internal loop/bulge and hairpin loop of the iron-responsive element of ferritin mRNA contribute to maximal iron regulatory protein 2 binding and translational regulation in the iso-iron-responsive element/iso-iron regulatory protein family.

    PubMed

    Ke, Y; Sierzputowska-Gracz, H; Gdaniec, Z; Theil, E C

    2000-05-23

    Iron-responsive elements (IREs), a natural group of mRNA-specific sequences, bind iron regulatory proteins (IRPs) differentially and fold into hairpins [with a hexaloop (HL) CAGUGX] with helical distortions: an internal loop/bulge (IL/B) (UGC/C) or C-bulge. C-bulge iso-IREs bind IRP2 more poorly, as oligomers (n = 28-30), and have a weaker signal response in vivo. Two trans-loop GC base pairs occur in the ferritin IRE (IL/B and HL) but only one in C-bulge iso-IREs (HL); metal ions and protons perturb the IL/B [Gdaniec et al. (1998) Biochemistry 37, 1505-1512]. IRE function (translation) and physical properties (T(m) and accessibility to nucleases) are now compared for IL/B and C-bulge IREs and for HL mutants. Conversion of the IL/B into a C-bulge by a single deletion in the IL/B or by substituting the HL CG base pair with UA both derepressed ferritin synthesis 4-fold in rabbit reticulocyte lysates (IRP1 + IRP2), confirming differences in IRP2 binding observed for the oligomers. Since the engineered C-bulge IRE was more helical near the IL/B [Cu(phen)(2) resistant] and more stable (T(m) increased) and the HL mutant was less helical near the IL/B (ribonuclease T1 sensitive) and less stable (T(m) decreased), both CG trans-loop base pairs contribute to maximum IRP2 binding and translational regulation. The (1)H NMR spectrum of the Mg-IRE complex revealed, in contrast to the localized IL/B effects of Co(III) hexaammine observed previously, perturbation of the IL/B plus HL and interloop helix. The lower stability and greater helix distortion in the ferritin IL/B-IRE compared to the C-bulge iso-IREs create a combinatorial set of RNA/protein interactions that control protein synthesis rates with a range of signal sensitivities.

  1. Interactions of the Human LIP5 Regulatory Protein with Endosomal Sorting Complexes Required for Transport*♦

    PubMed Central

    Skalicky, Jack J.; Arii, Jun; Wenzel, Dawn M.; Stubblefield, William-May B.; Katsuyama, Angela; Uter, Nathan T.; Bajorek, Monika; Myszka, David G.; Sundquist, Wesley I.

    2012-01-01

    The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic “leucine collar” that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate. PMID:23105106

  2. An Early Nodulin-Like Protein Accumulates in the Sieve Element Plasma Membrane of Arabidopsis1[OA

    PubMed Central

    Khan, Junaid A.; Wang, Qi; Sjölund, Richard D.; Schulz, Alexander; Thompson, Gary A.

    2007-01-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential. PMID:17293437

  3. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.

    2013-11-20

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures ofmore » IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.« less

  4. The Compass-like Locus, Exclusive to the Ambulacrarians, Encodes a Chromatin Insulator Binding Protein in the Sea Urchin Embryo

    PubMed Central

    Cavalieri, Vincenzo; Melfi, Raffaella; Spinelli, Giovanni

    2013-01-01

    Chromatin insulators are eukaryotic genome elements that upon binding of specific proteins display barrier and/or enhancer-blocking activity. Although several insulators have been described throughout various metazoans, much less is known about proteins that mediate their functions. This article deals with the identification and functional characterization in Paracentrotus lividus of COMPASS-like (CMPl), a novel echinoderm insulator binding protein. Phylogenetic analysis shows that the CMPl factor, encoded by the alternative spliced Cmp/Cmpl transcript, is the founder of a novel ambulacrarian-specific family of Homeodomain proteins containing the Compass domain. Specific association of CMPl with the boxB cis-element of the sns5 chromatin insulator is demonstrated by using a yeast one-hybrid system, and further corroborated by ChIP-qPCR and trans-activation assays in developing sea urchin embryos. The sns5 insulator lies within the early histone gene cluster, basically between the H2A enhancer and H1 promoter. To assess the functional role of CMPl within this locus, we challenged the activity of CMPl by two distinct experimental strategies. First we expressed in the developing embryo a chimeric protein, containing the DNA-binding domain of CMPl, which efficiently compete with the endogenous CMPl for the binding to the boxB sequence. Second, to titrate the embryonic CMPl protein, we microinjected an affinity-purified CMPl antibody. In both the experimental assays we congruently observed the loss of the enhancer-blocking function of sns5, as indicated by the specific increase of the H1 expression level. Furthermore, microinjection of the CMPl antiserum in combination with a synthetic mRNA encoding a forced repressor of the H2A enhancer-bound MBF1 factor restores the normal H1 mRNA abundance. Altogether, these results strongly support the conclusion that the recruitment of CMPl on sns5 is required for buffering the H1 promoter from the H2A enhancer activity, and this, in turn, accounts for the different level of accumulation of early linker and nucleosomal transcripts. PMID:24086165

  5. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance.

    PubMed

    Agarwal, Pradeep K; Gupta, Kapil; Lopato, Sergiy; Agarwal, Parinita

    2017-04-01

    Dehydration responsive element binding (DREB) factors or CRT element binding factors (CBFs) are members of the AP2/ERF family, which comprises a large number of stress-responsive regulatory genes. This review traverses almost two decades of research, from the discovery of DREB/CBF factors to their optimization for application in plant biotechnology. In this review, we describe (i) the discovery, classification, structure, and evolution of DREB genes and proteins; (ii) induction of DREB genes by abiotic stresses and involvement of their products in stress responses; (iii) protein structure and DNA binding selectivity of different groups of DREB proteins; (iv) post-transcriptional and post-translational mechanisms of DREB transcription factor (TF) regulation; and (v) physical and/or functional interaction of DREB TFs with other proteins during plant stress responses. We also discuss existing issues in applications of DREB TFs for engineering of enhanced stress tolerance and improved performance under stress of transgenic crop plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. CorA Is a Copper Repressible Surface-Associated Copper(I)-Binding Protein Produced in Methylomicrobium album BG8

    PubMed Central

    Johnson, Kenneth A.; Ve, Thomas; Larsen, Øivind; Pedersen, Rolf B.; Lillehaug, Johan R.; Jensen, Harald B.; Helland, Ronny; Karlsen, Odd A.

    2014-01-01

    CorA is a copper repressible protein previously identified in the methanotrophic bacterium Methylomicrobium album BG8. In this work, we demonstrate that CorA is located on the cell surface and binds one copper ion per protein molecule, which, based on X-ray Absorption Near Edge Structure analysis, is in the reduced state (Cu(I)). The structure of endogenously expressed CorA was solved using X-ray crystallography. The 1.6 Å three-dimensional structure confirmed the binding of copper and revealed that the copper atom was coordinated in a mononuclear binding site defined by two histidines, one water molecule, and the tryptophan metabolite, kynurenine. This arrangement of the copper-binding site is similar to that of its homologous protein MopE* from Metylococcus capsulatus Bath, confirming the importance of kynurenine for copper binding in these proteins. Our findings show that CorA has an overall fold similar to MopE, including the unique copper(I)-binding site and most of the secondary structure elements. We suggest that CorA plays a role in the M. album BG8 copper acquisition. PMID:24498370

  7. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1

    PubMed Central

    David, Pamela S.; Tanveer, Rasheeda; Port, J. David

    2007-01-01

    A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3′ UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein–protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover. PMID:17626845

  8. Cloning of Novel Isoforms of the Human Gli2 Oncogene and Their Activities To Enhance Tax-Dependent Transcription of the Human T-Cell Leukemia Virus Type 1 Genome

    PubMed Central

    Tanimura, Akira; Dan, Shingo; Yoshida, Mitsuaki

    1998-01-01

    The expression of human T-cell leukemia virus type 1 (HTLV-1) is activated by interaction of a viral transactivator protein, Tax, and cellular transcription factor, CREB (cyclic AMP response element binding protein), which bind to a 21-bp enhancer in the long terminal repeats (LTR). THP (Tax-helping protein) was previously determined to enhance the transactivation by Tax protein. Here we report novel forms of the human homolog of a member of the Gli oncogene family, Gli2 (also termed Gli2/THP), an extended form of a zinc finger protein, THP, which was described previously. Four possible isoforms (hGli2 α, β, γ, and δ) are formed by combinations of two independent alternative splicings, and all the isoforms could bind to a DNA motif, TRE2S, in the LTR. The longer isoforms, α and β, were abundantly expressed in various cell lines including HTLV-1-infected T-cell lines. Fusion proteins of the hGli2 isoforms with the DNA-binding domain of Gal4 activated transcription when the reporter contained a Gal4-binding site and one copy of the 21-bp sequence, to which CREB binds. This activation was observed only in the presence of Tax. The 21-bp sequence in the reporter was also essential for the activation. These results suggest that simultaneous binding of hGli2 and CREB to the respective sites in the reporter seems to be critical for Tax protein to activate transcription. Consequently, it is probable that the LTR can be regulated by two independent signals through hGli2 and CREB, since the LTR contains the 21-bp and TRE2S sequences in the vicinity. PMID:9557682

  9. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions.

    PubMed

    Yang, Q; Radebaugh, C A; Kubaska, W; Geiss, G K; Paule, M R

    1995-11-11

    The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF.

  10. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions.

    PubMed Central

    Yang, Q; Radebaugh, C A; Kubaska, W; Geiss, G K; Paule, M R

    1995-01-01

    The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF. Images PMID:7501455

  11. Insulin signalling mechanisms for triacylglycerol storage.

    PubMed

    Czech, M P; Tencerova, M; Pedersen, D J; Aouadi, M

    2013-05-01

    Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.

  12. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    PubMed

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  13. Novel cAMP binding protein-BP (CREBBP) mutation in a girl with Rubinstein-Taybi syndrome, GH deficiency, Arnold Chiari malformation and pituitary hypoplasia

    PubMed Central

    2013-01-01

    Background Rubinstein-Taybi syndrome (RTS) is a rare autosomal dominant disorder (prevalence 1:125,000) characterised by broad thumbs and halluces, facial dysmorphism, psychomotor development delay, skeletal defects, abnormalities in the posterior fossa and short stature. The known genetic causes are point mutations or deletions of the cAMP-response element binding protein-BP (CREBBP) (50-60% of the cases) and of the homologous gene E1A-binding protein (EP300) (5%). Case presentation We describe, for the first time in literature, a RTS Caucasian girl, 14-year-old, with growth hormone (GH) deficiency, pituitary hypoplasia, Arnold Chiari malformation type 1, double syringomyelic cavity and a novel CREBBP mutation (c.3546insCC). Conclusion We hypothesize that CREBBP mutation we have identified in this patient could be responsible also for RTS atypical features as GH deficiency and pituitary hypoplasia. PMID:23432975

  14. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein.

    PubMed

    Amano, Ryo; Takada, Kenta; Tanaka, Yoichiro; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi

    2016-11-15

    AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.

  15. Identification of alpha-enolase as a nuclear DNA-binding protein in the zona fasciculata but not the zona reticularis of the human adrenal cortex.

    PubMed

    Wang, Weiye; Wang, Lishan; Endoh, Akira; Hummelke, Geoffrey; Hawks, Christina L; Hornsby, Peter J

    2005-01-01

    In order to establish whether there are differences in DNA-binding proteins between zona fasciculata (ZF) and zona reticularis (ZR) cells of the human adrenal cortex, we prepared nuclear extracts from separated ZF and ZR cells. The formation of DNA-protein complexes was studied using an element in the first intron of the type I and type II 3beta-hydroxysteroid dehydrogenase genes (HSD3B1 and HSD3B2). Using the element in the HSD3B2 gene as a probe, a complex (C1) was formed with extracts from ZF cells but was formed only at a low level with ZR cell extracts. Another pair of complexes (C2/C3) was formed with both ZF and ZR cell extracts. The ZF-specific protein forming C1 was enriched by column chromatography on DEAE-Sepharose and carboxymethyl-Sepharose. Oligonucleotide competition analysis on the enriched fraction gave results consistent with those obtained on the unfractionated material. A further enrichment was brought about by passing the protein over an oligonucleotide affinity column based on the HSD3B2 element. The protein bound to the column was identified as alpha-enolase by mass spectrometry. Although alpha-enolase is a glycolytic enzyme, it binds to specific DNA sequences and has been found to be present in nuclei of various cell types. We performed immunohistochemistry on sections of adult human adrenal cortex and found alpha-enolase to be located in nuclei of ZF cells but to be predominantly cytoplasmic in ZR cells. Transfection of an alpha-enolase expression vector into NCI-H295R human adrenocortical cells increased HSD3B2 promoter activity, suggesting a possible functional role for this protein in regulation of HSD3B2 expression.

  16. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1.

    PubMed

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-11-14

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1*

    PubMed Central

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-01-01

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO32−) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys21 and Cys22 as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO32− to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. PMID:25274629

  18. Cyclosporin A and FK-506 both affect DNA binding of regulatory nuclear proteins to the human interleukin-2 promoter.

    PubMed

    Baumann, G; Geisse, S; Sullivan, M

    1991-03-01

    The structurally unrelated immunosuppressive drugs cyclosporin A (Sandimmun) and FK-506 both interfere with the process of T-cell proliferation by blocking the transcription of the T-cell growth factor interleukin-2 (IL-2). Here we demonstrate that the transcriptional activation of this gene requires the binding of regulatory nuclear proteins to a promoter element with sequence similarity to the consensus binding site for NF-kappa B-related transcription factors. We present evidence that the binding by regulatory nuclear proteins to the kappa B element of the IL-2 promoter is affected negatively by cyclosporin A and FK-506 at concentrations paralleling their immunosuppressive activity in vivo. The decrease in DNA-protein complex formation induced by the immunosuppressive drugs correlates with a decrease in IL-2 production. FK-506 is 10 to 100 times more potent than cyclosporin A in its ability to inhibit sequence-specific DNA binding and IL-2 production. Our findings suggest that the actions of both drugs converge at the level of DNA-protein interaction.

  19. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    PubMed

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  20. E(y)2/Sus1 is required for blocking PRE silencing by the Wari insulator in Drosophila melanogaster.

    PubMed

    Erokhin, Maksim; Parshikov, Alexander; Georgiev, Pavel; Chetverina, Darya

    2010-06-01

    Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers to the spread of repressive chromatin. Recently, we have found an insulator, named Wari, located on the 3' side of the white gene. Here, we show that the previously identified 368-bp core of this insulator is sufficient for blocking Polycomb response element-mediated silencing. Although Wari does not contain binding sites for known insulator proteins, the E(y)2 and CP190 proteins bind to Wari as well as to the Su(Hw)-containing insulators in vivo. It may well be that these proteins are recruited to the insulator by as yet unidentified DNA-binding protein. Partial inactivation of E(y)2 in a weak e(y)2 ( u1 ) mutation impairs only the anti-silencing but not the enhancer-blocking activity of the Wari insulator. Thus, the E(y)2 protein in different Drosophila insulators serves to protect gene expression from silencing.

  1. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.

    PubMed

    Itzhaki, H; Maxson, J M; Woodson, W R

    1994-09-13

    The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define sequences responsible for ethylene-responsive expression. Deletion analysis of the 5' flanking sequences of GST1 identified a single positive regulatory element of 197 bp between -667 and -470 necessary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a minimal cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobility-shift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares significant homology with promoter sequences required for ethylene responsiveness from the tomato fruit-ripening E4 gene.

  2. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize.

    PubMed

    Busk, P K; Jensen, A B; Pagès, M

    1997-06-01

    The rab17 gene from maize is transcribed in late embryonic development and is responsive to abscisic acid and water stress in embryo and vegetative tissues. In vivo footprinting and transient transformation of rab17 were performed in embryos and vegetative tissues to characterize the cis-elements involved in regulation of the gene. By in vivo footprinting, protein binding was observed to nine elements in the promoter, which correspond to five putative ABREs (abscisic acid responsive elements) and four other sequences. The footprints indicated that distinct proteins interact with these elements in the two developmental stages. In transient transformation, six of the elements were important for high level expression of the rab17 promoter in embryos, whereas only three elements were important in leaves. The cis-acting sequences can be divided in embryo-specific, ABA-specific and leaf-specific elements on the basis of protein binding and the ability to confer expression of rab17. We found one positive, new element, called GRA, with the sequence CACTGGCCGCCC. This element was important for transcription in leaves but not in embryos. Two other non-ABRE elements that stimulated transcription from the rab17 promoter resemble previously described abscisic acid and drought-inducible elements. There were differences in protein binding and function of the five ABREs in the rab17 promoter. The possible reasons for these differences are discussed. The in vivo data obtained suggest that an embryo-specific pathway regulates transcription of the rab genes during development, whereas another pathway is responsible for induction in response to ABA and drought in vegetative tissues.

  3. POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1.

    PubMed

    Lee, Dong-Kee; Suh, Dongchul; Edenberg, Howard J; Hur, Man-Wook

    2002-07-26

    The POZ domain is a protein-protein interaction motif that is found in many transcription factors, which are important for development, oncogenesis, apoptosis, and transcription repression. We cloned the POZ domain transcription factor, FBI-1, that recognizes the cis-element (bp -38 to -22) located just upstream of the core Sp1 binding sites (bp -22 to +22) of the ADH5/FDH minimal promoter (bp -38 to +61) in vitro and in vivo, as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ADH5/FDH minimal promoter is potently repressed by the FBI-1. Glutathione S-transferase fusion protein pull-down showed that the POZ domains of FBI-1, Plzf, and Bcl-6 directly interact with the zinc finger DNA binding domain of Sp1. DNase I footprinting assays showed that the interaction prevents binding of Sp1 to the GC boxes of the ADH5/FDH promoter. Gal4-POZ domain fusions targeted proximal to the GC boxes repress transcription of the Gal4 upstream activator sequence-Sp1-adenovirus major late promoter. Our data suggest that POZ domain represses transcription by interacting with Sp1 zinc fingers and by interfering with the DNA binding activity of Sp1.

  4. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity[S

    PubMed Central

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C.; MacPherson, Laura; Ruan, Hai-Bin; Wu, Jing; Pedersen, Thomas Å.; Steffensen, Knut R.; Yang, Xiaoyong; Matthews, Jason; Mandrup, Susanne; Nebb, Hilde I.; Grønning-Wang, Line M.

    2015-01-01

    Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked β-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro. To elucidate insulin-independent effects of feeding on LXR-mediated lipogenic gene expression in vivo, we subjected control and streptozotocin-treated LXRα/β+/+ and LXRα/β−/− mice to a fasting-refeeding regime. We show that under hyperglycemic and hypoinsulinemic conditions, LXRs maintain their ability to upregulate the expression of glycolytic and lipogenic enzymes, including glucokinase (GK), SREBP-1c, ChREBPα, and the newly identified shorter isoform ChREBPβ. Furthermore, glucose-dependent increases in LXR/retinoid X receptor-regulated luciferase activity driven by the ChREBPα promoter was mediated, at least in part, by O-GlcNAc transferase (OGT) signaling in Huh7 cells. Moreover, we show that LXR and OGT interact and colocalize in the nucleus and that loss of LXRs profoundly reduced nuclear O-GlcNAc signaling and ChREBPα promoter binding activity in vivo. In summary, our study provides evidence that LXRs act as nutrient and glucose metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity. PMID:25724563

  5. Dissection of affinity captured LINE-1 macromolecular complexes

    PubMed Central

    Mita, Paolo; Jiang, Hua; Adney, Emily M; Wudzinska, Aleksandra; Badri, Sana; Ischenko, Dmitry; Eng, George; Burns, Kathleen H; Fenyö, David; Chait, Brian T; Alexeev, Dmitry; Rout, Michael P; Boeke, Jef D

    2018-01-01

    Long Interspersed Nuclear Element-1 (LINE-1, L1) is a mobile genetic element active in human genomes. L1-encoded ORF1 and ORF2 proteins bind L1 RNAs, forming ribonucleoproteins (RNPs). These RNPs interact with diverse host proteins, some repressive and others required for the L1 lifecycle. Using differential affinity purifications, quantitative mass spectrometry, and next generation RNA sequencing, we have characterized the proteins and nucleic acids associated with distinctive, enzymatically active L1 macromolecular complexes. Among them, we describe a cytoplasmic intermediate that we hypothesize to be the canonical ORF1p/ORF2p/L1-RNA-containing RNP, and we describe a nuclear population containing ORF2p, but lacking ORF1p, which likely contains host factors participating in target-primed reverse transcription. PMID:29309035

  6. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation

    PubMed Central

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J.; Fox, Catherine A.

    2016-01-01

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid partitioning and suggest underlying biological roles shared by such elements. PMID:26865697

  7. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites.

    PubMed Central

    Santangelo, G M; Tornow, J

    1990-01-01

    Glycolytic gene expression in Saccharomyces cerevisiae is thought to be activated by the GCR and TUF proteins. We tested the hypothesis that GCR function is mediated by TUF/GRF/RAP binding sites (UASRPG elements). We found that UASRPG-dependent activation of a heterologous gene and transcription of ADH1, TEF1, TEF2, and RP59 were sensitive to GCR1 disruption. GCR is not required for TUF/GRF/RAP expression or in vitro DNA-binding activity. Images PMID:2405258

  8. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules

    PubMed Central

    Gaillard, Jeremie; Ramabhadran, Vinay; Neumanne, Emmanuelle; Gurel, Pinar; Blanchoin, Laurent; Vantard, Marylin; Higgs, Henry N.

    2011-01-01

    A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (Kd < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements. PMID:21998204

  9. Activation of the carbohydrate response element binding protein (ChREBP) in response to anoxia in the turtle Trachemys scripta elegans.

    PubMed

    Krivoruchko, Anastasia; Storey, Kenneth B

    2014-10-01

    ChREBP (carbohydrate response element binding protein) is a glucose-responsive transcription factor that is known to be an important regulator of glycolytic and lipogenic genes in response to glucose. We hypothesized that activation of ChREBP could be relevant to anoxia survival by the anoxia-tolerant turtle, Trachemys scripta elegans. Expression of ChREBP in response to 5 and 20h of anoxia was examined using RT-PCR and Western immunoblotting. In addition, subcellular localization and DNA-binding activity of ChREBP protein were assessed and transcript levels of liver pyruvate kinase (LPK), a downstream gene under ChREBP control were quantified using RT-PCR. ChREBP was anoxia-responsive in kidney and liver, with transcript levels increasing by 1.2-1.8 fold in response to anoxia and protein levels increasing by 1.8-1.9 fold. Enhanced nuclear presence under anoxia was also observed in both tissues by 2.2-2.8 fold. A 4.2 fold increase in DNA binding activity of ChREBP was also observed in liver in response to 5h of anoxia. In addition, transcript levels of LPK increased by 2.1 fold in response to 5h of anoxia in the liver. The results suggest that activation of ChREBP in response to anoxia might be a crucial factor for anoxia survival in turtle liver by contributing to elevated glycolytic flux in the initial phases of oxygen limitation. This study provides the first demonstration of activation of ChREBP in response to anoxia in a natural model of anoxia tolerance, further improving our understanding of the molecular nature of anoxia tolerance. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. 17beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression.

    PubMed

    Kanda, Naoko; Watanabe, Shinichi

    2004-08-01

    Estrogen is reported to prevent age-associated epidermal thinning in the skin. We examined if 17beta-estradiol (E2) may enhance the growth of human keratinocytes, focusing on its effects on the expression of cell cycle-regulatory proteins. E2 enhanced proliferation, bromodeoxyuridine incorporation of keratinocytes, and increased the proportion of cells in the S phase. The E2-induced stimulation of proliferation and bromodeoxyuridine incorporation was suppressed by antisense oligonucleotide against cyclin D2, which induces G1 to S phase progression. E2 increased protein and mRNA levels of cyclin D2, and resultantly enhanced assembly and kinase activities of cyclin D2-cyclin-dependent kinases 4 or 6 complexes. E2 enhanced cyclin D2 promoter activity, and the element homologous to cAMP response element (CRE) on the promoter was responsible for the effect. Cyclin D2 expression was enhanced by antiestrogens, ICI 182,780 and 4-hydroxytamoxifen, and membrane-impermeable bovine serum albumin-conjugated E2, indicating the effects via membrane E2-binding sites. E2 increased the enhancer activity of CRE-like element and the amount of phosphorylated cAMP response element binding protein (CREB) binding this element, and the increases were suppressed by H-89, an inhibitor of cAMP-dependent protein kinase A. H-89 also suppressed E2-induced cyclin D2 expression, proliferation, and bromodeoxyuridine incorporation in keratinocytes. Antisense oligonucleotide against G-protein-coupled receptor GPR30 suppressed the E2-induced increases of phosphorylated CREB, cyclin D2 level, proliferation, and bromodeoxyuridine incorporation in keratinocytes. These results suggest that E2 may stimulate the growth of keratinocytes by inducing cyclin D2 expression via CREB phosphorylation by protein kinase A, dependent on cAMP. These effects of E2 may be mediated via cell surface GPR30.

  11. Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax.

    PubMed

    Baranger, A M; Palmer, C R; Hamm, M K; Giebler, H A; Brauweiler, A; Nyborg, J K; Schepartz, A

    1995-08-17

    Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment. This interaction increases the stability of the GCN4 bZIP dimer by 1.7 kcal mol-1 and the DNA affinity of the dimer by 1.9 kcal mol-1. The differential effect of Tax on several bZip-DNA complexes that differ in peptide sequence or DNA conformation suggests a model for Tax action based on stabilization of a distinct DNA-bound protein structure. This model may explain how Tax interacts with transcription factors of considerable sequence diversity to alter patterns of gene expression.

  12. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress.

    PubMed

    Takayanagi, Sayuri; Fukuda, Riga; Takeuchi, Yuuki; Tsukada, Sakiko; Yoshida, Kenichi

    2013-01-01

    In the endoplasmic reticulum (ER), secretory and membrane proteins are properly folded and modified, and the failure of these processes leads to ER stress. At the same time, unfolded protein response (UPR) genes are activated to maintain homeostasis. Despite the thorough characterization of the individual gene regulation of UPR genes to date, further investigation of the mutual regulation among UPR genes is required to understand the complex mechanism underlying the ER stress response. In this study, we aimed to reveal a gene regulatory network formed by UPR genes, including immunoglobulin heavy chain-binding protein (BiP), X-box binding protein 1 (XBP1), C/EBP [CCAAT/enhancer-binding protein]-homologous protein (CHOP), PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring 1 (IRE1), activating transcription factor 6 (ATF6), and ATF4. For this purpose, we focused on promoter-luciferase reporters for BiP, XBP1, and CHOP genes, which bear an ER stress response element (ERSE), and p5 × ATF6-GL3, which bears an unfolded protein response element (UPRE). We demonstrated that the luciferase activities of the BiP and CHOP promoters were upregulated by all the UPR genes, whereas those of the XBP1 promoter and p5 × ATF6-GL3 were upregulated by all the UPR genes except for BiP, CHOP, and ATF4 in HeLa cells. Therefore, an ERSE- and UPRE-centered gene regulatory network of UPR genes could be responsible for the robustness of the ER stress response. Finally, we revealed that BiP protein was degraded when cells were treated with DNA-damaging reagents, such as etoposide and doxorubicin; this finding suggests that the expression level of BiP is tightly regulated at the post-translational level, rather than at the transcriptional level, in the presence of DNA damage.

  13. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    PubMed Central

    Kenchappa, Chandra S.; Heidarsson, Pétur O.; Kragelund, Birthe B.; Garrett, Roger A.; Poulsen, Flemming M.

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal thermoneutrophilic order Desulfurococcales. DNA repeat-binding properties of the Hyperthermus butylicus protein Cbp2Hb were characterized and its three-dimensional structure was determined by NMR spectroscopy. The two repeats generate helix-turn-helix structures separated by a basic linker that is implicated in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys7 and Cys28 enhancing high thermal stability of Cbp2Hb through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2Hb and, by inference, other Cbp1 and Cbp2 proteins are closely related in structure to homeodomain proteins with linked helix-turn-helix (HTH) domains, in particular the paired domain Pax and Myb family proteins that are involved in eukaryal transcriptional regulation. PMID:23325851

  14. Role of activator protein-1 on the effect of arginine-glycine-aspartic acid containing peptides on transforming growth factor-beta1 promoter activity.

    PubMed

    Ruiz-Torres, M P; Perez-Rivero, G; Diez-Marques, M L; Griera, M; Ortega, R; Rodriguez-Puyol, M; Rodríguez-Puyol, D

    2007-01-01

    While arginine-glycine-aspartic acid-based peptidomimetics have been employed for the treatment of cardiovascular disorders and cancer, their use in other contexts remains to be explored. Arginine-glycine-aspartic acid-serine induces Transforming growth factor-beta1 transcription in human mesangial cells, but the molecular mechanisms involved have not been studied extensively. We explored whether this effect could be due to Activator protein-1 activation and studied the potential pathways involved. Addition of arginine-glycine-aspartic acid-serine promoted Activator protein-1 binding to its cognate sequence within the Transforming growth factor-beta1 promoter as well as c-jun and c-fos protein abundance. Moreover, this effect was suppressed by curcumin, a c-Jun N terminal kinase inhibitor, and was absent when the Activator protein-1 cis-regulatory element was deleted. Activator protein-1 binding was dependent on the activity of integrin linked kinase, as transfection with a dominant negative mutant suppressed both Activator protein-1 binding and c-jun and c-fos protein increment. Integrin linked kinase was, in turn, dependent on Phosphoinositol-3 kinase activity. Arginine-glycine-aspartic acid-serine stimulated Phosphoinositol-3 kinase activity, and Transforming growth factor-beta1 promoter activation was abrogated by the use of Phosphoinositol-3 kinase specific inhibitors. In summary, we propose that arginine-glycine-aspartic acid-serine activates Integrin linked kinase via the Phosphoinositol-3 kinase pathway and this leads to activation of c-jun and c-fos and increased Activator protein-1 binding and Transforming growth factor-beta1 promoter activity. These data may contribute to understand the molecular mechanisms involved in the cellular actions of arginine-glycine-aspartic acid-related peptides and enhance their relevance as these products evolve into clinical therapeutic use.

  15. Spacing requirements for interactions between the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase and the cAMP receptor protein.

    PubMed Central

    Lloyd, G S; Busby, S J; Savery, N J

    1998-01-01

    During transcription initiation at bacterial promoters, the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) can interact with DNA-sequence elements (known as UP elements) and with activator proteins. We have constructed a series of semi-synthetic promoters carrying both an UP element and a consensus DNA-binding site for the Escherichia coli cAMP receptor protein (CRP; a factor that activates transcription by making direct contacts with alphaCTD). At these promoters, the UP element was located at a variety of distances upstream of the CRP-binding site, which was fixed at position -41.5 bp upstream of the transcript start. At some positions, the UP element caused enhanced promoter activity whereas, at other positions, it had very little effect. In no case was the CRP-dependence of the promoter relieved. DNase I and hydroxyl-radical footprinting were used to study ternary RNA polymerase-CRP-promoter complexes formed at two of the most active of these promoters, and co-operativity between the binding of CRP and purified alpha subunits was studied. The footprints show that alphaCTD binds to the UP element as it is displaced upstream but that this displacement does not prevent alphaCTD from being contacted by CRP. Models to account for this are discussed. PMID:9461538

  16. Polyphenol-rich black chokeberry (Aronia melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells.

    PubMed

    Kim, Bohkyung; Park, Youngki; Wegner, Casey J; Bolling, Bradley W; Lee, Jiyoung

    2013-09-01

    Black chokeberry (Aronia melanocarpa) is a rich source of polyphenols. The hypolipidemic effects of polyphenol-rich black chokeberry extract (CBE) have been reported, but underlying mechanisms have not been well characterized. We investigated the effect of CBE on the expression of genes involved in intestinal lipid metabolism. Caco-2 cells were incubated with 50 or 100 μg/ml of CBE for 24 h for quantitative realtime polymerase chain reaction analysis. Expression of genes for cholesterol synthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase and sterol regulatory element binding protein 2), apical cholesterol uptake (Niemann-Pick C1 Like 1 and scavenger receptor class B Type 1) and basolateral cholesterol efflux [ATP-binding cassette transporter A1 (ABCA1)] was significantly decreased by CBE compared with control. Western blot analysis confirmed that CBE inhibited expression of these proteins. In contrast, CBE markedly induced mRNA and/or protein levels of ABCG5 and ABCG8 that mediate apical cholesterol efflux to the intestinal lumen. Furthermore, CBE significantly increased mRNA and protein levels of low-density lipoprotein (LDL) receptor, and cellular LDL uptake. Expression of genes involved in lipid metabolism and lipoprotein assembly, including sterol regulatory element-binding protein 1c, fatty acid synthase and acyl-CoA oxidase 1, was significantly decreased by CBE in a dose-dependent manner. Concomitantly, CBE significantly increased sirtuin 1, 3 and 5 mRNA levels, while it decreased SIRT-2. Our data suggest that hypolipidemic effects of CBE may be attributed, at least in part, to increased apical efflux of LDL-derived cholesterol and to decreased chylomicron formation in the intestine; and specific isoforms of SIRT may play an important role in this process. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers

    PubMed Central

    French, Juliet D.; Ghoussaini, Maya; Edwards, Stacey L.; Meyer, Kerstin B.; Michailidou, Kyriaki; Ahmed, Shahana; Khan, Sofia; Maranian, Mel J.; O’Reilly, Martin; Hillman, Kristine M.; Betts, Joshua A.; Carroll, Thomas; Bailey, Peter J.; Dicks, Ed; Beesley, Jonathan; Tyrer, Jonathan; Maia, Ana-Teresa; Beck, Andrew; Knoblauch, Nicholas W.; Chen, Constance; Kraft, Peter; Barnes, Daniel; González-Neira, Anna; Alonso, M. Rosario; Herrero, Daniel; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Dennis, Joe; Bolla, Manjeet K.; Wang, Qin; Hopper, John L.; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A.; Loehberg, Christian R.; Ekici, Arif B.; Beckmann, Matthias W.; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Aitken, Zoe; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Milne, Roger L.; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Benitez, Javier; Anton-Culver, Hoda; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Lichtner, Peter; Schmutzler, Rita K.; Engel, Christoph; Brauch, Hiltrud; Hamann, Ute; Justenhoven, Christina; Aaltonen, Kirsimari; Heikkilä, Päivi; Aittomäki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Lambrechts, Diether; Peeters, Stephanie; Smeets, Ann; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Sardella, Domenico; Couch, Fergus J.; Wang, Xianshu; Pankratz, Vernon S.; Lee, Adam; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Teo, Soo Hwang; Yip, Cheng Har; Ng, Char-Hong; Vithana, Eranga Nishanthie; Kristensen, Vessela; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Klevebring, Daniel; Schoof, Nils; Hooning, Maartje J.; Martens, John W.M.; Collée, J. Margriet; Tilanus-Linthorst, Madeleine; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Balasubramanian, Sabapathy P.; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Pharoah, Paul D.P.; Healey, Catherine S.; Shah, Mitul; Pooley, Karen A.; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Sng, Jen-Hwei; Sim, Xueling; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; McKay, James; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Godwin, Andrew K.; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Chen, Shou-Tung; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Ponder, Bruce A.J.; Nevanlinna, Heli; Brown, Melissa A.; Chenevix-Trench, Georgia; Easton, Douglas F.; Dunning, Alison M.

    2013-01-01

    Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1. PMID:23540573

  18. Drosophila Suppressor of Sable Protein [Su(s)] Promotes Degradation of Aberrant and Transposon-Derived RNAs▿

    PubMed Central

    Kuan, Yung-Shu; Brewer-Jensen, Paul; Bai, Wen-Li; Hunter, Cedric; Wilson, Carrie B.; Bass, Sarah; Abernethy, John; Wing, James S.; Searles, Lillie L.

    2009-01-01

    RNA-binding proteins act at various stages of gene expression to regulate and fine-tune patterns of mRNA accumulation. One protein in this class is Drosophila Su(s), a nuclear protein that has been previously shown to inhibit the accumulation of mutant transcripts by an unknown mechanism. Here, we have identified several additional RNAs that are downregulated by Su(s). These Su(s) targets include cryptic wild-type transcripts from the developmentally regulated Sgs4 and ng1 genes, noncoding RNAs derived from tandemly repeated αβ/αγ elements within an Hsp70 locus, and aberrant transcripts induced by Hsp70 promoter transgenes inserted at ectopic sites. We used the αβ RNAs to investigate the mechanism of Su(s) function and obtained evidence that these transcripts are degraded by the nuclear exosome and that Su(s) promotes this process. Furthermore, we showed that the RNA binding domains of Su(s) are important for this effect and mapped the sequences involved to a 267-nucleotide region of an αβ element. Taken together, these results suggest that Su(s) binds to certain nascent transcripts and stimulates their degradation by the nuclear exosome. PMID:19687295

  19. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed Central

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-01-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors. PMID:9973611

  20. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-03-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors.

  1. Insulator function and topological domain border strength scale with architectural protein occupancy

    PubMed Central

    2014-01-01

    Background Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions. Results By mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals. Conclusions We identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains. PMID:24981874

  2. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    PubMed Central

    Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058

  3. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells.

    PubMed

    Pan, Yanfang; Wang, Wen-di; Yago, Tadayuki

    2014-07-01

    Transcription factor prospero homeobox 1 (Prox-1) and podoplanin (PDPN), mucin-type transmembane protein, are both constantly expressed in lymphatic endothelial cells (LECs) and appear to function in an LEC-autonomous manner. Mice globally lacking PDPN (Pdpn(-/-)) develop abnormal and blood-filled lymphatic vessels that highly resemble those in inducible mice lacking Prox-1 (Prox1(-/-)). Prox1 has also been reported to induce PDPN expression in cultured ECs. Thus, we hypothesize that PDPN functions downstream of Prox1 and that its expression is regulated by Prox1 in LECs at the transcriptional level. We first identified four putative binding elements for Prox1 in the 5' upstream regulatory region of Pdpn gene and found that Prox1 directly binds to the 5' regulatory sequence of Pdpn gene in LECs by chromatin immunoprecipitation assay. DNA pull down assay confirmed that Prox1 binds to the putative binding element. In addition, luciferase reporter assay indicated that Prox1 binding to the 5' regulatory sequence of Pdpn regulates Pdpn gene expression. We are therefore the first to experimentally demonstrate that Prox1 regulates PDPN expression at the transcriptional level in the lymphatic vascular system. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Identification and characterization of regulatory elements in the promoter of ACVR1, the gene mutated in Fibrodysplasia Ossificans Progressiva

    PubMed Central

    2013-01-01

    Background The ACVR1 gene encodes a type I receptor for bone morphogenetic proteins (BMPs). Mutations in the ACVR1 gene are associated with Fibrodysplasia Ossificans Progressiva (FOP), a rare and extremely disabling disorder characterized by congenital malformation of the great toes and progressive heterotopic endochondral ossification in muscles and other non-skeletal tissues. Several aspects of FOP pathophysiology are still poorly understood, including mechanisms regulating ACVR1 expression. This work aimed to identify regulatory elements that control ACVR1 gene transcription. Methods and results We first characterized the structure and composition of human ACVR1 gene transcripts by identifying the transcription start site, and then characterized a 2.9 kb upstream region. This region showed strong activating activity when tested by reporter gene assays in transfected cells. We identified specific elements within the 2.9 kb region that are important for transcription factor binding using deletion constructs, co-transfection experiments with plasmids expressing selected transcription factors, site-directed mutagenesis of consensus binding-site sequences, and by protein/DNA binding assays. We also characterized a GC-rich minimal promoter region containing binding sites for the Sp1 transcription factor. Conclusions Our results showed that several transcription factors such as Egr-1, Egr-2, ZBTB7A/LRF, and Hey1, regulate the ACVR1 promoter by binding to the -762/-308 region, which is essential to confer maximal transcriptional activity. The Sp1 transcription factor acts at the most proximal promoter segment upstream of the transcription start site. We observed significant differences in different cell types suggesting tissue specificity of transcriptional regulation. These findings provide novel insights into the molecular mechanisms that regulate expression of the ACVR1 gene and that could be targets of new strategies for future therapeutic treatments. PMID:24047559

  5. Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation

    PubMed Central

    Kurisaki, Keiko; Kurisaki, Akira; Valcourt, Ulrich; Terentiev, Alexei A.; Pardali, Katerina; ten Dijke, Peter; Heldin, Carl-Henrik; Ericsson, Johan; Moustakas, Aristidis

    2003-01-01

    Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways. PMID:12808092

  6. Molecular interactions between single-stranded DNA-binding proteins associated with an essential MCAT element in the mouse smooth muscle alpha-actin promoter.

    PubMed

    Kelm, R J; Cogan, J G; Elder, P K; Strauch, A R; Getz, M J

    1999-05-14

    Transcriptional activity of the mouse vascular smooth muscle alpha-actin gene in fibroblasts is regulated, in part, by a 30-base pair asymmetric polypurine-polypyrimidine tract containing an essential MCAT enhancer motif. The double-stranded form of this sequence serves as a binding site for a transcription enhancer factor 1-related protein while the separated single strands interact with two distinct DNA binding activities termed VACssBF1 and 2 (Cogan, J. G., Sun, S., Stoflet, E. S., Schmidt, L. J., Getz, M. J., and Strauch, A. R. (1995) J. Biol. Chem. 270, 11310-11321; Sun, S., Stoflet, E. S., Cogan, J. G., Strauch, A. R., and Getz, M. J. (1995) Mol. Cell. Biol. 15, 2429-2936). VACssBF2 has been recently cloned and shown to consist of two closely related proteins, Puralpha and Purbeta (Kelm, R. J., Elder, P. K., Strauch, A. R., and Getz, M. J. (1997) J. Biol. Chem. 272, 26727-26733). In this study, we demonstrate that Puralpha and Purbeta interact with each other via highly specific protein-protein interactions and bind to the purine-rich strand of the MCAT enhancer in the form of both homo- and heteromeric complexes. Moreover, both Pur proteins interact with MSY1, a VACssBF1-like protein cloned by virtue of its affinity for the pyrimidine-rich strand of the enhancer. Interactions between Puralpha, Purbeta, and MSY1 do not require the participation of DNA. Combinatorial interactions between these three single-stranded DNA-binding proteins may be important in regulating activity of the smooth muscle alpha-actin MCAT enhancer in fibroblasts.

  7. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins.

    PubMed

    Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L

    1994-12-20

    The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.

  8. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    PubMed

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-07

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.

  9. Chaperone Hsp27 Modulates AUF1 Proteolysis and AU-Rich Element-Mediated mRNA Degradation▿

    PubMed Central

    Knapinska, Anna M.; Gratacós, Frances M.; Krause, Christopher D.; Hernandez, Kristina; Jensen, Amber G.; Bradley, Jacquelyn J.; Wu, Xiangyue; Pestka, Sidney; Brewer, Gary

    2011-01-01

    AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues—Ser15, Ser78, and Ser82—by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2–Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization. PMID:21245386

  10. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold

    NASA Astrophysics Data System (ADS)

    Li, Yizhou; De Luca, Roberto; Cazzamalli, Samuele; Pretto, Francesca; Bajic, Davor; Scheuermann, Jörg; Neri, Dario

    2018-03-01

    In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody-antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.

  11. Calculations of the binding affinities of protein-protein complexes with the fast multipole method

    NASA Astrophysics Data System (ADS)

    Kim, Bongkeun; Song, Jiming; Song, Xueyu

    2010-09-01

    In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.

  12. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein

    PubMed Central

    Li, Wencheng; Liu, Jiao; Hammond, Sean L.; Tjalkens, Ronald B.; Saifudeen, Zubaida

    2015-01-01

    We reported that brain (pro)renin receptor (PRR) expression levels are elevated in DOCA-salt-induced hypertension; however, the underlying mechanism remained unknown. To address whether ANG II type 1 receptor (AT1R) signaling is involved in this regulation, we implanted a DOCA pellet and supplied 0.9% saline as the drinking solution to C57BL/6J mice. Sham pellet-implanted mice that were provided regular drinking water served as controls. Concurrently, mice were intracerebroventricularly infused with the AT1R blocker losartan, angiotensin-converting-enzyme inhibitor captopril, or artificial cerebrospinal fluid for 3 wk. Intracerebroventricular infusion of losartan or captopril attenuated DOCA-salt-induced PRR mRNA elevation in the paraventricular nucleus of the hypothalamus, suggesting a role for ANG II/AT1R signaling in regulating PRR expression during DOCA-salt hypertension. To test which ANG II/AT1R downstream transcription factors were involved in PRR regulation, we treated Neuro-2A cells with ANG II with or without CREB (cAMP response element-binding protein) or AP-1 (activator protein-1) inhibitors, or CREB siRNA. CREB and AP-1 inhibitors, as well as CREB knockdown abolished ANG II-induced increases in PRR levels. ANG II also induced PRR upregulation in primary cultured neurons. Chromatin immunoprecipitation assays revealed that ANG II treatment increased CREB binding to the endogenous PRR promoter in both cultured neurons and hypothalamic tissues of DOCA-salt hypertensive mice. This increase in CREB activity was reversed by AT1R blockade. Collectively, these findings indicate that ANG II acts via AT1R to upregulate PRR expression both in cultured cells and in DOCA-salt hypertensive mice by increasing CREB binding to the PRR promoter. PMID:25994957

  13. Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation

    NASA Astrophysics Data System (ADS)

    Alsalme, Ali; Laeeq, Sameen; Dwivedi, Sourabh; Khan, Mohd. Shahnawaz; Al Farhan, Khalid; Musarrat, Javed; Khan, Rais Ahmad

    2016-06-01

    We have synthesized two new complexes of platinum (1) and ruthenium (2) with α-amino acid, L-alanine, and 2,3-dihydroxybenzaldehyde derived Schiff base (L). The ligand and both complexes were characterized by using elemental analysis and several other spectroscopic techniques viz; IR, 1H, 13C NMR, EPR, and ESI-MS. Furthermore, the protein-binding ability of synthesized complexes was monitored by UV-visible, fluorescence and circular dichroism techniques with a model protein, human serum albumin (HSA). Both the PtL2 and RuL2 complexes displayed significant binding towards HSA. Also, in vitro cytotoxicity assay for both complexes was carried out on human hepatocellular carcinoma cancer (HepG2) cell line. The results showed concentration-dependent inhibition of cell viability. Moreover, the generation of reactive oxygen species was also evaluated, and results exhibited substantial role in cytotoxicity.

  14. Profiles of embryonic nuclear protein binding to the proximal promoter region of the soybean β-conglycinin α subunit gene.

    PubMed

    Yoshino, M; Tsutsumi, K; Kanazawa, A

    2015-01-01

    β-Conglycinin, a major component of seed storage protein in soybean, comprises three subunits: α, α' and β. The expression of genes for these subunits is strictly controlled during embryogenesis. The proximal promoter region up to 245 bp upstream of the transcription start site of the α subunit gene sufficiently confers spatial and temporal control of transcription in embryos. Here, the binding profile of nuclear proteins in the proximal promoter region of the α subunit gene was analysed. DNase I footprinting analysis indicated binding of proteins to the RY element and DNA regions including box I, a region conserved in cognate gene promoters. An electrophoretic mobility shift assay (EMSA) using different portions of box I as a probe revealed that multiple portions of box I bind to nuclear proteins. In addition, an EMSA using nuclear proteins extracted from embryos at different developmental stages indicated that the levels of major DNA-protein complexes on box I increased during embryo maturation. These results are consistent with the notion that box I is important for the transcriptional control of seed storage protein genes. Furthermore, the present data suggest that nuclear proteins bind to novel motifs in box I including 5'-TCAATT-3' rather than to predicted cis-regulatory elements. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Recognition of the CDEI motif GTCACATG by mouse nuclear proteins and interference with the early development of the mouse embryo.

    PubMed Central

    Blangy, A; Léopold, P; Vidal, F; Rassoulzadegan, M; Cuzin, F

    1991-01-01

    We have reported previously (1) two unexpected consequences of the microinjection into fertilized mouse eggs of a recombinant plasmid designated p12B1, carrying a 343 bp insert of non-repetitive mouse DNA. Injected at very low concentrations, this plasmid could be established as an extrachromosomal genetic element. When injected in greater concentration, an early arrest of embryonic development resulted. In the present work, we have studied this toxic effect in more detail by microinjecting short synthetic oligonucleotides with sequences from the mouse insert. Lethality was associated with the nucleotide sequence GTCACATG, identical with the CDEl element of yeast centromeres. Development of injected embryos was arrested between the one-cell and the early morula stages, with abnormal structures and DNA contents. Electrophoretic mobility shift and DNAse foot-printing assays demonstrated the binding of mouse nuclear protein(s) to the CDEl-like box. Base changes within the CDEl sequence prevented both the toxic effects in embryos and the formation of protein complex in vitro, suggesting that protein binding at such sites in chromosomal DNA plays an important role in early development. Images PMID:1766880

  16. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide sensitive iron-sulphur cluster

    PubMed Central

    Smith, Laura J.; Stapleton, Melanie R.; Fullstone, Gavin J. M.; Crack, Jason C.; Thomson, Andrew J.; Le Brun, Nick E.; Hunt, Debbie M.; Harvey, Evelyn; Adinolfi, Salvatore; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. Here it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however in the presence of apo-WhiB1 transcription was severely inhibited, irrespective of the presence or absence of the CRP protein Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections. PMID:20929442

  17. Characterisation of a DNA sequence element that directs Dictyostelium stalk cell-specific gene expression.

    PubMed

    Ceccarelli, A; Zhukovskaya, N; Kawata, T; Bozzaro, S; Williams, J

    2000-12-01

    The ecmB gene of Dictyostelium is expressed at culmination both in the prestalk cells that enter the stalk tube and in ancillary stalk cell structures such as the basal disc. Stalk tube-specific expression is regulated by sequence elements within the cap-site proximal part of the promoter, the stalk tube (ST) promoter region. Dd-STATa, a member of the STAT transcription factor family, binds to elements present in the ST promoter-region and represses transcription prior to entry into the stalk tube. We have characterised an activatory DNA sequence element, that lies distal to the repressor elements and that is both necessary and sufficient for expression within the stalk tube. We have mapped this activator to a 28 nucleotide region (the 28-mer) within which we have identified a GA-containing sequence element that is required for efficient gene transcription. The Dd-STATa protein binds to the 28-mer in an in vitro binding assay, and binding is dependent upon the GA-containing sequence. However, the ecmB gene is expressed in a Dd-STATa null mutant, therefore Dd-STATa cannot be responsible for activating the 28-mer in vivo. Instead, we identified a distinct 28-mer binding activity in nuclear extracts from the Dd-STATa null mutant, the activity of this GA binding activity being largely masked in wild type extracts by the high affinity binding of the Dd-STATa protein. We suggest, that in addition to the long range repression exerted by binding to the two known repressor sites, Dd-STATa inhibits transcription by direct competition with this putative activator for binding to the GA sequence.

  18. Characterization of calcineurin-dependent response element binding protein and its involvement in copper-metallothionein gene expression in Neurospora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kalari Satish; Ravi Kumar, B.; Siddavattam, Dayananda

    2006-07-07

    In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730 bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtainedmore » from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17 kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17 kDa protein matched with the regulatory {beta}-subunit of calcineurin (Ca{sup 2+}-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.« less

  19. Lis1 acts as a "clutch" between the ATPase and microtubule-binding domains of the dynein motor.

    PubMed

    Huang, Julie; Roberts, Anthony J; Leschziner, Andres E; Reck-Peterson, Samara L

    2012-08-31

    The lissencephaly protein Lis1 has been reported to regulate the mechanical behavior of cytoplasmic dynein, the primary minus-end-directed microtubule motor. However, the regulatory mechanism remains poorly understood. Here, we address this issue using purified proteins from Saccharomyces cerevisiae and a combination of techniques, including single-molecule imaging and single-particle electron microscopy. We show that rather than binding to the main ATPase site within dynein's AAA+ ring or its microtubule-binding stalk directly, Lis1 engages the interface between these elements. Lis1 causes individual dynein motors to remain attached to microtubules for extended periods, even during cycles of ATP hydrolysis that would canonically induce detachment. Thus, Lis1 operates like a "clutch" that prevents dynein's ATPase domain from transmitting a detachment signal to its track-binding domain. We discuss how these findings provide a conserved mechanism for dynein functions in living cells that require prolonged microtubule attachments. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Lis1 Acts as a “Clutch” between the ATPase and Microtubule-Binding Domains of the Dynein Motor

    PubMed Central

    Huang, Julie; Roberts, Anthony J.; Leschziner, Andres E.; Reck-Peterson, Samara L.

    2012-01-01

    Summary The lissencephaly protein Lis1 has been reported to regulate the mechanical behavior of cytoplasmic dynein, the primary minus-end-directed microtubule motor. However, the regulatory mechanism remains poorly understood. Here, we address this issue using purified proteins from Saccharomyces cerevisiae and a combination of techniques, including single-molecule imaging and single-particle electron microscopy. We show that rather than binding to the main ATPase site within dynein's AAA+ ring or its microtubule-binding stalk directly, Lis1 engages the interface between these elements. Lis1 causes individual dynein motors to remain attached to microtubules for extended periods, even during cycles of ATP hydrolysis that would canonically induce detachment. Thus, Lis1 operates like a “clutch” that prevents dynein's ATPase domain from transmitting a detachment signal to its track-binding domain. We discuss how these findings provide a conserved mechanism for dynein functions in living cells that require prolonged microtubule attachments. PMID:22939623

  1. Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway.

    PubMed

    Pende, A; Tremmel, K D; DeMaria, C T; Blaxall, B C; Minobe, W A; Sherman, J A; Bisognano, J D; Bristow, M R; Brewer, G; Port, J

    1996-04-05

    In both cell culture based model systems and in the failing human heart, beta-adrenergic receptors ( beta-AR) undergo agonist-mediated down-regulation. This decrease correlates closely with down-regulation of its mRNA, an effect regulated in part by changes in mRNA stability. Regulation of mRNA stability has been associated with mRNA-binding proteins that recognize A + U-rich elements within the 3'-untranslated regions of many mRNAs encoding proto-oncogene and cytokine mRNAs. We demonstrate here that the mRNA-binding protein, AUF1, is present in both human heart and in hamster DDT1-MF2 smooth muscle cells and that its abundance is regulated by beta-AR agonist stimulation. In human heart, AUF1 mRNA and protein was significantly increased in individuals with myocardial failure, a condition associated with increases in the beta-adrenergic receptor agonist norepinephrine. In the same hearts, there was a significant decrease (approximately 50%) in the abundance of beta1-AR mRNA and protein. In DDT1-MF2 cells, where agonist-mediated destabilization of beta2-AR mRNA was first described, exposure to beta-AR agonist resulted in a significant increase in AUF1 mRNA and protein (approximately 100%). Conversely, agonist exposure significantly decreased (approximately 40%) beta2-adrenergic receptor mRNA abundance. Last, we demonstrate that AUF1 can be immunoprecipitated from polysome-derived proteins following UV cross-linking to the 3'-untranslated region of the human beta1-AR mRNA and that purified, recombinant p37AUF1 protein also binds to beta1-AR 3'-untranslated region mRNA.

  2. Dual Role of Protein Phosphorylation in DNA Activator/Coactivator Binding

    PubMed Central

    Dadarlat, Voichita M.; Skeel, Robert D.

    2011-01-01

    Binding free energies are calculated for the phosphorylated and unphosphorylated complexes between the kinase inducible domain (KID) of the DNA transcriptional activator cAMP response element binding (CREB) protein and the KIX domain of its coactivator, CREB-binding protein (CBP). To our knowledge, this is the first application of a method based on a potential of mean force (PMF) with restraining potentials to compute the binding free energy of protein-protein complexes. The KID:KIX complexes are chosen here because of their biological relevance to the DNA transcription process and their relatively small size (81 residues for the KIX domain of CBP, and 28 residues for KID). The results for pKID:KIX and KID:KIX are −9.55 and −4.96 kcal/mol, respectively, in good agreement with experimental estimates (−8.8 and −5.8 kcal/mol, respectively). A comparison between specific contributions to protein-protein binding for the phosphorylated and unphosphorylated complexes reveals a dual role for the phosphorylation of KID at Ser-133 in effecting a more favorable free energy of the bound system: 1), stabilization of the unbound conformation of phosphorylated KID due to favorable intramolecular interactions of the phosphate group of Ser-133 with the charged groups of an arginine-rich region spanning both α-helices, which lowers the configurational entropy; and 2), more favorable intermolecular electrostatic interactions between pSer-133 and Arg-131 of KID, and Lys-662, Tyr-658, and Glu-666 of KIX. Charge reduction through ligand phosphorylation emerges as a possible mechanism for controlling the unbound state conformation of KID and, ultimately, gene expression. This work also demonstrates that the PMF-based method with restraining potentials provides an added benefit in that important elements of the binding pathway are evidenced. Furthermore, the practicality of the PMF-based method for larger systems is validated by agreement with experiment. In addition, we provide a somewhat differently structured exposition of the PMF-based method with restraining potentials and outline its generalization to systems in which both protein and ligand may adopt unbound conformations that are different from those of the bound state. PMID:21244843

  3. CLIP-related methodologies and their application to retrovirology.

    PubMed

    Bieniasz, Paul D; Kutluay, Sebla B

    2018-05-02

    Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.

  4. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    PubMed

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries.

  5. Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) gene expression critically controls learning and its aberrant regulation is implicated in Alzheimer's disease and a host of neurodevelopmental disorders. The BDNF gene is target of known DNA regulatory mechanisms but details of its activity-dependent regulation are not fully characterized. We performed a comprehensive analysis of the epigenetic regulation of the turtle BDNF gene (tBDNF) during a neural correlate of associative learning using an in vitro model of eye blink classical conditioning. Shortly after conditioning onset, the results from ChIP-qPCR show conditioning-dependent increases in methyl-CpG-binding protein 2 (MeCP2) and repressor basic helix-loop-helix binding protein 2 (BHLHB2) binding to tBDNF promoter II that corresponds with transcriptional repression. In contrast, enhanced binding of ten-eleven translocation protein 1 (Tet1), extracellular signal-regulated kinase 1/2 (ERK1/2), and cAMP response element-binding protein (CREB) to promoter III corresponds with transcriptional activation. These actions are accompanied by rapid modifications in histone methylation and phosphorylation status of RNA polymerase II (RNAP II). Significantly, these remarkably coordinated changes in epigenetic factors for two alternatively regulated tBDNF promoters during conditioning are controlled by Tet1 and ERK1/2. Our findings indicate that Tet1 and ERK1/2 are critical partners that, through complementary functions, control learning-dependent tBDNF promoter accessibility required for rapid transcription and acquisition of classical conditioning. PMID:26336984

  6. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hotmore » pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.« less

  7. Prefrontal Consolidation Supports the Attainment of Fear Memory Accuracy

    ERIC Educational Resources Information Center

    Vieira, Philip A.; Lovelace, Jonathan W.; Corches, Alex; Rashid, Asim J.; Josselyn, Sheena A.; Korzus, Edward

    2014-01-01

    The neural mechanisms underlying the attainment of fear memory accuracy for appropriate discriminative responses to aversive and nonaversive stimuli are unclear. Considerable evidence indicates that coactivator of transcription and histone acetyltransferase cAMP response element binding protein (CREB) binding protein (CBP) is critically required…

  8. Alpha-crystallins are involved in specific interactions with the murine gamma D/E/F-crystallin-encoding gene.

    PubMed

    Pietrowski, D; Durante, M J; Liebstein, A; Schmitt-John, T; Werner, T; Graw, J

    1994-07-08

    The promoter of the murine gamma E-crystallin (gamma E-Cry) encoding gene (gamma E-cry) was analyzed for specific interactions with lenticular proteins in a gel-retardation assay. A 21-bp fragment immediately downstream of the transcription initiation site (DOTIS) is demonstrated to be responsible for specific interactions with lens extracts. The DOTIS-binding protein(s) accept only the sense DNA strand as target; anti-sense or double-stranded DNA do not interact with these proteins. The DOTIS sequence element is highly conserved among the murine gamma D-, gamma E- and gamma F-cry and is present at comparable positions in the orthologous rat genes. Only a weak or even no protein-binding activity is observed if a few particular bases are changed, as in the rat gamma A-, gamma C- and gamma E-cry elements. DOTIS-binding proteins were found in commercially available bovine alpha-Cry preparations. The essential participation of alpha-Cry in the DNA-binding protein complex was confirmed using alpha-Cry-specific monoclonal antibody. The results reported here point to a novel function of alpha-Cry besides the structural properties in the lens.

  9. Heterogeneous Nuclear Ribonucleoprotein (hnRNP) E1 Binds to hnRNP A2 and Inhibits Translation of A2 Response Element mRNAs

    PubMed Central

    Kosturko, Linda D.; Maggipinto, Michael J.; Korza, George; Lee, Joo Won; Carson, John H.

    2006-01-01

    Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport. PMID:16775011

  10. Label-Free Determination of Protein Binding in Aqueous Solution using Overlayer Enhanced Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (OE-ATR-FTIR)

    NASA Astrophysics Data System (ADS)

    Ruthenburg, Travis; Aweda, Tolulope; Park, Simon; Meares, Claude; Land, Donald

    2009-03-01

    Protein binding/affinity studies are often performed using Surface Plasmon Resonance techniques that don't produce much spectral information. Measurement of protein binding affinity using FTIR is traditionally performed using high protein concentration or deuterated solvent. By immobilizing a protein near the surface of a gold-coated germanium internal reflection element interactions can be measured between an immobilized protein and free proteins or small molecules in aqueous solution. By monitoring the on and off rates of these interactions, the dissociation constant for the system can be determined. The dissociation constant for the molecule Yttrium-DOTA binding to the antibody 2D12.5 system was determined to be 100nM. Results will also be presented from our measurements of Bovine Serum Albumin (BSA) binding to anti-BSA.

  11. RNA localization in Xenopus oocytes uses a core group of trans-acting factors irrespective of destination.

    PubMed

    Snedden, Donald D; Bertke, Michelle M; Vernon, Dominic; Huber, Paul W

    2013-07-01

    The 3' untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.

  12. TAF(II)250: a transcription toolbox.

    PubMed

    Wassarman, D A; Sauer, F

    2001-08-01

    Activation of RNA-polymerase-II-dependent transcription involves conversion of signals provided by gene-specific activator proteins into the synthesis of messenger RNA. This conversion requires dynamic structural changes in chromatin and assembly of general transcription factors (GTFs) and RNA polymerase II at core promoter sequence elements surrounding the transcription start site of genes. One hallmark of transcriptional activation is the interaction of DNA-bound activators with coactivators such as the TATA-box binding protein (TBP)-associated factors (TAF(II)s) within the GTF TFIID. TAF(II)250 possesses a variety of activities that are likely to contribute to the initial steps of RNA polymerase II transcription. TAF(II)250 is a scaffold for assembly of other TAF(II)s and TBP into TFIID, TAF(II)250 binds activators to recruit TFIID to particular promoters, TAF(II)250 regulates binding of TBP to DNA, TAF(II)250 binds core promoter initiator elements, TAF(II)250 binds acetylated lysine residues in core histones, and TAF(II)250 possesses protein kinase, ubiquitin-activating/conjugating and acetylase activities that modify histones and GTFs. We speculate that these activities achieve two goals--(1) they aid in positioning and stabilizing TFIID at particular promoters, and (2) they alter chromatin structure at the promoter to allow assembly of GTFs--and we propose a model for how TAF(II)250 converts activation signals into active transcription.

  13. Dieckol, a phlorotannin isolated from a brown seaweed, Ecklonia cava, inhibits adipogenesis through AMP-activated protein kinase (AMPK) activation in 3T3-L1 preadipocytes.

    PubMed

    Ko, Seok-Chun; Lee, Myoungsook; Lee, Ji-Hyeok; Lee, Seung-Hong; Lim, Yunsook; Jeon, You-Jin

    2013-11-01

    In this study, we assessed the potential inhibitory effect of 5 species of brown seaweeds on adipogenesis the differentiation of 3T3-L1 preadipocytes into mature adipocytes by measuring Oil-Red O staining. The Ecklonia cava extract tested herein evidenced profound adipogenesis inhibitory effect, compared to that exhibited by the other four brown seaweed extracts. Thus, E. cava was selected for isolation of active compounds and finally the three polyphenol compounds of phlorotannins were obtained and their inhibitory effect on adipogenesis was observed. Among the phlorotannins, dieckol exhibited greatest potential adipogenesis inhibition and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding proteins (C/EBPα), sterol regulatory element-binding protein 1 (SREBP1) and fatty acid binding protein 4 (FABP4) in a dose-dependent manner. The specific mechanism mediating the effects of dieckol was confirmed by AMP-activated protein kinase (AMPK) activation. These results demonstrate inhibitory effect of dieckol compound on adipogenesis through the activation of the AMPK signal pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1.

    PubMed

    Stephen, Ricardo; Bereta, Grzegorz; Golczak, Marcin; Palczewski, Krzysztof; Sousa, Marcelo Carlos

    2007-11-01

    Guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins myristoylated at the N terminus that regulate guanylate cyclases in photoreceptor cells and belong to the family of neuronal calcium sensors (NCS). Many NCS proteins display a recoverin-like "calcium-myristoyl switch" whereby the myristoyl group, buried inside the protein in the Ca(2+)-free state, becomes fully exposed upon Ca(2+) binding. Here we present a 2.0 A resolution crystal structure of myristoylated GCAP1 with Ca(2+) bound. The acyl group is buried inside Ca(2+)-bound GCAP1. This is in sharp contrast to Ca(2+)-bound recoverin, where the myristoyl group is solvent exposed. Furthermore, we provide direct evidence that the acyl group in GCAP1 remains buried in the Ca(2+)-free state and does not undergo switching. A pronounced kink in the C-terminal helix and the presence of the myristoyl group allow clustering of sequence elements crucial for GCAP1 activity.

  15. Stabilizing Function for Myristoyl Group Revealed by the Crystal Structure of a Neuronal Calcium Sensor, Guanylate Cyclase-Activating Protein 1

    PubMed Central

    Stephen, Ricardo; Bereta, Grzegorz; Golczak, Marcin; Palczewski, Krzysztof; Sousa, Marcelo Carlos

    2008-01-01

    SUMMARY Guanylate cyclase-activating proteins (GCAPs) are Ca2+-binding proteins myristoylated at the N terminus that regulate guanylate cyclases in photoreceptor cells and belong to the family of neuronal calcium sensors (NCS). Many NCS proteins display a recoverin-like “calcium-myristoyl switch” whereby the myristoyl group, buried inside the protein in the Ca2+-free state, becomes fully exposed upon Ca2+ binding. Here we present a 2.0 Å resolution crystal structure of myristoylated GCAP1 with Ca2+ bound. The acyl group is buried inside Ca2+-bound GCAP1. This is in sharp contrast to Ca2+-bound recoverin, where the myristoyl group is solvent exposed. Furthermore, we provide direct evidence that the acyl group in GCAP1 remains buried in the Ca2+-free state and does not undergo switching. A pronounced kink in the C-terminal helix and the presence of the myristoyl group allow clustering of sequence elements crucial for GCAP1 activity. PMID:17997965

  16. Endothelin-1 regulates rat bone sialoprotein gene transcription.

    PubMed

    Li, Xinyue; Wang, Zhitao; Yang, Li; Li, Zhengyang; Ogata, Yorimasa

    2010-06-01

    Endothelin-1 (ET-1) was originally discovered as a vasoconstrictor protein excreted by vascular endothelial cells. Recently, tumor-produced ET-1 has been considered to stimulate osteoblasts to form new bone, and to be an important mediator of osteoblastic bone metastasis. ET-1 has high affinity for two different membrane receptors, ET(A)R and ET(B)R, which are expressed by many types of cells including osteoblasts. Bone sialoprotein (BSP) is a phosphorylated and sulfated glycoprotein associated with mineralized connective tissues. To investigate the effects of ET-1 on BSP transcription, we used rat osteoblast-like ROS17/2.8 cells. Levels of BSP and osteopontin mRNA were increased at 12 h after treatment with ET-1 (10 ng/ml), and ET-1 at the same concentration induced luciferase activity of a -116 to +60 BSP promoter construct at 6 h. Transcriptional activity of -84BSPLUC, which contains the cAMP response element (CRE), was increased by ET-1. Furthermore, at 6 h, ET-1 (10 ng/ml) increased the binding of nuclear protein to CRE, the FGF2 response element (FRE) and the homeodomain protein-binding site (HOX). Antibodies against CREB1, JunD and Fra2 disrupted the formation of CRE-protein complexes, while antibodies against Runx2 and Dlx5 reduced the formation of FRE- and HOX-protein complexes. These findings indicate that ET-1 increases BSP transcription via the CRE, FRE and HOX sites in the rat BSP gene promoter.

  17. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    PubMed

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-04-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.

  18. Molecular modeling study for interaction between Bacillus subtilis Obg and Nucleotides.

    PubMed

    Lee, Yuno; Bang, Woo Young; Kim, Songmi; Lazar, Prettina; Kim, Chul Wook; Bahk, Jeong Dong; Lee, Keun Woo

    2010-09-07

    The bacterial Obg proteins (Spo0B-associated GTP-binding protein) belong to the subfamily of P-loop GTPase proteins that contain two equally and highly conserved domains, a C-terminal GTP binding domain and an N-terminal glycine-rich domain which is referred as the "Obg fold" and now it is considered as one of the new targets for antibacterial drug. When the Obg protein is associated with GTP, it becomes activated, because conformation of Obg fold changes due to the structural changes of GTPase switch elements in GTP binding site. In order to investigate the effects and structural changes in GTP bound to Obg and GTPase switch elements for activation, four different molecular dynamics (MD) simulations were performed with/without the three different nucleotides (GTP, GDP, and GDP + Pi) using the Bacillus subtilis Obg (BsObg) structure. The protein structures generated from the four different systems were compared using their representative structures. The pattern of C(alpha)-C(alpha) distance plot and angle between the two Obg fold domains of simulated apo form and each system (GTP, GDP, and GDP+Pi) were significantly different in the GTP-bound system from the others. The switch 2 element was significantly changed in GTP-bound system. Also root-mean-square fluctuation (RMSF) analysis revealed that the flexibility of the switch 2 element region was much higher than the others. This was caused by the characteristic binding mode of the nucleotides. When GTP was bound to Obg, its gamma-phosphate oxygen was found to interact with the key residue (D212) of the switch 2 element, on the contrary there was no such interaction found in other systems. Based on the results, we were able to predict the possible binding conformation of the activated form of Obg with L13, which is essential for the assembly with ribosome.

  19. Asymmetric binding of histone H1 stabilizes MMTV nucleosomes and the interaction of progesterone receptor with the exposed HRE.

    PubMed

    Vicent, Guillermo P; Meliá, María J; Beato, Miguel

    2002-11-29

    Packaging of mouse mammary tumor virus (MMTV) promoter sequences in nucleosomes modulates access of DNA binding proteins and influences the interaction among DNA bound transcription factors. Here we analyze the binding of histone H1 to MMTV mononucleosomes assembled with recombinant histones and study its influence on nucleosome structure and stability as well as on progesterone receptor (PR) binding to the hormone responsive elements (HREs). The MMTV nucleosomes can be separated into three main populations, two of which exhibited precise translational positioning. Histone H1 bound preferentially to the 5' distal nucleosomal DNA protecting additional 27-28 nt from digestion by micrococcal nuclease. Binding of histone H1 was unaffected by prior crosslinking of protein and DNA in nucleosomes with formaldehyde. Neither the translational nor the rotational nucleosome positioning was altered by histone H1 binding, but the nucleosomes were stabilized as judged by the kinetics of nuclease cleavage. Unexpectedly, binding of recombinant PR to the exposed distal HRE-I in nucleosomes was enhanced in the presence of histone H1, as demonstrated by band shift and footprinting experiments. This enhanced PR affinity may contribute to the reported positive effect of histone H1 on the hormonal activation of MMTV reporter genes.

  20. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Hyung

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries severalmore » regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this dissertation provide novel insights into the strategy used by EIAV to replicate itself, and provide new details about how the host cell responds to and defends against EIAV upon the infection. Moreover, they have contributed to the understanding of the macromolecular recognition events that regulate these processes.« less

  1. Cofactor-dependent specificity of a DEAD-box protein.

    PubMed

    Young, Crystal L; Khoshnevis, Sohail; Karbstein, Katrin

    2013-07-16

    DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.

  2. The Apc5 Subunit of the Anaphase-Promoting Complex/Cyclosome Interacts with Poly(A) Binding Protein and Represses Internal Ribosome Entry Site-Mediated Translation

    PubMed Central

    Koloteva-Levine, Nadejda; Pinchasi, Dalia; Pereman, Idan; Zur, Amit; Brandeis, Michael; Elroy-Stein, Orna

    2004-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G1. We used a yeast three-hybrid screen to identify proteins that interact with the internal ribosome entry site (IRES) of platelet-derived growth factor 2 mRNA. Surprisingly, this screen identified Apc5, although it does not harbor a classical RNA binding domain. We found that Apc5 binds the poly(A) binding protein (PABP), which directly binds the IRES element. PABP was found to enhance IRES-mediated translation, whereas Apc5 overexpression counteracted this effect. In addition to its association with the APC/C complex, Apc5 binds much heavier complexes and cosediments with the ribosomal fraction. In contrast to Apc3, which is associated only with the APC/C and remains intact during differentiation, Apc5 is degraded upon megakaryocytic differentiation in correlation with IRES activation. Expression of Apc5 in differentiated cells abolished IRES activation. This is the first report implying an additional role for an APC/C subunit, apart from its being part of the APC/C complex. PMID:15082755

  3. Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3′-UTR

    PubMed Central

    Hall-Pogar, Tyra; Liang, Songchun; Hague, Lisa K.; Lutz, Carol S.

    2007-01-01

    Two cyclooxygenase (COX) enzymes, COX-1 and COX-2, are present in human cells. While COX-1 is constitutively expressed, COX-2 is inducible and up-regulated in response to many signals. Since increased transcriptional activity accounts for only part of COX-2 up-regulation, we chose to explore other RNA processing mechanisms in the regulation of this gene. Previously, we showed that COX-2 is regulated by alternative polyadenylation, and that the COX-2 proximal polyadenylation signal contains auxiliary upstream sequence elements (USEs) that are very important in efficient polyadenylation. To explore trans-acting protein factors interacting with these cis-acting RNA elements, we performed pull-down assays with HeLa nuclear extract and biotinylated RNA oligonucleotides representing COX-2 USEs. We identified PSF, p54nrb, PTB, and U1A as proteins specifically bound to the COX-2 USEs. We further explored their participation in polyadenylation using MS2 phage coat protein-MS2 RNA binding site tethering assays, and found that tethering any of these four proteins to the COX-2 USE mutant RNA can compensate for these cis-acting elements. Finally, we suggest that these proteins (p54nrb, PTB, PSF, and U1A) may interact as a complex since immunoprecipitations of the transfected MS2 fusion proteins coprecipitate the other proteins. PMID:17507659

  4. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    PubMed

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  5. Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements.

    PubMed

    Brent, G A; Williams, G R; Harney, J W; Forman, B M; Samuels, H H; Moore, D D; Larsen, P R

    1992-04-01

    Thyroid hormone response elements (T3REs) have been identified in a variety of promoters including those directing expression of rat GH (rGH), alpha-myosin heavy chain (rMHC), and malic enzyme (rME). A detailed biochemical and genetic analysis of the rGH element has shown that it consists of three hexamers related to the consensus [(A/G)GGT(C/A)A]. We have extended this analysis to the rMHC and rME elements. Binding of highly purified thyroid hormone receptor (T3R) to T3REs was determined using the gel shift assay, and thyroid hormone (T3) induction was measured in transient tranfections. We show that the wild type version of each of the three elements binds T3R dimers cooperatively. Mutational analysis of the rMHC and rME elements identified domains important for binding T3R dimers and allowed a direct determination of the relationship between T3R binding and function. In each element two hexamers are required for dimer binding, and mutations that interfere with dimer formation significantly reduce T3 induction. Similar to the rGH element, the rMHC T3RE contains three hexameric domains arranged as a direct repeat followed by an inverted copy, although the third domain is weaker than in rGH. All three are required for full function and T3R binding. The rME T3RE is a two-hexamer direct repeat T3RE, which also binds T3R monomer and dimer. Across a series of mutant elements, there was a strong correlation between dimer binding in vitro and function in vivo for rMHC (r = 0.99, P less than 0.01) and rME (r = 0.67, P less than 0.05) T3REs. Our results demonstrate a similar pattern of T3R dimer binding to a diverse array of hexameric sequences and arrangements in three wild type T3REs. Addition of nuclear protein enhanced T3R binding but did not alter the specificity of binding to wild type or mutant elements. Binding of purified T3R to T3REs was highly correlated with function, both with and without the addition of nuclear protein. T3R dimer formation is the common feature which defines the capacity of these elements to confer T3 induction.

  6. Molecular interactions involved in the transactivation of the human T-cell leukemia virus type 1 promoter mediated by Tax and CREB-2 (ATF-4).

    PubMed

    Gachon, F; Thebault, S; Peleraux, A; Devaux, C; Mesnard, J M

    2000-05-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.

  7. Molecular Interactions Involved in the Transactivation of the Human T-Cell Leukemia Virus Type 1 Promoter Mediated by Tax and CREB-2 (ATF-4)

    PubMed Central

    Gachon, Frederic; Thebault, Sabine; Peleraux, Annick; Devaux, Christian; Mesnard, Jean-Michel

    2000-01-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation. PMID:10779337

  8. Protein pharmacophore selection using hydration-site analysis

    PubMed Central

    Hu, Bingjie; Lill, Markus A.

    2012-01-01

    Virtual screening using pharmacophore models is an efficient method to identify potential lead compounds for target proteins. Pharmacophore models based on protein structures are advantageous because a priori knowledge of active ligands is not required and the models are not biased by the chemical space of previously identified actives. However, in order to capture most potential interactions between all potentially binding ligands and the protein, the size of the pharmacophore model, i.e. number of pharmacophore elements, is typically quite large and therefore reduces the efficiency of pharmacophore based screening. We have developed a new method to select important pharmacophore elements using hydration-site information. The basic premise is that ligand functional groups that replace water molecules in the apo protein contribute strongly to the overall binding affinity of the ligand, due to the additional free energy gained from releasing the water molecule into the bulk solvent. We computed the free energy of water released from the binding site for each hydration site using thermodynamic analysis of molecular dynamics (MD) simulations. Pharmacophores which are co-localized with hydration sites with estimated favorable contributions to the free energy of binding are selected to generate a reduced pharmacophore model. We constructed reduced pharmacophore models for three protein systems and demonstrated good enrichment quality combined with high efficiency. The reduction in pharmacophore model size reduces the required screening time by a factor of 200–500 compared to using all protein pharmacophore elements. We also describe a training process using a small set of known actives to reliably select the optimal set of criteria for pharmacophore selection for each protein system. PMID:22397751

  9. Systematic prediction of control proteins and their DNA binding sites

    PubMed Central

    Sorokin, Valeriy; Severinov, Konstantin; Gelfand, Mikhail S.

    2009-01-01

    We present here the results of a systematic bioinformatics analysis of control (C) proteins, a class of DNA-binding regulators that control time-delayed transcription of their own genes as well as restriction endonuclease genes in many type II restriction-modification systems. More than 290 C protein homologs were identified and DNA-binding sites for ∼70% of new and previously known C proteins were predicted by a combination of phylogenetic footprinting and motif searches in DNA upstream of C protein genes. Additional analysis revealed that a large proportion of C protein genes are translated from leaderless RNA, which may contribute to time-delayed nature of genetic switches operated by these proteins. Analysis of genetic contexts of newly identified C protein genes revealed that they are not exclusively associated with restriction-modification genes; numerous instances of associations with genes originating from mobile genetic elements were observed. These instances might be vestiges of ancient horizontal transfers and indicate that during evolution ancestral restriction-modification system genes were the sites of mobile elements insertions. PMID:19056824

  10. The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene

    PubMed Central

    Barkess, Gráinne; Postnikov, Yuri; Campos, Chrisanne D.; Mishra, Shivam; Mohan, Gokula; Verma, Sakshi; Bustin, Michael; West, Katherine L.

    2013-01-01

    HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production. PMID:22150271

  11. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  12. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    PubMed

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  13. Identification of distal silencing elements in the murine interferon-A11 gene promoter.

    PubMed

    Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G

    1996-08-01

    The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction.

  14. Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization.

    PubMed

    Gong, Xin; Qian, Hongwu; Shao, Wei; Li, Jingxian; Wu, Jianping; Liu, Jun-Jie; Li, Wenqi; Wang, Hong-Wei; Espenshade, Peter; Yan, Nieng

    2016-11-01

    Sterol regulatory element-binding protein (SREBP) transcription factors are master regulators of cellular lipid homeostasis in mammals and oxygen-responsive regulators of hypoxic adaptation in fungi. SREBP C-terminus binds to the WD40 domain of SREBP cleavage-activating protein (SCAP), which confers sterol regulation by controlling the ER-to-Golgi transport of the SREBP-SCAP complex and access to the activating proteases in the Golgi. Here, we biochemically and structurally show that the carboxyl terminal domains (CTD) of Sre1 and Scp1, the fission yeast SREBP and SCAP, form a functional 4:4 oligomer and Sre1-CTD forms a dimer of dimers. The crystal structure of Sre1-CTD at 3.5 Å and cryo-EM structure of the complex at 5.4 Å together with in vitro biochemical evidence elucidate three distinct regions in Sre1-CTD required for Scp1 binding, Sre1-CTD dimerization and tetrameric formation. Finally, these structurally identified domains are validated in a cellular context, demonstrating that the proper 4:4 oligomeric complex formation is required for Sre1 activation.

  15. RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site.

    PubMed

    Christensen, Shawn M; Ye, Junqiang; Eickbush, Thomas H

    2006-11-21

    Non-LTR retrotransposons insert into eukaryotic genomes by target-primed reverse transcription (TPRT), a process in which cleaved DNA targets are used to prime reverse transcription of the element's RNA transcript. Many of the steps in the integration pathway of these elements can be characterized in vitro for the R2 element because of the rigid sequence specificity of R2 for both its DNA target and its RNA template. R2 retrotransposition involves identical subunits of the R2 protein bound to different DNA sequences upstream and downstream of the insertion site. The key determinant regulating which DNA-binding conformation the protein adopts was found to be a 320-nt RNA sequence from near the 5' end of the R2 element. In the absence of this 5' RNA the R2 protein binds DNA sequences upstream of the insertion site, cleaves the first DNA strand, and conducts TPRT when RNA containing the 3' untranslated region of the R2 transcript is present. In the presence of the 320-nt 5' RNA, the R2 protein binds DNA sequences downstream of the insertion site. Cleavage of the second DNA strand by the downstream subunit does not appear to occur until after the 5' RNA is removed from this subunit. We postulate that the removal of the 5' RNA normally occurs during reverse transcription, and thus provides a critical temporal link to first- and second-strand DNA cleavage in the R2 retrotransposition reaction.

  16. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    NASA Astrophysics Data System (ADS)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  17. Contributions of individual domains to function of the HIV-1 Rev response element.

    PubMed

    O'Carroll, Ina P; Thappeta, Yashna; Fan, Lixin; Ramirez-Valdez, Edric A; Smith, Sean; Wang, Yun-Xing; Rein, Alan

    2017-08-16

    The HIV-1 Rev response element (RRE) is a 351-base element in unspliced and partially spliced viral RNA; binding of the RRE by the viral Rev protein induces nuclear export of RRE-containing RNAs, as required for virus replication. It contains one long, imperfect double helix (domain I), one branched domain (domain II) containing a high-affinity Rev-binding site, and two or three additional domains. We previously reported that the RRE assumes an "A" shape in solution and suggested that the location of the Rev binding sites in domains I and II, opposite each other on the two legs of the A, is optimal for Rev binding and explains Rev's specificity for RRE-containing RNAs. Using SAXS and a quantitative functional assay, we have now analyzed a panel of RRE mutants. All the results support the essential role of the A shape for RRE function. Moreover, they suggest that the distal portion of domain I and the three crowning domains all contribute to the maintenance of the A shape. Domains I and II are necessary and sufficient for substantial RRE function, provided they are joined by a flexible linker that allows the two domains to face each other. IMPORTANCE Retroviral replication requires that some of the viral RNAs transcribed in the cell nucleus be exported to the cytoplasm without being spliced. To achieve this, HIV-1 encodes a protein, Rev, which binds to a complex, highly structured element within viral RNA, the Rev Response Element (RRE), and escorts RRE-containing RNAs from the nucleus. We previously reported that the RRE is "A"-shaped and suggested that this architecture, with the 2 legs opposite one another, can explain the specificity of Rev for the RRE. We have analyzed the functional contributions of individual RRE domains, and now report that several domains contribute, with some redundancy, to maintenance of the overall RRE shape. The data strongly support the hypothesis that the opposed placement of the 2 legs is essential for RRE function. Copyright © 2017 American Society for Microbiology.

  18. Contributions of Individual Domains to Function of the HIV-1 Rev Response Element

    PubMed Central

    O'Carroll, Ina P.; Thappeta, Yashna; Fan, Lixin; Ramirez-Valdez, Edric A.; Smith, Sean; Wang, Yun-Xing

    2017-01-01

    ABSTRACT The HIV-1 Rev response element (RRE) is a 351-base element in unspliced and partially spliced viral RNA; binding of the RRE by the viral Rev protein induces nuclear export of RRE-containing RNAs, as required for virus replication. It contains one long, imperfect double helix (domain I), one branched domain (domain II) containing a high-affinity Rev-binding site, and two or three additional domains. We previously reported that the RRE assumes an “A” shape in solution and suggested that the location of the Rev binding sites in domains I and II, opposite each other on the two legs of the A, is optimal for Rev binding and explains Rev's specificity for RRE-containing RNAs. Using small-angle X-ray scattering (SAXS) and a quantitative functional assay, we have now analyzed a panel of RRE mutants. All the results support the essential role of the A shape for RRE function. Moreover, they suggest that the distal portion of domain I and the three crowning domains all contribute to the maintenance of the A shape. Domains I and II are necessary and sufficient for substantial RRE function, provided they are joined by a flexible linker that allows the two domains to face each other. IMPORTANCE Retroviral replication requires that some of the viral RNAs transcribed in the cell nucleus be exported to the cytoplasm without being spliced. To achieve this, HIV-1 encodes a protein, Rev, which binds to a complex, highly structured element within viral RNA, the Rev response element (RRE), and escorts RRE-containing RNAs from the nucleus. We previously reported that the RRE is “A” shaped and suggested that this architecture, with the 2 legs opposite one another, can explain the specificity of Rev for the RRE. We have analyzed the functional contributions of individual RRE domains and now report that several domains contribute, with some redundancy, to maintenance of the overall RRE shape. The data strongly support the hypothesis that the opposed placement of the 2 legs is essential for RRE function. PMID:28814520

  19. Membrane and Integrative Nuclear Fibroblastic Growth Factor Receptor (FGFR) Regulation of FGF-23*

    PubMed Central

    Han, Xiaobin; Xiao, Zhousheng; Quarles, L. Darryl

    2015-01-01

    Fibroblastic growth factor receptor 1 (FGFR1) signaling pathways are implicated in the regulation of FGF-23 gene transcription, but the molecular pathways remain poorly defined. We used low molecular weight (LMW, 18 kDa) FGF-2 and high molecular weight (HMW) FGF-2 isoforms, which, respectively, activate cell surface FGF receptors and intranuclear FGFR1, to determine the roles of membrane FGFRs and integrative nuclear FGFR1 signaling (INFS) in the regulation of FGF-23 gene transcription in osteoblasts. We found that LMW-FGF-2 induced NFAT and Ets1 binding to conserved cis-elements in the proximal FGF-23 promoter and stimulated FGF-23 promoter activity through PLCγ/calcineurin/NFAT and MAPK pathways in SaOS-2 and MC3T3-E1 osteoblasts. In contrast, HMW-FGF-2 stimulated FGF-23 promoter activity in osteoblasts through a cAMP-dependent binding of FGFR1 and cAMP-response element-binding protein (CREB) to a conserved cAMP response element (CRE) contiguous with the NFAT binding site in the FGF-23 promoter. Mutagenesis of the NFAT and CRE binding sites, respectively, inhibited the effects of LMW-FGF-2 and HMW-FGF-23 to stimulate FGF-23 promoter activity. FGF-2 activation of both membrane FGFRs and INFS-dependent FGFR1 pathways may provide a means to integrate systemic and local regulation of FGF-23 transcription under diverse physiological and pathological conditions. PMID:25752607

  20. cAMP Response Element-Binding Protein Is Required for Dopamine-Dependent Gene Expression in the Intact But Not the Dopamine-Denervated Striatum

    PubMed Central

    Andersson, Malin; Konradi, Christine; Cenci, M. Angela

    2014-01-01

    The cAMP response element-binding protein (CREB) is believed to play a pivotal role in dopamine (DA) receptor-mediated nuclear signaling and neuroplasticity. Here we demonstrate that the significance of CREB for gene expression depends on the experimental paradigm. We compared the role of CREB in two different but related models: L-DOPA administration to unilaterally 6-hydroxydopamine lesioned rats, and cocaine administration to neurologically intact animals. Antisense technology was used to produce a local knockdown of CREB in the lateral caudate–putamen, a region that mediates the dyskinetic or stereotypic manifestations associated with L-DOPA or cocaine treatment, respectively. In intact rats, CREB antisense reduced both basal and cocaine-induced expression of c-Fos, FosB/ΔFosB, and prodynorphin mRNA. In the DA-denervated striatum, CREB was not required for L-DOPA to induce these gene products, nor did CREB contribute considerably to DNA binding activity at cAMP responsive elements (CREs) and CRE-like enhancers. ΔFosB-related proteins and JunD were the main contributors to both CRE and AP-1 DNA–protein complexes in L-DOPA-treated animals. In behavioral studies, intrastriatal CREB knockdown caused enhanced activity scores in intact control animals and exacerbated the dyskinetic effects of acute L-DOPA treatment in 6-OHDA-lesioned animals. These data demonstrate that CREB is not required for the development of L-DOPA-induced dyskinesia in hemiparkinsonian rats. Moreover, our results reveal an unexpected alteration of nuclear signaling mechanisms in the parkinsonian striatum treated with L-DOPA, where AP-1 transcription factors appear to supersede CREB in the activation of CRE-containing genes. PMID:11739600

  1. Comparing anterior and posterior Hox complex formation reveals guidelines for predicting cis-regulatory elements

    PubMed Central

    Uhl, Juli D.; Cook, Tiffany A.; Gebelein, Brian

    2010-01-01

    Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes. PMID:20398649

  2. The SpTransformer Gene Family (Formerly Sp185/333) in the Purple Sea Urchin and the Functional Diversity of the Anti-Pathogen rSpTransformer-E1 Protein

    PubMed Central

    Smith, L. Courtney; Lun, Cheng Man

    2017-01-01

    The complex innate immune system of sea urchins is underpinned by several multigene families including the SpTransformer family (SpTrf; formerly Sp185/333) with estimates of ~50 members, although the family size is likely variable among individuals of Strongylocentrotus purpuratus. The genes are small with similar structure, are tightly clustered, and have several types of repeats in the second of two exons and that surround each gene. The density of repeats suggests that the genes are positioned within regions of genomic instability, which may be required to drive sequence diversification. The second exon encodes the mature protein and is composed of blocks of sequence called elements that are present in mosaics of defined element patterns and are the major source of sequence diversity. The SpTrf genes respond swiftly to immune challenge, but only a single gene is expressed per phagocyte. Many of the mRNAs appear to be edited and encode proteins with altered and/or missense sequence that are often truncated, of which some may be functional. The standard SpTrf protein structure is an N-terminal glycine-rich region, a central RGD motif, a histidine-rich region, and a C-terminal region. Function is predicted from a recombinant protein, rSpTransformer-E1 (rSpTrf-E1), which binds to Vibrio and Saccharomyces, but not to Bacillus, and binds tightly to lipopolysaccharide, β-1,3-glucan, and flagellin, but not to peptidoglycan. rSpTrf-E1 is intrinsically disordered but transforms to α helical structure in the presence of binding targets including lipopolysaccharide, which may underpin the characteristics of binding to multiple targets. SpTrf proteins associate with coelomocyte membranes, and rSpTrf-E1 binds specifically to phosphatidic acid (PA). When rSpTrf-E1 is bound to PA in liposome membranes, it induces morphological changes in liposomes that correlate with PA clustering and leakage of luminal contents, and it extracts or removes PA from the bilayer. The multitasking activities of rSpTrf-E1 infer multiple and perhaps overlapping activities for the hundreds of native SpTrf proteins that are produced by individual sea urchins. This likely generates a flexible and highly protective immune system for the sea urchin in its marine habitat that it shares with broad arrays of microbes that may be pathogens and opportunists. PMID:28713368

  3. Meta-analysis of the effect of overexpression of dehydration-responsive element binding family genes on temperature stress tolerance and related responses

    USDA-ARS?s Scientific Manuscript database

    C-repeat/dehydration-responsive element binding proteins are transcription factors that play a critical role in plant response to temperature stress. Over-expression of CBF/DREB genes has been demonstrated to enhance temperature stress tolerance. A series of physiological and biochemical modificat...

  4. AP1 Keeps Chromatin Poised for Action | Center for Cancer Research

    Cancer.gov

    The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins

  5. Substrate specificity of bacterial DD-peptidases (penicillin-binding proteins).

    PubMed

    Pratt, R F

    2008-07-01

    The DD-peptidase enzymes (penicillin-binding proteins) catalyze the final transpeptidation reaction of bacterial cell wall (peptidoglycan) biosynthesis. Although there is now much structural information available about these enzymes, studies of their activity as enzymes lag. It is now established that representatives of two low-molecular-mass classes of DD-peptidases recognize elements of peptidoglycan structure and rapidly react with substrates and inhibitors incorporating these elements. No members of other DD-peptidase classes, including the high-molecular-mass enzymes, essential for bacterial growth, appear to interact strongly with any particular elements of peptidoglycan structure. Rational design of inhibitors for these enzymes is therefore challenging.

  6. Structure of a low-population binding intermediate in protein-RNA recognition

    PubMed Central

    Bardaro, Michael F.; Aprile, Francesco A.; Varani, Gabriele; Vendruscolo, Michele

    2016-01-01

    The interaction of the HIV-1 protein transactivator of transcription (Tat) and its cognate transactivation response element (TAR) RNA transactivates viral transcription and represents a paradigm for the widespread occurrence of conformational rearrangements in protein-RNA recognition. Although the structures of free and bound forms of TAR are well characterized, the conformations of the intermediates in the binding process are still unknown. By determining the free energy landscape of the complex using NMR residual dipolar couplings in replica-averaged metadynamics simulations, we observe two low-population intermediates. We then rationally design two mutants, one in the protein and another in the RNA, that weaken specific nonnative interactions that stabilize one of the intermediates. By using surface plasmon resonance, we show that these mutations lower the release rate of Tat, as predicted. These results identify the structure of an intermediate for RNA-protein binding and illustrate a general strategy to achieve this goal with high resolution. PMID:27286828

  7. RHGF-2 Is an Essential Rho-1 Specific RhoGEF that binds to the Multi-PDZ Domain Scaffold Protein MPZ-1 in Caenorhabditis elegans

    PubMed Central

    Lin, Li; Tran, Thuy; Hu, Shuang; Cramer, Todd; Komuniecki, Richard; Steven, Robert M.

    2012-01-01

    RhoGEF proteins activate the Rho family of small GTPases and thus play a key role in regulating fundamental cellular processes such as cell morphology and polarity, cell cycle progression and gene transcription. We identified a Caenorhabditis elegans RhoGEF protein, RHGF-2, as a binding partner of the C. elegans multi-PDZ domain scaffold protein MPZ-1 (MUPP1 in mammals). RHGF-2 exhibits significant identity to the mammalian RhoGEFs PLEKHG5/Tech/Syx and contains a class I C-terminal PDZ binding motif (SDV) that interacts most strongly to MPZ-1 PDZ domain eight. RHGF-2 RhoGEF activity is specific to the C. elegans RhoA homolog RHO-1 as determined by direct binding, GDP/GTP exchange and serum response element-driven reporter activity. rhgf-2 is an essential gene since rhgf-2 deletion mutants do not elongate during embryogenesis and hatch as short immobile animals that arrest development. Interestingly, the expression of a functional rhgf-2::gfp transgene appears to be exclusively neuronal and rhgf-2 overexpression results in loopy movement with exaggerated body bends. Transient expression of RHGF-2 in N1E-115 neuroblastoma cells prevents neurite outgrowth similar to constitutive RhoA activation in these cells. Together, these observations indicate neuronally expressed RHGF-2 is an essential RHO-1 specific RhoGEF that binds most strongly to MPZ-1 PDZ domain eight and is required for wild-type C. elegans morphology and growth. PMID:22363657

  8. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.

  9. AP1 Keeps Chromatin Poised for Action | Center for Cancer Research

    Cancer.gov

    The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins called chromatin that compacts the DNA in the nucleus, strongly restricting access to DNA sequences. As a result, regulatory factors only interact with a small subset of their potential binding elements in a given cell to regulate genes. How factors recognize and select sites in chromatin across the genome is not well understood -- but several discoveries in CCR’s Laboratory of Receptor Biology and Gene Expression (LRBGE) have shed light on the mechanisms that direct factors to DNA.

  10. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements.

    PubMed

    Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel

    2008-12-01

    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs-scs, scs'-scs', 1A2-1A2 and Wari-Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5-Su(Hw), dCTCF-Su(Hw), or dCTCF-Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements.

  11. Bean Metal-Responsive Element-Binding Transcription Factor Confers Cadmium Resistance in Tobacco1

    PubMed Central

    Sun, Na; Liu, Meng; Zhang, Wentao; Yang, Wanning; Bei, Xiujuan; Ma, Hui; Qiao, Fan; Qi, Xiaoting

    2015-01-01

    Cadmium (Cd) is highly toxic to plants. Modulation of Cd-responsive transcription is an important way for Cd detoxification in plants. Metal-responsive element (MRE) is originally described in animal metallothionein genes. Although functional MREs also exist in Cd-regulated plant genes, specific transcription factors that bind MRE to regulate Cd tolerance have not been identified. Previously, we showed that Cd-inducible bean (Phaseolus vulgaris) stress-related gene2 (PvSR2) produces a short (S) PvSR2 transcript (S-PvSR2) driven by an intronic promoter. Here, we demonstrate that S-PvSR2 encodes a bean MRE-binding transcription factor1 (PvMTF-1) that confers Cd tolerance in tobacco (Nicotiana tabacum). PvMTF-1 expression was up-regulated by Cd at the levels of RNA and protein. Importantly, expression of PvMTF-1 in tobacco enhanced Cd tolerance, indicating its role in regulating Cd resistance in planta. This was achieved through direct regulation of a feedback-insensitive Anthranilate Synthase α-2 chain gene (ASA2), which catalyzes the first step for tryptophan biosynthesis. In vitro and in vivo DNA-protein interaction studies further revealed that PvMTF-1 directly binds to the MRE in the ASA2 promoter, and this binding depends on the zinc finger-like motif of PvMTF-1. Through modulating ASA2 up-regulation by Cd, PvMTF-1 increased free tryptophan level and subsequently reduced Cd accumulation, thereby enhancing Cd tolerance of transgenic tobacco plants. Consistent with this observation, tobacco transiently overexpressing ASA2 also exhibited increased tolerance to Cd. We conclude that PvMTF-1 is a zinc finger-like transcription factor that links MRE to Cd resistance in transgenic tobacco through activation of tryptophan biosynthesis. PMID:25624396

  12. Staufen1 senses overall transcript secondary structure to regulate translation

    PubMed Central

    Ricci, Emiliano P; Kucukural, Alper; Cenik, Can; Mercier, Blandine C; Singh, Guramrit; Heyer, Erin E; Ashar-Patel, Ami; Peng, Lingtao; Moore, Melissa J

    2015-01-01

    Human Staufen1 (Stau1) is a double-stranded RNA (dsRNA)-binding protein implicated in multiple post-transcriptional gene-regulatory processes. Here we combined RNA immunoprecipitation in tandem (RIPiT) with RNase footprinting, formaldehyde cross-linking, sonication-mediated RNA fragmentation and deep sequencing to map Staufen1-binding sites transcriptome wide. We find that Stau1 binds complex secondary structures containing multiple short helices, many of which are formed by inverted Alu elements in annotated 3′ untranslated regions (UTRs) or in ‘strongly distal’ 3′ UTRs. Stau1 also interacts with actively translating ribosomes and with mRNA coding sequences (CDSs) and 3′ UTRs in proportion to their GC content and propensity to form internal secondary structure. On mRNAs with high CDS GC content, higher Stau1 levels lead to greater ribosome densities, thus suggesting a general role for Stau1 in modulating translation elongation through structured CDS regions. Our results also indicate that Stau1 regulates translation of transcription-regulatory proteins. PMID:24336223

  13. Transterm: a database to aid the analysis of regulatory sequences in mRNAs

    PubMed Central

    Jacobs, Grant H.; Chen, Augustine; Stevens, Stewart G.; Stockwell, Peter A.; Black, Michael A.; Tate, Warren P.; Brown, Chris M.

    2009-01-01

    Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3′-untranslated regions (3′-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses. PMID:18984623

  14. Identification of ERdj3 and OBF-1/BOB-1/OCA-B as direct targets of XBP-1 during plasma cell differentiation.

    PubMed

    Shen, Ying; Hendershot, Linda M

    2007-09-01

    Plasma cell differentiation is accompanied by a modified unfolded protein response (UPR), which involves activation of the Ire1 and activating transcription factor 6 branches, but not the PKR-like endoplasmic reticulum kinase branch. Ire1-mediated splicing of XBP-1 (XBP-1(S)) is required for terminal differentiation, although the direct targets of XBP-1(S) in this process have not been identified. We demonstrate that XBP-1(S) binds to the promoter of ERdj3 in plasmacytoma cells and in LPS-stimulated primary splenic B cells, which corresponds to increased expression of ERdj3 transcripts in both cases. When small hairpin RNA was used to decrease XBP-1 expression in plasmacytoma lines, ERdj3 transcripts were concomitantly reduced. The accumulation of Ig gamma H chain protein was also diminished, but unexpectedly this occurred at the transcriptional level as opposed to effects on H chain stability. The decrease in H chain transcripts correlated with a reduction in mRNA encoding the H chain transcription factor, OBF-1/BOB-1/OCA-B. Chromatin immunoprecipitation experiments revealed that XBP-1(S) binds to the OBF-1/BOB-1/OCA-B promoter in the plasmacytoma line and in primary B cells not only during plasma cell differentiation, but also in response to classical UPR activation. Gel shift assays suggest that XBP-1(S) binding occurs through a UPR element conserved in both murine and human OBF-1/BOB-1/OCA-B promoters as opposed to endoplasmic reticulum stress response elements. Our studies are the first to identify direct downstream targets of XBP-1(S) during either plasma cell differentiation or the UPR. In addition, our data further define the XBP-1(S)-binding sequence and provide yet another role for this protein as a master regulator of plasma cell differentiation.

  15. Dephosphorylation of HuR Protein during Alphavirus Infection Is Associated with HuR Relocalization to the Cytoplasm*

    PubMed Central

    Dickson, Alexa M.; Anderson, John R.; Barnhart, Michael D.; Sokoloski, Kevin J.; Oko, Lauren; Opyrchal, Mateusz; Galanis, Evanthia; Wilusz, Carol J.; Morrison, Thomas E.; Wilusz, Jeffrey

    2012-01-01

    We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3′ untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3′ UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses. Interestingly, the relocalization of HuR is not a general cellular reaction to viral infection, as HuR protein remained largely nuclear during infections with dengue and measles virus. Relocalization of HuR in a Sindbis infection required viral gene expression, was independent of the presence of a high-affinity U-rich HuR binding site in the 3′ UTR of the virus, and was associated with an alteration in the phosphorylation state of HuR. Sindbis virus-induced HuR relocalization was mechanistically distinct from the movement of HuR observed during a cellular stress response, as there was no accumulation of caspase-mediated HuR cleavage products. Collectively, these data indicate that virus-induced HuR relocalization to the cytoplasm is specific to alphavirus infections and is associated with distinct posttranslational modifications of this RNA-binding protein. PMID:22915590

  16. Cellular mRNA decay protein AUF1 negatively regulates enterovirus and human rhinovirus infections.

    PubMed

    Cathcart, Andrea L; Rozovics, Janet M; Semler, Bert L

    2013-10-01

    To successfully complete their replication cycles, picornaviruses modify several host proteins to alter the cellular environment to favor virus production. One such target of viral proteinase cleavage is AU-rich binding factor 1 (AUF1), a cellular protein that binds to AU-rich elements, or AREs, in the 3' noncoding regions (NCRs) of mRNAs to affect the stability of the RNA. Previous studies found that, during poliovirus or human rhinovirus infection, AUF1 is cleaved by the viral proteinase 3CD and that AUF1 can interact with the long 5' NCR of these viruses in vitro. Here, we expand on these initial findings to demonstrate that all four isoforms of AUF1 bind directly to stem-loop IV of the poliovirus 5' NCR, an interaction that is inhibited through proteolytic cleavage of AUF1 by the viral proteinase 3CD. Endogenous AUF1 was observed to relocalize to the cytoplasm of infected cells in a viral protein 2A-driven manner and to partially colocalize with the viral protein 3CD. We identify a negative role for AUF1 in poliovirus infection, as AUF1 inhibited viral translation and, ultimately, overall viral titers. Our findings also demonstrate that AUF1 functions as an antiviral factor during infection by coxsackievirus or human rhinovirus, suggesting a common mechanism that targets these related picornaviruses.

  17. Cellular mRNA Decay Protein AUF1 Negatively Regulates Enterovirus and Human Rhinovirus Infections

    PubMed Central

    Cathcart, Andrea L.; Rozovics, Janet M.

    2013-01-01

    To successfully complete their replication cycles, picornaviruses modify several host proteins to alter the cellular environment to favor virus production. One such target of viral proteinase cleavage is AU-rich binding factor 1 (AUF1), a cellular protein that binds to AU-rich elements, or AREs, in the 3′ noncoding regions (NCRs) of mRNAs to affect the stability of the RNA. Previous studies found that, during poliovirus or human rhinovirus infection, AUF1 is cleaved by the viral proteinase 3CD and that AUF1 can interact with the long 5′ NCR of these viruses in vitro. Here, we expand on these initial findings to demonstrate that all four isoforms of AUF1 bind directly to stem-loop IV of the poliovirus 5′ NCR, an interaction that is inhibited through proteolytic cleavage of AUF1 by the viral proteinase 3CD. Endogenous AUF1 was observed to relocalize to the cytoplasm of infected cells in a viral protein 2A-driven manner and to partially colocalize with the viral protein 3CD. We identify a negative role for AUF1 in poliovirus infection, as AUF1 inhibited viral translation and, ultimately, overall viral titers. Our findings also demonstrate that AUF1 functions as an antiviral factor during infection by coxsackievirus or human rhinovirus, suggesting a common mechanism that targets these related picornaviruses. PMID:23903828

  18. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis.

    PubMed

    Kim, Sangwon; Ponka, Prem

    2002-01-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  19. Maintenance of the marginal zone B cell compartment specifically requires the RNA-binding protein ZFP36L1

    PubMed Central

    Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S.; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin

    2017-01-01

    RNA binding proteins (RBP) of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU rich elements in the 3’UTR and promoting mRNA decay. Here we show an indispensible role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal zone (MZ) B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene expression program related to signaling, cell-adhesion and locomotion, in part by limiting the expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RBP for maintaining cellular identity between closely related cell types. PMID:28394372

  20. Regulation of insulin-like growth factor I transcription by cyclic adenosine 3',5'-monophosphate (cAMP) in fetal rat bone cells through an element within exon 1: protein kinase A-dependent control without a consensus AMP response element

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Thomas, M. J.; Centrella, M.; Rotwein, P.

    1995-01-01

    Insulin-like growth factor I (IGF-I) is a locally synthesized anabolic growth factor for bone. IGF-I synthesis by primary fetal rat osteoblasts (Ob) is stimulated by agents that increase the intracellular cAMP concentration, including prostaglandin E2 (PGE2). Previous studies with Ob cultures demonstrated that PGE2 enhanced IGF-I transcription through selective use of IGF-I promoter 1, with little effect on IGF-I messenger RNA half-life. Transient transfection of Ob cultures with an array of promoter 1-luciferase reporter fusion constructs has now allowed localization of a potential cis-acting promoter element(s) responsible for cAMP-stimulated gene expression to the 5'-untranslated region (5'-UTR) of IGF-I exon 1, within a segment lacking a consensus cAMP response element. Our evidence derives from three principal observations: 1) a transfection construct containing only 122 nucleotides (nt) of promoter 1 and 328 nt of the 5'-UTR retained full PGE2-stimulated reporter expression; 2) maximal PGE2-driven reporter expression required the presence of nt 196 to 328 of exon 1 when tested within the context of IGF-I promoter 1; 3) cotransfection of IGF-I promoter-luciferase-reporter constructs with a plasmid encoding the alpha-isoform of the catalytic subunit of murine cAMP-dependent protein kinase (PKA) produced results comparable to those seen with PGE2 treatment, whereas cotransfection with a plasmid encoding a mutant regulatory subunit of PKA that cannot bind cAMP blocked PGE2-induced reporter expression. Deoxyribonuclease I footprinting of the 5'-UTR of exon 1 demonstrated protected sequences at HS3A, HS3B, and HS3D, three of six DNA-protein binding sites previously characterized with rat liver nuclear extracts. Of these three regions, only the HS3D binding site is located within the functionally identified hormonally responsive segment of IGF-I exon 1. These results directly implicate PKA in the control of IGF-I gene transcription by PGE2 and identify a segment of IGF-I exon 1 as being essential for this hormonal regulation.

  1. Cloning of an ets-Related Transcription Factor Involved in a Novel Epigenetic Mechanism of Mammary Carcinogenesis

    DTIC Science & Technology

    2001-05-01

    dystrophin gene promoter is regulated by YY1 and DPBF (33). Other studies showed that serum response factor (SRF) is required for muscle-specific...transcriptional activation through CArG boxes (68) and that SRF competes with YY1 for binding to wild-type CArG elements (51). CBF-A has significant...between SRF and YY1 proteins at CArG elements has been described in chicken skeletal muscle cells(36). Our previous study in a rat mammary carcinoma cell

  2. Studies on the mechanism of functional cooperativity between progesterone and estrogen receptors.

    PubMed

    Bradshaw, M S; Tsai, S Y; Leng, X H; Dobson, A D; Conneely, O M; O'Malley, B W; Tsai, M J

    1991-09-05

    Steroid response elements (SREs) cooperate with many different cis-acting elements including NF-1 sites, CACCC boxes, and other SREs to induce target gene expression (Schule, R., Muller, M., Otsuka-Murakami, H., and Renkawitz, R. (1988) Nature 332, 87-90; Strahle, U., Schmid, W., and Schutz, G. (1988) EMBO J. 7, 3389-3395). Induction of gene expression can be additive or synergistic with respect to the level of activation by either transactivators. Two mechanisms have been proposed for how synergism occurs: 1) cooperative binding of transcriptional activators to DNA or 2) simultaneous interaction of individually bound activators with a common target protein. We have shown previously that cooperative binding of receptors is important for synergism between two progesterone response elements (PREs). Here we showed that an estrogen response element (ERE) and a PRE can also functionally cooperate and this synergism between an ERE and a PRE is not contributed by cooperative DNA binding. Furthermore, we have demonstrated that the activation domains of the progesterone receptor (PR) (C1Act) are required for synergism between two PREs and sufficient for confirming cooperative binding. However these two activation domains of PR are not sufficient for synergism between an ERE and a PRE. Additional regions within the NH2-terminal and COOH-terminal domains are also required for synergistic interaction between two heterologous SREs.

  3. Identification of the cAMP response element that controls transcriptional activation of the insulin-like growth factor-I gene by prostaglandin E2 in osteoblasts

    NASA Technical Reports Server (NTRS)

    Thomas, M. J.; Umayahara, Y.; Shu, H.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1996-01-01

    Insulin-like growth factor-I (IGF-I), a multifunctional growth factor, plays a key role in skeletal growth and can enhance bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other agents that increase cAMP activated IGF-I gene transcription in primary rat osteoblast cultures through promoter 1 (P1), the major IGF-I promoter, and found that transcriptional induction was mediated by protein kinase A. We now have identified a short segment of P1 that is essential for full hormonal regulation and have characterized inducible DNA-protein interactions involving this site. Transient transfections of IGF-I P1 reporter genes into primary rat osteoblasts showed that the 328-base pair untranslated region of exon 1 was required for a full 5.3-fold response to PGE2; mutation in a previously footprinted site, HS3D (base pairs +193 to +215), reduced induction by 65%. PGE2 stimulated nuclear protein binding to HS3D. Binding, as determined by gel mobility shift assay, was not seen in nuclear extracts from untreated osteoblast cultures, was detected within 2 h of PGE2 treatment, and was maximal by 4 h. This DNA-protein interaction was not observed in cytoplasmic extracts from PGE2-treated cultures, indicating nuclear localization of the protein kinase A-activated factor(s). Activation of this factor was not blocked by cycloheximide (Chx), and Chx did not impair stimulation of IGF-I gene expression by PGE2. In contrast, binding to a consensus cAMP response element (CRE; 5'-TGACGTCA-3') from the rat somatostatin gene was not modulated by PGE2 or Chx. Competition gel mobility shift analysis using mutated DNA probes identified 5'-CGCAATCG-3' as the minimal sequence needed for inducible binding. All modified IGF-I P1 promoterreporter genes with mutations within this CRE sequence also showed a diminished functional response to PGE2. These results identify the CRE within the 5'-untranslated region of IGF-I exon 1 that is required for hormonal activation of IGF-I gene transcription by cAMP in osteoblasts.

  4. Soluble and filamentous proteins in Arabidopsis sieve elements.

    PubMed

    Batailler, Brigitte; Lemaître, Thomas; Vilaine, Françoise; Sanchez, Christian; Renard, Denis; Cayla, Thibaud; Beneteau, Julie; Dinant, Sylvie

    2012-07-01

    Phloem sieve elements are highly differentiated cells involved in the long-distance transport of photoassimilates. These cells contain both aggregated phloem-proteins (P-proteins) and soluble proteins, which are also translocated by mass flow. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to carry out a proteomic survey of the phloem exudate of Arabidopsis thaliana, collected by the ethylenediaminetetraacetic acid (EDTA)-facilitated method. We identified 287 proteins, a large proportion of which were enzymes involved in the metabolic precursor generation and amino acid synthesis, suggesting that sieve tubes display high levels of metabolic activity. RNA-binding proteins, defence proteins and lectins were also found. No putative P-proteins were detected in the EDTA-exudate fraction, indicating a lack of long-distance translocation of such proteins in Arabidopsis. In parallel, we investigated the organization of P-proteins, by high-resolution transmission electron microscopy, and the localization of the phloem lectin PP2, a putative P-protein component, by immunolocalization with antibodies against PP2-A1. Transmission electron microscopy observations of P-proteins revealed bundles of filaments resembling strings of beads. PP2-A1 was found weakly associated with these structures in the sieve elements and bound to plastids. These observations suggest that PP2-A1 is anchored to P-proteins and organelles rather than being a structural component of P-proteins. © 2012 Blackwell Publishing Ltd.

  5. HDAC Inhibition Modulates Hippocampus-Dependent Long-Term Memory for Object Location in a CBP-Dependent Manner

    ERIC Educational Resources Information Center

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation…

  6. Au-Interaction of Slp1 Polymers and Monolayer from Lysinibacillus sphaericus JG-B53 - QCM-D, ICP-MS and AFM as Tools for Biomolecule-metal Studies

    PubMed Central

    Suhr, Matthias; Raff, Johannes; Pollmann, Katrin

    2016-01-01

    In this publication the gold sorption behavior of surface layer (S-layer) proteins (Slp1) of Lysinibacillus sphaericus JG-B53 is described. These biomolecules arrange in paracrystalline two-dimensional arrays on surfaces, bind metals, and are thus interesting for several biotechnical applications, such as biosorptive materials for the removal or recovery of different elements from the environment and industrial processes. The deposition of Au(0) nanoparticles on S-layers, either by S-layer directed synthesis 1 or adsorption of nanoparticles, opens new possibilities for diverse sensory applications. Although numerous studies have described the biosorptive properties of S-layers 2-5, a deeper understanding of protein-protein and protein-metal interaction still remains challenging. In the following study, inductively coupled mass spectrometry (ICP-MS) was used for the detection of metal sorption by suspended S-layers. This was correlated to measurements of quartz crystal microbalance with dissipation monitoring (QCM-D), which allows the online detection of proteinaceous monolayer formation and metal deposition, and thus, a more detailed understanding on metal binding. The ICP-MS results indicated that the binding of Au(III) to the suspended S-layer polymers is pH dependent. The maximum binding of Au(III) was obtained at pH 4.0. The QCM-D investigations enabled the detection of Au(III) sorption as well as the deposition of Au(0)-NPs in real-time during the in situ experiments. Further, this method allowed studying the influence of metal binding on the protein lattice stability of Slp1. Structural properties and protein layer stability could be visualized directly after QCM-D experiment using atomic force microscopy (AFM). In conclusion, the combination of these different methods provides a deeper understanding of metal binding by bacterial S-layer proteins in suspension or as monolayers on either bacterial cells or recrystallized surfaces. PMID:26863150

  7. Insulin-like growth factor-II regulates bone sialoprotein gene transcription.

    PubMed

    Choe, Jin; Sasaki, Yoko; Zhou, Liming; Takai, Hideki; Nakayama, Yohei; Ogata, Yorimasa

    2016-09-01

    Insulin-like growth factor-I and -II (IGF-I and IGF-II) have been found in bone extracts of several different species, and IGF-II is the most abundant growth factor stored in bone. Bone sialoprotein (BSP) is a noncollagenous extracellular matrix glycoprotein associated with mineralized connective tissues. In this study, we have investigated the regulation of BSP transcription by IGF-II in rat osteoblast-like ROS17/2.8 cells. IGF-II (50 ng/ml) increased BSP mRNA and protein levels after 6-h stimulation, and enhanced luciferase activities of the constructs pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to +60). Effects of IGF-II were inhibited by tyrosine kinase, extracellular signal-regulated kinase1/2 and phosphatidylinositol 3-kinase inhibitors, and abrogated by 2-bp mutations in cAMP response element (CRE), FGF2 response element (FRE) and homeodomain protein-binding site (HOX). The results of gel shift assays showed that nuclear proteins binding to CRE, FRE and HOX sites were increased by IGF-II (50 ng/ml) at 3 and 6 h. CREB1, phospho-CREB1, c-Fos and c-Jun antibodies disrupted the formation of the CRE-protein complexes. Dlx5 and Runx2 antibodies disrupted the FRE- and HOX-protein complex formations. These studies therefore demonstrated that IGF-II increased BSP transcription by targeting CRE, FRE and HOX elements in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, Dlx5 and Runx2 transcription factors appear to be key regulators of IGF-II effects on BSP transcription.

  8. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors.

    PubMed

    Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho

    2005-12-01

    The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.

  9. Fuzzy regions in an intrinsically disordered protein impair protein-protein interactions.

    PubMed

    Gruet, Antoine; Dosnon, Marion; Blocquel, David; Brunel, Joanna; Gerlier, Denis; Das, Rahul K; Bonetti, Daniela; Gianni, Stefano; Fuxreiter, Monika; Longhi, Sonia; Bignon, Christophe

    2016-02-01

    Despite the partial disorder-to-order transition that intrinsically disordered proteins often undergo upon binding to their partners, a considerable amount of residual disorder may be retained in the bound form, resulting in a fuzzy complex. Fuzzy regions flanking molecular recognition elements may enable partner fishing through non-specific, transient contacts, thereby facilitating binding, but may also disfavor binding through various mechanisms. So far, few computational or experimental studies have addressed the effect of fuzzy appendages on partner recognition by intrinsically disordered proteins. In order to shed light onto this issue, we used the interaction between the intrinsically disordered C-terminal domain of the measles virus (MeV) nucleoprotein (NTAIL ) and the X domain (XD) of the viral phosphoprotein as model system. After binding to XD, the N-terminal region of NTAIL remains conspicuously disordered, with α-helical folding taking place only within a short molecular recognition element. To study the effect of the N-terminal fuzzy region on NTAIL /XD binding, we generated N-terminal truncation variants of NTAIL , and assessed their binding abilities towards XD. The results revealed that binding increases with shortening of the N-terminal fuzzy region, with this also being observed with hsp70 (another MeV NTAIL binding partner), and for the homologous NTAIL /XD pairs from the Nipah and Hendra viruses. Finally, similar results were obtained when the MeV NTAIL fuzzy region was replaced with a highly dissimilar artificial disordered sequence, supporting a sequence-independent inhibitory effect of the fuzzy region. © 2015 Federation of European Biochemical Societies.

  10. The Enzyme-Like Domain of Arabidopsis Nuclear β-Amylases Is Critical for DNA Sequence Recognition and Transcriptional Activation.

    PubMed

    Soyk, Sebastian; Simková, Klára; Zürcher, Evelyne; Luginbühl, Leonie; Brand, Luise H; Vaughan, Cara K; Wanke, Dierk; Zeeman, Samuel C

    2014-04-01

    Plant BZR1-BAM transcription factors contain a β-amylase (BAM)-like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be noncatalytic, but they determine the function of the two Arabidopsis thaliana BZR1-BAM isoforms (BAM7 and BAM8) during transcriptional initiation. Removal or swapping of the BAM domains demonstrates that the BAM7 BAM domain restricts DNA binding and transcriptional activation, while the BAM8 BAM domain allows both activities. Furthermore, we demonstrate that BAM7 and BAM8 interact on the protein level and cooperate during transcriptional regulation. Site-directed mutagenesis of residues in the BAM domain of BAM8 shows that its function as a transcriptional activator is independent of catalysis but requires an intact substrate binding site, suggesting it may bind a ligand. Microarray experiments with plants overexpressing truncated versions lacking the BAM domain indicate that the pseudo-enzymatic domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element). Side specificity toward the G-box may allow crosstalk to other signaling networks. This work highlights the importance of the enzyme-derived domain of BZR1-BAMs, supporting their potential role as metabolic sensors. © 2014 American Society of Plant Biologists. All rights reserved.

  11. Mass spectrometry for identification of proteins that specifically bind to a distal enhancer of the Oct4 gene

    NASA Astrophysics Data System (ADS)

    Bakhmet, E. I.; Nazarov, I. B.; Artamonova, T. O.; Khodorkovsky, M. A.; Tomilin, A. N.

    2017-11-01

    Transcription factor Oct4 is a marker of pluripotent stem cells and has a significant role in their self-renewal. Oct4 gene is controlled by three cis-regulatory elements - proximal promoter, proximal enhancer and distal enhancer. All of these elements are targets for binding of regulatory proteins. Distal enhancer is in our research focus because of its activity in early stages of embryonic development. There are two main sequences called site 2A and site 2B that are presented in distal enhancer. For this moment proteins which bind to a site 2A (CCCCTCCCCCC) remain unknown. Using combination of in vitro method electrophoretic mobility shift assay (EMSA) and mass spectromery we identified several candidates that can regulate Oct4 gene expression through site 2A.

  12. Activation of IFN-beta element by IRF-1 requires a posttranslational event in addition to IRF-1 synthesis.

    PubMed Central

    Watanabe, N; Sakakibara, J; Hovanessian, A G; Taniguchi, T; Fujita, T

    1991-01-01

    Expression of the Type I IFN (i.e., IFN-alpha s and IFN-beta) genes is efficiently induced by viruses at the transcriptional level. This induction is mediated by at least two types of positive regulatory elements located in the human IFN-beta gene promoter: (1) the repeated elements which bind both the transcriptional activator IRF-1 and the repressor IRF-2 (IRF-elements; IRF-Es), and (2) the kappa B element (kappa B-E), which binds NF kappa B and is located between the IRF-Es and the TATA box. In this study we demonstrate that a promoter containing synthetic IRF-E, which displays high affinity for the IRFs can be efficiently activated by Newcastle disease virus (NDV). In contrast, such activation was either very weak or nil when cells were treated by IFN-beta or tumor necrosis factor-alpha (TNF-alpha), despite the fact they both efficiently induce de novo synthesis of the short-lived IRF-1 in L929 cells. In fact, efficient activation of the IRF-E apparently requires an event in addition to de novo IRF-1 induction, which can be elicited by NDV even in the presence of protein synthesis inhibitor, cycloheximide. Moreover, efficient activation of the IRF-E by NDV is specifically inhibited by the protein kinase inhibitor, Staurosporin. Hence our results suggest the importance of IRF-1 synthesis and post-translational modification event(s), possibly phosphorylation for the efficient activation of IRF-Es, which are otherwise under negative regulation by IRF-2. Images PMID:1886766

  13. The Stability of the Small Nucleolar Ribonucleoprotein (snoRNP) Assembly Protein Pih1 in Saccharomyces cerevisiae Is Modulated by Its C Terminus*

    PubMed Central

    Paci, Alexandr; Liu, Xiao Hu; Huang, Hao; Lim, Abelyn; Houry, Walid A.; Zhao, Rongmin

    2012-01-01

    Pih1 is an unstable protein and a subunit of the R2TP complex that, in yeast Saccharomyces cerevisiae, also contains the helicases Rvb1, Rvb2, and the Hsp90 cofactor Tah1. Pih1 and the R2TP complex are required for the box C/D small nucleolar ribonucleoprotein (snoRNP) assembly and ribosomal RNA processing. Purified Pih1 tends to aggregate in vitro. Molecular chaperone Hsp90 and its cochaperone Tah1 are required for the stability of Pih1 in vivo. We had shown earlier that the C terminus of Pih1 destabilizes the protein and that the C terminus of Tah1 binds to the Pih1 C terminus to form a stable complex. Here, we analyzed the secondary structure of the Pih1 C terminus and identified two intrinsically disordered regions and five hydrophobic clusters. Site-directed mutagenesis indicated that one predicted intrinsically disordered region IDR2 is involved in Tah1 binding, and that the C terminus of Pih1 contains multiple destabilization or degron elements. Additionally, the Pih1 N-terminal domain, Pih11–230, was found to be able to complement the physiological role of full-length Pih1 at 37 °C. Pih11–230 as well as a shorter Pih1 N-terminal fragment Pih11–195 is able to bind Rvb1/Rvb2 heterocomplex. However, the sequence between the two disordered regions in Pih1 significantly enhances the Pih1 N-terminal domain binding to Rvb1/Rvb2. Based on these data, a model of protein-protein interactions within the R2TP complex is proposed. PMID:23139418

  14. Induction of long interspersed nucleotide element-1 (L1) retrotransposition by 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct

    PubMed Central

    Okudaira, Noriyuki; Iijima, Kenta; Koyama, Takayoshi; Minemoto, Yuzuru; Kano, Shigeyuki; Mimori, Akio; Ishizaka, Yukihito

    2010-01-01

    Long interspersed nucleotide element-1 (L1) is a retroelement comprising about 17% of the human genome, of which 80–100 copies are competent as mobile elements (retrotransposition: L1-RTP). Although the genetic structures modified during L1-RTP have been clarified, little is known about the cellular signaling cascades involved. Herein we found that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct postulated as a candidate physiological ligand of the aryl hydrocarbon receptor (AhR), induces L1-RTP. Notably, RNA-interference experiments combined with back-transfection of siRNA-resistant cDNAs revealed that the induction of L1-RTP by FICZ is dependent on AhR nuclear translocator-1 (ARNT1), a binding partner of AhR, and the activation of cAMP-responsive element-binding protein. However, our extensive analyses suggested that AhR is not required for L1-RTP. FICZ stimulated the interaction of the L1-encoded open reading frame-1 (ORF1) and ARNT1, and recruited ORF1 to chromatin in a manner dependent on the activation of mitogen-activated protein kinase. Along with our additional observations that the cellular cascades for FICZ-induced L1-RTP were different from those of L1-RTP triggered by DNA damage, we propose that the presence of the cellular machinery of ARNT1 mediates L1-RTP. A possible role of ARNT1-mediated L1-RTP in the adaptation of living organisms to environmental changes is discussed. PMID:20852066

  15. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  16. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-10-29

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/cholesterol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibited lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles.

  17. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet

    PubMed Central

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-01-01

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/choleserol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibtied lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles. PMID:26510459

  18. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses.

    PubMed

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R; Zhang, Hao; Schwarz, Toni; Leung, Daisy W; Basler, Christopher F; Gross, Michael L; Amarasinghe, Gaya K

    2016-08-28

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Britney; Li, Jing; Adhikari, Jagat

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulatemore » nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections.« less

  20. Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects.

    PubMed

    Dwivedi, Yogesh; Rao, Jagadeesh Sridhara; Rizavi, Hooriyah S; Kotowski, Jacek; Conley, Robert R; Roberts, Rosalinda C; Tamminga, Carol A; Pandey, Ghanshyam N

    2003-03-01

    Cyclic adenosine monophosphate response element binding protein (CREB) is a transcription factor that, on phosphorylation by protein kinases, is activated, and in response, regulates the transcription of many neuronally expressed genes. In view of the recent observations that catalytic properties and/or expression of many kinases that mediate their physiological responses through the activation of CREB are altered in the postmortem brain of subjects who commit suicide (hereafter referred to as suicide subjects), we examined the status of CREB in suicidal behavior. These studies were performed in Brodmann area (BA) 9 and hippocampus obtained from 26 suicide subjects and 20 nonpsychiatric healthy control subjects. Messenger RNA levels of CREB and neuron-specific enolase were determined in total RNA by means of quantitative reverse transcriptase-polymerase chain reaction. Protein levels and the functional characteristics of CREB were determined in nuclear fractions by means of Western blot and cyclic adenosine monophosphate response element (CRE)-DNA binding activity, respectively. In the same nuclear fraction, we determined the catalytic activity of cyclic adenosine monophosphate-stimulated protein kinase A by means of enzymatic assay. We observed a significant reduction in messenger RNA and protein levels of CREB, CRE-DNA binding activity, and basal and cyclic adenosine monophosphate-stimulated protein kinase A activity in BA 9 and hippocampus of suicide subjects, without any change in messenger RNA levels of neuron-specific enolase in BA 9. Except for protein kinase A activity, changes in CREB expression and CRE-DNA binding activity were present in all suicide subjects, irrespective of diagnosis. These changes were unrelated to postmortem intervals, age, sex, or antidepressant treatment. Given the significance of CREB in mediating various physiological functions through gene transcription, our results of decreased expression and functional characteristics of CREB in postmortem brain of suicide subjects suggest that CREB may play an important role in suicidal behavior.

  1. The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing

    PubMed Central

    Zhang, Cui-Jun; Hou, Xiao-Mei; Tan, Lian-Mei; Shao, Chang-Rong; Huang, Huan-Wei; Li, Yong-Qiang; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian

    2016-01-01

    Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thaliana. BRAT1 interacts with an ATPase domain-containing protein, BRP1 (BRAT1 Partner 1), and both prevent transcriptional silencing at methylated genomic regions. Although BRAT1 mediates DNA demethylation at a small set of loci targeted by the 5-methylcytosine DNA glycosylase ROS1, the involvement of BRAT1 in anti-silencing is largely independent of DNA demethylation. We also demonstrate that the bromodomain of BRAT1 binds to acetylated histone, which may facilitate the prevention of transcriptional silencing. Thus, BRAT1 represents a potential link between histone acetylation and transcriptional anti-silencing at methylated genomic regions, which may be conserved in eukaryotes. PMID:27273316

  2. GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes.

    PubMed

    Pélissier, Hélène C; Peters, Winfried S; Collier, Ray; van Bel, Aart J E; Knoblauch, Michael

    2008-11-01

    Forisomes are Ca(2+)-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as 'FOR' proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca(2+) and chelators by contraction and expansion, respectively, and did not lose fluorescence in the process. Wild-type forisomes showed no affinity for free GFP in vitro. The three proteins shared numerous conserved motifs between themselves and with hypothetical proteins derived from the genomes of M. truncatula, Vitis vinifera and Arabidopsis thaliana. However, they showed neither significant similarities to proteins of known function nor canonical metal-binding motifs. We conclude that 'FOR'-like proteins are components of forisomes that are encoded by a well-defined gene family with relatives in taxa that lack forisomes. Since the mnemonic FOR is already registered and in use for unrelated genes, we suggest the acronym SEO (sieve element occlusion) for this family. The absence of binding sites for divalent cations suggests that the Ca(2+) binding responsible for forisome contraction is achieved either by as yet unidentified additional proteins, or by SEO proteins through a novel, uncharacterized mechanism.

  3. GFP Tagging of Sieve Element Occlusion (SEO) Proteins Results in Green Fluorescent Forisomes

    PubMed Central

    Pélissier, Hélène C.; Peters, Winfried S.; Collier, Ray; van Bel, Aart J. E.; Knoblauch, Michael

    2008-01-01

    Forisomes are Ca2+-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as ‘FOR’ proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca2+ and chelators by contraction and expansion, respectively, and did not lose fluorescence in the process. Wild-type forisomes showed no affinity for free GFP in vitro. The three proteins shared numerous conserved motifs between themselves and with hypothetical proteins derived from the genomes of M. truncatula, Vitis vinifera and Arabidopsis thaliana. However, they showed neither significant similarities to proteins of known function nor canonical metal-binding motifs. We conclude that ‘FOR’-like proteins are components of forisomes that are encoded by a well-defined gene family with relatives in taxa that lack forisomes. Since the mnemonic FOR is already registered and in use for unrelated genes, we suggest the acronym SEO (sieve element occlusion) for this family. The absence of binding sites for divalent cations suggests that the Ca2+ binding responsible for forisome contraction is achieved either by as yet unidentified additional proteins, or by SEO proteins through a novel, uncharacterized mechanism. PMID:18784195

  4. Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding.

    PubMed

    Shkolnik, Doron; Bar-Zvi, Dudy

    2008-05-01

    The manipulation of transacting factors is commonly used to achieve a wide change in the expression of a large number of genes in transgenic plants as a result of a change in the expression of a single gene product. This is mostly achieved by the overexpression of transactivator or repressor proteins. In this study, it is demonstrated that the overexpression of an exogenous DNA-binding protein can be used to compete with the expression of an endogenous transcription factor sharing the same DNA-binding sequence. Arabidopsis was transformed with cDNA encoding tomato abscisic acid stress ripening 1 (ASR1), a sequence-specific DNA protein that has no orthologues in the Arabidopsis genome. ASR1-overexpressing (ASR1-OE) plants display an abscisic acid-insensitive 4 (abi4) phenotype: seed germination is not sensitive to inhibition by abscisic acid (ABA), glucose, NaCl and paclobutrazol. ASR1 binds coupling element 1 (CE1), a cis-acting element bound by the ABI4 transcription factor, located in the ABI4-regulated promoters, including that of the ABI4 gene. Chromatin immunoprecipitation demonstrates that ASR1 is bound in vivo to the promoter of the ABI4 gene in ASR1-OE plants, but not to promoters of genes known to be regulated by the transcription factors ABI3 or ABI5. Real-time polymerase chain reaction (PCR) analysis confirmed that the expression of ABI4 and ABI4-regulated genes is markedly reduced in ASR1-OE plants. Therefore, it is concluded that the abi4 phenotype of ASR1-OE plants is the result of competition between the foreign ASR1 and the endogenous ABI4 on specific promoter DNA sequences. The biotechnological advantage of using this approach in crop plants from the Brassicaceae family to reduce the transactivation activity of ABI4 is discussed.

  5. Thyroid hormone and COUP-TF1 regulate kallikrein-binding protein (KBP) gene expression.

    PubMed

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen; Brent, Gregory A

    2011-03-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T(3) and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5' flanking region (-53 to -29) and nTRE2, located in the first intron (104-132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T(3). COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T(3) repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T(3). Nuclear corepressor knockdown resulted in loss of T(3) repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T(3) induction of positive thyroid hormone response elements, reverses T(3) repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T(3) and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T(3).

  6. Thyroid Hormone and COUP-TF1 Regulate Kallikrein-Binding Protein (KBP) Gene Expression

    PubMed Central

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen

    2011-01-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T3 and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5′ flanking region (−53 to −29) and nTRE2, located in the first intron (104–132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T3. COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T3 repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T3. Nuclear corepressor knockdown resulted in loss of T3 repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T3 induction of positive thyroid hormone response elements, reverses T3 repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T3 and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T3. PMID:21266512

  7. Zinc Finger Independent Genome-Wide Binding of Sp2 Potentiates Recruitment of Histone-Fold Protein Nf-y Distinguishing It from Sp1 and Sp3

    PubMed Central

    Finkernagel, Florian; Stiewe, Thorsten; Nist, Andrea; Suske, Guntram

    2015-01-01

    Transcription factors are grouped into families based on sequence similarity within functional domains, particularly DNA-binding domains. The Specificity proteins Sp1, Sp2 and Sp3 are paradigmatic of closely related transcription factors. They share amino-terminal glutamine-rich regions and a conserved carboxy-terminal zinc finger domain that can bind to GC rich motifs in vitro. All three Sp proteins are ubiquitously expressed; yet they carry out unique functions in vivo raising the question of how specificity is achieved. Crucially, it is unknown whether they bind to distinct genomic sites and, if so, how binding site selection is accomplished. In this study, we have examined the genomic binding patterns of Sp1, Sp2 and Sp3 in mouse embryonic fibroblasts by ChIP-seq. Sp1 and Sp3 essentially occupy the same promoters and localize to GC boxes. The genomic binding pattern of Sp2 is different; Sp2 primarily localizes at CCAAT motifs. Consistently, re-expression of Sp2 and Sp3 mutants in corresponding knockout MEFs revealed strikingly different modes of genomic binding site selection. Most significantly, while the zinc fingers dictate genomic binding of Sp3, they are completely dispensable for binding of Sp2. Instead, the glutamine-rich amino-terminal region is sufficient for recruitment of Sp2 to its target promoters in vivo. We have identified the trimeric histone-fold CCAAT box binding transcription factor Nf-y as the major partner for Sp2-chromatin interaction. Nf-y is critical for recruitment of Sp2 to co-occupied regulatory elements. Equally, Sp2 potentiates binding of Nf-y to shared sites indicating the existence of an extensive Sp2-Nf-y interaction network. Our results unveil strikingly different recruitment mechanisms of Sp1/Sp2/Sp3 transcription factor members uncovering an unexpected layer of complexity in their binding to chromatin in vivo. PMID:25793500

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selezneva, Anna I.; Cavigiolio, Giorgio; Theil, Elizabeth C.

    Iron regulatory protein 1 (IRP1) is a bifunctional protein with activity as an RNA-binding protein or as a cytoplasmic aconitase. Interconversion of IRP1 between these mutually exclusive states is central to cellular iron regulation and is accomplished through iron-responsive assembly and disassembly of a [4Fe-4S] cluster. When in its apo form, IRP1 binds to iron responsive elements (IREs) found in mRNAs encoding proteins of iron storage and transport and either prevents translation or degradation of the bound mRNA. Excess cellular iron stimulates the assembly of a [4Fe-4S] cluster in IRP1, inhibiting its IRE-binding ability and converting it to an aconitase.more » The three-dimensional structure of IRP1 in its different active forms will provide details of the interconversion process and clarify the selective recognition of mRNA, Fe-S sites and catalytic activity. To this end, the apo form of IRP1 bound to a ferritin IRE was crystallized. Crystals belong to the monoclinic space group P21, with unit-cell parameters a = 109.6, b = 80.9, c = 142.9 {angstrom}, = 92.0{sup o}. Native data sets have been collected from several crystals with resolution extending to 2.8 {angstrom} and the structure has been solved by molecular replacement.« less

  9. 24-Methylenecycloartanyl ferulate, a major compound of γ-oryzanol, promotes parvin-beta expression through an interaction with peroxisome proliferator-activated receptor-gamma 2 in human breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Heon Woong; Lim, Eun Joung; Jang, Hwan Hee

    2015-12-25

    Parvin-β is an adaptor protein that binds to integrin-linked kinase (ILK) and is significantly downregulated in breast tumors and breast cancer cell lines. We treated the breast cancer cell line MCF7 with 24-methylenecycloartanyl ferulate (24-MCF), a γ-oryzanol compound. We observed upregulation of parvin-β (GenBank Accession No. (AF237769)) and peroxisome proliferator-activated receptor (PPAR)-γ2 (GenBank Accession No. (NM-015869)). Among γ-oryzanol compounds, only treatment with 24-MCF led to the formation of reverse transcription-PCR products of parvin-β (650 and 500 bp) and PPAR-γ2 (580 bp) in MCF7 cells, but not in T47D, SK-BR-3, or MDA-MB-231 cells. 24-MCF treatment increased the mRNA and protein levels of parvin-β inmore » MCF7 cells in a dose-dependent manner. We hypothesized that there is a correlation between parvin-β expression and induction of PPAR-γ2. This hypothesis was investigated by using a promoter-reporter assay, chromatin immunoprecipitation, and an electrophoretic mobility shift assay. 24-MCF treatment induced binding of PPAR-γ2 to a peroxisome proliferator response element-like cis-element (ACTAGGACAAAGGACA) in the parvin-β promoter in MCF7 cells in a dose-dependent manner. 24-MCF treatment significantly decreased anchorage-independent growth and inhibited cell movement in comparison to control treatment with dimethyl sulfoxide. 24-MCF treatment reduced the levels of GTP-bound Rac1 and Cdc42. Evaluation of Akt1 inhibition by 24-MCF revealed that the half maximal effective concentration was 33.3 μM. Docking evaluations revealed that 24-MCF binds to the ATP-binding site of Akt1(PDB ID: (3OCB)) and the compound binding energy is -8.870 kcal/mol. Taken together, our results indicate that 24-MCF treatment increases parvin-β expression, which may inhibit ILK downstream signaling. - Highlights: • Treatment with 24-MCF increases gene expression of parvin-β and PPAR-ϒ2 in MCF7 cells. • PPAR-ϒ2 interacts with the parvin-β gene via its peroxisome proliferator response element-like cis-element. • 24-MCF treatment inhibits anchorage-dependent growth of MCF7 cells. • 24-MCF treatment inhibits MCF7 cell migration and Rac1 and Cdc42 activation. • 24-MCF may be a new ATP-competitive Akt1 inhibitor that binds to the ATP-binding site of Akt1.« less

  10. Endoplasmic Reticulum-Associated Degradation Factor ERLIN2: Oncogenic Roles and Molecular Targeting of Breast Cancer

    DTIC Science & Technology

    2013-06-01

    Targeting of Breast Cancer 5a. CONTRACT NUMBER W81XWH-10-1-0152 5b. GRANT NUMBER W81XWH-10-1-0152 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Zeng... Element -Binding Protein 1c (SREBP1c), the key lipogenic trans-activator; (4) ERLIN2 regulates activation of SREBP1c by interacting with Insulin...the major samples are gene amplified and/or over-expressed (pɘ.05). This new data further supports the findings that ERLIN2 plays an important

  11. STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1.

    PubMed

    Nietzsche, Madlen; Guerra, Tiziana; Alseekh, Saleh; Wiermer, Marcel; Sonnewald, Sophia; Fernie, Alisdair R; Börnke, Frederik

    2018-02-01

    Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic α-subunits KIN10 and KIN11 of the Arabidopsis ( Arabidopsis thaliana ) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity. © 2018 American Society of Plant Biologists. All Rights Reserved.

  12. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    PubMed

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-12-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We demonstrated that CREB and ATF-47 are identical and that CREB and ATF-43 form protein-protein complexes. We also found that the cis requirements for stable DNA binding by ATF-43 and CREB are different. Using antibodies to ATF-43 we have identified a group of polypeptides (ATF-43) in the size range from 40 to 43 kDa. ATF-43 polypeptides are related by their reactivity with anti-ATF-43, DNA-binding specificity, complex formation with CREB, heat stability, and phosphorylation by protein kinase A. Certain cell types vary in their ATF-43 complement, suggesting that CREB activity is modulated in a cell-type-specific manner through interaction with ATF-43. ATF-43 polypeptides do not appear simply to correspond to the gene products of the ATF multigene family, suggesting that the size of the ATF family at the protein level is even larger than predicted from cDNA-cloning studies.

  13. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantlymore » reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.« less

  14. Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding.

    PubMed

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R; Stevens, Raymond C

    2010-04-16

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-A X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent. Copyright (c) 2010. Published by Elsevier Ltd.

  15. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  16. Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.

    PubMed

    Bubenik, Jodi L; Miniard, Angela C; Driscoll, Donna M

    2014-01-01

    Selenium, a micronutrient, is primarily incorporated into human physiology as selenocysteine (Sec). The 25 Sec-containing proteins in humans are known as selenoproteins. Their synthesis depends on the translational recoding of the UGA stop codon to allow Sec insertion. This requires a stem-loop structure in the 3' untranslated region of eukaryotic mRNAs known as the Selenocysteine Insertion Sequence (SECIS). The SECIS is recognized by SECIS-binding protein 2 (SBP2) and this RNA:protein interaction is essential for UGA recoding to occur. Genetic mutations cause SBP2 deficiency in humans, resulting in a broad set of symptoms due to differential effects on individual selenoproteins. Progress on understanding the different phenotypes requires developing robust tools to investigate SBP2 structure and function. In this study we demonstrate that SBP2 protein produced by in vitro translation discriminates among SECIS elements in a competitive UGA recoding assay and has a much higher specific activity than bacterially expressed protein. We also show that a purified recombinant protein encompassing amino acids 517-777 of SBP2 binds to SECIS elements with high affinity and selectivity. The affinity of the SBP2:SECIS interaction correlated with the ability of a SECIS to compete for UGA recoding activity in vitro. The identification of a 250 amino acid sequence that mediates specific, selective SECIS-binding will facilitate future structural studies of the SBP2:SECIS complex. Finally, we identify an evolutionarily conserved core cysteine signature in SBP2 sequences from the vertebrate lineage. Mutation of multiple, but not single, cysteines impaired SECIS-binding but did not affect protein localization in cells.

  17. β-Adrenergic Receptor Stimulated Ncx1 Upregulation is Mediated via a CaMKII/AP-1 Signaling Pathway in Adult Cardiomyocytes

    PubMed Central

    Mani, Santhosh K.; Egan, Erin A.; Addy, Benjamin K.; Grimm, Michael; Kasiganesan, Harinath; Thiyagarajan, Thirumagal; Renaud, Ludivine; Brown, Joan Heller; Kern, Christine B.; Menick, Donald R.

    2013-01-01

    The Na+-Ca2+ exchanger gene (Ncx1) is upregulated in hypertrophy and is often found elevated in end-stage heart failure. Studies have shown that the change in its expression contributes to contractile dysfunction. β-adrenergic receptor (β-AR) signaling plays an important role in the regulation of calcium homeostasis in the cardiomyocyte but chronic activation in periods of cardiac stress contribute to heart failure by mechanisms which include Ncx1 upregulation. Here, using a Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKIIδc) null mouse, we demonstrate that β-AR-stimulated Ncx1 upregulation is dependent on CaMKII. β-AR-stimulated Ncx1 expression is mediated by activator protein 1 (AP-1) factors and is independent of cAMP-response element-binding protein (CREB) activation. The MAP kinases (ERK1/2, JNK and p38) are not required for AP-1 factor activation. Chromatin immunoprecipitation demonstrates that β-AR stimulation activates the ordered recruitment of JunB homodimers which then are replaced by c-Jun homodimers binding to the proximal AP-1 elements of the endogenous Ncx1 promoter. In conclusion, this work has provided insight into the intracellular signaling pathways and transcription factors regulating Ncx1 gene expression in a chronically β-AR-stimulated heart. PMID:19945464

  18. STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK11[OPEN

    PubMed Central

    Nietzsche, Madlen; Guerra, Tiziana; Fernie, Alisdair R.

    2018-01-01

    Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic α-subunits KIN10 and KIN11 of the Arabidopsis (Arabidopsis thaliana) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity. PMID:29192025

  19. Highly affine and selective aptamers against cholera toxin as capture elements in magnetic bead-based sandwich ELAA.

    PubMed

    Frohnmeyer, Esther; Frisch, Farina; Falke, Sven; Betzel, Christian; Fischer, Markus

    2018-03-10

    Aptamers are single-stranded DNA or RNA oligonucleotides, which have been emerging as recognition elements in disease diagnostics and food control, including the detection of bacterial toxins. In this study, we employed the semi-automated just in time-selection to identify aptamers that bind to cholera toxin (CT) with high affinity and specificity. CT is the main virulence factor of Vibrio cholerae and the causative agent of the eponymous disease. For the selected aptamers, dissociation constants in the low nanomolar range (23-56 nM) were determined by fluorescence-based affinity chromatography and cross-reactivity against related proteins was evaluated by direct enzyme-linked aptamer assay (ELAA). Aptamer CT916 has a dissociation constant of 48.5 ± 0.5 nM and shows negligible binding to Shiga-like toxin 1B, protein A and BSA. This aptamer was chosen to develop a sandwich ELAA for the detection of CT from binding buffer and local tap water. Amine-C6- or biotin-modified CT916 was coupled to magnetic beads to serve as the capture element. Using an anti-CT polyclonal antibody as the reporter, detection limits of 2.1 ng/ml in buffer and 2.4 ng/ml in tap water, with a wide log-linear dynamic range from 1 ng/ml to 1000 ng/ml and 500 ng/ml, respectively, were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Role of nitric oxide in cellular iron metabolism.

    PubMed

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  1. PURA, the gene encoding Pur-alpha, member of an ancient nucleic acid-binding protein family with mammalian neurological functions.

    PubMed

    Daniel, Dianne C; Johnson, Edward M

    2018-02-15

    The PURA gene encodes Pur-alpha, a 322 amino acid protein with repeated nucleic acid binding domains that are highly conserved from bacteria through humans. PUR genes with a single copy of this domain have been detected so far in spirochetes and bacteroides. Lower eukaryotes possess one copy of the PUR gene, whereas chordates possess 1 to 4 PUR family members. Human PUR genes encode Pur-alpha (Pura), Pur-beta (Purb) and two forms of Pur-gamma (Purg). Pur-alpha is a protein that binds specific DNA and RNA sequence elements. Human PURA, located at chromosome band 5q31, is under complex control of three promoters. The entire protein coding sequence of PURA is contiguous within a single exon. Several studies have found that overexpression or microinjection of Pura inhibits anchorage-independent growth of oncogenically transformed cells and blocks proliferation at either G1-S or G2-M checkpoints. Effects on the cell cycle may be mediated by interaction of Pura with cellular proteins including Cyclin/Cdk complexes and the Rb tumor suppressor protein. PURA knockout mice die shortly after birth with effects on brain and hematopoietic development. In humans environmentally induced heterozygous deletions of PURA have been implicated in forms of myelodysplastic syndrome and progression to acute myelogenous leukemia. Pura plays a role in AIDS through association with the HIV-1 protein, Tat. In the brain Tat and Pura association in glial cells activates transcription and replication of JC polyomavirus, the agent causing the demyelination disease, progressive multifocal leukoencephalopathy. Tat and Pura also act to stimulate replication of the HIV-1 RNA genome. In neurons Pura accompanies mRNA transcripts to sites of translation in dendrites. Microdeletions in the PURA locus have been implicated in several neurological disorders. De novo PURA mutations have been related to a spectrum of phenotypes indicating a potential PURA syndrome. The nucleic acid, G-rich Pura binding element is amplified as expanded polynucleotide repeats in several brain diseases including fragile X syndrome and a familial form of amyotrophic lateral sclerosis/fronto-temporal dementia. Throughout evolution the Pura protein plays a critical role in survival, based on conservation of its nucleic acid binding properties. These Pura properties have been adapted in higher organisms to the as yet unfathomable development of the human brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Two phenylalanines in the C-terminus of Epstein-Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.-W.; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520; Raghavan, Vineetha

    The Rta (R transactivator) protein plays an essential role in the Epstein-Barr viral (EBV) lytic cascade. Rta activates viral gene expression by several mechanisms including direct and indirect binding to target viral promoters, synergy with EBV ZEBRA protein, and stimulation of cellular signaling pathways. We previously found that Rta proteins with C-terminal truncations of 30 aa were markedly enhanced in their capacity to bind DNA (Chen, L.W., Chang, P.J., Delecluse, H.J., and Miller, G., (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J. Virol. 79(15), 9635-9650.). Here we show that two phenylalaninesmore » (F600 and F605) in the C-terminus of Rta play a crucial role in mediating this DNA binding inhibitory function. Amino acids 555 to 605 of Rta constitute a functional DNA binding inhibitory sequence (DBIS) that markedly decreased DNA binding when transferred to a minimal DNA binding domain of Rta (aa 1-350). Alanine substitution mutants, F600A/F605A, abolished activity of the DBIS. F600 and F605 are located in the transcriptional activation domain of Rta. Alanine substitutions, F600A/F605A, decreased transcriptional activation by Rta protein, whereas aromatic substitutions, such as F600Y/F605Y or F600W/F605W, partially restored transcriptional activation. Full-length Rta protein with F600A/F605A mutations were enhanced in DNA binding compared to wild-type, whereas Rta proteins with F600Y/F605Y or F600W/F605W substitutions were, like wild-type Rta, relatively poor DNA binders. GAL4 (1-147)/Rta (416-605) fusion proteins with F600A/F605A mutations were diminished in transcriptional activation, relative to GAL4/Rta chimeras without such mutations. The results suggest that, in the context of a larger DBIS, F600 and F605 play a role in the reciprocal regulation of DNA binding and transcriptional activation by Rta. Regulation of DNA binding by Rta is likely to be important in controlling its different modes of action.« less

  3. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.

    PubMed

    Haroon, Mohamed Mohamed; Dar, Ghulam Hassan; Jeyalakshmi, Durga; Venkatraman, Uthra; Saba, Kamal; Rangaraj, Nandini; Patel, Anant Bahadur; Gopal, Vijaya

    2016-04-28

    RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑβPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑβPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus

    PubMed Central

    Ueki, Toshiyuki; Inouye, Sumiko

    2003-01-01

    Myxococcus xanthus exhibits social behavior and multicellular development. FruA is an essential transcription factor for fruiting body development in M. xanthus. In the present study, the upstream promoter region was found to be necessary for the induction of fruA expression during development. A cis-acting element required for the induction was identified and was located between nucleotides –154 and –107 with respect to the transcription initiation site. In addition, it was found that two binding sites exist within this element of the fruA promoter. By using DNA affinity column chromatography containing the cis-acting element, a fruA promoter-binding protein was purified. The purified protein was shown by N-terminal sequence analysis to be identical to MrpC, a protein identified previously by transposon insertion mutagenesis as an essential locus for fruiting body development [Sun, H. & Shi, W. (2001) J. Bacteriol. 183, 4786–4795]. Furthermore, fruA mRNA was not detectable in the mrpC::km strain, demonstrating that MrpC is essential for fruA expression. Moreover, mutational analysis of the binding sites for MrpC in the fruA promoter indicates that binding of MrpC activates transcription of fruA in vivo. This report provides evidence for a direct molecular interaction involved in temporally regulated gene expression in M. xanthus. PMID:12851461

  5. Assessing the potential of atomistic molecular dynamics simulations to probe reversible protein-protein recognition and binding

    PubMed Central

    Abriata, Luciano A.; Dal Peraro, Matteo

    2015-01-01

    Protein-protein recognition and binding are governed by diffusion, noncovalent forces and conformational flexibility, entangled in a way that only molecular dynamics simulations can dissect at high resolution. Here we exploited ubiquitin’s noncovalent dimerization equilibrium to assess the potential of atomistic simulations to reproduce reversible protein-protein binding, by running submicrosecond simulations of systems with multiple copies of the protein at millimolar concentrations. The simulations essentially fail because they lead to aggregates, yet they reproduce some specificity in the binding interfaces as observed in known covalent and noncovalent ubiquitin dimers. Following similar observations in literature we hint at electrostatics and water descriptions as the main liable force field elements, and propose that their optimization should consider observables relevant to multi-protein systems and unfolded proteins. Within limitations, analysis of binding events suggests salient features of protein-protein recognition and binding, to be retested with improved force fields. Among them, that specific configurations of relative direction and orientation seem to trigger fast binding of two molecules, even over 50 Å distances; that conformational selection can take place within surface-to-surface distances of 10 to 40 Å i.e. well before actual intermolecular contact; and that establishment of contacts between molecules further locks their conformations and relative orientations. PMID:26023027

  6. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guu, Tom S.Y.; Liu, Zheng; Ye, Qiaozhen

    Hepatitis E virus (HEV), a small, non-enveloped RNA virus in the family Hepeviridae, is associated with endemic and epidemic acute viral hepatitis in developing countries. Our 3.5-{angstrom} structure of a HEV-like particle (VLP) shows that each capsid protein contains 3 linear domains that form distinct structural elements: S, the continuous capsid; P1, 3-fold protrusions; and P2, 2-fold spikes. The S domain adopts a jelly-roll fold commonly observed in small RNA viruses. The P1 and P2 domains both adopt {beta}-barrel folds. Each domain possesses a potential polysaccharide-binding site that may function in cell-receptor binding. Sugar binding to P1 at the capsidmore » protein interface may lead to capsid disassembly and cell entry. Structural modeling indicates that native T = 3 capsid contains flat dimers, with less curvature than those of T = 1 VLP. Our findings significantly advance the understanding of HEV molecular biology and have application to the development of vaccines and antiviral medications.« less

  7. Mycophenolate mofetil increases adhesion capacity of tumor cells in vitro.

    PubMed

    Blaheta, Roman A; Bogossian, Harilaos; Beecken, Wolf-Dietrich; Jonas, Dietger; Hasenberg, Christoph; Makarevic, Jasmina; Ogbomo, Henry; Bechstein, Wolf O; Oppermann, Elsie; Leckel, Kerstin; Cinatl, Jindrich

    2003-12-27

    The immunosuppressive drug mycophenolate mofetil (MMF) reduces expression of the heterophilic binding elements intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and thereby prevents attachment of alloactivated leukocytes to donor endothelium. The authors speculated that MMF might further diminish receptors of the immunoglobulin superfamily which, however, act as homophilic binding elements. Because decrease of homophilic adhesion receptors correlates with tumor dissemination and metastasis, MMF could trigger development or recurrence of neoplastic tumors. The authors analyzed the influence of MMF on homotypic adhesion receptors and its consequence for tumor cell attachment to an endothelial cell monolayer. Neuroblastoma (NB) cells, which self-aggregate by means of the homophilic-binding element neural cell adhesion molecule (NCAM), were used. Effects of MMF on the 140- and 180-kDa NCAM isoforms were investigated quantitatively by flow cytometry, Western blot, and reverse-transcriptase (RT) polymerase chain reaction (PCR). The relevance of NCAM for tumor cell binding was proven by treating NB with NCAM antisense oligonucleotides. MMF profoundly increased the number of adherent NB cells, with a maximum effect at 0.1 microM, compared with controls. Decrease of NCAM on the cell surface was detected by flow cytometry. Western blot and RT-PCR demonstrated reduced protein and RNA levels of the 140- and 180-kDa isoforms. Treatment of NB cells with NCAM antisense oligonucleotides showed that reduced NCAM expression leads to enhanced tumor cell adhesion. MMF decreases NCAM receptors, which is associated with enhanced tumor cell invasiveness. The authors conclude that an MMF-based immunosuppressive regimen might increase the risk of tumor metastasis if this process is predominantly conveyed by means of homophilic adhesion proteins.

  8. Myostatin induces insulin resistance via Casitas B-lineage lymphoma b (Cblb)-mediated degradation of insulin receptor substrate 1 (IRS1) protein in response to high calorie diet intake.

    PubMed

    Bonala, Sabeera; Lokireddy, Sudarsanareddy; McFarlane, Craig; Patnam, Sreekanth; Sharma, Mridula; Kambadur, Ravi

    2014-03-14

    To date a plethora of evidence has clearly demonstrated that continued high calorie intake leads to insulin resistance and type-2 diabetes with or without obesity. However, the necessary signals that initiate insulin resistance during high calorie intake remain largely unknown. Our results here show that in response to a regimen of high fat or high glucose diets, Mstn levels were induced in muscle and liver of mice. High glucose- or fat-mediated induction of Mstn was controlled at the level of transcription, as highly conserved carbohydrate response and sterol-responsive (E-box) elements were present in the Mstn promoter and were revealed to be critical for ChREBP (carbohydrate-responsive element-binding protein) or SREBP1c (sterol regulatory element-binding protein 1c) regulation of Mstn expression. Further molecular analysis suggested that the increased Mstn levels (due to high glucose or fatty acid loading) resulted in increased expression of Cblb in a Smad3-dependent manner. Casitas B-lineage lymphoma b (Cblb) is an ubiquitin E3 ligase that has been shown to specifically degrade insulin receptor substrate 1 (IRS1) protein. Consistent with this, our results revealed that elevated Mstn levels specifically up-regulated Cblb, resulting in enhanced ubiquitin proteasome-mediated degradation of IRS1. In addition, over expression or knock down of Cblb had a major impact on IRS1 and pAkt levels in the presence or absence of insulin. Collectively, these observations strongly suggest that increased glucose levels and high fat diet, both, result in increased circulatory Mstn levels. The increased Mstn in turn is a potent inducer of insulin resistance by degrading IRS1 protein via the E3 ligase, Cblb, in a Smad3-dependent manner.

  9. Inhibition of the binding of MSG-intermolt-specific complex, MIC, to the sericin-1 gene promoter and sericin-1 gene expression by POU-M1/SGF-3.

    PubMed

    Kimoto, Mai; Kitagawa, Tsuyuki; Kobayashi, Isao; Nakata, Tomohiro; Kuroiwa, Asato; Takiya, Shigeharu

    2012-11-01

    The sericin-1 gene encoding a glue protein is expressed in the middle silk gland (MSG) of the silkworm, Bombyx mori. A member of the class III POU domain transcription factors, POU-M1, was cloned as the factor bound to the SC site of the sericin-1 promoter and has been proposed to be a positive transcription factor. In this study, we analyzed the expression pattern of the POU-M1 gene in fourth and fifth instars in comparison with the pattern of the sericin-1 gene. The POU-M1 gene was expressed strongly in the region anterior to the sericin-1-expressing portion of the silk gland at both feeding stages. As the sericin-1-expressing region expands from the posterior to middle portions of the MSG in the fifth instar, the POU-M1-expressing region retreated from the middle to anterior portion. Introduction of the expression vector of POU-M1 into the silk glands by gene gun technology repressed promoter activity of the sericin-1 gene, suggesting that POU-M1 regulates the sericin-1 gene negatively. An in vitro binding assay showed that POU-M1 bound not only to the SC site but also to other promoter elements newly detected in vivo. Another spatiotemporal specific factor MIC binds to these elements, and POU-M1 competed with MIC to bind at the -70 site essential for promoter activity. These results suggest that POU-M1 is involved in restricting the anterior boundary of the sericin-1-expressing region in the silk gland by inhibiting the binding of the transcriptional activator to the promoter elements.

  10. Transcription factor MBF-I interacts with metal regulatory elements of higher eucaryotic metallothionein genes.

    PubMed Central

    Imbert, J; Zafarullah, M; Culotta, V C; Gedamu, L; Hamer, D

    1989-01-01

    Metallothionein (MT) gene promoters in higher eucaryotes contain multiple metal regulatory elements (MREs) that are responsible for the metal induction of MT gene transcription. We identified and purified to near homogeneity a 74-kilodalton mouse nuclear protein that specifically binds to certain MRE sequences. This protein, MBF-I, was purified employing as an affinity reagent a trout MRE that is shown to be functional in mouse cells but which lacks the G+C-rich and SP1-like sequences found in many mammalian MT gene promoters. Using point-mutated MREs, we showed that there is a strong correlation between DNA binding in vitro and MT gene regulation in vivo, suggesting a direct role of MBF-I in MT gene transcription. We also showed that MBF-I can induce MT gene transcription in vitro in a mouse extract and that this stimulation requires zinc. Images PMID:2586522

  11. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE).

    PubMed Central

    Martínez-Pastor, M T; Marchler, G; Schüller, C; Marchler-Bauer, A; Ruis, H; Estruch, F

    1996-01-01

    The MSN2 and MSN4 genes encode homologous and functionally redundant Cys2His2 zinc finger proteins. A disruption of both MSN2 and MSN4 genes results in a higher sensitivity to different stresses, including carbon source starvation, heat shock and severe osmotic and oxidative stresses. We show that MSN2 and MSN4 are required for activation of several yeast genes such as CTT1, DDR2 and HSP12, whose induction is mediated through stress-response elements (STREs). Msn2p and Msn4p are important factors for the stress-induced activation of STRE dependent promoters and bind specifically to STRE-containing oligonucleotides. Our results suggest that MSN2 and MSN4 encode a DNA-binding component of the stress responsive system and it is likely that they act as positive transcription factors. Images PMID:8641288

  12. Extensions of PDZ domains as important structural and functional elements.

    PubMed

    Wang, Conan K; Pan, Lifeng; Chen, Jia; Zhang, Mingjie

    2010-08-01

    'Divide and conquer' has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions 'extensions'. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results ( http://bcz102.ust.hk/pdzex/ ). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.

  13. A solid-phase assay for studying direct binding of progranulin to TNFR and progranulin antagonism of TNF/TNFR interactions.

    PubMed

    Tian, Qingyun; Zhao, Shuai; Liu, Chuanju

    2014-01-01

    The discovery that TNF receptors (TNFR) serve as the binding receptors for progranulin (PGRN) reveals the significant role of PGRN in inflammatory and autoimmune diseases, including inflammatory arthritis. Herein we describe a simple, antibody-free analytical assay, i.e., a biotin-based solid-phase binding assay, to examine the direct interaction of PGRN/TNFR and the PGRN inhibition of TNF/TNFR interactions. Briefly, a 96-well high-binding microplate is first coated with the first protein (protein A), and after blocking, the coated microplate is incubated with the biotin-labeled second protein (protein B) in the absence or presence of the third protein (protein C). Finally the streptavidin conjugated with a detecting enzyme is added, followed by a signal measurement. Also discussed in this chapter are the advantages of the strategy, key elements to obtain reliable results, and discrepancies among various PGRN proteins in view of the binding activity with TNFR.

  14. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors.

    PubMed

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-11-28

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp -308 to -188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp -65 to -56) and GC-box 2 (bp -18 to -9), the latter of which is also bound by FBI-1. We found that FRE3 (bp -244 to -236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression.

  15. Chromatin insulator elements: establishing barriers to set heterochromatin boundaries.

    PubMed

    Barkess, Gráinne; West, Adam G

    2012-02-01

    Epigenomic profiling has revealed that substantial portions of genomes in higher eukaryotes are organized into extensive domains of transcriptionally repressive chromatin. The boundaries of repressive chromatin domains can be fixed by DNA elements known as barrier insulators, to both shield neighboring gene expression and to maintain the integrity of chromosomal silencing. Here, we examine the current progress in identifying vertebrate barrier elements and their binding factors. We overview the design of the reporter assays used to define enhancer-blocking and barrier insulators. We look at the mechanisms vertebrate barrier proteins, such as USF1 and VEZF1, employ to counteract Polycomb- and heterochromatin-associated repression. We also undertake a critical analysis of whether CTCF could also act as a barrier protein. There is good evidence that barrier elements in vertebrates can form repressive chromatin domain boundaries. Future studies will determine whether barriers are frequently used to define repressive domain boundaries in vertebrates.

  16. Effects on Polo-like Kinase 1 Polo-box Domain Binding Affinities of Peptides Incurred by Structural Variation at the Phosphoamino Acid Position

    PubMed Central

    Qian, Wenjian; Park, Jung-Eun; Liu, Fa; Lee, Kyung S.; Burke, Terrence R.

    2012-01-01

    Protein-protein interactions (PPIs) mediated by the polo-box domain (PBD) of polo-like kinase 1 (Plk1) serve important roles in cell proliferation. Critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pThr/pSer-residues in the binding ligands. However, there has been little examination of pThr/pSer mimetics within a PBD context. Our current paper compares the abilities of a variety of amino acid residues and derivatives to serve as pThr/pSer replacements by exploring the role of methyl functionality at the pThr β–position and by replacing the phosphoryl group by phosphonic acid, sulfonic acid and carboxylic acids. This work sheds new light on structure activity relationships for PBD recognition of phosphoamino acid mimetics. PMID:22743087

  17. Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes

    PubMed Central

    Jetha, Khushboo; Theißen, Günter; Melzer, Rainer

    2014-01-01

    The SEPALLATA (SEP) genes of Arabidopsis thaliana encode MADS-domain transcription factors that specify the identity of all floral organs. The four Arabidopsis SEP genes function in a largely yet not completely redundant manner. Here, we analysed interactions of the SEP proteins with DNA. All of the proteins were capable of forming tetrameric quartet-like complexes on DNA fragments carrying two sequence elements termed CArG-boxes. Distances between the CArG-boxes for strong cooperative DNA-binding were in the range of 4–6 helical turns. However, SEP1 also bound strongly to CArG-box pairs separated by smaller or larger distances, whereas SEP2 preferred large and SEP4 preferred small inter-site distances for binding. Cooperative binding of SEP3 was comparatively weak for most of the inter-site distances tested. All SEP proteins constituted floral quartet-like complexes together with the floral homeotic proteins APETALA3 (AP3) and PISTILLATA (PI) on the target genes AP3 and SEP3. Our results suggest an important part of an explanation for why the different SEP proteins have largely, but not completely redundant functions in determining floral organ identity: they may bind to largely overlapping, but not identical sets of target genes that differ in the arrangement and spacing of the CArG-boxes in their cis-regulatory regions. PMID:25183521

  18. Interolog interfaces in protein–protein docking

    PubMed Central

    Alsop, James D.

    2015-01-01

    ABSTRACT Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the binding interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot prediction highlights near‐native structures across a range of benchmark examples. Our approach explores various strategies for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of conservation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum number of hot spots in each binding partner. Finally, structure‐based models of orthologs were generated for comparison with sequence‐based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The 20 common examples between data sets show that more carefully curated interolog data yields better predictions, particularly in achieving top 1 hits. Proteins 2015; 83:1940–1946. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:25740680

  19. Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal

    PubMed Central

    Liu, Lan; Ouyang, Miao; Rao, Jaladanki N.; Zou, Tongtong; Xiao, Lan; Chung, Hee Kyoung; Wu, Jing; Donahue, James M.; Gorospe, Myriam; Wang, Jian-Ying

    2015-01-01

    The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth. PMID:25808495

  20. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    PubMed

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the cognate elements.

  1. Repression of Virus-Induced Interferon A Promoters by Homeodomain Transcription Factor Ptx1

    PubMed Central

    Lopez, Sébastien; Island, Marie-Laure; Drouin, Jacques; Bandu, Marie-Thérese; Christeff, Nicolas; Darracq, Nicole; Barbey, Régine; Doly, Janine; Thomas, Dominique; Navarro, Sébastien

    2000-01-01

    Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by substitutions in the proximal positive virus responsive element A (VRE-A) of their promoters and by the presence or absence of a distal negative regulatory element (DNRE). The functional feature of the DNRE is to specifically act by repression of VRE-A activity. With the use of the yeast one-hybrid system, we describe here the identification of a specific DNRE-binding protein, the pituitary homeobox 1 (Ptx1 or Pitx1). Ptx1 is detectable in different cell types that differentially express IFN-A genes, and the endogenous Ptx1 protein binds specifically to the DNRE. Upon virus induction, Ptx1 negatively regulates the transcription of DNRE-containing IFN-A promoters, and the C-terminal region, as well as the homeodomain of the Ptx1 protein, is required for this repression. After virus induction, the expression of the Ptx1 antisense RNA leads to a significant increase of endogenous IFN-A gene transcription and is able to modify the pattern of differential expression of individual IFN-A genes. These studies suggest that Ptx1 contributes to the differential transcriptional strength of the promoters of different IFN-A genes and that these genes may provide new targets for transcriptional regulation by a homeodomain transcription factor. PMID:11003649

  2. RNA–protein binding interface in the telomerase ribonucleoprotein

    PubMed Central

    Bley, Christopher J.; Qi, Xiaodong; Rand, Dustin P.; Borges, Chad R.; Nelson, Randall W.; Chen, Julian J.-L.

    2011-01-01

    Telomerase is a specialized reverse transcriptase containing an intrinsic telomerase RNA (TR) which provides the template for telomeric DNA synthesis. Distinct from conventional reverse transcriptases, telomerase has evolved a unique TR-binding domain (TRBD) in the catalytic telomerase reverse transcriptase (TERT) protein, integral for ribonucleoprotein assembly. Two structural elements in the vertebrate TR, the pseudoknot and CR4/5, bind TERT independently and are essential for telomerase enzymatic activity. However, the details of the TR–TERT interaction have remained elusive. In this study, we employed a photoaffinity cross-linking approach to map the CR4/5-TRBD RNA–protein binding interface by identifying RNA and protein residues in close proximity. Photoreactive 5-iodouridines were incorporated into the medaka CR4/5 RNA fragment and UV cross-linked to the medaka TRBD protein fragment. The cross-linking RNA residues were identified by alkaline partial hydrolysis and cross-linked protein residues were identified by mass spectrometry. Three CR4/5 RNA residues (U182, U187, and U205) were found cross-linking to TRBD amino acids Tyr503, Phe355, and Trp477, respectively. This CR4/5 binding pocket is distinct and separate from the previously proposed T pocket in the Tetrahymena TRBD. Based on homologous structural models, our cross-linking data position the essential loop L6.1 adjacent to the TERT C-terminal extension domain. We thus propose that stem-loop 6.1 facilitates proper TERT folding by interacting with both TRBD and C-terminal extension. Revealing the telomerase CR4/5-TRBD binding interface with single-residue resolution provides important insights into telomerase ribonucleoprotein architecture and the function of the essential CR4/5 domain. PMID:22123986

  3. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands.

    PubMed

    Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei

    2010-05-05

    Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  4. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows.

    PubMed

    Li, Xinwei; Li, Yu; Ding, Hongyan; Dong, Jihong; Zhang, Renhe; Huang, Dan; Lei, Lin; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2018-05-01

    Dairy cows with type II ketosis display hepatic fat accumulation and hyperinsulinemia, but the underlying mechanism is not completely clear. This study aimed to clarify the regulation of lipid metabolism by insulin in cow hepatocytes. In vitro, cow hepatocytes were treated with 0, 1, 10, or 100 nm insulin in the presence or absence of AICAR (an AMP-activated protein kinase alpha (AMPKα) activator). The results showed that insulin decreased AMPKα phosphorylation. This inactivation of AMPKα increased the gene and protein expression levels of carbohydrate responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c), which downregulated the expression of lipogenic genes, thereby decreasing lipid biosynthesis. Furthermore, AMPKα inactivation decreased the gene and protein expression levels of peroxisome proliferator-activated receptor-α (PPARα), which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation. In addition, insulin decreased the very low density lipoprotein (VLDL) assembly. Consequently, triglyceride content was significantly increased in insulin treated hepatocytes. Activation of AMPKα induced by AICAR could reverse the effect of insulin on PPARα, SREBP-1c, and ChREBP, thereby decreasing triglyceride content. These results indicate that insulin inhibits the AMPKα signaling pathway to increase lipid synthesis and decrease lipid oxidation and VLDL assembly in cow hepatocytes, thereby inducing TG accumulation. This mechanism could partly explain the causal relationship between hepatic fat accumulation and hyperinsulinemia in dairy cows with type II ketosis.

  5. Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression.

    PubMed

    Kondo, Ayano; Yamamoto, Shogo; Nakaki, Ryo; Shimamura, Teppei; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Yoshida, Tetsuo; Aburatani, Hiroyuki; Osawa, Tsuyoshi

    2017-02-28

    Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. The KRAS Promoter Responds to Myc-associated Zinc Finger and Poly(ADP-ribose) Polymerase 1 Proteins, Which Recognize a Critical Quadruplex-forming GA-element*

    PubMed Central

    Cogoi, Susanna; Paramasivam, Manikandan; Membrino, Alexandro; Yokoyama, Kazunari K.; Xodo, Luigi E.

    2010-01-01

    The murine KRAS promoter contains a G-rich nuclease hypersensitive element (GA-element) upstream of the transcription start site that is essential for transcription. Pulldown and chromatin immunoprecipitation assays demonstrate that this GA-element is bound by the Myc-associated zinc finger (MAZ) and poly(ADP-ribose) polymerase 1 (PARP-1) proteins. These proteins are crucial for transcription, because when they are knocked down by short hairpin RNA, transcription is down-regulated. This is also the case when the poly(ADP-ribosyl)ation activity of PARP-1 is inhibited by 3,4-dihydro-5-[4-(1-piperidinyl) butoxyl]-1(2H) isoquinolinone. We found that MAZ specifically binds to the duplex and quadruplex conformations of the GA-element, whereas PARP-1 shows specificity only for the G-quadruplex. On the basis of fluorescence resonance energy transfer melting and polymerase stop assays we saw that MAZ stabilizes the KRAS quadruplex. When the capacity of folding in the GA-element is abrogated by specific G → T or G → A point mutations, KRAS transcription is down-regulated. Conversely, guanidine-modified phthalocyanines, which specifically interact with and stabilize the KRAS G-quadruplex, push the promoter activity up to more than double. Collectively, our data support a transcription mechanism for murine KRAS that involves MAZ, PARP-1 and duplex-quadruplex conformational changes in the promoter GA-element. PMID:20457603

  7. Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein.

    PubMed

    Kelly, Brian N; Kyere, Sampson; Kinde, Isaac; Tang, Chun; Howard, Bruce R; Robinson, Howard; Sundquist, Wesley I; Summers, Michael F; Hill, Christopher P

    2007-10-19

    The CA domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CA N) and inhibit capsid assembly during viral maturation. We have determined the structure of the complex between CA N and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N'-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamonium group interacting with the side-chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main-chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly.

  8. An Exposed KID-Like Domain in Human T-Cell Lymphotropic Virus Type 1 Tax Is Responsible for the Recruitment of Coactivators CBP/p300

    PubMed Central

    Harrod, Robert; Tang, Yong; Nicot, Christophe; Lu, Hsieng S.; Vassilev, Alex; Nakatani, Yoshihiro; Giam, Chou-Zen

    1998-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) transcriptional activation is mediated by the viral transactivator, Tax, and three 21-bp repeats (Tax response element [TxRE]) located in the U3 region of the viral long terminal repeat (LTR). Each TxRE contains a core cyclic AMP response element (CRE) flanked by 5′ G-rich and 3′ C-rich sequences. The TxRE binds CREB (CRE-binding protein) and Tax to form a ternary complex and confers Tax-dependent transactivation. Recent data indicate that Tax functions as a specific link to connect CREB-binding protein (CBP)/p300 in a phosphorylation-independent manner to CREB/ATF-1 assembled on the viral 21-bp repeats. Glutathione S-transferase pull-down performed with Tax deletion mutants and peptide competition have localized the site in Tax critical for binding CBP/p300 to a highly protease-sensitive region around amino acid residues 81 to 95 (81QRTSKTLKVLTPPIT95) which lies between the domains previously proposed to be important for CREB binding and Tax subunit dimerization. Amino acid residues around the trypsin- and chymotrypsin-sensitive sites (88KVL90) of Tax bear resemblance to those in the kinase-inducible domain of CREB (129SRRPSYRKILNE140) surrounding Ser-133, which undergoes signal-induced phosphorylation to recruit CBP/p300. Site-directed mutagenesis of residues in this domain (R82A, K85A, K88A, and V89A) resulted in proteins which failed to transactivate from the HTLV-1 LTR in vivo. These mutants (K85A, K88A, and V89A) bind CREB with similar affinities as wild-type Tax, yet interaction with CBP/p300 is abrogated in various biochemical assays, indicating that the recruitment of CBP/p300 is crucial for Tax transactivation. A Tax mutant, M47, defective in the COOH-terminal transactivation domain, continued to interact with CBP/p300, suggesting that interactions with additional cellular factors are required for proper Tax function. PMID:9710589

  9. Transposable elements in TDP-43-mediated neurodegenerative disorders.

    PubMed

    Li, Wanhe; Jin, Ying; Prazak, Lisa; Hammell, Molly; Dubnau, Josh

    2012-01-01

    Elevated expression of specific transposable elements (TEs) has been observed in several neurodegenerative disorders. TEs also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein central to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Second, we find that association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases.

  10. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element.

    PubMed

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-07-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.

  11. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element

    PubMed Central

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-01-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5′-NNCCAC-3′ and 5′-GCGMGN′N′-3′ (M:A or C; N and N′ form Watson–Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences. PMID:23709277

  12. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.

    PubMed

    Stoyan, T; Gloeckner, G; Diekmann, S; Carbon, J

    2001-08-01

    The CBF1 (centromere binding factor 1) gene of Candida glabrata was cloned by functional complementation of the methionine biosynthesis defect of a Saccharomyces cerevisiae cbf1 deletion mutant. The C. glabrata-coded protein, CgCbf1, contains a basic-helix-loop-helix leucine zipper domain and has features similar to those of other budding yeast Cbf1 proteins. CgCbf1p binds in vitro to the centromere DNA element I (CDEI) sequence GTCACATG with high affinity (0.9 x 10(9) M(-1)). Bandshift experiments revealed a pattern of protein-DNA complexes on CgCEN DNA different from that known for S. cerevisiae. We examined the effect of altering the CDEI binding site on CEN plasmid segregation, using a newly developed colony-sectoring assay. Internal deletion of the CDEI binding site led only to a fivefold increase in rates of plasmid loss, indicating that direct binding of Cbf1p to the centromere DNA is not required for full function. Additional deletion of sequences to the left of CDEI, however, led to a 70-fold increase in plasmid loss rates. Deletion of the CBF1 gene proved to be lethal in C. glabrata. C. glabrata cells containing the CBF1 gene under the influence of a shutdown promoter (tetO-ScHOP) arrested their growth after 5 h of cultivation in the presence of the reactive drug doxycycline. DAPI (4',6'-diamidino-2-phenylindole) staining of the arrested cells revealed a significant increase in the number of large-budded cells with single nuclei, 2C DNA content, and short spindles, indicating a defect in the G(2)/M transition of the cell cycle. Thus, we conclude that Cbf1p is required for chromosome segregation in C. glabrata.

  13. Alteration of Cyclic-AMP Response Element Binding Protein in the Postmortem Brain of Subjects with Bipolar Disorder and Schizophrenia

    PubMed Central

    Ren, Xinguo; Rizavi, Hooriyah S.; Khan, Mansoor A.; Bhaumik, Runa; Dwivedi, Yogesh; Pandey, Ghanshyam N.

    2013-01-01

    Background Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). Methods We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n = 19), SZ (n = 20), and normal control (NC, n = 20) subjects. Results We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. Conclusion These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness. PMID:24148789

  14. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging themore » ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.« less

  15. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1

    PubMed Central

    Nambiar, Dhanya K.; Deep, Gagan; Singh, Rana P.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis. PMID:25294820

  16. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1.

    PubMed

    Nambiar, Dhanya K; Deep, Gagan; Singh, Rana P; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-30

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.

  17. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6

    DOE PAGES

    Bhattacharya, Akash; Alam, Steven L.; Fricke, Thomas; ...

    2014-12-17

    Upon infection of susceptible cells by HIV-1, the conical capsid formed by ~250 hexamers and 12 pentamers of the CA protein is delivered to the cytoplasm. In this study, the capsid shields the RNA genome and proteins required for reverse transcription. In addition, the surface of the capsid mediates numerous host–virus interactions, which either promote infection or enable viral restriction by innate immune responses. In the intact capsid, there is an intermolecular interface between the N-terminal domain (NTD) of one subunit and the C-terminal domain (CTD) of the adjacent subunit within the same hexameric ring. The NTD–CTD interface is criticalmore » for capsid assembly, both as an architectural element of the CA hexamer and pentamer and as a mechanistic element for generating lattice curvature. Here we report biochemical experiments showing that PF-3450074 (PF74), a drug that inhibits HIV-1 infection, as well as host proteins cleavage and polyadenylation specific factor 6 (CPSF6) and nucleoporin 153 kDa (NUP153), bind to the CA hexamer with at least 10-fold higher affinities compared with nonassembled CA or isolated CA domains. The crystal structure of PF74 in complex with the CA hexamer reveals that PF74 binds in a preformed pocket encompassing the NTD–CTD interface, suggesting that the principal inhibitory target of PF74 is the assembled capsid. Likewise, CPSF6 binds in the same pocket. Given that the NTD–CTD interface is a specific molecular signature of assembled hexamers in the capsid, binding of NUP153 at this site suggests that key features of capsid architecture remain intact upon delivery of the preintegration complex to the nucleus.« less

  18. Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells.

    PubMed

    Min, Jiho; Jin, Yoon-Mi; Moon, Je-Sung; Sung, Min-Sun; Jo, Sangmee Ahn; Jo, Inho

    2006-06-01

    Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression.

  19. One base pair change abolishes the T cell-restricted activity of a kB-like proto-enhancer element from the interleukin 2 promoter.

    PubMed Central

    Briegel, K; Hentsch, B; Pfeuffer, I; Serfling, E

    1991-01-01

    The inducible, T cell-specific enhancers of murine and human Interleukin 2 (Il-2) genes contain the kB-like sequence GGGATTTCACC as an essential cis-acting enhancer motif. When cloned in multiple copies this so-called TCEd (distal T cell element) acts as an inducible proto-enhancer element in E14 T lymphoma cells, but not in HeLa cells. In extracts of induced, Il-2 secreting El4 cells three individual protein factors bind to TCEd DNA. The binding of the most prominent factor, named TCF-1 (T cell factor 1), is correlated with the proto-enhancer activity of TCEd. TCF-1 consists of two polypeptides of about 50 kD and 105 kD; the former seems to be related to the 50 kD polypeptide of NF-kB. Purified NF-kB is also able to bind to the TCEd, but TCF-1 binds stronger than NF-kB to TCEd DNA. The conversion of the TCEd to a 'perfect' NF-kB binding site leads to a tighter binding of NF-kB to TCEd DNA and, as a functional consequence, to the activity of the 'converted' TCEd motifs in HeLa cells. Thus, the substitution of the underlined A residue to a C within the GGGATTTCACC motif abolishes its T cell-restricted activity and leads to its functioning in both El4 cells and HeLa cells. These results indicate that lymphocyte-specific factors binding to the TCEd are involved in the control of T cell specific-transcription of the Il-2 gene. Images PMID:1945879

  20. CCAAT/enhancer-binding protein delta is a critical regulator of insulin-like growth factor-I gene transcription in osteoblasts

    NASA Technical Reports Server (NTRS)

    Umayahara, Y.; Billiard, J.; Ji, C.; Centrella, M.; McCarthy, T. L.; Rotwein, P.

    1999-01-01

    Insulin-like growth factor-I (IGF-I) plays a major role in promoting skeletal growth by stimulating bone cell replication and differentiation. Prostaglandin E2 and other agents that induce cAMP production enhance IGF-I gene transcription in cultured rat osteoblasts through a DNA element termed HS3D, located in the proximal part of the major rat IGF-I promoter. We previously determined that CCAAT/enhancer-binding protein delta (C/EBPdelta) is the key cAMP-stimulated regulator of IGF-I transcription in these cells and showed that it transactivates the rat IGF-I promoter through the HS3D site. We now have defined the physical-chemical properties and functional consequences of the interactions between C/EBPdelta and HS3D. C/EBPdelta, expressed in COS-7 cells or purified as a recombinant protein from Escherichia coli, bound to HS3D with an affinity at least equivalent to that of the albumin D-site, a known high affinity C/EBP binding sequence, and both DNA elements competed equally for C/EBPdelta. C/EBPdelta bound to HS3D as a dimer, with protein-DNA contact points located on guanine residues on both DNA strands within and just adjacent to the core C/EBP half-site, GCAAT, as determined by methylation interference footprinting. C/EBPdelta also formed protein-protein dimers in the absence of interactions with its DNA binding site, as indicated by results of glutaraldehyde cross-linking studies. As established by competition gel-mobility shift experiments, the conserved HS3D sequence from rat, human, and chicken also bound C/EBPdelta with similar affinity. We also found that prostaglandin E2-induced expression of reporter genes containing human IGF-I promoter 1 or four tandem copies of the human HS3D element fused to a minimal promoter and show that these effects were enhanced by a co-transfected C/EBPdelta expression plasmid. Taken together, our results provide evidence that C/EBPdelta is a critical activator of IGF-I gene transcription in osteoblasts and potentially in other cell types and species.

  1. The coactivator CBP stimulates human T-cell lymphotrophic virus type I Tax transactivation in vitro.

    PubMed

    Kashanchi, F; Duvall, J F; Kwok, R P; Lundblad, J R; Goodman, R H; Brady, J N

    1998-12-18

    Tax interacts with the cellular cyclic AMP-responsive element binding protein (CREB) and facilitates the binding of the coactivator CREB binding protein (CBP), forming a multimeric complex on the cyclic AMP-responsive element (CRE)-like sites in the human T-cell lymphotrophic virus type I (HTLV-I) promoter. The trimeric complex is believed to recruit additional regulatory proteins to the HTLV-I long terminal repeat, but there has been no direct evidence that CBP is required for Tax-mediated transactivation. We present evidence that Tax and CBP activate transcription from the HTLV-I 21 base pair repeats on naked DNA templates. Transcriptional activation of the HTLV-I sequences required both Tax and CBP and could be mediated by either the N-terminal activation domain of CBP or the full-length protein. Fluorescence polarization binding assays indicated that CBP does not markedly enhance the affinity of Tax for the trimeric complex. Transcription analyses suggest that CBP activates Tax-dependent transcription by promoting transcriptional initiation and reinitiation. The ability of CBP to activate the HTLV-I promoter does not involve the stabilization of Tax binding, but rather depends upon gene activation properties of the co-activator that function in the context of a naked DNA template.

  2. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation.

    PubMed

    Hale, Benjamin G; Batty, Ian H; Downes, C Peter; Randall, Richard E

    2008-01-18

    Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.

  3. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, So-Hee; Moon, Jeonghee; Lee, Myungkyu

    2013-09-13

    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified asmore » a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.« less

  4. Saturation mutagenesis reveals manifold determinants of exon definition.

    PubMed

    Ke, Shengdong; Anquetil, Vincent; Zamalloa, Jorge Rojas; Maity, Alisha; Yang, Anthony; Arias, Mauricio A; Kalachikov, Sergey; Russo, James J; Ju, Jingyue; Chasin, Lawrence A

    2018-01-01

    To illuminate the extent and roles of exonic sequences in the splicing of human RNA transcripts, we conducted saturation mutagenesis of a 51-nt internal exon in a three-exon minigene. All possible single and tandem dinucleotide substitutions were surveyed. Using high-throughput genetics, 5560 minigene molecules were assayed for splicing in human HEK293 cells. Up to 70% of mutations produced substantial (greater than twofold) phenotypes of either increased or decreased splicing. Of all predicted secondary structural elements, only a single 15-nt stem-loop showed a strong correlation with splicing, acting negatively. The in vitro formation of exon-protein complexes between the mutant molecules and proteins associated with spliceosome formation (U2AF35, U2AF65, U1A, and U1-70K) correlated with splicing efficiencies, suggesting exon definition as the step affected by most mutations. The measured relative binding affinities of dozens of human RNA binding protein domains as reported in the CISBP-RNA database were found to correlate either positively or negatively with splicing efficiency, more than could fit on the 51-nt test exon simultaneously. The large number of these functional protein binding correlations point to a dynamic and heterogeneous population of pre-mRNA molecules, each responding to a particular collection of binding proteins. © 2018 Ke et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Comparative Study of Early Cold-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Reveals a Key Role for Phospholipase Dα1 in Mediating Cold Acclimation Signaling Pathway in Rice.

    PubMed

    Huo, Chenmin; Zhang, Baowen; Wang, Hui; Wang, Fawei; Liu, Meng; Gao, Yingjie; Zhang, Wenhua; Deng, Zhiping; Sun, Daye; Tang, Wenqiang

    2016-04-01

    To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were identified. Among these proteins, Western blot analyses confirmed that the cellular phospholipase D α1 (OsPLDα1) protein level was increased as early as 1 min after cold treatment. Genetic studies showed that reducing the expression ofOsPLDα1makes rice plants more sensitive to chilling stress as well as cold acclimation increased freezing tolerance. Correspondingly, cold-regulated proteomic changes and the expression of the cold-responsive C repeat/dehydration-responsive element binding 1 (OsDREB1) family of transcription factors were inhibited in thepldα1mutant. We also found that the expression ofOsPLDα1is directly regulated by OsDREB1A. This transcriptional regulation ofOsPLDα1could provide positive feedback regulation of the cold signal transduction pathway in rice. OsPLDα1 hydrolyzes phosphatidylcholine to produce the signal molecule phosphatidic acid (PA). By lipid-overlay assay, we demonstrated that the rice cold signaling proteins, MAP kinase 6 (OsMPK6) and OsSIZ1, bind directly to PA. Taken together, our results suggest that OsPLDα1 plays a key role in transducing cold signaling in rice by producing PA and regulatingOsDREB1s' expression by OsMPK6, OsSIZ1, and possibly other PA-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis.

    PubMed

    Moreau, Fanny; Thévenon, Emmanuel; Blanvillain, Robert; Lopez-Vidriero, Irene; Franco-Zorrilla, Jose Manuel; Dumas, Renaud; Parcy, François; Morel, Patrice; Trehin, Christophe; Carles, Cristel C

    2016-04-01

    Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression. © 2016. Published by The Company of Biologists Ltd.

  7. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements

    PubMed Central

    Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel

    2008-01-01

    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs–scs, scs’–scs’, 1A2–1A2 and Wari–Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5–Su(Hw), dCTCF–Su(Hw), or dCTCF–Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements. PMID:18987002

  8. Transcriptome profiling identifies p53 as a key player during calreticulin deficiency: Implications in lipid accumulation.

    PubMed

    Vig, Saurabh; Talwar, Puneet; Kaur, Kirandeep; Srivastava, Rohit; Srivastava, Arvind K; Datta, Malabika

    2015-01-01

    Calreticulin (CRT) is an endoplasmic reticulum (ER) resident calcium binding protein that is involved in several cellular activities. Transcriptome analyses in CRT knockdown HepG2 cells revealed 253 altered unique genes and subsequent in silico protein-protein interaction network and MCODE clustering identified 34 significant clusters, of which p53 occupied the central hub node in the highest node-rich cluster. Toward validation, we show that CRT knockdown leads to inhibition of p53 protein levels. Both, CRT and p53 siRNA promote hepatic lipid accumulation and this was accompanied by elevated SREBP-1c and FAS levels. p53 was identified to bind at -219 bp on the SREBP-1c promoter and in the presence of CRT siRNA, there was decreased occupancy of p53 on this binding element. This was associated with increased SREBP-1c promoter activity and both, mutation in this binding site or p53 over-expression antagonised the effects of CRT knockdown. We, therefore, identify a negatively regulating p53 binding site on the SREBP-1c promoter that is critical during hepatic lipid accumulation. These results were validated in mouse primary hepatocytes and toward a physiological relevance, we report that while the levels of CRT and p53 are reduced in the fatty livers of diabetic db/db mice, SREBP-1c levels are significantly elevated. Our results suggest that decreased CRT levels might be involved in the development of a fatty liver by preventing p53 occupancy on the SREBP-1c promoter and thereby facilitating SREBP-1c up-regulation and consequently, lipid accumulation.

  9. Pu-Erh Tea Down-Regulates Sterol Regulatory Element-Binding Protein and Stearyol-CoA Desaturase to Reduce Fat Storage in Caenorhaditis elegans

    PubMed Central

    Ding, YiHong; Zou, XiaoJu; Jiang, Xue; Wu, JieYu; Zhang, YuRu; Chen, Dan; Liang, Bin

    2015-01-01

    Consumption of Pu-erh has been reported to result in numerous health benefits, but the mechanisms underlying purported weight-loss and lowering of lipid are poorly understood. Here, we used the nematode Caenorhaditis elegans to explore the water extract of Pu-erh tea (PTE) functions to reduce fat storage. We found that PTE down-regulates the expression of the master fat regulator SBP-1, a homologue of sterol regulatory element binding protein (SREBP) and its target stearoyl-CoA desaturase (SCD), a key enzyme in fat biosynthesis, leading to an increased ratio of stearic acid (C18:0) to oleic acid (C18:1n-9), and subsequently decreased fat storage. We also found that both the pharyngeal pumping rate and food uptake of C. elegans decreased with exposure to PTE. Collectively, these results provide an experimental basis for explaining the ability of Pu-erh tea in promoting inhibition of food uptake and the biosynthesis of fat via SBP-1 and SCD, thereby reducing fat storage. PMID:25659129

  10. Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPK pathway.

    PubMed

    Yang, Yi; Li, Wang; Liu, Yang; Sun, Yuning; Li, Yan; Yao, Qing; Li, Jianning; Zhang, Qian; Gao, Yujing; Gao, Ling; Zhao, Jiajun

    2014-11-01

    Understanding the mechanism by which alpha-lipoic acid supplementation has a protective effect upon nonalcoholic fatty liver disease in vivo and in vitro may lead to targets for preventing hepatic steatosis. Male C57BL/6J mice were fed a normal diet, high-fat diet or high-fat diet supplemented with alpha-lipoic acid for 24 weeks. HepG2 cells were incubated with normal medium, palmitate or alpha-lipoic acid. The lipid-lowering effects were measured. The protein expression and distribution were analyzed by Western blot, immunoprecipitation and immunofluorescence, respectively. We found that alpha-lipoic acid enhanced sirtuin 1 deacetylase activity through liver kinase B1 and stimulated AMP-activated protein kinase. By activating the sirtuin 1/liver kinase B1/AMP-activated protein kinase pathway, the translocation of sterol regulatory element-binding protein-1 into the nucleus and forkhead box O1 into the cytoplasm was prevented. Alpha-lipoic acid increased adipose triacylglycerol lipase expression and decreased fatty acid synthase abundance. In in vivo and in vitro studies, alpha-lipoic acid also increased nuclear NF-E2-related factor 2 levels and downstream target amounts via the sirtuin 1 pathway. Alpha-lipoic acid eventually reduced intrahepatic and serum triglyceride content. The protective effects of alpha-lipoic acid on hepatic steatosis appear to be associated with the transcription factors sterol regulatory element-binding protein-1, forkhead box O1 and NF-E2-related factor 2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Soy protein supports cardiovascular health by downregulating hydroxymethylglutaryl-coenzyme A reductase and sterol regulatory element-binding protein-2 and increasing antioxidant enzyme activity in rats with dextran sodium sulfate-induced mild systemic inflammation.

    PubMed

    Marsh, Tanya G; Straub, Rachel K; Villalobos, Fatima; Hong, Mee Young

    2011-12-01

    Animal and human studies have indicated that the presence of soy in the diet improves cardiovascular health. Inflammation plays a pivotal role in the progression of cardiovascular disease (CVD). However, little is known about how dextran sodium sulfate (DSS)-induced systemic inflammation impacts overall heart health and, correspondingly, how soy protein modulates risk of CVD development in DSS-induced systemic inflammation. We hypothesized that soy protein-fed rats would have a lower risk of CVD by beneficial alteration of gene expression involving lipid metabolism and antioxidant capacity in DSS-induced systemic inflammation. Forty Sprague-Dawley rats were divided into 4 groups: casein, casein + DSS, soy protein, and soy protein + DSS. After 26 days, inflammation was induced in one group from each diet by incorporating 3% DSS in drinking water for 48 hours. Soy protein-fed rats had lower final body weights (P = .010), epididymal fat weights (P = .049), total cholesterol (P < .001), and low-density lipoprotein cholesterol (P < .001). In regard to gene expression, soy protein-fed rats had lower sterol regulatory element-binding protein-2 (P = .032) and hydroxymethylglutaryl-coenzyme A reductase (P = .028) levels and higher low-density lipoprotein receptor levels (P = .036). Antioxidant enzyme activity of superoxide dismutase and catalase was higher among the soy protein groups (P = .037 and P = .002, respectively). These results suggest that soy protein positively influences cardiovascular health by regulating serum lipids through modified expression of sterol regulatory element-binding protein-2 and its downstream genes (ie, hydroxymethylglutaryl-coenzyme A reductase and low-density lipoprotein receptor) and by promoting the antioxidant enzyme activity of superoxide dismutase and catalase. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin

    2011-11-02

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less

  13. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin

    2010-08-19

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less

  14. Defining the Architecture of the Core Machinery for the Assembly of Fe-S Clusters in Human Mitochondria.

    PubMed

    Gakh, Oleksandr; Ranatunga, Wasantha; Galeano, Belinda K; Smith, Douglas S; Thompson, James R; Isaya, Grazia

    2017-01-01

    Although Fe-S clusters may assemble spontaneously from elemental iron and sulfur in protein-free systems, the potential toxicity of free Fe 2+ , Fe 3+ , and S 2- ions in aerobic environments underscores the requirement for specialized proteins to oversee the safe assembly of Fe-S clusters in living cells. Prokaryotes first developed multiprotein systems for Fe-S cluster assembly, from which mitochondria later derived their own system and became the main Fe-S cluster suppliers for eukaryotic cells. Early studies in yeast and human mitochondria indicated that Fe-S cluster assembly in eukaryotes is centered around highly conserved Fe-S proteins (human ISCU) that serve as scaffolds upon which new Fe-S clusters are assembled from (i) elemental sulfur, provided by a pyridoxal phosphate-dependent cysteine desulfurase (human NFS1) and its stabilizing-binding partner (human ISD11), and (ii) elemental iron, provided by an iron-binding protein of the frataxin family (human FXN). Further studies revealed that all of these proteins could form stable complexes that could reach molecular masses of megadaltons. However, the protein-protein interaction surfaces, catalytic mechanisms, and overall architecture of these macromolecular machines remained undefined for quite some time. The delay was due to difficulties inherent in reconstituting these very large multiprotein complexes in vitro or isolating them from cells in sufficient quantities to enable biochemical and structural studies. Here, we describe approaches we developed to reconstitute the human Fe-S cluster assembly machinery in Escherichia coli and to define its remarkable architecture. © 2017 Elsevier Inc. All rights reserved.

  15. Identification of transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) as a novel factor for TNF-α expression upon lipopolysaccharide stimulation in human monocytes.

    PubMed

    Murata, H; Hattori, T; Maeda, H; Takashiba, S; Takigawa, M; Kido, J; Nagata, T

    2015-08-01

    Tumor necrosis factor alpha (TNF-α) is a major cytokine implicated in various inflammatory diseases. The nature of the nuclear factors associated with human TNF-α gene regulation is not well elucidated. We previously identified a novel region located from -550 to -487 in human TNF-α promoter that did not contain the reported binding sites for nuclear factor kappa B (NF-κB) but showed lipopolysaccharide (LPS)-induced transcriptional activity. The purpose of this study is to identify novel factors that bind to the promoter region and regulate TNF-α expression. To identify DNA-binding proteins that bound to the target region of TNF-α promoter, a cDNA library from LPS-stimulated human monocytic cell line THP-1 was screened using a yeast one-hybrid system. Cellular localizations of the DNA-binding protein in the cells were examined by subcellular immunocytochemistry. Nuclear amounts of the protein in LPS-stimulated THP-1 cells were identified by western blot analysis. Expression of mRNA of the protein in the cells was quantified by real-time polymerase chain reaction. Electrophoretic mobility shift assays were performed to confirm the DNA-binding profile. Overexpression of the protein and knockdown of the gene were also performed to investigate the role for TNF-α expression. Several candidates were identified from the cDNA library and transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) was focused on. Western blot analysis revealed that nuclear TDP-43 protein was increased in the LPS-stimulated THP-1 cells. Expression of TDP-43 mRNA was already enhanced before TNF-α induction by LPS. Electrophoretic mobility shift assay analysis showed that nuclear extracts obtained by overexpressing FLAG-tagged TDP-43 bound to the -550 to -487 TNF-α promoter fragments. Overexpression of TDP-43 in THP-1 cells resulted in an increase of TNF-α expression. Knockdown of TDP-43 in THP-1 cells downregulated TNF-α expression. We identified TDP-43 as one of the novel TNF-α factors and found that it bound to the LPS-responsive element in the TNF-α promoter to increase TNF-α expression. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Androgen receptor stimulates bone sialoprotein (BSP) gene transcription via cAMP response element and activator protein 1/glucocorticoid response elements.

    PubMed

    Takai, Hideki; Nakayama, Youhei; Kim, Dong-Soon; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Nakajima, Yu; Kato, Naoko; Masunaga, Hiroshi; Ogata, Yorimasa

    2007-09-01

    Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. Androgens are steroid hormones that are essential for skeletal development. The androgen receptor (AR) is a transcription factor and a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. To determine the molecular mechanism involved in the stimulation of bone formation, we have analyzed the effects of androgens and AR effects on BSP gene transcription. AR protein levels were increased after AR overexpression in ROS17/2.8 cells. BSP mRNA levels were increased by AR overexpression. However, the endogenous and overexpressed BSP mRNA levels were not changed by DHT (10(-8) M, 24 h). Whereas luciferase (LUC) activities in all constructs, including a short construct (nts -116 to +60), were increased by AR overexpression, the basal and LUC activities enhanced by AR overexpression were not induced by DHT (10(-8)M, 24 h). The effect of AR overexpression was abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that AR overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were supershifted by phospho-CREB antibody, and CREB, c-Fos, c-Jun, and AR antibodies disrupted the complexes formation. The AP1/GRE-protein complexes were supershifted by c-Fos antibody and c-Jun, and AR antibodies disrupted the complexes formation. These studies demonstrate that AR stimulates BSP gene transcription by targeting the CRE and AP1/GRE elements in the promoter of the rat BSP gene.

  17. Identification and functional characterization of BTas transactivator as a DNA-binding protein.

    PubMed

    Tan, Juan; Hao, Peng; Jia, Rui; Yang, Wei; Liu, Ruichang; Wang, Jinzhong; Xi, Zhen; Geng, Yunqi; Qiao, Wentao

    2010-09-30

    The genome of bovine foamy virus (BFV) encodes a transcriptional transactivator, namely BTas, that remarkably enhances gene expression by binding to the viral long-terminal repeat promoter (LTR) and internal promoter (IP). In this report, we characterized the functional domains of BFV BTas. BTas contains two major functional domains: the N-terminal DNA-binding domain (residues 1-133) and the C-terminal activation domain (residues 198-249). The complete BTas responsive regions were mapped to the positions -380/-140 of LTR and 9205/9276 of IP. Four BTas responsive elements were identified at the positions -368/-346, -327/-307, -306/-285 and -186/-165 of the BFV LTR, and one element was identified at the position 9243/9264 of the BFV IP. Unlike other foamy viruses, the five BTas responsive elements in BFV shared obvious sequence homology. These data suggest that among the complex retroviruses, BFV appears to have a unique transactivation mechanism. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  18. Serine 133 Phosphorylation Is Not Required for Hippocampal CREB-Mediated Transcription and Behavior

    ERIC Educational Resources Information Center

    Brian, Lisa A.; Lee, Bridgin G.; Lelay, John; Kaestner, Klaus H.; Blendy, Julie A.

    2015-01-01

    The cAMP response element (CRE)-binding protein, CREB, is a transcription factor whose activity in the brain is critical for long-term memory formation. Phosphorylation of Ser133 in the kinase-inducible domain (KID), that in turn leads to the recruitment of the transcriptional coactivator CREB-binding protein (CBP), is thought to mediate the…

  19. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    PubMed

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  20. Characterization of the rat RALDH1 promoter. A functional CCAAT and octamer motif are critical for basal promoter activity.

    PubMed

    Guimond, Julie; Devost, Dominic; Brodeur, Helene; Mader, Sylvie; Bhat, Pangala V

    2002-12-12

    Retinal dehydrogenase type 1 (RALDH1) catalyzes the oxidation of retinal to retinoic acid (RA), a metabolite of vitamin A important for embryogenesis and tissue differentiation. Rat RALDH1 is expressed to high levels in developing kidney, and in stomach, intestine epithelia. To understand the mechanisms of the transcriptional regulation of rat RALDH1, we cloned a 1360-base pair (bp) 5'-flanking region of RALDH1 gene. Using luciferase reporter constructs transfected into HEK 293 and LLCPK (kidney-derived) cells, basal promoter activity was associated with sequences between -80 and +43. In this minimal promoter region, TATA and CCAAT cis-acting elements as well as SP1, AP1 and octamer (Oct)-binding sites were present. The CCAAT box and Oct-binding site, located between positions -72 and -68 and -56 and -49, respectively, were shown by deletion analysis and site-directed mutation to be critical for promoter activity. Nuclear extracts from kidney cells contain proteins specifically binding the Oct and CCAAT sequences, resulting in the formation of six complexes, while different patterns of complexes were observed with non-kidney cell extracts. Gel shift assays using either single or double mutations of the Oct and CCAAT sequences as well as super shift assays demonstrated single and double occupancy of these two sites by Oct-1 and CBF-A. In addition, unidentified proteins also bound the Oct motif specifically in the absence of CBF-A binding. These results demonstrate specific involvement of Oct and CCAAT-binding proteins in the regulation of RALDH1 gene.

  1. Structural determinants of arrestin functions.

    PubMed

    Gurevich, Vsevolod V; Gurevich, Eugenia V

    2013-01-01

    Arrestins are a small protein family with only four members in mammals. Arrestins demonstrate an amazing versatility, interacting with hundreds of different G protein-coupled receptor (GPCR) subtypes, numerous nonreceptor signaling proteins, and components of the internalization machinery, as well as cytoskeletal elements, including regular microtubules and centrosomes. Here, we focus on the structural determinants that mediate various arrestin functions. The receptor-binding elements in arrestins were mapped fairly comprehensively, which set the stage for the construction of mutants targeting particular GPCRs. The elements engaged by other binding partners are only now being elucidated and in most cases we have more questions than answers. Interestingly, even very limited and imprecise identification of structural requirements for the interaction with very few other proteins has enabled the development of signaling-biased arrestin mutants. More comprehensive understanding of the structural underpinning of different arrestin functions will pave the way for the construction of arrestins that can link the receptor we want to the signaling pathway of our choosing. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Structural Determinants of Arrestin Functions

    PubMed Central

    Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2015-01-01

    Arrestins are a small protein family with only four members in mammals. Arrestins demonstrate an amazing versatility, interacting with hundreds of different G protein-coupled receptor (GPCR) subtypes, numerous nonreceptor signaling proteins, and components of the internalization machinery, as well as cytoskeletal elements, including regular microtubules and centrosomes. Here, we focus on the structural determinants that mediate various arrestin functions. The receptor-binding elements in arrestins were mapped fairly comprehensively, which set the stage for the construction of mutants targeting particular GPCRs. The elements engaged by other binding partners are only now being elucidated and in most cases we have more questions than answers. Interestingly, even very limited and imprecise identification of structural requirements for the interaction with very few other proteins has enabled the development of signaling-biased arrestin mutants. More comprehensive understanding of the structural underpinning of different arrestin functions will pave the way for the construction of arrestins that can link the receptor we want to the signaling pathway of our choosing. PMID:23764050

  3. Molecular mechanism of activation-triggered subunit exchange in Ca 2+ /calmodulin-dependent protein kinase II

    DOE PAGES

    Bhattacharyya, Moitrayee; Stratton, Margaret M.; Going, Catherine C.; ...

    2016-03-07

    Activation triggers the exchange of subunits in Ca 2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This convertsmore » the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.« less

  4. Molecular mechanism of activation-triggered subunit exchange in Ca 2+ /calmodulin-dependent protein kinase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Moitrayee; Stratton, Margaret M.; Going, Catherine C.

    Activation triggers the exchange of subunits in Ca 2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This convertsmore » the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.« less

  5. Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II

    PubMed Central

    Bhattacharyya, Moitrayee; Stratton, Margaret M; Going, Catherine C; McSpadden, Ethan D; Huang, Yongjian; Susa, Anna C; Elleman, Anna; Cao, Yumeng Melody; Pappireddi, Nishant; Burkhardt, Pawel; Gee, Christine L; Barros, Tiago; Schulman, Howard; Williams, Evan R; Kuriyan, John

    2016-01-01

    Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones. DOI: http://dx.doi.org/10.7554/eLife.13405.001 PMID:26949248

  6. The Acetylase/Deacetylase Couple CREB-binding Protein/Sirtuin 1 Controls Hypoxia-inducible Factor 2 Signaling*

    PubMed Central

    Chen, Rui; Xu, Min; Hogg, Richard T.; Li, Jiwen; Little, Bertis; Gerard, Robert D.; Garcia, Joseph A.

    2012-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors. HIF-1α plays a prominent role in hypoxic gene induction. HIF-2α target genes are more restricted but include erythropoietin (Epo), one of the most highly hypoxia-inducible genes in mammals. We previously reported that HIF-2α is acetylated during hypoxia but is rapidly deacetylated by the stress-responsive deacetylase Sirtuin 1. We now demonstrate that the lysine acetyltransferases cAMP-response element-binding protein-binding protein (CBP) and p300 are required for efficient Epo induction during hypoxia. However, despite close structural similarity, the roles of CBP and p300 differ in HIF signaling. CBP acetylates HIF-2α, is a major coactivator for HIF-2-mediated Epo induction, and is required for Sirt1 augmentation of HIF-2 signaling during hypoxia in Hep3B cells. In comparison, p300 is a major contributor for HIF-1 signaling as indicated by induction of Pgk1. Whereas CBP can bind with HIF-2α independent of the HIF-2α C-terminal activation domain via enzyme/substrate interactions, p300 only complexes with HIF-2α through the C-terminal activation domain. Maximal CBP/HIF-2 signaling requires intact CBP acetyltransferase activity in both Hep3B cells as well as in mice. PMID:22807441

  7. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    PubMed

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-11-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.

  8. Cellular corepressor TLE2 inhibits replication-and-transcription- activator-mediated transactivation and lytic reactivation of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    He, Zhiheng; Liu, Yunhua; Liang, Deguang; Wang, Zhuo; Robertson, Erle S; Lan, Ke

    2010-02-01

    Replication and transcription activator (RTA) encoded by open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential and sufficient to initiate lytic reactivation. RTA activates its target genes through direct binding with high affinity to its responsive elements or by interaction with cellular factors, such as RBP-Jkappa, Ap-1, C/EBP-alpha, and Oct-1. In this study, we identified transducin-like enhancer of split 2 (TLE2) as a novel RTA binding protein by using yeast two-hybrid screening of a human spleen cDNA library. The interaction between TLE2 and RTA was confirmed by glutathione S-transferase (GST) binding and coimmunoprecipitation assays. Immunofluorescence analysis showed that TLE2 and RTA were colocalized in the same nuclear compartment in KSHV-infected cells. This interaction recruited TLE2 to RTA bound to its recognition sites on DNA and repressed RTA auto-activation and transactivation activity. Moreover, TLE2 also inhibited the induction of lytic replication and virion production driven by RTA. We further showed that the Q (Gln-rich), SP (Ser-Pro-rich), and WDR (Trp-Asp repeat) domains of TLE2 and the Pro-rich domain of RTA were essential for this interaction. RBP-Jkappa has been shown previously to bind to the same Pro-rich domain of RTA, and this binding can be subject to competition by TLE2. In addition, TLE2 can form a complex with RTA to access the cognate DNA sequence of the RTA-responsive element at different promoters. Intriguingly, the transcription level of TLE2 could be upregulated by RTA during the lytic reactivation process. In conclusion, we identified a new RTA binding protein, TLE2, and demonstrated that TLE2 inhibited replication and transactivation mediated by RTA. This provides another potentially important mechanism for maintenance of KSHV viral latency through interaction with a host protein.

  9. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.

    PubMed

    Higashi, Kiyoshi; Inagaki, Yutaka; Fujimori, Ko; Nakao, Atsuhito; Kaneko, Hideo; Nakatsuka, Iwao

    2003-10-31

    Transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) exert antagonistic effects on collagen synthesis in human dermal fibroblasts. We have recently shown that Y box-binding protein YB-1 mediates the inhibitory effects of IFN-gamma on alpha2(I) procollagen gene (COL1A2) transcription through the IFN-gamma response element located between -161 and -150. Here we report that YB-1 counter-represses TGF-beta-stimulated COL1A2 transcription by interfering with Smad3 bound to the upstream sequence around -265 and subsequently by interrupting the Smad3-p300 interaction. Western blot and immunofluorescence analyses using inhibitors for Janus kinases or casein kinase II suggested that the casein kinase II-dependent signaling pathway mediates IFN-gamma-induced nuclear translocation of YB-1. Down-regulation of endogenous YB-1 expression by double-stranded YB-1-specific RNA abrogated the transcriptional repression of COL1A2 by IFN-gamma in the absence and presence of TGF-beta. In transient transfection assays, overexpression of YB-1 in human dermal fibroblasts exhibited antagonistic actions against TGF-beta and Smad3. Physical interaction between Smad3 and YB-1 was demonstrated by immunoprecipitation-Western blot analyses, and electrophoretic mobility shift assays using the recombinant Smad3 and YB-1 proteins indicated that YB-1 forms a complex with Smad3 bound to the Smad-binding element. Glutathione S-transferase pull-down assays showed that YB-1 binds to the MH1 domain of Smad3, whereas the central and carboxyl-terminal regions of YB-1 were required for its interaction with Smad3. YB-1 also interferes with the Smad3-p300 interaction by its preferential binding to p300. Altogether, the results provide a novel insight into the mechanism by which IFN-gamma/YB-1 counteracts TGF-beta/Smad3. They also indicate that IFN-gamma/YB-1 inhibits COL1A2 transcription by dual actions: via the IFN-gamma response element and through a cross-talk with the TGF-beta/Smad signaling pathway.

  10. Hili Inhibits HIV Replication in Activated T Cells.

    PubMed

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-06-01

    P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4 + T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNA Arg (UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements. IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4 + T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements. Copyright © 2017 American Society for Microbiology.

  11. Connexin31.1 deficiency in the mouse impairs object memory and modulates open-field exploration, acetylcholine esterase levels in the striatum, and cAMP response element-binding protein levels in the striatum and piriform cortex.

    PubMed

    Dere, E; Zheng-Fischhöfer, Q; Viggiano, D; Gironi Carnevale, U A; Ruocco, L A; Zlomuzica, A; Schnichels, M; Willecke, K; Huston, J P; Sadile, A G

    2008-05-02

    Neuronal gap junctions in the brain, providing intercellular electrotonic signal transfer, have been implicated in physiological and behavioral correlates of learning and memory. In connexin31.1 (Cx31.1) knockout (KO) mice the coding region of the Cx31.1 gene was replaced by a LacZ reporter gene. We investigated the impact of Cx31.1 deficiency on open-field exploration, the behavioral response to an odor, non-selective attention, learning and memory performance, and the levels of memory-related proteins in the hippocampus, striatum and the piriform cortex. In terms of behavior, the deletion of the Cx31.1 coding DNA in the mouse led to increased exploratory behaviors in a novel environment, and impaired one-trial object recognition at all delays tested. Despite strong Cx31.1 expression in the peripheral and central olfactory system, Cx31.1 KO mice exhibited normal behavioral responses to an odor. We found increased levels of acetylcholine esterase (AChE) and cAMP response element-binding protein (CREB) in the striatum of Cx31.1 KO mice. In the piriform cortex the Cx31.1 KO mice had an increased heterogeneity of CREB expression among neurons. In conclusion, gap-junctions featuring the Cx31.1 protein might be involved in open-field exploration as well as object memory and modulate levels of AChE and CREB in the striatum and piriform cortex.

  12. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    PubMed Central

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  13. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation.

  14. The prokaryotic enhancer binding protein NTRC has an ATPase activity which is phosphorylation and DNA dependent.

    PubMed Central

    Austin, S; Dixon, R

    1992-01-01

    The prokaryotic activator protein NTRC binds to enhancer-like elements and activates transcription in response to nitrogen limitation by catalysing open complex formation by sigma 54 RNA polymerase holoenzyme. Formation of open complexes requires the phosphorylated form of NTRC and the reaction is ATP dependent. We find that NTRC has an ATPase activity which is activated by phosphorylation and is strongly stimulated by the presence of DNA containing specific NTRC binding sites. Images PMID:1534752

  15. The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway.

    PubMed

    Granja, Aitor G; Nogal, Maria L; Hurtado, Carolina; Del Aguila, Carmen; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2006-01-01

    African swine fever virus (ASFV) is able to inhibit TNF-alpha-induced gene expression through the synthesis of A238L protein. This was shown by the use of deletion mutants lacking the A238L gene from the Vero cell-adapted Ba71V ASFV strain and from the virulent isolate E70. To further analyze the molecular mechanism by which the viral gene controls TNF-alpha, we have used Jurkat cells stably transfected with the viral gene to identify the TNF-alpha regulatory elements involved in the induction of the gene after stimulation with PMA and calcium ionophore. We have thus identified the cAMP-responsive element and kappa3 sites on the TNF-alpha promoter as the responsible of the gene activation, and demonstrate that A238L inhibits TNF-alpha expression through these DNA binding sites. This inhibition was partially reverted by overexpression of the transcriptional factors NF-AT, NF-kappaB, and c-Jun. Furthermore, we present evidence that A238L inhibits the activation of TNF-alpha by modulating NF-kappaB, NF-AT, and c-Jun trans activation through a mechanism that involves CREB binding protein/p300 function, because overexpression of these transcriptional coactivators recovers TNF-alpha promoter activity. In addition, we show that A238L is a nuclear protein that binds to the cyclic AMP-responsive element/kappa3 complex, thus displacing the CREB binding protein/p300 coactivators. Taken together, these results establish a novel mechanism in the control of TNF-alpha gene expression by a viral protein that could represent an efficient strategy used by ASFV to evade the innate immune response.

  16. Neurokinin B Exerts Direct Effects on the Ovary to Stimulate Estradiol Production.

    PubMed

    Qi, Xin; Salem, Mohamed; Zhou, Wenyi; Sato-Shimizu, Miwa; Ye, Gang; Smitz, Johan; Peng, Chun

    2016-09-01

    Neurokinin B (NKB) and its receptor, NK3R, play critical roles in reproduction by regulating the secretion of the hypothalamic GnRH. NKB and NK3R genes are also expressed in the ovary; however, their physiological roles within the ovary are unknown. The aim of this study was to determine whether NKB acts directly on the ovary to regulate reproduction. Injection of NKB into zebrafish accelerated follicle development, increased the mRNA levels of cyp11a1 and cyp19a1, and enhanced estradiol production. Similarly, NKB induced cyp11a1 and cyp19a1 expression in primary cultures of zebrafish follicular cells and stimulated estradiol production from cultured follicles. Furthermore, NKB activates cAMP response element-binding protein and ERK, and ERK inhibitors abolished the effect of NKB on cyp11a1, whereas protein kinase A and calmodulin-dependent protein kinase II inhibitors that blocked the activation of cAMP response element-binding protein, attenuated the effect of NKB on cyp19a1 expression. In a human granulosa cell line, COV434, a NKB agonist, senktide, also increased CYP11A1 and CYP19A1 mRNA levels and enhanced aromatase protein levels and activities. Small interfering RNA-mediated knockdown of NK3R reduced senktide-induced CYP11A1 and CYP19A1 mRNA levels. Finally, we found that NK3R mRNA was strongly down-regulated in granulosa cells obtained from polycystic ovary syndrome (PCOS) patients when compared with non-PCOS subjects. Taken together, our findings establish a direct action of NKB to induce ovarian estrogen production and raise the possibility that defective signaling of this pathway may contribute to the development of PCOS.

  17. The Reconstruction of Condition-Specific Transcriptional Modules Provides New Insights in the Evolution of Yeast AP-1 Proteins

    PubMed Central

    Goudot, Christel; Etchebest, Catherine

    2011-01-01

    AP-1 proteins are transcription factors (TFs) that belong to the basic leucine zipper family, one of the largest families of TFs in eukaryotic cells. Despite high homology between their DNA binding domains, these proteins are able to recognize diverse DNA motifs. In yeasts, these motifs are referred as YRE (Yap Response Element) and are either seven (YRE-Overlap) or eight (YRE-Adjacent) base pair long. It has been proposed that the AP-1 DNA binding motif preference relies on a single change in the amino acid sequence of the yeast AP-1 TFs (an arginine in the YRE-O binding factors being replaced by a lysine in the YRE-A binding Yaps). We developed a computational approach to infer condition-specific transcriptional modules associated to the orthologous AP-1 protein Yap1p, Cgap1p and Cap1p, in three yeast species: the model yeast Saccharomyces cerevisiae and two pathogenic species Candida glabrata and Candida albicans. Exploitation of these modules in terms of predictions of the protein/DNA regulatory interactions changed our vision of AP-1 protein evolution. Cis-regulatory motif analyses revealed the presence of a conserved adenine in 5′ position of the canonical YRE sites. While Yap1p, Cgap1p and Cap1p shared a remarkably low number of target genes, an impressive conservation was observed in the YRE sequences identified by Yap1p and Cap1p. In Candida glabrata, we found that Cgap1p, unlike Yap1p and Cap1p, recognizes YRE-O and YRE-A motifs. These findings were supported by structural data available for the transcription factor Pap1p (Schizosaccharomyces pombe). Thus, whereas arginine and lysine substitutions in Cgap1p and Yap1p proteins were reported as responsible for a specific YRE-O or YRE-A preference, our analyses rather suggest that the ancestral yeast AP-1 protein could recognize both YRE-O and YRE-A motifs and that the arginine/lysine exchange is not the only determinant of the specialization of modern Yaps for one motif or another. PMID:21695268

  18. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ruoxi; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070; Fang, Liurong, E-mail: fanglr@mail.hzau.edu.cn

    2015-11-15

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9).more » Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.« less

  19. Functional display of platelet-binding VWF fragments on filamentous bacteriophage.

    PubMed

    Yee, Andrew; Tan, Fen-Lai; Ginsburg, David

    2013-01-01

    von Willebrand factor (VWF) tethers platelets to sites of vascular injury via interaction with the platelet surface receptor, GPIb. To further define the VWF sequences required for VWF-platelet interaction, a phage library displaying random VWF protein fragments was screened against formalin-fixed platelets. After 3 rounds of affinity selection, DNA sequencing of platelet-bound clones identified VWF peptides mapping exclusively to the A1 domain. Aligning these sequences defined a minimal, overlapping segment spanning P1254-A1461, which encompasses the C1272-C1458 cystine loop. Analysis of phage carrying a mutated A1 segment (C1272/1458A) confirmed the requirement of the cystine loop for optimal binding. Four rounds of affinity maturation of a randomly mutagenized A1 phage library identified 10 and 14 unique mutants associated with enhanced platelet binding in the presence and absence of botrocetin, respectively, with 2 mutants (S1370G and I1372V) common to both conditions. These results demonstrate the utility of filamentous phage for studying VWF protein structure-function and identify a minimal, contiguous peptide that bind to formalin-fixed platelets, confirming the importance of the VWF A1 domain with no evidence for another independently platelet-binding segment within VWF. These findings also point to key structural elements within the A1 domain that regulate VWF-platelet adhesion.

  20. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein.

    PubMed Central

    Stein, B; Rahmsdorf, H J; Steffen, A; Litfin, M; Herrlich, P

    1989-01-01

    UV irradiation of human and murine cells enhances the transcription of several genes. Here we report on the primary target of relevant UV absorption, on pathways leading to gene activation, and on the elements receiving the UV-induced signal in the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, in the gene coding for collagenase, and in the cellular oncogene fos. In order to induce the expression of genes. UV radiation needs to be absorbed by DNA and to cause DNA damage of the kind that cannot be repaired by cells from patients with xeroderma pigmentosum group A. UV-induced activation of the three genes is mediated by the major enhancer elements (located between nucleotide positions -105 and -79 of HIV-1, between positions -72 and -65 of the collagenase gene, and between positions -320 and -299 of fos). These elements share no apparent sequence motif and bind different trans-acting proteins; a member of the NF kappa B family binds to the HIV-1 enhancer, the heterodimer of Jun and Fos (AP-1) binds to the collagenase enhancer, and the serum response factors p67 and p62 bind to fos. DNA-binding activities of the factors recognizing the HIV-1 and collagenase enhancers are augmented in extracts from UV-treated cells. The increase in activity is due to posttranslational modification. While AP-1 resides in the nucleus and must be modulated there, NF kappa B is activated in the cytoplasm, indicating the existence of a cytoplasmic signal transduction pathway triggered by UV-induced DNA damage. In addition to activation, new synthesis of AP-1 is induced by UV radiation. Images PMID:2557547

  1. The human RNA-binding protein and E3 ligase MEX-3C binds the MEX-3-recognition element (MRE) motif with high affinity.

    PubMed

    Yang, Lingna; Wang, Chongyuan; Li, Fudong; Zhang, Jiahai; Nayab, Anam; Wu, Jihui; Shi, Yunyu; Gong, Qingguo

    2017-09-29

    MEX-3 is a K-homology (KH) domain-containing RNA-binding protein first identified as a translational repressor in Caenorhabditis elegans , and its four orthologs (MEX-3A-D) in human and mouse were subsequently found to have E3 ubiquitin ligase activity mediated by a RING domain and critical for RNA degradation. Current evidence implicates human MEX-3C in many essential biological processes and suggests a strong connection with immune diseases and carcinogenesis. The highly conserved dual KH domains in MEX-3 proteins enable RNA binding and are essential for the recognition of the 3'-UTR and post-transcriptional regulation of MEX-3 target transcripts. However, the molecular mechanisms of translational repression and the consensus RNA sequence recognized by the MEX-3C KH domain are unknown. Here, using X-ray crystallography and isothermal titration calorimetry, we investigated the RNA-binding activity and selectivity of human MEX-3C dual KH domains. Our high-resolution crystal structures of individual KH domains complexed with a noncanonical U-rich and a GA-rich RNA sequence revealed that the KH1/2 domains of human MEX-3C bound MRE10, a 10-mer RNA (5'-CAGAGUUUAG-3') consisting of an eight-nucleotide MEX-3-recognition element (MRE) motif, with high affinity. Of note, we also identified a consensus RNA motif recognized by human MEX-3C. The potential RNA-binding sites in the 3'-UTR of the human leukocyte antigen serotype ( HLA-A2 ) mRNA were mapped with this RNA-binding motif and further confirmed by fluorescence polarization. The binding motif identified here will provide valuable information for future investigations of the functional pathways controlled by human MEX-3C and for predicting potential mRNAs regulated by this enzyme. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Specificity of RSG-1.2 Peptide Binding to RRE-IIB RNA Element of HIV-1 over Rev Peptide Is Mainly Enthalpic in Origin

    PubMed Central

    Kumar, Santosh; Bose, Debojit; Suryawanshi, Hemant; Sabharwal, Harshana; Mapa, Koyeli; Maiti, Souvik

    2011-01-01

    Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT m = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a Ka = 16.2±0.6×107 M−1 where enthalpic change ΔH = −13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = −2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (Ka = 3.1±0.4×107 M−1) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding. PMID:21853108

  3. Specificity of RSG-1.2 peptide binding to RRE-IIB RNA element of HIV-1 over Rev peptide is mainly enthalpic in origin.

    PubMed

    Kumar, Santosh; Bose, Debojit; Suryawanshi, Hemant; Sabharwal, Harshana; Mapa, Koyeli; Maiti, Souvik

    2011-01-01

    Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT(m) = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a K(a) = 16.2±0.6×10(7) M(-1) where enthalpic change ΔH = -13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = -2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (K(a) = 3.1±0.4×10(7) M(-1)) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.

  4. Type I human T cell leukemia virus tax protein transforms rat fibroblasts through the cyclic adenosine monophosphate response element binding protein/activating transcription factor pathway.

    PubMed Central

    Smith, M R; Greene, W C

    1991-01-01

    The Tax oncoprotein of the type I human T cell leukemia virus (HTLV-I) activates transcription of cellular and viral genes through at least two different transcription factor pathways. Tax activates transcription of the c-fos proto-oncogene by a mechanism that appears to involve members of the cAMP response element binding protein (CREB) and activating transcription factor (ATF) family of DNA-binding proteins. Tax also induces the nuclear expression of the NF-kappa B family of rel oncogene-related enhancer-binding proteins. We have investigated the potential role of these CREB/ATF and NF-kappa B/Rel transcription factors in Tax-mediated transformation by analyzing the oncogenic potential of Tax mutants that functionally segregate these two pathways of transactivation. Rat fibroblasts (Rat2) stably expressing either the wild-type Tax protein or a Tax mutant selectively deficient in the ability to induce NF-kappa B/Rel demonstrated marked changes in morphology and growth characteristics including the ability to form tumors in athymic mice. In contrast, Rat2 cells stably expressing a Tax mutant selectively deficient in the ability to activate transcription through CREB/ATF demonstrated no detectable changes in morphology or growth characteristics. These results suggest that transcriptional activation through the CREB/ATF pathway may play an important role in Tax-mediated cellular transformation. Images PMID:1832173

  5. In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells

    PubMed Central

    Pérez-Palacios, Raquel; Macías-Redondo, Sofía; Climent, María; Contreras-Moreira, Bruno; Muniesa, Pedro; Schoorlemmer, Jon

    2016-01-01

    Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as opposed to YY1, suggesting that YY2 exerts unique contributions to gene regulation. YY2 binding was not generally associated with gene promoters. However, several YY2 binding sites are linked to long noncoding RNA (lncRNA) genes and we show that the expression levels of a few of those are Yy2-dependent. PMID:27191592

  6. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design.

    PubMed

    Ronin, Céline; Costa, David Mendes; Tavares, Joana; Faria, Joana; Ciesielski, Fabrice; Ciapetti, Paola; Smith, Terry K; MacDougall, Jane; Cordeiro-da-Silva, Anabela; Pemberton, Iain K

    2018-01-01

    The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation.

  7. Mechanisms of protein kinase C signaling in the modulation of 3',5'-cyclic adenosine monophosphate-mediated steroidogenesis in mouse gonadal cells.

    PubMed

    Manna, Pulak R; Huhtaniemi, Ilpo T; Stocco, Douglas M

    2009-07-01

    The protein kinase C (PKC) signaling pathway plays integral roles in the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. PKC can modulate the activity of cAMP/protein kinase A signaling involved in steroidogenesis; however, its mechanism remains obscure. In the present study, we demonstrate that activation of the PKC pathway, by phorbol 12-myristate 13-acetate (PMA), was capable of potentiating dibutyryl cAMP [(Bu)(2)cAMP]-stimulated StAR expression, StAR phosphorylation, and progesterone synthesis in both mouse Leydig (MA-10) and granulosa (KK-1) tumor cells. The steroidogenic potential of PMA and (Bu)(2)cAMP was linked with phosphorylation of ERK 1/2; however, inhibition of the latter demonstrated varying effects on steroidogenesis. Transcriptional activation of the StAR gene by PMA and (Bu)(2)cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of the cAMP response element binding protein (CREB). An oligonucleotide probe containing a CREB/activating transcription factor binding region in the StAR promoter was found to bind nuclear proteins in PMA and (Bu)(2)cAMP-treated MA-10 and KK-1 cells. Chromatin immunoprecipitation studies revealed that the induction of phosphorylated CREB was tightly correlated with in vivo protein-DNA interactions and recruitment of CREB binding protein to the StAR promoter. Ectopic expression of CREB binding protein enhanced CREB-mediated transcription of the StAR gene, an event that was markedly repressed by the adenovirus E1A oncoprotein. Further studies demonstrated that the activation of StAR expression and steroid synthesis by PMA and (Bu)(2)cAMP was associated with expression of the nuclear receptor Nur77, indicating its essential role in hormone-regulated steroidogenesis. Collectively, these findings provide insight into the mechanisms by which PKC modulates cAMP/protein kinase A responsiveness involved in regulating the steroidogenic response in mouse gonadal cells.

  8. Selective Modulation of Some Forms of Schaffer Collateral-CA1 Synaptic Plasticity in Mice with a Disruption of the "CPEB-1" Gene

    ERIC Educational Resources Information Center

    Alarcon, Juan M.; Hodgman, Rebecca; Theis, Martin; Huang, Yi-Shuian; Kandel, Eric R.; Richter, Joel D.

    2004-01-01

    CPEB-1 is a sequence-specific RNA binding protein that stimulates the polyadenylation-induced translation of mRNAs containing the cytoplasmic polyadenylation element (CPE). Although CPEB-1 was identified originally in Xenopus oocytes, it has also been found at postsynaptic sites of hippocampal neurons where, in response to N-methyl-D-aspartate…

  9. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis.

    PubMed

    Khan, Junaid A; Wang, Qi; Sjölund, Richard D; Schulz, Alexander; Thompson, Gary A

    2007-04-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential.

  10. Age-related decline in oligodendrogenesis retards white matter repair in mice.

    PubMed

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H; Arai, Ken

    2013-09-01

    Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask whether, compared with young brains, white matter regions in older brains may be more vulnerable in part because of decreased rates of compensatory oligodendrogenesis after injury. A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month-old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells to sublethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Baseline myelin density in the corpus callosum was similar in 2-month and 8-month-old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in cyclic AMP response element-binding protein signaling may be involved because activating cyclic AMP response element-binding protein with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of oligodendrocyte precursor cells, alleviated myelin loss, and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of oligodendrocyte precursor cells. An age-related decline in cyclic AMP response element-binding protein-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate cyclic AMP response element-binding protein signaling provide a potential therapeutic approach for treating white matter injury in aging brains.

  11. The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis ElementsW⃞

    PubMed Central

    Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.

    2003-01-01

    The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974

  12. The yeast telomerase recruitment module requires a specific RNA architecture.

    PubMed

    Laterreur, Nancy; Lemieux, Bruno; Neumann, Hannah; Berger-Dancause, Jean-Christophe; Lafontaine, Daniel; Wellinger, Raymund J

    2018-05-18

    Telomerases are ribonucleoprotein (RNP) enzymes that are related to reverse transcriptases. While they maintain genome stability, their composition varies significantly between species. Yeast telomerase RNPs contain an RNA that is comparatively large and its overall folding shows long helical segments with distal functional parts. Here we investigated the essential stem IVc module of the budding yeast telomerase RNA, called Tlc1. The distal part of stem IVc includes a conserved sequence element CS2a and structurally conserved features to which bind the Pop1/Pop6/Pop7 proteins and which together function analogously to the P3 domains of the RNase P/MRP RNPs. A more proximal bulged stem with the CS2 element is thought to associate with Est1. Previous data showed that changes in CS2a cause a loss of all of the proteins, not just the Pop-proteins, from stem IVc. The results here show that the association of Est1 with stem IVc indeed requires both the proximal bulged stem and the presence of the Tlc1 P3 domain with the associated Pop-proteins. Separating the P3-domain from the Est1 binding site by inserting only 2 base pairs into the helical stem between the two sites causes a complete loss of Est1 from the RNP and hence a telomerase-negative phenotype in vivo. Still, the distal P3 domain with the associated Pop-proteins remains intact. Moreover, the P3 domain also ensures Est2 stability on the RNP independently of the Est1 association. Therefore, the recruitment module of the Tlc1 RNA requires a very tight architectural organization for telomerase function in vivo. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Steap4 Plays a Critical Role in Osteoclastogenesis in Vitro by Regulating Cellular Iron/Reactive Oxygen Species (ROS) Levels and cAMP Response Element-binding Protein (CREB) Activation*

    PubMed Central

    Zhou, Jian; Ye, Shiqiao; Fujiwara, Toshifumi; Manolagas, Stavros C.; Zhao, Haibo

    2013-01-01

    Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-κB-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function. PMID:23990467

  14. Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation.

    PubMed

    Yano, Masato; Okano, Hirotaka J; Okano, Hideyuki

    2005-04-01

    The Hu family is a group of neuronal RNA-binding proteins required for neuronal differentiation in the developing nervous system. Previously, Hu proteins have been shown to enhance the stabilization and/or translation of target mRNAs, such as p21 (CIP1), by binding to AU-rich elements in untranslated regions (UTRs). In this study, we show that Hu induces p21 expression, cell cycle arrest, and neuronal differentiation in mouse neuroblastoma N1E-115 cells. p21 expression is also up-regulated during Me2SO-induced differentiation in N1E-115 cells and is controlled by post-transcriptional mechanisms through its 3'-UTR. To investigate the molecular mechanisms of Hu functions, we used a proteomics strategy to isolate Hu-interacting proteins and identified heterogeneous nuclear ribonucleoprotein (hnRNP) K. hnRNP K also specifically binds to CU-rich sequences in p21 mRNA 3'-UTR and represses its translation in both nonneuronal and neuronal cells. Further, using RNA interference experiments, we show that the Hu-p21 pathway contributes to the regulation of neurite outgrowth and proliferation in N1E-115 cells, and this pathway is antagonized by hnRNP K. Our results suggest a model in which the mutually antagonistic action of two RNA-binding proteins, Hu and hnRNP K, control the timing of the switch from proliferation to neuronal differentiation through the post-transcriptional regulation of p21 mRNA.

  15. X-chromosome-counting mechanisms that determine nematode sex.

    PubMed

    Nicoll, M; Akerib, C C; Meyer, B J

    1997-07-10

    Sex is determined in Caenorhabditis elegans by an X-chromosome-counting mechanism that reliably distinguishes the twofold difference in X-chromosome dose between males (1X) and hermaphrodites (2X). This small quantitative difference is translated into the 'on/off' response of the target gene, xol-1, a switch that specifies the male fate when active and the hermaphrodite fate when inactive. Specific regions of X contain counted signal elements whose combined dose sets the activity of xol-1. Here we ascribe the dose effects of one region to a discrete, protein-encoding gene, fox-1. We demonstrate that the dose-sensitive signal elements on chromosome X control xol-1 through two different molecular mechanisms. One involves the transcriptional repression of xol-1 in XX animals. The other uses the putative RNA-binding protein encoded by fox-1 to reduce the level of xol-1 protein. These two mechanisms of repression act together to ensure the fidelity of the X-chromosome counting process.

  16. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization

    PubMed Central

    2010-01-01

    Background Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD) is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. Results The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1) RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. Conclusions The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to date. This, along with the amino acid variability observed within their PUM-HDs, suggests that these proteins may be involved in a wide range of post-transcriptional regulatory events that are important in providing plants with the ability to respond rapidly to changes in environmental conditions and throughout development. PMID:20214804

  17. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor

    PubMed Central

    Wang, Hao-Ching; Ko, Tzu-Ping; Wu, Mao-Lun; Ku, Shan-Chi; Wu, Hsing-Ju; Wang, Andrew H.-J.

    2012-01-01

    DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5′-TGTNAN11TNACA-3′ recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge–charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps. PMID:22373915

  18. A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18

    PubMed Central

    Chi, Binkai; Wang, Ke; Du, Yanhua; Gui, Bin; Chang, Xingya; Wang, Lantian; Fan, Jing; Chen, She; Wu, Xudong; Li, Guohui; Cheng, Hong

    2014-01-01

    Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs. PMID:24782531

  19. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) Represses Transcription of the Tumor Suppressor Rb Gene via Binding Competition with Sp1 and Recruitment of Co-repressors*S⃞

    PubMed Central

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-01-01

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp –308 to –188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp –65 to –56) and GC-box 2 (bp –18 to –9), the latter of which is also bound by FBI-1. We found that FRE3 (bp –244 to –236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. PMID:18801742

  20. Characterization of the Raf Kinase Inhibitory Protein (RKIP) Binding Pocket: NMR-Based Screening Identifies Small-Molecule Ligands

    PubMed Central

    Granovsky, Alexey E.; Clark, Mathew M.; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R.; Koide, Shohei

    2010-01-01

    Background Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. Methods/Findings In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. Conclusions/Significance This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential. PMID:20463977

  1. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region.

    PubMed Central

    Stamatoyannopoulos, J A; Goodwin, A; Joyce, T; Lowrey, C H

    1995-01-01

    The beta-like globin genes require the upstream locus control region (LCR) for proper expression. The active elements of the LCR coincide with strong erythroid-specific DNase I-hypersensitive sites (HSs). We have used 5' HS4 as a model to study the formation of these HSs. Previously, we identified a 101 bp element that is required for the formation of this HS. This element binds six proteins in vitro. We now report a mutational analysis of the HS4 HS-forming element (HSFE). This analysis indicates that binding sites for the hematopoietic transcription factors NF-E2 and GATA-1 are required for the formation of the characteristic chromatin structure of the HS following stable transfection into murine erythroleukemia cells. Similarly arranged NF-E2 and GATA binding sites are present in the other HSs of the human LCR, as well as in the homologous mouse and goat sequences and the chicken beta-globin enhancer. A combination of DNase I and micrococcal nuclease sensitivity assays indicates that the characteristic erythroid-specific hypersensitivity of HS4 to DNase I is the result of tissue-specific alterations in both nucleosome positioning and tertiary DNA structure. Images PMID:7828582

  2. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.

    PubMed

    Prokop, Susanne; Perry, Nicole A; Vishnivetskiy, Sergey A; Toth, Andras D; Inoue, Asuka; Milligan, Graeme; Iverson, Tina M; Hunyady, Laszlo; Gurevich, Vsevolod V

    2017-08-01

    Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M 2 muscarinic receptor, so that agonist activation of the M 2 did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M 2 , whereas its interactions with other receptors, including the β 2 -adrenergic receptor and the D 1 and D 2 dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β 2 -adrenergic and D 2 dopamine receptors, while reducing its interaction with the D 1 dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes. Copyright © 2017. Published by Elsevier Inc.

  3. A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica) promotes high salt tolerance in transgenic Arabidopsis.

    PubMed

    Yue, Jing; Li, Cong; Liu, Yuwei; Yu, Jingjuan

    2014-01-01

    Remorin proteins (REMs) form a plant-specific protein family, with some REMs being responsive to abiotic stress. However, the precise functions of REMs in abiotic stress tolerance are not clear. In this study, we identified 11 remorin genes from foxtail millet (Setaria italica) and cloned a remorin gene, SiREM6, for further investigation. The transcript level of SiREM6 was increased by high salt stress, low temperature stress and abscisic acid (ABA) treatment, but not by drought stress. The potential oligomerization of SiREM6 was examined by negative staining electron microscopy. The overexpression of SiREM6 improved high salt stress tolerance in transgenic Arabidopsis at the germination and seedling stages as revealed by germination rate, survival rate, relative electrolyte leakage and proline content. The SiREM6 promoter contains two dehydration responsive elements (DRE) and one ABA responsive element (ABRE). An ABA responsive DRE-binding transcription factor, SiARDP, and an ABRE-binding transcription factor, SiAREB1, were cloned from foxtail millet. SiARDP could physically bind to the DREs, but SiAREB1 could not. These results revealed that SiREM6 is a target gene of SiARDP and plays a critical role in high salt stress tolerance.

  4. ERalpha and AP-1 interact in vivo with a specific sequence of the F promoter of the human ERalpha gene in osteoblasts.

    PubMed

    Lambertini, Elisabetta; Tavanti, Elisa; Torreggiani, Elena; Penolazzi, Letizia; Gambari, Roberto; Piva, Roberta

    2008-07-01

    Estrogen-responsive genes often have an estrogen response element (ERE) positioned next to activator protein-1 (AP-1) binding sites. Considering that the interaction between ERE and AP-1 elements has been described for the modulation of bone-specific genes, we investigated the 17-beta-estradiol responsiveness and the role of these cis-elements present in the F promoter of the human estrogen receptor alpha (ERalpha) gene. The F promoter, containing the sequence analyzed here, is one of the multiple promoters of the human ERalpha gene and is the only active promoter in bone tissue. Through electrophoretic mobility shift (EMSA), chromatin immunoprecipitation (ChIP), and re-ChIP assays, we investigated the binding of ERalpha and four members of the AP-1 family (c-Jun, c-fos, Fra-2, and ATF2) to a region located approximately 800 bp upstream of the transcriptional start site of exon F of the human ERalpha gene in SaOS-2 osteoblast-like cells. Reporter gene assay experiments in combination with DNA binding assays demonstrated that F promoter activity is under the control of upstream cis-acting elements which are recognized by specific combinations of ERalpha, c-Jun, c-fos, and ATF2 homo- and heterodimers. Moreover, ChIP and re-ChIP experiments showed that these nuclear factors bind the F promoter in vivo with a simultaneous occupancy stimulated by 17-beta-estradiol. Taken together, our findings support a model in which ERalpha/AP-1 complexes modulate F promoter activity under conditions of 17-beta-estradiol stimulation. (c) 2008 Wiley-Liss, Inc.

  5. The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells

    PubMed Central

    2010-01-01

    Background The Eight-Twenty-One (ETO) nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16) and myeloid translocation Gene-Related protein 1 (MTGR1). By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and functional promoter elements upstream of the coding sequence of the ETO gene in order to explore lineage-specific hematopoietic expression and get hints to function. Results A putative proximal ETO promoter was identified within 411 bp upstream of the transcription start site. Strong ETO promoter activity was specifically observed upon transfection of a promoter reporter construct into erythroid/megakaryocytic cells, which have endogeneous ETO gene activity. An evolutionary conserved region of 228 bp revealed potential cis-elements involved in transcription of ETO. Disruption of the evolutionary conserved GATA -636 consensus binding site repressed transactivation and disruption of the ETS1 -705 consensus binding site enhanced activity of the ETO promoter. The promoter was stimulated by overexpression of GATA-1 into erythroid/megakaryocytic cells. Electrophoretic mobility shift assay with erythroid/megakaryocytic cells showed specific binding of GATA-1 to the GATA -636 site. Furthermore, results from chromatin immunoprecipitation showed GATA-1 binding in vivo to the conserved region of the ETO promoter containing the -636 site. The results suggest that the GATA -636 site may have a role in activation of the ETO gene activity in cells with erythroid/megakaryocytic potential. Leukemia associated AML1-ETO strongly suppressed an ETO promoter reporter in erythroid/megakaryocytic cells. Conclusions We demonstrate that the GATA-1 transcription factor binds and transactivates the ETO proximal promoter in an erythroid/megakaryocytic-specific manner. Thus, trans-acting factors that are essential in erythroid/megakaryocytic differentiation govern ETO expression. PMID:20487545

  6. Redox regulation of stress signals: possible roles of dendritic stellate TRX producer cells (DST cell types).

    PubMed

    Yodoi, Junji; Nakamura, Hajime; Masutani, Hiroshi

    2002-01-01

    Thioredoxin (TRX) is a 12 kDa protein with redox-active dithiol (Cys-Gly-Pro-Cys) in the active site. TRX is induced by a variety of stresses including viral infection and inflammation. The promoter sequences of the TRX gene contain a series of stress-responsive elements including ORE, ARE, XRE, CRE and SP-1. TRX promotes DNA binding of transcription factors such as NF-kappaB, AP-1 and p53. TRX interacts with target proteins modulating the activity of those proteins. We have identified TRX binding protein-2 (TBP-2), which was identical to vitamin D3 up-regulated protein 1 (VDUP1). Potential action of TBP-2/VDUP1 as a redox-sensitive tumor suppressor will be discussed. There is accumulating evidence for the involvement of TRX in the protection against infectious and inflammatory disorders. We will discuss the role of TRX-dependent redox regulation of the host defense mechanism, in particular its relation to the emerging concept of constitutive and/or inducible TRX on special cell types with dendritic and stellate morphology in the immune, endocrine and nervous systems, which we provisionally designate as dendritic stellate TRX producer cells (DST cell types).

  7. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.

    PubMed

    Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.

  8. Approaches for Investigating Translational Regulation Controlled by PARP1: Biotin-Based UV Cross-Linking and Luciferase Reporter Assay.

    PubMed

    Ji, Yingbiao

    2017-01-01

    The RNA-binding proteins (RBPs) play a pivotal role in controlling gene expression through posttranscriptional processes. As the trans-acting factors, RBPs interact with the cis-regulatory elements located within mRNAs to regulate mRNA translational efficiency. Adding a new-layer regulation, recent studies suggest that poly(ADP-ribosyl)ation of the RNA-binding proteins often inhibit the RNA-binding ability of RBPs, thus regulating RBP-dependent mRNA metabolism including translational control. Here, we describe a biotin-based UV cross-linking method to determine if excessive accumulation of pADPr in the cell disrupts the interaction between RBPs and their target mRNAs. In addition, we illustrate the protocol of using the luciferase reporter assay to determine the effect of poly(ADP-ribosyl)ation on mRNA translation.

  9. ABA signaling in stress-response and seed development.

    PubMed

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  10. Thermodynamic and structural insights into CSL-DNA complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, David R.; Kovall, Rhett A.

    The Notch pathway is an intercellular signaling mechanism that plays important roles in cell fates decisions throughout the developing and adult organism. Extracellular complexation of Notch receptors with ligands ultimately results in changes in gene expression, which is regulated by the nuclear effector of the pathway, CSL (C-promoter binding factor 1 (CBF-1), suppressor of hairless (Su(H)), lin-12 and glp-1 (Lag-1)). CSL is a DNA binding protein that is involved in both repression and activation of transcription from genes that are responsive to Notch signaling. One well-characterized Notch target gene is hairy and enhancer of split-1 (HES-1), which is regulated bymore » a promoter element consisting of two CSL binding sites oriented in a head-to-head arrangement. Although previous studies have identified in vivo and consensus binding sites for CSL, and crystal structures of these complexes have been determined, to date, a quantitative description of the energetics that underlie CSL-DNA binding is unknown. Here, we provide a thermodynamic and structural analysis of the interaction between CSL and the two individual sites that comprise the HES-1 promoter element. Our comprehensive studies that analyze binding as a function of temperature, salt, and pH reveal moderate, but distinct, differences in the affinities of CSL for the two HES-1 binding sites. Similarly, our structural results indicate that overall CSL binds both DNA sites in a similar manner; however, minor changes are observed in both the conformation of CSL and DNA. Taken together, our results provide a quantitative and biophysical basis for understanding how CSL interacts with DNA sites in vivo.« less

  11. Interactions between the R2R3-MYB Transcription Factor, AtMYB61, and Target DNA Binding Sites

    PubMed Central

    Prouse, Michael B.; Campbell, Malcolm M.

    2013-01-01

    Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing). The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators. PMID:23741471

  12. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade

    NASA Astrophysics Data System (ADS)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-04-01

    The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.

  13. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade.

    PubMed

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-04-28

    The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.

  14. Ankyrin Repeat Domain Protein 2 and Inhibitor of DNA Binding 3 Cooperatively Inhibit Myoblast Differentiation by Physical Interaction*

    PubMed Central

    Mohamed, Junaith S.; Lopez, Michael A.; Cox, Gregory A.; Boriek, Aladin M.

    2013-01-01

    Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program. PMID:23824195

  15. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver.

    PubMed

    Xing, Xiaomang; Li, Danyang; Chen, Dilong; Zhou, Liang; Chonan, Ritsu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-10-15

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. [SINEs in mammalian genomes can serve as additional signals in formation of facultative heterochromatin].

    PubMed

    Usmanova, N M; Kazakov, V I; Tomilin, N V

    2008-01-01

    Using computer-based methods we determined the global distribution of short interspersed nuclear elements (SINEs) in the human and mouse X chromosomes. It has been shown that this distributions is similar to the distributions of CpG islands and genes but is different from the distribution of LINE1 elements. Since SINEs (human Alu and mouse B2) may have binding sites for Polycomb protein YY1, we suggest that these repeats can serve as additional signals ("boosters") in Polycomb-dependent silencing of gene rich segments during X inactivation.

  17. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    PubMed

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  18. A dihydropyridine receptor alpha1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor.

    PubMed

    Cui, Yanfang; Tae, Han-Shen; Norris, Nicole C; Karunasekara, Yamuna; Pouliquin, Pierre; Board, Philip G; Dulhunty, Angela F; Casarotto, Marco G

    2009-03-01

    The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.

  19. Curcumin differentially regulates endoplasmic reticulum stress through transcriptional corepressor SMILE (small heterodimer partner-interacting leucine zipper protein)-mediated inhibition of CREBH (cAMP responsive element-binding protein H).

    PubMed

    Misra, Jagannath; Chanda, Dipanjan; Kim, Don-kyu; Li, Tiangang; Koo, Seung-Hoi; Back, Sung-Hoon; Chiang, John Y L; Choi, Hueng-Sik

    2011-12-09

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), is a natural polyphenolic compound. Herein the effect of curcumin on endoplasmic reticulum (ER) stress responsive gene expression was investigated. We report that curcumin induces transcriptional corepressor small heterodimer partner-interacting leucine zipper protein (SMILE) gene expression through liver kinase B1 (LKB1)/adenosine monophosphate-activated kinase (AMPK) signaling pathway and represses ER stress-responsive gene transcription in an ER-bound transcription factor specific manner. cAMP responsive element-binding protein H (CREBH) and activating transcription factor 6 (ATF6) are both ER-bound bZIP family transcription factors that are activated upon ER stress. Of interest, we observed that both curcumin treatment and SMILE overexpression only represses CREBH-mediated transactivation of the target gene but not ATF6-mediated transactivation. Knockdown of endogenous SMILE significantly releases the inhibitory effect of curcumin on CREBH transactivation. Intrinsic repressive activity of SMILE is observed in the Gal4 fusion system, and the intrinsic repressive domain is mapped to the C terminus of SMILE spanning amino acid residues 203-269, corresponding to the basic region leucine zipper (bZIP) domain. In vivo interaction assay revealed that through its bZIP domain, SMILE interacts with CREBH and inhibits its transcriptional activity. Interestingly, we observed that SMILE does not interact with ATF6. Furthermore, competition between SMILE and the coactivator peroxisome proliferator-activated receptor α (PGC-1α) on CREBH transactivation has been demonstrated in vitro and in vivo. Finally, chromatin immunoprecipitation assays revealed that curcumin decreases the binding of PGC-1α and CREBH on target gene promoter in a SMILE-dependent manner. Overall, for the first time we suggest a novel phenomenon that the curcumin/LKB1/AMPK/SMILE/PGC1α pathway differentially regulates ER stress-mediated gene transcription.

  20. Dynamics simulations for engineering macromolecular interactions

    NASA Astrophysics Data System (ADS)

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions.

  1. Dynamics simulations for engineering macromolecular interactions.

    PubMed

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20,000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions.

  2. Specific binding of a Pop6/Pop7 heterodimer to the P3 stem of the yeast RNase MRP and RNase P RNAs.

    PubMed

    Perederina, Anna; Esakova, Olga; Koc, Hasan; Schmitt, Mark E; Krasilnikov, Andrey S

    2007-10-01

    Pop6 and Pop7 are protein subunits of Saccharomyces cerevisiae RNase MRP and RNase P. Here we show that bacterially expressed Pop6 and Pop7 form a soluble heterodimer that binds the RNA components of both RNase MRP and RNase P. Footprint analysis of the interaction between the Pop6/7 heterodimer and the RNase MRP RNA, combined with gel mobility assays, demonstrates that the Pop6/7 complex binds to a conserved region of the P3 domain. Binding of these proteins to the MRP RNA leads to local rearrangement in the structure of the P3 loop and suggests that direct interaction of the Pop6/7 complex with the P3 domain of the RNA components of RNases MRP and P may mediate binding of other protein components. These results suggest a role for a key element in the RNase MRP and RNase P RNAs in protein binding, and demonstrate the feasibility of directly studying RNA-protein interactions in the eukaryotic RNases MRP and P complexes.

  3. A Genomic Response to Trace Fear Conditioning in the Amygdala of Female Rats After Developmental Exposure to Manganese

    EPA Science Inventory

    Increases in brain-derived neurotrophic factor (Bdnf), Ca2+/calmodulin-dependent protein kinase II alpha (Camk2a), and cyclic adenosine monophosphate (cAMP) response element binding (Creb1) gene expression have been associated with learning in a variety of different rodent studie...

  4. Protein Detection via Direct Enzymatic Amplification of Short DNA Aptamers

    PubMed Central

    Fischer, Nicholas O.; Tarasow, Theodore M.; Tok, Jeffrey B.-H.

    2008-01-01

    Aptamers are single-stranded nucleic acids that fold into defined tertiary structures to bind target molecules with high specificities and affinities. DNA aptamers have garnered much interest as recognition elements for biodetection and diagnostic applications due to their small size, ease of discovery and synthesis, and chemical and thermal stability. Herein, we describe the design and application of a short DNA molecule capable of both protein target binding and amplifiable bioreadout processes. As both recognition and readout capabilities are incorporated into a single DNA molecule, tedious conjugation procedures required for protein-DNA hybrids can be omitted. The DNA aptamer is designed to be amplified directly by either the polymerase chain reaction (PCR) or rolling circle amplification (RCA) processes, taking advantage of real-time amplification monitoring techniques for target detection. A combination of both RCA and PCR provides a wide protein target dynamic range (1 μM to 10 pM). PMID:17980857

  5. Murine homeobox-containing gene, Msx-1: analysis of genomic organization, promoter structure, and potential autoregulatory cis-acting elements.

    PubMed

    Kuzuoka, M; Takahashi, T; Guron, C; Raghow, R

    1994-05-01

    Detailed molecular organization of the coding and upstream regulatory regions of the murine homeodomain-containing gene, Msx-1, is reported. The protein-encoding portion of the gene is contained in two exons, 590 and 1214 bp in length, separated by a 2107-bp intron; the homeodomain is located in the second exon. The two-exon organization of the murine Msx-1 gene resembles a number of other homeodomain-containing genes. The 5'-(GTAAGT) and 3'-(CCCTAG) splicing junctions and the mRNA polyadenylation signal (UAUAA) of the murine Msx-1 gene are also characteristic of other vertebrate genes. By nuclease protection and primer extension assays, the start of transcription of the Msx-1 gene was located 256 bp upstream of the first AUG. Computer analysis of the promoter proximal 1280-bp sequence revealed a number of potentially important cis-regulatory sequences; these include the recognition elements for Ap-1, Ap-2, Ap-3, Sp-1, a possible binding site for RAR:RXR, and a number of TCF-1 consensus motifs. Importantly, a perfect reverse complement of (C/G)TTAATTG, which was recently shown to be an optimal binding sequence for the homeodomain of Msx-1 protein (K.M. Catron, N. Iler, and C. Abate (1993) Mol. Cell. Biol. 13:2354-2365), was also located in the murine Msx-1 promoter. Binding of bacterially expressed Msx-1 homeodomain polypeptide to Msx-1-specific oligonucleotide was experimentally demonstrated, raising a distinct possibility of autoregulation of this developmentally regulated gene.

  6. Cloning of cDNA encoding the nuclear form of chicken sterol response element binding protein-2 (SREBP-2), chromosomal localization, and tissue expression of chicken SREBP-1 and -2 genes.

    PubMed

    Assaf, S; Hazard, D; Pitel, F; Morisson, M; Alizadeh, M; Gondret, F; Diot, C; Vignal, A; Douaire, M; Lagarrigue, S

    2003-01-01

    Sterol regulatory element binding protein-1 and -2 (SREBP-1 and -2) are key transcription factors involved in the biosynthesis of cholesterol and fatty adds. The SREBP have mainly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, however, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. As a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we sequenced the cDNA, encoding the mature nuclear form of chicken SREBP-2 protein, mapped SREBP-1 and -2 genes and studied their tissue expressions. The predicted chicken SREBP-2 amino acid sequence shows a 77 to 79% identity with human, mouse, and hamster homologues, with a nearly perfect conservation in all the important functional motifs, basic, helix-loop-helix, and leucine zipper (bHLH-Zip) region as well as cleavage sites. As in the human genome, SREBP-1 and SREBP-2 chicken genes are located on two separate chromosomes, respectively microchromosome 14 and macrochromosome 1. Tissue expression data show that SREBP-1 and SREBP-2 are expressed in a wide variety of tissues in chicken. However, unlike SREBP-2, SREBP-1 is expressed preferentially in the liver and uropygial gland, suggesting an important role of SREBP-1 in the regulation of lipogenesis in avian species.

  7. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1.

    PubMed

    Kim, Hee-Jung; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jaeho; Park, A Young; Kang, Wonmo; Lee, Kong-Joo

    2017-08-04

    When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys 132 disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys 132 was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys 132 in hnRNP K is critical for this inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism

    PubMed Central

    Chen, Lizhen; Du, Shuixian; Lu, Linlin; Lin, Zhonghua; Jin, Wenwen; Hu, Doudou; Jiang, Xiangjun; Xin, Yongning; Xuan, Shiying

    2017-01-01

    There is a genetic susceptibility for nonalcoholic fatty liver disease (NAFLD). To examine the role of genetic factors in the disease, a Bayesian analysis was performed to model gene relationships in NAFLD pathogenesis. The Bayesian analysis indicated a potential gene interaction between the TM6SF2 and PNPLA3 genes. Next, to explore the underlying mechanism at the cellular level, we evaluated the additive effects between the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism. Hepa 1-6 cells were transfected with a control vector or with overexpression vectors for TM6SF2/PNPLA3-wild type, TM6SF2-mutant type, PNPLA3-mutant type, or TM6SF2/PNPLA3-mutant type. Commercial kits were used to measure triglyceride and total cholesterol levels in each of the five groups. The mRNA and protein expression levels of sterol regulatory element-binding transcription factor 1c and fatty acid synthase were analyzed using real-time PCR and western blotting. The triglyceride and total cholesterol contents were significantly different among the groups. The triglyceride and total cholesterol contents and the sterol regulatory element-binding transcription factor 1c and fatty acid synthase mRNA and protein expression levels were significantly higher in the TM6SF2/PNPLA3-mutant type group than in the TM6SF2-mutant type group or the PNPLA3-mutant type group. The TM6SF2 E167K and PNPLA3 I148M polymorphisms may have additive effects on lipid metabolism by increasing the expression of sterol regulatory element-binding transcription factor 1c and fatty acid synthase. PMID:29088779

  9. The additive effects of the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism.

    PubMed

    Chen, Lizhen; Du, Shuixian; Lu, Linlin; Lin, Zhonghua; Jin, Wenwen; Hu, Doudou; Jiang, Xiangjun; Xin, Yongning; Xuan, Shiying

    2017-09-26

    There is a genetic susceptibility for nonalcoholic fatty liver disease (NAFLD). To examine the role of genetic factors in the disease, a Bayesian analysis was performed to model gene relationships in NAFLD pathogenesis. The Bayesian analysis indicated a potential gene interaction between the TM6SF2 and PNPLA3 genes. Next, to explore the underlying mechanism at the cellular level, we evaluated the additive effects between the TM6SF2 E167K and PNPLA3 I148M polymorphisms on lipid metabolism. Hepa 1-6 cells were transfected with a control vector or with overexpression vectors for TM6SF2/PNPLA3-wild type, TM6SF2-mutant type, PNPLA3-mutant type, or TM6SF2/PNPLA3-mutant type. Commercial kits were used to measure triglyceride and total cholesterol levels in each of the five groups. The mRNA and protein expression levels of sterol regulatory element-binding transcription factor 1c and fatty acid synthase were analyzed using real-time PCR and western blotting. The triglyceride and total cholesterol contents were significantly different among the groups. The triglyceride and total cholesterol contents and the sterol regulatory element-binding transcription factor 1c and fatty acid synthase mRNA and protein expression levels were significantly higher in the TM6SF2/PNPLA3-mutant type group than in the TM6SF2-mutant type group or the PNPLA3-mutant type group. The TM6SF2 E167K and PNPLA3 I148M polymorphisms may have additive effects on lipid metabolism by increasing the expression of sterol regulatory element-binding transcription factor 1c and fatty acid synthase.

  10. Interaction of Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) with erythrocyte ankyrin R is required for its attachment to the erythrocyte membrane.

    PubMed

    Weng, Haibo; Guo, Xinhua; Papoin, Julien; Wang, Jie; Coppel, Ross; Mohandas, Narla; An, Xiuli

    2014-01-01

    The malaria parasite Plasmodium falciparum exports a large number of proteins into the erythrocyte cytoplasm during the asexual intraerythrocytic stage of its life cycle. A subset of these proteins interacts with erythrocyte membrane skeletal proteins and grossly alters the structure and function of the membrane. Several of the exported proteins, such as PfEMP1, PfEMP3, RESA and KAHRP, interact with the preponderant erythrocyte skeleton protein, spectrin. Here we have searched for possible interaction of these four malaria proteins with another major erythrocyte skeleton protein, ankyrin R. We have shown that KAHRP, but none of the other three, binds to ankyrin R. We have mapped the binding site for ankyrin R to a 79-residue segment of the KAHRP sequence, and the reciprocal binding site for KAHRP in ankyrin R to a subdomain (D3) of the 89kDa ankyrin R membrane-binding domain. Interaction of intact ankyrin R with KAHRP was inhibited by the free D3 subdomain. When, moreover, red cells loaded with the soluble D3 subdomain were infected with P. falciparum, KAHRP secreted by the intraerythrocytic parasite no longer migrated to the host cell membrane, but remained diffusely distributed throughout the cytosol. Our findings suggest a potentially important role for interaction of KAHRP with red cell membrane skeleton in promoting the adhesion of malaria-infected red cells to endothelial surfaces, a central element in the pathophysiology of malaria. © 2013.

  11. Identification and Validation of Novel Small Molecule Disruptors of HuR-mRNA Interaction

    PubMed Central

    Wu, Xiaoqing; Lan, Lan; Wilson, David Michael; Marquez, Rebecca T.; Tsao, Wei-chung; Gao, Philip; Roy, Anuradha; Turner, Benjamin Andrew; McDonald, Peter; Tunge, Jon A; Rogers, Steven A; Dixon, Dan A.; Aubé, Jeffrey; Xu, Liang

    2015-01-01

    HuR, an RNA binding protein, binds to adenine- and uridine-rich elements (ARE) in the 3′-untranslated region (UTR) of target mRNAs, regulating their stability and translation. HuR is highly abundant in many types of cancer, and it promotes tumorigenesis by interacting with cancer-associated mRNAs, which encode proteins that are implicated in different tumor processes including cell proliferation, cell survival, angiogenesis, invasion, and metastasis. Drugs that disrupt the stabilizing effect of HuR upon mRNA targets could have dramatic effects on inhibiting cancer growth and persistence. In order to identify small molecules that directly disrupt the HuR–ARE interaction, we established a fluorescence polarization (FP) assay optimized for high throughput screening (HTS) using HuR protein and an ARE oligo from Musashi RNA-binding protein 1 (Msi1) mRNA, a HuR target. Following the performance of an HTS of ~6000 compounds, we discovered a cluster of potential disruptors, which were then validated by AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay), surface plasmon resonance (SPR), ribonucleoprotein immunoprecipitation (RNP IP) assay, and luciferase reporter functional studies. These compounds disrupted HuR–ARE interactions at the nanomolar level and blocked HuR function by competitive binding to HuR. These results support future studies toward chemical probes for a HuR function study and possibly a novel therapy for HuR-overexpressing cancers. PMID:25750985

  12. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein.

    PubMed

    Sharma, Monika; Anirudh, C R

    2017-10-03

    STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.

  13. LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner

    PubMed Central

    Mattijssen, Sandy

    2015-01-01

    LARP4 is a protein with unknown function that independently binds to poly(A) RNA, RACK1, and the poly(A)-binding protein (PABPC1). Here, we report on its regulation. We found a conserved AU-rich element (ARE) in the human LARP4 mRNA 3′ untranslated region (UTR). This ARE, but not its antisense version or a point-mutated version, significantly decreased the stability of β-globin reporter mRNA. We found that overexpression of tristetraprolin (TTP), but not its RNA binding mutant or the other ARE-binding proteins tested, decreased cellular LARP4 levels. RNA coimmunoprecipitation showed that TTP specifically associated with LARP4 mRNA in vivo. Consistent with this, mouse LARP4 accumulated to higher levels in TTP gene knockout (KO) cells than in control cells. Stimulation of WT cells with tumor necrosis factor alpha (TNF-α), which rapidly induces TTP, robustly decreased LARP4 with a coincident time course but had no such effect on LARP4B or La protein or on LARP4 in the TTP KO cells. The TNF-α-induced TTP pulse was followed by a transient decrease in LARP4 mRNA that was quickly followed by a subsequent transient decrease in LARP4 protein. Involvement of LARP4 as a target of TNF-α–TTP regulation provides a clue as to how its functional activity may be used in a physiologic pathway. PMID:26644407

  14. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins.

    PubMed

    Koch, C A; Anderson, D; Moran, M F; Ellis, C; Pawson, T

    1991-05-03

    Src homology (SH) regions 2 and 3 are noncatalytic domains that are conserved among a series of cytoplasmic signaling proteins regulated by receptor protein-tyrosine kinases, including phospholipase C-gamma, Ras GTPase (guanosine triphosphatase)-activating protein, and Src-like tyrosine kinases. The SH2 domains of these signaling proteins bind tyrosine phosphorylated polypeptides, implicated in normal signaling and cellular transformation. Tyrosine phosphorylation acts as a switch to induce the binding of SH2 domains, thereby mediating the formation of heteromeric protein complexes at or near the plasma membrane. The formation of these complexes is likely to control the activation of signal transduction pathways by tyrosine kinases. The SH3 domain is a distinct motif that, together with SH2, may modulate interactions with the cytoskeleton and membrane. Some signaling and transforming proteins contain SH2 and SH3 domains unattached to any known catalytic element. These noncatalytic proteins may serve as adaptors to link tyrosine kinases to specific target proteins. These observations suggest that SH2 and SH3 domains participate in the control of intracellular responses to growth factor stimulation.

  15. Activation of Basal Gluconeogenesis by Coactivator p300 Maintains Hepatic Glycogen Storage

    PubMed Central

    Cao, Jia; Meng, Shumei; Ma, Anlin; Radovick, Sally; Wondisford, Fredric E.

    2013-01-01

    Because hepatic glycogenolysis maintains euglycemia during early fasting, proper hepatic glycogen synthesis in the fed/postprandial states is critical. It has been known for decades that gluconeogenesis is essential for hepatic glycogen synthesis; however, the molecular mechanism remains unknown. In this report, we show that depletion of hepatic p300 reduces glycogen synthesis, decreases hepatic glycogen storage, and leads to relative hypoglycemia. We previously reported that insulin suppressed gluconeogenesis by phosphorylating cAMP response element binding protein-binding protein (CBP) at S436 and disassembling the cAMP response element-binding protein-CBP complex. However, p300, which is closely related to CBP, lacks the corresponding S436 phosphorylation site found on CBP. In a phosphorylation-competent p300G422S knock-in mouse model, we found that mutant mice exhibited reduced hepatic glycogen content and produced significantly less glycogen in a tracer incorporation assay in the postprandial state. Our study demonstrates the important and unique role of p300 in glycogen synthesis through maintaining basal gluconeogenesis. PMID:23770612

  16. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion.

    PubMed

    Rodríguez, Diana Marcela; Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2012-12-01

    Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Protein Determinants of Meiotic DNA Break Hotspots

    PubMed Central

    Fowler, Kyle R.; Gutiérrez-Velasco, Susana

    2013-01-01

    SUMMARY Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is an unsolved problem, although transcription factors determine some hotspots. We report the discovery that three coiled-coil proteins – Rec25, Rec27, and Mug20 – bind essentially all hotspots with unprecedented specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose a new paradigm for hotspot determination and crossover control by linear element proteins. PMID:23395004

  18. Identification of the SRC pyrimidine-binding protein (SPy) as hnRNP K: implications in the regulation of SRC1A transcription

    PubMed Central

    Ritchie, Shawn A.; Pasha, Mohammed K.; Batten, Danielle J. P.; Sharma, Rajendra K.; Olson, Douglas J. H.; Ross, Andrew R. S.; Bonham, Keith

    2003-01-01

    The human SRC gene encodes pp60c–src, a non-receptor tyrosine kinase involved in numerous signaling pathways. Activation or overexpression of c-Src has also been linked to a number of important human cancers. Transcription of the SRC gene is complex and regulated by two closely linked but highly dissimilar promoters, each associated with its own distinct non-coding exon. In many tissues SRC expression is regulated by the housekeeping-like SRC1A promoter. In addition to other regulatory elements, three substantial polypurine:polypyrimidine (TC) tracts within this promoter are required for full transcriptional activity. Previously, we described an unusual factor called SRC pyrimidine-binding protein (SPy) that could bind to two of these TC tracts in their double-stranded form, but was also capable of interacting with higher affinity to all three pyrimidine tracts in their single-stranded form. Mutations in the TC tracts, which abolished the ability of SPy to interact with its double-stranded DNA target, significantly reduced SRC1A promoter activity, especially in concert with mutations in critical Sp1 binding sites. Here we expand upon our characterization of this interesting factor and describe the purification of SPy from human SW620 colon cancer cells using a DNA affinity-based approach. Subsequent in-gel tryptic digestion of purified SPy followed by MALDI-TOF mass spectrometric analysis identified SPy as heterogeneous nuclear ribonucleoprotein K (hnRNP K), a known nucleic-acid binding protein implicated in various aspects of gene expression including transcription. These data provide new insights into the double- and single-stranded DNA-binding specificity, as well as functional properties of hnRNP K, and suggest that hnRNP K is a critical component of SRC1A transcriptional processes. PMID:12595559

  19. A novel member of the SAF (scaffold attachment factor)-box protein family inhibits gene expression and induces apoptosis

    PubMed Central

    Chan, Ching Wan; Lee, Youn-Bok; Uney, James; Flynn, Andrea; Tobias, Jonathan H.; Norman, Michael

    2007-01-01

    The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels. PMID:17630952

  20. Hypolipidemic activity and mechanisms of the total phenylpropanoid glycosides from Ligustrum robustum (Roxb.) Blume by AMPK-SREBP-1c pathway in hamsters fed a high-fat diet.

    PubMed

    Yang, Runmei; Chu, Xinxin; Sun, Le; Kang, Zhuoying; Ji, Min; Yu, Ying; Liu, Ying; He, Zhendan; Gao, Nannan

    2018-04-01

    The aim of this study was to evaluate the hypolipidemic effect and mechanisms of total phenylpropanoid glycosides extracted from Ligustrum robustum (Roxb.) Blume (LRTPG) in hamsters fed a high-fat diet and to discover bioactive components in HepG2 cell model induced by oleic acid. LRTPG of high (1.2 g/kg), medium (0.6 g/kg), and low (0.3 g/kg) doses was administrated daily for 21 consecutive days in hamsters. We found that in hamsters fed a high-fat diet, LRTPG effectively reduced the concentrations of plasma triglycerides (TG), free fatty acid, total cholesterol, low-density lipoprotein cholesterol, and hepatic TG and total cholesterol. And the compounds acteoside, ligupurpuroside A, ligupurpuroside C, and ligupurpuroside D significantly inhibited lipid accumulation in HepG2 cell at the concentration of 50 μmol/L. Mechanism research demonstrated that LRTPG increased the levels of phospho-AMP-activated protein kinase and phospho-sterol regulatory element binding protein-1c in liver, further to suppress the downstream lipogenic genes as stearoyl-CoA desaturase 1, glycerol-3-phosphate acyltransferase, 1-acylglycerol-3-phosphate O-acyltransferase 2, and diacylglycerol acyltransferase 2. In addition, LRTPG increased the hydrolysis of circulating TG by up-regulating lipoprotein lipase activities. These results indicate that LRTPG prevents hyperlipidemia via activation of hepatic AMP-activated protein kinase-sterol regulatory element binding protein-1c pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Sulphonated Formononetin Induces Angiogenesis through Vascular Endothelial Growth Factor/cAMP Response Element-Binding Protein/Early Growth Response 3/Vascular Cell Adhesion Molecule 1 and Wnt/β-Catenin Signaling Pathway.

    PubMed

    Dong, Zhaoju; Shi, Yanan; Zhao, Huijuan; Li, Ning; Ye, Liang; Zhang, Shuping; Zhu, Haibo

    2018-01-01

    Sodium formononetin-3'-sulphonate (Sul-F) is a derivative of the isoflavone formononetin. In this study, we investigated whether Sul-F can regulate angiogenesis and the potential mechanism in vitro. We examined the effects of Sul-F on cell proliferation, cell invasion, and tube formation in the human umbilical vein endothelial cell line (HUVEC). To better understand the mechanism involved, we investigated effects of the following compounds: cAMP response element-binding protein (CREB) inhibitor 2-naphthol-AS-E-phosphate (KG-501), early growth response 3 (Egr-3) siRNA, vascular endothelial growth factor (VEGF) antagonist soluble VEGF receptor 1 (sFlt-1), VEGF receptor 2 blocker SU-1498, Wnt5a antagonist WIF-1 recombinant protein (WIF-1), and inhibitor of Wnt/β-catenin recombinant Dickkopf-1 protein (DKK-1). HUVEC proliferation was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). A scratch adhesion test was used to assess cell invasion ability. Matrigel tube formation assay was performed to test capillary tube formation ability. Activation of the VEGF/CREB/Egr-3/Vascular cell adhesion molecule 1 (VCAM-1) pathway in HUVEC was tested by Western blot analysis. Our results suggest that Sul-F induced angiogenesis in vitro by enhancing cell proliferation, invasion, and tube formation. The increase in proliferation and tube formation by Sul-F was counteracted by DKK-1, WIF-1, SU1498, KG-501, sFlt-1, and Egr-3 siRNA. These results may suggest that Sul-F induces angiogenesis in vitro via a programed Wnt/β-catenin pathway and VEGF/CREB/Egr-3/VCAM-1 signaling axis. © 2017 S. Karger AG, Basel.

  2. The Yeast Anaerobic Response Element AR1b Regulates Aerobic Antifungal Drug-dependent Sterol Gene Expression*

    PubMed Central

    Gallo-Ebert, Christina; Donigan, Melissa; Liu, Hsing-Yin; Pascual, Florencia; Manners, Melissa; Pandya, Devanshi; Swanson, Robert; Gallagher, Denise; Chen, WeiWei; Carman, George M.; Nickels, Joseph T.

    2013-01-01

    Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections. PMID:24163365

  3. The poly(rC)-binding protein αCP2 is a noncanonical factor in X. laevis cytoplasmic polyadenylation

    PubMed Central

    Vishnu, Melanie R.; Sumaroka, Marina; Klein, Peter S.; Liebhaber, Stephen A.

    2011-01-01

    Post-transcriptional control of mRNA stability and translation is central to multiple developmental pathways. This control can be linked to cytoplasmic polyadenylation in certain settings. In maturing Xenopus oocytes, specific mRNAs are targeted for polyadenylation via recruitment of the Cytoplasmic Polyadenylation Element (CPE) binding protein (CPEB) to CPE(s) within the 3′ UTR. Cytoplasmic polyadenylation is also critical to early embryonic events, although corresponding determinants are less defined. Here, we demonstrate that the Xenopus ortholog of the poly(rC) binding protein αCP2 can recruit cytoplasmic poly(A) polymerase activity to mRNAs in Xenopus post-fertilization embryos, and that this recruitment relies on cis sequences recognized by αCP2. We find that the hα-globin 3′ UTR, a validated mammalian αCP2 target, constitutes an effective target for cytoplasmic polyadenylation in Xenopus embryos, but not during Xenopus oocyte maturation. We further demonstrate that the cytoplasmic polyadenylation activity is dependent on the action of the C-rich αCP-binding site in conjunction with the adjacent AAUAAA. Consistent with its ability to target mRNA for poly(A) addition, we find that XαCP2 associates with core components of the Xenopus cytoplasmic polyadenylation complex, including the cytoplasmic poly(A) polymerase XGLD2. Furthermore, we observe that the C-rich αCP-binding site can robustly enhance the activity of a weak canonical oocyte maturation CPE in early embryos, possibly via a direct interaction between XαCP2 and CPEB1. These studies establish XαCP2 as a novel cytoplasmic polyadenylation trans factor, indicate that C-rich sequences can function as noncanonical cytoplasmic polyadenylation elements, and expand our understanding of the complexities underlying cytoplasmic polyadenylation in specific developmental settings. PMID:21444632

  4. Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells.

    PubMed

    Woods, Alison J; Roberts, Marnie S; Choudhary, Jyoti; Barry, Simon T; Mazaki, Yuichi; Sabe, Hisataka; Morley, Simon J; Critchley, David R; Norman, Jim C

    2002-02-22

    Using mass spectrometry we have identified proteins which co-immunoprecipitate with paxillin, an adaptor protein implicated in the integrin-mediated signaling pathways of cell motility. A major component of paxillin immunoprecipitates was poly(A)-binding protein 1, a 70-kDa mRNA-binding protein. Poly(A)-binding protein 1 associated with both the alpha and beta isoforms of paxillin, and this was unaffected by RNase treatment consistent with a protein-protein interaction. The NH(2)-terminal region of paxillin (residues 54-313) associated directly with poly(A)-binding protein 1 in cell lysates, and with His-poly(A)-binding protein 1 immobilized in microtiter wells. Binding was specific, saturable and of high affinity (K(d) of approximately 10 nm). Cell fractionation studies showed that at steady state, the bulk of paxillin and poly(A)-binding protein 1 was present in the "dense" polyribosome-associated endoplasmic reticulum. However, inhibition of nuclear export with leptomycin B caused paxillin and poly(A)-binding protein 1 to accumulate in the nucleus, indicating that they shuttle between the nuclear and cytoplasmic compartments. When cells migrate, poly(A)-binding protein 1 colocalized with paxillin-beta at the tips of lamellipodia. Our results suggest a new mechanism whereby a paxillin x poly(A)-binding protein 1 complex facilitates transport of mRNA from the nucleus to sites of protein synthesis at the endoplasmic reticulum and the leading lamella during cell migration.

  5. Specific DNA binding of a potential transcriptional regulator, inosine 5'-monophosphate dehydrogenase-related protein VII, to the promoter region of a methyl coenzyme m reductase I-encoding operon retrieved from Methanothermobacter thermautotrophicus strain DeltaH.

    PubMed

    Shinzato, Naoya; Enoki, Miho; Sato, Hiroaki; Nakamura, Kohei; Matsui, Toru; Kamagata, Yoichi

    2008-10-01

    Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH are expressed in response to H(2) availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cultures restricted them to 46- and 41-bp-long mcr and mrt upstream regions, respectively. Affinity particle purification of DNA-binding proteins conjugated with putative operator regions resulted in the retrieval of a protein attributed to IMP dehydrogenase-related protein VII (IMPDH VII). IMPDH VII is predicted to have a winged helix-turn-helix DNA-binding motif and two cystathionine beta-synthase domains, and it has been suspected to be an energy-sensing module. EMSA with oligonucleotide probes with unusual sequences showed that the binding site of IMPDH VII mostly overlaps the factor B-responsible element-TATA box of the mcr operon. The results presented here suggest that IMPDH VII encoded by MTH126 is a plausible candidate for the transcriptional regulator of the mcr operon in this methanogen.

  6. RNA-Binding Proteins in Female Reproductive Pathologies.

    PubMed

    Khalaj, Kasra; Miller, Jessica E; Fenn, Christian R; Ahn, SooHyun; Luna, Rayana L; Symons, Lindsey; Monsanto, Stephany P; Koti, Madhuri; Tayade, Chandrakant

    2017-06-01

    RNA-binding proteins are key regulatory molecules involved primarily in post-transcriptional gene regulation of RNAs. Post-transcriptional gene regulation is critical for adequate cellular growth and survival. Recent reports have shown key interactions between these RNA-binding proteins and other regulatory elements, such as miRNAs and long noncoding RNAs, either enhancing or diminishing their response to RNA stabilization. Many RNA-binding proteins have been reported to play a functional role in mediation of cytokines involved in inflammation and immune dysfunction, and some have been classified as global post-transcriptional regulators of inflammation. The ubiquitous expression of RNA-binding proteins in a wide variety of cell types and their unique mechanisms of degradative action provide evidence that they are involved in reproductive tract pathologies. Aberrant inflammation and immune dysfunction are major contributors to the pathogenesis and disease pathophysiology of many reproductive pathologies, including ovarian and endometrial cancers in the female reproductive tract. Herein, we discuss various RNA-binding proteins and their unique contributions to female reproductive pathologies with a focus on those mediated by aberrant inflammation and immune dysfunction. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Metal dealing at the origin of the Chordata phylum: the metallothionein system and metal overload response in amphioxus.

    PubMed

    Guirola, Maria; Pérez-Rafael, Sílvia; Capdevila, Mercè; Palacios, Oscar; Atrian, Sílvia

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd-thioneins or Cu-thioneins, according to the ecophysiological needs of each kind of organisms.

  8. Metal Dealing at the Origin of the Chordata Phylum: The Metallothionein System and Metal Overload Response in Amphioxus

    PubMed Central

    Capdevila, Mercè; Palacios, Òscar; Atrian, Sílvia

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd-thioneins or Cu-thioneins, according to the ecophysiological needs of each kind of organisms. PMID:22905252

  9. Fibroblast growth factor 2 regulates bone sialoprotein gene transcription in human breast cancer cells.

    PubMed

    Li, Zhengyang; Wang, Zhitao; Yang, Li; Li, Xinyue; Sasaki, Yoko; Wang, Shuang; Araki, Shouta; Mezawa, Masaru; Takai, Hideki; Nakayama, Youhei; Ogata, Yorimasa

    2010-03-01

    Bone sialoprotein (BSP) is a major non-collagenous, extracellular matrix glycoprotein associated with mineralized tissues. Fibroblast growth factor 2 (FGF2) is recognized as a potent mitogen for a variety of mesenchymal cells. FGF2 produced by osteoblasts accumulates in the bone matrix and acts as an autocrine/paracrine regulator of osteoblasts. We previously reported that FGF2 regulates BSP gene transcription through the FGF2 response element (FRE) and activator protein 1 (AP1) binding site overlapping with the glucocorticoid response element in the rat BSP gene promoter. In the present study, FGF2 (10 ng/ml) increased BSP and Runx2 mRNA levels at 6 h in MCF7 human breast cancer cells. Transient transfection analyses were performed using chimeric constructs of the human BSP gene promoter linked to a luciferase reporter gene. Treatment of MCF7 cells with FGF2 (10 ng/ml) increased the luciferase activity of the constructs between -84LUC and -927LUC. Gel mobility shift analyses showed that FGF2 increased the binding of AP1 and CRE2. The CRE2- and AP1-protein complexes were disrupted by antibodies against CREB1, c-Fos, c-Jun, Fra2, p300 and Runx2. These studies demonstrate that FGF2 stimulates BSP transcription in MCF7 human breast cancer cells by targeting the AP1 and CRE2 elements in the human BSP gene promoter.

  10. Gammaretroviral pol sequences act in cis to direct polysome loading and NXF1/NXT-dependent protein production by gag-encoded RNA.

    PubMed

    Bartels, Hanni; Luban, Jeremy

    2014-09-12

    All retroviruses synthesize essential proteins via alternatively spliced mRNAs. Retrovirus genera, though, exploit different mechanisms to coordinate the synthesis of proteins from alternatively spliced mRNAs. The best studied of these retroviral, post-transcriptional effectors are the trans-acting Rev protein of lentiviruses and the cis-acting constitutive transport element (CTE) of the betaretrovirus Mason-Pfizer monkey virus (MPMV). How members of the gammaretrovirus genus translate protein from unspliced RNA has not been elucidated. The mechanism by which two gammaretroviruses, XMRV and MLV, synthesize the Gag polyprotein (Pr65Gag) from full-length, unspliced mRNA was investigated here. The yield of Pr65Gag from a gag-only expression plasmid was found to be at least 30-fold less than that from an otherwise isogenic gag-pol expression plasmid. A frameshift mutation disrupting the pol open reading frame within the gag-pol expression plasmid did not decrease Pr65Gag production and 398 silent nucleotide changes engineered into gag rendered Pr65Gag synthesis pol-independent. These results are consistent with pol-encoded RNA acting in cis to promote Pr65Gag translation. Two independently-acting pol fragments were identified by screening 17 pol deletion mutations. To determine the mechanism by which pol promoted Pr65Gag synthesis, gag RNA in total and cytoplasmic fractions was quantitated by northern blot and by RT-PCR. The pol sequences caused, maximally, three-fold increase in total or cytoplasmic gag mRNA. Instead, pol sequences increased gag mRNA association with polyribosomes ~100-fold, a magnitude sufficient to explain the increase in Pr65Gag translation efficiency. The MPMV CTE, an NXF1-binding element, substituted for pol in promoting Pr65Gag synthesis. A pol RNA stem-loop resembling the CTE promoted Pr65Gag synthesis. Over-expression of NXF1 and NXT, host factors that bind to the MPMV CTE, synergized with pol to promote gammaretroviral gag RNA loading onto polysomes and to increase Pr65Gag synthesis. Conversely, Gag polyprotein synthesis was decreased by NXF1 knockdown. Finally, overexpression of SRp20, a shuttling protein that binds to NXF1 and promotes NXF1 binding to RNA, also increased gag RNA loading onto polysomes and increased Pr65Gag synthesis. These experiments demonstrate that gammaretroviral pol sequences act in cis to recruit NXF1 and SRp20 to promote polysome loading of gag RNA and, thereby license the synthesis of Pr65Gag from unspliced mRNA.

  11. Synthesis, characterization, crystal structure and DNA-binding studies of transition metal hydrazone complexes

    NASA Astrophysics Data System (ADS)

    Kanchanadevi, S.; Parveen, S.; Mahalingam, V.

    2018-04-01

    Three new complexes containing salicylaldazine (HL) ligand were synthesised by reacting suitable precursor complex [MCl2(PPh3)2] with the ligand (where M = Cu(II) or Ni(II) or Co(II)). The new complexes were characterised by various spectral studies such as IR, UV-Vis,1H NMR,EPR,fluorescence and elemental analyses. The binding modes of the complexes with HS-DNA have been studied by UV-Vis absorption titration. Binding of the complexes with bovine serum albumin (BSA) protein has been investigated using UV-visible, fluorescence and synchronous fluorescence spectroscopic methods. Redox behaviour of the complexes has been investigated by cyclic voltammetry.

  12. Modulation of Enhancer Looping and Differential Gene Targeting by Epstein-Barr Virus Transcription Factors Directs Cellular Reprogramming

    PubMed Central

    McClellan, Michael J.; Wood, C. David; Ojeniyi, Opeoluwa; Cooper, Tim J.; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M.; Palermo, Richard D.; Harth-Hertle, Marie L.; Kempkes, Bettina; Jenner, Richard G.; West, Michelle J.

    2013-01-01

    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors. PMID:24068937

  13. Transcriptional regulation of genes related to progesterone production.

    PubMed

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  14. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  15. Identification of a negative element in the human vimentin promoter: modulation by the human T-cell leukemia virus type I Tax protein.

    PubMed Central

    Salvetti, A; Lilienbaum, A; Li, Z; Paulin, D; Gazzolo, L

    1993-01-01

    The vimentin gene is a member of the intermediate filament multigene family and encodes a protein expressed, in vivo, in all mesenchymal derivatives and, in vitro, in cell types of various origin. We have previously demonstrated that the expression of this growth-regulated gene could be trans activated by the 40-kDa Tax protein of HTLV-I (human T-cell leukemia virus type I) and that responsiveness to this viral protein was mediated by the presence of an NF-kappa B binding site located between -241 and -210 bp upstream of the mRNA cap site (A. Lilienbaum, M. Duc Dodon, C. Alexandre, L. Gazzolo, and D. Paulin, J. Virol. 64:256-263, 1990). These previous assays, performed with deletion mutants of the vimentin promoter linked to the chloramphenicol acetyltransferase gene, also revealed the presence of an upstream negative region between -529 and -241 bp. Interestingly, the inhibitory activity exerted by this negative region was overcome after cotransfection of a Tax-expressing plasmid. In this study, we further characterize the vimentin negative element and define the effect of the Tax protein on the inhibitory activity of this element. We first demonstrate that a 187-bp domain (-424 to -237 bp) behaves as a negative region when placed upstream either of the NF-kappa B binding site of vimentin or of a heterologous enhancer such as that present in the desmin gene promoter. The negative effect can be further assigned to a 32-bp element which is indeed shown to repress the basal or induced activity of the NF-kappa B binding site.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8417364

  16. Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus

    PubMed Central

    Moszczynska, Anna; Burghardt, Kyle J.; Yu, Dongyue

    2017-01-01

    Short interspersed elements (SINEs) are typically silenced by DNA hypermethylation in somatic cells, but can retrotranspose in proliferating cells during adult neurogenesis. Hypomethylation caused by disease pathology or genotoxic stress leads to genomic instability of SINEs. The goal of the present investigation was to determine whether neurotoxic doses of binge or chronic methamphetamine (METH) trigger retrotransposition of the identifier (ID) element, a member of the rat SINE family, in the dentate gyrus genomic DNA. Adult male Sprague-Dawley rats were treated with saline or high doses of binge or chronic METH and sacrificed at three different time points thereafter. DNA methylation analysis, immunohistochemistry and next-generation sequencing (NGS) were performed on the dorsal dentate gyrus samples. Binge METH triggered hypomethylation, while chronic METH triggered hypermethylation of the CpG-2 site. Both METH regimens were associated with increased intensities in poly(A)-binding protein 1 (PABP1, a SINE regulatory protein)-like immunohistochemical staining in the dentate gyrus. The amplification of several ID element sequences was significantly higher in the chronic METH group than in the control group a week after METH, and they mapped to genes coding for proteins regulating cell growth and proliferation, transcription, protein function as well as for a variety of transporters. The results suggest that chronic METH induces ID element retrotransposition in the dorsal dentate gyrus and may affect hippocampal neurogenesis. PMID:28272323

  17. [Determination of plasma protein binding rate of arctiin and arctigenin with ultrafiltration].

    PubMed

    Han, Xue-Ying; Wang, Wei; Tan, Ri-Qiu; Dou, De-Qiang

    2013-02-01

    To determine the plasma protein binding rate of arctiin and arctigenin. The ultrafiltration combined with HPLC was employed to determine the plasma protein binding rate of arctiin and arctigenin as well as rat plasma and healthy human plasma proteins. The plasma protein binding rate of arctiin with rat plasma at the concentrations of 64. 29, 32.14, 16.07 mg x L(-1) were (71.2 +/- 2.0)%, (73.4 +/- 0.61)%, (78.2 +/- 1.9)%, respectively; while the plasma protein binding rate of arctiin with healthy human plasma at the above concentrations were (64.8 +/- 3.1)%, (64.5 +/- 2.5)%, (77.5 +/- 1.7)%, respectively. The plasma protein binding rate of arctigenin with rat plasma at the concentrations of 77.42, 38.71, 19.36 mg x L(-1) were (96.7 +/- 0.41)%, (96.8 +/- 1.6)%, (97.3 +/- 0.46)%, respectively; while the plasma protein binding rate of arctigenin with normal human plasma at the above concentrations were (94.7 +/- 3.1)%, (96.8 +/- 1.6)%, (97.9 +/- 1.3)%, respectively. The binding rate of arctiin with rat plasma protein was moderate, which is slightly higher than the binding rate of arctiin with healthy human plasma protein. The plasma protein binding rates of arctigenin with both rat plasma and healthy human plasma are very high.

  18. Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human Bocavirus 1 Genome

    PubMed Central

    Shen, Weiran; Deng, Xuefeng; Zou, Wei; Engelhardt, John F.; Yan, Ziying

    2016-01-01

    ABSTRACT Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. IMPORTANCE Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1 capsid has been developed to efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to human airway epithelia. Here, we identified both cis-acting elements and trans-acting proteins that are required for HBoV1 DNA replication at the right-end hairpin in HEK293 cells. We localized the minimal replication origin, which contains both NS1 nicking and binding sites, to a 46-nucleotide sequence in the right-end hairpin. The identification of these essential elements of HBoV1 DNA replication acting both in cis and in trans will provide guidance to develop antiviral strategies targeting viral DNA replication at the right-end hairpin and to design next-generation recombinant HBoV1 vectors, a promising tool for gene therapy of lung diseases. PMID:27334591

  19. Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human Bocavirus 1 Genome.

    PubMed

    Shen, Weiran; Deng, Xuefeng; Zou, Wei; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2016-09-01

    Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1 capsid has been developed to efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to human airway epithelia. Here, we identified both cis-acting elements and trans-acting proteins that are required for HBoV1 DNA replication at the right-end hairpin in HEK293 cells. We localized the minimal replication origin, which contains both NS1 nicking and binding sites, to a 46-nucleotide sequence in the right-end hairpin. The identification of these essential elements of HBoV1 DNA replication acting both in cis and in trans will provide guidance to develop antiviral strategies targeting viral DNA replication at the right-end hairpin and to design next-generation recombinant HBoV1 vectors, a promising tool for gene therapy of lung diseases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Functional analysis of the glycogen binding subunit CG9238/Gbs-70E of protein phosphatase 1 in Drosophila melanogaster.

    PubMed

    Kerekes, Éva; Kókai, Endre; Páldy, Ferenc Sándor; Dombrádi, Viktor

    2014-06-01

    The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D. melanogaster. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top