A Summary of the Space-Time Conservation Element and Solution Element (CESE) Method
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.
2015-01-01
The space-time Conservation Element and Solution Element (CESE) method for solving conservation laws is examined for its development motivation and design requirements. The characteristics of the resulting scheme are discussed. The discretization of the Euler equations is presented to show readers how to construct a scheme based on the CESE method. The differences and similarities between the CESE method and other traditional methods are discussed. The strengths and weaknesses of the method are also addressed.
Nonlinear Aeroacoustics Computations by the Space-Time CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
The Space-Time Conservation Element and Solution Element Method, or CE/SE Method for short, is a recently developed numerical method for conservation laws. Despite its second order accuracy in space and time, it possesses low dispersion errors and low dissipation. The method is robust enough to cover a wide range of compressible flows: from weak linear acoustic waves to strong discontinuous waves (shocks). An outstanding feature of the CE/SE scheme is its truly multi-dimensional, simple but effective non-reflecting boundary condition (NRBC), which is particularly valuable for computational aeroacoustics (CAA). In nature, the method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its careful treatment of the surface fluxes and geometry, it is different from the existing schemes. Currently, the CE/SE scheme has been developed to a matured stage that a 3-D unstructured CE/SE Navier-Stokes solver is already available. However, in the present review paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen and sketched in section 2. Then applications of the 2-D and 3-D CE/SE schemes to linear, and in particular, nonlinear aeroacoustics are depicted in sections 3, 4, and 5 to demonstrate its robustness and capability.
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.
Aeroacoustics Computation for Nearly Fully Expanded Supersonic Jets Using the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Hultgren, Lennart S.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
In this paper, the space-time conservation element solution element (CE/SE) method is tested in the classical axisymmetric jet instability problem, rendering good agreement with the linear theory. The CE/SE method is then applied to numerical simulations of several nearly fully expanded axisymmetric jet flows and their noise fields and qualitative agreement with available experimental and theoretical results is demonstrated.
Computational Aeroacoustics by the Space-time CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2001-01-01
In recent years, a new numerical methodology for conservation laws-the Space-Time Conservation Element and Solution Element Method (CE/SE), was developed by Dr. Chang of NASA Glenn Research Center and collaborators. In nature, the new method may be categorized as a finite volume method, where the conservation element (CE) is equivalent to a finite control volume (or cell) and the solution element (SE) can be understood as the cell interface. However, due to its rigorous treatment of the fluxes and geometry, it is different from the existing schemes. The CE/SE scheme features: (1) space and time treated on the same footing, the integral equations of conservation laws are solve( for with second order accuracy, (2) high resolution, low dispersion and low dissipation, (3) novel, truly multi-dimensional, simple but effective non-reflecting boundary condition, (4) effortless implementation of computation, no numerical fix or parameter choice is needed, an( (5) robust enough to cover a wide spectrum of compressible flow: from weak linear acoustic waves to strong, discontinuous waves (shocks) appropriate for linear and nonlinear aeroacoustics. Currently, the CE/SE scheme has been developed to such a stage that a 3-13 unstructured CE/SE Navier-Stokes solver is already available. However, in the present paper, as a general introduction to the CE/SE method, only the 2-D unstructured Euler CE/SE solver is chosen as a prototype and is sketched in Section 2. Then applications of the CE/SE scheme to linear, nonlinear aeroacoustics and airframe noise are depicted in Sections 3, 4, and 5 respectively to demonstrate its robustness and capability.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
The benchmark problems in Category 1 (Internal Propagation) of the third Computational Aeroacoustics (CAA) Work-shop sponsored by NASA Glenn Research Center are solved using the space-time conservation element and solution element (CE/SE) method. The first problem addresses the propagation of sound waves through a nearly choked transonic nozzle. The second one concerns shock-sound interaction in a supersonic nozzle. A quasi one-dimension CE/SE Euler solver for a nonuniform mesh is developed and employed to solve both problems. Numerical solutions are compared with the analytical solution for both problems. It is demonstrated that the CE/SE method is capable of solving aeroacoustic problems with/without shock waves in a simple way. Furthermore, the simple nonreflecting boundary condition used in the CE/SE method which is not based on the characteristic theory works very well.
Extension of CE/SE method to non-equilibrium dissociating flows
NASA Astrophysics Data System (ADS)
Wen, C. Y.; Saldivar Massimi, H.; Shen, H.
2018-03-01
In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.
GAP Noise Computation By The CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Chang, Sin-Chung; Wang, Xiao Y.; Jorgenson, Philip C. E.
2001-01-01
A typical gap noise problem is considered in this paper using the new space-time conservation element and solution element (CE/SE) method. Implementation of the computation is straightforward. No turbulence model, LES (large eddy simulation) or a preset boundary layer profile is used, yet the computed frequency agrees well with the experimental one.
Computation of Pressurized Gas Bearings Using CE/SE Method
NASA Technical Reports Server (NTRS)
Cioc, Sorin; Dimofte, Florin; Keith, Theo G., Jr.; Fleming, David P.
2003-01-01
The space-time conservation element and solution element (CE/SE) method is extended to compute compressible viscous flows in pressurized thin fluid films. This numerical scheme has previously been used successfully to solve a wide variety of compressible flow problems, including flows with large and small discontinuities. In this paper, the method is applied to calculate the pressure distribution in a hybrid gas journal bearing. The formulation of the problem is presented, including the modeling of the feeding system. the numerical results obtained are compared with experimental data. Good agreement between the computed results and the test data were obtained, and thus validate the CE/SE method to solve such problems.
Solving the MHD equations by the space time conservation element and solution element method
NASA Astrophysics Data System (ADS)
Zhang, Moujin; John Yu, S.-T.; Henry Lin, S.-C.; Chang, Sin-Chung; Blankson, Isaiah
2006-05-01
We apply the space-time conservation element and solution element (CESE) method to solve the ideal MHD equations with special emphasis on satisfying the divergence free constraint of magnetic field, i.e., ∇ · B = 0. In the setting of the CESE method, four approaches are employed: (i) the original CESE method without any additional treatment, (ii) a simple corrector procedure to update the spatial derivatives of magnetic field B after each time marching step to enforce ∇ · B = 0 at all mesh nodes, (iii) a constraint-transport method by using a special staggered mesh to calculate magnetic field B, and (iv) the projection method by solving a Poisson solver after each time marching step. To demonstrate the capabilities of these methods, two benchmark MHD flows are calculated: (i) a rotated one-dimensional MHD shock tube problem and (ii) a MHD vortex problem. The results show no differences between different approaches and all results compare favorably with previously reported data.
Time-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2006-01-01
Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are also investigated from the stand point of acoustic wave propagation. Validations of the numerical solutions are performed by comparing with exact solutions for steady-state as well as time-accurate viscous flow problems. The test cases cover a broad speed regime for problems ranging from acoustic wave propagation to 3D hypersonic configurations. Model problems pertinent to hypersonic configurations demonstrate the effectiveness of the CESE method in treating flows with shocks, unsteady waves, and separations. Good agreement with exact solutions suggests that the space-time CESE method provides a viable alternative for time-accurate Navier-Stokes calculations of a broad range of problems.
2nd-Order CESE Results For C1.4: Vortex Transport by Uniform Flow
NASA Technical Reports Server (NTRS)
Friedlander, David J.
2015-01-01
The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d. The CESE method is a time accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist, the 2nd-order accurate version was used. In regards to the ez4d code, it is an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available. As part of its architecture, ez4d has the capability to utilize multi-thread and Messaging Passage Interface (MPI) for parallel runs.
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.
Noise Computation of a Shock-Containing Supersonic Axisymmetric Jet by the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Hultgren, Lennart S.; Chang, Sin-Chung; Jorgenson, Philip C. E.
1999-01-01
The space-time conservation element solution element (CE/SE) method is employed to numerically study the near-field of a typical under-expanded jet. For the computed case-a circular jet with Mach number M(j) = 1.19-the shock-cell structure is in good agreement with experimental results. The computed noise field is in general agreement with the experiment, although further work is needed to properly close the screech feedback loop.
NASA Astrophysics Data System (ADS)
Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul
2016-08-01
Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.
Space-Time Conservation Element and Solution Element Method Being Developed
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Himansu, Ananda; Jorgenson, Philip C. E.; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Sheng-Tao
1999-01-01
The engineering research and design requirements of today pose great computer-simulation challenges to engineers and scientists who are called on to analyze phenomena in continuum mechanics. The future will bring even more daunting challenges, when increasingly complex phenomena must be analyzed with increased accuracy. Traditionally used numerical simulation methods have evolved to their present state by repeated incremental extensions to broaden their scope. They are reaching the limits of their applicability and will need to be radically revised, at the very least, to meet future simulation challenges. At the NASA Lewis Research Center, researchers have been developing a new numerical framework for solving conservation laws in continuum mechanics, namely, the Space-Time Conservation Element and Solution Element Method, or the CE/SE method. This method has been built from fundamentals and is not a modification of any previously existing method. It has been designed with generality, simplicity, robustness, and accuracy as cornerstones. The CE/SE method has thus far been applied in the fields of computational fluid dynamics, computational aeroacoustics, and computational electromagnetics. Computer programs based on the CE/SE method have been developed for calculating flows in one, two, and three spatial dimensions. Results have been obtained for numerous problems and phenomena, including various shock-tube problems, ZND detonation waves, an implosion and explosion problem, shocks over a forward-facing step, a blast wave discharging from a nozzle, various acoustic waves, and shock/acoustic-wave interactions. The method can clearly resolve shock/acoustic-wave interactions, wherein the difference of the magnitude between the acoustic wave and shock could be up to six orders. In two-dimensional flows, the reflected shock is as crisp as the leading shock. CE/SE schemes are currently being used for advanced applications to jet and fan noise prediction and to chemically reacting flows.
Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver
NASA Technical Reports Server (NTRS)
Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)
2002-01-01
The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.
NASA Astrophysics Data System (ADS)
Bilyeu, David
This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.
The CE/SE Method: a CFD Framework for the Challenges of the New Millennium
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Yu, Sheng-Tao
2001-01-01
The space-time conservation element and solution element (CE/SE) method, which was originated and is continuously being developed at NASA Glenn Research Center, is a high-resolution, genuinely multidimensional and unstructured-mesh compatible numerical method for solving conservation laws. Since its inception in 1991, the CE/SE method has been used to obtain highly accurate numerical solutions for 1D, 2D and 3D flow problems involving shocks, contact discontinuities, acoustic waves, vortices, shock/acoustic waves/vortices interactions, shock/boundary layers interactions and chemical reactions. Without the aid of preconditioning or other special techniques, it has been applied to both steady and unsteady flows with speeds ranging from Mach number = 0.00288 to 10. In addition, the method has unique features that allow for (i) the use of very simple non-reflecting boundary conditions, and (ii) a unified wall boundary treatment for viscous and inviscid flows. The CE/SE method was developed with the conviction that, with a solid foundation in physics, a robust, coherent and accurate numerical framework can be built without involving overly complex mathematics. As a result, the method was constructed using a set of design principles that facilitate simplicity, robustness and accuracy. The most important among them are: (i) enforcing both local and global flux conservation in space and time, with flux evaluation at an interface being an integral part of the solution procedure and requiring no interpolation or extrapolation; (ii) unifying space and time and treating them as a single entity; and (iii) requiring that a numerical scheme be built from a nondissipative core scheme such that the numerical dissipation can be effectively controlled and, as a result, will not overwhelm the physical dissipation. Part I of the workshop will be devoted to a discussion of these principles along with a description of how the ID, 2D and 3D CE/SE schemes are constructed. In Part II, various applications of the CE/SE method, particularly those involving chemical reactions and acoustics, will be presented. The workshop will be concluded with a sketch of the future research directions.
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary
2013-01-01
With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.
Computation of an Underexpanded 3-D Rectangular Jet by the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Himansu, Ananda; Wang, Xiao Y.; Jorgenson, Philip C. E.
2000-01-01
Recently, an unstructured three-dimensional space-time conservation element and solution element (CE/SE) Euler solver was developed. Now it is also developed for parallel computation using METIS for domain decomposition and MPI (message passing interface). The method is employed here to numerically study the near-field of a typical 3-D rectangular under-expanded jet. For the computed case-a jet with Mach number Mj = 1.6. with a very modest grid of 1.7 million tetrahedrons, the flow features such as the shock-cell structures and the axis switching, are in good qualitative agreement with experimental results.
NASA Technical Reports Server (NTRS)
Wang, Xiao Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.
1999-01-01
The space-time conservation element and solution element(CE/SE) method is used to study the sound-shock interaction problem. The order of accuracy of numerical schemes is investigated. The linear model problem.govemed by the 1-D scalar convection equation, sound-shock interaction problem governed by the 1-D Euler equations, and the 1-D shock-tube problem which involves moving shock waves and contact surfaces are solved to investigate the order of accuracy of numerical schemes. It is concluded that the accuracy of the CE/SE numerical scheme with designed 2nd-order accuracy becomes 1st order when a moving shock wave exists. However, the absolute error in the CE/SE solution downstream of the shock wave is on the same order as that obtained using a fourth-order accurate essentially nonoscillatory (ENO) scheme. No special techniques are used for either high-frequency low-amplitude waves or shock waves.
Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method
NASA Technical Reports Server (NTRS)
Chang, Chau-lyan
2007-01-01
The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2005-01-01
As part of the continuous development of the space-time conservation element and solution element (CE-SE) method, recently a set of so call ed "Courant number insensitive schemes" has been proposed. The key advantage of these new schemes is that the numerical dissipation associa ted with them generally does not increase as the Courant number decre ases. As such, they can be applied to problems with large Courant number disparities (such as what commonly occurs in Navier-Stokes problem s) without incurring excessive numerical dissipation.
NASA Astrophysics Data System (ADS)
Venkatachari, Balaji Shankar; Chang, Chau-Lyan
2016-11-01
The focus of this study is scale-resolving simulations of the canonical normal shock- isotropic turbulence interaction using unstructured tetrahedral meshes and the space-time conservation element solution element (CESE) method. Despite decades of development in unstructured mesh methods and its potential benefits of ease of mesh generation around complex geometries and mesh adaptation, direct numerical or large-eddy simulations of turbulent flows are predominantly carried out using structured hexahedral meshes. This is due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for unstructured meshes that can resolve multiple physical scales and flow discontinuities simultaneously. The CESE method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to accurately simulate turbulent flows using tetrahedral meshes. As part of the study, various regimes of the shock-turbulence interaction (wrinkled and broken shock regimes) will be investigated along with a study on how adaptive refinement of tetrahedral meshes benefits this problem. The research funding for this paper has been provided by Revolutionary Computational Aerosciences (RCA) subproject under the NASA Transformative Aeronautics Concepts Program (TACP).
NASA Technical Reports Server (NTRS)
Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung
2016-01-01
Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Himansu, Ananda; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Shang-Tao
2003-01-01
This paper reports on a significant advance in the area of non-reflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of the development of the space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics-based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains their unique robustness and accuracy in terms of the conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.
Computation of Feedback Aeroacoustic System by the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
It is well known that due to vortex shedding in high speed flow over cutouts, cavities, and gaps, intense noise may be generated. Strong tonal oscillations occur in a feedback cycle in which the vortices shed from the upstream edge of the cavity convect downstream and impinge on the cavity lip, generating acoustic waves that propagate upstream to excite new vortices. Numerical simulation of such a complicated process requires a scheme that can: (1) resolve acoustic waves with low dispersion and numerical dissipation, (2) handle nonlinear and discontinuous waves (e.g. shocks), and (3) have an effective (near field) nonreflecting boundary condition (NRBC). The new space time conservation element and solution element method, or CE/SE for short, is a numerical method that meets the above requirements.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar
2017-01-01
Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD researchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where simplex elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identifies the reason behind the difficulties in use of such high-aspect ratio simplex elements is formulated using two different approaches and presented here. Drawing insights from the analysis, a potential solution to avoid that pitfall is also provided as part of this work. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, how the gradient evaluation procedures of the CESE framework can be effectively used to produce accurate and stable results on such high-aspect ratio simplex meshes is also showcased.
NASA Technical Reports Server (NTRS)
Chang, S.-C.; Himansu, A.; Loh, C.-Y.; Wang, X.-Y.; Yu, S.-T.J.
2005-01-01
This paper reports on a significant advance in the area of nonreflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of t he development of t he space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics- based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains t heir unique robustness and accuracy in terms of t he conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.
Computing Axisymmetric Jet Screech Tones Using Unstructured Grids
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Loh, Ching Y.
2002-01-01
The space-time conservation element and solution element (CE/SE) method is used to solve the conservation law form of the compressible axisymmetric Navier-Stokes equations. The equations are time marched to predict the unsteady flow and the near-field screech tone noise issuing from an underexpanded circular jet. The CE/SE method uses an unstructured grid based data structure. The unstructured grids for these calculations are generated based on the method of Delaunay triangulation. The purpose of this paper is to show that an acoustics solution with a feedback loop can be obtained using truly unstructured grid technology. Numerical results are presented for two different nozzle geometries. The first is considered to have a thin nozzle lip and the second has a thick nozzle lip. Comparisons with available experimental data are shown for flows corresponding to several different jet Mach numbers. Generally good agreement is obtained in terms of flow physics, screech tone frequency, and sound pressure level.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Yen, Joseph C.
2013-01-01
In the multidimensional CESE development, triangles and tetrahedra turn out to be the most natural building blocks for 2D and 3D spatial meshes. As such the CESE method is compatible with the simplest unstructured meshes and thus can be easily applied to solve problems with complex geometries. However, because the method uses space-time staggered stencils, solution decoupling may become a real nuisance in applications involving unstructured meshes. In this paper we will describe a simple and general remedy which, according to numerical experiments, has removed any possibility of solution decoupling. Moreover, in a real-world viscous flow simulation near a solid wall, one often encounters a case where a boundary with high curvature or sharp corner is surrounded by triangular/tetrahedral meshes of extremely high aspect ratio (up to 106). For such an extreme case, the spatial projection of a space-time compounded conservation element constructed using the original CESE design may become highly concave and thus its centroid (referred to as a spatial solution point) may lie far outside of the spatial projection. It could even be embedded beyond a solid wall boundary and causes serious numerical difficulties. In this paper we will also present a new procedure for constructing conservation elements and solution elements which effectively overcomes the difficulties associated with the original design. Another difficulty issue which was addressed more recently is the wellknown fact that accuracy of gradient computations involving triangular/tetrahedral grids deteriorates rapidly as the aspect ratio of grid cells increases. The root cause of this difficulty was clearly identified and several remedies to overcome it were found through a rigorous mathematical analysis. However, because of the length of the current paper and the complexity of mathematics involved, this new work will be presented in another paper.
Evaluation of a Revised Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-Wind Model
NASA Astrophysics Data System (ADS)
Zhang, Y.; Du, A. M.; Du, D.; Sun, W.
2014-08-01
We modified the one-dimensional conservation element and solution element (CESE) hydrodynamic (HD) model into a new version [ 1D CESE-HD-2], by considering the direction of the shock propagation. The real-time performance of the 1D CESE-HD-2 model during Solar Cycle 23 (February 1997 - December 2006) is investigated and compared with those of the Shock Time of Arrival Model ( STOA), the Interplanetary-Shock-Propagation Model ( ISPM), and the Hakamada-Akasofu-Fry version 2 ( HAFv.2). Of the total of 584 flare events, 173 occurred during the rising phase, 166 events during the maximum phase, and 245 events during the declining phase. The statistical results show that the success rates of the predictions by the 1D CESE-HD-2 model for the rising, maximum, declining, and composite periods are 64 %, 62 %, 57 %, and 61 %, respectively, with a hit window of ± 24 hours. The results demonstrate that the 1D CESE-HD-2 model shows the highest success rates when the background solar-wind speed is relatively fast. Thus, when the background solar-wind speed at the time of shock initiation is enhanced, the forecasts will provide potential values to the customers. A high value (27.08) of χ 2 and low p-value (< 0.0001) for the 1D CESE-HD-2 model give considerable confidence for real-time forecasts by using this new model. Furthermore, the effects of various shock characteristics (initial speed, shock duration, background solar wind, longitude, etc.) and background solar wind on the forecast are also investigated statistically.
Parallel CE/SE Computations via Domain Decomposition
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Jorgenson, Philip C. E.; Wang, Xiao-Yen; Chang, Sin-Chung
2000-01-01
This paper describes the parallelization strategy and achieved parallel efficiency of an explicit time-marching algorithm for solving conservation laws. The Space-Time Conservation Element and Solution Element (CE/SE) algorithm for solving the 2D and 3D Euler equations is parallelized with the aid of domain decomposition. The parallel efficiency of the resultant algorithm on a Silicon Graphics Origin 2000 parallel computer is checked.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung
1998-01-01
Without resorting to special treatment for each individual test case, the 1D and 2D CE/SE shock-capturing schemes described previously (in Part I) are used to simulate flows involving phenomena such as shock waves, contact discontinuities, expansion waves and their interactions. Five 1D and six 2D problems are considered to examine the capability and robustness of these schemes. Despite their simple logical structures and low computational cost (for the 2D CE/SE shock-capturing scheme, the CPU time is about 2 micro-secs per mesh point per marching step on a Cray C90 machine), the numerical results, when compared with experimental data, exact solutions or numerical solutions by other methods, indicate that these schemes can accurately resolve shock and contact discontinuities consistently.
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.
1999-01-01
In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.
EXTRAPOLATION OF THE SOLAR CORONAL MAGNETIC FIELD FROM SDO/HMI MAGNETOGRAM BY A CESE-MHD-NLFFF CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Chaowei; Feng Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn
Due to the absence of direct measurement, the magnetic field in the solar corona is usually extrapolated from the photosphere in a numerical way. At the moment, the nonlinear force-free field (NLFFF) model dominates the physical models for field extrapolation in the low corona. Recently, we have developed a new NLFFF model with MHD relaxation to reconstruct the coronal magnetic field. This method is based on CESE-MHD model with the conservation-element/solution-element (CESE) spacetime scheme. In this paper, we report the application of the CESE-MHD-NLFFF code to Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) data with magnetograms sampled for two activemore » regions (ARs), NOAA AR 11158 and 11283, both of which were very non-potential, producing X-class flares and eruptions. The raw magnetograms are preprocessed to remove the force and then inputted into the extrapolation code. Qualitative comparison of the results with the SDO/AIA images shows that our code can reconstruct magnetic field lines resembling the EUV-observed coronal loops. Most important structures of the ARs are reproduced excellently, like the highly sheared field lines that suspend filaments in AR 11158 and twisted flux rope which corresponds to a sigmoid in AR 11283. Quantitative assessment of the results shows that the force-free constraint is fulfilled very well in the strong-field regions but apparently not that well in the weak-field regions because of data noise and numerical errors in the small currents.« less
NASA Technical Reports Server (NTRS)
Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)
2001-01-01
In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert
2009-01-01
A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji
2017-01-01
In the multi-dimensional space-time conservation element and solution element16 (CESE) method, triangles and tetrahedral mesh elements turn out to be the most natural building blocks for 2D and 3D spatial grids, respectively. As such, the CESE method is naturally compatible with the simplest 2D and 3D unstructured grids and thus can be easily applied to solve problems with complex geometries. However, because (a) accurate solution of a high-Reynolds number flow field near a solid wall requires that the grid intervals along the direction normal to the wall be much finer than those in a direction parallel to the wall and, as such, the use of grid cells with extremely high aspect ratio (103 to 106) may become mandatory, and (b) unlike quadrilateral hexahedral grids, it is well-known that accuracy of gradient computations involving triangular tetrahedral grids tends to deteriorate rapidly as cell aspect ratio increases. As a result, the use of triangular tetrahedral grid cells near a solid wall has long been deemed impractical by CFD researchers. In view of (a) the critical role played by triangular tetrahedral grids in the CESE development, and (b) the importance of accurate resolution of high-Reynolds number flow field near a solid wall, as will be presented in the main paper, a comprehensive and rigorous mathematical framework that clearly identifies the reasons behind the accuracy deterioration as described above has been developed for the 2D case involving triangular cells. By avoiding the pitfalls identified by the 2D framework, and its 3D extension, it has been shown numerically.
Courant Number and Mach Number Insensitive CE/SE Euler Solvers
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2005-01-01
It has been known that the space-time CE/SE method can be used to obtain ID, 2D, and 3D steady and unsteady flow solutions with Mach numbers ranging from 0.0028 to 10. However, it is also known that a CE/SE solution may become overly dissipative when the Mach number is very small. As an initial attempt to remedy this weakness, new 1D Courant number and Mach number insensitive CE/SE Euler solvers are developed using several key concepts underlying the recent successful development of Courant number insensitive CE/SE schemes. Numerical results indicate that the new solvers are capable of resolving crisply a contact discontinuity embedded in a flow with the maximum Mach number = 0.01.
Steady and Unsteady Nozzle Simulations Using the Conservation Element and Solution Element Method
NASA Technical Reports Server (NTRS)
Friedlander, David Joshua; Wang, Xiao-Yen J.
2014-01-01
This paper presents results from computational fluid dynamic (CFD) simulations of a three-stream plug nozzle. Time-accurate, Euler, quasi-1D and 2D-axisymmetric simulations were performed as part of an effort to provide a CFD-based approach to modeling nozzle dynamics. The CFD code used for the simulations is based on the space-time Conservation Element and Solution Element (CESE) method. Steady-state results were validated using the Wind-US code and a code utilizing the MacCormack method while the unsteady results were partially validated via an aeroacoustic benchmark problem. The CESE steady-state flow field solutions showed excellent agreement with solutions derived from the other methods and codes while preliminary unsteady results for the three-stream plug nozzle are also shown. Additionally, a study was performed to explore the sensitivity of gross thrust computations to the control surface definition. The results showed that most of the sensitivity while computing the gross thrust is attributed to the control surface stencil resolution and choice of stencil end points and not to the control surface definition itself.Finally, comparisons between the quasi-1D and 2D-axisymetric solutions were performed in order to gain insight on whether a quasi-1D solution can capture the steady and unsteady nozzle phenomena without the cost of a 2D-axisymmetric simulation. Initial results show that while the quasi-1D solutions are similar to the 2D-axisymmetric solutions, the inability of the quasi-1D simulations to predict two dimensional phenomena limits its accuracy.
An introduction to Space Weather Integrated Modeling
NASA Astrophysics Data System (ADS)
Zhong, D.; Feng, X.
2012-12-01
The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar
2017-01-01
Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the tetrahedral-grid case along with some of the practical results of this extension is also provided. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, the effectiveness of the gradient evaluation procedures within the CESE framework (that have their basis on the analysis presented here) to produce accurate and stable results on such high-aspect ratio meshes is also showcased.
Pickard; Winkler; Chen; Payne; Lee; Lin; White; Milman; Vanderbilt
2000-12-11
We show that plane wave ultrasoft pseudopotential methods readily extend to the calculation of the structural properties of lanthanide and actinide containing compounds. This is demonstrated through a series of calculations performed on UO, UO2, UO3, U3O8, UC2, alpha-CeC2, CeB6, CeSe, CeO2, NdB6, TmOI, LaBi, LaTiO3, YbO, and elemental Lu.
A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method
2013-06-01
Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method David L. Bilyeu ∗1,2...Similarly, the fluxes, f x,y,z i , and their derivatives inside a SE are also discretized by the Taylor series expansion: ∂ Cfx ,y,zi ∂xI∂yJ∂zK∂tL = A
On Space-Time Inversion Invariance and its Relation to Non-Dissipatedness of a CESE Core Scheme
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2006-01-01
The core motivating ideas of the space-time CESE method are clearly presented and critically analyzed. It is explained why these ideas result in all the simplifying and enabling features of the CESE method. A thorough discussion of the a scheme, a two-level non-dissipative CESE solver of a simple advection equation with two independent mesh variables and two equations per mesh point is also presented. It is shown that the scheme possesses some rather intriguing properties such as: (i) its two independent mesh variables separately satisfy two decoupled three-level leapfrog schemes and (ii) it shares with the leapfrog scheme the same amplification factors, even though the a scheme and the leapfrog scheme have completely different origins and structures. It is also explained why the leapfrog scheme is not as robust as the a scheme. The amplification factors/matrices of several non-dissipative schemes are carefully studied and the key properties that contribute to their non-dissipatedness are clearly spelled out. Finally we define and establish space-time inversion (STI) invariance for several non-dissipative schemes and show that their non-dissipatedness is a result of their STI invariance.
Computation of Tone Noise From Supersonic Jet Impinging on Flat Plates
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Blech, Richard A. (Technical Monitor)
2005-01-01
A supersonic jet impinging normally on a flat plate has both practical importance and theoretical interests. The physical phenomenon is not fully understood yet. Research concentrates either on the hydrodynamics (e.g., lift loss for STOVL) or on the aeroacoustic loading. In this paper, a finite volume scheme - the space-time conservation element and solution element (CE/SE) method - is employed to numerically study the near-field noise of an underexpanded supersonic jet from a converging nozzle impinging normally on a flat plate. The numerical approach is of the MILES type (monotonically integrated large eddy simulation). The computed results compare favorably with the experimental findings.
The alpha(3) Scheme - A Fourth-Order Neutrally Stable CESE Solver
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2007-01-01
The conservation element and solution element (CESE) development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a non-dissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new 4th-order neutrally stable CESE solver of the advection equation Theta u/Theta + alpha Theta u/Theta x = 0. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and three points at the lower time level. Because it is associated with three independent mesh variables u(sup n) (sub j), (u(sub x))(sup n) (sub j) , and (uxz)(sup n) (sub j) (the numerical analogues of u, Theta u/Theta x, and Theta(exp 2)u/Theta x(exp 2), respectively) and four equations per mesh point, the new scheme is referred to as the alpha(3) scheme. As in the case of other similar CESE neutrally stable solvers, the alpha(3) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. These forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove that the alpha(3) scheme must be neutrally stable when it is stable. Moreover it is proved rigorously that all three amplification factors of the alpha(3) scheme are of unit magnitude for all phase angles if |v| <= 1/2 (v = alpha delta t/delta x). This theoretical result is consistent with the numerical stability condition |v| <= 1/2. Through numerical experiments, it is established that the alpha(3) scheme generally is (i) 4th-order accurate for the mesh variables u(sup n) (sub j) and (ux)(sup n) (sub j); and 2nd-order accurate for (uxx)(sup n) (sub j). However, in some exceptional cases, the scheme can achieve perfect accuracy aside from round-off errors.
Near Field Trailing Edge Tone Noise Computation
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2002-01-01
Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.
Hypersonic Viscous Flow Over Large Roughness Elements
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.
2009-01-01
Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding downstream, is likely to weaken at supersonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation is present.
2012-01-12
include area code) 661 275-5649 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 A Two-Dimensional Fourth-Order CESE Method for the...remark that Eq. (4) is a special case of Eq. (5) with A = N . Similarly, the Taylor expansion of fluxes can be expressed as ∂ Cfx ,yi ∂xI∂yJ∂tK (x, y, t) = A...x2′ , y2′) and within t n − 1/2 ≤ t ≤ tn, the flux fx,yi can be expressed as (fx,yi ) ∗ = A ∑ a=0 A−a ∑ b=0 A−a−b ∑ c=0 ∂a+b+ cfx ,yi ∂xa∂yb∂tc ∆xa∆yb
García-Mochón, Leticia; Espín Balbino, Jaime; Olry de Labry Lima, Antonio; Caro Martinez, Araceli; Martin Ruiz, Eva; Pérez Velasco, Román
2017-03-31
To gain knowledge and insights on health technology assessment (HTA) and decision-making processes in Central, Eastern and South Eastern Europe (CESEE) countries. A cross-sectional study was performed. Based on the literature, a questionnaire was developed in a multi-stage process. The questionnaire was arranged according to 5 broad domains: (i) introduction/country settings; (ii) use of HTA in the country; (iii) decision-making process; (iv) implementation of decisions; and (v) HTA and decision-making: future challenges. Potential survey respondents were identified through literature review-with a total of 118 contacts from the 24 CESEE countries. From March to July 2014, the survey was administered via e-mail. A total of 22 questionnaires were received generating an 18.6% response rate, including 4 responses indicating that their institutions had no involvement in HTA. Most of the CESEE countries have entities under government mandates with advisory functions and different responsibilities for decision-making, but mainly in charge of the reimbursement and pricing of medicines. Other areas where discrepancies across countries were found include criteria for selecting technologies to be assessed, stakeholder involvement, evidence requirements, use of economic evaluation, and timeliness of HTA. A number of CESEE countries have created formal decision-making processes for which HTA is used. However, there is a high level of heterogeneity related to the degree of development of HTA structures, and the methods and processes followed. Further studies focusing on the countries from which information is scarcer and on the HTA of health technologies other than medicines are warranted. Reviews/comparative analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical Investigation of 'Transonic Resonance' with a Convergent-Divergent Nozzle
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Zaman, K. B. M. Q.
2002-01-01
At pressure ratios lower than the design value, convergent-divergent (C-D) nozzles often undergo a flow resonance accompanied by the emission of acoustic tones. The phenomenon, driven by the unsteady shock within the divergent section of the nozzle, has been studied experimentally by Zaman et al. In this paper, the space-time conservation element solution element (CE/SE) method is employed to numerically investigate the phenomenon. The computations are performed for a given nozzle geometry for several different pressure ratios. Sustained 'limit cycle' oscillations are encountered in all cases. The oscillation frequencies, their variation with pressure ratio including a 'stage jump', agree well with the experimental results. The unsteady flow data confirm that stage 1 of the resonance (fundamental) involves a one-quarter standing wave while stage 2 (third harmonic) involves a three-quarter standing wave within the divergent section of the nozzle. Details of the shock motion, and the flow and near acoustic field, are documented for one case each of stages 1 and 2.
Hypersonic Viscous Flow Over Large Roughness Elements
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.
2009-01-01
Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case.
Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.
2015-01-01
Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the isotropic turbulent flow decay, at a relatively high turbulent Mach number, show a nicely behaved spectral decay rate for medium to high wave numbers. The high-order CESE schemes offer very robust solutions even with the presence of strong shocks or widespread shocklets. The explicit formulation in conjunction with a close to unity theoretical upper Courant number bound has the potential to offer an efficient numerical framework for general compressible turbulent flow simulations with unstructured meshes.
The a(4) Scheme-A High Order Neutrally Stable CESE Solver
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2009-01-01
The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a nondissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new high order (4-5th order) and neutrally stable CESE solver of a 1D advection equation with a constant advection speed a. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and two points at the lower time level. Because it is associated with four independent mesh variables (the numerical analogues of the dependent variable and its first, second, and third-order spatial derivatives) and four equations per mesh point, the new scheme is referred to as the a(4) scheme. As in the case of other similar CESE neutrally stable solvers, the a(4) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. Except for a singular case, these forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove the a(4) scheme must be neutrally stable when it is stable. Numerically, it has been established that the scheme is stable if the value of the Courant number is less than 1/3
Complex energies and the polyelectronic Stark problem
NASA Astrophysics Data System (ADS)
Themelis, Spyros I.; Nicolaides, Cleanthes A.
2000-12-01
The problem of computing the energy shifts and widths of ground or excited N-electron atomic states perturbed by weak or strong static electric fields is dealt with by formulating a state-specific complex eigenvalue Schrödinger equation (CESE), where the complex energy contains the field-induced shift and width. The CESE is solved to all orders nonperturbatively, by using separately optimized N-electron function spaces, composed of real and complex one-electron functions, the latter being functions of a complex coordinate. The use of such spaces is a salient characteristic of the theory, leading to economy and manageability of calculation in terms of a two-step computational procedure. The first step involves only Hermitian matrices. The second adds complex functions and the overall computation becomes non-Hermitian. Aspects of the formalism and of computational strategy are compared with those of the complex absorption potential (CAP) method, which was recently applied for the calculation of field-induced complex energies in H and Li. Also compared are the numerical results of the two methods, and the questions of accuracy and convergence that were posed by Sahoo and Ho (Sahoo S and Ho Y K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2195) are explored further. We draw attention to the fact that, because in the region where the field strength is weak the tunnelling rate (imaginary part of the complex eigenvalue) diminishes exponentially, it is possible for even large-scale nonperturbative complex eigenvalue calculations either to fail completely or to produce seemingly stable results which, however, are wrong. It is in this context that the discrepancy in the width of Li 1s22s 2S between results obtained by the CAP method and those obtained by the CESE method is interpreted. We suggest that the very-weak-field regime must be computed by the golden rule, provided the continuum is represented accurately. In this respect, existing one-particle semiclassical formulae seem to be sufficient. In addition to the aforementioned comparisons and conclusions, we present a number of new results from the application of the state-specific CESE theory to the calculation of field-induced shifts and widths of the H n = 3 levels and of the prototypical Be 1s22s2 1S state, for a range of field strengths. Using the H n = 3 manifold as the example, it is shown how errors may occur for small values of the field, unless the function spaces are optimized carefully for each level.
The a(3) Scheme--A Fourth-Order Space-Time Flux-Conserving and Neutrally Stable CESE Solver
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2008-01-01
The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a non-dissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To initiate a systematic CESE development of high order schemes, in this paper we provide a thorough discussion on the structure, consistency, stability, phase error, and accuracy of a new 4th-order space-time flux-conserving and neutrally stable CESE solver of an 1D scalar advection equation. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and three points at the lower time level. Because it is associated with three independent mesh variables (the numerical analogues of the dependent variable and its 1st-order and 2ndorder spatial derivatives, respectively) and three equations per mesh point, the new scheme is referred to as the a(3) scheme. Through the von Neumann analysis, it is shown that the a(3) scheme is stable if and only if the Courant number is less than 0.5. Moreover, it is established numerically that the a(3) scheme is 4th-order accurate.
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Himansu, Ananda; Hultgren, Lennart S.
2003-01-01
A 3-D space-time CE/SE Navier-Stokes solver using an unstructured hexahedral grid is described and applied to a circular jet screech noise computation. The present numerical results for an underexpanded jet, corresponding to a fully expanded Mach number of 1.42, capture the dominant and nonaxisymmetric 'B' screech mode and are generally in good agreement with existing experiments.
Guo, Dongqing; Lu, Ming; Hu, Xihan; Xu, Jiajia; Hu, Guangjing; Zhu, Ming; Zhang, Xiaowei; Li, Qin; Chang, Catherine C. Y.; Chang, Tayuan; Song, Baoliang; Xiong, Ying; Li, Boliang
2016-01-01
Acyl-coenzyme A:cholesterol acyltransferases (ACATs) are the exclusive intracellular enzymes that catalyze the formation of cholesteryl/steryl esters (CE/SE). In our previous work, we found that the high-level expression of human ACAT2 gene with the CpG hypomethylation of its whole promoter was synergistically regulated by two transcription factors Cdx2 and HNF1α in the intestine and fetal liver. Here, we first observed that the specific CpG-hypomethylated promoter was correlated with the low expression of human ACAT2 gene in monocytic cell line THP-1. Then, two CCAAT/enhancer binding protein (C/EBP) elements within the activation domain in the specific CpG-hypomethylation promoter region were identified, and the expression of ACAT2 in THP-1 cells was evidently decreased when the C/EBP transcription factors were knock-downed using RNAi technology. Furthermore, ChIP assay confirmed that C/EBPs directly bind to their elements for low-level expression of human ACAT2 gene in THP-1 cells. Significantly, the increased expressions of ACAT2 and C/EBPs were also found in macrophages differentiated from both ATRA-treated THP-1 cells and cultured human blood monocytes. These results demonstrate that the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the C/EBP transcription factors in monocytic cells, and imply that the lowly expressed ACAT2 catalyzes the synthesis of certain CE/SE that are assembled into lipoproteins for the secretion. PMID:27688151
Chiral electric separation effect in the quark-gluon plasma
Jiang, Yin; Liao, Jinfeng; Huang, Xu-Guang
2015-02-02
In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma (QGP) at very high temperature. This new coefficient σ χe, the CESE (Chiral Electric Separation Effect) conductivity, quantifies the amount of axial current J A that is generated in response to an externally applied electric field eE: J A=σ χe(eE). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure σ χe∝μμ5 emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density μ5 ≠ 0. Usingmore » the Hard-Thermal-Loop framework, the CESE conductivity for the QGP is found to be σ χe = (#)TT rfQ eQ A/g⁴ln(1/g) μμ5/T² to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#)=14.5163 for u, d light flavors.« less
2010-12-01
Pacific. In order to establish a secondary training site in Alameda there are two categories of cargo handling force support requirements that need...to be addressed: (1) Life Support/Tent Camp and (2) Civil Engineer Support Equipment (CESE). Alameda offers two location options for tent camp...construction. In terms of CESE, only a small portion of a reserve NCHB’s actual allowance is located in Alameda. Two emergent costs result from
Large-scale and Long-duration Simulation of a Multi-stage Eruptive Solar Event
NASA Astrophysics Data System (ADS)
Jiang, chaowei; Hu, Qiang; Wu, S. T.
2015-04-01
We employ a data-driven 3D MHD active region evolution model by using the Conservation Element and Solution Element (CESE) numerical method. This newly developed model retains the full MHD effects, allowing time-dependent boundary conditions and time evolution studies. The time-dependent simulation is driven by measured vector magnetograms and the method of MHD characteristics on the bottom boundary. We have applied the model to investigate the coronal magnetic field evolution of AR11283 which was characterized by a pre-existing sigmoid structure in the core region and multiple eruptions, both in relatively small and large scales. We have succeeded in producing the core magnetic field structure and the subsequent eruptions of flux-rope structures (see https://dl.dropboxusercontent.com/u/96898685/large.mp4 for an animation) as the measured vector magnetograms on the bottom boundary evolve in time with constant flux emergence. The whole process, lasting for about an hour in real time, compares well with the corresponding SDO/AIA and coronagraph imaging observations. From these results, we show the capability of the model, largely data-driven, that is able to simulate complex, topological, and highly dynamic active region evolutions. (We acknowledge partial support of NSF grants AGS 1153323 and AGS 1062050, and data support from SDO/HMI and AIA teams).
A New Approach for Constructing Highly Stable High Order CESE Schemes
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2010-01-01
A new approach is devised to construct high order CESE schemes which would avoid the common shortcomings of traditional high order schemes including: (a) susceptibility to computational instabilities; (b) computational inefficiency due to their local implicit nature (i.e., at each mesh points, need to solve a system of linear/nonlinear equations involving all the mesh variables associated with this mesh point); (c) use of large and elaborate stencils which complicates boundary treatments and also makes efficient parallel computing much harder; (d) difficulties in applications involving complex geometries; and (e) use of problem-specific techniques which are needed to overcome stability problems but often cause undesirable side effects. In fact it will be shown that, with the aid of a conceptual leap, one can build from a given 2nd-order CESE scheme its 4th-, 6th-, 8th-,... order versions which have the same stencil and same stability conditions of the 2nd-order scheme, and also retain all other advantages of the latter scheme. A sketch of multidimensional extensions will also be provided.
Effect of Counterflow Jet on a Supersonic Reentry Capsule
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary C.
2006-01-01
Recent NASA initiatives for space exploration have reinvigorated research on Apollo-like capsule vehicles. Aerothermodynamic characteristics of these capsule configurations during reentry play a crucial role in the performance and safety of the planetary entry probes and the crew exploration vehicles. At issue are the forebody thermal shield protection and afterbody aeroheating predictions. Due to the lack of flight or wind tunnel measurements at hypersonic speed, design decisions on such vehicles would rely heavily on computational results. Validation of current computational tools against experimental measurement thus becomes one of the most important tasks for general hypersonic research. This paper is focused on time-accurate numerical computations of hypersonic flows over a set of capsule configurations, which employ a counterflow jet to offset the detached bow shock. The accompanying increased shock stand-off distance and modified heat transfer characteristics associated with the counterflow jet may provide guidance for future design of hypersonic reentry capsules. The newly emerged space-time conservation element solution element (CESE) method is used to perform time-accurate, unstructured mesh Navier-Stokes computations for all cases investigated. The results show good agreement between experimental and numerical Schlieren pictures. Surface heat flux and aerodynamic force predictions of the capsule configurations are discussed in detail.
NASA Astrophysics Data System (ADS)
Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin
2017-06-01
Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.
Ceska, R; Freiberger, T; Vaclova, M; Aleksicova, T; Votavova, L; Vrablik, M
2017-04-05
This article describes the evolution of our understanding of familial hypercholesterolemia (FH) in the Central, Eastern, and Southern Europe (CESE) region, and the dissemination of this understanding to other countries. Using the ScreenPro FH project as an example, we would like to illustrate the progression from national objectives, to regional networking and, finally, to international collaboration via the Familial Hypercholesterolemia Studies Collaboration (FHSC) project under the leadership of the European Atherosclerosis Society (EAS). It is essential to improve our ability to diagnose FH. In this regard, the EAS and its FHSC project must be commended for their educational and organizational activities which, above all, are dedicated to the creation of a global FH patient registry. In the CESE region, FH diagnostics and treatment situation are markedly different than in Western Europe or North America. Since the Czech MedPed project (Make Early Diagnoses to Prevent Early Deaths in Medical Pedigrees) has been so successful (with results not only comparable to, but, for some parameters, even surpassing the results of many Western countries) we decided to apply the Czech experience to the CESE region. Thus, the ScreenPro FH project was created. The aim of ScreenPro FH is to create a specialist network in the CESE region. The primary objective of the ScreenPro FH project was to dramatically reduce the number of premature deaths due to clinical complications of atherosclerosis in FH patients. At present, ScreenPro FH comprises 18 member countries with a total population of 500,000,000; which, in terms of the FH population, represents 1-2 million patients.
The electronic emission spectrum of methylnitrene
NASA Astrophysics Data System (ADS)
Carrick, P. G.; Engelking, P. C.
1984-08-01
The à 3E-X˜ 3A2ultraviolet emission spectrum of methylnitrene (CH3N) was obtained in two ways: (1) by reacting methylazide (CH3N3) with metastable N2 in a flowing afterglow; and (2) by discharging a mixture of methylazide (CH3N3) and helium in a corona excited supersonic expansion (CESE). The origin appears at T0=31 811 cm-1. Several vibrational progressions were observed leading to the determination of a number of vibrational frequencies: v″1=2938, v■2=1350, v″3=1039, v■4=3065, and v″6=902 cm-1. Deuterium substitution confirmed the assignments of the vibrational frequencies. The X˜ 3A2 state is a normal, bound local minimum on the triplet electronic potential surface, and the upper à 3E state is able to support at least one quantum of vibration, assigned to v3, predominantly a C-N stretch. A comparison of flowing afterglow hollow cathode discharge sources and corona excited supersonic expansion sources shows the advantage of the CESE method of radical production for spectroscopy.
HTA IN CENTRAL-EASTERN-SOUTHERN EUROPE: FINDING ITS WAY TO HEALTH POLICY.
Zawada, Anna; Mäkelä, Marjukka
2017-01-01
The number of publications on health technology assessment (HTA) from Central, Eastern, and Southern Europe (CESE countries) is still low compared with the north and west of Europe. It is not surprising, as the idea of HTA originated from high-income Western economies and was afterward adopted by the south-eastern part of Europe, which mostly consists of middle-income countries. These CESE countries, with less capacity and experience with HTA processes, must deal with even tougher decisions on financing health technologies than north-western Europe. There may even be a lack of confidence to open discussions on their specific needs for HTA.
Thermal Analysis on Plume Heating of the Main Engine on the Crew Exploration Vehicle Service Module
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Yuko, James R.
2007-01-01
The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software. The thermal analysis including both convection and radiation heat transfers from the hot gas inside the engine nozzle and gas radiation from the plume is performed using Thermal Desktop. Three SM configurations, Lockheed Martin (LM) designed 604, 605, and 606 configurations, are considered. Design of multilayer insulation (MLI) for the stowed solar arrays, which is subject to plume heating from the main engine, among the passive thermal control system (PTCS), are proposed and validated.
Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei
2010-01-01
Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.
Electronic emission spectrum of methylnitrene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrick, P.G.; Engelking, P.C.
The A /sup 3/E--X /sup 3/A/sub 2/ultraviolet emission spectrum of methylnitrene (CH/sub 3/N) was obtained in two ways: (1) by reacting methylazide (CH/sub 3/N/sub 3/) with metastable N/sub 2/ in a flowing afterglow; and (2) by discharging a mixture of methylazide (CH/sub 3/N/sub 3/) and helium in a corona excited supersonic expansion (CESE). The origin appears at T/sub 0/ = 31 811 cm/sup -1/. Several vibrational progressions were observed leading to the determination of a number of vibrational frequencies: v/sup double-prime//sub 1/ = 2938 , v/sup X//sub 2/ = 1350, v/sup double-prime//sub 3/ = 1039, v/sup X//sub 4/ = 3065,more » and v/sup double-prime//sub 6/ = 902 cm/sup -1/. Deuterium substitution confirmed the assignments of the vibrational frequencies. The X /sup 3/A/sub 2/ state is a normal, bound local minimum on the triplet electronic potential surface, and the upper A /sup 3/E state is able to support at least one quantum of vibration, assigned to v/sup //sub 3/, predominantly a C--N stretch. A comparison of flowing afterglow hollow cathode discharge sources and corona excited supersonic expansion sources shows the advantage of the CESE method of radical production for spectroscopy.« less
Materials Data on CeSe2 (SG:42) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2017-07-17
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
1989-11-27
19Sep89pp 1, 4 [Interview with Col Zdzislaw Duda , representative of the Polish Army General Staff, by Lt Col Andrzej Medykowski: "A Shorter Time in...Przemysl dio- cese: (Interviewed by Andrzej Urbanski and Adam Wiec- zorek, TYGODNIK ROLNIKOW SOLIDARNOSC 3 September 1989) "...In my opinion, a...Comments on Internal Solidarity Divisions 90EP0041B Warsaw TRYBUNA LUDU in Polish 14 Sep 89 p 4 [Article by Andrzej Bogusz: "Hypothesis: Union in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madelaine Marquez; Neil Stillings
The grant supported four projects that involved professional development for teachers and enrichment programs for students from under-funded and under-served school districts. The projects involved long-term partnerships between Hampshire College and the districts. All projects were concerned with the effective implementation of inquiry-based science learning and its alignment with state and national curriculum and assessment standards. One project, The Collaboration for Excellence in Science Education (CESE), was designed to support research on the development of concepts in the physical sciences, specifically energy and waves. Extensive data from student interviews and written essays supported the neo-Piagetian hierarchical complexity theory of thismore » area of conceptual development. New assessment techniques that can be used by teachers were also developed. The final report includes a full presentation of the methods and results of the research.« less
Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
NASA Astrophysics Data System (ADS)
Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu
2016-06-01
Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).
Robertson, Benjamin D; Farris, Dominic J; Sawicki, Gregory S
2014-11-24
Development of robotic exoskeletons to assist/enhance human locomotor performance involves lengthy prototyping, testing, and analysis. This process is further convoluted by variability in limb/body morphology and preferred gait patterns between individuals. In an attempt to expedite this process, and establish a physiological basis for actuator prescription, we developed a simple, predictive model of human neuromechanical adaptation to a passive elastic exoskeleton applied at the ankle joint during a functional task. We modeled the human triceps surae-Achilles tendon muscle tendon unit (MTU) as a single Hill-type muscle, or contractile element (CE), and series tendon, or series elastic element (SEE). This modeled system was placed under gravitational load and underwent cyclic stimulation at a regular frequency (i.e. hopping) with and without exoskeleton (Exo) assistance. We explored the effect that both Exo stiffness (kExo) and muscle activation (Astim) had on combined MTU and Exo (MTU + Exo), MTU, and CE/SEE mechanics and energetics. Model accuracy was verified via qualitative and quantitative comparisons between modeled and prior experimental outcomes. We demonstrated that reduced Astim can be traded for increased kExo to maintain consistent MTU + Exo mechanics (i.e. average positive power (P⁺mech) output) from an unassisted condition (i.e. kExo = 0 kN · m⁻¹). For these regions of parameter space, our model predicted a reduction in MTU force, SEE energy cycling, and metabolic rate (Pmet), as well as constant CE P⁺mech output compared to unassisted conditions. This agreed with previous experimental observations, demonstrating our model's predictive ability. Model predictions also provided insight into mechanisms of metabolic cost minimization, and/or enhanced mechanical performance, and we concluded that both of these outcomes cannot be achieved simultaneously, and that one must come at the detriment of the other in a spring-assisted compliant MTU.
Density-velocity equations with bulk modulus for computational hydro-acoustics
NASA Astrophysics Data System (ADS)
Lin, Po-Hsien; Chen, Yung-Yu; John Yu, S.-T.
2014-02-01
This paper reports a new set of model equations for Computational Hydro Acoustics (CHA). The governing equations include the continuity and the momentum equations. The definition of bulk modulus is used to relate density with pressure. For 3D flow fields, there are four equations with density and velocity components as the unknowns. The inviscid equations are proved to be hyperbolic because an arbitrary linear combination of the three Jacobian matrices is diagonalizable and has a real spectrum. The left and right eigenvector matrices are explicitly derived. Moreover, an analytical form of the Riemann invariants are derived. The model equations are indeed suitable for modeling wave propagation in low-speed, nearly incompressible air and water flows. To demonstrate the capability of the new formulation, we use the CESE method to solve the 2D equations for aeolian tones generated by air flows passing a circular cylinder at Re = 89,000, 46,000, and 22,000. Numerical results compare well with previously published data. By simply changing the value of the bulk modulus, the same code is then used to calculate three cases of water flows passing a cylinder at Re = 89,000, 67,000, and 44,000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillings, Neil; Wenk, Laura
Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achievesmore » this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science learning is compatible with existing state curriculum frameworks and produces students who understand and are positively inclined toward science. Funds from this Department of Energy grant supported three projects that involved K-16 science outreach: 1. Teaching Issues and Experiments in Ecology (TIEE). TIEE a peer-reviewed online journal and curriculum resource for postsecondary science teachers. 2. The Collaboration for Excellence in Science Education (CESE). CESE is a partnership with the Amherst, Massachusetts school system to foster the professional development of science teachers, and to perform research on student learning in the sciences and on teacher change. The project draws on Hampshire's long experience with inquiry-oriented and interdisciplinary education, as well as on its unique strengths in cognitive science. The project is run as design research, working with teachers to improve their practices and studying student and/or teacher outcomes. 3. Day in the Lab. Grant funds partially supported the expansion of the ongoing science outreach activities of the School of Natural Science. These activities are focused on local districts with large minority enrollments, including the Amherst, Holyoke and Springfield Public School Districts, and the Pioneer Valley Performing Arts Charter School (PVPA). Each of the three projects supported by the grant met or exceeded its goals. In part, the successes we met were due to continuity and communication among the staff of the programs. At the beginning of the CESE project, a science outreach coordinator was recruited. He worked throughout the grant period along with a senior researcher and the project's curriculum director. Additionally, the director and an undergraduate student conducted research on teacher change. The science outreach coordinator acted as a liaison among Hampshire College, the school districts, and a number of local businesses and agencies, providing organizational support, discussion facilitation, classroom support for teachers, and materials purchase. His presence in the schools kept teachers engaged and supported. He also brought the PVPA Charter School into the project. He worked closely with the educational outreach coordinator at Hampshire who oversaw the Day in the Lab program. Together, they have ensured the continuity of support to the schools through the use and placement of student interns. Finally, the director and coordinators worked with the Hitchock Center for the Environment to bring the two science professional development efforts in Amherst together. The joint development of workshops for elementary teachers was extremely successful. A major reason for the successes of the CESE program was the strength of the teacher outreach team and the sheer number of hours spent building relationships, talking about teaching and learning, planning projects, developing curriculum, and working with experts throughout the Pioneer Valley.« less
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
NASA Astrophysics Data System (ADS)
Yoon, Young Wook; Lee, Sang Kuk; Lee, Gi Woo
2011-06-01
The visible vibronic emission spectra were recorded from the corona discharge of precursor tetramethylbenzene with a large amount of inert carrier gas helium using a pinhole-type glass nozzle coupled with corona excited supersonic expansion (CESE) well developed in this laboratory. The spectra showed a series of vibronic bands in the D_1 → D_0 electronic transition of jet-cooled benzyl-type radicals formed from the precursor in a corona excitation. The analysis confirmed that two isomeric radicals, 2,3,4- and 2,3,6-trimethylbenzyl radicals and three isomeric radicals, 3,4,5-, 2,3,5- and 2,4,6-trimethylbenzyl radicals were produced, respectively, from 1,2,3,4- and 1,2,3,5-tetramethylbenzenes as a result of removal of a hydrogen atom from the methyl group at different substitution position. For each isomeric trimethylbenzyl radical generated in the corona discharge of precursor, the electronic transition and a few vibrational mode frequencies were determined in the ground electronic state by comparing with those from both ab initio calculations and the known vibrational data of the precursor. The substitution effect that states the shift of electronic transition depends on the nature, the number, and the position of substituents on the ring has been qualitatively proved for the case of benzyl-type radicals.
NASA Astrophysics Data System (ADS)
Venner, Laura
2008-05-01
Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method
NASA Astrophysics Data System (ADS)
Yang, Zailin; Wang, Yao; Hei, Baoping
2013-12-01
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
NASA Technical Reports Server (NTRS)
Tsai, C.; Szabo, B. A.
1973-01-01
An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.
Method and system for processing optical elements using magnetorheological finishing
Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A
2012-09-18
A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.
NASA Technical Reports Server (NTRS)
Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.
2014-01-01
Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.
The Blended Finite Element Method for Multi-fluid Plasma Modeling
2016-07-01
Briefing Charts 3. DATES COVERED (From - To) 07 June 2016 - 01 July 2016 4. TITLE AND SUBTITLE The Blended Finite Element Method for Multi-fluid Plasma...BLENDED FINITE ELEMENT METHOD FOR MULTI-FLUID PLASMA MODELING Éder M. Sousa1, Uri Shumlak2 1ERC INC., IN-SPACE PROPULSION BRANCH (RQRS) AIR FORCE RESEARCH...MULTI-FLUID PLASMA MODEL 2 BLENDED FINITE ELEMENT METHOD Blended Finite Element Method Nodal Continuous Galerkin Modal Discontinuous Galerkin Model
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
Extended depth of field integral imaging using multi-focus fusion
NASA Astrophysics Data System (ADS)
Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua
2018-03-01
In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.
Two-point method uncertainty during control and measurement of cylindrical element diameters
NASA Astrophysics Data System (ADS)
Glukhov, V. I.; Shalay, V. V.; Radev, H.
2018-04-01
The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.
Developments in boundary element methods - 2
NASA Astrophysics Data System (ADS)
Banerjee, P. K.; Shaw, R. P.
This book is a continuation of the effort to demonstrate the power and versatility of boundary element methods which began in Volume 1 of this series. While Volume 1 was designed to introduce the reader to a selected range of problems in engineering for which the method has been shown to be efficient, the present volume has been restricted to time-dependent problems in engineering. Boundary element formulation for melting and solidification problems in considered along with transient flow through porous elastic media, applications of boundary element methods to problems of water waves, and problems of general viscous flow. Attention is given to time-dependent inelastic deformation of metals by boundary element methods, the determination of eigenvalues by boundary element methods, transient stress analysis of tunnels and caverns of arbitrary shape due to traveling waves, an analysis of hydrodynamic loads by boundary element methods, and acoustic emissions from submerged structures.
2016-06-12
Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and
NASA Astrophysics Data System (ADS)
Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza
2016-11-01
Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.
Stress-intensity factors for small surface and corner cracks in plates
NASA Technical Reports Server (NTRS)
Raju, I. S.; Atluri, S. N.; Newman, J. C., Jr.
1988-01-01
Three-dimensional finite-element and finite-alternating methods were used to obtain the stress-intensity factors for small surface and corner cracked plates subjected to remote tension and bending loads. The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The performance of the finite-element alternating method was studied on these crack configurations. A study of the computational effort involved in the finite-element alternating method showed that several crack configurations could be analyzed with a single rectangular mesh idealization, whereas the conventional finite-element method requires a different mesh for each configuration. The stress-intensity factors obtained with the finite-element-alternating method agreed well (within 5 percent) with those calculated from the finite-element method with singularity elements.
ERIC Educational Resources Information Center
Ma, T. S.; Wang, C. Y.
1984-01-01
Presents a literature review on methods used to analyze organic elements. Topic areas include methods for: (1) analyzing carbon, hydrogen, and nitrogen; (2) analyzing oxygen, sulfur, and halogens; (3) analyzing other elements; (4) simultaneously determining several elements; and (5) determing trace elements. (JN)
Domain decomposition methods for nonconforming finite element spaces of Lagrange-type
NASA Technical Reports Server (NTRS)
Cowsar, Lawrence C.
1993-01-01
In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.
The aggregated unfitted finite element method for elliptic problems
NASA Astrophysics Data System (ADS)
Badia, Santiago; Verdugo, Francesc; Martín, Alberto F.
2018-07-01
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
A seismic analysis for masonry constructions: The different schematization methods of masonry walls
NASA Astrophysics Data System (ADS)
Olivito, Renato. S.; Codispoti, Rosamaria; Scuro, Carmelo
2017-11-01
Seismic analysis of masonry structures is usually analyzed through the use of structural calculation software based on equivalent frames method or to macro-elements method. In these approaches, the masonry walls are divided into vertical elements, masonry walls, and horizontal elements, so-called spandrel elements, interconnected by rigid nodes. The aim of this work is to make a critical comparison between different schematization methods of masonry wall underlining the structural importance of the spandrel elements. In order to implement the methods, two different structural calculation software were used and an existing masonry building has been examined.
System and method for image registration of multiple video streams
Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton
2018-02-06
Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.
Devices, systems, and methods for harvesting energy and methods for forming such devices
Kotter, Dale K.; Novack, Steven D.
2012-12-25
Energy harvesting devices include a substrate coupled with a photovoltaic material and a plurality of resonance elements associated with the substrate. The resonance elements are configured to collect energy in at least visible and infrared light spectra. Each resonance element is capacitively coupled with the photovoltaic material, and may be configured to resonate at a bandgap energy of the photovoltaic material. Systems include a photovoltaic material coupled with a feedpoint of a resonance element. Methods for harvesting energy include exposing a resonance element having a resonant electromagnetic radiation having a frequency between approximately 20 THz and approximately 1,000 THz, absorbing at least a portion of the electromagnetic radiation with the resonance element, and resonating the resonance element at a bandgap energy of an underlying photovoltaic material. Methods for forming an energy harvesting device include forming resonance elements on a substrate and capacitively coupling the resonance elements with a photovoltaic material.
Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang
2016-12-01
Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Low temperature chemical processing of graphite-clad nuclear fuels
Pierce, Robert A.
2017-10-17
A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.
Method and apparatus for sensing the natural frequency of a cantilevered body
Duncan, Michael G.
2000-01-01
A method and apparatus for measuring the natural resonant frequency of a spring element by monitoring a phase difference between an output signal from the spring element and an input signal to the spring element and by adjusting frequency of the input signal until a detected phase difference signals that the natural resonant frequency has been reached. The method and apparatus are applied to a micro-cantilevered elements used to measure gas compositions and concentrations. Such elements are provided with coatings that absorb gas to cause deflections and changes in the mass or spring constant of the cantilevered element. These changes correspond to changes in the natural resonant frequency of the cantilevered element which are measured using the method and apparatus described herein.
A Novel Polygonal Finite Element Method: Virtual Node Method
NASA Astrophysics Data System (ADS)
Tang, X. H.; Zheng, C.; Zhang, J. H.
2010-05-01
Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
On modelling three-dimensional piezoelectric smart structures with boundary spectral element method
NASA Astrophysics Data System (ADS)
Zou, Fangxin; Aliabadi, M. H.
2017-05-01
The computational efficiency of the boundary element method in elastodynamic analysis can be significantly improved by employing high-order spectral elements for boundary discretisation. In this work, for the first time, the so-called boundary spectral element method is utilised to formulate the piezoelectric smart structures that are widely used in structural health monitoring (SHM) applications. The resultant boundary spectral element formulation has been validated by the finite element method (FEM) and physical experiments. The new formulation has demonstrated a lower demand on computational resources and a higher numerical stability than commercial FEM packages. Comparing to the conventional boundary element formulation, a significant reduction in computational expenses has been achieved. In summary, the boundary spectral element formulation presented in this paper provides a highly efficient and stable mathematical tool for the development of SHM applications.
Improved accuracy for finite element structural analysis via an integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
The L sub 1 finite element method for pure convection problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1991-01-01
The least squares (L sub 2) finite element method is introduced for 2-D steady state pure convection problems with smooth solutions. It is proven that the L sub 2 method has the same stability estimate as the original equation, i.e., the L sub 2 method has better control of the streamline derivative. Numerical convergence rates are given to show that the L sub 2 method is almost optimal. This L sub 2 method was then used as a framework to develop an iteratively reweighted L sub 2 finite element method to obtain a least absolute residual (L sub 1) solution for problems with discontinuous solutions. This L sub 1 finite element method produces a nonoscillatory, nondiffusive and highly accurate numerical solution that has a sharp discontinuity in one element on both coarse and fine meshes. A robust reweighting strategy was also devised to obtain the L sub 1 solution in a few iterations. A number of examples solved by using triangle and bilinear elements are presented.
Evaluation of the use of a singularity element in finite element analysis of center-cracked plates
NASA Technical Reports Server (NTRS)
Mendelson, A.; Gross, B.; Srawley, J., E.
1972-01-01
Two different methods are applied to the analyses of finite width linear elastic plates with central cracks. Both methods give displacements as a primary part of the solution. One method makes use of Fourier transforms. The second method employs a coarse mesh of triangular second-order finite elements in conjunction with a single singularity element subjected to appropriate additional constraints. The displacements obtained by these two methods are in very good agreement. The results suggest considerable potential for the use of a cracked element for related crack problems, particularly in connection with the extension to nonlinear material behavior.
Duan, Wuhua; Chen, Jing; Wang, Jianchen; Wang, Shuwei; Feng, Xiaogui; Wang, Xinghai; Li, Shaowei; Xu, Chao
2014-08-15
High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, (90)Sr, (137)Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P&T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 10(3), 2.25 × 10(4) and 1.68 × 10(4) after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation. Copyright © 2014 Elsevier B.V. All rights reserved.
New Forming Technologies for Autobody at POSCO
NASA Astrophysics Data System (ADS)
Lee, Hong-Woo; Cha, Myung-Hwan; Choi, Byung-Keun; Kim, Gyo-Sung; Park, Sung-Ho
2011-08-01
As development of car body with light weight and enhanced safety became one of the hottest issues in the auto industry, the advanced high strength steels have been broadly applied to various automotive parts over the last few years. Corresponding to this trend, POSCO has developed various types of cold and hot rolled AHSSs such as DP, TRIP, CP and FB, and continues to develop new types of steel in order to satisfy the requirement of OEMs more extensively. To provide optimal technical supports to customers, POSCO has developed more advanced EVI concept, which includes the concept of CE/SE, VA/VE, VI and PP as well as the conventional EVI strategy. To realize this concept, POSCO not only supports customers with material data, process guideline, and evaluation of formability, weld-ability, paint-ability and performance but also provides parts or sub-assemblies which demand highly advanced technologies. Especially, to accelerate adoption of AHSS in autobody, POSCO has tried to come up with optimal solutions to AHSS forming. Application of conventional forming technologies has been restricted more and more by relatively low formability of AHSS with high tensile-strength. To overcome the limitation in the forming, POSCO has recently developed new forming technologies such as hydro-forming, hot press forming, roll forming and form forming. In this paper, tailored strength HPF, hydroformed torsion beam axle and multi-directional roll forming are introduced as examples of new forming technologies.
Spectral/ hp element methods: Recent developments, applications, and perspectives
NASA Astrophysics Data System (ADS)
Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.
2018-02-01
The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Determination of Trace Elements in Uranium by HPLC-ID-ICP-MS: NTNFC Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manard, Benjamin Thomas; Wylie, Ernest Miller II; Xu, Ning
This report covers the FY 16 effort for the HPLC-ID-ICP-MS methodology 1) sub-method validation for the group I&II elements, 2) sub-method stood-up and validation for REE, 3) sub-method development for the transition element, and 4) completion of a comprehensive SOP for three families of elements.
Method and apparatus for displaying information
NASA Technical Reports Server (NTRS)
Huang, Sui (Inventor); Eichler, Gabriel (Inventor); Ingber, Donald E. (Inventor)
2010-01-01
A method for displaying large amounts of information. The method includes the steps of forming a spatial layout of tiles each corresponding to a representative reference element; mapping observed elements onto the spatial layout of tiles of representative reference elements; assigning a respective value to each respective tile of the spatial layout of the representative elements; and displaying an image of the spatial layout of tiles of representative elements. Each tile includes atomic attributes of representative elements. The invention also relates to an apparatus for displaying large amounts of information. The apparatus includes a tiler forming a spatial layout of tiles, each corresponding to a representative reference element; a comparator mapping observed elements onto said spatial layout of tiles of representative reference elements; an assigner assigning a respective value to each respective tile of said spatial layout of representative reference elements; and a display displaying an image of the spatial layout of tiles of representative reference elements.
NASA Astrophysics Data System (ADS)
Astionenko, I. O.; Litvinenko, O. I.; Osipova, N. V.; Tuluchenko, G. Ya.; Khomchenko, A. N.
2016-10-01
Recently the interpolation bases of the hierarchical type have been used for the problem solving of the approximation of multiple arguments functions (such as in the finite-element method). In this work the cognitive graphical method of constructing of the hierarchical form bases on the serendipity finite elements is suggested, which allowed to get the alternative bases on a biquadratic finite element from the serendipity family without internal knots' inclusion. The cognitive-graphic method allowed to improve the known interpolation procedure of Taylor and to get the modified elements with irregular arrangement of knots. The proposed procedures are universal and are spread in the area of finite-elements.
Iterative methods for elliptic finite element equations on general meshes
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.; Choudhury, Shenaz
1986-01-01
Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.
CFD Analysis of the SBXC Glider Airframe
2016-06-01
mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the previous research data...greater than 15 m/s. 14. SUBJECT TERMS finite element method, computational fluid dynamics, Y Plus, mesh element quality, aerodynamic data, fluid...based mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for non-divergence form elliptic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
Method of lightening radiation darkened optical elements
Reich, Frederich R.; Schwankoff, Albert R.
1980-01-01
A method of lightening a radiation-darkened optical element in wich visible optical energy or electromagnetic radiation having a wavelength in the range of from about 2000 to about 20,000 angstroms is directed into the radiation-darkened optical element; the method may be used to lighten radiation-darkened optical element in-situ during the use of the optical element to transmit data by electronically separating the optical energy from the optical output by frequency filtering, data cooling, or interlacing the optic energy between data intervals.
Wave Scattering in Heterogeneous Media using the Finite Element Method
2016-10-21
AFRL-AFOSR-JP-TR-2016-0086 Wave Scattering in Heterogeneous Media using the Finite Element Method Chiruvai Vendhan INDIAN INSTITUTE OF TECHNOLOGY...Scattering in Heterogeneous Media using the Finite Element Method 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-12-1-4026 5c. PROGRAM ELEMENT NUMBER 61102F 6...14. ABSTRACT The primary aim of this study is to develop a finite element model for elastic scattering by axisymmetric bodies submerged in a
Method for recovering catalytic elements from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE
2012-06-26
A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.
An Automated Method for Landmark Identification and Finite-Element Modeling of the Lumbar Spine.
Campbell, Julius Quinn; Petrella, Anthony J
2015-11-01
The purpose of this study was to develop a method for the automated creation of finite-element models of the lumbar spine. Custom scripts were written to extract bone landmarks of lumbar vertebrae and assemble L1-L5 finite-element models. End-plate borders, ligament attachment points, and facet surfaces were identified. Landmarks were identified to maintain mesh correspondence between meshes for later use in statistical shape modeling. 90 lumbar vertebrae were processed creating 18 subject-specific finite-element models. Finite-element model surfaces and ligament attachment points were reproduced within 1e-5 mm of the bone surface, including the critical contact surfaces of the facets. Element quality exceeded specifications in 97% of elements for the 18 models created. The current method is capable of producing subject-specific finite-element models of the lumbar spine with good accuracy, quality, and robustness. The automated methods developed represent advancement in the state of the art of subject-specific lumbar spine modeling to a scale not possible with prior manual and semiautomated methods.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Improved accuracy for finite element structural analysis via a new integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
Application of the control volume mixed finite element method to a triangular discretization
Naff, R.L.
2012-01-01
A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.
An enriched finite element method to fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam
2017-08-01
In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.
Numerical Methods for 2-Dimensional Modeling
1980-12-01
high-order finite element methods, and a multidimensional version of the method of lines, both utilizing an optimized stiff integrator for the time...integration. The finite element methods have proved disappointing, but the method of lines has provided an unexpectedly large gain in speed. Two...diffusion problems with the same number of unknowns (a 21 x 41 grid), solved by second-order finite element methods, took over seven minutes on the Cray-i
1983-03-01
AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for
Development and Application of the p-version of the Finite Element Method.
1985-11-21
this property hierarchic families of finite elements. The h-version of the finite element method has been the subject of inten- sive study since the...early 1950’s and perhaps even earlier. Study of the p-version of the finite element method, on the other hand, began at Washington University in St...Louis in the early 1970’s and led to a more recent study of * .the h-p version. Research in the p-version (formerly called The Constraint Method) has
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.
1996-01-01
The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shi, Yacheng
1997-01-01
A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
Stowe, Ashley; Burger, Arnold
2016-05-10
A method for synthesizing I-III-VI.sub.2 compounds, including: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound under heat, with mixing, and/or via vapor transport. The Group III element is melted at a temperature of between about 200 degrees C. and about 700 degrees C. Preferably, the Group I element consists of a neutron absorber and the group III element consists of In or Ga. The Group VI element and the single phase I-III compound are heated to a temperature of between about 700 degrees C. and about 1000 degrees C. Preferably, the Group VI element consists of S, Se, or Te. Optionally, the method also includes doping with a Group IV element activator.
Method of preforming and assembling superconducting circuit elements
NASA Astrophysics Data System (ADS)
Haertling, Gene H.; Buckley, John D.
1991-03-01
The invention is a method of preforming and pretesting rigid and discrete superconductor circuit elements to optimize the superconductivity development of the preformed circuit element prior to its assembly, and encapsulation on a substrate and final environmental testing of the assembled ceramic superconductive elements.
A boundary element alternating method for two-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Krishnamurthy, T.
1992-01-01
A boundary element alternating method, denoted herein as BEAM, is presented for two dimensional fracture problems. This is an iterative method which alternates between two solutions. An analytical solution for arbitrary polynomial normal and tangential pressure distributions applied to the crack faces of an embedded crack in an infinite plate is used as the fundamental solution in the alternating method. A boundary element method for an uncracked finite plate is the second solution. For problems of edge cracks a technique of utilizing finite elements with BEAM is presented to overcome the inherent singularity in boundary element stress calculation near the boundaries. Several computational aspects that make the algorithm efficient are presented. Finally, the BEAM is applied to a variety of two dimensional crack problems with different configurations and loadings to assess the validity of the method. The method gives accurate stress intensity factors with minimal computing effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ain, Khusnul; Physics Department - Airlangga University, Surabaya – Indonesia, khusnulainunair@yahoo.com; Kurniadi, Deddy
2015-04-16
Back projection reconstruction has been implemented to get the dynamical image in electrical impedance tomography. However the implementation is still limited in method of adjacent data collection and circular object element model. The study aims to develop the methods of back projection as reconstruction method that has the high speed, accuracy, and flexibility, which can be used for various methods of data collection and model of the object element. The proposed method uses the forward problem solution as the operator of filtered and back projection matrix. This is done through a simulation study on several methods of data collection andmore » various models of the object element. The results indicate that the developed method is capable of producing images, fastly and accurately for reconstruction of the various methods of data collection and models of the object element.« less
Hong, Keehoon; Hong, Jisoo; Jung, Jae-Hyun; Park, Jae-Hyeung; Lee, Byoungho
2010-05-24
We propose a new method for rectifying a geometrical distortion in the elemental image set and extracting an accurate lens lattice lines by projective image transformation. The information of distortion in the acquired elemental image set is found by Hough transform algorithm. With this initial information of distortions, the acquired elemental image set is rectified automatically without the prior knowledge on the characteristics of pickup system by stratified image transformation procedure. Computer-generated elemental image sets with distortion on purpose are used for verifying the proposed rectification method. Experimentally-captured elemental image sets are optically reconstructed before and after the rectification by the proposed method. The experimental results support the validity of the proposed method with high accuracy of image rectification and lattice extraction.
Improved finite-element methods for rotorcraft structures
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1991-01-01
An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.
Using Finite Element Method to Estimate the Material Properties of a Bearing Cage
2018-02-01
UNCLASSIFIED UNCLASSIFIED AD-E403 988 Technical Report ARMET-TR-17035 USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL...TITLE AND SUBTITLE USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL PROPERTIES OF A BEARING CAGE 5a. CONTRACT NUMBER 5b. GRANT...specifications of non-metallic bearing cages are typically not supplied by the manufacturer. In order to setup a finite element analysis of a
Multiple methods integration for structural mechanics analysis and design
NASA Technical Reports Server (NTRS)
Housner, J. M.; Aminpour, M. A.
1991-01-01
A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.
Bioforensics: Characterization of biological weapons agents by NanoSIMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, P K; Ghosal, S; Leighton, T J
2007-02-26
The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developedmore » methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.« less
Comparison of Gap Elements and Contact Algorithm for 3D Contact Analysis of Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Tiku, K.; Kumar, A.; Handschuh, R.
1994-01-01
Three dimensional stress analysis of spiral bevel gears in mesh using the finite element method is presented. A finite element model is generated by solving equations that identify tooth surface coordinates. Contact is simulated by the automatic generation of nonpenetration constraints. This method is compared to a finite element contact analysis conducted with gap elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mao; Qiu, Zihua; Liang, Chunlei
In the present study, a new spectral difference (SD) method is developed for viscous flows on meshes with a mixture of triangular and quadrilateral elements. The standard SD method for triangular elements, which employs Lagrangian interpolating functions for fluxes, is not stable when the designed accuracy of spatial discretization is third-order or higher. Unlike the standard SD method, the method examined here uses vector interpolating functions in the Raviart-Thomas (RT) spaces to construct continuous flux functions on reference elements. Studies have been performed for 2D wave equation and Euler equa- tions. Our present results demonstrated that the SDRT method ismore » stable and high-order accurate for a number of test problems by using triangular-, quadrilateral-, and mixed- element meshes.« less
Developments in variational methods for high performance plate and shell elements
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmelo
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational foundations of high-performance elements, with emphasis on plate and shell elements constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parameterized variational principles are studied that provide a common foundation for the FF and ANS methods, as well as for a combination of both. From this unified formulation a variant of the ANS formulation, called the assumed natural deviatoric strain (ANDES) formulation, emerges as an important special case. The first ANDES element, a high-performance 9 degrees of freedom triangular Kirchhoff plate bending element, is briefly described to illustrate the use of the new formulation.
Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.
2011-01-01
Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.
Compositions and methods for the expression of selenoproteins in eukaryotic cells
Gladyshev, Vadim [Lincoln, NE; Novoselov, Sergey [Puschino, RU
2012-09-25
Recombinant nucleic acid constructs for the efficient expression of eukaryotic selenoproteins and related methods for production of recombinant selenoproteins are provided. The nucleic acid constructs comprise novel selenocysteine insertion sequence (SECIS) elements. Certain novel SECIS elements of the invention contain non-canonical quartet sequences. Other novel SECIS elements provided by the invention are chimeric SECIS elements comprising a canonical SECIS element that contains a non-canonical quartet sequence and chimeric SECIS elements comprising a non-canonical SECIS element that contains a canonical quartet sequence. The novel SECIS elements of the invention facilitate the insertion of selenocysteine residues into recombinant polypeptides.
An Error Analysis for the Finite Element Method Applied to Convection Diffusion Problems.
1981-03-01
D TFhG-]NOLOGY k 4b 00 \\" ) ’b Technical Note BN-962 AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONVECTION DIFFUSION PROBLEM by I...Babu~ka and W. G. Szym’czak March 1981 V.. UNVI I Of- ’i -S AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD P. - 0 w APPLIED TO CONVECTION DIFFUSION ...AOAO98 895 MARYLAND UNIVYCOLLEGE PARK INST FOR PHYSICAL SCIENCE--ETC F/G 12/I AN ERROR ANALYIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONV..ETC (U
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1991-01-01
A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
A New Expanded Mixed Element Method for Convection-Dominated Sobolev Equation
Wang, Jinfeng; Li, Hong; Fang, Zhichao
2014-01-01
We propose and analyze a new expanded mixed element method, whose gradient belongs to the simple square integrable space instead of the classical H(div; Ω) space of Chen's expanded mixed element method. We study the new expanded mixed element method for convection-dominated Sobolev equation, prove the existence and uniqueness for finite element solution, and introduce a new expanded mixed projection. We derive the optimal a priori error estimates in L 2-norm for the scalar unknown u and a priori error estimates in (L 2)2-norm for its gradient λ and its flux σ. Moreover, we obtain the optimal a priori error estimates in H 1-norm for the scalar unknown u. Finally, we obtained some numerical results to illustrate efficiency of the new method. PMID:24701153
High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations
NASA Astrophysics Data System (ADS)
Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek
2018-04-01
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.
NASA Technical Reports Server (NTRS)
Chen, Zhangxin; Ewing, Richard E.
1996-01-01
Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.
Applications of FEM and BEM in two-dimensional fracture mechanics problems
NASA Technical Reports Server (NTRS)
Min, J. B.; Steeve, B. E.; Swanson, G. R.
1992-01-01
A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.
Vectorial finite elements for solving the radiative transfer equation
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.
2018-06-01
The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.
Nonconforming mortar element methods: Application to spectral discretizations
NASA Technical Reports Server (NTRS)
Maday, Yvon; Mavriplis, Cathy; Patera, Anthony
1988-01-01
Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzini, Gianmarco
2012-07-13
We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.
Ion-barrier for memristors/ReRAM and methods thereof
Haase, Gad S.
2017-11-28
The present invention relates to memristive devices including a resistance-switching element and a barrier element. In particular examples, the barrier element is a monolayer of a transition metal chalcogenide that sufficiently inhibits diffusion of oxygen atoms or ions out of the switching element. As the location of these atoms and ions determine the state of the device, inhibiting diffusion would provide enhanced state retention and device reliability. Other types of barrier elements, as well as methods for forming such elements, are described herein.
NASA Astrophysics Data System (ADS)
Song, Yeo-Ul; Youn, Sung-Kie; Park, K. C.
2017-10-01
A method for three-dimensional non-matching interface treatment with a virtual gap element is developed. When partitioned structures contain curved interfaces and have different brick meshes, the discretized models have gaps along the interfaces. As these gaps bring unexpected errors, special treatments are required to handle the gaps. In the present work, a virtual gap element is introduced to link the frame and surface domain nodes in the frame work of the mortar method. Since the surface of the hexahedron element is quadrilateral, the gap element is pyramidal. The pyramidal gap element consists of four domain nodes and one frame node. Zero-strain condition in the gap element is utilized for the interpolation of frame nodes in terms of the domain nodes. This approach is taken to satisfy the momentum and energy conservation. The present method is applicable not only to curved interfaces with gaps, but also to flat interfaces in three dimensions. Several numerical examples are given to describe the effectiveness and accuracy of the proposed method.
Establishing the 3-D finite element solid model of femurs in partial by volume rendering.
Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin
2013-01-01
It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Hu, Changqing; Shu, Chi-Wang
1998-01-01
In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.
A simple finite element method for linear hyperbolic problems
Mu, Lin; Ye, Xiu
2017-09-14
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for linear hyperbolic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Semi-automatic sparse preconditioners for high-order finite element methods on non-uniform meshes
NASA Astrophysics Data System (ADS)
Austin, Travis M.; Brezina, Marian; Jamroz, Ben; Jhurani, Chetan; Manteuffel, Thomas A.; Ruge, John
2012-05-01
High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
Mu, Lin; Wang, Junping; Ye, Xiu
2017-08-17
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
Scattering Cross Section of Sound Waves by the Modal Element Method
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1994-01-01
#he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.
Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu
2010-03-01
A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1988-01-01
A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.
Development of quadrilateral spline thin plate elements using the B-net method
NASA Astrophysics Data System (ADS)
Chen, Juan; Li, Chong-Jun
2013-08-01
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previouswork, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B-net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.
Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, corresponding virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method; third, repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements; and, fourth, this orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal p.d.f. In a discrete approximation, the allowed proposals coincide with the differences that are based on a large number of pre-computed sets of virtual least-squares orbital elements. The virtual-observation MCMC method is thus based on the characterization of the relevant volume in the orbital-element phase space. Here we utilize MCMC to map the phase-space domain of acceptable solutions. We can make use of the proposal p.d.f.s from the MCMC ranging and virtual-observation methods. The present phase-space mapping produces, upon convergence, a uniform sampling of the solution space within a pre-defined χ^2-value. The weights of the sampled orbital elements are then computed on the basis of the corresponding χ^2-values. The present method resembles the original ranging method. On one hand, MCMC mapping is insensitive to local extrema in the phase space and efficiently maps the solution space. This is somewhat contrary to the MCMC methods described above. On the other hand, MCMC mapping can suffer from producing a small number of sample elements with small χ^2-values, in resemblance to the original ranging method. We apply the methods to example near-Earth, main-belt, and transneptunian objects, and highlight the utilization of the methods in the data processing and analysis pipeline of the ESA Gaia space mission.
Discovery of rare, diagnostic AluYb8/9 elements in diverse human populations.
Feusier, Julie; Witherspoon, David J; Scott Watkins, W; Goubert, Clément; Sasani, Thomas A; Jorde, Lynn B
2017-01-01
Polymorphic human Alu elements are excellent tools for assessing population structure, and new retrotransposition events can contribute to disease. Next-generation sequencing has greatly increased the potential to discover Alu elements in human populations, and various sequencing and bioinformatics methods have been designed to tackle the problem of detecting these highly repetitive elements. However, current techniques for Alu discovery may miss rare, polymorphic Alu elements. Combining multiple discovery approaches may provide a better profile of the polymorphic Alu mobilome. Alu Yb8/9 elements have been a focus of our recent studies as they are young subfamilies (~2.3 million years old) that contribute ~30% of recent polymorphic Alu retrotransposition events. Here, we update our ME-Scan methods for detecting Alu elements and apply these methods to discover new insertions in a large set of individuals with diverse ancestral backgrounds. We identified 5,288 putative Alu insertion events, including several hundred novel Alu Yb8/9 elements from 213 individuals from 18 diverse human populations. Hundreds of these loci were specific to continental populations, and 23 non-reference population-specific loci were validated by PCR. We provide high-quality sequence information for 68 rare Alu Yb8/9 elements, of which 11 have hallmarks of an active source element. Our subfamily distribution of rare Alu Yb8/9 elements is consistent with previous datasets, and may be representative of rare loci. We also find that while ME-Scan and low-coverage, whole-genome sequencing (WGS) detect different Alu elements in 41 1000 Genomes individuals, the two methods yield similar population structure results. Current in-silico methods for Alu discovery may miss rare, polymorphic Alu elements. Therefore, using multiple techniques can provide a more accurate profile of Alu elements in individuals and populations. We improved our false-negative rate as an indicator of sample quality for future ME-Scan experiments. In conclusion, we demonstrate that ME-Scan is a good supplement for next-generation sequencing methods and is well-suited for population-level analyses.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1993-01-01
A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
Analysis of concrete beams using applied element method
NASA Astrophysics Data System (ADS)
Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen
2018-03-01
The Applied Element Method (AEM) is a displacement based method of structural analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the structure is analysed by dividing it into several elements similar to FEM. But, in AEM, elements are connected by springs instead of nodes as in the case of FEM. In this paper, background to AEM is discussed and necessary equations are derived. For illustrating the application of AEM, it has been used to analyse plain concrete beam of fixed support condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that the number of springs has no much influence on the results. AEM could predict deflection and reactions with reasonable degree of accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, Yoshihiro
Heat-conduction analysis under steady state without heat generation can easily be treated by the boundary element method. However, in the case with heat conduction with heat generation can approximately be solved without a domain integral by an improved multiple-reciprocity boundary element method. The convention multiple-reciprocity boundary element method is not suitable for complicated heat generation. In the improved multiple-reciprocity boundary element method, on the other hand, the domain integral in each step is divided into point, line, and area integrals. In order to solve the problem, the contour lines of heat generation, which approximate the actual heat generation, are used.
Probabilistic finite elements for fatigue and fracture analysis
NASA Astrophysics Data System (ADS)
Belytschko, Ted; Liu, Wing Kam
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Boundary element analysis of post-tensioned slabs
NASA Astrophysics Data System (ADS)
Rashed, Youssef F.
2015-06-01
In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1992-01-01
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Wireless autonomous device data transmission
NASA Technical Reports Server (NTRS)
Sammel, Jr., David W. (Inventor); Mickle, Marlin H. (Inventor); Cain, James T. (Inventor); Mi, Minhong (Inventor)
2013-01-01
A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.
Periodic trim solutions with hp-version finite elements in time
NASA Technical Reports Server (NTRS)
Peters, David A.; Hou, Lin-Jun
1990-01-01
Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M.; Ma, L.Q.
1998-11-01
It is critical to compare existing sample digestion methods for evaluating soil contamination and remediation. USEPA Methods 3050, 3051, 3051a, and 3052 were used to digest standard reference materials and representative Florida surface soils. Fifteen trace metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and Za), and six macro elements (Al, Ca, Fe, K, Mg, and P) were analyzed. Precise analysis was achieved for all elements except for Cd, Mo, Se, and Sb in NIST SRMs 2704 and 2709 by USEPA Methods 3050 and 3051, and for all elements except for As, Mo,more » Sb, and Se in NIST SRM 2711 by USEPA Method 3052. No significant differences were observed for the three NIST SRMs between the microwave-assisted USEPA Methods 3051 and 3051A and the conventional USEPA Method 3050 Methods 3051 and 3051a and the conventional USEPA Method 3050 except for Hg, Sb, and Se. USEPA Method 3051a provided comparable values for NIST SRMs certified using USEPA Method 3050. However, for method correlation coefficients and elemental recoveries in 40 Florida surface soils, USEPA Method 3051a was an overall better alternative for Method 3050 than was Method 3051. Among the four digestion methods, the microwave-assisted USEPA Method 3052 achieved satisfactory recoveries for all elements except As and Mg using NIST SRM 2711. This total-total digestion method provided greater recoveries for 12 elements Ag, Be, Cr, Fe, K, Mn, Mo, Ni, Pb, Sb, Se, and Zn, but lower recoveries for Mg in Florida soils than did the total-recoverable digestion methods.« less
A multilevel correction adaptive finite element method for Kohn-Sham equation
NASA Astrophysics Data System (ADS)
Hu, Guanghui; Xie, Hehu; Xu, Fei
2018-02-01
In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.
[Progression on finite element modeling method in scoliosis].
Fan, Ning; Zang, Lei; Hai, Yong; Du, Peng; Yuan, Shuo
2018-04-25
Scoliosis is a complex spinal three-dimensional malformation with complicated pathogenesis, often associated with complications as thoracic deformity and shoulder imbalance. Because the acquisition of specimen or animal models are difficult, the biomechanical study of scoliosis is limited. In recent years, along with the development of the computer technology, software and image, the technology of establishing a finite element model of human spine is maturing and it has been providing strong support for the research of pathogenesis of scoliosis, the design and application of brace, and the selection of surgical methods. The finite element model method is gradually becoming an important tool in the biomechanical study of scoliosis. Establishing a high quality finite element model is the basis of analysis and future study. However, the finite element modeling process can be complex and modeling methods are greatly varied. Choosing the appropriate modeling method according to research objectives has become researchers' primary task. In this paper, the author reviews the national and international literature in recent years and concludes the finite element modeling methods in scoliosis, including data acquisition, establishment of the geometric model, the material properties, parameters setting, the validity of the finite element model validation and so on. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.
Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method
NASA Technical Reports Server (NTRS)
Smith, James P.
1996-01-01
A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.
A Moving Discontinuous Galerkin Finite Element Method for Flows with Interfaces
2017-12-07
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6040--17-9765 A Moving Discontinuous Galerkin Finite Element Method for Flows with...guidance to revise the method to ensure such properties. Acknowledgements This work was sponsored by the Office of Naval Research through the Naval...18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT A Moving Discontinuous Galerkin Finite Element Method for Flows with Interfaces Andrew Corrigan, Andrew
High-precision solution to the moving load problem using an improved spectral element method
NASA Astrophysics Data System (ADS)
Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li
2018-02-01
In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
2016-06-01
7 Development of Cohesive Finite Element Method (CFEM) Capability ................................7 3D...Cohesive Finite Element Method (CFEM) framework A new scientific framework and technical capability is developed for the computational analyses of...this section should shift from reporting activities to reporting accomplishments. Development of Cohesive Finite Element Method (CFEM) Capability
NASA Technical Reports Server (NTRS)
Zimmerle, D.; Bernhard, R. J.
1985-01-01
An alternative method for performing singular boundary element integrals for applications in linear acoustics is discussed. The method separates the integral of the characteristic solution into a singular and nonsingular part. The singular portion is integrated with a combination of analytic and numerical techniques while the nonsingular portion is integrated with standard Gaussian quadrature. The method may be generalized to many types of subparametric elements. The integrals over elements containing the root node are considered, and the characteristic solution for linear acoustic problems are examined. The method may be generalized to most characteristic solutions.
Atomization methods for forming magnet powders
Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.
2000-01-01
The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.
NASA Astrophysics Data System (ADS)
Sumihara, K.
Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.
Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling
NASA Astrophysics Data System (ADS)
Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo
2017-06-01
Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.
NASA Astrophysics Data System (ADS)
Igumnov, Leonid; Ipatov, Aleksandr; Belov, Aleksandr; Petrov, Andrey
2015-09-01
The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary) and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.
Method for thermal and structural evaluation of shallow intense-beam deposition in matter
NASA Astrophysics Data System (ADS)
Pilan Zanoni, André
2018-05-01
The projected range of high-intensity proton and heavy-ion beams at energies below a few tens of MeV/A in matter can be as short as a few micrometers. For the evaluation of temperature and stresses from a shallow beam energy deposition in matter conventional numerical 3D models require minuscule element sizes for acceptable element aspect ratio as well as extremely short time steps for numerical convergence. In order to simulate energy deposition using a manageable number of elements this article presents a method using layered elements. This method is applied to beam stoppers and accidental intense-beam impact onto UHV sector valves. In those cases the thermal results from the new method are congruent to those from conventional solid-element and adiabatic models.
Vibration band gaps for elastic metamaterial rods using wave finite element method
NASA Astrophysics Data System (ADS)
Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.
2016-10-01
Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are demonstrated and the results present good approximation to the experimental data.
Solar Polar Field Observed by SOHO/MDI and Hinode
NASA Astrophysics Data System (ADS)
Liu, Y.
2009-12-01
Using 1-minute cadence time-series full disk magnetograms taken by SOHO/MDI in 2007 March, and the corresponding Hinode/SOT vector magnetograms, I have studied evolutionary characteristics of magnetic elements in Sun's south polar region in solar minimum. It is found that the lifetime of magnetic elements is 17.0 hours on average with an average lifetime of 21.8 hours for elements with positive field, the dominant polarity in the south pole, and 1.6 hours for elements with negative field. The elements with positive field are dominant in the south pole with a percentage of 76% in element number and 90.5% in magnetic flux. The lifetime and magnetic flux of the elements is found to be highly related. This agrees with some previous studies for the elements in low latitude quiet regions. Using an image cross correlation method, I also measure solar rotation rate at high latitude, up to 85° in latitude, which is ω = 2.914-0.342 × sin2φ-0.482×sin4φ μrad/s sidereal. It agrees with previous studies using spectroscopic and image cross correlation methods, and also agrees with the results from some work using the element tracking method in which the sample of tracked elements is large. The consistency of those results from different data and methods strongly suggests that this rate at high latitude is reliable.
Final Report of the Project "From the finite element method to the virtual element method"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzini, Gianmarco; Gyrya, Vitaliy
The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for themore » numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.« less
A weak Galerkin least-squares finite element method for div-curl systems
NASA Astrophysics Data System (ADS)
Li, Jichun; Ye, Xiu; Zhang, Shangyou
2018-06-01
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.
Advanced stress analysis methods applicable to turbine engine structures
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1985-01-01
Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.
Controlling the stoichiometry and doping of semiconductor materials
Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric
2016-08-16
Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.
EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.
Hadinia, M; Jafari, R; Soleimani, M
2016-06-01
This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.
Mineral inversion for element capture spectroscopy logging based on optimization theory
NASA Astrophysics Data System (ADS)
Zhao, Jianpeng; Chen, Hui; Yin, Lu; Li, Ning
2017-12-01
Understanding the mineralogical composition of a formation is an essential key step in the petrophysical evaluation of petroleum reservoirs. Geochemical logging tools can provide quantitative measurements of a wide range of elements. In this paper, element capture spectroscopy (ECS) was taken as an example and an optimization method was adopted to solve the mineral inversion problem for ECS. This method used the converting relationship between elements and minerals as response equations and took into account the statistical uncertainty of the element measurements and established an optimization function for ECS. Objective function value and reconstructed elemental logs were used to check the robustness and reliability of the inversion method. Finally, the inversion mineral results had a good agreement with x-ray diffraction laboratory data. The accurate conversion of elemental dry weights to mineral dry weights formed the foundation for the subsequent applications based on ECS.
A novel finite element analysis of three-dimensional circular crack
NASA Astrophysics Data System (ADS)
Ping, X. C.; Wang, C. G.; Cheng, L. P.
2018-06-01
A novel singular element containing a part of the circular crack front is established to solve the singular stress fields of circular cracks by using the numerical series eigensolutions of singular stress fields. The element is derived from the Hellinger-Reissner variational principle and can be directly incorporated into existing 3D brick elements. The singular stress fields are determined as the system unknowns appearing as displacement nodal values. The numerical studies are conducted to demonstrate the simplicity of the proposed technique in handling fracture problems of circular cracks. The usage of the novel singular element can avoid mesh refinement near the crack front domain without loss of calculation accuracy and velocity of convergence. Compared with the conventional finite element methods and existing analytical methods, the present method is more suitable for dealing with complicated structures with a large number of elements.
Design of horizontal-axis wind turbine using blade element momentum method
NASA Astrophysics Data System (ADS)
Bobonea, Andreea; Pricop, Mihai Victor
2013-10-01
The study of mathematical models applied to wind turbine design in recent years, principally in electrical energy generation, has become significant due to the increasing use of renewable energy sources with low environmental impact. Thus, this paper shows an alternative mathematical scheme for the wind turbine design, based on the Blade Element Momentum (BEM) Theory. The results from the BEM method are greatly dependent on the precision of the lift and drag coefficients. The basic of BEM method assumes the blade can be analyzed as a number of independent element in spanwise direction. The induced velocity at each element is determined by performing the momentum balance for a control volume containing the blade element. The aerodynamic forces on the element are calculated using the lift and drag coefficient from the empirical two-dimensional wind tunnel test data at the geometric angle of attack (AOA) of the blade element relative to the local flow velocity.
Method and system for downhole clock synchronization
Hall, David R.; Bartholomew, David B.; Johnson, Monte; Moon, Justin; Koehler, Roger O.
2006-11-28
A method and system for use in synchronizing at least two clocks in a downhole network are disclosed. The method comprises determining a total signal latency between a controlling processing element and at least one downhole processing element in a downhole network and sending a synchronizing time over the downhole network to the at least one downhole processing element adjusted for the signal latency. Electronic time stamps may be used to measure latency between processing elements. A system for electrically synchronizing at least two clocks connected to a downhole network comprises a controlling processing element connected to a synchronizing clock in communication over a downhole network with at least one downhole processing element comprising at least one downhole clock. Preferably, the downhole network is integrated into a downhole tool string.
NASA Astrophysics Data System (ADS)
Lushnikov, D. S.; Zherdev, A. Y.; Odinokov, S. B.; Markin, V. V.; Smirnov, A. V.
2017-05-01
Visual security elements used in color holographic stereograms - three-dimensional colored security holograms - and methods their production is describes in this article. These visual security elements include color micro text, color-hidden image, the horizontal and vertical flip - flop effects by change color and image. The article also presents variants of optical systems that allow record the visual security elements as part of the holographic stereograms. The methods for solving of the optical problems arising in the recording visual security elements are presented. Also noted perception features of visual security elements for verification of security holograms by using these elements. The work was partially funded under the Agreement with the RF Ministry of Education and Science № 14.577.21.0197, grant RFMEFI57715X0197.
High order Nyström method for elastodynamic scattering
NASA Astrophysics Data System (ADS)
Chen, Kun; Gurrala, Praveen; Song, Jiming; Roberts, Ron
2016-02-01
Elastic waves in solids find important applications in ultrasonic non-destructive evaluation. The scattering of elastic waves has been treated using many approaches like the finite element method, boundary element method and Kirchhoff approximation. In this work, we propose a novel accurate and efficient high order Nyström method to solve the boundary integral equations for elastodynamic scattering problems. This approach employs high order geometry description for the element, and high order interpolation for fields inside each element. Compared with the boundary element method, this approach makes the choice of the nodes for interpolation based on the Gaussian quadrature, which renders matrix elements for far field interaction free from integration, and also greatly simplifies the process for singularity and near singularity treatment. The proposed approach employs a novel efficient near singularity treatment that makes the solver able to handle extreme geometries like very thin penny-shaped crack. Numerical results are presented to validate the approach. By using the frequency domain response and performing the inverse Fourier transform, we also report the time domain response of flaw scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Samuel M; Barefield, James E; Wiens, Roger C
2008-01-01
The ChemCam instrument on the Mars Science Laboratory (MSL) will include a laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental compositions. The traditional analytical chemistry approach to calibration curves for these data regresses a single diagnostic peak area against concentration for each element. This approach contrasts with a new multivariate method in which elemental concentrations are predicted by step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for each element. The method is tested on LIBS data from igneous and metamorphosed rocks. Between 4 and 13 partial regression coefficients are needed to describemore » each elemental abundance accurately (i.e., with a regression line of R{sup 2} > 0.9995 for the relationship between predicted and measured elemental concentration) for all major and minor elements studied. Validation plots suggest that the method is limited at present by the small data set, and will work best for prediction of concentration when a wide variety of compositions and rock types has been analyzed.« less
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Yoo, Y. S.
1976-01-01
Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.
[Determination of multi-element contents in gypsum by ICP-AES].
Guo, Zhong-bao; Bai, Yong-zhi; Cui, Jin-hua; Mei, Yi-fei; Ma, Zhen-zhu
2014-08-01
The content of multi-element in gypsum was determined by ICP-AES. The sample was pretreated by acid-soluble method or alkali-fusion method. Acid-soluble method is suitable for the determination of CaO, SOs, Al2O3, Fe2O3, MgO, K2O, Na2O, TiO2, P2O5, MnO, SrO and BaO. Alkali-fusion method is suitable for the determination of CaO, SO3, SiO2, Al2O3, Fe2O3, MgO, TiO2, P2O5, MnO, SrO, BaO and B2O3. Different series standard solutions were prepared considering the properties and content of elements and solution matrix. The limit of detection and quantification were confirmed for each element under their best analysis spectral lines. The recoveries of the two pretreatment methods were from 93% to 110%, besides that for TiO2 was 81%-87% as pretreated by acid-soluble method. All RSDs (n=6) of tests were from 0.70%-3.42%. The accuracies of CaO and SO3 with ICP-AES method were less than the chemical analysis method. The determination of CaO and SO3 with ICP-AES method is only suitable for the case of low accuracy requirement. The results showed that the method can be used for the determination of multi-element contents in gypsum, with simple operation, fast analysis and reliable results. Total elements can be analysed with both acid-soluble method and alkali-fusion method.
[Bioinorganic chemical composition of the lens and methods of its investigation].
Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G
2018-01-01
Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.
A comparative study on different methods of automatic mesh generation of human femurs.
Viceconti, M; Bellingeri, L; Cristofolini, L; Toni, A
1998-01-01
The aim of this study was to evaluate comparatively five methods for automating mesh generation (AMG) when used to mesh a human femur. The five AMG methods considered were: mapped mesh, which provides hexahedral elements through a direct mapping of the element onto the geometry; tetra mesh, which generates tetrahedral elements from a solid model of the object geometry; voxel mesh which builds cubic 8-node elements directly from CT images; and hexa mesh that automatically generated hexahedral elements from a surface definition of the femur geometry. The various methods were tested against two reference models: a simplified geometric model and a proximal femur model. The first model was useful to assess the inherent accuracy of the meshes created by the AMG methods, since an analytical solution was available for the elastic problem of the simplified geometric model. The femur model was used to test the AMG methods in a more realistic condition. The femoral geometry was derived from a reference model (the "standardized femur") and the finite element analyses predictions were compared to experimental measurements. All methods were evaluated in terms of human and computer effort needed to carry out the complete analysis, and in terms of accuracy. The comparison demonstrated that each tested method deserves attention and may be the best for specific situations. The mapped AMG method requires a significant human effort but is very accurate and it allows a tight control of the mesh structure. The tetra AMG method requires a solid model of the object to be analysed but is widely available and accurate. The hexa AMG method requires a significant computer effort but can also be used on polygonal models and is very accurate. The voxel AMG method requires a huge number of elements to reach an accuracy comparable to that of the other methods, but it does not require any pre-processing of the CT dataset to extract the geometry and in some cases may be the only viable solution.
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling
NASA Astrophysics Data System (ADS)
Melvin, Thomas
2018-02-01
Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.
Error analysis of finite element method for Poisson–Nernst–Planck equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuzhou; Sun, Pengtao; Zheng, Bin
A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.
Nonlocal and Mixed-Locality Multiscale Finite Element Methods
Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.
2018-03-27
In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less
Nonlocal and Mixed-Locality Multiscale Finite Element Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.
In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less
Experimental validation of boundary element methods for noise prediction
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Oswald, Fred B.
1992-01-01
Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.
Advanced hybrid particulate collector and method of operation
Miller, Stanley J.
1999-01-01
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.
Efficient process for previous metal recovery from cell membrane electrode assemblies
Shore, Lawrence; Matlin, Ramail; Heinz, Robert
2010-05-04
A method is provided for recovering a catalytic element from a fuel cell membrane electrode assembly. The method includes grinding the membrane electrode assembly into a powder, extracting the catalytic element by forming a slurry comprising the powder and an acid leachate adapted to dissolve the catalytic element into a soluble salt, and separating the slurry into a depleted powder and a supernatant containing the catalytic element salt. The depleted powder is washed to remove any catalytic element salt retained within pores in the depleted powder and the catalytic element is purified from the salt.
Advanced hybrid particulate collector and method of operation
Miller, S.J.
1999-08-17
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Rolling Element Bearing Stiffness Matrix Determination (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Parker, R.
2014-01-01
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding tomore » two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.« less
Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.
Forder, James A
2014-08-01
This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Transforming Mean and Osculating Elements Using Numerical Methods
NASA Technical Reports Server (NTRS)
Ely, Todd A.
2010-01-01
Mean element propagation of perturbed two body orbits has as its mathematical basis averaging theory of nonlinear dynamical systems. Averaged mean elements define the long-term evolution characteristics of an orbit. Using averaging theory, a near identity transformation can be found that transforms the mean elements back to the osculating elements that contain short period terms in addition to the secular and long period mean elements. The ability to perform the conversion is necessary so that orbit design conducted in mean elements can be converted back into osculating results. In the present work, this near identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the osculating elements to first order
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shen, Mo-How
1987-01-01
Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.
Free Mesh Method: fundamental conception, algorithms and accuracy study
YAGAWA, Genki
2011-01-01
The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752
A class of hybrid finite element methods for electromagnetics: A review
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Chatterjee, A.; Gong, J.
1993-01-01
Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.
An adaptive finite element method for the inequality-constrained Reynolds equation
NASA Astrophysics Data System (ADS)
Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha
2018-07-01
We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.
Use of adjoint methods in the probabilistic finite element approach to fracture mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted
1988-01-01
The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Gibson, Richard L.
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less
Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...
2015-04-14
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less
Development and certification of the new SRM 695 trace elements in multi-nutrient fertilizer
MacKey, E.A.; Cronise, M.P.; Fales, C.N.; Greenberg, R.R.; Leigh, S.D.; Long, S.E.; Marlow, A.F.; Murphy, K.E.; Oflaz, R.; Sieber, J.R.; Rearick, M.S.; Wood, L.J.; Yu, L.L.; Wilson, S.A.; Briggs, P.H.; Brown, Z.A.; Budahn, J.; Kane, P.F.; Hall, W.L.
2007-01-01
During the past seven years, several states within the US have enacted regulations that limit the amounts of selected non-nutritive elements in fertilizers. Internationally, several countries, including Japan, China, and Australia, and the European Union also limit the amount of selected elements in fertilizers. The elements of interest include As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Fertilizer manufacturers and state regulatory authorities, faced with meeting and verifying these limits, need to develop analytical methods for determination of the elements of concern and to validate results obtained using these methods. Until now, there were no certified reference materials available with certified mass fraction values for all elements of interest in a blended, multi-nutrient fertilizer matrix. A new standard reference material (SRM) 695 trace elements in multi-nutrient fertilizer, has been developed to help meet these needs. SRM 695 has recently been issued with certified mass fraction values for seventeen elements, reference values for an additional five elements, and information values for two elements. The certificate of analysis includes an addendum listing percentage recovery for eight of these elements, determined using an acid-extraction inductively-coupled plasma optical-emission spectrometry (ICP-OES) method recently developed and tested by members of the Association of American Plant Food Control Officials. ?? Springer-Verlag 2007.
Specialty functions singularity mechanics problems
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1989-01-01
The focus is in the development of more accurate and efficient advanced methods for solution of singular problems encountered in mechanics. At present, finite element methods in conjunction with special functions, boolean sum and blending interpolations are being considered. In dealing with systems which contain a singularity, special finite elements are being formulated to be used in singular regions. Further, special transition elements are being formulated to couple the special element to the mesh that models the rest of the system, and to be used in conjunction with 1-D, 2-D and 3-D elements within the same mesh. Computational simulation with a least squares fit is being utilized to construct special elements, if there is an unknown singularity in the system. A novel approach is taken in formulation of the elements in that: (1) the material properties are modified to include time, temperature, coordinate and stress dependant behavior within the element; (2) material properties vary at nodal points of the elements; (3) a hidden-symbolic computation scheme is developed and utilized in formulating the elements; and (4) special functions and boolean sum are utilized in order to interpolate the field variables and their derivatives along the boundary of the elements. It may be noted that the proposed methods are also applicable to fluids and coupled problems.
Quantification of multiple elements in dried blood spot samples.
Pedersen, Lise; Andersen-Ranberg, Karen; Hollergaard, Mads; Nybo, Mads
2017-08-01
Dried blood spots (DBS) is a unique matrix that offers advantages compared to conventional blood collection making it increasingly popular in large population studies. We here describe development and validation of a method to determine multiple elements in DBS. Elements were extracted from punches and analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The method was evaluated with quality controls with defined element concentration and blood spiked with elements to assess accuracy and imprecision. DBS element concentrations were compared with concentrations in venous blood. Samples with different hematocrit were spotted onto filter paper to assess hematocrit effect. The established method was precise and accurate for measurement of most elements in DBS. There was a significant but relatively weak correlation between measurement of the elements Mg, K, Fe, Cu, Zn, As and Se in DBS and venous whole blood. Hematocrit influenced the DBS element measurement, especially for K, Fe and Zn. Trace elements can be measured with high accuracy and low imprecision in DBS, but contribution of signal from the filter paper influences measurement of some elements present at low concentrations. Simultaneous measurement of K and Fe in DBS extracts may be used to estimate sample hematocrit. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Computing Fiber/Matrix Interfacial Effects In SiC/RBSN
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Hopkins, Dale A.
1996-01-01
Computational study conducted to demonstrate use of boundary-element method in analyzing effects of fiber/matrix interface on elastic and thermal behaviors of representative laminated composite materials. In study, boundary-element method implemented by Boundary Element Solution Technology - Composite Modeling System (BEST-CMS) computer program.
NASA Astrophysics Data System (ADS)
Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2014-11-01
The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.
NASA Technical Reports Server (NTRS)
Coy, J. J.; Chao, C. H. C.
1981-01-01
A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classical Hertzian solution for deflection. The results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.
Methods for identification and verification using vacuum XRF system
NASA Technical Reports Server (NTRS)
Kaiser, Bruce (Inventor); Schramm, Fred (Inventor)
2005-01-01
Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.
Alternative methods to model frictional contact surfaces using NASTRAN
NASA Technical Reports Server (NTRS)
Hoang, Joseph
1992-01-01
Elongated (slotted) holes have been used extensively for the integration of equipment into Spacelab racks. In the past, this type of interface has been modeled assuming that there is not slippage between contact surfaces, or that there is no load transfer in the direction of the slot. Since the contact surfaces are bolted together, the contact friction provides a load path determined by the normal applied force (bolt preload) and the coefficient of friction. Three alternate methods that utilize spring elements, externally applied couples, and stress dependent elements are examined to model the contacted surfaces. Results of these methods are compared with results obtained from methods that use GAP elements and rigid elements.
Advanced stress analysis methods applicable to turbine engine structures
NASA Technical Reports Server (NTRS)
Pian, Theodore H. H.
1991-01-01
The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.
Probabilistic finite elements for fracture mechanics
NASA Technical Reports Server (NTRS)
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
Chromatographic-ICPMS methods for trace element and isotope analysis of water and biogenic calcite
NASA Astrophysics Data System (ADS)
Klinkhammer, G. P.; Haley, B. A.; McManus, J.; Palmer, M. R.
2003-04-01
ICP-MS is a powerful technique because of its sensitivity and speed of analysis. This is especially true for refractory elements that are notoriously difficult using TIMS and less energetic techniques. However, as ICP-MS instruments become more sensitive to elements of interest they also become more sensitive to interference. This becomes a pressing issue when analyzing samples with high total dissolved solids. This paper describes two trace element methods that overcome these problems by using chromatographic techniques to precondition samples prior to analysis by ICP-MS: separation of rare earth elements (REEs) from seawater using HPLC-ICPMS, and flow-through dissolution of foraminiferal calcite. Using HPLC in combination with ICP-MS it is possible to isolate the REEs from matrix, other transition elements, and each other. This method has been developed for small volume samples (5ml) making it possible to analyze sediment pore waters. As another example, subjecting foram shells to flow-through reagent addition followed by time-resolved analysis in the ICP-MS allows for systematic cleaning and dissolution of foram shells. This method provides information about the relationship between dissolution tendency and elemental composition. Flow-through is also amenable to automation thus yielding the high sample throughput required for paleoceanography, and produces a highly resolved elemental matrix that can be statistically analyzed.
NASA Astrophysics Data System (ADS)
Sotokoba, Yasumasa; Okajima, Kenji; Iida, Toshiaki; Tanaka, Tadatsugu
We propose the trenchless box culvert construction method to construct box culverts in small covering soil layers while keeping roads or tracks open. When we use this construction method, it is necessary to clarify deformation and shear failure by excavation of grounds. In order to investigate the soil behavior, model experiments and elasto-plactic finite element analysis were performed. In the model experiments, it was shown that the shear failure was developed from the end of the roof to the toe of the boundary surface. In the finite element analysis, a shear band effect was introduced. Comparing the observed shear bands in model experiments with computed maximum shear strain contours, it was found that the observed direction of the shear band could be simulated reasonably by the finite element analysis. We may say that the finite element method used in this study is useful tool for this construction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less
Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions
NASA Astrophysics Data System (ADS)
Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus
2017-10-01
We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.
A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation
Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei
2013-01-01
We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L 2(Ω))2 space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term w = −Δu and a priori error estimates in (L 2)2-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes. PMID:23864831
A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.
Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei; Liu, Yang
2013-01-01
We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L²(Ω))² space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L² and H¹-norm for both the scalar unknown u and the diffusion term w = -Δu and a priori error estimates in (L²)²-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin
2012-01-01
An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108
Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin
2012-01-01
An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.
A Unified Development of Basis Reduction Methods for Rotor Blade Analysis
NASA Technical Reports Server (NTRS)
Ruzicka, Gene C.; Hodges, Dewey H.; Rutkowski, Michael (Technical Monitor)
2001-01-01
The axial foreshortening effect plays a key role in rotor blade dynamics, but approximating it accurately in reduced basis models has long posed a difficult problem for analysts. Recently, though, several methods have been shown to be effective in obtaining accurate,reduced basis models for rotor blades. These methods are the axial elongation method,the mixed finite element method, and the nonlinear normal mode method. The main objective of this paper is to demonstrate the close relationships among these methods, which are seemingly disparate at first glance. First, the difficulties inherent in obtaining reduced basis models of rotor blades are illustrated by examining the modal reduction accuracy of several blade analysis formulations. It is shown that classical, displacement-based finite elements are ill-suited for rotor blade analysis because they can't accurately represent the axial strain in modal space, and that this problem may be solved by employing the axial force as a variable in the analysis. It is shown that the mixed finite element method is a convenient means for accomplishing this, and the derivation of a mixed finite element for rotor blade analysis is outlined. A shortcoming of the mixed finite element method is that is that it increases the number of variables in the analysis. It is demonstrated that this problem may be rectified by solving for the axial displacements in terms of the axial forces and the bending displacements. Effectively, this procedure constitutes a generalization of the widely used axial elongation method to blades of arbitrary topology. The procedure is developed first for a single element, and then extended to an arbitrary assemblage of elements of arbitrary type. Finally, it is shown that the generalized axial elongation method is essentially an approximate solution for an invariant manifold that can be used as the basis for a nonlinear normal mode.
A particle finite element method for machining simulations
NASA Astrophysics Data System (ADS)
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
Methods and devices for fabricating and assembling printable semiconductor elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
A pedagogical derivation of the matrix element method in particle physics data analysis
NASA Astrophysics Data System (ADS)
Sumowidagdo, Suharyo
2018-03-01
The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2014-03-04
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
NASA Technical Reports Server (NTRS)
Bateman, W. A.
1984-01-01
Cylindrical tubes joined together, end to end, by method employing adhesive, tapered ends, and spacing wires. Tapered joint between tubular structural elements provides pressure between bonding surfaces during adhesive curing. Spacing wires prevent adhesive from being scraped away when one element inserted in other. Method developed for assembling structural elements made of composite materials.
Completely non-destructive elemental analysis of bulky samples by PGAA
NASA Astrophysics Data System (ADS)
Oura, Y.; Nakahara, H.; Sueki, K.; Sato, W.; Saito, A.; Tomizawa, T.; Nishikawa, T.
1999-01-01
NBAA (neutron beam activation analysis), which is a combination of PGAA and INAA by a single neutron irradiation, using an internal monostandard method is proposed as a very unique and promising method for the elemental analysis of voluminous and invaluable archaeological samples which do not allow even a scrape of the surface. It was applied to chinawares, Sueki ware, and bronze mirrors, and proved to be a very effective method for nondestructive analysis of not only major elements but also some minor elements such as boron that help solve archaeological problems of ears and sites of their production.
Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis
Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar
2000-12-01
Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.
Restoring the missing features of the corrupted speech using linear interpolation methods
NASA Astrophysics Data System (ADS)
Rassem, Taha H.; Makbol, Nasrin M.; Hasan, Ali Muttaleb; Zaki, Siti Syazni Mohd; Girija, P. N.
2017-10-01
One of the main challenges in the Automatic Speech Recognition (ASR) is the noise. The performance of the ASR system reduces significantly if the speech is corrupted by noise. In spectrogram representation of a speech signal, after deleting low Signal to Noise Ratio (SNR) elements, the incomplete spectrogram is obtained. In this case, the speech recognizer should make modifications to the spectrogram in order to restore the missing elements, which is one direction. In another direction, speech recognizer should be able to restore the missing elements due to deleting low SNR elements before performing the recognition. This is can be done using different spectrogram reconstruction methods. In this paper, the geometrical spectrogram reconstruction methods suggested by some researchers are implemented as a toolbox. In these geometrical reconstruction methods, the linear interpolation along time or frequency methods are used to predict the missing elements between adjacent observed elements in the spectrogram. Moreover, a new linear interpolation method using time and frequency together is presented. The CMU Sphinx III software is used in the experiments to test the performance of the linear interpolation reconstruction method. The experiments are done under different conditions such as different lengths of the window and different lengths of utterances. Speech corpus consists of 20 males and 20 females; each one has two different utterances are used in the experiments. As a result, 80% recognition accuracy is achieved with 25% SNR ratio.
A finite element analysis of viscoelastically damped sandwich plates
NASA Astrophysics Data System (ADS)
Ma, B.-A.; He, J.-F.
1992-01-01
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.
Fast Erase Method and Apparatus For Digital Media
NASA Technical Reports Server (NTRS)
Oakely, Ernest C. (Inventor)
2006-01-01
A non-contact fast erase method for erasing information stored on a magnetic or optical media. The magnetic media element includes a magnetic surface affixed to a toroidal conductor and stores information in a magnetic polarization pattern. The fast erase method includes applying an alternating current to a planar inductive element positioned near the toroidal conductor, inducing an alternating current in the toroidal conductor, and heating the magnetic surface to a temperature that exceeds the Curie-point so that information stored on the magnetic media element is permanently erased. The optical disc element stores information in a plurality of locations being defined by pits and lands in a toroidal conductive layer. The fast erase method includes similarly inducing a plurality of currents in the optical media element conductive layer and melting a predetermined portion of the conductive layer so that the information stored on the optical medium is destroyed.
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.
A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reactionmore » wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5« less
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles
2014-01-07
A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.
A combined finite element-boundary element formulation for solution of axially symmetric bodies
NASA Technical Reports Server (NTRS)
Collins, Jeffrey D.; Volakis, John L.
1991-01-01
A new method is presented for the computation of electromagnetic scattering from axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the method combines the finite element and boundary element techniques. Interior to a fictitious surface enclosing the scattering body, the finite element method is used which results in a sparce submatrix, whereas along the enclosure the Stratton-Chu integral equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder, most of the resulting boundary integrals are convolutional and may therefore be evaluated via the FFT with which the system is iteratively solved. In view of the sparce matrix associated with the interior fields, this reduces the storage requirement of the entire system to O(N) making the method attractive for large scale computations. The details of the corresponding formulation and its numerical implementation are described.
Modules and methods for all photonic computing
Schultz, David R.; Ma, Chao Hung
2001-01-01
A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.
Singularity embedding method in potential flow calculations
NASA Technical Reports Server (NTRS)
Jou, W. H.; Huynh, H.
1982-01-01
The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.
Spectral analysis method for detecting an element
Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Reber, Edward L [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID
2008-02-12
A method for detecting an element is described and which includes the steps of providing a gamma-ray spectrum which has a region of interest which corresponds with a small amount of an element to be detected; providing nonparametric assumptions about a shape of the gamma-ray spectrum in the region of interest, and which would indicate the presence of the element to be detected; and applying a statistical test to the shape of the gamma-ray spectrum based upon the nonparametric assumptions to detect the small amount of the element to be detected.
Lee, Jonathan K.; Froehlich, David C.
1987-01-01
Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan
2017-01-01
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.
Mobile element biology – new possibilities with high-throughput sequencing
Xing, Jinchuan; Witherspoon, David J.; Jorde, Lynn B.
2014-01-01
Mobile elements compose more than half of the human genome, but until recently their large-scale detection was time-consuming and challenging. With the development of new high-throughput sequencing technologies, the complete spectrum of mobile element variation in humans can now be identified and analyzed. Thousands of new mobile element insertions have been discovered, yielding new insights into mobile element biology, evolution, and genomic variation. We review several high-throughput methods, with an emphasis on techniques that specifically target mobile element insertions in humans, and we highlight recent applications of these methods in evolutionary studies and in the analysis of somatic alterations in human cancers. PMID:23312846
C deg continuity elements by Hybrid Stress method. M.S. Thesis, 1982 Final Report
NASA Technical Reports Server (NTRS)
Kang, David Sung-Soo
1991-01-01
An intensive study of the assumed variable distribution necessary for the Assumed Displacement Formulation, the Hellinger-Reissner Formulation, and the Hu-Washizu Formulation is made in a unified manner. With emphasis on physical explanation, a systematic method for the Hybrid Stress element construction is outlined. The numerical examples use four and eight node plane stress elements and eight and twenty node solid elements. Computation cost study indicates that the hybrid stress element derived using recently developed Uncoupled Stress Formulation is comparable in CPU time to the Assumed Displacement element. Overall, main emphasis is placed on providing a broader understanding of the Hybrid Stress Formulation.
Method of modifying a volume mesh using sheet insertion
Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM
2006-08-29
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.
Kondou, Youichi; Manickavelu, Alagu; Komatsu, Kenji; Arifi, Mujiburahman; Kawashima, Mika; Ishii, Takayoshi; Hattori, Tomohiro; Iwata, Hiroyoshi; Tsujimoto, Hisashi; Ban, Tomohiro; Matsui, Minami
2016-01-01
This study was carried out with the aim of developing the methodology to determine elemental composition in wheat and identify the best germplasm for further research. Orphan and genetically diverse Afghan wheat landraces were chosen and EDXRF was used to measure the content of some of the elements to establish elemental composition in grains of 266 landraces using 10 reference lines. Four elements, K, Mg, P, and Fe, were measured by standardizing sample preparation. The results of hierarchical cluster analysis using elemental composition data sets indicated that the Fe content has an opposite pattern to the other elements, especially that of K. By systematic analysis the best wheat germplasms for P content and Fe content were identified. In order to compare the sensitivity of EDXRF, the ICP method was also used and the similar results obtained confirmed the EDXRF methodology. The sampling method for measurement using EDXRF was optimized resulting in high-throughput profiling of elemental composition in wheat grains at low cost. Using this method, we have characterized the Afghan wheat landraces and isolated the best genotypes that have high-elemental content and have the potential to be used in crop improvement. PMID:28163583
Aorta modeling with the element-based zero-stress state and isogeometric discretization
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi
2017-02-01
Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight-tube configurations. Then we show how the method can be used in a 3D computation where the target geometry is coming from medical image of a human aorta.
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
[Standard sample preparation method for quick determination of trace elements in plastic].
Yao, Wen-Qing; Zong, Rui-Long; Zhu, Yong-Fa
2011-08-01
Reference sample was prepared by masterbatch method, containing heavy metals with known concentration of electronic information products (plastic), the repeatability and precision were determined, and reference sample preparation procedures were established. X-Ray fluorescence spectroscopy (XRF) analysis method was used to determine the repeatability and uncertainty in the analysis of the sample of heavy metals and bromine element. The working curve and the metrical methods for the reference sample were carried out. The results showed that the use of the method in the 200-2000 mg x kg(-1) concentration range for Hg, Pb, Cr and Br elements, and in the 20-200 mg x kg(-1) range for Cd elements, exhibited a very good linear relationship, and the repeatability of analysis methods for six times is good. In testing the circuit board ICB288G and ICB288 from the Mitsubishi Heavy Industry Company, results agreed with the recommended values.
Atmosphere purification of radon and radon daughter elements
Stein, L.
1974-01-01
A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)
A new methodology for free wake analysis using curved vortex elements
NASA Technical Reports Server (NTRS)
Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.
1987-01-01
A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
Un-collided-flux preconditioning for the first order transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigley, M.; Koebbe, J.; Drumm, C.
2013-07-01
Two codes were tested for the first order neutron transport equation using finite element methods. The un-collided-flux solution is used as a preconditioner for each of these methods. These codes include a least squares finite element method and a discontinuous finite element method. The performance of each code is shown on problems in one and two dimensions. The un-collided-flux preconditioner shows good speedup on each of the given methods. The un-collided-flux preconditioner has been used on the second-order equation, and here we extend those results to the first order equation. (authors)
Multi-element microelectropolishing method
Lee, Peter J.
1994-01-01
A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.
Least-squares finite element solution of 3D incompressible Navier-Stokes problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.
1992-01-01
Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.
Advances and future directions of research on spectral methods
NASA Technical Reports Server (NTRS)
Patera, A. T.
1986-01-01
Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Energy harvesting devices, systems, and related methods
Kotter, Dale K.
2016-10-18
Energy harvesting devices include a substrate and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to collect energy in the visible and infrared light spectra and to reradiate energy having a wavelength in the range of about 0.8 .mu.m to about 0.9 .mu.m. The resonance elements are arranged in groups of two or more resonance elements. Systems for harvesting electromagnetic radiation include a substrate, a plurality of resonance elements including a conductive material carried by the substrate, and a photovoltaic material coupled to the substrate and to at least one resonance element. The resonance elements are arranged in groups, such as in a dipole, a tripole, or a bowtie configuration. Methods for forming an energy harvesting device include forming groups of two or more discrete resonance elements in a substrate and coupling a photovoltaic material to the groups of discrete resonance elements.
Cooley, Richard L.
1992-01-01
MODFE, a modular finite-element model for simulating steady- or unsteady-state, area1 or axisymmetric flow of ground water in a heterogeneous anisotropic aquifer is documented in a three-part series of reports. In this report, part 2, the finite-element equations are derived by minimizing a functional of the difference between the true and approximate hydraulic head, which produces equations that are equivalent to those obtained by either classical variational or Galerkin techniques. Spatial finite elements are triangular with linear basis functions, and temporal finite elements are one dimensional with linear basis functions. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining units; (3) specified recharge or discharge at points, along lines, or areally; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining units combined with aquifer dewatering, and evapotranspiration. The matrix equations produced by the finite-element method are solved by the direct symmetric-Doolittle method or the iterative modified incomplete-Cholesky conjugate-gradient method. The direct method can be efficient for small- to medium-sized problems (less than about 500 nodes), and the iterative method is generally more efficient for larger-sized problems. Comparison of finite-element solutions with analytical solutions for five example problems demonstrates that the finite-element model can yield accurate solutions to ground-water flow problems.
Improvement Technology Classification and Composition in Multimodel Environments
2008-03-01
ISO 15504, ISO 12207 , and others COBIT, ITIL, SOX, and...Practice Elements CMMI PAs and PLA ISO 15504 and ISO 12207 COBIT EFQM ISO 9001 Improvement Method Elements Change management techniques: IDEAL and Six...others EFQM and others ISO 9001, ISO 61508, ISO 16949, and others Improvement Method Elements Change management techniques: IDEAL, Six Sigma,
Determining e-Portfolio Elements in Learning Process Using Fuzzy Delphi Analysis
ERIC Educational Resources Information Center
Mohamad, Syamsul Nor Azlan; Embi, Mohamad Amin; Nordin, Norazah
2015-01-01
The present article introduces the Fuzzy Delphi method results obtained in the study on determining e-Portfolio elements in learning process for art and design context. This method bases on qualified experts that assure the validity of the collected information. In particular, the confirmation of elements is based on experts' opinion and…
Development of a Certified Reference Material (NMIJ CRM 7203-a) for Elemental Analysis of Tap Water.
Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Miyashita, Shin-Ichi; Kuroiwa, Takayoshi; Ariga, Tomoko; Kudo, Izumi; Koguchi, Masae; Heo, Sung Woo; Suh, Jung Ki; Lee, Kyoung-Seok; Yim, Yong-Hyeon; Lim, Youngran
2017-01-01
A certified reference material (CRM), NMIJ CRM 7203-a, was developed for the elemental analysis of tap water. At least two independent analytical methods were applied to characterize the certified value of each element. The elements certified in the present CRM were as follows: Al, As, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, and Zn. The certified value for each element was given as the (property value ± expanded uncertainty), with a coverage factor of 2 for the expanded uncertainty. The expanded uncertainties were estimated while considering the contribution of the analytical methods, the method-to-method variance, the sample homogeneity, the long-term stability, and the concentrations of the standard solutions for calibration. The concentration of Hg (0.39 μg kg -1 ) was given as the information value, since loss of Hg was observed when the sample was stored at room temperature and exposed to light. The certified values of selected elements were confirmed by a co-analysis carried out independently by the NMIJ (Japan) and the KRISS (Korea).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wight, L.; Zaslawsky, M.
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.
Method For Growth of Crystal Surfaces and Growth of Heteroepitaxial Single Crystal Films Thereon
NASA Technical Reports Server (NTRS)
Powell, J. Anthony (Inventor); Larkin, David J. (Inventor); Neudeck, Philip G. (Inventor); Matus, Lawrence G. (Inventor)
2000-01-01
A method of growing atomically-flat surfaces and high quality low-defect crystal films of semiconductor materials and fabricating improved devices thereon is discussed. The method is also suitable for growing films heteroepitaxially on substrates that are different than the film. The method is particularly suited for growth of elemental semiconductors (such as Si), compounds of Groups III and V elements of the Periodic Table (such as GaN), and compounds and alloys of Group IV elements of the Periodic Table (such as SiC).
An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1
NASA Technical Reports Server (NTRS)
Shivarama, Ravishankar; Fahrenthold, Eric P.
2004-01-01
A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
A weak Galerkin generalized multiscale finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
Acceleration of low order finite element computation with GPUs (Invited)
NASA Astrophysics Data System (ADS)
Knepley, M. G.
2010-12-01
Considerable effort has been focused on the acceleration using GPUs of high order spectral element methods and discontinuous Galerkin finite element methods. However, these methods are not universally applicable, and much of the existing FEM software base employs low order methods. In this talk, we present a formulation of FEM, using the PETSc framework from ANL, which is amenable to GPU acceleration even at very low order. In addition, using the FEniCS system for FEM, we show that the relevant kernels can be automatically generated and optimized using a symbolic manipulation system.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Astrophysics Data System (ADS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
On finite element methods for the Helmholtz equation
NASA Technical Reports Server (NTRS)
Aziz, A. K.; Werschulz, A. G.
1979-01-01
The numerical solution of the Helmholtz equation is considered via finite element methods. A two-stage method which gives the same accuracy in the computed gradient as in the computed solution is discussed. Error estimates for the method using a newly developed proof are given, and the computational considerations which show this method to be computationally superior to previous methods are presented.
Modal ring method for the scattering of sound
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal element method for acoustic scattering can be simplified when the scattering body is rigid. In this simplified method, called the modal ring method, the scattering body is represented by a ring of triangular finite elements forming the outer surface. The acoustic pressure is calculated at the element nodes. The pressure in the infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The two solution forms are coupled by the continuity of pressure and velocity on the body surface. The modal ring method effectively reduces the two-dimensional scattering problem to a one-dimensional problem capable of handling very high frequency scattering. In contrast to the boundary element method or the method of moments, which perform a similar reduction in problem dimension, the model line method has the added advantage of having a highly banded solution matrix requiring considerably less computer storage. The method shows excellent agreement with analytic results for scattering from rigid circular cylinders over a wide frequency range (1 is equal to or less than ka is less than or equal to 100) in the near and far fields.
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems
Xia, Kelin; Wei, Guo-Wei
2014-01-01
We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038
The Overshoot Phenomenon in Geodynamics Codes
NASA Astrophysics Data System (ADS)
Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.
2013-12-01
The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.
NASA Astrophysics Data System (ADS)
Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.
2018-04-01
Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.
HUMAN EYE OPTICS: Determination of positions of optical elements of the human eye
NASA Astrophysics Data System (ADS)
Galetskii, S. O.; Cherezova, T. Yu
2009-02-01
An original method for noninvasive determining the positions of elements of intraocular optics is proposed. The analytic dependence of the measurement error on the optical-scheme parameters and the restriction in distance from the element being measured are determined within the framework of the method proposed. It is shown that the method can be efficiently used for determining the position of elements in the classical Gullstrand eye model and personalised eye models. The positions of six optical surfaces of the Gullstrand eye model and four optical surfaces of the personalised eye model can be determined with an error of less than 0.25 mm.
Membrane assisted solvent extraction for rare earth element recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.
Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.
Finite element methods on supercomputers - The scatter-problem
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.
1985-01-01
Certain problems arise in connection with the use of supercomputers for the implementation of finite-element methods. These problems are related to the desirability of utilizing the power of the supercomputer as fully as possible for the rapid execution of the required computations, taking into account the gain in speed possible with the aid of pipelining operations. For the finite-element method, the time-consuming operations may be divided into three categories. The first two present no problems, while the third type of operation can be a reason for the inefficient performance of finite-element programs. Two possibilities for overcoming certain difficulties are proposed, giving attention to a scatter-process.
NASA Technical Reports Server (NTRS)
Franca, Leopoldo P.; Loula, Abimael F. D.; Hughes, Thomas J. R.; Miranda, Isidoro
1989-01-01
Adding to the classical Hellinger-Reissner formulation, a residual form of the equilibrium equation, a new Galerkin/least-squares finite element method is derived. It fits within the framework of a mixed finite element method and is stable for rather general combinations of stress and velocity interpolations, including equal-order discontinuous stress and continuous velocity interpolations which are unstable within the Galerkin approach. Error estimates are presented based on a generalization of the Babuska-Brezzi theory. Numerical results (not presented herein) have confirmed these estimates as well as the good accuracy and stability of the method.
Application of Finite Element Method in Traffic Injury and Its Prospect in Forensic Science.
Liu, C G; Lu, Y J; Gao, J; Liu, Q
2016-06-01
The finite element method (FEM) is a numerical computation method based on computer technology, and has been gradually applied in the fields of medicine and biomechanics. The finite element analysis can be used to explore the loading process and injury mechanism of human body in traffic injury. FEM is also helpful for the forensic investigation in traffic injury. This paper reviews the development of the finite element models and analysis of brain, cervical spine, chest and abdomen, pelvis, limbs at home and aboard in traffic injury in recent years. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Method of holding optical elements without deformation during their fabrication
Hed, P.P.
1997-04-29
An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element is disclosed. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool. 16 figs.
Method of holding optical elements without deformation during their fabrication
Hed, P. Paul
1997-01-01
An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool.
Method for fabricating a microscale anemometer
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor)
2008-01-01
Method for fabricating a microscale anemometer on a substrate. A sacrificial layer is formed on the substrate, and a metal thin film is patterned to form a sensing element. At least one support for the sensing element is patterned. The sacrificial layer is removed, and the sensing element is lifted away from the substrate by raising the supports, thus creating a clearance between the sensing element and the substrate to allow fluid flow between the sensing element and the substrate. The supports are raised preferably by use of a magnetic field applied to magnetic material patterned on the supports.
2015-09-01
Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations. Michal A. Koperaa,∗, Francis X...mass conservation, as it is an important feature for many atmospheric applications . We believe this is a good metric because, for smooth solutions
Efficient Preconditioning for the p-Version Finite Element Method in Two Dimensions
1989-10-01
paper, we study fast parallel preconditioners for systems of equations arising from the p-version finite element method. The p-version finite element...computations and the solution of a relatively small global auxiliary problem. We study two different methods. In the first (Section 3), the global...20], will be studied in the next section. Problem (3.12) is obviously much more easily solved than the original problem ,nd the procedure is highly
Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-02-01
Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
NASA Astrophysics Data System (ADS)
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
NASA Astrophysics Data System (ADS)
Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo
2017-12-01
A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.
Spectral element method for elastic and acoustic waves in frequency domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min
Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the usemore » of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.« less
Study on Edge Thickening Flow Forming Using the Finite Elements Analysis
NASA Astrophysics Data System (ADS)
Kim, Young Jin; Park, Jin Sung; Cho, Chongdu
2011-08-01
This study is to examine the forming features of flow stress property and the incremental forming method with increasing the thickness of material. Recently, the optimized forming method is widely studied through the finite element analysis to optimize forming process conditions in many different forming fields. The optimal forming method should be adopted to meet geometric requirements as the reduction in volume per unit length of material such as forging, rolling, spinning etc. However conventional studies have not dealt with issue regarding volume per unit length. For the study we use the finite element method and model a gear part of an automotive engine flywheel as the study model, which is a weld assembly of a plate and a gear with respective different thickness. In simulation of the present study, a optimized forming condition for gear machining, considering the thickness of the outer edge of flywheel is studied using the finite elements analysis for the increasing thickness of the forming method. It is concluded from the study that forming method to increase the thickness per unit length for gear machining is reasonable using the finite elements analysis and forming test.
Ultrasonic Method for Deployment Mechanism Bolt Element Preload Verification
NASA Technical Reports Server (NTRS)
Johnson, Eric C.; Kim, Yong M.; Morris, Fred A.; Mitchell, Joel; Pan, Robert B.
2014-01-01
Deployment mechanisms play a pivotal role in mission success. These mechanisms often incorporate bolt elements for which a preload within a specified range is essential for proper operation. A common practice is to torque these bolt elements to a specified value during installation. The resulting preload, however, can vary significantly with applied torque for a number of reasons. The goal of this effort was to investigate ultrasonic methods as an alternative for bolt preload verification in such deployment mechanisms. A family of non-explosive release mechanisms widely used by satellite manufacturers was chosen for the work. A willing contractor permitted measurements on a sampling of bolt elements for these release mechanisms that were installed by a technician following a standard practice. A variation of approximately 50% (+/- 25%) in the resultant preloads was observed. An alternative ultrasonic method to set the preloads was then developed and calibration data was accumulated. The method was demonstrated on bolt elements installed in a fixture instrumented with a calibrated load cell and designed to mimic production practice. The ultrasonic method yielded results within +/- 3% of the load cell reading. The contractor has since adopted the alternative method for its future production. Introduction
Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kipp, C. R.; Bernhard, R. J.
1985-01-01
A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.
NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY
Stengel, F.G.
1963-12-24
A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)
NASA Astrophysics Data System (ADS)
Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio
2018-07-01
This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.
Methods and apparatus for extraction and tracking of objects from multi-dimensional sequence data
NASA Technical Reports Server (NTRS)
Hill, Matthew L. (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Castelli, Vittorio (Inventor); Bergman, Lawrence David (Inventor)
2008-01-01
An object tracking technique is provided which, given: (i) a potentially large data set; (ii) a set of dimensions along which the data has been ordered; and (iii) a set of functions for measuring the similarity between data elements, a set of objects are produced. Each of these objects is defined by a list of data elements. Each of the data elements on this list contains the probability that the data element is part of the object. The method produces these lists via an adaptive, knowledge-based search function which directs the search for high-probability data elements. This serves to reduce the number of data element combinations evaluated while preserving the most flexibility in defining the associations of data elements which comprise an object.
Methods and apparatus for extraction and tracking of objects from multi-dimensional sequence data
NASA Technical Reports Server (NTRS)
Hill, Matthew L. (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Castelli, Vittorio (Inventor); Bergman, Lawrence David (Inventor)
2005-01-01
An object tracking technique is provided which, given: (i) a potentially large data set; (ii) a set of dimensions along which the data has been ordered; and (iii) a set of functions for measuring the similarity between data elements, a set of objects are produced. Each of these objects is defined by a list of data elements. Each of the data elements on this list contains the probability that the data element is part of the object. The method produces these lists via an adaptive, knowledge-based search function which directs the search for high-probability data elements. This serves to reduce the number of data element combinations evaluated while preserving the most flexibility in defining the associations of data elements which comprise an object.
Preparation of high temperature gas-cooled reactor fuel element
Bradley, Ronnie A.; Sease, John D.
1976-01-01
This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.
Method for the removal of elemental mercury from a gas stream
Mendelsohn, Marshall H.; Huang, Hann-Sheng
1999-01-01
A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents.
Method for laser induced isotope enrichment
Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu
2004-09-07
Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.
MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR
Balent, R.
1963-03-12
This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)
Method for the removal of elemental mercury from a gas stream
Mendelsohn, M.H.; Huang, H.S.
1999-05-04
A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents. 7 figs.
Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefert, Christopher; Bochev, Pavel Blagoveston; Kramer, Richard Michael Jack
Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these modelsmore » can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.« less
NASA Astrophysics Data System (ADS)
Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang
2018-04-01
The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.
NASA Astrophysics Data System (ADS)
Hano, Mitsuo; Hotta, Masashi
A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1995-01-01
A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.
NASA Astrophysics Data System (ADS)
Ignatyev, A. V.; Ignatyev, V. A.; Onischenko, E. V.
2017-11-01
This article is the continuation of the work made bt the authors on the development of the algorithms that implement the finite element method in the form of a classical mixed method for the analysis of geometrically nonlinear bar systems [1-3]. The paper describes an improved algorithm of the formation of the nonlinear governing equations system for flexible plane frames and bars with large displacements of nodes based on the finite element method in a mixed classical form and the use of the procedure of step-by-step loading. An example of the analysis is given.
Wave propagation modeling in composites reinforced by randomly oriented fibers
NASA Astrophysics Data System (ADS)
Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw
2018-02-01
A new method for prediction of elastic constants in randomly oriented fiber composites is proposed. It is based on mechanics of composites, the rule of mixtures and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Selected elastic properties predicted by the proposed method are compared with values obtained by another theoretical method. The proposed method is applied for simulation of Lamb waves in glass-epoxy composite plate reinforced by randomly oriented fibers. Full wavefield measurements conducted by the scanning laser Doppler vibrometer are in good agreement with simulations performed by using the time domain spectral element method.
NASA Astrophysics Data System (ADS)
Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia
2016-04-01
In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.
Fast Boundary Element Method for acoustics with the Sparse Cardinal Sine Decomposition
NASA Astrophysics Data System (ADS)
Alouges, François; Aussal, Matthieu; Parolin, Emile
2017-07-01
This paper presents the newly proposed method Sparse Cardinal Sine Decomposition that allows fast convolution on unstructured grids. We focus on its use when coupled with finite element techniques to solve acoustic problems with the (compressed) Boundary Element Method. In addition, we also compare the computational performances of two equivalent Matlab® and Python implementations of the method. We show validation test cases in order to assess the precision of the approach. Eventually, the performance of the method is illustrated by the computation of the acoustic target strength of a realistic submarine from the Benchmark Target Strength Simulation international workshop.
[Determination of 27 elements in Maca nationality's medicine by microwave digestion ICP-MS].
Yu, Gui-fang; Zhong, Hai-jie; Hu, Jun-hua; Wang, Jing; Huang, Wen-zhe; Wang, Zhen-zhong; Xiao, Wei
2015-12-01
An analysis method has been established to test 27 elements (Li, Be, B, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Mo, Cd, Sn, Sb, Ba, La, Hg, Pb, Bi) in Maca nationality's medicine with microwave digestion-ICP-MS. Sample solutions were analyzed by ICP-MS after microwave digestion, and the contents of elements were calculated according to their calibration curves, and internal standard method was adopted to reduce matrix effect and other interference effects. The experimental results showed that the linear relations of all the elements were very good; the correlation coefficient (r) was 0.9994-1.0000 (Hg was 0.9982) ; the limits of detection were 0.003-2.662 microg x L(-1); the relative standard deviations for all elements of reproducibility were lower than 5% (except the individual elements); the recovery rate were 78.5%-123.7% with RSD lower than 5% ( except the individual elements). The analytical results of standard material showed acceptable agreement with the certified values. This method was applicable to determinate the contents of multi-elements in Maca which had a high sensitivity, good specificity and good repeatability, and provide basis for the quality control of Maca.
Optimization-based limiters for the spectral element method
NASA Astrophysics Data System (ADS)
Guba, Oksana; Taylor, Mark; St-Cyr, Amik
2014-06-01
We introduce a new family of optimization based limiters for the h-p spectral element method. The native spectral element advection operator is oscillatory, but due to its mimetic properties it is locally conservative and has a monotone property with respect to element averages. We exploit this property to construct locally conservative quasimonotone and sign-preserving limiters. The quasimonotone limiter prevents all overshoots and undershoots at the element level, but is not strictly non-oscillatory. It also maintains quasimonotonicity even with the addition of a dissipation term such as viscosity or hyperviscosity. The limiters are based on a least-squares formulation with equality and inequality constraints and are local to each element. We evaluate the new limiters using a deformational flow test case for advection on the surface of the sphere. We focus on mesh refinement for moderate (p=3) and high order (p=6) elements. As expected, the spectral element method obtains its formal order of accuracy for smooth problems without limiters. For advection of fields with cusps and discontinuities, the high order convergence is lost, but in all cases, p=6 outperforms p=3 for the same degrees of freedom.
Rait, N.
1981-01-01
A modified method is described for a 1-mg sample multi-element semiquantitative spectrographic analysis. This method uses a direct-current arc source, carbon instead of graphite electrodes, and an 80% argon-20% oxygen atmosphere instead of air. Although this is a destructive method, an analysis can be made for 68 elements in all mineral and geochemical samples. Carbon electrodes have been an aid in improving the detection limits of many elements. The carbon has a greater resistance to heat conductance and develops a better tip, facilitating sample volatilization and counter balancing the cooling effect of a flow of the argon-oxygen mixture around the anode. Where such an argon-oxygen atmosphere is used instead of air, the cyanogen band lines are greatly diminished in intensity, and thus more spectral lines of analysis elements are available for use; the spectral background is also lower. The main advantage of using the carbon electrode and the 80% argon-20% oxygen atmosphere is the improved detection limits of 36 out of 68 elements. The detection limits remain the same for 23 elements, and are not as good for only nine elements. ?? 1981.
NASA Technical Reports Server (NTRS)
1984-01-01
Nonlinear structural analysis techniques for engine structures and components are addressed. The finite element method and boundary element method are discussed in terms of stress and structural analyses of shells, plates, and laminates.
NASA Technical Reports Server (NTRS)
Tsiveriotis, K.; Brown, R. A.
1993-01-01
A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.
Investigation into discretization methods of the six-parameter Iwan model
NASA Astrophysics Data System (ADS)
Li, Yikun; Hao, Zhiming; Feng, Jiaquan; Zhang, Dingguo
2017-02-01
Iwan model is widely applied for the purpose of describing nonlinear mechanisms of jointed structures. In this paper, parameter identification procedures of the six-parameter Iwan model based on joint experiments with different preload techniques are performed. Four kinds of discretization methods deduced from stiffness equation of the six-parameter Iwan model are provided, which can be used to discretize the integral-form Iwan model into a sum of finite Jenkins elements. In finite element simulation, the influences of discretization methods and numbers of Jenkins elements on computing accuracy are discussed. Simulation results indicate that a higher accuracy can be obtained with larger numbers of Jenkins elements. It is also shown that compared with other three kinds of discretization methods, the geometric series discretization based on stiffness provides the highest computing accuracy.
Probabilistic finite elements for transient analysis in nonlinear continua
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Carbide and carbonitride surface treatment method for refractory metals
Meyer, G.A.; Schildbach, M.A.
1996-12-03
A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system including a reaction chamber, a source of elemental carbon, a heating subassembly and a source of reaction gases. Alternative methods of providing the elemental carbon and the reaction gases are provided, as well as methods of supporting the metal part, evacuating the chamber with a vacuum subassembly and heating all of the components to the desired temperature. 5 figs.
A Floating Node Method for the Modelling of Discontinuities Within a Finite Element
NASA Technical Reports Server (NTRS)
Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.
2013-01-01
This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.
NASA Astrophysics Data System (ADS)
Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.
2014-05-01
A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Jin, Jian-Ming; Volakis, John L.
1990-01-01
A method for the computation of electromagnetic scattering from arbitrary two-dimensional bodies is presented. The method combines the finite element and boundary element methods leading to a system for solution via the conjugate gradient Fast Fourier Transform (FFT) algorithm. Two forms of boundaries aimed at reducing the storage requirement of the boundary integral are investigated. It is shown that the boundary integral becomes convolutional when a circular enclosure is chosen, resulting in reduced storage requirement when the system is solved via the conjugate gradient FFT method. The same holds for the ogival enclosure, except that some of the boundary integrals are not convolutional and must be carefully treated to maintain O(N) memory requirement. Results for several circular and ogival structures are presented and shown to be in excellent agreement with those obtained by traditional methods.
A Runge-Kutta discontinuous finite element method for high speed flows
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. T.
1991-01-01
A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
Introducing the Boundary Element Method with MATLAB
ERIC Educational Resources Information Center
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
NEUTRONIC REACTOR CHARGING AND DISCHARGING
Zinn, W.H.
1959-07-14
A method and arrangement is presented for removing a fuel element from a neutronic reactor tube through which a liquid coolant is being circulaled. The fuel element is moved into a section of the tube beyond the reactor proper, and then the coolant in the tube between the fuel element and the reactor proper is frozen, so that the fuel element may be removed from the tube without loss of the coolant therein. The method is particularly useful in the case of a liquid metal- cooled reactor.
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
Henager, Jr., Charles H.; Brimhall, John L.
2000-01-01
According to the method of the present invention, joining a first bi-element carbide to a second bi-element carbide, has the steps of: (a) forming a bond agent containing a metal carbide and silicon; (b) placing the bond agent between the first and second bi-element carbides to form a pre-assembly; and (c) pressing and heating the pre-assembly in a non-oxidizing atmosphere to a temperature effective to induce a displacement reaction creating a metal silicon phase bonding the first and second bi-element carbides.
Method of modifying a volume mesh using sheet extraction
Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM
2007-02-20
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.
Mohammadi, Amrollah; Ahmadian, Alireza; Rabbani, Shahram; Fattahi, Ehsan; Shirani, Shapour
2017-12-01
Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster. Copyright © 2016 John Wiley & Sons, Ltd.
Nuclear fuel elements and method of making same
Schweitzer, Donald G.
1992-01-01
A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.
NASA Astrophysics Data System (ADS)
Li, Xiaomin; Guo, Xueli; Guo, Haiyan
2018-06-01
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.
NASA Astrophysics Data System (ADS)
Li, Gangqiang; Zhu, Zheng H.; Ruel, Stephane; Meguid, S. A.
2017-08-01
This paper developed a new multiphysics finite element method for the elastodynamic analysis of space debris deorbit by a bare flexible electrodynamic tether. Orbital motion limited theory and dynamics of flexible electrodynamic tethers are discretized by the finite element method, where the motional electric field is variant along the tether and coupled with tether deflection and motion. Accordingly, the electrical current and potential bias profiles of tether are solved together with the tether dynamics by the nodal position finite element method. The newly proposed multiphysics finite element method is applied to analyze the deorbit dynamics of space debris by electrodynamic tethers with a two-stage energy control strategy to ensure an efficient and stable deorbit process. Numerical simulations are conducted to study the coupled effect between the motional electric field and the tether dynamics. The results reveal that the coupling effect has a significant influence on the tether stability and the deorbit performance. It cannot be ignored when the libration and deflection of the tether are significant.
Multi-element microelectropolishing method
Lee, P.J.
1994-10-11
A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.
ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆
Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk
2014-01-01
In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725
Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method
NASA Technical Reports Server (NTRS)
Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.
1974-01-01
An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.
NASA Astrophysics Data System (ADS)
Lossa, Geoffrey; Deblecker, Olivier; Grève, Zacharie De
2018-05-01
In this work, we highlight the influence of the material uncertainties (magnetic permeability, electric conductivity of a Mn-Zn ferrite core, and electric permittivity of wire insulation) on the RLC parameters of a wound inductor extracted from the finite element method. To that end, the finite element method is embedded in a Monte Carlo simulation. We show that considering mentioned different material properties as real random variables, leads to significant variations in the distributions of the RLC parameters.
Prediction of overall and blade-element performance for axial-flow pump configurations
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Okiishi, T. H.; Miller, M. J.
1973-01-01
A method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial flow pump configurations are described and evaluated. The method uses the blade-element flow model and an iterative numerical solution of the radial equilbrium and continuity conditions. Correlated experimental results are used to generate alternative methods for estimating blade-element turning and loss characteristics. Detailed descriptions of the computer program are included, with example input and typical computed results.
Application of the Boundary Element Method to Fatigue Crack Growth Analysis
1988-09-01
III, and Noetic PROBE in Section IV. Correlation of the boundary element method and modeling techniques employed in this study were shown with the...distribution unlimited I I I Preface! 3 The purpose of this study was to apply the boundary element method (BEM) to two dimensional fracture mechanics...problems, and to use the BEM to analyze the interference effects of holes on cracks through a parametric study of a two hole 3 tension strip. The study
Finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin
1992-01-01
A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.
Element-by-element Solution Procedures for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Winget, J. M.; Levit, I.
1984-01-01
Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in nonlinear structural mechanics. Architectural and data base advantages of the present algorithms over traditional direct elimination schemes are noted. Results of calculations suggest considerable potential for the methods described.
Solution of a tridiagonal system of equations on the finite element machine
NASA Technical Reports Server (NTRS)
Bostic, S. W.
1984-01-01
Two parallel algorithms for the solution of tridiagonal systems of equations were implemented on the Finite Element Machine. The Accelerated Parallel Gauss method, an iterative method, and the Buneman algorithm, a direct method, are discussed and execution statistics are presented.
NASA Astrophysics Data System (ADS)
Venner, Laura
2008-09-01
Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.
NASA Astrophysics Data System (ADS)
Venner, Laura
2008-05-01
Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.
NASA Astrophysics Data System (ADS)
Wang, Changguo; Tan, Huifeng; Du, Xingwen
2009-10-01
This paper extends Le van’s work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a pre-stressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko’s beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the load-carrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.
Method of preparing nitrogen containing semiconductor material
Barber, Greg D.; Kurtz, Sarah R.
2004-09-07
A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.
Kamoun, Choumouss; Payen, Thibaut; Hua-Van, Aurélie; Filée, Jonathan
2013-10-11
Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of short reads data (<300 bp) for which both techniques seem equally limited, profile HMM searches considerably ameliorate the detection of transposase encoding genes (up to +50%) generating low level of false positives compare to BLAST-based methods. Compared to classical BLAST-based methods, the sensitivity of de novo and profile HMM methods developed in this study allow a better and more reliable detection of transposons in prokaryotic genomes and metagenomes. We believed that future studies implying ISs and MITEs identification in genomic data should combine at least one de novo and one library-based method, with optimal results obtained by running the two de novo methods in addition to a library-based search. For metagenomic data, profile HMM search should be favored, a BLAST-based step is only useful to the final annotation into groups and families.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667
Finite element analysis of thrust angle contact ball slewing bearing
NASA Astrophysics Data System (ADS)
Deng, Biao; Guo, Yuan; Zhang, An; Tang, Shengjin
2017-12-01
In view of the large heavy slewing bearing no longer follows the rigid ring hupothesis under the load condition, the entity finite element model of thrust angular contact ball bearing was established by using finite element analysis software ANSYS. The boundary conditions of the model were set according to the actual condition of slewing bearing, the internal stress state of the slewing bearing was obtained by solving and calculation, and the calculated results were compared with the numerical results based on the rigid ring assumption. The results show that more balls are loaded in the result of finite element method, and the maximum contact stresses between the ball and raceway have some reductions. This is because the finite element method considers the ferrule as an elastic body. The ring will produce structure deformation in the radial plane when the heavy load slewing bearings are subjected to external loads. The results of the finite element method are more in line with the actual situation of the slewing bearing in the engineering.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
Probabilistic finite elements for fracture and fatigue analysis
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.
1989-01-01
The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.
Extension method of drillstring component assembly
Drumheller, Douglas S.
2001-01-01
A method of assembling transducer tools for down-hole applications wherein piezoelectric elements in the tools are pre-stressed by mechanically stretching an elastic mandrel about which the piezoelectric elements are positioned and subsequently releasing the mandrel so that it contracts causing the piezoelectric elements to be captured in an interference fit in a recess in the mandrel. The method can be adapted to embodiments where the recess in the mandrel is bound by two regions of the mandrel, itself, or where the recess is defined on one end by a portion of the mandrel and on the other end by a separate anvil member positioned against the piezoelectric elements and then secured to the mandrel.
Method for in-situ restoration of plantinum resistance thermometer calibration
Carroll, Radford M.
1989-01-01
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or strain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's.
Method for in-situ restoration of platinum resistance thermometer calibration
Carroll, R.M.
1987-10-23
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or stain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's. 1 fig.
Rational approach for assumed stress finite elements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Sumihara, K.
1984-01-01
A new method for the formulation of hybrid elements by the Hellinger-Reissner principle is established by expanding the essential terms of the assumed stresses as complete polynomials in the natural coordinates of the element. The equilibrium conditions are imposed in a variational sense through the internal displacements which are also expanded in the natural co-ordinates. The resulting element possesses all the ideal qualities, i.e. it is invariant, it is less sensitive to geometric distortion, it contains a minimum number of stress parameters and it provides accurate stress calculations. For the formulation of a 4-node plane stress element, a small perturbation method is used to determine the equilibrium constraint equations. The element has been proved to be always rank sufficient.
The determination of elements in herbal teas and medicinal plant formulations and their tisanes.
Pohl, Pawel; Dzimitrowicz, Anna; Jedryczko, Dominika; Szymczycha-Madeja, Anna; Welna, Maja; Jamroz, Piotr
2016-10-25
Elemental analysis of herbal teas and their tisanes is aimed at assessing their quality and safety in reference to specific food safety regulations and evaluating their nutritional value. This survey is dedicated to atomic spectroscopy and mass spectrometry element detection methods and sample preparation procedures used in elemental analysis of herbal teas and medicinal plant formulations. Referring to original works from the last 15 years, particular attention has been paid to tisane preparation, sample matrix decomposition, calibration and quality assurance of results in elemental analysis of herbal teas by different atomic and mass spectrometry methods. In addition, possible sources of elements in herbal teas and medicinal plant formulations have been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, J.C.
The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.
Mechery, Shelly John [Mississippi State, MS; Singh, Jagdish P [Starkville, MS
2007-07-03
A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.
Modeling the mechanics of axonal fiber tracts using the embedded finite element method.
Garimella, Harsha T; Kraft, Reuben H
2017-05-01
A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified using pressure and relative displacement-based (between skull and brain) experimental studies and was employed to analyze a head impact, demonstrating the applicability of this method in studying axonal injury. Following this, a comparison study of different injury criteria was performed. This model was used to determine the influence of impact direction on the extent of the axonal injury. The results suggested that the lateral impact loading is more dangerous compared to loading in the sagittal plane, a finding in agreement with previous studies. Through this analysis, we demonstrated the viability of the embedded element method as an alternative numerical approach for studying axonal injury in patient-specific human head models. Copyright © 2016 John Wiley & Sons, Ltd.
The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory
Bosbach, Wolfram A.
2015-01-01
Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Baumeister, Joseph F.
1994-01-01
An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.
A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S.; Klang, Eric C.
2001-01-01
The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.
On conforming mixed finite element methods for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.
1982-01-01
The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.
Application of the pulsed fast/thermal neutron method for soil elemental analysis
USDA-ARS?s Scientific Manuscript database
Soil science is a research field where physic concepts and experimental methods are widely used, particularly in agro-chemistry and soil elemental analysis. Different methods of analysis are currently available. The evolution of nuclear physics (methodology and instrumentation) combined with the ava...
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
NASA Astrophysics Data System (ADS)
Batailly, Alain; Magnain, Benoît; Chevaugeon, Nicolas
2013-05-01
The numerical simulation of contact problems is still a delicate matter especially when large transformations are involved. In that case, relative large slidings can occur between contact surfaces and the discretization error induced by usual finite elements may not be satisfactory. In particular, usual elements lead to a facetization of the contact surface, meaning an unavoidable discontinuity of the normal vector to this surface. Uncertainty over the precision of the results, irregularity of the displacement of the contact nodes and even numerical oscillations of contact reaction force may result of such discontinuity. Among the existing methods for tackling such issue, one may consider mortar elements (Fischer and Wriggers, Comput Methods Appl Mech Eng 195:5020-5036, 2006; McDevitt and Laursen, Int J Numer Methods Eng 48:1525-1547, 2000; Puso and Laursen, Comput Methods Appl Mech Eng 93:601-629, 2004), smoothing of the contact surfaces with additional geometrical entity (B-splines or NURBS) (Belytschko et al., Int J Numer Methods Eng 55:101-125, 2002; Kikuchi, Penalty/finite element approximations of a class of unilateral contact problems. Penalty method and finite element method, ASME, New York, 1982; Legrand, Modèles de prediction de l'interaction rotor/stator dans un moteur d'avion Thèse de doctorat. PhD thesis, École Centrale de Nantes, Nantes, 2005; Muñoz, Comput Methods Appl Mech Eng 197:979-993, 2008; Wriggers and Krstulovic-Opara, J Appl Math Mech (ZAMM) 80:77-80, 2000) and, the use of isogeometric analysis (Temizer et al., Comput Methods Appl Mech Eng 200:1100-1112, 2011; Hughes et al., Comput Methods Appl Mech Eng 194:4135-4195, 2005; de Lorenzis et al., Int J Numer Meth Eng, in press, 2011). In the present paper, we focus on these last two methods which are combined with a finite element code using the bi-potential method for contact management (Feng et al., Comput Mech 36:375-383, 2005). A comparative study focusing on the pros and cons of each method regarding geometrical precision and numerical stability for contact solution is proposed. The scope of this study is limited to 2D contact problems for which we consider several types of finite elements. Test cases are given in order to illustrate this comparative study.
student, he developed a parallel spectral finite element method for treating the interaction of large mechanics of fluids, structures, and their interaction|Spectral finite-element methods for time-dependent
Binding SNOMED CT terms to archetype elements. Establishing a baseline of results.
Berges, I; Bermudez, J; Illarramendi, A
2015-01-01
This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". The proliferation of archetypes as a means to represent information of Electronic Health Records has raised the need of binding terminological codes - such as SNOMED CT codes - to their elements, in order to identify them univocally. However, the large size of the terminologies makes it difficult to perform this task manually. To establish a baseline of results for the aforementioned problem by using off-the-shelf string comparison-based techniques against which results from more complex techniques could be evaluated. Nine Typed Comparison METHODS were evaluated for binding using a set of 487 archetype elements. Their recall was calculated and Friedman and Nemenyi tests were applied in order to assess whether any of the methods outperformed the others. Using the qGrams method along with the 'Text' information piece of archetype elements outperforms the other methods if a level of confidence of 90% is considered. A recall of 25.26% is obtained if just one SNOMED CT term is retrieved for each archetype element. This recall rises to 50.51% and 75.56% if 10 and 100 elements are retrieved respectively, that being a reduction of more than 99.99% on the SNOMED CT code set. The baseline has been established following the above-mentioned results. Moreover, it has been observed that although string comparison-based methods do not outperform more sophisticated techniques, they still can be an alternative for providing a reduced set of candidate terms for each archetype element from which the ultimate term can be chosen later in the more-than-likely manual supervision task.
Method and apparatus for acoustic plate mode liquid-solid phase transition detection
Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.
1993-01-01
A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.
An orientation soil survey at the Pebble Cu-Au-Mo porphyry deposit, Alaska
Smith, Steven M.; Eppinger, Robert G.; Fey, David L.; Kelley, Karen D.; Giles, S.A.
2009-01-01
Soil samples were collected in 2007 and 2008 along three traverses across the giant Pebble Cu-Au-Mo porphyry deposit. Within each soil pit, four subsamples were collected following recommended protocols for each of ten commonly-used and proprietary leach/digestion techniques. The significance of geochemical patterns generated by these techniques was classified by visual inspection of plots showing individual element concentration by each analytical method along the 2007 traverse. A simple matrix by element versus method, populated with a value based on the significance classification, provides a method for ranking the utility of methods and elements at this deposit. The interpretation of a complex multi-element dataset derived from multiple analytical techniques is challenging. An example of vanadium results from a single leach technique is used to illustrate the several possible interpretations of the data.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compressive strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compressive loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compression strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compression loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttler, D J
The Java Metadata Facility is introduced by Java Specification Request (JSR) 175 [1], and incorporated into the Java language specification [2] in version 1.5 of the language. The specification allows annotations on Java program elements: classes, interfaces, methods, and fields. Annotations give programmers a uniform way to add metadata to program elements that can be used by code checkers, code generators, or other compile-time or runtime components. Annotations are defined by annotation types. These are defined the same way as interfaces, but with the symbol {at} preceding the interface keyword. There are additional restrictions on defining annotation types: (1) Theymore » cannot be generic; (2) They cannot extend other annotation types or interfaces; (3) Methods cannot have any parameters; (4) Methods cannot have type parameters; (5) Methods cannot throw exceptions; and (6) The return type of methods of an annotation type must be a primitive, a String, a Class, an annotation type, or an array, where the type of the array is restricted to one of the four allowed types. See [2] for additional restrictions and syntax. The methods of an annotation type define the elements that may be used to parameterize the annotation in code. Annotation types may have default values for any of its elements. For example, an annotation that specifies a defect report could initialize an element defining the defect outcome submitted. Annotations may also have zero elements. This could be used to indicate serializability for a class (as opposed to the current Serializability interface).« less
Three-dimensional Stress Analysis Using the Boundary Element Method
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Banerjee, P. K.
1984-01-01
The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.
Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swafford, A.M.; Keller, J.M.
1993-03-17
Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences ismore » necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.« less
NASA Astrophysics Data System (ADS)
Bayat, Hamid Reza; Krämer, Julian; Wunderlich, Linus; Wulfinghoff, Stephan; Reese, Stefanie; Wohlmuth, Barbara; Wieners, Christian
2018-03-01
This work presents a systematic study of discontinuous and nonconforming finite element methods for linear elasticity, finite elasticity, and small strain plasticity. In particular, we consider new hybrid methods with additional degrees of freedom on the skeleton of the mesh and allowing for a local elimination of the element-wise degrees of freedom. We show that this process leads to a well-posed approximation scheme. The quality of the new methods with respect to locking and anisotropy is compared with standard and in addition locking-free conforming methods as well as established (non-) symmetric discontinuous Galerkin methods with interior penalty. For several benchmark configurations, we show that all methods converge asymptotically for fine meshes and that in many cases the hybrid methods are more accurate for a fixed size of the discrete system.
A well-posed optimal spectral element approximation for the Stokes problem
NASA Technical Reports Server (NTRS)
Maday, Y.; Patera, A. T.; Ronquist, E. M.
1987-01-01
A method is proposed for the spectral element simulation of incompressible flow. This method constitutes in a well-posed optimal approximation of the steady Stokes problem with no spurious modes in the pressure. The resulting method is analyzed, and numerical results are presented for a model problem.
UXO Discrimination in Cases with Overlapping Signatures
2007-03-07
13. APPENDIX B: HFE -BIEM ..........................................................................................................290 - 7...First principals numerical solutions developed were a Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM) body of revolution (BOR...attacks, namely the Method of Auxiliary Sources (MAS) and the Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM). These work
Large-scale computation of incompressible viscous flow by least-squares finite element method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.
Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A
2015-10-22
Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Jara-Almonte, J.; Mitchell, L. D.
1988-01-01
The paper covers two distinct parts: theory and application. The goal of this work was the reduction of model size with an increase in eigenvalue/vector accuracy. This method is ideal for the condensation of large truss- or beam-type structures. The theoretical approach involves the conversion of a continuum transfer matrix beam element into an 'Exact' dynamic stiffness element. This formulation is implemented in a finite element environment. This results in the need to solve a transcendental eigenvalue problem. Once the eigenvalue is determined the eigenvectors can be reconstructed with any desired spatial precision. No discretization limitations are imposed on the reconstruction. The results of such a combined finite element and transfer matrix formulation is a much smaller FEM eigenvalue problem. This formulation has the ability to extract higher eigenvalues as easily and as accurately as lower eigenvalues. Moreover, one can extract many more eigenvalues/vectors from the model than the number of degrees of freedom in the FEM formulation. Typically, the number of eigenvalues accurately extractable via the 'Exact' element method are at least 8 times the number of degrees of freedom. In contrast, the FEM usually extracts one accurate (within 5 percent) eigenvalue for each 3-4 degrees of freedom. The 'Exact' element results in a 20-30 improvement in the number of accurately extractable eigenvalues and eigenvectors.
Finite element analysis (FEA) analysis of the preflex beam
NASA Astrophysics Data System (ADS)
Wan, Lijuan; Gao, Qilang
2017-10-01
The development of finite element analysis (FEA) has been relatively mature, and is one of the important means of structural analysis. This method changes the problem that the research of complex structure in the past needs to be done by a large number of experiments. Through the finite element method, the numerical simulation of the structure can be used to achieve a variety of static and dynamic simulation analysis of the mechanical problems, it is also convenient to study the parameters of the structural parameters. Combined with a certain number of experiments to verify the simulation model can be completed in the past all the needs of experimental research. The nonlinear finite element method is used to simulate the flexural behavior of the prestressed composite beams with corrugated steel webs. The finite element analysis is used to understand the mechanical properties of the structure under the action of bending load.
Method and apparatus for staking optical elements
Woods, Robert O.
1988-01-01
A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.
Method and apparatus for staking optical elements
Woods, Robert O.
1988-10-04
A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.
Trace elements study of high purity nanocrystalline silicon carbide (3C-SiC) using k0-INAA method
NASA Astrophysics Data System (ADS)
Huseynov, Elchin; Jazbec, Anze
2017-07-01
Silicon carbide (3C-SiC) nanoparticles have been irradiated by neutron flux (2×1013 n·cm-2·s-1) at TRIGA Mark II type research reactor. After neutron irradiation, the radioisotopes of trace elements in the nanocrystalline 3C-SiC were studied as time functions. The identification of isotopes which significantly increased the activity of the samples as a result of neutron radiation was carried out. Nanocrystalline 3C-SiC are synthesized by standard laser technique and the purity of samples was determined by the k0-based Instrumental Neutron Activation Analysis (k0-INAA) method. Trace elements concentration in the 3C-SiC nanoparticles were determined by the radionuclides of appropriate elements. The trace element isotopes concentration have been calculated in percentage according to k0-INAA method.
A hybridized formulation for the weak Galerkin mixed finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less
A hybridized formulation for the weak Galerkin mixed finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-01-14
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less
[Application of finite element method in spinal biomechanics].
Liu, Qiang; Zhang, Jun; Sun, Shu-Chun; Wang, Fei
2017-02-25
The finite element model is one of the most important methods in study of modern spinal biomechanics, according to the needs to simulate the various states of the spine, calculate the stress force and strain distribution of the different groups in the state, and explore its principle of mechanics, mechanism of injury, and treatment effectiveness. In addition, in the study of the pathological state of the spine, the finite element is mainly used in the understanding the mechanism of lesion location, evaluating the effects of different therapeutic tool, assisting and completing the selection and improvement of therapeutic tool, in order to provide a theoretical basis for the rehabilitation of spinal lesions. Finite element method can be more provide the service for the patients suffering from spinal correction, operation and individual implant design. Among the design and performance evaluation of the implant need to pay attention to the individual difference and perfect the evaluation system. At present, how to establish a model which is more close to the real situation has been the focus and difficulty of the study of human body's finite element.Although finite element method can better simulate complex working condition, it is necessary to improve the authenticity of the model and the sharing of the group by using many kinds of methods, such as image science, statistics, kinematics and so on. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.
Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method.
Yan, Xiaoan; Jia, Minping; Zhang, Wan; Zhu, Lin
2018-02-01
Periodic transient impulses are key indicators of rolling element bearing defects. Efficient acquisition of impact impulses concerned with the defects is of much concern to the precise detection of bearing defects. However, transient features of rolling element bearing are generally immersed in stochastic noise and harmonic interference. Therefore, in this paper, a new optimal scale morphology analysis method, named adaptive multiscale combination morphological filter-hat transform (AMCMFH), is proposed for rolling element bearing fault diagnosis, which can both reduce stochastic noise and reserve signal details. In this method, firstly, an adaptive selection strategy based on the feature energy factor (FEF) is introduced to determine the optimal structuring element (SE) scale of multiscale combination morphological filter-hat transform (MCMFH). Subsequently, MCMFH containing the optimal SE scale is applied to obtain the impulse components from the bearing vibration signal. Finally, fault types of bearing are confirmed by extracting the defective frequency from envelope spectrum of the impulse components. The validity of the proposed method is verified through the simulated analysis and bearing vibration data derived from the laboratory bench. Results indicate that the proposed method has a good capability to recognize localized faults appeared on rolling element bearing from vibration signal. The study supplies a novel technique for the detection of faulty bearing. Copyright © 2018. Published by Elsevier Ltd.
Umans, Stephen D.
2008-11-11
Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.
Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne
2005-11-08
A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.
NASA Technical Reports Server (NTRS)
Hua, Chongyu; Volakis, John L.
1990-01-01
AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.
Axisymmetric solid elements by a rational hybrid stress method
NASA Technical Reports Server (NTRS)
Tian, Z.; Pian, T. H. H.
1985-01-01
Four-node axisymmetric solid elements are derived by a new version of hybrid method for which the assumed stresses are expressed in complete polynomials in natural coordinates. The stress equilibrium conditions are introduced through the use of additional displacements as Lagrange multipliers. A rational procedure is to choose the displacement terms such that the resulting strains are also of complete polynomials of the same order. Example problems all indicate that elements obtained by this procedure lead to better results in displacements and stresses than that by other finite elements.
Meyer, Sören; Markova, Mariya; Pohl, Gabriele; Marschall, Talke A; Pivovarova, Olga; Pfeiffer, Andreas F H; Schwerdtle, Tanja
2018-09-01
Multi-element determination in human samples is very challenging. Especially in human intervention studies sample volumes are often limited to a few microliters and due to the high number of samples a high-throughput is indispensable. Here, we present a state-of-the-art ICP-MS/MS-based method for the analysis of essential (trace) elements, namely Mg, Ca, Fe, Cu, Zn, Mo, Se and I, as well as food-relevant toxic elements such as As and Cd. The developed method was validated regarding linearity of the calibration curves, method LODs and LOQs, selectivity and trueness as well as precision. The established reliable method was applied to quantify the element serum concentrations of participants of a human intervention study (LeguAN). The participants received isocaloric diets, either rich in plant protein or in animal protein. While the serum concentrations of Mg and Mo increased in participants receiving the plant protein-based diet (above all legumes), the Se concentration in serum decreased. In contrast, the animal protein-based diet, rich in meat and dairy products, resulted in an increased Se concentration in serum. Copyright © 2018 Elsevier GmbH. All rights reserved.
On the Development of Multi-Step Inverse FEM with Shell Model
NASA Astrophysics Data System (ADS)
Huang, Y.; Du, R.
2005-08-01
The inverse or one-step finite element approach is increasingly used in the sheet metal stamping industry to predict strain distribution and the initial blank shape in the preliminary design stage. Based on the existing theory, there are two types of method: one is based on the principle of virtual work and the other is based on the principle of extreme work. Much research has been conducted to improve the accuracy of simulation results. For example, based on the virtual work principle, Batoz et al. developed a new method using triangular DKT shell elements. In this new method, the bending and unbending effects are considered. Based on the principle of extreme work, Majlessi and et al. proposed the multi-step inverse approach with membrane elements and applied it to an axis-symmetric part. Lee and et al. presented an axis-symmetric shell element model to solve the similar problem. In this paper, a new multi-step inverse method is introduced with no limitation on the workpiece shape. It is a shell element model based on the virtual work principle. The new method is validated by means of comparing to the commercial software system (PAMSTAMP®). The comparison results indicate that the accuracy is good.
A new weak Galerkin finite element method for elliptic interface problems
Mu, Lin; Wang, Junping; Ye, Xiu; ...
2016-08-26
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A new weak Galerkin finite element method for elliptic interface problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A comparative study of an ABC and an artificial absorber for truncating finite element meshes
NASA Technical Reports Server (NTRS)
Oezdemir, T.; Volakis, John L.
1993-01-01
The type of mesh termination used in the context of finite element formulations plays a major role on the efficiency and accuracy of the field solution. The performance of an absorbing boundary condition (ABC) and an artificial absorber (a new concept) for terminating the finite element mesh was evaluated. This analysis is done in connection with the problem of scattering by a finite slot array in a thick ground plane. The two approximate mesh truncation schemes are compared with the exact finite element-boundary integral (FEM-BI) method in terms of accuracy and efficiency. It is demonstrated that both approximate truncation schemes yield reasonably accurate results even when the mesh is extended only 0.3 wavelengths away from the array aperture. However, the artificial absorber termination method leads to a substantially more efficient solution. Moreover, it is shown that the FEM-BI method remains quite competitive with the FEM-artificial absorber method when the FFT is used for computing the matrix-vector products in the iterative solution algorithm. These conclusions are indeed surprising and of major importance in electromagnetic simulations based on the finite element method.
Improving finite element results in modeling heart valve mechanics.
Earl, Emily; Mohammadi, Hadi
2018-06-01
Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto
2018-04-01
Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.
Advanced hybrid particulate collector and method of operation
Miller, Stanley J [Grand Forks, ND
2003-04-08
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.
Tuning method for microresonators and microresonators made thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael David; Olsson, Roy H.; Greth, Karl Douglas
2015-12-01
A micromechanical resonator is disclosed. The resonator includes a resonant micromechanical element. A film of annealable material can be deposited on a facial surface of the element. The resonance of the element can be tuned by annealing the deposited film. Also disclosed are methods of applying a film on a resonator and annealing the film, thereby tuning one or more resonant properties of the resonator.
Hybrid finite element and Brownian dynamics method for diffusion-controlled reactions.
Bauler, Patricia; Huber, Gary A; McCammon, J Andrew
2012-04-28
Diffusion is often the rate determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. This paper proposes a new hybrid diffusion method that couples the strengths of each of these two methods. The method is derived for a general multidimensional system, and is presented using a basic test case for 1D linear and radially symmetric diffusion systems.
A collocation--Galerkin finite element model of cardiac action potential propagation.
Rogers, J M; McCulloch, A D
1994-08-01
A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.
Ice Detection and Mitigation Device
NASA Technical Reports Server (NTRS)
Gambino, Richard J. (Inventor); Gouldstone, Christopher (Inventor); Gutleber, Jonathan (Inventor); Hubble, David (Inventor); Trelewicz, Jason (Inventor)
2016-01-01
A method for deicing an aerostructure includes driving a sensing current through a heater element coated to an aerostructure, the heater element having a resistance that is temperature dependent. A resistance of the heater element is monitored. It is determined whether there is icing at the heater element using the monitored resistance of the heater element. A melting current is driven through the heater element when it is determined that there is icing at the heater element.
Kotovsky, Jack
2014-02-11
A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Neuman, S. P.
2006-12-01
Furman and Neuman (2003) proposed a Laplace Transform Analytic Element Method (LT-AEM) for transient groundwater flow. LT-AEM applies the traditionally steady-state AEM to the Laplace transformed groundwater flow equation, and back-transforms the resulting solution to the time domain using a Fourier Series numerical inverse Laplace transform method (de Hoog, et.al., 1982). We have extended the method so it can compute hydraulic head and flow velocity distributions due to any two-dimensional combination and arrangement of point, line, circular and elliptical area sinks and sources, nested circular or elliptical regions having different hydraulic properties, and areas of specified head, flux or initial condition. The strengths of all sinks and sources, and the specified head and flux values, can all vary in both space and time in an independent and arbitrary fashion. Initial conditions may vary from one area element to another. A solution is obtained by matching heads and normal fluxes along the boundary of each element. The effect which each element has on the total flow is expressed in terms of generalized Fourier series which converge rapidly (<20 terms) in most cases. As there are more matching points than unknown Fourier terms, the matching is accomplished in Laplace space using least-squares. The method is illustrated by calculating the resulting transient head and flow velocities due to an arrangement of elements in both finite and infinite domains. The 2D LT-AEM elements already developed and implemented are currently being extended to solve the 3D groundwater flow equation.
Design optimization of space structures
NASA Technical Reports Server (NTRS)
Felippa, Carlos
1991-01-01
The topology-shape-size optimization of space structures is investigated through Kikuchi's homogenization method. The method starts from a 'design domain block,' which is a region of space into which the structure is to materialize. This domain is initially filled with a finite element mesh, typically regular. Force and displacement boundary conditions corresponding to applied loads and supports are applied at specific points in the domain. An optimal structure is to be 'carved out' of the design under two conditions: (1) a cost function is to be minimized, and (2) equality or inequality constraints are to be satisfied. The 'carving' process is accomplished by letting microstructure holes develop and grow in elements during the optimization process. These holes have a rectangular shape in two dimensions and a cubical shape in three dimensions, and may also rotate with respect to the reference axes. The properties of the perforated element are obtained through an homogenization procedure. Once a hole reaches the volume of the element, that element effectively disappears. The project has two phases. In the first phase the method was implemented as the combination of two computer programs: a finite element module, and an optimization driver. In the second part, focus is on the application of this technique to planetary structures. The finite element part of the method was programmed for the two-dimensional case using four-node quadrilateral elements to cover the design domain. An element homogenization technique different from that of Kikuchi and coworkers was implemented. The optimization driver is based on an augmented Lagrangian optimizer, with the volume constraint treated as a Courant penalty function. The optimizer has to be especially tuned to this type of optimization because the number of design variables can reach into the thousands. The driver is presently under development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harkness, A. L.
1977-09-01
Nine elements from each batch of fuel elements manufactured for the EBR-II reactor have been analyzed for /sup 235/U content by NDA methods. These values, together with those of the manufacturer, are used to estimate the product variance and the variances of the two measuring methods. These variances are compared with the variances computed from the stipulations of the contract. A method is derived for resolving the several variances into their within-batch and between-batch components. Some of these variance components have also been estimated by independent and more familiar conventional methods for comparison.
2010-03-01
matrix elements. From scattering matrix elements for several different effective potential values and using the Method of Partial Waves[7], the...scattering matrix elements. Through the Method of Par- tial Waves[7], the procedure was repeated for several different effective potentials. The...section calculations. It is important to note that lmax may differ for σel and σi→f . This method may only be used if both σi→f and σel have
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
Natural frequencies of thin rectangular plates clamped on contour using the Finite Element Method
NASA Astrophysics Data System (ADS)
(Barboni Haţiegan, L.; Haţiegan, C.; Gillich, G. R.; Hamat, C. O.; Vasile, O.; Stroia, M. D.
2018-01-01
This paper presents the determining of natural frequencies of plates without and with damages using the finite element method of SolidWorks program. The first thirty natural frequencies obtained for thin rectangular rectangular plates clamped on contour without and with central damages a for different dimensions. The relative variation of natural frequency was determined and the obtained results by the finite element method (FEM) respectively relative variation of natural frequency, were graphically represented according to their vibration natural modes. Finally, the obtained results were compared.
NASA Technical Reports Server (NTRS)
Parks, D. M.
1974-01-01
A finite element technique for determination of elastic crack tip stress intensity factors is presented. The method, based on the energy release rate, requires no special crack tip elements. Further, the solution for only a single crack length is required, and the crack is 'advanced' by moving nodal points rather than by removing nodal tractions at the crack tip and performing a second analysis. The promising straightforward extension of the method to general three-dimensional crack configurations is presented and contrasted with the practical impossibility of conventional energy methods.
Finite element modeling of truss structures with frequency-dependent material damping
NASA Technical Reports Server (NTRS)
Lesieutre, George A.
1991-01-01
A physically motivated modelling technique for structural dynamic analysis that accommodates frequency dependent material damping was developed. Key features of the technique are the introduction of augmenting thermodynamic fields (AFT) to interact with the usual mechanical displacement field, and the treatment of the resulting coupled governing equations using finite element analysis methods. The AFT method is fully compatible with current structural finite element analysis techniques. The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure representative of those contemplated for use in future space systems.
Development and Application of the p-Version of the Finite Element Method.
1987-12-30
element method has been the subject of intensive study since the early 1950’s and perhaps even earlier. Study of the p-version of the finite element...method, on the other hand, began at *Washington University in St. Louis in the early 1970’s and led to a more recent study of the h-p version. Research...infinite strip to a bounded domain. 3.3 A Numerical Argument Principle In order to assure that all roots have indeed been obtained, we have studied the
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Gao, Hai-Feng; Du, Lei; Chen, Hai-Bo; Zhang, Chuanzeng
2016-01-01
An accurate numerical solver is developed in this paper for eigenproblems governed by the Helmholtz equation and formulated through the boundary element method. A contour integral method is used to convert the nonlinear eigenproblem into an ordinary eigenproblem, so that eigenvalues can be extracted accurately by solving a set of standard boundary element systems of equations. In order to accelerate the solution procedure, the parameters affecting the accuracy and efficiency of the method are studied and two contour paths are compared. Moreover, a wideband fast multipole method is implemented with a block IDR (s) solver to reduce the overall solution cost of the boundary element systems of equations with multiple right-hand sides. The Burton-Miller formulation is employed to identify the fictitious eigenfrequencies of the interior acoustic problems with multiply connected domains. The actual effect of the Burton-Miller formulation on tackling the fictitious eigenfrequency problem is investigated and the optimal choice of the coupling parameter as α = i / k is confirmed through exterior sphere examples. Furthermore, the numerical eigenvalues obtained by the developed method are compared with the results obtained by the finite element method to show the accuracy and efficiency of the developed method.
Evaluation of an improved finite-element thermal stress calculation technique
NASA Technical Reports Server (NTRS)
Camarda, C. J.
1982-01-01
A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.
NASA Astrophysics Data System (ADS)
Kraus, Hal G.
1993-02-01
Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.
Analysis of Brick Masonry Wall using Applied Element Method
NASA Astrophysics Data System (ADS)
Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen
2018-03-01
The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.
PROTECTIVELY COVERED ARTICLE AND METHOD OF MANUFACTURE
Plott, R.F.
1958-10-28
A method of casting a protective jacket about a ura nium fuel element that will bond completely to the uranium without the use of stringers or supports that would ordinarily produce gaps in the cast metal coating and bond is presented. Preformed endcaps of alumlnum alloyed with 13% silicon are placed on the ends of the uranium fuel element. These caps will support the fuel element when placed in a mold. The mold is kept at a ing alloy but below that of uranium so the cast metal jacket will fuse with the endcaps forming a complete covering and bond to the fuel element, which would otherwise oxidize at the gaps or discontinuities lefi in the coating by previous casting methods.
NASA Astrophysics Data System (ADS)
Kijko, V. V.; Ofitserov, Evgenii N.
2006-05-01
Thermooptic distortions of the active element of an axially diode-pumped Nd:YVO4 solid-state laser are studied at different methods of its mounting. The study was performed by the Hartmann method. A mathematical model for calculating the optical power of a thermal lens produced in the crystal upon pumping is developed and verified experimentally. It is shown that the optical power of a thermal lens produced upon axial pumping of the convectively cooled active element sealed off in a copper heat sink is half the optical power observed upon convective cooling of the active element without heat sink. The experimental and theoretical results are in good agreement.
INAA Application for Trace Element Determination in Biological Reference Material
NASA Astrophysics Data System (ADS)
Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.
2017-06-01
Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.
Structures, systems and methods for harvesting energy from electromagnetic radiation
Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO
2011-12-06
Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.
Jantzi, Sarah C; Almirall, José R
2014-01-01
Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi
In this paper, we propose a method to calculate the equivalent circuit parameters of interior permanent magnet motors including iron loss resistance using the finite element method. First, the finite element analysis considering harmonics and magnetic saturation is carried out to obtain time variations of magnetic fields in the stator and the rotor core. Second, the iron losses of the stator and the rotor are calculated from the results of the finite element analysis with the considerations of harmonic eddy current losses and the minor hysteresis losses of the core. As a result, we obtain the equivalent circuit parameters i.e. the d-q axis inductance and the iron loss resistance as functions of operating condition of the motor. The proposed method is applied to an interior permanent magnet motor to calculate the characteristics based on the equivalent circuit obtained by the proposed method. The calculated results are compared with the experimental results to verify the accuracy.
NASA Astrophysics Data System (ADS)
Pioldi, Fabio; Rizzi, Egidio
2016-08-01
This paper proposes a new output-only element-level system identification and input estimation technique, towards the simultaneous identification of modal parameters, input excitation time history and structural features at the element-level by adopting earthquake-induced structural response signals. The method, named Full Dynamic Compound Inverse Method (FDCIM), releases strong assumptions of earlier element-level techniques, by working with a two-stage iterative algorithm. Jointly, a Statistical Average technique, a modification process and a parameter projection strategy are adopted at each stage to achieve stronger convergence for the identified estimates. The proposed method works in a deterministic way and is completely developed in State-Space form. Further, it does not require continuous- to discrete-time transformations and does not depend on initialization conditions. Synthetic earthquake-induced response signals from different shear-type buildings are generated to validate the implemented procedure, also with noise-corrupted cases. The achieved results provide a necessary condition to demonstrate the effectiveness of the proposed identification method.
A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain
NASA Astrophysics Data System (ADS)
Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.
2018-05-01
The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, T.J.; Mitchell, S.A.; Blacker, T.D.; Murdoch, P.
1998-06-16
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as ``whisker chords.`` This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method. 79 figs.
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, Timothy James; Mitchell, Scott A.; Blacker, Ted D.; Murdoch, Peter
1998-01-01
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as "whisker chords." This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method.
NASA Astrophysics Data System (ADS)
Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.
2017-10-01
We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.
Stiffness Parameter Design of Suspension Element of Under-Chassis-Equipment for A Rail Vehicle
NASA Astrophysics Data System (ADS)
Ma, Menglin; Wang, Chengqiang; Deng, Hai
2017-06-01
According to the frequency configuration requirements of the vibration of railway under-chassis-equipment, the three- dimension stiffness of the suspension elements of under-chassis-equipment is designed based on the static principle and dynamics principle. The design results of the concrete engineering case show that, compared with the design method based on the static principle, the three- dimension stiffness of the suspension elements designed by the dynamic principle design method is more uniform. The frequency and decoupling degree analysis show that the calculation frequency of under-chassis-equipment under the two design methods is basically the same as the predetermined frequency. Compared with the design method based on the static principle, the design method based on the dynamic principle is adopted. The decoupling degree can be kept high, and the coupling vibration of the corresponding vibration mode can be reduced effectively, which can effectively reduce the fatigue damage of the key parts of the hanging element.
Carbide and carbonitride surface treatment method for refractory metals
Meyer, Glenn A.; Schildbach, Marcus A.
1996-01-01
A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system (10) including a reaction chamber (14), a source of elemental carbon (17), a heating subassembly (20) and a source of reaction gases (23). Alternative methods of providing the elemental carbon (17) and the reaction gases (23) are provided, as well as methods of supporting the metal part (12), evacuating the chamber (14) with a vacuum subassembly (18) and heating all of the components to the desired temperature.
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
Method and an apparatus for non-invasively determining the quantity of an element in a body organ
Vartsky, D.; Ellis, K.J.; Cohn, S.H.
1980-06-27
An apparatus and a method for determining in a body organ the amount of an element with the aid of a gaseous gamma ray source, where the element and the source are paired in predetermined pairs, and with the aid of at least one detector selected from the group consisting of Ge(Li) and NaI(Tl). Gamma rays are directed towards the organ, thereby resonantly scattering the gamma rays from nuclei of the element in the organ; the intensity of the gamma rays is detected by the detector; and the amount of the element in the organ is then substantially proportional to the detected intensity of the gamma rays.
A High Order, Locally-Adaptive Method for the Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Chan, Daniel
1998-11-01
I have extended the FOSLS method of Cai, Manteuffel and McCormick (1997) and implemented it within the framework of a spectral element formulation using the Legendre polynomial basis function. The FOSLS method solves the Navier-Stokes equations as a system of coupled first-order equations and provides the ellipticity that is needed for fast iterative matrix solvers like multigrid to operate efficiently. Each element is treated as an object and its properties are self-contained. Only C^0 continuity is imposed across element interfaces; this design allows local grid refinement and coarsening without the burden of having an elaborate data structure, since only information along element boundaries is needed. With the FORTRAN 90 programming environment, I can maintain a high computational efficiency by employing a hybrid parallel processing model. The OpenMP directives provides parallelism in the loop level which is executed in a shared-memory SMP and the MPI protocol allows the distribution of elements to a cluster of SMP's connected via a commodity network. This talk will provide timing results and a comparison with a second order finite difference method.
Dynamic analysis of suspension cable based on vector form intrinsic finite element method
NASA Astrophysics Data System (ADS)
Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun
2017-10-01
A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.
Program Helps Generate Boundary-Element Mathematical Models
NASA Technical Reports Server (NTRS)
Goldberg, R. K.
1995-01-01
Composite Model Generation-Boundary Element Method (COM-GEN-BEM) computer program significantly reduces time and effort needed to construct boundary-element mathematical models of continuous-fiber composite materials at micro-mechanical (constituent) scale. Generates boundary-element models compatible with BEST-CMS boundary-element code for anlaysis of micromechanics of composite material. Written in PATRAN Command Language (PCL).
Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity
NASA Astrophysics Data System (ADS)
Lin, Guang; Liu, Jiangguo; Mu, Lin; Ye, Xiu
2014-11-01
This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors. We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.
High performance computation of radiative transfer equation using the finite element method
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.
2018-05-01
This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Structural Noise and Acoustic Characteristics Improvement of Transport Power Plants
NASA Astrophysics Data System (ADS)
Chaynov, N. D.; Markov, V. A.; Savastenko, A. A.
2018-03-01
Noise reduction generated during the operation of various machines and mechanisms is an urgent task with regard to the power plants and, in particular, to internal combustion engines. Sound emission from the surfaces vibration of body parts is one of the main noise manifestations of the running engine and it is called a structural noise. The vibration defining of the outer surfaces of complex body parts and the calculation of their acoustic characteristics are determined with numerical methods. At the same time, realization of finite and boundary elements methods combination turned out to be very effective. The finite element method is used in calculating the structural elements vibrations, and the boundary elements method is used in the structural noise calculation. The main conditions of the methodology and the results of the structural noise analysis applied to a number of automobile engines are shown.
NASA Technical Reports Server (NTRS)
Chang, S. C.; Wang, X. Y.; Chow, C. Y.; Himansu, A.
1995-01-01
The method of space-time conservation element and solution element is a nontraditional numerical method designed from a physicist's perspective, i.e., its development is based more on physics than numerics. It uses only the simplest approximation techniques and yet is capable of generating nearly perfect solutions for a 2-D shock reflection problem used by Helen Yee and others. In addition to providing an overall view of the new method, we introduce a new concept in the design of implicit schemes, and use it to construct a highly accurate solver for a convection-diffusion equation. It is shown that, in the inviscid case, this new scheme becomes explicit and its amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, its principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
NASA Astrophysics Data System (ADS)
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-10-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
[Determination of heavy metals in four traditional Chinese medicines by ICP-MS].
Wen, Hui-Min; Chen, Xiao-Hui; Dong, Ting-Xia; Zhan, Hua-Qiang; Bi, Kai-Shun
2006-08-01
To establish a ICP-MS method for the determination of heavy metals, including As, Hg, Pb, Cd, in four traditional Chinese medicines. The samples were digested by closed-versel microwave. The four heavy metals were directly analyzed by ICP-MS. Select internal standard element in for the method by which the analyse signal drife is corrected by the signal of another element (internal standard elements) added to both the standard solution and sample. For all of the analyzed heary methals, the correlative coefficient of the calibration curves was over 0.999 2. The recovery rates of the procedure were 97.5%-108.0%, and its RSD was lower than 11.6%. This method was convenient, quick-acquired, accurate and highly sensitive. The method can be used for the quality control of trace elements in traditional Chinese medicines and for the contents determination of traditional Chinese medicines from different habitats and species.
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.
1991-01-01
A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.
NASA Astrophysics Data System (ADS)
Nakashima, Hiroshi; Takatsu, Yuzuru
The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.
Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong
2018-01-01
Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.
The use of Galerkin finite-element methods to solve mass-transport equations
Grove, David B.
1977-01-01
The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)
Moving Particles Through a Finite Element Mesh
Peskin, Adele P.; Hardin, Gary R.
1998-01-01
We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377
Neutron-stimulated gamma ray analysis of soil
USDA-ARS?s Scientific Manuscript database
The chapter will discuss methods to use gamma rays to measure elements in soil. In regard to land management, there is a need to develop a non-destructive, non-contact, in-situ method of determining soil elements distributed in a soil volume or on soil surface. A unique method having all of above ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR... change scientific elements underlying the dose reconstruction process to maintain methods reasonably... methods reasonably current with scientific progress? Periodically, NIOSH will publish a notice in the...