46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the system...
46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Fusible element fire detection system. 108.413 Section 108.413 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system...
46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Fusible element fire detection system. 108.413 Section 108.413 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system...
46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Fusible element fire detection system. 108.413 Section 108.413 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system...
46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Fusible element fire detection system. 108.413 Section 108.413 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system...
System and method for detecting components of a mixture including tooth elements for alignment
Sommer, Gregory Jon; Schaff, Ulrich Y.
2016-11-22
Examples are described including assay platforms having tooth elements. An impinging element may sequentially engage tooth elements on the assay platform to sequentially align corresponding detection regions with a detection unit. In this manner, multiple measurements may be made of detection regions on the assay platform without necessarily requiring the starting and stopping of a motor.
NASA Technical Reports Server (NTRS)
McGill, Matthew J. (Inventor); Scott, Vibart S. (Inventor); Marzouk, Marzouk (Inventor)
2001-01-01
A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system.
Characterizing and Detecting Unrevealed Elements of Network Systems
2009-03-01
refers to the direct interaction of persons in so far as this affects the future behavior or attitude of participants (such that this differs from... CHARACTERIZING AND DETECTING UNREVEALED ELEMENTS OF NETWORK SYSTEMS DISSERTATION James A. Leinart, Lieutenant Colonel, USAF AFIT/DS/ENS/08-01W...Air Force, Department of Defense or the United States Government. AFIT/DS/ENS/08-01W CHARACTERIZING AND DETECTING UNREVEALED ELEMENTS OF NETWORK
Integrated Performance Testing Workshop, Modules 6 - 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, Janice; Torres, Teresa M.
These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements
Cantilevered probe detector with piezoelectric element
Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C
2014-04-29
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Cantilevered probe detector with piezoelectric element
Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C
2013-04-30
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Cantilevered probe detector with piezoelectric element
Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV
2012-07-10
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Cantilevered probe detector with piezoelectric element
Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.
2010-04-06
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Detection of pristine gas two billion years after the Big Bang.
Fumagalli, Michele; O'Meara, John M; Prochaska, J Xavier
2011-12-02
In the current cosmological model, only the three lightest elements were created in the first few minutes after the Big Bang; all other elements were produced later in stars. To date, however, heavy elements have been observed in all astrophysical environments. We report the detection of two gas clouds with no discernible elements heavier than hydrogen. These systems exhibit the lowest heavy-element abundance in the early universe, and thus are potential fuel for the most metal-poor halo stars. The detection of deuterium in one system at the level predicted by primordial nucleosynthesis provides a direct confirmation of the standard cosmological model. The composition of these clouds further implies that the transport of heavy elements from galaxies to their surroundings is highly inhomogeneous.
Spark discharge trace element detection system
Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz
1988-01-01
A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.
Spark discharge trace element detection system
Adler-Golden, S.; Bernstein, L.S.; Bien, F.
1988-08-23
A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.
NASA Technical Reports Server (NTRS)
Bundick, W. Thomas
1990-01-01
A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.
Image processing occupancy sensor
Brackney, Larry J.
2016-09-27
A system and method of detecting occupants in a building automation system environment using image based occupancy detection and position determinations. In one example, the system includes an image processing occupancy sensor that detects the number and position of occupants within a space that has controllable building elements such as lighting and ventilation diffusers. Based on the position and location of the occupants, the system can finely control the elements to optimize conditions for the occupants, optimize energy usage, among other advantages.
Method and apparatus for diagnosing breached fuel elements
Gross, K.C.; Lambert, J.D.B.; Nomura, S.
1987-03-02
The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative curve of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element. 8 figs.
Kapich, Davorin D.
1987-01-01
A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.
Automatic non-destructive system for quality assurance of welded elements in the aircraft industry
NASA Astrophysics Data System (ADS)
Chady, Tomasz; Waszczuk, Paweł; Szydłowski, Michał; Szwagiel, Mariusz
2018-04-01
Flaws that might be a result of the welding process have to be detected, in order to assure high quality thus reliability of elements exploited in aircraft industry. Currently the inspection stage is conducted manually by a qualified workforce. There are no commercially available systems that could support or replace humans in the flaw detection process. In this paper authors present a novel non-destructive system developed for quality assurance purposes of welded elements utilized in the aircraft industry.
Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B
2014-03-01
The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.
Pendleton, Michael W.; Washburn, Dorothy K.; Ellis, E. Ann; Pendleton, Bonnie B.
2014-01-01
The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis. PMID:24600333
Study on on-machine defects measuring system on high power laser optical elements
NASA Astrophysics Data System (ADS)
Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin
2017-10-01
The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.
Thermal neutron detector and gamma-ray spectrometer utilizing a single material
Stowe, Ashley; Burger, Arnold; Lukosi, Eric
2017-05-02
A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.
Modular optical detector system
Horn, Brent A [Livermore, CA; Renzi, Ronald F [Tracy, CA
2006-02-14
A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.
NASA Astrophysics Data System (ADS)
Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.
2018-03-01
Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.
Sensor and methods of detecting target materials and situations in closed systems
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.
2018-03-13
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
Radiation sensitive devices and systems for detection of radioactive materials and related methods
Kotter, Dale K
2014-12-02
Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.
NASA Astrophysics Data System (ADS)
Gondal, M. A.; Dastageer, M. A.; Al-Adel, F. F.; Naqvi, A. A.; Habibullah, Y. B.
2015-12-01
A sensitive laser induced breakdown spectroscopic system was developed and optimized for using it as a sensor for the detection of trace levels of lead and chromium present in the cosmetic eyeliner (kohl) of different price ranges (brands) available in the local market. Kohl is widely used in developing countries for babies as well adults for beautification as well eyes protection. The atomic transition lines at 405.7 nm and 425.4 nm were used as the marker lines for the detection of lead and chromium respectively. The detection system was optimized by finding the appropriate gate delay between the laser excitation and the data acquisition system and also by achieving optically thin plasma near the target by establishing the local thermodynamic equilibrium condition. The detection system was calibrated for these two hazardous elements and the kohl samples under investigation showed 8-15 ppm by mass of lead and 4-9 ppm by mass of Chromium, which are higher than the safe permissible levels of these elements. The limits of detection of the LIBS system for lead and chromium were found to be 1 and 2 ppm respectively.
NASA Technical Reports Server (NTRS)
Moore, Jason P. (Inventor)
2009-01-01
A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.; Hsu, John Y.
1986-01-01
The use of a decentralized approach to failure detection and isolation for use in restructurable control systems is examined. This work has produced: (1) A method for evaluating fundamental limits to FDI performance; (2) Application using flight recorded data; (3) A working control element FDI system with maximal sensitivity to critical control element failures; (4) Extensive testing on realistic simulations; and (5) A detailed design methodology involving parameter optimization (with respect to model uncertainties) and sensitivity analyses. This project has concentrated on detection and isolation of generic control element failures since these failures frequently lead to emergency conditions and since knowledge of remaining control authority is essential for control system redesign. The failures are generic in the sense that no temporal failure signature information was assumed. Thus, various forms of functional failures are treated in a unified fashion. Such a treatment results in a robust FDI system (i.e., one that covers all failure modes) but sacrifices some performance when detailed failure signature information is known, useful, and employed properly. It was assumed throughout that all sensors are validated (i.e., contain only in-spec errors) and that only the first failure of a single control element needs to be detected and isolated. The FDI system which has been developed will handle a class of multiple failures.
Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.
2017-07-11
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Portable modular detection system
Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA
2009-10-13
Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.
Khuu, Sieu K; Cham, Joey; Hayes, Anthony
2016-01-01
In the present study, we investigated the detection of contours defined by constant curvature and the statistics of curved contours in natural scenes. In Experiment 1, we examined the degree to which human sensitivity to contours is affected by changing the curvature angle and disrupting contour curvature continuity by varying the orientation of end elements. We find that (1) changing the angle of contour curvature decreased detection performance, while (2) end elements oriented in the direction (i.e., clockwise) of curvature facilitated contour detection regardless of the curvature angle of the contour. In Experiment 2 we further established that the relative effect of end-element orientation on contour detection was not only dependent on their orientation (collinear or cocircular), but also their spatial separation from the contour, and whether the contour shape was curved or not (i.e., C-shaped or S-shaped). Increasing the spatial separation of end-elements reduced contour detection performance regardless of their orientation or the contour shape. However, at small separations, cocircular end-elements facilitated the detection of C-shaped contours, but not S-shaped contours. The opposite result was observed for collinear end-elements, which improved the detection of S- shaped, but not C-shaped contours. These dissociative results confirmed that the visual system specifically codes contour curvature, but the association of contour elements occurs locally. Finally, we undertook an analysis of natural images that mapped contours with a constant angular change and determined the frequency of occurrence of end elements with different orientations. Analogous to our behavioral data, this image analysis revealed that the mapped end elements of constantly curved contours are likely to be oriented clockwise to the angle of curvature. Our findings indicate that the visual system is selectively sensitive to contours defined by constant curvature and that this might reflect the properties of curved contours in natural images.
Change Point Detection in Correlation Networks
NASA Astrophysics Data System (ADS)
Barnett, Ian; Onnela, Jukka-Pekka
2016-01-01
Many systems of interacting elements can be conceptualized as networks, where network nodes represent the elements and network ties represent interactions between the elements. In systems where the underlying network evolves, it is useful to determine the points in time where the network structure changes significantly as these may correspond to functional change points. We propose a method for detecting change points in correlation networks that, unlike previous change point detection methods designed for time series data, requires minimal distributional assumptions. We investigate the difficulty of change point detection near the boundaries of the time series in correlation networks and study the power of our method and competing methods through simulation. We also show the generalizable nature of the method by applying it to stock price data as well as fMRI data.
Classifying threats with a 14-MeV neutron interrogation system.
Strellis, Dan; Gozani, Tsahi
2005-01-01
SeaPODDS (Sea Portable Drug Detection System) is a non-intrusive tool for detecting concealed threats in hidden compartments of maritime vessels. This system consists of an electronic neutron generator, a gamma-ray detector, a data acquisition computer, and a laptop computer user-interface. Although initially developed to detect narcotics, recent algorithm developments have shown that the system is capable of correctly classifying a threat into one of four distinct categories: narcotic, explosive, chemical weapon, or radiological dispersion device (RDD). Detection of narcotics, explosives, and chemical weapons is based on gamma-ray signatures unique to the chemical elements. Elements are identified by their characteristic prompt gamma-rays induced by fast and thermal neutrons. Detection of RDD is accomplished by detecting gamma-rays emitted by common radioisotopes and nuclear reactor fission products. The algorithm phenomenology for classifying threats into the proper categories is presented here.
Infrared trace element detection system
Bien, F.; Bernstein, L.S.; Matthew, M.W.
1988-11-15
An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.
Infrared trace element detection system
Bien, Fritz; Bernstein, Lawrence S.; Matthew, Michael W.
1988-01-01
An infrared trace element detection system including an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined.
NASA Astrophysics Data System (ADS)
Jochum, K. P.; Seufert, H. M.
1995-09-01
We have developed new spark source mass spectrometric (SSMS) techniques for simultaneous analysis of platinum-group elements (PGE) together with other trace elements in stony meteorites. We have measured elemental abundances of Rh, Ru, Os, Ir, Pt, Au in carbonaceous chondrites of different types including the two CI chondrites Orgueil and Ivuna. These data are relevant for the determination of solar-system abundances. Whereas the solar-system abundances of most PGE are well known, this is not the case for Rh, and no literature data exist for carbonaceous chondrites, mainly because of analytical difficulties. The SSMS techniques include new calibration procedures and the use of a recently developed multi-ion counting (MIC) system [1]. The mono-isotopic element Rh and the other PGE were determined by using internal standard elements (e.g., Nd, U) that were measured by isotope dilution in the same sample electrode material. The data were calibrated with certified standard solutions of PGE which were doped on trace-element poor rock samples. Ion abundances were measured using both the conventional photoplate detection and the ion-counting techniques. The new MIC technique that uses up to 20 small channeltrons for ion counting measurements has the advantage of improved precision, detection limits and analysis time compared to photoplate detection. Tab. 1 shows the Rh analyses for the meteorites Orgueil, Ivuna, Murchison, Allende and Karoonda obtained by conventional photoplate detection. These are the first Rh results for carbonaceous chondrites. The data for the two CI chondrites Orgueil and Ivuna are identical and agree within 4 % with the CI estimate of Anders and Grevesse [2] which was derived indirectly from analyses for H-chondrites. The PGE Os, Ir, Pt, Au and W, Re, Th, U concentrations were determined by both detection systems. Data obtained with the MIC system are more precise (about 4% for concentrations in the ppb range) compared to the photoplate detection system (about 10 - 15 %). Both data sets agree within error limits. Rhodium correlates well with Pt and other PGE indicating no significant fractionation between the different types of carbonaceous chondrites (Tab. 1). References: [1] Jochum K. P. et al. (1994) Fresenius J. Anal. Chem., 350, 642-644. [2] Anders E. and Grevesse N. (1989) GCA, 53, 197-214.
DETECTION OF ELEMENTS AT ALL THREE r-PROCESS PEAKS IN THE METAL-POOR STAR HD 160617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roederer, Ian U.; Lawler, James E., E-mail: iur@obs.carnegiescience.edu, E-mail: jelawler@wisc.edu
2012-05-01
We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundancesmore » or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements.« less
Holographic elements and curved slit used to enlarge field of view in rocket detection system
NASA Astrophysics Data System (ADS)
Breton, Mélanie; Fortin, Jean; Lessard, Roger A.; Châteauneuf, Marc
2006-09-01
Rocket detection over a wide field of view is an important issue in the protection of light armored vehicle. Traditionally, the detection occurs in UV band, but recent studies have shown the existence of significant emission peaks in the visible and near infrared at rocket launch time. The use of the visible region is interesting in order to reduce the weight and cost of systems. Current methods to detect those specific peaks involve use of interferometric filters. However, they fail to combine wide angle with wavelength selectivity. A linear array of volume holographic elements combined with a curved exit slit is proposed for the development of a wide field of view sensor for the detection of solid propellant motor launch flash. The sensor is envisaged to trigger an active protection system. On the basis of geometric theory, a system has been designed. It consists of a collector, a linear array of holographic elements, a curved slit and a detector. The collector is an off-axis parabolic mirror. Holographic elements are recorded subdividing a hologram film in regions, each individually exposed with a different incidence angle. All regions have a common diffraction angle. The incident angle determines the instantaneous field of view of the elements. The volume hologram performs the function of separating and focusing the diffracted beam on an image plane to achieve wavelength filtering. Conical diffraction property is used to enlarge the field of view in elevation. A curved slit was designed to correspond to oblique incidence of the holographic linear array. It is situated at the image plane and filters the diffracted spectrum toward the sensor. The field of view of the design was calculated to be 34 degrees. This was validated by a prototype tested during a field trial. Results are presented and analyzed. The system succeeded in detecting the rocket launch flash at desired fields of view.
Method for Determining the Sensitivity of a Physical Security System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speed, Ann; Gauthier, John H.; Hoffman, Matthew John
Modern systems, such as physical security systems, are often designed to involve complex interactions of technological and human elements. Evaluation of the performance of these systems often overlooks the human element. A method is proposed here to expand the concept of sensitivity—as denoted by d’—from signal detection theory (Green & Swets 1966; Macmillan & Creelman 2005), which came out of the field of psychophysics, to cover not only human threat detection but also other human functions plus the performance of technical systems in a physical security system, thereby including humans in the overall evaluation of system performance. New in thismore » method is the idea that probabilities of hits (accurate identification of threats) and false alarms (saying “threat” when there is not one), which are used to calculate d’ of the system, can be applied to technologies and, furthermore, to different functions in the system beyond simple yes-no threat detection. At the most succinct level, the method returns a single number that represents the effectiveness of a physical security system; specifically, the balance between the handling of actual threats and the distraction of false alarms. The method can be automated, and the constituent parts revealed, such that given an interaction graph that indicates the functional associations of system elements and the individual probabilities of hits and false alarms for those elements, it will return the d’ of the entire system as well as d’ values for individual parts. The method can also return a measure of the response bias* of the system. One finding of this work is that the d’ for a physical security system can be relatively poor in spite of having excellent d’s for each of its individual functional elements.« less
System and method for authentication of goods
Kaish, Norman; Fraser, Jay; Durst, David I.
1999-01-01
An authentication system comprising a medium having a plurality of elements, the elements being distinctive, detectable and disposed in an irregular pattern or having an intrinsic irregularity. Each element is characterized by a determinable attribute distinct from a two-dimensional coordinate representation of simple optical absorption or simple optical reflection intensity. An attribute and position of the plurality of elements, with respect to a positional reference is detected. A processor generates an encrypted message including at least a portion of the attribute and position of the plurality of elements. The encrypted message is recorded in physical association with the medium. The elements are preferably dichroic fibers, and the attribute is preferably a polarization or dichroic axis, which may vary over the length of a fiber. An authentication of the medium based on the encrypted message may be authenticated with a statistical tolerance, based on a vector mapping of the elements of the medium, without requiring a complete image of the medium and elements to be recorded.
Westbrooks, R.; Westbrooks, R.
2011-01-01
Over the past 50 years, experience has shown that interagency groups provide an effective forum for addressing various invasive species issues and challenges on multiple land units. However, more importantly, they can also provide a coordinated framework for early detection, reporting, identification and vouchering, rapid assessment, and rapid response to new and emerging invasive plants in the United States. Interagency collaboration maximizes the use of available expertise, resources, and authority for promoting early detection and rapid response (EDRR) as the preferred management option for addressing new and emerging invasive plants. Currently, an interagency effort is underway to develop a National EDRR System for Invasive Plants in the United States. The proposed system will include structural and informational elements. Structural elements of the system include a network of interagency partner groups to facilitate early detection and rapid response to new invasive plants, including the Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW), State Invasive Species Councils, State Early Detection and Rapid Response Coordinating Committees, State Volunteer Detection and Reporting Networks, Invasive Plant Task Forces, and Cooperative Weed Management Areas. Informational elements and products being developed include Regional Invasive Plant Atlases, and EDRR Guidelines for EDRR Volunteer Network Training, Rapid Assessment and Rapid Response, and Criteria for Selection of EDRR Species. System science and technical support elements which are provided by cooperating state and federal scientists, include EDRR guidelines, training curriculum for EDRR volunteers and agency field personnel, plant identification and vouchering, rapid assessments, as well as predictive modeling and ecological range studies for invasive plant species.
Laser-induced breakdown spectroscopy for specimen analysis
Kumar, Akshaya; Yu-Yueh, Fang; Burgess, Shane C.; Singh, Jagdish P.
2006-08-15
The present invention is directed to an apparatus, a system and a method for detecting the presence or absence of trace elements in a biological sample using Laser-Induced Breakdown Spectroscopy. The trace elements are used to develop a signature profile which is analyzed directly or compared with the known profile of a standard. In one aspect of the invention, the apparatus, system and method are used to detect malignant cancer cells in vivo.
Hybrid electro-optical nanosystem for neurons investigation
NASA Astrophysics Data System (ADS)
Miu, Mihaela; Kleps, Irina; Craciunoiu, Florea; Simion, Monica; Bragaru, Adina; Ignat, Teodora
2010-11-01
The scope of this paper is development of a new laboratory-on-a-chip (LOC) device for biomedical studies consisting of a microfluidic system coupled to microelectronic/optical transducers with nanometric features, commonly called biosensors. The proposed device is a hybrid system with sensing element on silicon (Si) chip and microfluidic system on polydimethylsiloxane (PDMS) substrates, taking into accounts their particular advantages. Different types of nanoelectrode arrays, positioned in the reactor, have been investigated as sensitive elements for electrical detection and the recording of neuron extracellular electric activity has been monitorized in parallel with whole-cell patch-clamp membrane current. Moreover, using an additional porosification process the sensing element became efficient for optical detection also. The preliminary test results demonstrate the functionality of the proposed design and also the fabrication technology, the devices bringing advantages in terms enhancement of sensitivity in both optoelectronic detection schemes.
Sequential detection of web defects
Eichel, Paul H.; Sleefe, Gerard E.; Stalker, K. Terry; Yee, Amy A.
2001-01-01
A system for detecting defects on a moving web having a sequential series of identical frames uses an imaging device to form a real-time camera image of a frame and a comparitor to comparing elements of the camera image with corresponding elements of an image of an exemplar frame. The comparitor provides an acceptable indication if the pair of elements are determined to be statistically identical; and a defective indication if the pair of elements are determined to be statistically not identical. If the pair of elements is neither acceptable nor defective, the comparitor recursively compares the element of said exemplar frame with corresponding elements of other frames on said web until one of the acceptable or defective indications occur.
Integrating an MR head into a peak detection channel
NASA Astrophysics Data System (ADS)
Curland, Nathan; Machelski, Russell J.
1994-03-01
Integrating a magnetoresistive (MR) head into a peak detection channel requires the engineer to deal with basic differences between MR and thin film heads. These differences result from nonlinear sensor response, separate write and read elements, and having an active element at the air bearing surface (ABS). A simple model for flux superposition can adequately address nonlinear effects and be used for equalization design. Timing budgets can be developed which demonstrate the dominance of media noise for present day systems. Single threshold qualification can handle most current system requirements. Separate read/write elements mean that more attention needs to be paid to offtrack equalization design and head dimensional tolerancing. An active element at the ABS requires better control of the head-disc potential and leakage currents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the needmore » for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.« less
Tuning the properties of conjugated polyelectrolytes and application in a biosensor platform
Chen, Liaohai
2004-05-18
The present invention provides a method of detecting a biological agent including contacting a sample with a sensor including a polymer system capable of having an alterable measurable property from the group of luminescence, anisotropy, redox potential and uv/vis absorption, the polymer system including an ionic conjugated polymer and an electronically inert polyelectrolyte having a biological agent recognition element bound thereto, the electronically inert polyelectrolyte adapted for undergoing a conformational structural change upon exposure to a biological agent having affinity for binding to the recognition element bound to the electronically inert polyelectrolyte, and, detecting the detectable change in the alterable measurable property. A chemical moiety being the reaction product of (i) a polyelectrolyte monomer and (ii) a biological agent recognition element-substituted polyelectrolyte monomer is also provided.
Capacitive system detects and locates fluid leaks
NASA Technical Reports Server (NTRS)
1966-01-01
Electronic monitoring system automatically detects and locates minute leaks in seams of large fluid storage tanks and pipelines covered with thermal insulation. The system uses a capacitive tape-sensing element that is adhesively bonded over seams where fluid leaks are likely to occur.
Systems and methods for detecting x-rays
Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna
2006-05-02
Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.
Improved pulse shape discriminator for fast neutron-gamma ray detection system
NASA Technical Reports Server (NTRS)
Lockwood, J. A.; St. Onge, R.
1969-01-01
Discriminator in nuclear particle detection system distinguishes nuclear particle type and energy among many different nuclear particles. Discriminator incorporates passive, linear circuit elements so that it will operate over a wide dynamic range.
Tan, Junjie; Kan, Naipeng; Wang, Wei; Ling, Jingyi; Qu, Guolong; Jin, Jing; Shao, Yu; Liu, Gang; Chen, Huipeng
2015-06-01
Detection of 2,4,6-trinitrotoluene (TNT) has been extensively studied since it is a common explosive filling for landmines, posing significant threats to the environment and human safety. The rapid advances in synthetic biology give new hope to detect such toxic and hazardous compounds in a more sensitive and safe way. Biosensor construction anticipates finding sensing elements able to detect TNT. As TNT can induce some physiological responses in E. coli, it may be useful to define the sensing elements from E. coli to detect TNT. An E. coli MG1655 genomic promoter library containing nearly 5,400 elements was constructed. Five elements, yadG, yqgC, aspC, recE, and topA, displayed high sensing specificity to TNT and its indicator compounds 1,3-DNB and 2,4-DNT. Based on this, a whole cell biosensor was constructed using E. coli, in which green fluorescent protein was positioned downstream of the five sensing elements via genetic fusion. The threshold value, detection time, EC200 value, and other aspects of five sensing elements were determined and the minimum responding concentration to TNT was 4.75 mg/L. According to the synthetic biology, the five sensing elements enriched the reservoir of TNT-sensing elements, and provided a more applicable toolkit to be applied in genetic routes and live systems of biosensors in future.
NASA Astrophysics Data System (ADS)
Inomata, Teppei; Kimura, Kouji; Hagiwara, Masafumi
Studies for video surveillance applications for preventing various crimes such as stealing and violence have become a hot topic. This paper proposes a new video surveillance system that can detect suspicious behaviors such as a car break-in and vandalization in an open space parking, and that is based on image processing. The proposed system has the following features: it 1)deals time series data flow, 2)recognizes “human elemental actions” using statistic features, and 3)detects suspicious behavior using Subspace method and AdaBoost. We conducted the experiments to test the performance of the proposed system using open space parking scenes. As a result, we obtained about 10.0% for false positive rate, and about 4.6% for false negative rate.
Development of Multiple-Element Flame Emission Spectrometer Using CCD Detection
ERIC Educational Resources Information Center
Seney, Caryn S.; Sinclair, Karen V.; Bright, Robin M.; Momoh, Paul O.; Bozeman, Amelia D.
2005-01-01
The full wavelength coverage of charge coupled device (CCD) detector when coupled with an echelle spectrography, the system allows for simultaneously multiple element spectroscopy to be performed. The multiple-element flame spectrometer was built and characterized through the analysis of environmentally significant elements such as Ca, K, Na, Cu,…
Extended depth of field imaging for high speed object analysis
NASA Technical Reports Server (NTRS)
Frost, Keith (Inventor); Ortyn, William (Inventor); Basiji, David (Inventor); Bauer, Richard (Inventor); Liang, Luchuan (Inventor); Hall, Brian (Inventor); Perry, David (Inventor)
2011-01-01
A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
Region-growing approach to detect microcalcifications in digital mammograms
NASA Astrophysics Data System (ADS)
Shin, Jin-Wook; Chae, Soo-Ik; Sook, Yoon M.; Park, Dong-Sun
2001-09-01
Detecting early symptoms of breast cancer is very important to enhance the possibility of cure. There have been active researches to develop computer-aided diagnosis(CAD) systems detecting early symptoms of breast cancer in digital mammograms. An expert or a CAD system can recognize the early symptoms based on microcalcifications appeared in digital mammographic images. Microcalcifications have higher gray value than surrounding regions, so these can be detected by expanding a region from a local maximum. However the resultant image contains unnecessary elements such as noise, holes and valleys. Mathematical morphology is a good solution to delete regions that are affected by the unnecessary elements. In this paper, we present a method that effectively detects microcalcifications in digital mammograms using a combination of local maximum operation and the region-growing operation.
Stochastic sensing through covalent interactions
Bayley, Hagan; Shin, Seong-Ho; Luchian, Tudor; Cheley, Stephen
2013-03-26
A system and method for stochastic sensing in which the analyte covalently bonds to the sensor element or an adaptor element. If such bonding is irreversible, the bond may be broken by a chemical reagent. The sensor element may be a protein, such as the engineered P.sub.SH type or .alpha.HL protein pore. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable signal. Possible signals include change in electrical current, change in force, and change in fluorescence. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may be detected.
Careri, Maria; Elviri, Lisa; Mangia, Alessandro; Mucchino, Claudio
2007-03-01
A novel ICP-MS-based ELISA immunoassay via element-tagged determination was devised for quantitative analysis of hidden allergens in food. The method was able to detect low amounts of peanuts (down to approximately 2 mg peanuts kg(-1) cereal-based matrix) by using a europium-tagged antibody. Selectivity was proved by the lack of detectable cross-reaction with a number of protein-rich raw materials.
Solar-blind ultraviolet optical system design for missile warning
NASA Astrophysics Data System (ADS)
Chen, Yu; Huo, Furong; Zheng, Liqin
2015-03-01
Solar-blind region of Ultraviolet (UV) spectrum has very important application in military field. The spectrum range is from 240nm to 280nm, which can be applied to detect the tail flame from approaching missile. A solar-blind UV optical system is designed to detect the UV radiation, which is an energy system. iKon-L 936 from ANDOR company is selected as the UV detector, which has pixel size 13.5μm x 13.5 μm and active image area 27.6mm x 27.6 mm. CaF2 and F_silica are the chosen materials. The original structure is composed of 6 elements. To reduce the system structure and improve image quality, two aspheric surfaces and one diffractive optical element are adopted in this paper. After optimization and normalization, the designed system is composed of five elements with the maximum spot size 11.988μ m, which is less than the pixel size of the selected CCD detector. Application of aspheric surface and diffractive optical element makes each FOV have similar spot size, which shows the system almost meets the requirements of isoplanatic condition. If the focal length can be decreased, the FOV of the system can be enlarged further.
Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.
2009-01-01
Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element concentrations. Strontium and barium were the most frequently detected and usually were present in the highest concentrations. Iron and manganese were the next most commonly detected and next highest in concentrations. Iron concentrations were the most variable with respect to the range of variations (both within local networks and aquifer-wide) and with respect to the disparity between magnitude of concentrations (detections) and the frequency of samples below reporting limits (nondetections). Antimony, beryllium, cadmium, silver, and thallium were detected too infrequently for substantial interpretation of their occurrence or distributions or potential human-health implications. For those elements that were more frequently detected, there are some geographic patterns in their occurrence that primarily reflect climate effects. The highest concentrations of several elements were found in the West-Central glacial framework area (High Plains and northern Plains areas). There are few important patterns for any element in relation to land use, well type, or network type. Shallow land-use (monitor) wells had iron concentrations generally lower than the glacial aquifer system wells overall and much lower than major-aquifer survey wells, which comprise mostly private- and public-supply wells. Unlike those for iron, concentration patterns for manganese were similar among shallow land-use wells and major-aquifer survey wells. An apparent relation between low pH and relatively low concentrations of many elements, except lead, may be more indicative of the relatively low dissolved-solids content in wells in the Northeastern United States that comprise the majority of low pH wells, than of a pH dependent pattern. Iron and manganese have higher concentrations and larger ranges of concentrations especially under more reducing conditions. Dissolved oxygen and well depth were related to iron and manganese concentrations. Redox conditions also affect several trace elements such
Evaluation of Incident Detection Methodologies
DOT National Transportation Integrated Search
1999-10-01
Original Report Date: October 1998. The detection of freeway incidents is an essential element of an area's traffic management system. Incidents need to be detected and handled as promptly as possible to minimize delay to the public. Various algorith...
ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION
A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...
NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-01-01
Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer-Mounted RETS; 27) Modeling and Simulation; 28) Summary ISHM Testbed Environments; 29) Data Mining - ARC; 30) Transitioning ISHM to Support NASA Missions; 31) Feature Detection Routines; 32) Sample Features Detected in SSC Test Stand Data; and 33) Health Assessment Database (DIaK Repository).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Tushar, E-mail: tushar@barc.gov.in; Kashyap, Yogesh; Shukla, Mayank
Associated particle technique (APT) for detection of explosives is well established but has been implemented mostly for fixed portal systems. In certain situations, a portable system is required where the suspect object cannot be moved from site. This paper discusses the development of a portable APT system in single-sided geometry which can be transported to site and requires only one-sided access to the object. The system comprised D-T neutron source and bismuth germanate (BGO) detectors fixed on a portable module. Different aspects of the system have been discussed such as background contribution, time selection, and elemental signatures. The system wasmore » used to detect benign samples and explosive simulants under laboratory condition. The elemental ratios obtained by analyzing the gamma spectra show good match with the theoretical ratios.« less
NASA Astrophysics Data System (ADS)
Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.
2017-03-01
A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.
A novel ultrasonic phased array inspection system to NDT for offshore platform structures
NASA Astrophysics Data System (ADS)
Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping
2007-01-01
A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.
A high-throughput method for GMO multi-detection using a microfluidic dynamic array.
Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J
2014-02-01
The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.
An Analysis of the Magneto-Optic Imaging System
NASA Technical Reports Server (NTRS)
Nath, Shridhar
1996-01-01
The Magneto-Optic Imaging system is being used for the detection of defects in airframes and other aircraft structures. The system has been successfully applied to detecting surface cracks, but has difficulty in the detection of sub-surface defects such as corrosion. The intent of the grant was to understand the physics of the MOI better, in order to use it effectively for detecting corrosion and for classifying surface defects. Finite element analysis, image classification, and image processing are addressed.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Glazier, James A. (Inventor); Amarie, Dragos (Inventor)
2012-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single microchip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Amarie, Dragos (Inventor); Glazier, James A. (Inventor)
2011-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multichannel sensor for detecting the presence of several targets with a single microchip sensor is described. A multichannel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Glazier, James A. (Inventor); Dragnea, Bogdan (Inventor); Amarie, Dragos (Inventor)
2010-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single microchip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Amarie, Dragos (Inventor); Glazier, James A. (Inventor); Dragnea, Bogdan (Inventor)
2010-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Sub-micron surface plasmon resonance sensor systems
NASA Technical Reports Server (NTRS)
Glazier, James A. (Inventor); Amarie, Dragos (Inventor)
2011-01-01
A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.
Multichannel Detection in High-Performance Liquid Chromatography.
ERIC Educational Resources Information Center
Miller, James C.; And Others
1982-01-01
A linear photodiode array is used as the photodetector element in a new ultraviolet-visible detection system for high-performance liquid chromatography (HPLC). Using a computer network, the system processes eight different chromatographic signals simultaneously in real-time and acquires spectra manually/automatically. Applications in fast HPLC…
Neutron Resonance Radiography for Explosives Detection: Technical Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raas, W L; Blackburn, B; Boyd, E
2005-11-09
Fast Neutron Resonance Radiography (NRR) has recently become a focus of investigation as a supplement to conventional x-ray systems as a non-invasive, non-destructive means of detecting explosive material concealed in checked luggage or cargo containers at airports. Using fast (1-6 MeV) neutrons produced by the D(d,n){sup 3}He reaction, NRR provides both an imaging capability and the ability to determine the chemical composition of materials in baggage or cargo. Elemental discrimination is achieved by exploiting the resonance features of the neutron cross-section for oxygen, nitrogen, carbon, and hydrogen. Simulations have shown the effectiveness of multiple-element NRR through Monte Carlo transport methods;more » this work is focused on the development of a prototype system that will incorporate an accelerator-based neutron source and a neutron detection and imaging system to demonstrate the realistic capabilities of NRR in distinguishing the elemental components of concealed objects. Preliminary experiments have exposed significant technical difficulties unapparent in simulations, including the presence of image contamination from gamma ray production, the detection of low-fluence fast neutrons in a gamma field, and the mechanical difficulties inherent in the use of thin foil windows for gas cell confinement. To mitigate these concerns, a new gas target has been developed to simultaneously reduce gamma ray production and increase structural integrity in high flux gas targets. Development of a neutron imaging system and neutron counting based on characteristic neutron pulse shapes have been investigated as a means of improving signal to noise ratios, reducing irradiation times, and increasing the accuracy of elemental determination.« less
NASA Astrophysics Data System (ADS)
Zucchiatti, Alessandro; Alonso, Ursula; Lemasson, Quentin; Missana, Tiziana; Moignard, Brice; Pacheco, Claire; Pichon, Laurent; Camarena de la Mora, Sandra
2014-08-01
A series of granite samples (Grimsel and Äspö) enriched by sorption with natU (10-3 M, 10-4 M, 10-5 M in solution) and La (10-3 M, 10-4 M in solution) has been scanned by PIXE over a surface of 1920 × 1920 mm2 together with non-enriched Grimsel and Äspö granites and a glass standard. An assessment of minimum detection limits, MDL's, for several elements has been performed with the use of standard materials. Due to mapping and the high sensitivity of the new AGLAE detection system, U levels around 30 ppm can be detected from the whole PIXE spectrum (one low energy detector and four summed filtered detectors) while U reach grains, inhomogeneously distributed over the surface can be clearly identified through the multi elemental maps and analyzed separately. Even the nominally enriched samples have La levels below the MDL, probably because precipitation of the element (and not adsorption) mostly took place, and precipitates were eliminated after surface cleaning carried out before PIXE analyses. A multi detector system that implies a PIXE detection solid angle much wider than in any other similar set-up (a factor of 2-5); a higher events selectivity, given by the possibility of filtering individually up to 4 PIXE detectors; a double RBS detector, the new Ion Beam Induced Luminescence (IBIL) spectrometry and gamma spectrometry. Full mapping capability in air, assisted by a powerful event by event reconstruction software. These features allow lower Minimum Detection Limits (MDL) which are highly beneficial to the analysis of cultural heritage objects, meaning generally a reduction of irradiation time. Paintings will then be studied without any damage to the pigments that have color change tendencies which is a major drawback of the previous system. Alternatively they could allow an increase in information collected at equal time, particularly considering the detector's fast response and therefore the potential for high beam currents when sample damage can be tolerated.This kind of set-up should be advantageous for the detection of elements that are present in a geological, archaeological or artistic samples to the level of a few tens ppm. This is true in particular for the rare earths which are relevant to the provenance attribution of various classes of cultural heritage objects (clays, glasses, …) and the actinides which are relevant in very specific and highly impacting dating problems and, more generally, critical environmental elements with special reference to the radionuclide mobility in deep geological formations hosting radioactive waste [2]. Geological materials are highly heterogeneous and consequently their retention of contaminants is heterogeneous as well. In this frame, the capabilities of the AGLAE set-up would allow an improved characterization of natural heterogeneous rock, detecting the presence of the elements of interest (actinides and rare earth) at concentration levels of tens of ppm. This provides a better definition of the initial system, avoiding biased interpretation of the retention properties of the material for the analysis of possible contamination. Additionally, if lower detection limits were achieved, new perspectives to evaluate retention of low solubility contaminants in a wider range of geochemical conditions would be opened.A glass standard and a series of reference granite samples (Grimsel and Äspö), either enriched by sorption with natU and La or kept natural, have been scanned by PIXE at the New-AGLAE detection system, to test measurement protocols and assess the MDL's allowed by the five detectors system.
76 FR 58424 - Transmission Relay Loadability Reliability Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... Protection Systems 2. Protective relays are devices that detect and initiate the removal of faults [[Page... protective relay detects a fault on an element of the system under its protection, it sends a signal to an... distribution providers to set load-responsive phase protection relays according to specific criteria to ensure...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, R.; Siddons, D.; Dunn, P.A.
2010-06-23
The Maia detector system is engineered for energy dispersive x-ray fluorescence spectroscopy and elemental imaging at photon rates exceeding 10{sup 7}/s, integrated scanning of samples for pixel transit times as small as 50 {micro}s and high definition images of 10{sup 8} pixels and real-time processing of detected events for spectral deconvolution and online display of pure elemental images. The system developed by CSIRO and BNL combines a planar silicon 384 detector array, application-specific integrated circuits for pulse shaping and peak detection and sampling and optical data transmission to an FPGA-based pipelined, parallel processor. This paper describes the system and themore » underpinning engineering solutions.« less
Methods for identification and verification using vacuum XRF system
NASA Technical Reports Server (NTRS)
Kaiser, Bruce (Inventor); Schramm, Fred (Inventor)
2005-01-01
Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.
Health management and controls for Earth-to-orbit propulsion systems
NASA Astrophysics Data System (ADS)
Bickford, R. L.
1995-03-01
Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Inventor); Mata, Carlos T. (Inventor); Santiago, Josephine B. (Inventor); Vokrot, Peter (Inventor); Zavala, Carlos E. (Inventor); Burns, Bradley M. (Inventor)
2010-01-01
Self-Validating Thermocouple (SVT) Systems capable of detecting sensor probe open circuits, short circuits, and unnoticeable faults such as a probe debonding and probe degradation are useful in the measurement of temperatures. SVT Systems provide such capabilities by incorporating a heating or excitation element into the measuring junction of the thermocouple. By heating the measuring junction and observing the decay time for the detected DC voltage signal, it is possible to indicate whether the thermocouple is bonded or debonded. A change in the thermal transfer function of the thermocouple system causes a change in the rise and decay times of the thermocouple output. Incorporation of the excitation element does not interfere with normal thermocouple operation, thus further allowing traditional validation procedures as well.
Automatic quadrature control and measuring system. [using optical coupling circuitry
NASA Technical Reports Server (NTRS)
Hamlet, J. F. (Inventor)
1974-01-01
A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Lanza, R.C.
1999-12-01
The authors have developed a near field coded aperture imaging system for use with fast neutron techniques as a tool for the detection of contraband and hidden explosives through nuclear elemental analysis. The technique relies on the prompt gamma rays produced by fast neutron interactions with the object being examined. The position of the nuclear elements is determined by the location of the gamma emitters. For existing fast neutron techniques, in Pulsed Fast Neutron Analysis (PFNA), neutrons are used with very low efficiency; in Fast Neutron Analysis (FNS), the sensitivity for detection of the signature gamma rays is very low.more » For the Coded Aperture Fast Neutron Analysis (CAFNA{reg{underscore}sign}) the authors have developed, the efficiency for both using the probing fast neutrons and detecting the prompt gamma rays is high. For a probed volume of n{sup 3} volume elements (voxels) in a cube of n resolution elements on a side, they can compare the sensitivity with other neutron probing techniques. As compared to PFNA, the improvement for neutron utilization is n{sup 2}, where the total number of voxels in the object being examined is n{sup 3}. Compared to FNA, the improvement for gamma-ray imaging is proportional to the total open area of the coded aperture plane; a typical value is n{sup 2}/2, where n{sup 2} is the number of total detector resolution elements or the number of pixels in an object layer. It should be noted that the actual signal to noise ratio of a system depends also on the nature and distribution of background events and this comparison may reduce somewhat the effective sensitivity of CAFNA. They have performed analysis, Monte Carlo simulations, and preliminary experiments using low and high energy gamma-ray sources. The results show that a high sensitivity 3-D contraband imaging and detection system can be realized by using CAFNA.« less
Demonstration of the feasibility of an integrated x ray laboratory for planetary exploration
NASA Technical Reports Server (NTRS)
Franco, E. D.; Kerner, J. A.; Koppel, L. N.; Boyle, M. J.
1993-01-01
The identification of minerals and elemental compositions is an important component in the geological and exobiological exploration of the solar system. X ray diffraction and fluorescence are common techniques for obtaining these data. The feasibility of combining these analytical techniques in an integrated x ray laboratory compatible with the volume, mass, and power constraints imposed by many planetary missions was demonstrated. Breadboard level hardware was developed to cover the range of diffraction lines produced by minerals, clays, and amorphous; and to detect the x ray fluorescence emissions of elements from carbon through uranium. These breadboard modules were fabricated and used to demonstrate the ability to detect elements and minerals. Additional effort is required to establish the detection limits of the breadboard modules and to integrate diffraction and fluorescence techniques into a single unit. It was concluded that this integrated x ray laboratory capability will be a valuable tool in the geological and exobiological exploration of the solar system.
NASA Astrophysics Data System (ADS)
Kolmogorov, Yu. P.; Mezentsev, N. A.; Mironov, A. G.; Parkhomenko, V. S.; Spiridonov, A. M.; Shaporenko, A. D.; Yusupov, T. S.; Zhmodik, S. M.; Zolotarev, K. V.; Anoshin, G. N.
2009-05-01
A system of methods to detect platinum group elements (PGE): Re, Au, and Ag in hard-to-analyze rocks and complex ores has been developed. It applies the SRXRF for Ru, Rh, Pd, and Ag and the INAA method for Os, Ir, Pt and Ag and implies mechanoactivation of probes to study. The results of measurement of standard samples of carbonaceous rocks and ores in order to PGE, gold, and silver confirm the possibility of detecting some of the above-listed elements with a detection limit of 10 ppb.
Optical sensing: recognition elements and devices
NASA Astrophysics Data System (ADS)
Gauglitz, Guenter G.
2012-09-01
The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.
Target Detection Routine (TADER). User’s Guide.
1987-09-01
o System range capability subset (one record - omitted for standoff SLAR and penetrating system) o System inherent detection probability subset ( IELT ...records, i.e., one per element type) * System capability modifier subset/A=1, E=1 ( IELT records) o System capability modifier subset/A=1, E=2 ( IELT ...records) s System capability modifier subset/A=2, E=1 ( IELT records) o System capability modifier subset/A=2, E=2 ( IELT records) Unit Data Set (one set
Neutron imaging systems utilizing lithium-containing semiconductor crystals
Stowe, Ashley C.; Burger, Arnold
2017-04-25
A neutron imaging system, including: a plurality of Li-III-VI.sub.2 semiconductor crystals arranged in an array, wherein III represents a Group III element and VI represents a Group VI element; and electronics operable for detecting and a charge in each of the plurality of crystals in the presence of neutrons and for imaging the neutrons. Each of the crystals is formed by: melting the Group III element; adding the Li to the melted Group III element at a rate that allows the Li and Group III element to react, thereby providing a single phase Li-III compound; and adding the Group VI element to the single phase Li-III compound and heating. Optionally, each of the crystals is also formed by doping with a Group IV element activator.
Precision Targeting With a Tracking Adaptive Optics Scanning Laser Ophthalmoscope
2006-01-01
automatic high- resolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an...structures can lead to earlier detection of retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Combined...optics systems sense perturbations in the detected wave-front and apply corrections to an optical element that flatten the wave-front and allow near
Perimeter intrusion detection and assessment system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, M.J.; Jacobs, J.; McGovern, D.E.
1977-01-01
The key elements of the system considered at a materials storage site are intrusion sensors, alarm assessment, and system control and display. Three papers discussing each of these topics are compiled. They are abstracted individually. (JSR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.
An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capablemore » of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.« less
Integrated System Health Management (ISHM) for Test Stand and J-2X Engine: Core Implementation
NASA Technical Reports Server (NTRS)
Figueroa, Jorge F.; Schmalzel, John L.; Aguilar, Robert; Shwabacher, Mark; Morris, Jon
2008-01-01
ISHM capability enables a system to detect anomalies, determine causes and effects, predict future anomalies, and provides an integrated awareness of the health of the system to users (operators, customers, management, etc.). NASA Stennis Space Center, NASA Ames Research Center, and Pratt & Whitney Rocketdyne have implemented a core ISHM capability that encompasses the A1 Test Stand and the J-2X Engine. The implementation incorporates all aspects of ISHM; from anomaly detection (e.g. leaks) to root-cause-analysis based on failure mode and effects analysis (FMEA), to a user interface for an integrated visualization of the health of the system (Test Stand and Engine). The implementation provides a low functional capability level (FCL) in that it is populated with few algorithms and approaches for anomaly detection, and root-cause trees from a limited FMEA effort. However, it is a demonstration of a credible ISHM capability, and it is inherently designed for continuous and systematic augmentation of the capability. The ISHM capability is grounded on an integrating software environment used to create an ISHM model of the system. The ISHM model follows an object-oriented approach: includes all elements of the system (from schematics) and provides for compartmentalized storage of information associated with each element. For instance, a sensor object contains a transducer electronic data sheet (TEDS) with information that might be used by algorithms and approaches for anomaly detection, diagnostics, etc. Similarly, a component, such as a tank, contains a Component Electronic Data Sheet (CEDS). Each element also includes a Health Electronic Data Sheet (HEDS) that contains health-related information such as anomalies and health state. Some practical aspects of the implementation include: (1) near real-time data flow from the test stand data acquisition system through the ISHM model, for near real-time detection of anomalies and diagnostics, (2) insertion of the J-2X predictive model providing predicted sensor values for comparison with measured values and use in anomaly detection and diagnostics, and (3) insertion of third-party anomaly detection algorithms into the integrated ISHM model.
Multivariate analysis of elemental chemistry as a robust biosignature
NASA Astrophysics Data System (ADS)
Storrie-Lombardi, M.; Nealson, K.
2003-04-01
The robotic detection of life in extraterrestrial settings (i.e., Mars, Europa, etc.) would be greatly simplified if analysis could be accomplished in the absence of direct mechanical manipulation of a sample. It would also be preferable to employ a fundamental physico-chemical phenomenon as a biosignature and depend less on the particular manifestations of life on Earth (i.e. to employ non-earthcentric methods). One such approach, which we put forward here, is that of elemental composition, a reflection of the use of specific chemical elements for the construction of living systems. Using appropriate analyses (over the proper spatial scales), it should be possible to see deviations from the geological background (mineral and geochemical composition of the crust), and identify anomalies that would indicate sufficient deviation from the norm as to indicate a possible living system. To this end, over the past four decades elemental distributions have been determined for the sun, the interstellar medium, seawater, the crust of the Earth, carbonaceous chondrite meteorites, bacteria, plants, animals, and human beings. Such data can be relatively easily obtained for samples of a variety of types using a technique known as laser-induced breakdown spectroscopy (LIBS), which employs a high energy laser to ablate a portion of a sample, and then determine elemental composition using remote optical spectroscopy. However, the elements commonly associated with living systems (H, C, O, and N), while useful for detecting extant life, are relatively volatile and are not easily constrained across geological time scales. This minimizes their utility as fossil markers of ancient life. We have investigated the possibility of distinguishing the distributions of less volatile elements in a variety of biological materials from the distributions found in carbonaceous chondrites and the Earth’s crust using principal component analysis (PCA), a classical multivariate analysis technique capable of optimizing classification using spectral or multiple variable inputs. We present initial results indicating that 21 elements are of particular utility and can produce clear classification with no errors when used in minimum sets of four (4), e.g. [V-23, Ti-22, Cr-24, I-53] or [Al-13, Si-14, P-15, Fe-26]. The detection limits and ease of approach suggest that these methods should be valuable for detection of biological residual signatures against specific Mars mineral backgrounds. Clearly, measurements must be made at the proper spatial scales in order to see these anomalies, and data must be analyzed with no pre-predjudice of what the elemental composition of life should be - both of these potential problems are easily dealt with. Of particular interest is the observation that many non-volatile elements can be effectively used for life detection, suggesting that fossilized (e.g., dead or even extinct) samples may retain these inorganic signatures of past life.
DETECTION OF COATING FAILURES IN A NEUTRONIC REACTOR
Snell, A.H.; Allison, S.K.
1958-02-11
This patent relates to water-cooled reactor systems and discloses a means to detect leaks in the jackets of jacketed fuel elements comprising a neutron detector located in the cooling water discharge pipe,the pipe being provided with an enlarged portion for housing the detector so that the latter is completely surrounded by the water in its passage through the pipe, said enlarged portion and detector being shielded from the reactor for the purpose of detecting only those delayed neutrons emitted in the cooling water and due to the latter picking up fission fragments from the defective fuel elements.
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Liu, Guodong; Yang, Diwu; Ren, Zhong; Huang, Zhen
2008-12-01
A near-infrared photoacoustic glucose monitoring system, which is integrated dual-wavelength pulsed laser diode excitation with eight-element planar annular array detection technique, is designed and fabricated during this study. It has the characteristics of nonivasive, inexpensive, portable, accurate location, and high signal-to-noise ratio. In the system, the exciting source is based on two laser diodes with wavelengths of 905 nm and 1550 nm, respectively, with optical pulse energy of 20 μJ and 6 μJ. The laser beam is optically focused and jointly projected to a confocal point with a diameter of 0.7 mm approximately. A 7.5 MHz 8-element annular array transducer with a hollow structure is machined to capture photoacoustic signal in backward mode. The captured signals excitated from blood glucose are processed with a synthetic focusing algorithm to obtain high signal-to-noise ratio and accurate location over a range of axial detection depth. The custom-made transducer with equal area elements is coaxially collimated with the laser source to improve the photoacoustic excite/receive efficiency. In the paper, we introduce the photoacoustic theory, receive/process technique, and design method of the portable noninvasive photoacoustic glucose monitoring system, which can potentially be developed as a powerful diagnosis and treatment tool for diabetes mellitus.
NASA Astrophysics Data System (ADS)
Alegre, D. M.; Koroishi, E. H.; Melo, G. P.
2015-07-01
This paper presents a methodology for detection and localization of faults by using state observers. State Observers can rebuild the states not measured or values from points of difficult access in the system. So faults can be detected in these points without the knowledge of its measures, and can be track by the reconstructions of their states. In this paper this methodology will be applied in a system which represents a simplified model of a vehicle. In this model the chassis of the car was represented by a flat plate, which was divided in finite elements of plate (plate of Kirchoff), in addition, was considered the car suspension (springs and dampers). A test rig was built and the developed methodology was used to detect and locate faults on this system. In analyses done, the idea is to use a system with a specific fault, and then use the state observers to locate it, checking on a quantitative variation of the parameter of the system which caused this crash. For the computational simulations the software MATLAB was used.
Detection of system failures in multi-axes tasks. [pilot monitored instrument approach
NASA Technical Reports Server (NTRS)
Ephrath, A. R.
1975-01-01
The effects of the pilot's participation mode in the control task on his workload level and failure detection performance were examined considering a low visibility landing approach. It is found that the participation mode had a strong effect on the pilot's workload, the induced workload being lowest when the pilot acted as a monitoring element during a coupled approach and highest when the pilot was an active element in the control loop. The effects of workload and participation mode on failure detection were separated. The participation mode was shown to have a dominant effect on the failure detection performance, with a failure in a monitored (coupled) axis being detected significantly faster than a comparable failure in a manually controlled axis.
Terahertz imaging devices and systems, and related methods, for detection of materials
Kotter, Dale K.
2016-11-15
Terahertz imaging devices may comprise a focal plane array including a substrate and a plurality of resonance elements. The plurality of resonance elements may comprise a conductive material coupled to the substrate. Each resonance element of the plurality of resonance elements may be configured to resonate and produce an output signal responsive to incident radiation having a frequency between about a 0.1 THz and 4 THz range. A method of detecting a hazardous material may comprise receiving incident radiation by a focal plane array having a plurality of discrete pixels including a resonance element configured to absorb the incident radiation at a resonant frequency in the THz, generating an output signal from each of the discrete pixels, and determining a presence of a hazardous material by interpreting spectral information from the output signal.
NASA Astrophysics Data System (ADS)
Dalipi, Rogerta; Marguí, Eva; Borgese, Laura; Bilo, Fabjola; Depero, Laura E.
2016-06-01
Recent technological improvements have led to a widespread adoption of benchtop total reflection X-ray fluorescence systems (TXRF) for analysis of liquid samples. However, benchtop TXRF systems usually present limited sensitivity compared with high-scale instrumentation which can restrict its application in some fields. The aim of the present work was to evaluate and compare the analytical capabilities of two TXRF systems, equipped with low power Mo and W target X-ray tubes, for multielemental analysis of wine samples. Using the Mo-TXRF system, the detection limits for most elements were one order of magnitude lower than those attained using the W-TXRF system. For the detection of high Z elements like Cd and Ag, however, W-TXRF remains a very good option due to the possibility of K-Lines detection. Accuracy and precision of the obtained results have been evaluated analyzing spiked real wine samples and comparing the TXRF results with those obtained by inductively coupled plasma emission spectroscopy (ICP-OES). In general, good agreement was obtained between ICP-OES and TXRF results for the analysis of both red and white wine samples except for light elements (i.e., K) which TXRF concentrations were underestimated. However, a further achievement of analytical quality of TXRF results can be achieved if wine analysis is performed after dilution of the sample with de-ionized water.
Design optimization of Cassegrain telescope for remote explosive trace detection
NASA Astrophysics Data System (ADS)
Bhavsar, Kaushalkumar; Eseller, K. E.; Prabhu, Radhakrishna
2017-10-01
The past three years have seen a global increase in explosive-based terror attacks. The widespread use of improvised explosives and anti-personnel landmines have caused thousands of civilian casualties across the world. Current scenario of globalized civilization threat from terror drives the need to improve the performance and capabilities of standoff explosive trace detection devices to be able to anticipate the threat from a safe distance to prevent explosions and save human lives. In recent years, laser-induced breakdown spectroscopy (LIBS) is an emerging approach for material or elemental investigations. All the principle elements on the surface are detectable in a single measurement using LIBS and hence, a standoff LIBS based method has been used to remotely detect explosive traces from several to tens of metres distance. The most important component of LIBS based standoff explosive trace detection system is the telescope which enables remote identification of chemical constituents of the explosives. However, in a compact LIBS system where Cassegrain telescope serves the purpose of laser beam delivery and light collection, need a design optimization of the telescope system. This paper reports design optimization of a Cassegrain telescope to detect explosives remotely for LIBS system. A design optimization of Schmidt corrector plate was carried out for Nd:YAG laser. Effect of different design parameters was investigated to eliminate spherical aberration in the system. Effect of different laser wavelengths on the Schmidt corrector design was also investigated for the standoff LIBS system.
Yagur-Kroll, Sharon; Belkin, Shimshon
2014-01-01
Microbial whole-cell bioreporters are genetically modified microorganisms that produce a quantifiable output in response to the presence of toxic chemicals or other stress factors. These bioreporters harbor a genetic fusion between a sensing element (usually a gene regulatory element responsive to the target) and a reporter element, the product of which may be quantitatively monitored either by its presence or by its activity. In this chapter we review genetic manipulations undertaken in order to improve bioluminescent bioreporter performance by increasing luminescent output, lowering the limit of detection, and shortening the response time. We describe molecular manipulations applied to all aspects of whole-cell bioreporters: the host strain, the expression system, the sensing element, and the reporter element. The molecular construction of whole-cell luminescent bioreporters, harboring fusions of gene promoter elements to reporter genes, has been around for over three decades; in most cases, these two genetic elements are combined "as is." This chapter outlines diverse molecular manipulations for enhancing the performance of such sensors.
Low exhaust temperature electrically heated particulate matter filter system
Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN
2012-02-14
A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.
Elemental analysis of urinary calculi by laser induced plasma spectroscopy.
Fang, Xiao; Ahmad, S Rafi; Mayo, Mike; Iqbal, Syed
2005-12-01
Laser induced plasma spectroscopy (LIPS) has been applied to analyse and identify elemental constituents of urinary calculi. Measurements on seven different urinary stone samples were conducted and the concentrations of some key elemental species were estimated. The elements detected with the present system were: Calcium, Magnesium, Sodium, Samarium, Potassium and Lead. Absolute concentrations of the species were derived from pre-calibration of the system for each element. Their concentrations were found to be widely different in different samples. It was observed that the samples containing a significant amount of lead have large proportion of calcium. It has been established that LIPS would allow real time clinic measurements of elemental contents and the concentrations in the biomaterials without sample preparation. The technique has the potential for routine clinic applications in urological disorder diagnosis.
Helium microwave-induced plasmas for element specific detection in chromatography
NASA Astrophysics Data System (ADS)
Long, Gary L.; Ducatte, Gerald R.; Lancaster, Edwin D.
1994-01-01
This review addresses the development and use of the microwave-induced plasma (MIP) using optical emission spectrometry for the purpose of element specific detection in chromatography. The plasma source that is the focus of this article is the He-based MIP operated at atmospheric pressure. The forms of chromatography that are covered include gas chromatography, liquid chromatography, and supercritical fluid chromatography. Concepts in plasma cavity design and the chromatograph-plasma interface are discussed along with the application of these hybrid systems to analytical determinations.
Tipping elements in the Earth's climate system.
Lenton, Timothy M; Held, Hermann; Kriegler, Elmar; Hall, Jim W; Lucht, Wolfgang; Rahmstorf, Stefan; Schellnhuber, Hans Joachim
2008-02-12
The term "tipping point" commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here we introduce the term "tipping element" to describe large-scale components of the Earth system that may pass a tipping point. We critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and we assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then we explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.
NASA Technical Reports Server (NTRS)
Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.
2005-01-01
In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article
Gabrielson, Thomas B
2011-09-01
A worldwide network of more than 40 infrasound monitoring stations has been established as part of the effort to ensure compliance with the Comprehensive Nuclear Test Ban Treaty. Each station has four to eight individual infrasound elements in a kilometer-scale array for detection and bearing determination of acoustic events. The frequency range of interest covers a three-decade range-roughly from 0.01 to 10 Hz. A typical infrasound array element consists of a receiving transducer connected to a multiple-inlet pipe network to average spatially over the short-wavelength turbulence-associated "wind noise." Although the frequency response of the transducer itself may be known, the wind-noise reduction system modifies that response. In order to understand the system's impact on detection and identification of acoustical events, the overall frequency response must be determined. This paper describes a technique for measuring the absolute magnitude and phase of the frequency response of an infrasound element including the wind-noise-reduction piping by comparison calibration using ambient noise and a reference-microphone system. Measured coherence between the reference and the infrasound element and the consistency between the magnitude and the phase provide quality checks on the process. © 2011 Acoustical Society of America
Compute Element and Interface Box for the Hazard Detection System
NASA Technical Reports Server (NTRS)
Villalpando, Carlos Y.; Khanoyan, Garen; Stern, Ryan A.; Some, Raphael R.; Bailey, Erik S.; Carson, John M.; Vaughan, Geoffrey M.; Werner, Robert A.; Salomon, Phil M.; Martin, Keith E.;
2013-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is building a sensor that enables a spacecraft to evaluate autonomously a potential landing area to generate a list of hazardous and safe landing sites. It will also provide navigation inputs relative to those safe sites. The Hazard Detection System Compute Element (HDS-CE) box combines a field-programmable gate array (FPGA) board for sensor integration and timing, with a multicore computer board for processing. The FPGA does system-level timing and data aggregation, and acts as a go-between, removing the real-time requirements from the processor and labeling events with a high resolution time. The processor manages the behavior of the system, controls the instruments connected to the HDS-CE, and services the "heavy lifting" computational requirements for analyzing the potential landing spots.
A New Real - Time Fault Detection Methodology for Systems Under Test. Phase 1
NASA Technical Reports Server (NTRS)
Johnson, Roger W.; Jayaram, Sanjay; Hull, Richard A.
1998-01-01
The purpose of this research is focussed on the identification/demonstration of critical technology innovations that will be applied to various applications viz. Detection of automated machine Health Monitoring (BM, real-time data analysis and control of Systems Under Test (SUT). This new innovation using a High Fidelity Dynamic Model-based Simulation (BFDMS) approach will be used to implement a real-time monitoring, Test and Evaluation (T&E) methodology including the transient behavior of the system under test. The unique element of this process control technique is the use of high fidelity, computer generated dynamic models to replicate the behavior of actual Systems Under Test (SUT). It will provide a dynamic simulation capability that becomes the reference truth model, from which comparisons are made with the actual raw/conditioned data from the test elements.
Liu, Jikun; White, Ian; DeVoe, Don L.
2011-01-01
The use of porous polymer monoliths functionalized with silver nanoparticles is introduced in this work for high-sensitivity surface-enhanced Raman scattering (SERS) detection. Preparation of the SERS detection elements is a simple process comprising the synthesis of a discrete polymer monolith section within a silica capillary, followed by physically trapping silver nanoparticle aggregates within the monolith matrix. A SERS detection limit of 220 fmol for Rhodamine 6G (R6G) is demonstrated, with excellent signal stability over a 24 h period. The capability of the SERS-active monolith for label-free detection of biomolecules was demonstrated by measurements of bradykinin and cyctochrome c. The SERS-active monoliths can be readily integrated into miniaturized micro-total-analysis systems for on-line and label-free detection for a variety of biosensing, bioanalytical, and biomedical applications. PMID:21322579
2013-09-01
Hemodynamic Decompensation During Blood Loss in Humans PRINCIPAL INVESTIGATOR: Michael J. Joyner, M.D. CONTRACTING ORGANIZATION: Mayo Clinic...Medical Monitoring System for Early Detection of Potential Hemodynamic Decompensation During Blood Loss in Humans 5c. PROGRAM ELEMENT NUMBER 6...loss and hemorrhage in humans. The aim Is to be able to detect subtle changes in hemodynamic variables that provide prodromal clues to Impending
Pfleger, Brian; Mendez-Perez, Daniel
2013-11-05
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Pfleger, Brian; Mendez-Perez, Daniel
2015-05-19
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
System Response Manipulation using Arrays of Subordinate Resonators: Theory and Applications
NASA Astrophysics Data System (ADS)
Glean, Aldo A. J.
The dynamic response of a resonant structure can be significantly altered by the attachment of an array of substantially smaller resonators. This dissertation presents the theory governing these subordinate oscillator arrays (SOAs) and explores four major applications of using the arrays. The first application is related to vibration suppression. Numerical optimization was used to obtain SOA properties that minimize the settling time of a primary resonator subjected to an impulse. This minimization was conducted for system characteristics including the overall bandwidth of the array, the ratio of total array mass to primary resonator mass, and distributions of array properties. It is shown that the minimum settling time is a function of bandwidth and added mass within the SOA. The second application introduces a novel method of chemical vapor detection using SOA elements that are functionalized to bond with a specific chemical species. Numerical simulations were used to relate mass adsorbed to changes in the time-domain response of the system. It is shown that increasing the number of sensing elements increases sensitivity and reduces errors in mass predictions due to mass adsorption variability while having fewer sensing elements increases signal-to-noise ratio. The third application is also concerned with chemical vapor detection. Numerical simulation was used to explore the changes in system resonant frequencies and normal mode shapes in response to adsorption of mass on a single array element, in arrays in which each element has a distinct resonant frequency. It is shown that the degree of inter-element coupling is proportional to the ratio of the mass of the elements to the primary resonator mass. Inter-element coupling was also found to increase linearly with decreasing system resonance spacing up to a maximum value that depends on the mass ratio. The final application is an experimental validation of SOA theory by application to an acoustic system. The third resonance of a standing wave tube is transformed into a bandpass response using an array of small Helmholtz resonators. This experimental work demonstrates that the SOA theory can be applied analogous systems.
2018-01-01
Many implementations of pooled screens in mammalian cells rely on linking an element of interest to a barcode, with the latter subsequently quantitated by next generation sequencing. However, substantial uncoupling between these paired elements during lentiviral production has been reported, especially as the distance between elements increases. We detail that PCR amplification is another major source of uncoupling, and becomes more pronounced with increased amounts of DNA template molecules and PCR cycles. To lessen uncoupling in systems that use paired elements for detection, we recommend minimizing the distance between elements, using low and equal template DNA inputs for plasmid and genomic DNA during PCR, and minimizing the number of PCR cycles. We also present a vector design for conducting combinatorial CRISPR screens that enables accurate barcode-based detection with a single short sequencing read and minimal uncoupling. PMID:29799876
Study on development system of increasing gearbox for high-performance wind-power generator
NASA Astrophysics Data System (ADS)
Xu, Hongbin; Yan, Kejun; Zhao, Junyu
2005-12-01
Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.
Optimizing detector geometry for trace element mapping by X-ray fluorescence.
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan
2015-05-01
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. Copyright © 2015. Published by Elsevier B.V.
Optimizing detector geometry for trace element mapping by X-ray fluorescence
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan
2016-01-01
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825
Optimizing detector geometry for trace element mapping by X-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
NASA Astrophysics Data System (ADS)
Sergeev, A. A.; Leonov, A. A.; Kamenev, D. G.; Voznesenskii, S. S.; Kul'chin, Yu. M.
2017-09-01
We have studied the properties of luminescent protein complexes based on myoglobin with covalently bound CY3 luminophore, which were incorporated into polysaccharide agarose films, as potential elements sensitive to hydrogen sulfide (H2S) in aqueous solutions. The presence of this analyte changes the absorption spectrum of myoglobin, which influences the efficiency of luminophore excitation while having almost no effect on its emission spectrum. This effect shows that a luminescent sensor system with the optical response determined by analyte-induced changes in the efficiency of luminescence excitation in the sensitive element can be created. For the system studied, the limit of detection of H2S dissolved in water amounted to 100 pM.
Solar electric propulsion thrust subsystem development
NASA Technical Reports Server (NTRS)
Masek, T. D.
1973-01-01
The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.
Statistically Validated Networks in Bipartite Complex Systems
Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Piilo, Jyrki; Mantegna, Rosario N.
2011-01-01
Many complex systems present an intrinsic bipartite structure where elements of one set link to elements of the second set. In these complex systems, such as the system of actors and movies, elements of one set are qualitatively different than elements of the other set. The properties of these complex systems are typically investigated by constructing and analyzing a projected network on one of the two sets (for example the actor network or the movie network). Complex systems are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set, and this heterogeneity makes it very difficult to discriminate links of the projected network that are just reflecting system's heterogeneity from links relevant to unveil the properties of the system. Here we introduce an unsupervised method to statistically validate each link of a projected network against a null hypothesis that takes into account system heterogeneity. We apply the method to a biological, an economic and a social complex system. The method we propose is able to detect network structures which are very informative about the organization and specialization of the investigated systems, and identifies those relationships between elements of the projected network that cannot be explained simply by system heterogeneity. We also show that our method applies to bipartite systems in which different relationships might have different qualitative nature, generating statistically validated networks in which such difference is preserved. PMID:21483858
Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.).
Scholz, S; Lörz, H; Lütticke, S
2001-01-01
Transposition of the maize autonomous element Ac (Activator) was investigated in barley (Hordeum vulgare L.) with the aim of developing a transposon tagging system for the latter. The Ac element was introduced into meristematic tissue of barley by microprojectile bombardment. Transposon activity was then examined in the resulting transgenic plants. Multiple excision events were detected in leaf tissue of all plant lines. The mobile elements generated empty donor sites with small DNA sequence alterations, similar to those found in maize. Reintegration of Ac at independent genomic loci in somatic tissue was demonstrated by isolation of new element-flanking regions by AIMS-PCR (amplification of insertion-mutagenized sites). In addition, transmission of transposed Ac elements to progeny plants was confirmed. The results indicate that the introduced Ac element is able to transpose in barley. This is a first step towards the establishment of a transposon tagging system in this economically important crop.
Comprehension-Driven Program Analysis (CPA) for Malware Detection in Android Phones
2015-07-01
COMPREHENSION-DRIVEN PROGRAM ANALYSIS (CPA) FOR MALWARE DETECTION IN ANDROID PHONES IOWA STATE UNIVERSITY JULY 2015 FINAL...DRIVEN PROGRAM ANALYSIS (CPA) FOR MALWARE DETECTION IN ANDROID PHONES Sb. GRANT NUMBER N/A Sc. PROGRAM ELEMENT NUMBER 6 1101E 6. AUTHOR(S) Sd...machine analysis system to detect novel, sophisticated Android malware. (c) An innovative library summarization technique and its incorporation in
NASA Astrophysics Data System (ADS)
Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran
2016-10-01
A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.
NASA Technical Reports Server (NTRS)
Schmalzel, John L.; Morris, Jon; Turowski, Mark; Figueroa, Fernando; Oostdyk, Rebecca
2008-01-01
There are a number of architecture models for implementing Integrated Systems Health Management (ISHM) capabilities. For example, approaches based on the OSA-CBM and OSA-EAI models, or specific architectures developed in response to local needs. NASA s John C. Stennis Space Center (SSC) has developed one such version of an extensible architecture in support of rocket engine testing that integrates a palette of functions in order to achieve an ISHM capability. Among the functional capabilities that are supported by the framework are: prognostic models, anomaly detection, a data base of supporting health information, root cause analysis, intelligent elements, and integrated awareness. This paper focuses on the role that intelligent elements can play in ISHM architectures. We define an intelligent element as a smart element with sufficient computing capacity to support anomaly detection or other algorithms in support of ISHM functions. A smart element has the capabilities of supporting networked implementations of IEEE 1451.x smart sensor and actuator protocols. The ISHM group at SSC has been actively developing intelligent elements in conjunction with several partners at other Centers, universities, and companies as part of our ISHM approach for better supporting rocket engine testing. We have developed several implementations. Among the key features for these intelligent sensors is support for IEEE 1451.1 and incorporation of a suite of algorithms for determination of sensor health. Regardless of the potential advantages that can be achieved using intelligent sensors, existing large-scale systems are still based on conventional sensors and data acquisition systems. In order to bring the benefits of intelligent sensors to these environments, we have also developed virtual implementations of intelligent sensors.
NASA Astrophysics Data System (ADS)
Al-Shudeifat, Mohammad A.; Butcher, Eric A.
2011-01-01
The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.
Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellinger, Marco, E-mail: marco.wellinger@gmail.com; Ecole Polytechnique Federale de Lausanne; Wochele, Joerg
2012-10-15
Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. Themore » analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.« less
NASA Astrophysics Data System (ADS)
Pradeep, K. R.; Thomas, A. M.; Basker, V. T.
2018-03-01
Structural health monitoring (SHM) is an essential component of futuristic civil, mechanical and aerospace structures. It detects the damages in system or give warning about the degradation of structure by evaluating performance parameters. This is achieved by the integration of sensors and actuators into the structure. Study of damage detection process in piezoelectric sensor and actuator integrated sandwich cantilever beam is carried out in this paper. Possible skin-core debond at the root of the cantilever beam is simulated and compared with undamaged case. The beam is actuated using piezoelectric actuators and performance differences are evaluated using Polyvinylidene fluoride (PVDF) sensors. The methodology utilized is the voltage/strain response of the damaged versus undamaged beam against transient actuation. Finite element model of piezo-beam is simulated in ANSYSTM using 8 noded coupled field element, with nodal degrees of freedoms are translations in the x, y directions and voltage. An aluminium sandwich beam with a length of 800mm, thickness of core 22.86mm and thickness of skin 0.3mm is considered. Skin-core debond is simulated in the model as unmerged nodes. Reduction in the fundamental frequency of the damaged beam is found to be negligible. But the voltage response of the PVDF sensor under transient excitation shows significantly visible change indicating the debond. Piezo electric based damage detection system is an effective tool for the damage detection of aerospace and civil structural system having inaccessible/critical locations and enables online monitoring possibilities as the power requirement is minimal.
NASA Astrophysics Data System (ADS)
Pfeifer, Thorben; Janzen, Rasmus; Steingrobe, Tobias; Sperling, Michael; Franze, Bastian; Engelhard, Carsten; Buscher, Wolfgang
2012-10-01
A novel ion source/sampling cone device for inductively coupled plasma mass spectrometry (ICP-MS) especially operated in the hyphenated mode as a detection system coupled with different separation modules is presented. Its technical setup is described in detail. Its main feature is the very low total argon consumption of less than 1.5 L min- 1, leading to significant reduction of operational costs especially when time-consuming speciation analysis is performed. The figures of merit of the new system with respect to sensitivity, detection power, long-term stability and working range were explored. Despite the profound differences of argon consumption of the new system in comparison to the conventional ICP-MS system, many of the characteristic features of the conventional ICP-MS could be maintained to a great extent. To demonstrate the ion source's capabilities, it was used as an element-selective detector for gas (GC) and high performance liquid chromatography (HPLC) where organic compounds of mercury and cobalt, respectively, were separated and detected with the new low-flow ICP-MS detection system. The corresponding chromatograms are shown. The applicability for trace element analysis has been validated with the certified reference material NIST 1643e.
Micro-optics for microfluidic analytical applications.
Yang, Hui; Gijs, Martin A M
2018-02-19
This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.
Turning tryptophanase into odor-generating biosensors.
Xu, Yaqin; Zhang, Zhuyuan; Ali, M Monsur; Sauder, Joanna; Deng, Xudong; Giang, Karen; Aguirre, Sergio D; Pelton, Robert; Li, Yingfu; Filipe, Carlos D M
2014-03-03
An odor-based sensor system that exploits the metabolic enzyme tryptophanase (TPase) as the key component is reported. This enzyme is able to convert an odorless substrate like S-methyl-L-cysteine or L-tryptophan into the odorous products methyl mercaptan or indole. To make a biosensor, TPase was biotinylated so that it could be coupled with a molecular recognition element, such as an antibody, to develop an ELISA-like assay. This method was used for the detection of an antibody present in nM concentrations by the human nose. TPase can also be combined with the enzyme pyridoxal kinase (PKase) for use in a coupled assay to detect adenosine 5'-triphosphate (ATP). When ATP is present in the low μM concentration range, the coupled enzymatic system generates an odor that is easily detectable by the human nose. Biotinylated TPase can be combined with various biotin-labeled molecular recognition elements, thereby enabling a broad range of applications for this odor-based reporting system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superconductivity up to 114 K in the Bi-Al-Ca-Sr-Cu-O compound system without rare-earth elements
NASA Technical Reports Server (NTRS)
Chu, C. W.; Bechtold, J.; Gao, L.; Hor, P. H.; Huang, Z. J.
1988-01-01
Stable superconductivity up to 114 K has been reproducibly detected in Bi-Al-Ca-Sr-Cu-O multiphase systems without any rare-earth elements. Pressure has only a slight positive effect on T(c). These observations provide an extra material base for the study of the mechanism of high-temperature superconductivity and also the prospect of reduced material cost for future applications of superconductivity.
A Miniaturized On-Chip Colorimeter for Detecting NPK Elements
Liu, Rui-Tao; Tao, Lu-Qi; Liu, Bo; Tian, Xiang-Guang; Mohammad, Mohammad Ali; Yang, Yi; Ren, Tian-Ling
2016-01-01
Recently, precision agriculture has become a globally attractive topic. As one of the most important factors, the soil nutrients play an important role in estimating the development of precision agriculture. Detecting the content of nitrogen, phosphorus and potassium (NPK) elements more efficiently is one of the key issues. In this paper, a novel chip-level colorimeter was fabricated to detect the NPK elements for the first time. A light source–microchannel photodetector in a sandwich structure was designed to realize on-chip detection. Compared with a commercial colorimeter, all key parts are based on MEMS (Micro-Electro-Mechanical System) technology so that the volume of this on-chip colorimeter can be minimized. Besides, less error and high precision are achieved. The cost of this colorimeter is two orders of magnitude less than that of a commercial one. All these advantages enable a low-cost and high-precision sensing operation in a monitoring network. The colorimeter developed herein has bright prospects for environmental and biological applications. PMID:27527177
A Miniaturized On-Chip Colorimeter for Detecting NPK Elements.
Liu, Rui-Tao; Tao, Lu-Qi; Liu, Bo; Tian, Xiang-Guang; Mohammad, Mohammad Ali; Yang, Yi; Ren, Tian-Ling
2016-08-04
Recently, precision agriculture has become a globally attractive topic. As one of the most important factors, the soil nutrients play an important role in estimating the development of precision agriculture. Detecting the content of nitrogen, phosphorus and potassium (NPK) elements more efficiently is one of the key issues. In this paper, a novel chip-level colorimeter was fabricated to detect the NPK elements for the first time. A light source-microchannel photodetector in a sandwich structure was designed to realize on-chip detection. Compared with a commercial colorimeter, all key parts are based on MEMS (Micro-Electro-Mechanical System) technology so that the volume of this on-chip colorimeter can be minimized. Besides, less error and high precision are achieved. The cost of this colorimeter is two orders of magnitude less than that of a commercial one. All these advantages enable a low-cost and high-precision sensing operation in a monitoring network. The colorimeter developed herein has bright prospects for environmental and biological applications.
NASA Astrophysics Data System (ADS)
Bao, Yi; Valipour, Mahdi; Meng, Weina; Khayat, Kamal H.; Chen, Genda
2017-08-01
This study develops a delamination detection system for smart ultra-high-performance concrete (UHPC) overlays using a fully distributed fiber optic sensor. Three 450 mm (length) × 200 mm (width) × 25 mm (thickness) UHPC overlays were cast over an existing 200 mm thick concrete substrate. The initiation and propagation of delamination due to early-age shrinkage of the UHPC overlay were detected as sudden increases and their extension in spatial distribution of shrinkage-induced strains measured from the sensor based on pulse pre-pump Brillouin optical time domain analysis. The distributed sensor is demonstrated effective in detecting delamination openings from microns to hundreds of microns. A three-dimensional finite element model with experimental material properties is proposed to understand the complete delamination process measured from the distributed sensor. The model is validated using the distributed sensor data. The finite element model with cohesive elements for the overlay-substrate interface can predict the complete delamination process.
Fire Detection Tradeoffs as a Function of Vehicle Parameters
NASA Technical Reports Server (NTRS)
Urban, David L.; Dietrich, Daniel L.; Brooker, John E.; Meyer, Marit E.; Ruff, Gary A.
2016-01-01
Fire survivability depends on the detection of and response to a fire before it has produced an unacceptable environment in the vehicle. This detection time is the result of interplay between the fire burning and growth rates; the vehicle size; the detection system design; the transport time to the detector (controlled by the level of mixing in the vehicle); and the rate at which the life support system filters the atmosphere, potentially removing the detected species or particles. Given the large differences in critical vehicle parameters (volume, mixing rate and filtration rate) the detection approach that works for a large vehicle (e.g. the ISS) may not be the best choice for a smaller crew capsule. This paper examines the impact of vehicle size and environmental control and life support system parameters on the detectability of fires in comparison to the hazard they present. A lumped element model was developed that considers smoke, heat, and toxic product release rates in comparison to mixing and filtration rates in the vehicle. Recent work has quantified the production rate of smoke and several hazardous species from overheated spacecraft polymers. These results are used as the input data set in the lumped element model in combination with the transport behavior of major toxic products released by overheating spacecraft materials to evaluate the necessary alarm thresholds to enable appropriate response to the fire hazard.
Schlieren optics for leak detection
NASA Technical Reports Server (NTRS)
Peale, Robert E.; Ruffin, Alranzo B.
1995-01-01
The purpose of this research was to develop an optical method of leak detection. Various modifications of schlieren optics were explored with initial emphasis on leak detection of the plumbing within the orbital maneuvering system of the space shuttle (OMS pod). The schlieren scheme envisioned for OMS pod leak detection was that of a high contrast pattern on flexible reflecting material imaged onto a negative of the same pattern. We find that the OMS pod geometry constrains the characteristic length scale of the pattern to the order of 0.001 inch. Our experiments suggest that optical modulation transfer efficiency will be very low for such patterns, which will limit the sensitivity of the technique. Optical elements which allow a negative of the scene to be reversibly recorded using light from the scene itself were explored for their potential in adaptive single-ended schlieren systems. Elements studied include photochromic glass, bacteriorhodopsin, and a transmissive liquid crystal display. The dynamics of writing and reading patterns were studied using intensity profiles from recorded images. Schlieren detection of index gradients in air was demonstrated.
Feature Detection and Curve Fitting Using Fast Walsh Transforms for Shock Tracking: Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2017-01-01
Walsh functions form an orthonormal basis set consisting of square waves. Square waves make the system well suited for detecting and representing functions with discontinuities. Given a uniform distribution of 2p cells on a one-dimensional element, it has been proven that the inner product of the Walsh Root function for group p with every polynomial of degree < or = (p - 1) across the element is identically zero. It has also been proven that the magnitude and location of a discontinuous jump, as represented by a Heaviside function, are explicitly identified by its Fast Walsh Transform (FWT) coefficients. These two proofs enable an algorithm that quickly provides a Weighted Least Squares fit to distributions across the element that include a discontinuity. The detection of a discontinuity enables analytic relations to locally describe its evolution and provide increased accuracy. Time accurate examples are provided for advection, Burgers equation, and Riemann problems (diaphragm burst) in closed tubes and de Laval nozzles. New algorithms to detect up to two C0 and/or C1 discontinuities within a single element are developed for application to the Riemann problem, in which a contact discontinuity and shock wave form after the diaphragm bursts.
Fabrication of microfluidic integrated biosensor
NASA Astrophysics Data System (ADS)
Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.
2017-09-01
An event of miniaturizing for sensor systems to carry out biological diagnostics are gaining wade spread acceptance. The system may contain several different sensor units for the detection of specific analyte, the analyte to be detected might be any kind of biological molecules (DNA, mRNA or proteins) or chemical substances. In most cases, the detection is based on receptor-ligand binding like DNA hybridization or antibody-antigen interaction, achieving this on a nanostructure. DNA or protein must be attached to certain locations within the structure. Critical for this is to have a robust binding chemistry to the surface in the microstructure. Here we successfully designed and fabricated microfluidics element for passive fluid delivery into polysilicon Nanowire sensing domain, we further demonstrated a very simple and effective way of integrating the two devices to give full functionalities of laboratory on a single chip. The sensing element was successfully surface modified and tested on real biomedical clinical sample for evaluation and validation.
Bomb/no bomb: From multivariate analysis to artificial neural systems
NASA Astrophysics Data System (ADS)
Shea, Patrick; Liu, Felix; Yedidia, Barak
1992-05-01
Systems for the detection of explosives hidden in checked airline baggage have been under development at the Science Applications International Corporation (SAIC) for the FAA since 1985. In May of 1987, the first prototype was fielded for testing at San Francisco International Airport. In 1989, the first production unit was field at JFK Airport in New York. Since than, over 550,000 bags have been screened by SAIC units around the world. The system uses thermal neutron activation (TNA) to detect the presence of explosives. In this technique a suitcase on a conveyor belt moves past a source and an array of detectors. Neutrons from the source easily penetrate the luggage, and are absorbed by all of the materials present. Different elements will emit different energy gamma rays after absorbing these neutrons (much like fluorescence). These gamma rays are of a high enough energy that they easily penetrate the luggage, and are detected by a detector array which surrounds the cavity enclosing the suitcase and conveyor belt. The detectors record the number of gamma rays observed at each energy. The number of gamma rays of a characteristic energy which are observed depends on the amount of the element present, its location, the number of neutrons present, and the probability that the element will capture a thermal neutron and emit the gamma ray. Since this probability is a known constant for any particular element, and the number of neutrons present and the number of characteristic gamma rays are measured, the amount of each element and its location can, in theory, be determined from the array of signals. Commercial and military explosives, such as are used by terrorists, have several characteristics which distinguish them from most objects in luggage. On of these characteristics is a high density of nitrogen. A description of the decision algorithms is presented, and the artificial neural system (ANS) is discussed. On-line experience and decision surfaces are also covered.
Flight elements: Fault detection and fault management
NASA Technical Reports Server (NTRS)
Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.
1990-01-01
Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.
Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phongikaroon, Supathorn
The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantagesmore » of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.« less
Method of locating a leaking fuel element in a fast breeder power reactor
Honekamp, John R.; Fryer, Richard M.
1978-01-01
Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.
Transparent multi-zone crystal growth furnace and method for controlling the same
NASA Technical Reports Server (NTRS)
Batur, Celal (Inventor); Bennett, Robert J. (Inventor); Duval, Walter (Inventor)
2000-01-01
A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.
Transparent multi-zone crystal growth furnace and method for controlling the same
NASA Technical Reports Server (NTRS)
Batur, Celal (Inventor); Duval, Walter (Inventor); Bennett, Robert J. (Inventor)
2001-01-01
A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.
A pulse shape discriminator and an online system for the balloon-borne hard X-ray/gamma-ray detector
NASA Astrophysics Data System (ADS)
Takahashi, T.; Kamae, T.; Tanaka, M.; Gunji, S.; Miyazuki, S.; Tamura, T.; Sekimoto, Y.; Yamaoka, N.; Nishimura, J.; Yajima, N.
Attention is given to a new kind of phoswich counters (the well-type phoswich counter) that will be capable of detecting very low flux hard X-rays/gamma-rays (40-1000 keV) from astronomical objects. A specially designed pulse-shape discriminator (PSD) selects hard X-rays/gamma-rays that has deposited energy only in the detection part. Sixty-four such counters are assembled into an array where each phoswich element acts as an active shield to the neighboring elements too. The ADCs, the TDCs, the hit-pattern latches, and the precision clock are read out by a VME-based online system, stored on an 8-mm video tape, and transmitted to the ground station. The design and performance of the pulse shape discriminator and the online system are described.
NASA Astrophysics Data System (ADS)
Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis
2017-01-01
A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.
Study of UV imaging technology for noninvasive detection of latent fingerprints
NASA Astrophysics Data System (ADS)
Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang
2013-09-01
Using UV imaging technology, according to the special absorption 、reflection 、scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carboxylic acid salts etc) to the UV light, weaken or eliminate the background disturbance to increase the brightness contrast of fingerprints with the background, and design、setup the illumination optical system and UV imaging system, the noninvasive detection of latent fingerprints remaining on various object surface are studied. In the illumination optical system, using the 266nm UV Nd:YAG solid state laser as illumination light source, by calculating the best coupling conditions of the laser beam with UV liquid core fiber and analyzing the beam transforming characterizations, we designed and setup the optical system to realize the UV imaging uniform illumination. In the UV imaging system, the UV lens is selected as the fingerprint imaging element, and the UV intensified CCD (ICCD) which consists of a second-generation UV image intensifier and a CCD coupled by fiber plate and taper directly are used as the imaging sensing element. The best imaging conditions of the UV lens with ICCD were analyzed and the imaging system was designed and setup. In this study, by analyzing the factors which influence the detection effect, optimal design and setup the illumination system and imaging system, latent fingerprints on the surface of the paint tin box、plastic、smooth paper、notebook paper and print paper were noninvasive detected and appeared, and the result meet the fingerprint identification requirements in forensic science.
Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José
2015-09-01
In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.
Characterization Of Nuclear Materials Using Time-Of-Flight ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A
2006-01-01
The investigation of illicit trafficking of nuclear materials, nuclear safeguards analysis, and non-proliferation control requires sensitive and isotope-selective detection methods to gain crucial nuclear forensic information like isotope 'fingerprints' and multi-element signatures. The advantage of time-of-flight (TOF) mass spectrometry - quasi-simultaneous multi-mass analysis - combined with an inductively coupled plasma (ICP) ion source provides an analytical instrument with multi-element and multi-isotope capability and good detection limits. A TOF-ICP-MS system thus appears to be an advantageous choice for the investigation and characterization of nuclear materials. We present here results using a GBC OptiMass 8000 time-of-flight ICP-MS for the isotope screening ofmore » solid samples by laser ablation and the multi-element determination of impurities in uranium ore concentrates using matrix matched standards. A laser ablation system (New Wave Research, UP 213) coupled to the TOF-ICP-MS instrument has been used to optimize the system for analysis of non-radioactive metal samples of natural isotopic composition for a variety of elements including Cu, Sr, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, and Pb in pure metals, alloys, and glasses to explore precision, accuracy, and detection limits. Similar methods were then applied to measure uranium. When the laser system is optimized, no mass bias correction is required. Precision and accuracy for the determination of the isotopic composition is typically 1 - 3% for elemental concentrations of as little as 50 ppm in the matrix, with no requirement for sample preparation. The laser ablation precision and accuracy are within ~10x of the instrumental limits for liquid analysis (0.1%). We have investigated the capabilities of the TOF-ICP-MS for the analysis of impurities in uranium matrices. Matrix matching has been used to develop calibration curves for a range of impurities (alkaline, earth-alkaline, transition metals, and rare earth elements). These calibration curves have been used to measure impurities in a number of uranium samples. The results from the TOF-ICP-MS will be compared with other mass spectrometric methods.« less
Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T; Costa-Fernandez, Jose M; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo
2014-08-11
Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches. Copyright © 2014. Published by Elsevier B.V.
Great Lakes coastal systems are vulnerable to introduction of a wide variety of non-indigenous species (NIS), and the desire to effectively respond to future invaders is prompting efforts towards establishing a broad early-detection network. Such a network requires statistically...
2007-05-24
TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e...and X-Ray devices to detect radioactivity . All these systems would provide much needed air support and detection systems that would previously be...dangerous for manned aircraft to provide or would prove too difficult for ground vehicles to get to. These sampling techniques could also be used for
Image processing tool for automatic feature recognition and quantification
Chen, Xing; Stoddard, Ryan J.
2017-05-02
A system for defining structures within an image is described. The system includes reading of an input file, preprocessing the input file while preserving metadata such as scale information and then detecting features of the input file. In one version the detection first uses an edge detector followed by identification of features using a Hough transform. The output of the process is identified elements within the image.
NASA Astrophysics Data System (ADS)
Ryzhikov, Volodymir D.; Opolonin, Oleksandr D.; Galkin, Serhiy M.; Voronkin, Yevheniy F.; Lysetska, Olena K.; Kostyukevych, Serhiy A.
2009-08-01
Detection of X-ray radiation by digital radiographic systems (DRS) is realized using multi-element detector arrays of scintillator-photodiode (S-PD) type. Accounting for our experience in development of X-ray introscopy systems, possibilities can be found for improvement of DRS detection efficiency. Namely, a more efficient use of the dynamic range of the analog-to-digit converter by means of instrumental compensation of scatter of detector characteristics and smaller apertures of individual detection channels. However, smaller apertures lead to lower levels of useful signals, and a problem emerges of signal interference over neighboring channels, which is related to optical separation of the scintillation elements. Also, more compact arrangement of electronic components of preamplifiers is achieved. The latter problem is solved by using multi-channel (from 32 to 1024 channels) photoreceiving devices (PRD). PRD has a set of photosensitive elements formed on one crystal, as well as shift registers ensuring preliminary amplification of signals and series connection to one outlet. The work envisages creation of receiving-detecting circuit (RDC) with improved spatial resolution (ISR) with the aim of producing advanced DRS with improved characteristics: density resolution better than 0.9%, and detecting ability allowing detection of θ 0.5 mm steel wire behind 6 mm steel. The work will result in the development of RDC with ISR (800-200 microns). In combination with various ionizing radiation sources and scanning mechanisms this will allow creation of DRS for many tasks of non-destructive testing (NDT) and technical diagnostics (TD), in particular, for check-up of pipelines, objects of oil and gas industries, etc. This work was supported by the Ministry of Education and Science of Ukraine, the U.S. Civilian Research and Development Foundation (CRDF), and by the NATO Science for Peace and Security Program (Project SfP-982823).
Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut
2003-10-01
A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.
Dual liquid and gas chromatograph system
Gay, D.D.
A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.
Dual liquid and gas chromatograph system
Gay, Don D.
1985-01-01
A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondal, M. A., E-mail: magondal@kfupm.edu.sa; Baig, Umair; Dastageer, M. A.
A detection system based on laser induced breakdown spectroscopy (LIBS) was built using 266 nm wavelength pulsed laser from the fourth harmonic of Nd:YAG laser, 500 mm spectrograph and gated ICCD camera with built-in delay generator. The LIBS system was used to study the elemental composition in coffee available in the local market of Saudi Arabia for the detection of elements in coffee samples. The LIBS spectrum of coffee sample revealed the presence magnesium, calcium, aluminum, copper, sodium, barium, bromine, cobalt, chromium, cerium manganese and molybdenum. Atomic transition line of sodium is used to study the parametric dependence of LIBSmore » signal. The study of the dependence of LIBS signal on the laser pulse energy is proven to be linear and the dependence of LIBS signal on the time delay between the excitation and data acquisition showed a typical increase, a peak value and a decrease with the optimum excitation – acquisition delay at 400 ns.« less
Gras, Ronda; Luong, Jim; Shellie, Robert A
2015-11-17
We introduce a technique for the direct measurement of elemental mercury in light hydrocarbons such as natural gas. We determined elemental mercury at the parts-per-trillion level with high precision [<3% RSD (n = 20 manual injection)] using gas chromatography with ultraviolet photometric detection (GC-UV) at 254 nm. Our approach requires a small sample volume (1 mL) and does not rely on any form of sample preconcentration. The GC-UV separation employs an inert divinylbenzene porous layer open tubular column set to separate mercury from other components in the sample matrix. We incorporated a 10-port gas-sampling valve in the GC-UV system, which enables automated sampling, as well as back flushing capability to enhance system cleanliness and sample throughput. Total analysis time is <2 min, and the procedure is linear over a range of 2-83 μg/m(3) [correlation coefficient of R(2) = 0.998] with a measured recovery of >98% over this range.
Du, Yan; Li, Bingling; Guo, Shaojun; Zhou, Zhixue; Zhou, Ming; Wang, Erkang; Dong, Shaojun
2011-02-07
The appearance of the aptamer provides good recognition elements for small molecules, especially for drugs. In this work, by combining the advantages of magnetic nanoparticles (MNPs) with colorimetric drug detection using hemin-G-quadruplex complex as the sensing element, we report a simple and sensitive DNAzyme-based colorimetric sensor for cocaine detection in a 3,3,5,5-tetramethylbenzidine sulfate (TMB)-H(2)O(2) reaction system. The whole experimental processes are simplified. Cocaine aptamer fragments, SH-C2, are covalently labeled onto the amine-functionalized MNPs. When the target cocaine and another cocaine aptamer fragments (C1) grafted with G-riched strand AG4 (i.e. C1-AG4) are present simultaneously, the C2 layer on MNPs hybridizes partly with C1-AG4 to bind the cocaine. The C1-AG4 can be combinded with hemin to form DNAzyme which can effectively catalyze the H(2)O(2)-mediated oxidation of TMB, giving rise to a change in solution color. Importantly, using MNPs as the separation and amplification elements could effectively reduce the background signal and the interference from the real samples. A linear response from 0.1 μM to 20 μM is obtained for cocaine and a detection limit of 50 nM is achieved, which provides high sensitivity and selectivity to detect cocaine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris
Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
Spectral analysis method for detecting an element
Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Reber, Edward L [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID
2008-02-12
A method for detecting an element is described and which includes the steps of providing a gamma-ray spectrum which has a region of interest which corresponds with a small amount of an element to be detected; providing nonparametric assumptions about a shape of the gamma-ray spectrum in the region of interest, and which would indicate the presence of the element to be detected; and applying a statistical test to the shape of the gamma-ray spectrum based upon the nonparametric assumptions to detect the small amount of the element to be detected.
Reflective echo tomographic imaging using acoustic beams
Kisner, Roger; Santos-Villalobos, Hector J
2014-11-25
An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.
Eugster, Albert; Murmann, Petra; Kaenzig, Andre; Breitenmoser, Alda
2014-10-01
In routine analysis screening methods based on real-time PCR (polymerase chain reaction) are most commonly used for the detection of genetically modified (GM) plant material in food and feed. Screening tests are based on sequences frequently used for GM development, allowing the detection of a large number of GMOs (genetically modified organisms). Here, we describe the development and validation of a tetraplex real-time PCR screening assay comprising detection systems for the regulatory genes Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens nos terminator, Cauliflower Mosaic Virus 35S terminator and Figwort Mosaic Virus 34S promoter. Three of the four primer and probe combinations have already been published elsewhere, whereas primers and probe for the 35S terminator have been developed in-house. Adjustment of primer and probe concentrations revealed a high PCR sensitivity with insignificant physical cross-talk between the four detection channels. The sensitivity of each PCR-system is sufficient to detect a GMO concentration as low as 0.05% of the containing respective element. The specificity of the described tetraplex is high when tested on DNA from GM maize, soy, rapeseed and tomato. We also demonstrate the robustness of the system by inter-laboratory tests. In conclusion, this method provides a sensitive and reliable screening procedure for the detection of the most frequently used regulatory elements present in GM crops either authorised or unauthorised for food.
Genesis of the heaviest elements in the Milky Way Galaxy.
Sneden, Christopher; Cowan, John J
2003-01-03
We review the origin and evolution of the heavy elements, those with atomic numbers greater than 30, in the early history of the Milky Way. There is a large star-to-star bulk scatter in the concentrations of heavy elements with respect to the lighter metals, which suggests an early chemically unmixed and inhomogeneous Galaxy. The relative abundance patterns among the heavy elements are often very different from the solar system mix, revealing the characteristics of the first element donors in the Galaxy. Abundance comparisons among several halo stars show that the heaviest neutron-capture elements (including barium and heavier) are consistent with a scaled solar system rapid neutron-capture abundance distribution, whereas the lighter such elements do not conform to the solar pattern. The stellar abundances indicate an increasing contribution from the slow neutron-capture process (s-process) at higher metallicities in the Galaxy. The detection of thorium in halo and globular cluster stars offers a promising, independent age-dating technique that can put lower limits on the age of the Galaxy.
Evaluation of trace element status of organic dairy cattle.
Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M
2018-06-01
The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.
Integrated System Health Management Development Toolkit
NASA Technical Reports Server (NTRS)
Figueroa, Jorge; Smith, Harvey; Morris, Jon
2009-01-01
This software toolkit is designed to model complex systems for the implementation of embedded Integrated System Health Management (ISHM) capability, which focuses on determining the condition (health) of every element in a complex system (detect anomalies, diagnose causes, and predict future anomalies), and to provide data, information, and knowledge (DIaK) to control systems for safe and effective operation.
Detection of elemental mercury by multimode diode laser correlation spectroscopy.
Lou, Xiutao; Somesfalean, Gabriel; Svanberg, Sune; Zhang, Zhiguo; Wu, Shaohua
2012-02-27
We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.
Optimizing detector geometry for trace element mapping by X-ray fluorescence
Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...
2015-01-01
We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
Optimizing detector geometry for trace element mapping by X-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris
We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.
2017-08-01
In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.
DNA detection on ultrahigh-density optical fiber-based nanoarrays.
Tam, Jenny M; Song, Linan; Walt, David R
2009-04-15
Nanoarrays for DNA detection were fabricated on etched nanofiber bundles based on recently developed techniques for microscale arrays. Two different-sized nanoarrays were created: one with 700 nm feature sizes and a 1 microm center-to-center pitch (approximately 1x10(6) array elements/mm(2)) and one with 300 nm feature sizes and a 500 nm center-to-center pitch (4.6x10(6) array elements/mm(2)). A random, multiplexed array composed of oligonucleotide-functionalized nanospheres was constructed and used for parallel detection and analysis of fluorescently labeled DNA targets. We have used these arrays to detect a variety of target sequences including Bacillus thuringiensis kurstaki and vaccina virus sequences, two potential biowarfare agents, as well as interleukin-2 sequences, an immune system modulator that has been used for the diagnosis of HIV.
Three tenets for secure cyber-physical system design and assessment
NASA Astrophysics Data System (ADS)
Hughes, Jeff; Cybenko, George
2014-06-01
This paper presents a threat-driven quantitative mathematical framework for secure cyber-physical system design and assessment. Called The Three Tenets, this originally empirical approach has been used by the US Air Force Research Laboratory (AFRL) for secure system research and development. The Tenets were first documented in 2005 as a teachable methodology. The Tenets are motivated by a system threat model that itself consists of three elements which must exist for successful attacks to occur: - system susceptibility; - threat accessibility and; - threat capability. The Three Tenets arise naturally by countering each threat element individually. Specifically, the tenets are: Tenet 1: Focus on What's Critical - systems should include only essential functions (to reduce susceptibility); Tenet 2: Move Key Assets Out-of-Band - make mission essential elements and security controls difficult for attackers to reach logically and physically (to reduce accessibility); Tenet 3: Detect, React, Adapt - confound the attacker by implementing sensing system elements with dynamic response technologies (to counteract the attackers' capabilities). As a design methodology, the Tenets mitigate reverse engineering and subsequent attacks on complex systems. Quantified by a Bayesian analysis and further justified by analytic properties of attack graph models, the Tenets suggest concrete cyber security metrics for system assessment.
Structural Anomaly Detection Using Fiber Optic Sensors and Inverse Finite Element Method
NASA Technical Reports Server (NTRS)
Quach, Cuong C.; Vazquez, Sixto L.; Tessler, Alex; Moore, Jason P.; Cooper, Eric G.; Spangler, Jan. L.
2005-01-01
NASA Langley Research Center is investigating a variety of techniques for mitigating aircraft accidents due to structural component failure. One technique under consideration combines distributed fiber optic strain sensing with an inverse finite element method for detecting and characterizing structural anomalies anomalies that may provide early indication of airframe structure degradation. The technique identifies structural anomalies that result in observable changes in localized strain but do not impact the overall surface shape. Surface shape information is provided by an Inverse Finite Element Method that computes full-field displacements and internal loads using strain data from in-situ fiberoptic sensors. This paper describes a prototype of such a system and reports results from a series of laboratory tests conducted on a test coupon subjected to increasing levels of damage.
Subsurface In Situ Elemental Composition Measurements with PING
NASA Technical Reports Server (NTRS)
Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard
2013-01-01
This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.
Automated Power Systems Management (APSM)
NASA Technical Reports Server (NTRS)
Bridgeforth, A. O.
1981-01-01
A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.
ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection.
Sun, Steven; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham
2010-08-21
A miniature 96 sample ELISA-lab-on-a-chip (ELISA-LOC) was designed, fabricated, and tested for immunological detection of Staphylococcal Enterotoxin B (SEB). The chip integrates a simple microfluidics system into a miniature ninety-six sample plate, allowing the user to carry out an immunological assay without a laboratory. Assay reagents are delivered into the assay plate without the need for separate devices commonly used in immunoassays. The ELISA-LOC was constructed using Laminated Object Manufacturing (LOM) technology to assemble six layers with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO(2) laser. The ELISA-LOC has three main functional elements: reagent loading fluidics, assay and detection wells, and reagent removal fluidics, a simple "surface tension" valve used to control the flow. To enhance assay sensitivity and to perform the assay without a lab, ELISA-LOC detection combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected SEB at concentrations as low as 0.1 ng ml(-1), which is similar to the reported sensitivity of conventional ELISA. The fluidics system can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without a laboratory.
Electro-optical muzzle flash detection
NASA Astrophysics Data System (ADS)
Krieg, Jürgen; Eisele, Christian; Seiffer, Dirk
2016-10-01
Localizing a shooter in a complex scenario is a difficult task. Acoustic sensors can be used to detect blast waves. Radar technology permits detection of the projectile. A third method is to detect the muzzle flash using electro-optical devices. Detection of muzzle flash events is possible with focal plane arrays, line and single element detectors. In this paper, we will show that the detection of a muzzle flash works well in the shortwave infrared spectral range. Important for the acceptance of an operational warning system in daily use is a very low false alarm rate. Using data from a detector with a high sampling rate the temporal signature of a potential muzzle flash event can be analyzed and the false alarm rate can be reduced. Another important issue is the realization of an omnidirectional view required on an operational level. It will be shown that a combination of single element detectors and simple optics in an appropriate configuration is a capable solution.
Early Detection of Regime Shifts in Complex Systems from Fisher Information
The central goal of sustainability is the maintenance of environmental conditions, which are favorable to human existence. A critically important element then is the resilience of the dynamic regime that one wishes to sustain. Resilient systems are able to withstand perturbations...
A facile approach to construct versatile signal amplification system for bacterial detection.
Qi, Peng; Zhang, Dun; Wan, Yi; Lv, Dandan
2014-01-01
In this work, a facile approach to design versatile signal amplification system for bacterial detection has been presented. Bio-recognition elements and signaling molecules can be immobilized on the surface of Fe₃O₄@MnO₂ nanomaterials with the help of bioinspired polydopamine (PDA). Fe₃O₄@MnO₂ nanoplates were chosen as carrier for bio-recognizing and signaling molecules because this kind of nanomaterial was superparamagnetic and the existence of MnO₂ could enhance the polymerization of dopamine due to its strong oxidative ability. This nanocomposite system was versatile because PDA around Fe₃O₄@MnO₂ nanoplates provided a stable and convenient platform for immobilization of biological and chemical materials, and various kinds of bio-recognizing and signaling molecules could be immobilized by reaction with pendant amino groups of dopamine to meet different detection requirements. Since a substantial amount of signaling molecules were immobilized on the surface of the nanocomposites, so the sensitivity of detection would be improved when the prepared nanocomposites were selectively conjugated with target pathogen. In the experimental section, a sandwich-type electrochemical biosensor was developed to verify the amplified bacterial detection sensitivity. Concanavalin A (conA) and ferrocene (Fc) were chosen as bio-recognition elements and signaling molecules for detection of Desulforibrio caledoiensis, respectively. The conA and Fc modified nanocomposites were conjugated on electrode by the selective recognition between conA and target bacteria, and the bacterial population was obtained by quantification of the electrochemical signal of Fc moieties. The experimental results showed that the detection sensitivity for D. caledoiensis was improved by taking advantage of this signal amplification system. © 2013 Elsevier B.V. All rights reserved.
Gondal, M A; Habibullah, Y B; Baig, Umair; Oloore, L E
2016-05-15
Tea is one of the most common and popular beverages spanning vast array of cultures all over the world. The main nutritional benefits of drinking tea are its anti-oxidant properties, presumed protection against certain cancers, inhibition of inflammation and possible protective effects against diabetes. Laser induced breakdown spectrometer (LIBS) was assembled as a powerful tool for qualitative and quantitative analysis of various brands of tea samples using 266 nm pulsed UV laser. LIBS spectra for six brands of tea samples in the wavelength range of 200-900 nm was recorded and all elements present in our tea samples were identified. The major toxic elements detected in several brands of tea samples were bromine, chromium and minerals like iron, calcium, potassium and silicon. The spectral assignment was conducted prior to the determination of concentration of each element. For quantitative analysis, calibration curves were drawn for each element using standard samples prepared in known concentration in the tea matrix. The plasma parameters (electron temperature and electron density) were also determined prior to the tea samples spectroscopic analysis. The concentration of iron, chromium, potassium, bromine, copper, silicon and calcium detected in all tea samples was between 378-656, 96-124, 1421-6785, 99-1476, 17-36, 2-11 and 92-130 mg L(-1) respectively. The limits of detection estimated for Fe, Cr, K, Br, Cu, Si, Ca in tea samples were 22, 12, 14, 11, 6, 1 and 12 mg L(-1) respectively. To further confirm the accuracy of our LIBS results, we determined the concentration of each element present in tea samples by using standard analytical technique like ICP-MS. The concentrations detected with our LIBS system are in excellent agreement with ICP-MS results. The system assembled for spectral analysis in this work could be highly applicable for testing the quality and purity of food and also pharmaceuticals products. Copyright © 2016 Elsevier B.V. All rights reserved.
Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang
2017-08-15
High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, D.W.; Baker, J.; Benzel, D.M.
This paper describes an unattended ground sensor system that has been developed for the immigration and Naturalization Service (INS). The system, known as INSENS, was developed at the Lawrence Livermore National Laboratory for use by the United States Border Patrol. This system assists in the detection of illegal entry of aliens and contraband (illegal drugs, etc.) into the United States along its land borders. Key to the system is its flexible modular design which allows future software and hardware enhancements to the system without altering the fundamental architecture of the system. Elements of the system include a sensor system capablemore » of processing signals from multiple directional probes, a repeater system, and a handheld monitor system. Seismic, passive infrared (PIR), and magnetic probes are currently supported. The design of the INSENS system elements and their performance are described.« less
Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar
2015-06-01
Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.
Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life
NASA Technical Reports Server (NTRS)
1972-01-01
The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy.
Non-contact tamper sensing by electronic means
Gritton, Dale G.
1993-01-01
A tamper-sensing system for an electronic tag 10 which is to be fixed to a surface 11 of an article 12, the tamper-sensing system comprising a capacitor having two non-contacting, capacitively-coupled elements 16, 19. Fixing of the body to the article will establish a precise location of the capacitor elements 16 and 19 relative to each other. When interrogated, the tag will generate a tamper-sensing signal having a value which is a function of the amount of capacity of the capacitor elements. The precise relative location of the capacitor elements cannot be duplicated if the tag is removed and affixed to a surrogate article having a fiducial capacitor element 19 fixed thereto. A very small displacement, in the order of 2-10 microns, of the capacitor elements relative to each other if the tag body is removed and fixed to a surrogate article will result in the tamper-sensing signal having a different, and detectable, value when the tag is interrogated.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)
2005-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
2003-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
1999-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Carter, L.F.; Anderholm, S.K.
1997-01-01
The occurrence and distribution of contaminants in aquatic systems are major components of the National Water-Quality Assessment (NAWQA) Program. Bed-sediment samples were collected at 18 sites in the Rio Grande Valley study unit between September 1992 and March 1993 to characterize the geographic distribution of organic compounds, including chlorinated insecticides, polychlorinated biphenyls (PCB's), and other chlorinated hydrocarbons, and also trace elements. Two-millimeter-size- fraction sediment was analyzed for organic compounds and less than 63-micron-size-fraction sediment was analyzed for trace elements. Concentrations of p,p'-DDE were detected in 33 percent of the bed-sediment samples. With the exception of DDT-related compounds, no other organochlorine insecticides or polychlorinated biphenyls were detected in samples of bed sediment. Whole-body fish samples were collected at 11 of the bed- sediment sites and analyzed for organic compounds. Organic compounds were reported more frequently in samples of fish, and more types of organic compounds were found in whole-body fish samples than in bed-sediment samples. Concentrations of p,p'-DDE were detected in 91 percent of whole-body fish samples. Polychlorinated biphenyls, cis-chlordane, trans-chlordane, trans- nonachlor, and hexachlorobenzene were other organic compounds detected in whole-body samples of fish from at least one site. Because of the extent of mineralized areas in the Rio Grande Basin arsenic, cadmium, copper, lead, mercury, selenium, and zinc concentrations in bed-sediment samples could represent natural conditions at most sites. However, a combination of natural conditions and human activities appears to be associated with elevated trace-element concentrations in the bed-sediment sample from the site Rio Grande near Creede, Colorado, because this sample exceeded the background trace-element concentrations calculated for this study. Fish-liver samples were collected at 12 of the bed-sediment sites and analyzed for trace elements. Certain trace elements were detected at higher concentrations in fish-liver samples than in bed-sediment samples from the same site. Both bed-sediment and fish-tissue samples are necessary for a complete environmental assessment of the occurrence and distribution of trace elements.
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro
2015-01-01
This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.
Nanoparticle-based gas sensors and methods of using the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickelson, William; Zettl, Alex
Gas sensors are provided. The gas sensors include a gas sensing element having metal oxide nanoparticles and a thin-film heating element. Systems that include the gas sensors, as well as methods of using the gas sensors, are also provided. Embodiments of the present disclosure find use in a variety of different applications, including detecting whether an analyte is present in a gaseous sample.
Wang, Wei-Hsung; McGlothlin, James D; Smith, Deborah J; Matthews, Kenneth L
2006-02-01
This project incorporates radiation survey training into a real-time video radiation detection system, thus providing a practical perspective for the radiation worker on efficient performance of radiation surveys. Regular surveys to evaluate radiation levels are necessary not only to recognize potential radiological hazards but also to keep the radiation exposure as low as reasonably achievable. By developing and implementing an instructional learning system using a real-time radiation survey training video showing specific categorization of work elements, radiation workers trained with this system demonstrated better radiation survey practice.
Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay
NASA Astrophysics Data System (ADS)
He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong
2017-09-01
A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.
Cargo Container Imaging with Gaseous Detectors
NASA Astrophysics Data System (ADS)
Forest, Tony
2006-10-01
The gas electron multiplier (GEM) , developed at CERN by Fabio Sauli, represents the latest innovation in micropattern gaseous detectors and has been utilized as a preamplification stage in applications ranging from fundamental physics experiments to medical imaging. Although cargo container inspection systems are currently in place using gamma-rays or X-rays, they are predominantly designed with a resolution to detect contraband. Current imaging systems also suffer from false alarms due to naturally radioactive cargo when radiation portal monitors are used for passive detection of nuclear materials. Detection of small shielded radioactive elements is even more problematic. Idaho State University has been developing a system to image cargo containers in order to detect small shielded radioactive cargo. The possible application of an imaging system with gas electron multiplication will be shown along with preliminary images using gaseous detectors instead of the scintillators currently in use.
Development of an artificial sensor for hydrodynamic detection inspired by a seal's whisker array.
Eberhardt, William C; Wakefield, Brendan F; Murphy, Christin T; Casey, Caroline; Shakhsheer, Yousef; Calhoun, Benton H; Reichmuth, Colleen
2016-08-31
Nature has shaped effective biological sensory systems to receive complex stimuli generated by organisms moving through water. Similar abilities have not yet been fully developed in artificial systems for underwater detection and monitoring, but such technology would enable valuable applications for military, commercial, and scientific use. We set out to design a fluid motion sensor array inspired by the searching performance of seals, which use their whiskers to find and follow underwater wakes. This sensor prototype, called the Wake Information Detection and Tracking System (WIDTS), features multiple whisker-like elements that respond to hydrodynamic disturbances encountered while moving through water. To develop and test this system, we trained a captive harbor seal (Phoca vitulina) to wear a blindfold while tracking a remote-controlled, propeller-driven submarine. After mastering the tracking task, the seal learned to carry the WIDTS adjacent to its own vibrissal array during active pursuit of the target. Data from the WIDTS sensors describe changes in the deflection angles of the whisker elements as they pass through the hydrodynamic trail left by the submarine. Video performance data show that these detections coincide temporally with WIDTS-wake intersections. Deployment of the sensors on an actively searching seal allowed for the direct comparison of our instrument to the ability of the biological sensory system in a proof-of-concept demonstration. The creation of the WIDTS provides a foundation for instrument development in the field of biomimetic fluid sensor technology.
DETECTION OF THE SECOND r-PROCESS PEAK ELEMENT TELLURIUM IN METAL-POOR STARS ,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roederer, Ian U.; Lawler, James E.; Cowan, John J.
2012-03-15
Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD +17 3248, HD 108317, and HD 128279. Tellurium (Te, Z = 52) is found at the second r-process peak (A Almost-Equal-To 130) associated with the N = 82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium ismore » predominantly produced in the main component of the r-process, along with the rare earth elements.« less
Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.
2008-01-01
The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.
Online elemental analysis of process gases with ICP-OES: a case study on waste wood combustion.
Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M A; Ludwig, Christian
2012-10-01
A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium. Copyright © 2012 Elsevier Ltd. All rights reserved.
Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS
NASA Technical Reports Server (NTRS)
Jenner, Frances E.; Arevalo, Ricardo D., Jr.
2016-01-01
Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).
Banknote authentication using chaotic elements technology
NASA Astrophysics Data System (ADS)
Ambadiyil, Sajan; P. S., Krishnendu; Mahadevan Pillai, V. P.; Prabhu, Radhakrishna
2017-10-01
The counterfeit banknote is a growing threat to the society since the advancements in the field of computers, scanners and photocopiers, as they have made the duplication process for banknote much simpler. The fake note detection systems developed so far have many drawbacks such as high cost, poor accuracy, unavailability, lack of user-friendliness and lower effectiveness. One possible solution to this problem could be the use of a system uniquely linked to the banknote itself. In this paper, we present a unique identification and authentication process for the banknote using chaotic elements embedded in it. A chaotic element means that the physical elements are formed from a random process independent from human intervention. The chaotic elements used in this paper are the random distribution patterns of such security fibres set into the paper pulp. A unique ID is generated from the fibre pattern obtained from UV image of the note, which can be verified by any person who receives the banknote to decide whether the banknote is authentic or not. Performance analysis of the system is also studied in this paper.
Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations
NASA Technical Reports Server (NTRS)
Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara
2010-01-01
This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.
NASA Astrophysics Data System (ADS)
Silva, A. L. M.; Cirino, S.; Carvalho, M. L.; Manso, M.; Pessanha, S.; Azevedo, C. D. R.; Carramate, L. F. N. D.; Santos, J. P.; Guerra, M.; Veloso, J. F. C. A.
2017-03-01
Energy dispersive X-ray imaging can be used in several research fields and industrial applications. Elemental mapping through energy dispersive X-ray imaging technique has become a promising method to obtain positional distribution of specific elements in a non-destructive way. To obtain the elemental distribution of a sample it is necessary to use instruments capable of providing a precise positioning together with a good energy resolution. Polycapillary beams together with silicon drift chamber detectors are used in several commercial systems and are considered state-of-the-art spectrometers, however they are usually very costly. A new concept of large energy dispersive X-ray imaging systems based on gaseous radiation detectors emerged in the last years enabling a promising 2D elemental detection at a very reduced price. The main goal of this work is to analyze a contemporary Indian miniature with both X-ray fluorescence imaging systems, the one based on a gaseous detector 2D-THCOBRA and the state-of-the-art spectrometer M4 Tornado, from Bruker. The performance of both systems is compared and evaluated in the context of the sample's analysis.
New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria
Wang, Yixian; Ye, Zunzhong; Ying, Yibin
2012-01-01
The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018
Smart Networked Elements in Support of ISHM
NASA Technical Reports Server (NTRS)
Oostdyk, Rebecca; Mata, Carlos; Perotti, Jose M.
2008-01-01
At the core of ISHM is the ability to extract information and knowledge from raw data. Conventional data acquisition systems sample and convert physical measurements to engineering units, which higher-level systems use to derive health and information about processes and systems. Although health management is essential at the top level, there are considerable advantages to implementing health-related functions at the sensor level. The distribution of processing to lower levels reduces bandwidth requirements, enhances data fusion, and improves the resolution for detection and isolation of failures in a system, subsystem, component, or process. The Smart Networked Element (SNE) has been developed to implement intelligent functions and algorithms at the sensor level in support of ISHM.
Space Station environmental control and life support system distribution and loop closure studies
NASA Technical Reports Server (NTRS)
Humphries, William R.; Reuter, James L.; Schunk, Richard G.
1986-01-01
The NASA Space Station's environmental control and life support system (ECLSS) encompasses functional elements concerned with temperature and humidity control, atmosphere control and supply, atmosphere revitalization, fire detection and suppression, water recovery and management, waste management, and EVA support. Attention is presently given to functional and physical module distributions of the ECLSS among these elements, with a view to resource requirements and safety implications. A strategy of physical distribution coupled with functional centralization is for the air revitalization and water reclamation systems. Also discussed is the degree of loop closure desirable in the initial operational capability status Space Station's oxygen and water reclamation loops.
NASA Astrophysics Data System (ADS)
Al-Jeffery, Mohammad O.; Kondou, H.; Belenkevitch, Alexander; Azzeer, Abdallah M.
2002-05-01
The Environmental Protection Agency (EAP) designated phosphorus as hazardous material; it is flammable and poisonous. Phosphorus attacks the respiratory system, liver, kidneys, jaw, teeth, blood, eyes, and skin. Phosphorus is an element that has a high detection limit when using laser-induced breakdown spectroscopy (LIBS) techniques. In order to improve on detection limits, laser-induced fluorescence spectroscopy (LIFS) has been proposed, as an extension to LIBS. The ultimate goal of this work is to use the combined LIBS & LIFS techniques to detect the presence of phosphorus in air and to measure its level. In order to provide 'proof-of-concept' results, the sample used for our experiment was prepared using the 'igniting' strip of a safety match box. The spectrally and temporally resolved detection of the specific atomic emission revealed analytical information about the elemental composition of the sample. A tunable Ti: sapphire laser, at the resonance wavelength of 253.4 nm, was then used to probe the plume by exciting the phosphorus element and we measured the fluorescence from the atoms at 213.62 nm and 214.91 nm. The whole experiment was carried out in a few minutes. We have thus demonstrated for the first time, to our knowledge, the use of LIBS and LIFS in air quality monitoring and in particular for phosphorus detection.
Chung, Y T; Ling, Y C; Yang, C S; Sun, Y C; Lee, P L; Lin, C Y; Hong, C C; Yang, M H
2007-12-01
We have developed an on-line analytical system involving microdialysis (MD) sampling, a carbohydrate membrane desalter (CMD), and an inductively coupled plasma mass spectrometer (ICPMS) system for the simultaneous determination of multiple trace metals in the extracellular fluid (ECF) in the brains of anesthetized rats. The microdialysate that perfused from the animal at a flow rate of 0.5 microL/min was on-line transferred to the CMD to remove the high-sodium matrix, followed by ICPMS measurement. The role of the CMD in this on-line system was investigated in detail. With prior addition of EDTA to the microdialysate to form anionic complexes of the metal analytes and the use of NH4Cl as a regenerant to exchange Na(+) with NH4(+) ions, both quantitative recovery of the trace metal analytes and quantitative removal of the sodium matrix could be achieved. Two experimental modes of the monitoring system were constructed. For those metals (e.g., Cu, Zn, and Mn) that existed at (sub)nanogram-per-milliliter concentrations in the microdialysate, the temporal resolution was 10 min when using a 10 microL loop for sample collection, followed by CMD and ICPMS; for those elements (e.g., Ca and Mg) that existed at microgram-per-milliliter levels (or greater), near-real-time analysis was possible because the microdialysate could be led, bypassing the sample loop, directly to the CMD for desalting without any time delay. Further improvement of the temporal resolution for the low-concentration elements was not possible without decreasing the detection limits of mass detection. Among the eight trace metals tested using this on-line system, the method detection limits for Cu, Zn, Mn, Co, Ni, and Pb reached subnanogram-per-milliliter levels; for electrolyte species such as Ca and Mg, the detection limits were in the range of 50-100 ng/mL. Analytical accuracy, expressed as spike recovery, was 100% +/- 15% for all of the elements tested. We demonstrate the applicability of the proposed system through the successful measurement of the basal values of Ca, Mg, Cu, Zn, and Mn in the ECF of a living rat brain and through in vivo monitoring of the concentration profiles of Mn and Pt in the ECF after the injection of drugs (MnCl2 and cisplatin) into the rats. This microdialysis system is the first to offer real-time, in vivo monitoring of trace elements such as Ca and Mg.
Joint Biological Standoff Detection System increment II: Field Demonstration - SINBAHD Performances
2007-12-01
of a dispersive element and a range-gated ICCD that limits the spectral information within the selected volume. This technique has showed an...bioaerosols. This LIF signal is spectrally collected by the combination of a dispersive element and a range-gated ICCD that records spectral...2001 in order to underline the robustness of the spectral signature of a particular biomaterial but of different origin, preparation and dispersion
Application of an ETV-ICP system for the determination of elements in human hair*1
NASA Astrophysics Data System (ADS)
Plantikow-Voβgätter, F.; Denkhaus, E.
1996-01-01
When determining element contents in hair samples without sample digestion it is necessary to analyze large sample volumes in order to minimize problems of inhomogeneity of biological sample materials. Therefore an electrothermal vaporization system (ETV) is used for solid sample introduction into an inductively coupled plasma (ICP) for the determination of matrix and trace elements in hair. This paper concentrates on the instrumental aspects without time consuming sample preparation. The results obtained for optimization tests, ETV operating parameters and ICP operating parameters, are shown and discussed. Standard additions are used for calibration for the determination of Zn, Mg, and Mn in human hair. Studies including reproducibility and detection limits for chosen elements have been carried out on certified reference materials (CRMs). The determination of reproducibility (relative standard deviation (RSD) of n = 10) and detection limits (DLs) of Zn (RSD < 8.5%, DL < 0.8 μ g -1), Mn (RSD < 14.1%, DL < 0.3 μ g -1), and Mg (RSD < 7.4%, DL < 6.6 μ g -1) are satisfactory. The concentration values found show good agreement with the corresponding certified values. Further sample preparation steps, including hair sampling, washing procedure and homogenization for hair, relating to measurements of real hair samples are described.
Fast analysis of wood preservers using laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Uhl, A.; Loebe, K.; Kreuchwig, L.
2001-06-01
Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200-780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.
Human Infrastructure Detection and Exploitation (HIDE)
2009-11-01
Finding human infrastructure elements such as machinery, chemicals, radiofrequency emissions, electrical currents, or other evidence of human ... activity in confined enclosed spaces is a deficiency in current intelligence, surveillance, and reconnaissance (ISR) systems. In addition, operations in
Smoke Detection: Critical Element of a University Residential Fire Safety Program.
ERIC Educational Resources Information Center
Robinson, Donald A.
1979-01-01
A program at the University of Massachusetts/Amherst to assess the fire protection needs of its residential system is described. The study culminated in a multiphase fire safety improvement plan. (JMF)
Elemental contaminants in livers of mute swans on lakes Erie and St. Clair.
Schummer, Michael L; Petrie, Scott A; Badzinski, Shannon S; Deming, Misty; Chen, Yu-Wei; Belzile, Nelson
2011-11-01
Contaminant inputs to the lower Great Lakes (LGL) have decreased since the 1960s and 1970s, but elemental contaminants continue to enter the LGL watershed at levels that are potentially deleterious to migratory waterfowl. Mute swans (Cygnus olor) using the LGL primarily eat plants, are essentially nonmigratory, forage exclusively in aquatic systems, and have increased substantially in number in the last few decades. Therefore, mute swans are an ideal sentinel species for monitoring elemental contaminants available to herbivorous and omnivorous waterfowl that use the LGL. We investigated hepatic concentrations, seasonal dynamics, and correlations of elements in mute swans (n = 50) collected at Long Point, Lake Erie, and Lake St. Clair from 2001 to 2004. Elements detected in liver at levels potentially harmful to waterfowl were copper (Cu) [range 60.3 to 6063.0 μg g(-1) dry weight (dw)] and selenium (SE; range 1.6 to 37.3 μg g(-1) dw). Decreases in aluminum, Se, and mercury (Hg) concentrations were detected from spring (nesting) through winter (nonbreeding). Elemental contaminants may be more available to waterfowl during spring than fall and winter, but study of seasonal availability of elements within LGL aquatic systems is necessary. From April to June, 68% of mute swans had Se levels >10 μg g(-1), whereas only 18% of swans contained these elevated levels of Se from July to March. An increase in the number of mute swans at the LGL despite elevated levels of Cu and Se suggests that these burdens do not substantially limit their reproduction or survival. Se was correlated with Cu (r = 0.85, p < 0.01) and Hg (r = 0.65, p < 0.01), which might indicate interaction between these elements. Some element interactions decrease the toxicity of both elements involved in the interaction. We recommend continued research of elemental contaminant concentrations, including detailed analyses of biological pathways and element forms (e.g., methylmercury) in LGL waterfowl to help determine the role of element interactions on their toxicity in waterfowl.
NASA Technical Reports Server (NTRS)
1972-01-01
A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.
Accuracy improvement in the TDR-based localization of water leaks
NASA Astrophysics Data System (ADS)
Cataldo, Andrea; De Benedetto, Egidio; Cannazza, Giuseppe; Monti, Giuseppina; Demitri, Christian
A time domain reflectometry (TDR)-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems. Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed. To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge) were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized), the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak.
DeepFruits: A Fruit Detection System Using Deep Neural Networks
Sa, Inkyu; Ge, Zongyuan; Dayoub, Feras; Upcroft, Ben; Perez, Tristan; McCool, Chris
2016-01-01
This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0.807 to 0.838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit. PMID:27527168
DeepFruits: A Fruit Detection System Using Deep Neural Networks.
Sa, Inkyu; Ge, Zongyuan; Dayoub, Feras; Upcroft, Ben; Perez, Tristan; McCool, Chris
2016-08-03
This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.
Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors
NASA Technical Reports Server (NTRS)
Flatley, Thomas P.
2015-01-01
SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.
icpTOF: a new way for the detection of synthetic nanoparticles in environmental systems
NASA Astrophysics Data System (ADS)
Borovinskaya, Olga; Tanner, Martin; Böhme, Steffi; Gondikas, Andreas
2016-04-01
Tons of engineered nanoparticles are yearly released into the environment as a result of human activity and utilization of nano-containing products. Driven by demand and innovations, the production volumes of nanomaterials are predicted to grow further and already in 2020 will reach >500000 tons [1]. The current challenge faced by society is the lack of information about the fate, behavior, and implications of nanomaterials. This gap has to be filled in order to develop an appropriate strategy for the regulation of nanotechnologies. This is not a simple task because we are still unable to detect and monitor nanoparticles once they have been released into the environment. The list of analytical techniques which can be applied for nanoparticle detection in complex media and at environmentally relevant concentrations (ppt-ppb) is very short and for most of the studies complementary approaches are applied. Single particle (sp)-ICP-MS is a new technique which provides an easy and routinely applied way to quantitatively determine size and number concentration of metal-containing nanoparticles [2]. Moreover, element-specific detection makes sp-ICP-MS more tolerant to high levels of natural background (e.g. organic matter, bacteria). The measurement of single particles implies the detection of extremely short signals (100-500 μm) and requires sensitive and fast instrumentation. Sequentially scanning instruments based on quadrupole or sector-field technology cannot accurately measure more than one isotope per particle and determine elemental composition of single particles. A new icpTOF mass spectrometer (TOFWERK AG, Switzerland) provides simultaneous detection over the whole mass range of elements at μs-time resolution and with >3000 mass resolving power. These unique features render the determination of multi-element composition of single nanoparticles possible [3]. This additional information is extremely valuable to study chemical transformations of particles once they have entered the real ecosystem. Besides, element ratios of single particles can be used as a specific merit for the identification of synthetic nanoparticles in the presence of naturally occurring particulate background [4]. In addition to higher mass resolving power, the instrument is equipped with a collision/reaction cell, which helps to improve detection limits for elements suffering from interferences (e.g. Fe, Ti, P, S). The icpTOF performance will be shown in combination with different sample introduction systems, including novel discrete microdroplet introduction. The single droplet introduction approach enables particle quantification without particulate reference materials and significantly simplifies the analysis. The advantages of fast simultaneous detection for the characterization of multi-component nanoparticles in environmental media will be demonstrated on several studies. [1] Nanoscience and Nanotechnologies: Nanoscience and nanotechnologies: opportunities and uncertainties, Final Report. Royal Society: London, 2004 [2] Degueldre et al. (2003), Coll. Surf. A, 217, 137-142. [3] Borovinskaya et al. (2014), Anal. Chem, 86, 8142-8148. [4] Von der Kammer et al. (2012), Env. Tox. and Chem., 31, 32-49.
a New ER Fluid Based Haptic Actuator System for Virtual Reality
NASA Astrophysics Data System (ADS)
Böse, H.; Baumann, M.; Monkman, G. J.; Egersdörfer, S.; Tunayar, A.; Freimuth, H.; Ermert, H.; Khaled, W.
The concept and some steps in the development of a new actuator system which enables the haptic perception of mechanically inhomogeneous virtual objects are introduced. The system consists of a two-dimensional planar array of actuator elements containing an electrorheological (ER) fluid. When a user presses his fingers onto the surface of the actuator array, he perceives locally variable resistance forces generated by vertical pistons which slide in the ER fluid through the gaps between electrode pairs. The voltage in each actuator element can be individually controlled by a novel sophisticated switching technology based on optoelectric gallium arsenide elements. The haptic information which is represented at the actuator array can be transferred from a corresponding sensor system based on ultrasonic elastography. The combined sensor-actuator system may serve as a technology platform for various applications in virtual reality, like telemedicine where the information on the consistency of tissue of a real patient is detected by the sensor part and recorded by the actuator part at a remote location.
Vorberg, Ellen; Fleischer, Heidi; Junginger, Steffen; Liu, Hui; Stoll, Norbert; Thurow, Kerstin
2016-10-01
Life science areas require specific sample pretreatment to increase the concentration of the analytes and/or to convert the analytes into an appropriate form for the detection and separation systems. Various workstations are commercially available, allowing for automated biological sample pretreatment. Nevertheless, due to the required temperature, pressure, and volume conditions in typical element and structure-specific measurements, automated platforms are not suitable for analytical processes. Thus, the purpose of the presented investigation was the design, realization, and evaluation of an automated system ensuring high-precision sample preparation for a variety of analytical measurements. The developed system has to enable system adaption and high performance flexibility. Furthermore, the system has to be capable of dealing with the wide range of required vessels simultaneously, allowing for less cost and time-consuming process steps. However, the system's functionality has been confirmed in various validation sequences. Using element-specific measurements, the automated system was up to 25% more precise compared to the manual procedure and as precise as the manual procedure using structure-specific measurements. © 2015 Society for Laboratory Automation and Screening.
Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)
2010-01-01
The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.
An expert system for spectroscopic analysis of rocket engine plumes
NASA Technical Reports Server (NTRS)
Reese, Greg; Valenti, Elizabeth; Alphonso, Keith; Holladay, Wendy
1991-01-01
The expert system described in this paper analyzes spectral emissions of rocket engine exhaust plumes and shows major promise for use in engine health diagnostics. Plume emission spectroscopy is an important tool for diagnosing engine anomalies, but it is time-consuming and requires highly skilled personnel. The expert system was created to alleviate such problems. The system accepts a spectral plot in the form of wavelength vs intensity pairs and finds the emission peaks in the spectrum, lists the elemental emitters present in the data and deduces the emitter that produced each peak. The system consists of a conventional language component and a commercially available inference engine that runs on an Apple Macintosh computer. The expert system has undergone limited preliminary testing. It detects elements well and significantly decreases analysis time.
Lin, Kunning; Ma, Jian; Yuan, Dongxing; Feng, Sichao; Su, Haitao; Huang, Yongming; Shangguan, Qipei
2017-05-15
An integrated system was developed for automatic and sequential determination of NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ in natural waters based on reverse flow injection analysis combined with spectrophotometric detection. The system operation was controlled by a single chip microcomputer and laboratory-programmed software written in LabVIEW. The experimental parameters for each nutrient element analysis were optimized based on a univariate experimental design, and interferences from common ions were evaluated. The upper limits of the linear range (along with detection limit, µmolL -1 ) of the proposed method was 20 (0.03), 200 (0.7), 12 (0.3), 5 (0.03), 5 (0.03), 9 (0.2) µmolL -1 , for NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ , respectively. The relative standard deviations were below 5% (n=9-13) and the recoveries varied from 88.0±1.0% to 104.5±1.0% for spiked water samples. The sample throughput was about 20h -1 . This system has been successfully applied for the determination of multi-nutrient elements in different kinds of water samples and showed good agreement with reference methods (slope 1.0260±0.0043, R 2 =0.9991, n=50). Copyright © 2017 Elsevier B.V. All rights reserved.
Feasibility analysis of EDXRF method to detect heavy metal pollution in ecological environment
NASA Astrophysics Data System (ADS)
Hao, Zhixu; Qin, Xulei
2018-02-01
The change of heavy metal content in water environment, soil and plant can reflect the change of heavy metal pollution in ecological environment, and it is important to monitor the trend of heavy metal pollution in eco-environment by using water environment, soil and heavy metal content in plant. However, the content of heavy metals in nature is very low, the background elements of water environment, soil and plant samples are complex, and there are many interfering factors in the EDXRF system that will affect the spectral analysis results and reduce the detection accuracy. Through the contrastive analysis of several heavy metal elements detection methods, it is concluded that the EDXRF method is superior to other chemical methods in testing accuracy and method feasibility when the heavy metal pollution in soil is tested in ecological environment.
Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G
2007-10-01
A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.
NASA Astrophysics Data System (ADS)
Becker, Holger; Schattschneider, Sebastian; Klemm, Richard; Hlawatsch, Nadine; Gärtner, Claudia
2015-03-01
The continuous monitoring of the environment for lethal pathogens is a central task in the field of biothreat detection. Typical scenarios involve air-sampling in locations such as public transport systems or large public events and a subsequent analysis of the samples by a portable instrument. Lab-on-a-chip technologies are one of the promising technological candidates for such a system. We have developed an integrated microfluidic system with automatic sampling for the detection of CBRNE-related pathogens. The chip contains a two-pronged analysis strategy, on the one hand an immunological track using antibodies immobilized on a frit and a subsequent photometric detection, on the other hand a molecular biology approach using continuous-flow PCR with a fluorescence end-point detection. The cartridge contains two-component molded rotary valve to allow active fluid control and switching between channels. The accompanying instrument contains all elements for fluidic and valve actuation, thermal control, as well as the two detection modalities. Reagents are stored in dedicated reagent packs which are connected directly to the cartridge. With this system, we have been able to demonstrate the detection of a variety of pathogen species.
Automatic vehicle location system
NASA Technical Reports Server (NTRS)
Hansen, G. R., Jr. (Inventor)
1973-01-01
An automatic vehicle detection system is disclosed, in which each vehicle whose location is to be detected carries active means which interact with passive elements at each location to be identified. The passive elements comprise a plurality of passive loops arranged in a sequence along the travel direction. Each of the loops is tuned to a chosen frequency so that the sequence of the frequencies defines the location code. As the vehicle traverses the sequence of the loops as it passes over each loop, signals only at the frequency of the loop being passed over are coupled from a vehicle transmitter to a vehicle receiver. The frequencies of the received signals in the receiver produce outputs which together represent a code of the traversed location. The code location is defined by a painted pattern which reflects light to a vehicle carried detector whose output is used to derive the code defined by the pattern.
Capacitively readout multi-element sensor array with common-mode cancellation
Britton, Jr., Charles L.; Warmack, Robert J.; Bryan, William L.; Jones, Robert L.; Oden, Patrick Ian; Thundat, Thomas
2001-01-01
An improved multi-element apparatus for detecting the presence of at least one chemical, biological or physical component in a monitored area comprising an array or single set of the following elements: a capacitive transducer having at least one cantilever spring element secured thereto, the cantilever element having an area thereof coated with a chemical having an affinity for the component to be detected; a pick-up plate positioned adjacent to the cantilever element at a distance such that a capacitance between the cantilever element and the pick-up plate changes as the distance between the cantilever element and the pick-up plate varies, the change in capacitance being a measurable variation; a detection means for measuring the measurable variation in the capacitance between the cantilever element and the pick-up plate that forms a measurement channel signal; and at least one feedback cantilever spring element positioned apart from the coated cantilever element, the cantilever element substantially unaffected by the component being monitored and providing a reference channel signal to the detection means that achieves a common mode cancellation between the measurement channel signal and reference channel signal.
Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens.
Mustafa, Fatima; Hassan, Rabeay Y A; Andreescu, Silvana
2017-09-15
Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.
NASA Astrophysics Data System (ADS)
Gärtner, Claudia; Sewart, René; Klemm, Richard; Becker, Holger
2014-06-01
A portable analytical system for the characterization of liquid environmental samples and beverages in food control was realized. The key element is the implementation of contactless conductivity detection on lab-on-a-chip basis ensuring the system to be operated in a label free mode. Typical target molecules such as small ionic species like Li+, Na+, K+, SO4 2- or NO3-, organic acids in wine whose concentration and ratio to each other documents the wine quality, or caffeine or phosphate in coke were detected. Results from sample matrices like various beverages as water, cola, tea, wine and milk, water from heaters, environmental samples and blood will be presented.
Development of High-Speed Fluorescent X-Ray Micro-Computed Tomography
NASA Astrophysics Data System (ADS)
Takeda, T.; Tsuchiya, Y.; Kuroe, T.; Zeniya, T.; Wu, J.; Lwin, Thet-Thet; Yashiro, T.; Yuasa, T.; Hyodo, K.; Matsumura, K.; Dilmanian, F. A.; Itai, Y.; Akatsuka, T.
2004-05-01
A high-speed fluorescent x-ray CT (FXCT) system using monochromatic synchrotron x rays was developed to detect very low concentration of medium-Z elements for biomedical use. The system is equipped two types of high purity germanium detectors, and fast electronics and software. Preliminary images of a 10mm diameter plastic phantom containing channels field with iodine solutions of different concentrations showed a minimum detection level of 0.002 mg I/ml at an in-plane spatial resolution of 100μm. Furthermore, the acquisition time was reduced about 1/2 comparing to previous system. The results indicate that FXCT is a highly sensitive imaging modality capable of detecting very low concentration of iodine, and that the method has potential in biomedical applications.
Okada, Sachiko; Nagase, Keisuke; Ito, Ayako; Ando, Fumihiko; Nakagawa, Yoshiaki; Okamoto, Kazuya; Kume, Naoto; Takemura, Tadamasa; Kuroda, Tomohiro; Yoshihara, Hiroyuki
2014-01-01
Comparison of financial indices helps to illustrate differences in operations and efficiency among similar hospitals. Outlier data tend to influence statistical indices, and so detection of outliers is desirable. Development of a methodology for financial outlier detection using information systems will help to reduce the time and effort required, eliminate the subjective elements in detection of outlier data, and improve the efficiency and quality of analysis. The purpose of this research was to develop such a methodology. Financial outliers were defined based on a case model. An outlier-detection method using the distances between cases in multi-dimensional space is proposed. Experiments using three diagnosis groups indicated successful detection of cases for which the profitability and income structure differed from other cases. Therefore, the method proposed here can be used to detect outliers. Copyright © 2013 John Wiley & Sons, Ltd.
Abuelo, Angel; Hernandez, Joaquín; Alves-Nores, Víctor; Benedito, José L; Castillo, Cristina
2016-12-01
There has been some recent criticism about the reliability of the assays commonly used to measure oxidant status in cattle, because some recent publications suggested that the concentration of different trace elements influences the results of these assays. The aim of this study was to test the correlation in 502 bovine serum samples between the concentration of several trace elements (Br, Co, Cr, Cu, Fe, I, Mn, Mo, Ni, Se, Sr, V and Zn) and markers of oxidant status (reactive oxygen species (ROS) and total serum antioxidant capacity (SAC)). The Oxidative Stress index (OSi) was also calculated as ROS/SAC. Some significant correlations were found, although weak (|ρ| < 0.50). Therefore, the relationships observed might be attributed to the different pro- and antioxidant effect of the different elements rather than to the assays detecting these elements instead of the oxidised molecules or total antioxidant potential, respectively. The OSi was poorly correlated (|ρ| ≤ 0.36) with the concentration of the studied trace elements, and therefore, its use is recommended to assess shifts in the systemic redox balance.
Usage of the Upgraded Vassilissa Separator for Synthesis of Super-Heavy Elements
NASA Astrophysics Data System (ADS)
Yeremin, A. V.; Malyshev, O. N.; Popeko, A. G.; Sagaidak, R. N.; Chepigin, V. I.; Kabachenko, A. P.; Belozerov, A. V.; Chelnokov, M. L.; Gorshkov, V. A.; Svirikhin, A. I.; Korotkov, S. P.; Rohach, J.; Brida, I.; Berek, G.
2002-12-01
Electrostatic separator VASSILISSA is used for exploring complete fussion nuclear reactions. The magnetic analyzer, based on D37 dipole magnet, was installed after the second triplet of quadrupole lenses of the separator for the mass identification of evaporation residues. Mass identification is an powerful tool for identification of recoil atoms of super-heavy elements. The new detection system consisting of the time-of-fiight system and 32-strips position-sensitive detector array was installed in the focal plane of the separator. The mass resolution of the separator after upgrade was found to be about 2.5 %.
Feedback stabilization system for pulsed single longitudinal mode tunable lasers
Esherick, Peter; Raymond, Thomas D.
1991-10-01
A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.
Crea, Simona; Cipriani, Christian; Donati, Marco; Carrozza, Maria Chiara; Vitiello, Nicola
2015-03-01
Here we describe a novel wearable feedback apparatus for lower-limb amputees. The system is based on three modules: a pressure-sensitive insole for the measurement of the plantar pressure distribution under the prosthetic foot during gait, a computing unit for data processing and gait segmentation, and a set of vibrating elements placed on the thigh skin. The feedback strategy relies on the detection of specific gait-phase transitions of the amputated leg. Vibrating elements are activated in a time-discrete manner, simultaneously with the occurrence of the detected gait-phase transitions. Usability and effectiveness of the apparatus were successfully assessed through an experimental validation involving ten healthy volunteers.
Cram, Silke; Ponce De León, Claudia A; Fernández, Pilar; Sommer, Irene; Rivas, Hilda; Morales, Luis Miguel
2006-10-01
Possible contaminants produced by the Petroleos Mexicanos (PEMEX) marine oil complex in the vicinity of the Cayo Arcas (Mexico) coral reef ecosystem were evaluated by analyzing sediments and sea water for hydrocarbons and metal elements. We found that the concentrations of aliphatic hydrocarbons in the sea water were generally low, with the highest values detected near the oil station; the concentration of polycyclic aromatic hydrocarbons (PAHs) was generally below the detection limit. The hydrocarbons found in the sediments seem to have a pyrogenic origin, and were probably produced by marine traffic in the study area. The total PAH concentration did not exceed the NOAA criteria, although levels of some individual PAHs did. The only metal detected in the sea water at high concentrations was nickel. The Ni/V ratio in the sediments indicates the contribution of crude oil to the system. The high content of Ni and Zn was attributed to the ballast waters from the oil tankers that load at the station's monobuoys. The presence of fine sediments that commonly originate from terrestrial ecosystems supported this assumption.
Gul, Sheraz; Desmond Ng, Jia Wei; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H.; Zhang, Jin Z.; Bergmann, Uwe; Yachandra, Vittal K.; Jaramillo, Thomas F.; Yano, Junko
2015-01-01
Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions. PMID:25747045
Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H; Zhang, Jin Z; Bergmann, Uwe; Yachandra, Vittal K; Jaramillo, Thomas F; Yano, Junko
2015-04-14
Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.
Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; ...
2015-02-25
Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based onmore » the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. In conclusion, the detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.« less
Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis
NASA Astrophysics Data System (ADS)
Hussain, T.; Gondal, M. A.
2013-06-01
Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.
NASA Astrophysics Data System (ADS)
Dardanelli, G.; Carella, M.
2013-09-01
This article summarizes the experience gained between 2012 and 2013 by the department of "Civil Engineering, Environmental, Aerospace and Materials" of University of Palermo on the integrated survey of Ninni Park Cassara Park in Palermo and the subsequent testing of methods, tools and techniques based on current research regarding the acquisition and processing of GNSS (Global Navigation Satellite System) data and laser-scanner. A fruitful time dedicated to the design of the survey has allowed us to become aware of the critical issues that the site presents because of its vast extent and diversity in size and number of the elements of which it is composed. The work has been addressed thematizing the elements to detect and selecting the techniques as possible economic and fast to be applied in the acquisition phase. Sixteen control points evenly distributed within the site were first materialized and detected with static GNSS mode. The survey mode NRTK (Network Real Time Kinematic) of the elements was then planned and carried out. The survey of the numerous planting was done by exploiting the mode with EGNOS (European Geostationary Navigation Overlay Service) correction. We continued the work experimenting with MMS (Mobile Mapping System) acquisition through which it was possible to acquire data on the morphology of the terrain, the conditions of the state of footpaths, buildings and on the distribution of street furniture. The point clouds obtained were subjected to both automatic and manual procedures to verify, finally, their actual descriptive possibilities of real forms detected.
Method and apparatus for transmitting and receiving data to and from a downhole tool
Hall, David R.; Fox, Joe
2007-03-13
A transmission line network system for transmitting and/or receiving data from a downhole tool. The invention is achieved by providing one or more transceiving elements, preferably rings, at either end of a downhole tool. A conduit containing a coaxial cable capable of communicating an electrical signal is attached to the transceiving element and extends through a central bore of the downhole tool and through the central bore of any tool intermediate the first transceiving element and a second transceiving element. Upon receiving an electrical signal from the cable, the second transceiving element may convert such signal to a magnetic field. The magnetic field may be detected by a third transceiving element in close proximity to the second transceiving element. In this manner, many different tools may be included in a downhole transmission network without requiring substantial modification, if any, of any particular tool.
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera; Schmalzel, John
2010-01-01
Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1) anomaly detection algorithms and strategies, (2) fusion of DIaK for anomaly detection (model-based, numerical, statistical, empirical, expert-based, qualitative, etc.), (3) diagnostics/prognostics strategies and methods, (4) user interface, (5) advanced control strategies, (6) integration architectures/frameworks, (7) embedding of intelligence. Many of these technologies are mature, and they are being used in the KStorMS. The paper will describe the design, implementation, and operation of the KStorMS; and discuss further evolution to support other needs such as condition-based maintenance (CBM).
A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.
Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao
2016-10-17
In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.
Integrated System Health Management: Foundational Concepts, Approach, and Implementation.
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John; Walker, Mark; Venkatesh, Meera; Kapadia, Ravi; Morris, Jon; Turowski, Mark; Smith, Harvey
2009-01-01
Implementation of integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive to an accurate and reliable assessment of its health. We present concepts, procedures, and a specific approach as a foundation for implementing a credible ISHM capability. The capability stresses integration of DIaK from all elements of a system. The intent is also to make possible implementation of on-board ISHM capability, in contrast to a remote capability. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems (rocket engine test facilities). The paper will address the following topics: 1. ISHM Model of a system 2. Detection of anomaly indicators. 3. Determination and confirmation of anomalies. 4. Diagnostic of causes and determination of effects. 5. Consistency checking cycle. 6. Management of health information 7. User Interfaces 8. Example implementation ISHM has been defined from many perspectives. We define it as a capability that might be achieved by various approaches. We describe a specific approach that has been matured throughout many years of development, and pilot implementations. ISHM is a capability that is achieved by integrating data, information, and knowledge (DIaK) that might be distributed throughout the system elements (which inherently implies capability to manage DIaK associated with distributed sub-systems). DIaK must be available to any element of a system at the right time and in accordance with a meaningful context. ISHM Functional Capability Level (FCL) is measured by how well a system performs the following functions: (1) detect anomalies, (2) diagnose causes, (3) predict future anomalies/failures, and (4) provide the user with an integrated awareness about the condition of every element in the system and guide user decisions.
Rocket Testing and Integrated System Health Management
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John
2005-01-01
Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing.
Arenz, Alexander; Drews, Michael S; Richter, Florian G; Ammer, Georg; Borst, Alexander
2017-04-03
Detecting the direction of motion contained in the visual scene is crucial for many behaviors. However, because single photoreceptors only signal local luminance changes, motion detection requires a comparison of signals from neighboring photoreceptors across time in downstream neuronal circuits. For signals to coincide on readout neurons that thus become motion and direction selective, different input lines need to be delayed with respect to each other. Classical models of motion detection rely on non-linear interactions between two inputs after different temporal filtering. However, recent studies have suggested the requirement for at least three, not only two, input signals. Here, we comprehensively characterize the spatiotemporal response properties of all columnar input elements to the elementary motion detectors in the fruit fly, T4 and T5 cells, via two-photon calcium imaging. Between these input neurons, we find large differences in temporal dynamics. Based on this, computer simulations show that only a small subset of possible arrangements of these input elements maps onto a recently proposed algorithmic three-input model in a way that generates a highly direction-selective motion detector, suggesting plausible network architectures. Moreover, modulating the motion detection system by octopamine-receptor activation, we find the temporal tuning of T4 and T5 cells to be shifted toward higher frequencies, and this shift can be fully explained by the concomitant speeding of the input elements. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Lindstrom, David J.; Lindstrom, Richard M.; Lindstrom, M. M.
1989-01-01
Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn).
Efficient scalable solid-state neutron detector.
Moses, Daniel
2015-06-01
We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a (6)Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m(2), is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.
NASA Technical Reports Server (NTRS)
Burrows, W. H.; Burrows, W. H.
1971-01-01
A leak detection system has been developed, consisting of a tape that can be wrapped around possible leak sites on a system pressurized with air or gaseous nitrogen. Carbon monoxide, at a level of 100 to 1000 parts per million is used as a trace gas in the pressurized system. The sensitive element of the tape is palladium chloride supported on specially prepared silica gel and specially dried. At a CO level of 100 ppm and a leak rate of 10-20 ml/hr, discoloration of the sensitive element is observed in 1.5 to 3 min. The tape and trace gas are compatible with aerospace hardware, safe to handle, and economically reasonable to produce and handle.
Temperature differential detection device
Girling, P.M.
1986-04-22
A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.
Temperature differential detection device
Girling, Peter M.
1986-01-01
A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.
Developmentally arrested structures preceding cerebellar tumors in von Hippel–Lindau disease
Shively, Sharon B; Falke, Eric A; Li, Jie; Tran, Maxine G B; Thompson, Eli R; Maxwell, Patrick H; Roessler, Erich; Oldfield, Edward H; Lonser, Russell R; Vortmeyer, Alexander O
2011-01-01
There is increasing evidence that suggests that knockout of tumor-suppressor gene function causes developmental arrest and protraction of cellular differentiation. In the peripheral nervous system of patients with the tumor-suppressor gene disorder, von Hippel–Lindau disease, we have demonstrated developmentally arrested structural elements composed of hemangioblast progenitor cells. Some developmentally arrested structural elements progress to a frank tumor, hemangioblastoma. However, in von Hippel–Lindau disease, hemangioblastomas are frequently observed in the cerebellum, suggesting an origin in the central nervous system. We performed a structural and topographic analysis of cerebellar tissues obtained from von Hippel–Lindau disease patients to identify and characterize developmentally arrested structural elements in the central nervous system. We examined the entire cerebella of five tumor-free von Hippel–Lindau disease patients and of three non-von Hippel–Lindau disease controls. In all, 9 cerebellar developmentally arrested structural elements were detected and topographically mapped in 385 blocks of von Hippel–Lindau disease cerebella. No developmentally arrested structural elements were seen in 214 blocks from control cerebella. Developmentally arrested structural elements are composed of poorly differentiated cells that express hypoxia-inducible factor (HIF)2α, but not HIF1α or brachyury, and preferentially involve the molecular layer of the dorsum cerebelli. For the first time, we identify and characterize developmentally arrested structural elements in the central nervous system of von Hippel–Lindau patients. We provide evidence that developmentally arrested structural elements in the cerebellum are composed of developmentally arrested hemangioblast progenitor cells in the molecular layer of the dorsum cerebelli. PMID:21499240
Control system health test system and method
Hoff, Brian D.; Johnson, Kris W.; Akasam, Sivaprasad; Baker, Thomas M.
2006-08-15
A method is provided for testing multiple elements of a work machine, including a control system, a component, a sub-component that is influenced by operations of the component, and a sensor that monitors a characteristic of the sub-component. In one embodiment, the method is performed by the control system and includes sending a command to the component to adjust a first parameter associated with an operation of the component. Also, the method includes detecting a sensor signal from the sensor reflecting a second parameter associated with a characteristic of the sub-component and determining whether the second parameter is acceptable based on the command. The control system may diagnose at least one of the elements of the work machine when the second parameter of the sub-component is not acceptable.
Tipping elements in the Earth's climate system
Lenton, Timothy M.; Held, Hermann; Kriegler, Elmar; Hall, Jim W.; Lucht, Wolfgang; Rahmstorf, Stefan; Schellnhuber, Hans Joachim
2008-01-01
The term “tipping point” commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here we introduce the term “tipping element” to describe large-scale components of the Earth system that may pass a tipping point. We critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and we assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then we explain how, in principle, early warning systems could be established to detect the proximity of some tipping points. PMID:18258748
High-performance IR detectors at SCD present and future
NASA Astrophysics Data System (ADS)
Nesher, O.; Klipstein, P. C.
2005-09-01
For over 27 years, SCD has been manufacturing and developing a wide range of high performance infra-red detectors, designed to operate in either the mid-wave (MWIR) or the long-wave (LWIR) atmospheric windows. These detectors have been integrated successfully into many different types of system including missile seekers, Time Delay Integration scanning systems, Hand-Held cameras, Missile Warning Systems and many others. SCD's technology for the MWIR wavelength range is based on its well established 2-D arrays of InSb photodiodes. The arrays are flip-chip bonded to SCD's analogue or digital signal processors, all of which have been designed in-house. The 2-D Focal Plane Array (FPA) detectors have a format of 320×256 elements for a 30 μm pitch and 480×384 or 640×512 elements for a 20 μm pitch. Typical operating temperatures are around 77-85K. Five years ago SCD began to develop a new generation of MWIR detectors based on the epitaxial growth of Antimonide Based Compound Semiconductors (ABCS). This ABCS technology allows band-gap engineering of the detection material which enables higher operating temperatures and multi-spectral detection. This year SCD presented its first prototype FPA from this program, an InAlSb based detector operating at a temperature of 100 K. By the end of this year SCD will introduce the first prototype MWIR detector with a 640×512 element format and a pitch of 15 μm. For the LWIR wave-length range SCD manufactures both linear Hg1-xCdxTe (MCT) detectors with a line of 250 elements and Time Delay and Integration (TDI) detectors with formats of 288×4 and 480×6. Recently, SCD has demonstrated its first prototype un-cooled detector which is based on VOx technology and which has a format of 384×288 elements, a pitch of 25 μm and a typical NETD of 50mK at F/1. In this paper we describe the present technologies and products of SCD and the future evolution of our detectors for the MWIR and LWIR detection.
High-performance IR detectors at SCD present and future
NASA Astrophysics Data System (ADS)
Nesher, O.; Klipstein, P. C.
2006-03-01
For over 27 years, SCD has been manufacturing and developing a wide range of high performance infrared detectors, designed to operate in either the mid-wave (MWIR) or the long-wave (LWIR) atmospheric windows. These detectors have been integrated successfully into many different types of system including missile seekers, time delay integration scanning systems, hand-held cameras, missile warning systems and many others. SCD's technology for the MWIR wavelength range is based on its well established 2D arrays of InSb photodiodes. The arrays are flip-chip bonded to SCD's analogue or digital signal processors, all of which have been designed in-house. The 2D focal plane array (FPA) detectors have a format of 320×256 elements for a 30-μm pitch and 480×384 or 640×512 elements for a 20-μm pitch. Typical operating temperatures are around 77-85 K. Five years ago SCD began to develop a new generation of MWIR detectors based on the epitaxial growth of antimonide based compound semiconductors (ABCS). This ABCS technology allows band-gap engineering of the detection material which enables higher operating temperatures and multi-spectral detection. This year SCD presented its first prototype FPA from this program, an InAlSb based detector operating at a temperature of 100 K. By the end of this year SCD will introduce the first prototype MWIR detector with a 640×512 element format and a pitch of 15 μm. For the LWIR wavelength range SCD manufactures both linear Hg1-xCdxTe (MCT) detectors with a line of 250 elements and time delay and integration (TDI) detectors with formats of 288×4 and 480×6. Recently, SCD has demonstrated its first prototype uncooled detector which is based on VOx technology and which has a format of 384×288 elements, a pitch of 25 μm, and a typical NETD of 50 mK at F/1. In this paper, we describe the present technologies and products of SCD and the future evolution of our detectors for the MWIR and LWIR detection.
NASA Technical Reports Server (NTRS)
Smathers, J. B.; Kuykendall, W. E., Jr.; Wright, R. E., Jr.; Marshall, J. R.
1973-01-01
Radioisotope measurement techniques and neutron activation analysis are evaluated for use in identifying and locating contamination sources in space environment simulation chambers. The alpha range method allows the determination of total contaminant concentration in vapor state and condensate state. A Cf-252 neutron activation analysis system for detecting oils and greases tagged with stable elements is described. While neutron activation analysis of tagged contaminants offers specificity, an on-site system is extremely costly to implement and provides only marginal detection sensitivity under even the most favorable conditions.
NASA Astrophysics Data System (ADS)
Razansky, R. Nika; Rozental, Amir; Mueller, Mathias S.; Deliolanis, Nikolaos; Jaffer, Farouc A.; Koch, Alexander W.; Ntziachristos, Vasilis
2011-03-01
Early detection of high-risk coronary atherosclerosis remains an unmet clinical challenge. We have previously demonstrated a near-infrared fluorescence catheter system for two-dimensional intravascular detection of fluorescence molecular probes [1]. In this work we improve the system performance by introducing a novel high resolution sensor. The main challenge of the intravascular sensor is to provide a highly focused spot at an application relevant distance on one hand and a highly efficient collection of emitted light on the other. We suggest employing a double cladding optical fiber (DCF) in combination with focusing optics to provide a sensor with both highly focused excitation light and highly efficient fluorescent light collection. The excitation laser is coupled into the single mode core of DCF and guided through a focusing element and a right angle prism. The resulting side-fired beam exhibits a small spot diameter (50 μm) throughout a distance of up to 2 mm from the sensor. This is the distance of interest for intravascular coronary imaging application, determined by an average human coronary artery diameter. At the blood vessel wall, an activatable fluorescence molecular probe is excited in the diseased lesions. Next light of slightly shifted wavelength emits only in the places of the inflammations, associated with dangerous plaques [2]. The emitted light is collected by the cladding of the DCF, with a large collection angle (NA=0.4). The doublecladding acts as multimodal fiber and guides the collected light to the photo detection elements. The sensor automatically rotates and pulled-back, while each scanned point is mapped according to the amount of detected fluorescent emission. The resulting map of fluorescence activity helps to associate the atherosclerotic plaques with the inflammation process. The presented detection system is a valuable tool in the intravascular plaque detection and can help to differentiate the atherosclerotic plaques based on their biological activity, identify the ones that prone to rupture and therefore require more medical attention.
Speckle and spectroscopic orbits of the early A-type triple system Eta Virginis
NASA Technical Reports Server (NTRS)
Hartkopf, William I.; Mcalister, Harold A.; Yang, Xinxing; Fekel, Francis C.
1992-01-01
Eta Virginis is a bright (V = 3.89) triple system of composite spectral type A2 IV that has been observed for over a dozen years with both spectroscopy and speckle interferometry. Analysis of the speckle observations results in a long period of 13.1 yr. This period is also detected in residuals from the spectroscopic observations of the 71.7919 day short-period orbit. Elements of the long-period orbit were determined separately using the observations of both techniques. The more accurate elements from the speckle solution have been assumed in a simultaneous spectroscopic determination of the short- and long-period orbital elements. The magnitude difference of the speckle components suggests that lines of the third star should be visible in the spectrum.
Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO.
Fraiture, Marie-Alice; Saltykova, Assia; Hoffman, Stefan; Winand, Raf; Deforce, Dieter; Vanneste, Kevin; De Keersmaecker, Sigrid C J; Roosens, Nancy H C
2018-05-21
In order to strengthen the current genetically modified organism (GMO) detection system for unauthorized GMO, we have recently developed a new workflow based on DNA walking to amplify unknown sequences surrounding a known DNA region. This DNA walking is performed on transgenic elements, commonly found in GMO, that were earlier detected by real-time PCR (qPCR) screening. Previously, we have demonstrated the ability of this approach to detect unauthorized GMO via the identification of unique transgene flanking regions and the unnatural associations of elements from the transgenic cassette. In the present study, we investigate the feasibility to integrate the described workflow with the MinION Next-Generation-Sequencing (NGS). The MinION sequencing platform can provide long read-lengths and deal with heterogenic DNA libraries, allowing for rapid and efficient delivery of sequences of interest. In addition, the ability of this NGS platform to characterize unauthorized and unknown GMO without any a priori knowledge has been assessed.
Overview of the Smart Network Element Architecture and Recent Innovations
NASA Technical Reports Server (NTRS)
Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.
2008-01-01
In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.
Discrete elements for 3D microfluidics.
Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah
2014-10-21
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
Neurosurgery simulation using non-linear finite element modeling and haptic interaction
NASA Astrophysics Data System (ADS)
Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet
2012-02-01
Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
Completing the Copernican Revolution: The search for other planetary systems
NASA Technical Reports Server (NTRS)
Black, David C.
1995-01-01
The past few decades have witnessed significant advances in our understanding of how stars form, and there has been an associated increase in our knowledge of conditions and phenomena in the early solar system. These have led to the formulation of a paradigm for the origin of the solar system that is sufficiently complete that its basic elements can be tested directly through observations. A simple, but profound, consequence of the paradigm is that most if not all stars should be accompanied by planetary systems. The accuracy of instruments that can be used in such searches has improved to the point that Jupiter-like companions to a number of nearby stars could be detected. However, the results to date are that no other planetary systems have been detected, and the absence of detection is becoming statistically significant, particularly as it relates to the existence of brown dwarf companions to main-sequence stars.
Infrared thermography for detection of laminar-turbulent transition in low-speed wind tunnel testing
NASA Astrophysics Data System (ADS)
Joseph, Liselle A.; Borgoltz, Aurelien; Devenport, William
2016-05-01
This work presents the details of a system for experimentally identifying laminar-to-turbulent transition using infrared thermography applied to large, metal models in low-speed wind tunnel tests. Key elements of the transition detection system include infrared cameras with sensitivity in the 7.5- to 14.0-µm spectral range and a thin, insulating coat for the model. The fidelity of the system was validated through experiments on two wind-turbine blade airfoil sections tested at Reynolds numbers between Re = 1.5 × 106 and 3 × 106. Results compare well with measurements from surface pressure distributions and stethoscope observations. However, the infrared-based system provides data over a much broader range of conditions and locations on the model. This paper chronicles the design, implementation and validation of the infrared transition detection system, a subject which has not been widely detailed in the literature to date.
Diffraction-based optical sensor detection system for capture-restricted environments
NASA Astrophysics Data System (ADS)
Khandekar, Rahul M.; Nikulin, Vladimir V.
2008-04-01
The use of digital cameras and camcorders in prohibited areas presents a growing problem. Piracy in the movie theaters results in huge revenue loss to the motion picture industry every year, but still image and video capture may present even a bigger threat if performed in high-security locations. While several attempts are being made to address this issue, an effective solution is yet to be found. We propose to approach this problem using a very commonly observed optical phenomenon. Cameras and camcorders use CCD and CMOS sensors, which include a number of photosensitive elements/pixels arranged in a certain fashion. Those are photosites in CCD sensors and semiconductor elements in CMOS sensors. They are known to reflect a small fraction of incident light, but could also act as a diffraction grating, resulting in the optical response that could be utilized to identify the presence of such a sensor. A laser-based detection system is proposed that accounts for the elements in the optical train of the camera, as well as the eye-safety of the people who could be exposed to optical beam radiation. This paper presents preliminary experimental data, as well as the proof-of-concept simulation results.
NDE application of ultrasonic tomography to a full-scale concrete structure.
Choi, Hajin; Popovics, John S
2015-06-01
Newly developed ultrasonic imaging technology for large concrete elements, based on tomographic reconstruction, is presented. The developed 3-D internal images (velocity tomograms) are used to detect internal defects (polystyrene foam and pre-cracked concrete prisms) that represent structural damage within a large steel reinforced concrete element. A hybrid air-coupled/contact transducer system is deployed. Electrostatic air-coupled transducers are used to generate ultrasonic energy and contact accelerometers are attached on the opposing side of the concrete element to detect the ultrasonic pulses. The developed hybrid testing setup enables collection of a large amount of high-quality, through-thickness ultrasonic data without surface preparation to the concrete. The algebraic reconstruction technique is used to reconstruct p-wave velocity tomograms from the obtained time signal data. A comparison with a one-sided ultrasonic imaging method is presented for the same specimen. Through-thickness tomography shows some benefit over one-sided imaging for highly reinforced concrete elements. The results demonstrate that the proposed through-thickness ultrasonic technique shows great potential for evaluation of full-scale concrete structures in the field.
Wan, Xiong; Wang, Peng
2014-01-01
Laser-induced breakdown spectroscopy (LIBS) is a feasible remote sensing technique used for mineral analysis in some unapproachable places where in situ probing is needed, such as analysis of radioactive elements in a nuclear leak or the detection of elemental compositions and contents of minerals on planetary and lunar surfaces. Here a compact custom 15 m focus optical component, combining a six times beam expander with a telescope, has been built, with which the laser beam of a 1064 nm Nd ; YAG laser is focused on remote minerals. The excited LIBS signals that reveal the elemental compositions of minerals are collected by another compact single lens-based signal acquisition system. In our remote LIBS investigations, the LIBS spectra of an unknown ore have been detected, from which the metal compositions are obtained. In addition, a multi-spectral line calibration (MSLC) method is proposed for the quantitative analysis of elements. The feasibility of the MSLC and its superiority over a single-wavelength determination have been confirmed by comparison with traditional chemical analysis of the copper content in the ore.
Transmission Bearing Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.
2004-01-01
A diagnostic tool was developed for detecting fatigue damage to rolling element bearings in an OH-58 main rotor transmission. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting bearing surface fatigue pitting damage. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from tests performed in the NASA Glenn 500 hp Helicopter Transmission Test Stand. Data was collected during experiments performed in this test rig when two unanticipated bearing failures occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears duplex ball bearings and spiral bevel pinion triplex ball bearings in a main rotor transmission.
Local Leak Detection and Health Monitoring of Pressurized Tanks
NASA Technical Reports Server (NTRS)
Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam
2011-01-01
An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.
Artificial Boundary Conditions for Finite Element Model Update and Damage Detection
2017-03-01
BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION by Emmanouil Damanakis March 2017 Thesis Advisor: Joshua H. Gordis...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ARTIFICIAL BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION...release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In structural engineering, a finite element model is often
NASA Astrophysics Data System (ADS)
Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi
2011-03-01
We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.
2018-01-01
Nowadays, there is a strong demand for inspection systems integrating both high sensitivity under various testing conditions and advanced processing allowing automatic identification of the examined object state and detection of threats. This paper presents the possibility of utilization of a magnetic multi-sensor matrix transducer for characterization of defected areas in steel elements and a deep learning based algorithm for integration of data and final identification of the object state. The transducer allows sensing of a magnetic vector in a single location in different directions. Thus, it enables detecting and characterizing any material changes that affect magnetic properties regardless of their orientation in reference to the scanning direction. To assess the general application capability of the system, steel elements with rectangular-shaped artificial defects were used. First, a database was constructed considering numerical and measurements results. A finite element method was used to run a simulation process and provide transducer signal patterns for different defect arrangements. Next, the algorithm integrating responses of the transducer collected in a single position was applied, and a convolutional neural network was used for implementation of the material state evaluation model. Then, validation of the obtained model was carried out. In this paper, the procedure for updating the evaluated local state, referring to the neighboring area results, is presented. Finally, the results and future perspective are discussed. PMID:29351215
He, Awen; Wang, Wenyu; Prakash, N Tejo; Tinkov, Alexey A; Skalny, Anatoly V; Wen, Yan; Hao, Jingcan; Guo, Xiong; Zhang, Feng
2018-03-01
Chemical elements are closely related to human health. Extensive genomic profile data of complex diseases offer us a good opportunity to systemically investigate the relationships between elements and complex diseases/traits. In this study, we applied gene set enrichment analysis (GSEA) approach to detect the associations between elements and complex diseases/traits though integrating element-gene interaction datasets and genome-wide association study (GWAS) data of complex diseases/traits. To illustrate the performance of GSEA, the element-gene interaction datasets of 24 elements were extracted from the comparative toxicogenomics database (CTD). GWAS summary datasets of 24 complex diseases or traits were downloaded from the dbGaP or GEFOS websites. We observed significant associations between 7 elements and 13 complex diseases or traits (all false discovery rate (FDR) < 0.05), including reported relationships such as aluminum vs. Alzheimer's disease (FDR = 0.042), calcium vs. bone mineral density (FDR = 0.031), magnesium vs. systemic lupus erythematosus (FDR = 0.012) as well as novel associations, such as nickel vs. hypertriglyceridemia (FDR = 0.002) and bipolar disorder (FDR = 0.027). Our study results are consistent with previous biological studies, supporting the good performance of GSEA. Our analyzing results based on GSEA framework provide novel clues for discovering causal relationships between elements and complex diseases. © 2017 WILEY PERIODICALS, INC.
Narad, Priyanka; Kumar, Abhishek; Chakraborty, Amlan; Patni, Pranav; Sengupta, Abhishek; Wadhwa, Gulshan; Upadhyaya, K C
2017-09-01
Transcription factors are trans-acting proteins that interact with specific nucleotide sequences known as transcription factor binding site (TFBS), and these interactions are implicated in regulation of the gene expression. Regulation of transcriptional activation of a gene often involves multiple interactions of transcription factors with various sequence elements. Identification of these sequence elements is the first step in understanding the underlying molecular mechanism(s) that regulate the gene expression. For in silico identification of these sequence elements, we have developed an online computational tool named transcription factor information system (TFIS) for detecting TFBS for the first time using a collection of JAVA programs and is mainly based on TFBS detection using position weight matrix (PWM). The database used for obtaining position frequency matrices (PFM) is JASPAR and HOCOMOCO, which is an open-access database of transcription factor binding profiles. Pseudo-counts are used while converting PFM to PWM, and TFBS detection is carried out on the basis of percent score taken as threshold value. TFIS is equipped with advanced features such as direct sequence retrieving from NCBI database using gene identification number and accession number, detecting binding site for common TF in a batch of gene sequences, and TFBS detection after generating PWM from known raw binding sequences in addition to general detection methods. TFIS can detect the presence of potential TFBSs in both the directions at the same time. This feature increases its efficiency. And the results for this dual detection are presented in different colors specific to the orientation of the binding site. Results obtained by the TFIS are more detailed and specific to the detected TFs as integration of more informative links from various related web servers are added in the result pages like Gene Ontology, PAZAR database and Transcription Factor Encyclopedia in addition to NCBI and UniProt. Common TFs like SP1, AP1 and NF-KB of the Amyloid beta precursor gene is easily detected using TFIS along with multiple binding sites. In another scenario of embryonic developmental process, TFs of the FOX family (FOXL1 and FOXC1) were also identified. TFIS is platform-independent which is publicly available along with its support and documentation at http://tfistool.appspot.com and http://www.bioinfoplus.com/tfis/ . TFIS is licensed under the GNU General Public License, version 3 (GPL-3.0).
Next generation laser-based standoff spectroscopy techniques for Mars exploration.
Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey
2015-01-01
In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.
Introduction to lead salt infrared detectors
NASA Astrophysics Data System (ADS)
Kondas, David A.
1993-02-01
This technical report establishes the background necessary to understand how lead sulfide (PbS) and lead selenide (PbSe) infrared detectors operate. Both detectors, which are members of the lead salt family of infrared detectors, use the photoconductive effect to detect energy residing within the infrared region of the electromagnetic spectrum. PbS detectors are useful for detecting energies in the 1 to 3 micrometer region, while PbSe detectors can detect energies in the 1 to 7 micrometer region. They are essentially polycrystalline thin films which are fabricated by chemical deposition techniques in either single element or multi-element array configurations. The significance of the electronic structure of these crystalline films and the effects of temperature on their operation and performance are discussed. The history of the development of lead salt detectors from the early years before World War I to the more recent developments is detailed. In addition, an overview of a typical infrared system is also presented.
Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens
Mustafa, Fatima; Andreescu, Silvana
2017-01-01
Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research. PMID:28914769
Application of the laser to the study of pathogenic fungi.
Thibaut, M
1979-05-15
Laser microanalysis has been applied to the study of pathogenic fungi. Such a method allows chemical information to be obtained and permits the detection of 74 elements in the periodic system of Mendeleev from lithium (3) to uranium (92).
Spectroscopic obit for the eclipsing binary IQ Persei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, A.
1975-10-01
Spectroscopic orbital elements are derived for the eclipsing binary IQ Per. Faint secondary lines are detected, and a mass ratio and individual masses are inferred. The components are found to be on the main sequence, and the system is detached. (auth)
Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System
BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia
2015-01-01
Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157
Optofluidic platforms based on surface-enhanced Raman scattering.
Lim, Chaesung; Hong, Jongin; Chung, Bong Geun; deMello, Andrew J; Choo, Jaebum
2010-05-01
We report recent progress in the development of surface-enhanced Raman scattering (SERS)-based optofluidic platforms for the fast and sensitive detection of chemical and biological analytes. In the current context, a SERS-based optofluidic platform is defined as an integrated analytical device composed of a microfluidic element and a sensitive Raman spectrometer. Optofluidic devices for SERS detection normally involve nanocolloid-based microfluidic systems or metal nanostructure-embedded microfluidic systems. In the current review, recent advances in both approaches are surveyed and assessed. Additionally, integrated real-time sensing systems that combine portable Raman spectrometers with microfluidic devices are also reviewed. Such real-time sensing systems have significant utility in environmental monitoring, forensic science and homeland defense applications.
Method for detecting and avoiding flight hazards
NASA Astrophysics Data System (ADS)
von Viebahn, Harro; Schiefele, Jens
1997-06-01
Today's aircraft equipment comprise several independent warning and hazard avoidance systems like GPWS, TCAS or weather radar. It is the pilot's task to monitor all these systems and take the appropriate action in case of an emerging hazardous situation. The developed method for detecting and avoiding flight hazards combines all potential external threats for an aircraft into a single system. It is based on an aircraft surrounding airspace model consisting of discrete volume elements. For each element of the volume the threat probability is derived or computed from sensor output, databases, or information provided via datalink. The position of the own aircraft is predicted by utilizing a probability distribution. This approach ensures that all potential positions of the aircraft within the near future are considered while weighting the most likely flight path. A conflict detection algorithm initiates an alarm in case the threat probability exceeds a threshold. An escape manoeuvre is generated taking into account all potential hazards in the vicinity, not only the one which caused the alarm. The pilot gets a visual information about the type, the locating, and severeness o the threat. The algorithm was implemented and tested in a flight simulator environment. The current version comprises traffic, terrain and obstacle hazards avoidance functions. Its general formulation allows an easy integration of e.g. weather information or airspace restrictions.
Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A
2014-12-01
An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Associated-particle sealed-tube neutron probe for characterization of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, E.; Dickerman, C.E.; Peters, C.W.
1993-10-01
A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband.more » Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.« less
Visual method for detecting critical damage in railway contact strips
NASA Astrophysics Data System (ADS)
Judek, S.; Skibicki, J.
2018-05-01
Ensuring an uninterrupted supply of power in the electric traction is vital for the safety of this important transport system. For this purpose, monitoring and diagnostics of the technical condition of the vehicle’s power supply elements are becoming increasingly common. This paper presents a new visual method for detecting contact strip damage, based on measurement and analysis of the movement of the overhead contact line (OCL) wire. A measurement system configuration with a 2D camera was proposed. The experimental method has shown that contact strips damage can be detected by transverse displacement signal analysis. It has been proven that the velocity signal numerically established on that basis has a comparable level in the case of identical damage, regardless of its location on the surface of the contact strip. The proposed method belongs to the group of contact-less measurements, so it does not require interference with the structure of the catenary network nor the mounting of sensors in its vicinity. Measurement of displacements of the contact wire in 2D space makes it possible to combine the functions of existing diagnostic stands assessing the correctness of the mean contact force control adjustment of the current collector with the elements of the contact strip diagnostics, which involves detecting their damage which may result in overhead contact line rupture.
Yang, Minghui; Sun, Steven; Kostov, Yordan
2010-01-01
There is a well-recognized need for low cost biodetection technologies for resource-poor settings with minimal medical infrastructure. Lab-on-a-chip (LOC) technology has the ability to perform biological assays in such settings. The aim of this work is to develop a low cost, high-throughput detection system for the analysis of 96 samples simultaneously outside the laboratory setting. To achieve this aim, several biosensing elements were combined: a syringe operated ELISA lab-on-a-chip (ELISA-LOC) which integrates fluid delivery system into a miniature 96-well plate; a simplified non-enzymatic reporter and detection approach using a gold nanoparticle-antibody conjugate as a secondary antibody and silver enhancement of the visual signal; and Carbon nanotubes (CNT) to increase primary antibody immobilization and improve assay sensitivity. Combined, these elements obviate the need for an ELISA washer, electrical power for operation and a sophisticated detector. We demonstrate the use of the device for detection of Staphylococcal enterotoxin B, a major foodborne toxin using three modes of detection, visual detection, CCD camera and document scanner. With visual detection or using a document scanner to measure the signal, the limit of detection (LOD) was 0.5ng/ml. In addition to visual detection, for precise quantitation of signal using densitometry and a CCD camera, the LOD was 0.1ng/ml for the CCD analysis and 0.5 ng/ml for the document scanner. The observed sensitivity is in the same range as laboratory-based ELISA testing. The point of care device can analyze 96 samples simultaneously, permitting high throughput diagnostics in the field and in resource poor areas without ready access to laboratory facilities or electricity. PMID:21503269
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salcedo, D.; Laskin, Alexander; Shutthanandan, V.
The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measuredmore » ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple point sources, probably industrial, in Mexico City which are variable in time and space, in agreement with previous studies.« less
Systems Modeling to Implement Integrated System Health Management Capability
NASA Technical Reports Server (NTRS)
Figueroa, Jorge F.; Walker, Mark; Morris, Jonathan; Smith, Harvey; Schmalzel, John
2007-01-01
ISHM capability includes: detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, and user interfaces that enable integrated awareness (past, present, and future) by users. This is achieved by focused management of data, information and knowledge (DIaK) that will likely be distributed across networks. Management of DIaK implies storage, sharing (timely availability), maintaining, evolving, and processing. Processing of DIaK encapsulates strategies, methodologies, algorithms, etc. focused on achieving high ISHM Functional Capability Level (FCL). High FCL means a high degree of success in detecting anomalies, diagnosing causes, predicting future anomalies, and enabling health integrated awareness by the user. A model that enables ISHM capability, and hence, DIaK management, is denominated the ISHM Model of the System (IMS). We describe aspects of the IMS that focus on processing of DIaK. Strategies, methodologies, and algorithms require proper context. We describe an approach to define and use contexts, implementation in an object-oriented software environment (G2), and validation using actual test data from a methane thruster test program at NASA SSC. Context is linked to existence of relationships among elements of a system. For example, the context to use a strategy to detect leak is to identify closed subsystems (e.g. bounded by closed valves and by tanks) that include pressure sensors, and check if the pressure is changing. We call these subsystems Pressurizable Subsystems. If pressure changes are detected, then all members of the closed subsystem become suspect of leakage. In this case, the context is defined by identifying a subsystem that is suitable for applying a strategy. Contexts are defined in many ways. Often, a context is defined by relationships of function (e.g. liquid flow, maintaining pressure, etc.), form (e.g. part of the same component, connected to other components, etc.), or space (e.g. physically close, touching the same common element, etc.). The context might be defined dynamically (if conditions for the context appear and disappear dynamically) or statically. Although this approach is akin to case-based reasoning, we are implementing it using a software environment that embodies tools to define and manage relationships (of any nature) among objects in a very intuitive manner. Context for higher level inferences (that use detected anomalies or events), primarily for diagnosis and prognosis, are related to causal relationships. This is useful to develop root-cause analysis trees showing an event linked to its possible causes and effects. The innovation pertaining to RCA trees encompasses use of previously defined subsystems as well as individual elements in the tree. This approach allows more powerful implementations of RCA capability in object-oriented environments. For example, if a pressurizable subsystem is leaking, its root-cause representation within an RCA tree will show that the cause is that all elements of that subsystem are suspect of leak. Such a tree would apply to all instances of leak-events detected and all elements in all pressurizable subsystems in the system. Example subsystems in our environment to build IMS include: Pressurizable Subsystem, Fluid-Fill Subsystem, Flow-Thru-Valve Subsystem, and Fluid Supply Subsystem. The software environment for IMS is designed to potentially allow definition of any relationship suitable to create a context to achieve ISHM capability.
Wang, Zhenzhen; Deguchi, Yoshihiro; Yan, Junjie; Liu, Jiping
2015-01-01
The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS) and laser breakdown time-of-flight mass spectrometry (LB-TOFMS). Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application. PMID:25769051
Evaluating Trends in Historical PM2.5 Element Concentrations by Reanalyzing a 15-Year Sample Archive
NASA Astrophysics Data System (ADS)
Hyslop, N. P.; White, W. H.; Trzepla, K.
2014-12-01
The IMPROVE (Interagency Monitoring of PROtected Visual Environments) network monitors aerosol concentrations at 170 remote sites throughout the United States. Twenty-four-hour filter samples of particulate matter are collected every third day and analyzed for chemical composition. About 30 of the sites have operated continuously since 1988, and the sustained data record (http://views.cira.colostate.edu/web/) offers a unique window on regional aerosol trends. All elemental analyses have been performed by Crocker Nuclear Laboratory at the University of California in Davis, and sample filters collected since 1995 are archived on campus. The suite of reported elements has remained constant, but the analytical methods employed for their determination have evolved. For example, the elements Na - Mn were determined by PIXE until November 2001, then by XRF analysis in a He-flushed atmosphere through 2004, and by XRF analysis in vacuum since January 2005. In addition to these fundamental changes, incompletely-documented operational factors such as detector performance and calibration details have introduced variations in the measurements. Because the past analytical methods were non-destructive, the archived filters can be re-analyzed with the current analytical systems and protocols. The 15-year sample archives from Great Smoky Mountains (GRSM), Mount Rainier (MORA), and Point Reyes National Parks (PORE) were selected for reanalysis. The agreement between the new analyses and original determinations varies with element and analytical era. The graph below compares the trend estimates for all the elements measured by IMPROVE based on the original and repeat analyses; the elements identified in color are measured above the detection limit more than 90% of the time. The trend estimates are sensitive to the treatment of non-detect data. The original and reanalysis trends are indistinguishable (have overlapping confidence intervals) for most of the well-detected elements.
An ELISA Lab-on-a-Chip (ELISA-LOC).
Rasooly, Avraham; Bruck, Hugh A; Kostov, Yordan
2013-01-01
Laminated object manufacturing (LOM) technology using polymer sheets is an easy and affordable method for rapid prototyping of Lab-on-a-Chip (LOC) systems. It has recently been used to fabricate a miniature 96 sample ELISA lab-on-a-chip (ELISA-LOC) by integrating the washing step directly into an ELISA plate. LOM has been shown to be capable of creating complex 3D microfluidics through the assembly of a stack of polymer sheets with features generated by laser micromachining and by bonding the sheets together with adhesive. A six layer ELISA-LOC was fabricated with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO(2) laser with simple microfluidic features including a miniature 96-well sample plate. Immunological assays can be carried out in several configurations (1 × 96 wells, 2 × 48 wells, or 4 × 24 wells). The system includes three main functional elements: (1) a reagent loading fluidics module, (2) an assay and detection wells plate, and (3) a reagent removal fluidics module. The ELISA-LOC system combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected Staphylococcal enterotoxin B (SEB) at concentrations as low as 0.1 ng/ml, a detection level similar to that reported for conventional ELISA. ELISA-LOC can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without the laboratory required for conventional ELISA, and therefore may be more useful for global healthcare delivery.
Tanner, David E.
1981-01-01
A nuclear reactor system is described in which a position indicator is provided for detecting and indicating the position of a movable element inside a pressure vessel. The movable element may be a valve element or similar device which moves about an axis. Light from a light source is transmitted from a source outside the pressure vessel to a first region inside the pressure vessel in alignment with the axis of the movable element. The light is redirected by a reflector prism to a second region displaced radially from the first region. The reflector prism moves in response to movement of the movable element about its axis such that the second region moves arcuately with respect to the first region. Sensors are arrayed in an arc corresponding to the arc of movement of the second region and signals are transmitted from the sensors to the exterior of the reactor vessel to provide indication of the position of the movable element.
NASA Astrophysics Data System (ADS)
Yudasari, N.; Prasetyo, S.; Suliyanti, M. M.
2018-03-01
The laser-induced breakdown spectroscopy (LIBS) technique was applied to detect the nutrient elements contained in fresh carrot. Nd:YAG laser the wavelength of 1064 nm was employed in the experiments for ablation. Employing simple set-up of LIBS and preparing the sample with less step method, we are able to detect 18 chemical elements including some fundamental element of carrot, i.e Mg, Al, Fe, Mn, Ti, Ca, and Mn. By applying normalized profiles calculation on some of the element, we are able to compare the concentration level of each element of the outer and inner part of carrot.
Banks, Victoria A; Stanton, Neville A; Harvey, Catherine
2014-01-01
Although task analysis of pedestrian detection can provide us with useful insights into how a driver may behave in emergency situations, the cognitive elements of driver decision-making are less well understood. To assist in the design of future Advanced Driver Assistance Systems, such as Autonomous Emergency Brake systems, it is essential that the cognitive elements of the driving task are better understood. This paper uses verbal protocol analysis in an exploratory fashion to uncover the thought processes underlying behavioural outcomes represented by hard data collected using the Southampton University Driving Simulator.
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Jacobs, Eddie L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.
2015-10-01
The U.S. Army Research Laboratory (ARL) has continued to develop and enhance a millimeter-wave (MMW) and submillimeter- wave (SMMW)/terahertz (THz)-band imaging system performance prediction and analysis tool for both the detection and identification of concealed weaponry, and for pilotage obstacle avoidance. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). Further development of this tool that includes a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures was reported on at the 2011 SPIE Europe Security and Defence Symposium (Prague). This paper provides a comprehensive review of a newly enhanced MMW and SMMW/THz imaging system analysis and design tool that now includes an improved noise sub-model for more accurate and reliable performance predictions, the capability to account for postcapture image contrast enhancement, and the capability to account for concealment material backscatter with active-illumination- based systems. Present plans for additional expansion of the model's predictive capabilities are also outlined.
Method and apparatus for acoustic plate mode liquid-solid phase transition detection
Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.
1993-01-01
A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.
Frentiu, Tiberiu; Darvasi, Eugen; Butaciu, Sinziana; Ponta, Michaela; Petreus, Dorin; Mihaltan, Alin I; Frentiu, Maria
2014-11-01
A low power and low argon consumption (13.56 MHz, 15 W, 150 ml min(-1)) capacitively coupled plasma microtorch interfaced with a low-resolution microspectrometer and a small-sized electrothermal vaporization Rh coiled-filament as liquid microsample introduction device into the plasma was investigated for the simultaneous determination of several volatile elements of interest for environment. Constructive details, spectral and analytical characteristics, and optimum operating conditions of the laboratory equipment for the simultaneous determination of Ag, Cd, Cu, Pb and Zn requiring low vaporization power are provided. The method involves drying of 10 μl sample at 100°C, vaporization at 1500°C and emission measurement by capture of 20 successive spectral episodes each at an integration time of 500 ms. Experiments showed that emission of elements and plasma background were disturbed by the presence of complex matrix and hot Ar flow transporting the microsample into plasma. The emission spectrum of elements is simple, dominated by the resonance lines. The analytical system provided detection limits in the ng ml(-1) range: 0.5(Ag); 1.5(Cd); 5.6(Cu); 20(Pb) and 3(Zn) and absolute detection limits of the order of pg: 5(Ag); 15(Cd); 56(Cu); 200(Pb) and 30(Zn). It was demonstrated the utility and capability of the miniaturized analytical system in the simultaneous determination of elements in soil and water sediment using the standard addition method to compensate for the non-spectral effects of alkali and earth alkaline elements. The analysis of eight certified reference materials exhibited reliable results with recovery in the range of 95-108% and precision of 0.5-9.0% for the five examined elements. The proposed miniaturized analytical system is attractive due to the simple construction of the electrothermal vaporization device and microtorch, low costs associated to plasma generation, high analytical sensitivity and easy-to-run for simultaneous multielemental analysis of liquid microsamples. Copyright © 2014. Published by Elsevier B.V.
ElemeNT: a computational tool for detecting core promoter elements.
Sloutskin, Anna; Danino, Yehuda M; Orenstein, Yaron; Zehavi, Yonathan; Doniger, Tirza; Shamir, Ron; Juven-Gershon, Tamar
2015-01-01
Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promoter elements and their biologically-relevant combinations. Second, the CORE database summarizes ElemeNT-predicted core promoter elements near CAGE and RNA-seq-defined Drosophila melanogaster transcription start sites (TSSs). ElemeNT's predictions are based on biologically-functional core promoter elements, and can be used to infer core promoter compositions. ElemeNT does not assume prior knowledge of the actual TSS position, and can therefore assist in annotation of any given sequence. These resources, freely accessible at http://lifefaculty.biu.ac.il/gershon-tamar/index.php/resources, facilitate the identification of core promoter elements as active contributors to gene expression.
NASA Astrophysics Data System (ADS)
Batyaev, V. F.; Belichenko, S. G.; Bestaev, R. R.
2016-04-01
The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition [1]-[3]. The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the γ-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, LaBr3, LYSO, NaI(Tl), whose basic parameters are well known [4]-[7].
The Super Separator Spectrometer S3 and the associated detection systems: SIRIUS & LEB-REGLIS3
NASA Astrophysics Data System (ADS)
Déchery, F.; Savajols, H.; Authier, M.; Drouart, A.; Nolen, J.; Ackermann, D.; Amthor, A. M.; Bastin, B.; Berryhill, A.; Boutin, D.; Caceres, L.; Coffey, M.; Delferrière, O.; Dorvaux, O.; Gall, B.; Hauschild, K.; Hue, A.; Jacquot, B.; Karkour, N.; Laune, B.; Le Blanc, F.; Lecesne, N.; Lopez-Martens, A.; Lutton, F.; Manikonda, S.; Meinke, R.; Olivier, G.; Payet, J.; Piot, J.; Pochon, O.; Prince, V.; Souli, M.; Stelzer, G.; Stodel, C.; Stodel, M.-H.; Sulignano, B.; Traykov, E.; Uriot, D.; S3, Sirius; Leb-Reglis3 Collaboration
2016-06-01
The Super Separator Spectrometer (S3) facility is developed in the framework of the SPIRAL2 project [1]. S3 has been designed to extend the capability of the facility to perform experiments with extremely low cross sections, taking advantage of the very high intensity stable beams of the superconducting linear accelerator of SPIRAL2. It will mainly use fusion-evaporation reactions to reach extreme regions of the nuclear chart: new opportunities will be opened for super-heavy element studies and spectroscopy at and beyond the driplines. In addition to our previous article (Déchery et al. [2]) introducing the optical layout of the spectrometer and the expected performances, this article will present the current status of the main elements of the facility: the target station, the superconducting multipole, and the magnetic and electric dipoles, with a special emphasis on the status of the detection system SIRIUS and on the low-energy branch which includes the REGLIS3 system. S3 will also be a source of low energy radioactive isotopes for delivery to the DESIR facility.
Adesoji, Ayodele T; Ogunjobi, Adeniyi A; Olatoye, Isaac O
2017-01-01
The emergence of antibiotic resistance among pathogenic bacteria in clinical and environmental settings is a global problem. Many antibiotic resistance genes are located on mobile genetic elements such as plasmids and integrons, enabling their transfer among a variety of bacterial species. Water distribution systems may be reservoirs for the spread of antibiotic resistance. Bacteria isolated from raw, treated, and municipal tap water samples from selected water distribution systems in south-western Nigeria were investigated using the point inoculation method with seeded antibiotics, PCR amplification, and sequencing for the determination of bacterial resistance profiles and class 1/2 integrase genes and gene cassettes, respectively. sul1,sul2, and sul3 were detected in 21.6, 27.8, and 0% of the isolates, respectively (n = 162). Class 1 and class 2 integrons were detected in 21.42 and 3.6% of the isolates, respectively (n = 168). Genes encoding resistance to aminoglycosides (aadA2, aadA1, and aadB), trimethoprim (dfrA15, dfr7, and dfrA1), and sulfonamide (sul1) were detected among bacteria with class 1 integrons, while genes that encodes resistance to strepthothricin (sat2) and trimethoprim (dfrA15) were detected among bacteria with class 2 integrons. Bacteria from these water samples are a potential reservoir of multidrug-resistant traits including sul genes and mobile resistance elements, i.e. the integrase gene. © 2016 S. Karger AG, Basel.
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.
Yao, Lei; Yung, Ka Yi; Khan, Rifat; Chodavarapu, Vamsy P; Bright, Frank V
2010-12-01
We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O 2 ) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O 2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp) 3 ] 2+ and ([Ru(bpy) 3 ] 2+ ) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.
SKYWARD: the next generation airborne infrared search and track
NASA Astrophysics Data System (ADS)
Fortunato, L.; Colombi, G.; Ondini, A.; Quaranta, C.; Giunti, C.; Sozzi, B.; Balzarotti, G.
2016-05-01
Infrared Search and Track systems are an essential element of the modern and future combat aircrafts. Passive automatic search, detection and tracking functions, are key points for silent operations or jammed tactical scenarios. SKYWARD represents the latest evolution of IRST technology in which high quality electro-optical components, advanced algorithms, efficient hardware and software solutions are harmonically integrated to provide high-end affordable performances. Additionally, the reduction of critical opto-mechanical elements optimises weight and volume and increases the overall reliability. Multiple operative modes dedicated to different situations are available; many options can be selected among multiple or single target tracking, for surveillance or engagement, and imaging, for landing or navigation aid, assuring the maximum system flexibility. The high quality 2D-IR sensor is exploited by multiple parallel processing chains, based on linear and non-linear techniques, to extract the possible targets from background, in different conditions, with false alarm rate control. A widely tested track processor manages a large amount of candidate targets simultaneously and allows discriminating real targets from noise whilst operating with low target to background contrasts. The capability of providing reliable passive range estimation is an additional qualifying element of the system. Particular care has been dedicated to the detector non-uniformities, a possible limiting factor for distant targets detection, as well as to the design of the electro-optics for a harsh airborne environment. The system can be configured for LWIR or MWIR waveband according to the customer operational requirements. An embedded data recorder saves all the necessary images and data for mission debriefing, particularly useful during inflight system integration and tuning.
Methods for detecting the mobility of trace elements during medium-temperature pyrolysis
Shiley, R.H.; Konopka, K.L.; Cahill, R.A.; Hinckley, C.C.; Smith, Gerard V.; Twardowska, H.; Saporoschenko, Mykola
1983-01-01
The mobility (volatility) of trace elements in coal during pyrolysis has been studied for distances of up to 40 cm between the coal and the trace element collector, which was graphite or a baffled solvent trap. Nineteen elements not previously recorded as mobile were detected. ?? 1983.
NASA Astrophysics Data System (ADS)
Abdul-Majeed, Wameath Sh
This research is dedicated to develop a fully integrated system for heavy metals determination in water samples based on micro fluidic plasma atomizers. Several configurations of dielectric barrier discharge (DBD) atomizer are designed, fabricated and tested toward this target. Finally, a combination of annular and rectangular DBD atomizers has been utilized to develop a scheme for heavy metals determination. The present thesis has combined both theoretical and experimental investigations to fulfil the requirements. Several mathematical studies are implemented to explore the optimal design parameters for best system performance. On the other hand, expanded experimental explorations are conducted to assess the proposed operational approaches. The experiments were designed according to a central composite rotatable design; hence, an empirical model has been produced for each studied case. Moreover, several statistical approaches are adopted to analyse the system performance and to deduce the optimal operational parameters.. The introduction of the examined analyte to the plasma atomizer has been achieved by applying chemical schemes, where the element in the sample has been derivitized by using different kinds of reducing agents to produce vapour species (e.g. hydrides) for a group of nine elements examined in this research individually and simultaneously. Moreover, other derivatization schemes based on photochemical vapour generation assisted by ultrasound irradiation are also investigated. Generally speaking, the detection limits achieved in this research for the examined set of elements (by applying hydroborate scheme) are found to be acceptable in accordance with the standard limits in drinking water. The results of copper compared with the data from other technologies in the literature, showed a competitive detection limit obtained from applying the developed scheme, with an advantage of conducting simultaneous, fully automated, insitu, online- real time analysis as well as a possibility of connecting the proposed device to control loops..
Detection of Iberian ham aroma by a semiconductor multisensorial system.
Otero, Laura; Horrillo, M A Carmen; García, María; Sayago, Isabel; Aleixandre, Manuel; Fernández, M A Jesús; Arés, Luis; Gutiérrez, Javier
2003-11-01
A semiconductor multisensorial system, based on tin oxide, to control the quality of dry-cured Iberian hams is described. Two types of ham (submitted to different drying temperatures) were selected. Good responses were obtained from the 12 elements forming the multisensor for different operating temperatures. Discrimination between the two types of ham was successfully realised through principal component analysis (PCA).
NASA Technical Reports Server (NTRS)
Kinard, William H.; Murray, Robert C.; Walsh, Robert F.
1987-01-01
Space-qualified, precise, large-force, thermally activated driver (TAD) developed for use in space on astro-physics experiment to measure abundance of rare actinide-group elements in cosmic rays. Actinide cosmic rays detected using thermally activated driver as heart of event-thermometer (ET) system. Thermal expansion and contraction of silicone oil activates driver. Potential applications in fluid-control systems where precise valve controls are needed.
Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance
NASA Technical Reports Server (NTRS)
Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.
2016-01-01
Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.
Bent Laue X-ray Fluorescence Imaging of Manganese in Biological Tissues—Preliminary Results
NASA Astrophysics Data System (ADS)
Zhu, Ying; Bewer, Brian; Zhang, Honglin; Nichol, Helen; Thomlinson, Bill; Chapman, Dean
2010-06-01
Manganese (Mn) is not abundant in human brain tissue, but it is recognized as a neurotoxin. The symptoms of manganese intoxication are similar to Parkinson's disease (PD), but the link between environmental, occupational or dietary Mn exposure and PD in humans is not well established. X-ray Absorption Spectroscopy (XAS) and in particular X-ray fluorescence can provide precise information on the distribution, concentration and chemical form of metals. However the scattered radiation and fluorescence from the adjacent abundant element, iron (Fe), may interfere with and limit the ability to detect ultra-dilute Mn. A bent Laue analyzer based Mn fluorescence detection system has been designed and fabricated to improve elemental specificity in XAS imaging. This bent Laue analyzer of logarithmic spiral shape placed upstream of an energy discriminating detector should improve the energy resolution from hundreds of eV to several eV. The bent Laue detection system was validated by imaging Mn fluorescence from Mn foils, gelatin calibration samples and adult Drosophila at the Hard X-ray MicroAnalysis (HXMA) beamline at the Canadian Light Source (CLS). Optimization of the design parameters, fabrication procedures and preliminary experimental results are presented along with future plans.
Infrared-Proximity-Sensor Modules For Robot
NASA Technical Reports Server (NTRS)
Parton, William; Wegerif, Daniel; Rosinski, Douglas
1995-01-01
Collision-avoidance system for articulated robot manipulators uses infrared proximity sensors grouped together in array of sensor modules. Sensor modules, called "sensorCells," distributed processing board-level products for acquiring data from proximity-sensors strategically mounted on robot manipulators. Each sensorCell self-contained and consists of multiple sensing elements, discrete electronics, microcontroller and communications components. Modules connected to central control computer by redundant serial digital communication subsystem including both serial and a multi-drop bus. Detects objects made of various materials at distance of up to 50 cm. For some materials, such as thermal protection system tiles, detection range reduced to approximately 20 cm.
NASA Astrophysics Data System (ADS)
Gilmanshin, I. R.; Kirpichnikov, A. P.
2017-09-01
In the result of study of the algorithm of the functioning of the early detection module of excessive losses, it is proven the ability to model it by using absorbing Markov chains. The particular interest is in the study of probability characteristics of early detection module functioning algorithm of losses in order to identify the relationship of indicators of reliability of individual elements, or the probability of occurrence of certain events and the likelihood of transmission of reliable information. The identified relations during the analysis allow to set thresholds reliability characteristics of the system components.
Development of SEM/STEM-WDX for highly sensitive detection of light elements
NASA Astrophysics Data System (ADS)
Anan, Y.; Koguchi, M.; Kimura, T.; Sekiguchi, T.
2018-02-01
In this study, to detect the light element lithium (Li) and to detect low dosed Boron (B) in the local area at nm order, we developed an analytical electron microscope equipped with an improved serial (S)-type WDX (wavelength dispersive X-ray spectroscopy) system. In detail, to detect Li, we developed a high-conductivity multi-capillary X-ray (MCX) lens, and a diffractor with a lattice spacing (d) of 15 nm, and with a spacing variation (δ d) of 0.8 nm. Moreover, to detect low dosed light element B, we designed a high-conductivity MCX lens based on the soft X-ray reflectivity in the capillary and calculation. We developed a large-solid-angle MCX lens whose conductivity of the characteristic X-rays of B became 20 times higher than that of an MCX lens with a 30-mm focal length. Our developed analytical electron microscope was applied to a LiAl specimen and a low B-doped Si substrate specimen, and the performance of this analytical electron microscope was evaluated. As a results, this analytical electron microscope could detect the characteristic X-rays of Li with a minimum mass fraction (MMF) of 8.4 atomic % (at. %). The energy resolution was 1 eV at 55 eV. From the results of measuring the line profile of B for the unpatterned B-implantation area on a B-doped Si substrate specimen, the measured line profile data were in good agreement with secondary ion mass spectrometry data up to a depth of 100 nm with a B concentration of 0.05 at. %.
NASA Astrophysics Data System (ADS)
Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor
2004-08-01
An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.
Chen, Lingyun; Shen, Mei; Ma, Ande; Han, Weili
2018-03-01
Fresh Mashui orange samples were pretreated with microwave digestion using an HNO 3 -H 2 O 2 system. The levels of Mg, K, Ca, Fe, Mn, Cu, Zn, As, Cd, and Pb in the seeds, pulp, and peel were then determined using inductively coupled plasma mass spectrometry (ICP-MS) combined with collision cell technology (CCT) and kinetic energy discrimination (KED). The standard curve coefficient of determinations of the ten tested elements were between 0.9995 and 0.9999. The instrument detection limit was between 0.112 ng/L and 3.05 ng/mL. The method detection limit was between 0.0281 and 763 ng/g. The average recovery rate was between 85.0 and 117%. The current results showed that Mashui oranges are rich in three elements, namely Mg, K, and Ca. The concentrations of K and Ca were significantly higher than that of Mg in the peel. The content of K was the highest in the seeds. Fe, Mn, Cu, and Zn had the second highest concentrations, and Fe was the highest in the seeds, while Cu was the lowest in the peel. As, Cd, and Pb (hazardous elements) had the lowest concentrations of all the tested elements.
Confirmation of the Decay of 283112 and First Indication for Hg-like Behavior of Element 112
NASA Astrophysics Data System (ADS)
Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dressler, R.; Dmitriev, S. N.; Gäggeler, H. W.; Gorshkov, V. A.; Haenssler, F.; Itkis, M. G.; Lebedev, V. Ya.; Laube, A.; Malyshev, O. N.; Oganessian, Yu. Ts.; Petruschkin, O. V.; Piguet, D.; Rasmussen, P.; Shishkin, S. V.; Shutov, A. V.; Svirikhin, A. I.; Tereshatov, E. E.; Vostokin, G. K.; Wegrzecki, M.; Yeremin, A. V.
2007-05-01
Two gas phase adsorption chemistry experiments aimed at the chemical characterization of element 112 using its isotope 283112 have been performed at the Flerov Laboratory for Nuclear Reactions (FLNR) Dubna, Russia. The applied Insitu-Volatilization and On-line Detection (IVO) technique is a thermochromatographic system combining the determination of the deposition temperature of volatile elements on a surface along a temperature gradient with an efficient detection of the deposited species by event-by-event alpha and SF-fragment spectroscopy. Two possibilities to produce the isotope 283112 were used: 1.) the direct production reaction 238U( 48Ca,3n) 283112; 2.) the reaction 242Pu( 48Ca,3n), where the primary product 287114, decays via alpha emission to 283112 with a half-life of 0.5 s. The chemistry experiments were aimed at a chemical identification of 283112 and an independent confirmation of its decay properties. In the direct reaction no decays related to 283112 were observed. However, two decay chains unambiguously attributed to the decay of 283112 were observed using the second production path. Previously reported observation of 283112 and 279Ds and their decay properties were confirmed. From its thermochromatorgaphic deposition first thermochemical data were deduced for element 112, unveiling it as a typical group 12 element.
2013 certified IMS infrasound stations: IS37 (Bardufoss, Norway) and IS58 (Midway, USA)
NASA Astrophysics Data System (ADS)
Haralabus, Georgios; Marty, Julien; Kramer, Alfred; Mialle, Pierrick; Robertson, James
2014-05-01
The Infrasound component of the International Monitoring System (IMS) of the Comprehensive Nuclear?Test?Ban Treaty Organization (CTBTO) includes 60 infrasound stations out of which 47 are currently certified. The latest two additions to this Infrasound network, namely IS58 on Sand Island, Midway Atoll, United States of America (USA), and IS37 in Bardufoss, Norway, are presented here. Both stations were certified in 2013. IS58 is a 4 element infrasound array arranged in a triangular geometry with a central component. The triangular bases vary from 1.1 to 1.8 km. The micropressure sensors deployed at each element were Chaparral 50A microbarometers. Signals from IS58 were processed by the International Data Centre (IDC) and detection associated not only with microbaroms but also with the activity of the Kliuchevskoi volcano in the Russian Peninsula Kamchatka were built. These initial results indicate good detection capability of the IS58 station for low wind conditions. In Norway the topography allowed for a large element array, so IS37 was built with 10-elements that have average spacing of 1 km. This design allows the formation of several triangles with baseline of 1 to 2 km and also a triangular sub array with spacing of approximately 360 m. The sensors utilized in IS37 elements were MB2005 microbarometers. Initial data analysis by IDC identified distant microbarom sources with strong azimuth and frequency content variability as well as strong detections from local sources, namely the Finnfjord ferro-alloy plant in Norway and the Kiruna iron mine in Sweden.
Development of an X-ray surface analyzer for planetary exploration
NASA Technical Reports Server (NTRS)
Clark, B. C.
1972-01-01
An ultraminiature X-ray fluorescence spectrometer was developed which can obtain data on element composition not provided by present spacecraft instrumentation. The apparatus employs two radioisotope sources (Fe-55 and Cd-109) which irradiate adjacent areas on a soil sample. Fluorescent X-rays emitted by the sample are detected by four thin-window proportional counters. Using pulse-height discrimination, the energy spectra are determined. Virtually all elements above sodium in the periodic table are detected if present at sufficient levels. Minimum detection limits range from 30 ppm to several percent, depending upon the element and the matrix. For most elements, they are below 0.5 percent. Accuracies likewise depend upon the matrix, but are generally better than plus or minus 0.5 percent for all elements of atomic number greater than 14. Elements below sodium are also detected, but as a single group.
2012-01-01
Background Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish) and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38) in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff), contains three copies of oestrogen response elements (3ERE) that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS) elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein). Results The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1–2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17ß-oestradiol (E2), the synthetic oestrogen 17α- ethinyloestradiol (EE2), and the relatively weak environmental oestrogen nonylphenol (NP), and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10 ng/L, E2; 100 ng/L, after 72 h exposures). For the NP exposures, GFP expression was observed at 10 μg NP/L after 72 h (100 μg NP/L was toxic to the fish). We also demonstrate that our construct works in medaka, another model fish test species, suggesting the transient assay is applicable for testing oestrogenic chemicals in fish generally. Conclusion Our results indicate that the transient expression assay system can be used as a rapid integrated testing system for environmental oestrogens and to detect the oestrogenic target sites in developing fish embryos. PMID:22726887
NASA Astrophysics Data System (ADS)
Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.
2018-05-01
To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.
NASA Astrophysics Data System (ADS)
Kim, Gibaek; Yoon, Young-Jun; Kim, Hyun-A.; Cho, Hee-joo; Park, Kihong
2017-08-01
Two laser-induced breakdown spectroscopy (LIBS) systems (soil LIBS and aerosol LIBS) were used to determine the elemental composition of soils and ambient aerosols less than 2.5 μm in Ny-Ålesund, Svalbard (the world's most northerly human settlement). For soil LIBS measurements, matrix effects such as moisture content, soil grain size, and surrounding gas on the LIBS response were minimized. When Ar gas was supplied onto the soil sample surfaces, a significant enhancement in LIBS emission lines was observed. Arctic soil samples were collected at 10 locations, and various elements (Al, Ba, C, Ca, Cu, Fe, H, K, Mg, Mn, N, Na, O, Pb, and Si) were detected in soils. The elemental distribution in arctic soils was clearly distinguishable from those in urban and abandoned mining soils in Korea. Moreover, the concentrations of most of anthropogenic metals were fairly low, and localized sources in extremely close proximity affected the elevated level of Cu in the soil samples derived from Ny-Ålesund. The number of elements detected in aerosols (C, Ca, H, K, Mg, Na, and O) was lower than those determined in soils. The elements in aerosols can mainly originate from minerals and sea salts. The elemental distribution in aerosols was also clearly distinguishable from that in soils, suggesting that the resuspension of local soil particles by wind erosion into aerosols was minimal. The daily variation of particle number concentration (RSD = 71%) and the elements in aerosols (RSD = 25%) varied substantially, possibly due to fluctuating air masses and meteorological conditions.
Nuclear Security: Quantifying Late Detection in MC&A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surinder Paul; Gibbs, Philip W.; Bultz, Garl A.
2014-03-01
The objectives of this presentation are to understand the concept of late detection; review the statistics used in MC&A; specify the Pd and timelines for Pd for MC&A elements for item inventories; review elements of process control as they relate to bulk processes; and specify the timelines and detection thresholds for Pd for MC&A elements for bulk or Processing Operations.
Abu Bakar, Nur Faizah; Fudholi, Ahmad; Ruslan, Mohd Hafidz; Saroeun, Im
2015-01-01
The content of 12 elements in Cambodian dried striped snakehead fish was determined using inductively coupled plasma mass spectrometry. The present study compares the level of the trace toxic metals and nutritional trace elements in the fish processed using solar drying system (SDS) and open sun drying (OSD). The skin of SDS fish has lower level of As, Pb, and Cd compared to the OSD sample. As such, the flesh of the fish accumulated higher amount of toxic metals during OSD compared to SDS. However, arsenic was detected in both samples within the safe limit. The nutritional elements (Fe, Mn, Mg, Se, Mo, Cu, Ni, and Cr) were higher in the skin sample SDS fish compared to OSD fish. These beneficial metals were not accumulated in the flesh sample SDS fish demonstrating lower level compared to drying under conventional system. The reddish coloration of the SDS fish was due to the presence of high Cu content in both the skin and flesh samples which possibly account for no mold formation 5 days after packaging. As conclusion, drying of Cambodian C. striata using solar-assisted system has proven higher content of the nutritious elements compared to using the conventional system despite only slight difference in the toxic metals level between the two systems. PMID:25688274
Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen
2018-09-01
Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tošić, Snežana B; Mitić, Snežana S; Velimirović, Dragan S; Stojanović, Gordana S; Pavlović, Aleksandra N; Pecev-Marinković, Emilija T
2015-08-30
An inductively coupled plasma-optical emission spectrometry method for the speedy simultaneous detection of 19 elements in edible nuts (walnuts: Juglans nigra; almonds: Prunus dulcis; hazelnuts: Corylus avellana; Brazil nuts: Bertholletia excelsa; cashews: Anacardium occidentalle; pistachios: Pistacia vera; and peanuts: Arachis hypogaea) available on the Serbian markets, was optimized and validated through the selection of instrumental parameters and analytical lines free from spectral interference and with the lowest matrix effects. The analysed macro-elements were present in the following descending order: Na > Mg > Ca > K. Of all the trace elements, the tested samples showed the highest content of Fe. The micro-element Se was detected in all the samples of nuts. The toxic elements As, Cd and Pb were either not detected or the contents were below the limit of detection. One-way analysis of variance, Student's t-test, Tukey's HSD post hoc test and hierarchical agglomerative cluster analysis were applied in the statistical analysis of the results. Based on the detected content of analysed elements it can be concluded that nuts may be a good additional source of minerals as micronutrients. © 2014 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Wang, Delin
In this thesis, we develop the basics of the Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) technique for the instantaneous continental-shelf scale detection, localization and species classification of marine mammal vocalizations. POAWRS uses a large-aperture, densely sampled coherent hydrophone array system with orders of magnitude higher array gain to enhance signal-to-noise ratios (SNR) by coherent beamforming, enabling detection of underwater acoustic signals either two orders of magnitude more distant in range or lower in SNR than a single hydrophone. The ability to employ coherent spatial processing of signals with the POAWRS technology significantly improves areal coverage, enabling detection of oceanic sound sources over instantaneous wide areas spanning 100 km or more in diameter. The POAWRS approach was applied to analyze marine mammal vocalizations from diverse species received on a 160-element Office Naval Research Five Octave Research Array (ONR-FORA) deployed during their feeding season in Fall 2006 in the Gulf of Maine. The species-dependent temporal-spatial distribution of marine mammal vocalizations and correlation to the prey fish distributions have been determined. Furthermore, the probability of detection regions, source level distributions and pulse compression gains of the vocalization signals from diverse marine mammal species have been estimated. We also develop an approach for enhancing the angular resolution and improving bearing estimates of acoustic signals received on a coherent hydrophone array with multiple-nested uniformly-spaced subapertures, such as the ONR-FORA, by nonuniform array beamforming. Finally we develop a low-cost non-oil-filled towable prototype hydrophone array that consists of eight hydrophone elements with real-time data acquisition and 100 m tow cable. The approach demonstrated here will be applied in the development of a full 160 element POAWRS-type low-cost coherent hydrophone array system in the future.
On the pilot's behavior of detecting a system parameter change
NASA Technical Reports Server (NTRS)
Morizumi, N.; Kimura, H.
1986-01-01
The reaction of a human pilot, engaged in compensatory control, to a sudden change in the controlled element's characteristics is described. Taking the case where the change manifests itself as a variance change of the monitored signal, it is shown that the detection time, defined to be the time elapsed until the pilot detects the change, is related to the monitored signal and its derivative. Then, the detection behavior is modeled by an optimal controller, an optimal estimator, and a variance-ratio test mechanism that is performed for the monitored signal and its derivative. Results of a digital simulation show that the pilot's detection behavior can be well represented by the model proposed here.
Nanomolecular gas sensor architectures based on functionalized carbon nanotubes for vapor detection
NASA Astrophysics Data System (ADS)
Hines, Deon; Zhang, Henan; Rümmeli, Mark H.; Adebimpe, David; Akins, Daniel L.
2015-05-01
There is enormous interest in detection of simple & complex odors by mean of electronic instrumentation. Specifically, our work focuses on creating derivatized-nanotube-based "electronic noses" for the detection and identification of gases, and other materials. We have grafted single-walled carbon nanotubes (SWNTs) with an array of electron-donating and electron withdrawing moieties and have characterized some of the physicochemical properties of the modified nanotubes. Gas sensing elements have been fabricated by spin coating the functionalized nanotubes onto interdigitated electrodes (IDE's), creating an array of sensors. Each element in the sensor array can contain a different functionalized matrix. This facilitates the construction of chemical sensor arrays with high selectivity and sensitivity; a methodology that mimics the mammalian olfactory system. Exposure of these coated IDEs to organic vapors and the successful classification of the data obtained under DC monitoring, indicate that the system can function as gas sensors of high repeatability and selectivity for a wide range of common analytes. Since the detection of explosive materials is also of concern in this research, our next phase focuses on explosives such as, TNT, RDX, and Triacetone Triperoxide (TATP). Sensor data from individual detection are assessed on their own individual merits, after which they are amalgamated and reclassified to present each vapor as unique data point on a 2-dimensional map and with minimum loss of information. This approach can assist the nation's need for a technology to defeat IEDs through the use of methods that detect unique chemical signatures associated with explosive molecules and byproducts.
Stockwell, P. B.; Corns, W. T.
1993-01-01
Considerable attention has been drawn to the environmental levels of mercury, arsenic, selenium and antimony in the last decade. Legislative and environmental pressure has forced levels to be lowered and this has created an additional burden for analytical chemists. Not only does an analysis have to reach lower detection levels, but it also has to be seen to be correct. Atomic fluorescence detection, especially when coupled to vapour generation techniques, offers both sensitivity and specificity. Developments in the design of specified atomic fluorescence detectors for mercury, for the hydride-forming elements and also for cadmium, are described in this paper. Each of these systems is capable of analysing samples in the part per trillion (ppt) range reliably and economically. Several analytical applications are described. PMID:18924964
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.
Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
Rai, Prashant Kumar; Srivastava, Amrita Kumari; Sharma, Bechan; Dhar, Preeti; Mishra, Ajay Kumar; Watal, Geeta
2013-01-01
The demand for interdisciplinary research is increasing in the new millennium to help us understand complex problems and find solutions by integrating the knowledge from different disciplines. The present review is an excellent example of this and shows how unique combination of physics, chemistry, and biological techniques can be used for the evaluation of Indian medicinal herbs used for treating diabetes mellitus. Laser-induced breakdown spectroscopy (LIBS) is a sensitive optical technique that is widely used for its simplicity and versatility. This review presents the most recent application of LIBS for detection of glycemic elements in medicinal plants. The characteristics of matrices, object analysis, use of laser system, and analytical performances with respect to Indian herbs are discussed. PMID:24228060
Thermoelectric infrared imaging sensors for automotive applications
NASA Astrophysics Data System (ADS)
Hirota, Masaki; Nakajima, Yasushi; Saito, Masanori; Satou, Fuminori; Uchiyama, Makoto
2004-07-01
This paper describes three low-cost thermoelectric infrared imaging sensors having a 1,536, 2,304, and 10,800 element thermoelectric focal plane array (FPA) respectively and two experimental automotive application systems. The FPAs are basically fabricated with a conventional IC process and micromachining technologies and have a low cost potential. Among these sensors, the sensor having 2,304 elements provide high responsivity of 5,500 V/W and a very small size with adopting a vacuum-sealed package integrated with a wide-angle ZnS lens. One experimental system incorporated in the Nissan ASV-2 is a blind spot pedestrian warning system that employs four infrared imaging sensors. This system helps alert the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person"s body. The system can also prevent the vehicle from moving in the direction of the pedestrian. The other is a rearview camera system with an infrared detection function. This system consists of a visible camera and infrared sensors, and it helps alert the driver to the presence of a pedestrian in a rear blind spot. Various issues that will need to be addressed in order to expand the automotive applications of IR imaging sensors in the future are also summarized. This performance is suitable for consumer electronics as well as automotive applications.
NASA Astrophysics Data System (ADS)
Zivkovic, Sanja; Momcilovic, Milos; Staicu, Angela; Mutic, Jelena; Trtica, Milan; Savovic, Jelena
2017-02-01
The aim of this study was to develop a simple laser induced breakdown spectroscopy (LIBS) method for quantitative elemental analysis of powdered biological materials based on laboratory prepared calibration samples. The analysis was done using ungated single pulse LIBS in ambient air at atmospheric pressure. Transversely-Excited Atmospheric pressure (TEA) CO2 laser was used as an energy source for plasma generation on samples. The material used for the analysis was a blue-green alga Spirulina, widely used in food and pharmaceutical industries and also in a few biotechnological applications. To demonstrate the analytical potential of this particular LIBS system the obtained spectra were compared to the spectra obtained using a commercial LIBS system based on pulsed Nd:YAG laser. A single sample of known concentration was used to estimate detection limits for Ba, Ca, Fe, Mg, Mn, Si and Sr and compare detection power of these two LIBS systems. TEA CO2 laser based LIBS was also applied for quantitative analysis of the elements in powder Spirulina samples. Analytical curves for Ba, Fe, Mg, Mn and Sr were constructed using laboratory produced matrix-matched calibration samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used as the reference technique for elemental quantification, and reasonably well agreement between ICP and LIBS data was obtained. Results confirm that, in respect to its sensitivity and precision, TEA CO2 laser based LIBS can be successfully applied for quantitative analysis of macro and micro-elements in algal samples. The fact that nearly all classes of materials can be prepared as powders implies that the proposed method could be easily extended to a quantitative analysis of different kinds of materials, organic, biological or inorganic.
UV-sensitive scientific CCD image sensors
NASA Astrophysics Data System (ADS)
Vishnevsky, Grigory I.; Kossov, Vladimir G.; Iblyaminova, A. F.; Lazovsky, Leonid Y.; Vydrevitch, Michail G.
1997-06-01
An investigation of probe laser irradiation interaction with substances containing in an environment has long since become a recognized technique for contamination detection and identification. For this purpose, a near and midrange-IR laser irradiation is traditionally used. However, as many works presented on last ecology monitoring conferences show, in addition to traditional systems, rapidly growing are systems with laser irradiation from near-UV range (250 - 500 nm). Use of CCD imagers is one of the prerequisites for this allowing the development of a multi-channel computer-based spectral research system. To identify and analyze contaminating impurities on an environment, such methods as laser fluorescence analysis, UV absorption and differential spectroscopy, Raman scattering are commonly used. These methods are used to identify a large number of impurities (petrol, toluene, Xylene isomers, SO2, acetone, methanol), to detect and identify food pathogens in real time, to measure a concentration of NH3, SO2 and NO in combustion outbursts, to detect oil products in a water, to analyze contaminations in ground waters, to define ozone distribution in the atmosphere profile, to monitor various chemical processes including radioactive materials manufacturing, heterogeneous catalytic reactions, polymers production etc. Multi-element image sensor with enhanced UV sensitivity, low optical non-uniformity, low intrinsic noise and high dynamic range is a key element of all above systems. Thus, so called Virtual Phase (VP) CCDs possessing all these features, seems promising for ecology monitoring spectral measuring systems. Presently, a family of VP CCDs with different architecture and number of pixels is developed and being manufactured. All CCDs from this family are supported with a precise slow-scan digital image acquisition system that can be used in various image processing systems in astronomy, biology, medicine, ecology etc. An image is displayed directly on a PC monitor through a software support.
Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
Gondal, Mohammed Ashraf; Dastageer, Mohamed A.
The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.
Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori
2012-01-01
Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.
Airborne Systems Technology Application to the Windshear Threat
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.
1996-01-01
The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.
Noyes, Noelle R; Weinroth, Maggie E; Parker, Jennifer K; Dean, Chris J; Lakin, Steven M; Raymond, Robert A; Rovira, Pablo; Doster, Enrique; Abdo, Zaid; Martin, Jennifer N; Jones, Kenneth L; Ruiz, Jaime; Boucher, Christina A; Belk, Keith E; Morley, Paul S
2017-10-17
Shotgun metagenomic sequencing is increasingly utilized as a tool to evaluate ecological-level dynamics of antimicrobial resistance and virulence, in conjunction with microbiome analysis. Interest in use of this method for environmental surveillance of antimicrobial resistance and pathogenic microorganisms is also increasing. In published metagenomic datasets, the total of all resistance- and virulence-related sequences accounts for < 1% of all sequenced DNA, leading to limitations in detection of low-abundance resistome-virulome elements. This study describes the extent and composition of the low-abundance portion of the resistome-virulome, using a bait-capture and enrichment system that incorporates unique molecular indices to count DNA molecules and correct for enrichment bias. The use of the bait-capture and enrichment system significantly increased on-target sequencing of the resistome-virulome, enabling detection of an additional 1441 gene accessions and revealing a low-abundance portion of the resistome-virulome that was more diverse and compositionally different than that detected by more traditional metagenomic assays. The low-abundance portion of the resistome-virulome also contained resistance genes with public health importance, such as extended-spectrum betalactamases, that were not detected using traditional shotgun metagenomic sequencing. In addition, the use of the bait-capture and enrichment system enabled identification of rare resistance gene haplotypes that were used to discriminate between sample origins. These results demonstrate that the rare resistome-virulome contains valuable and unique information that can be utilized for both surveillance and population genetic investigations of resistance. Access to the rare resistome-virulome using the bait-capture and enrichment system validated in this study can greatly advance our understanding of microbiome-resistome dynamics.
Electrochemical sensor/detector system and method
Glass, Robert S.; Perone, Sam P.; Ciarlo, Dino R.; Kimmons, James F.
1992-01-01
An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.
Electrochemical sensor/detector system and method
Glass, Robert S.; Perone, Sam P.; Ciarlo, Dino R.; Kimmons, James F.
1994-01-01
An electrochemical detection system is described comprising in combination: (a) a multielement, microelectrode array detector containing means for acquiring a plurality of signals; (b) electronic means for receiving said signals and converting said signals into a readout or display providing information with respect to the nature and concentration of elements present in a solution being tested. Also described is the means of making the above described microelectrode detector.
Analysis of Vibrational Harmonic Response for Printing Double-Sheet Detecting System via ANSYS
NASA Astrophysics Data System (ADS)
Guo, Qiang; Cai, Ji-Fei; Wang, Yan; Zhang, Yang
In order to explore the influence of the harmonic response of system vibration upon the stability of the double-sheet detector system, the mathematical model of vibrational system is established via the mechanical dynamic theory. Vibrational system of double-sheet detector is studied by theoretical modeling, and the dynamic simulation to obtain the amplitude/phase frequency response curve of the system based on ANSYS is completed to make a comparison with the theoretical results. It is shown that the theoretical value is basically consistent with that calculated through ANSYS. Conclusion vibrational characteristics of double-sheet detection system is obtained quickly and accurately, and propound solving measures by some crucial factors, such as the harmonic load, mass and stiffness, which will affect the vibration of the system, contribute to the finite element method is applied to the complex multiple-degree-of-freedom system.
Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen
2012-07-15
We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.
NASA Technical Reports Server (NTRS)
Cleary, T.; Grosshandler, W.
1999-01-01
As part of the National Aeronautics and Space Administration (NASA) initiated program on global civil aviation, NIST is assisting Federal Aviation Administration in its research to improve fire detection in aircraft cargo compartments. Aircraft cargo compartment detection certification methods have been reviewed. The Fire Emulator-Detector Evaluator (FE/DE) has been designed to evaluate fire detection technologies such as new sensors, multi-element detectors, and detectors that employ complex algorithms. The FE/DE is a flow tunnel that can reproduce velocity, temperature, smoke, and Combustion gas levels to which a detector might be exposed during a fire. A scientific literature survey and patent search have been conducted relating to existing and emerging fire detection technologies, and the potential use of new fire detection strategies in cargo compartment areas has been assessed. In the near term, improved detector signal processing and multi-sensor detectors based on combinations of smoke measurements, combustion gases and temperature are envisioned as significantly impacting detector system performance.
2011-10-01
been developed. The next step is to develop a the base technology into a grid like mapping sensor, construct the excitation and detection circuits...the project involves advancing the base technology into a grid -like mapping se nsor, constructing the excitation and detection circuits, modifying and...further. In conclusion, the screen printing and etching process allows for precise repeat able production of sensing elements for grid fabrication
Process-Induced Carbon and Sub-Layer in SiC/BN/SiC Composites: Characterization and Consequences
NASA Technical Reports Server (NTRS)
Ogbuji, L. U. J. T; Wheeler, D. R.; McCue, T. R.
2001-01-01
Following our detection of films of elemental carbon in the Hi-Nicalon TM/BN/SiC composite and its deleterious effect on oxidative durability, we have examined other SiC/BN/SiC systems. The problem is pervasive, and significant residues of free carbon are confirmed in Sylramic /BN/SiC materials. Effective techniques for routine detection and characterization of adventitious carbon in SiC/BN/SiC composites are discussed.
Automatic Clustering of Rolling Element Bearings Defects with Artificial Neural Network
NASA Astrophysics Data System (ADS)
Antonini, M.; Faglia, R.; Pedersoli, M.; Tiboni, M.
2006-06-01
The paper presents the optimization of a methodology for automatic clustering based on Artificial Neural Networks to detect the presence of defects in rolling bearings. The research activity was developed in co-operation with an Italian company which is expert in the production of water pumps for automotive use (Industrie Saleri Italo). The final goal of the work is to develop a system for the automatic control of the pumps, at the end of the production line. In this viewpoint, we are gradually considering the main elements of the water pump, which can cause malfunctioning. The first elements we have considered are the rolling bearing, a very critic component for the system. The experimental activity is based on the vibration measuring of rolling bearings opportunely damaged; vibration signals are in the second phase elaborated; the third and last phase is an automatic clustering. Different signal elaboration techniques are compared to optimize the methodology.
Gamma signatures of the C-BORD Tagged Neutron Inspection System
NASA Astrophysics Data System (ADS)
Sardet, A.; Pérot, B.; Carasco, C.; Sannié, G.; Moretto, S.; Nebbia, G.; Fontana, C.; Pino, F.; Iovene, A.; Tintori, C.
2018-01-01
In the frame of C-BORD project (H2020 program of the EU), a Rapidly relocatable Tagged Neutron Inspection System (RRTNIS) is being developed to non-intrusively detect explosives, chemical threats, and other illicit goods in cargo containers. Material identification is performed through gamma spectroscopy, using twenty NaI detectors and four LaBr3 detectors, to determine the different elements composing the inspected item from their specific gamma signatures induced by fast neutrons. This is performed using an unfolding algorithm to decompose the energy spectrum of a suspect item, selected by X-ray radiography and on which the RRTNIS inspection is focused, on a database of pure element gamma signatures. This paper reports on simulated signatures for the NaI and LaBr3 detectors, constructed using the MCNP6 code. First experimental spectra of a few elements of interest are also presented.
Broadband Tomography System: Direct Time-Space Reconstruction Algorithm
NASA Astrophysics Data System (ADS)
Biagi, E.; Capineri, Lorenzo; Castellini, Guido; Masotti, Leonardo F.; Rocchi, Santina
1989-10-01
In this paper a new ultrasound tomographic image algorithm is presented. A complete laboratory system is built up to test the algorithm in experimental conditions. The proposed system is based on a physical model consisting of a bidimensional distribution of single scattering elements. Multiple scattering is neglected, so Born approximation is assumed. This tomographic technique only requires two orthogonal scanning sections. For each rotational position of the object, data are collected by means of the complete data set method in transmission mode. After a numeric envelope detection, the received signals are back-projected in the space-domain through a scalar function. The reconstruction of each scattering element is accomplished by correlating the ultrasound time of flight and attenuation with the points' loci given by the possible positions of the scattering element. The points' locus is represented by an ellipse with the focuses located on the transmitter and receiver positions. In the image matrix the ellipses' contributions are coherently summed in the position of the scattering element. Computer simulations of cylindrical-shaped objects have pointed out the performances of the reconstruction algorithm. Preliminary experimental results show the laboratory system features. On the basis of these results an experimental procedure to test the confidence and repeatability of ultrasonic measurements on human carotid vessel is proposed.
NASA Technical Reports Server (NTRS)
Figueroa, Jorge Fernando
2008-01-01
In February of 2008; NASA Stennis Space Center (SSC), NASA Kennedy Space Center (KSC), and The Applied Research Laboratory at Penn State University demonstrated a pilot implementation of an Integrated System Health Management (ISHM) capability at the Launch Complex 20 of KSC. The following significant accomplishments are associated with this development: (1) implementation of an architecture for ground operations ISHM, based on networked intelligent elements; (2) Use of standards for management of data, information, and knowledge (DIaK) leading to modular ISHM implementation with interoperable elements communicating according to standards (three standards were used: IEEE 1451 family of standards for smart sensors and actuators, Open Systems Architecture for Condition Based Maintenance (OSA-CBM) standard for communicating DIaK describing the condition of elements of a system, and the OPC standard for communicating data); (3) ISHM implementation using interoperable modules addressing health management of subsystems; and (4) use of a physical intelligent sensor node (smart network element or SNE capable of providing data and health) along with classic sensors originally installed in the facility. An operational demonstration included detection of anomalies (sensor failures, leaks, etc.), determination of causes and effects, communication among health nodes, and user interfaces.
Enhanced radiation detectors using luminescent materials
Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.
2001-01-01
A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-01-01
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-04-29
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.
On-chip RF-to-optical transducer (Conference Presentation)
NASA Astrophysics Data System (ADS)
Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S.
2016-04-01
Recent advances in the fabrication of nano- and micromechanical elements enable the realization of high-quality mechanical resonators with masses so small that the forces from optical photons can have a significant impact on their motion. This facilitates a strong interaction between mechanical motion and light, or phonons and photons. This interaction is the corner stone of the field of optomechanics and allows, for example, for ultrasensitive detection and manipulation of mechanical motion using laser light. Remarkably, today these techniques can be extended into the quantum regime, in which fundamental fluctuations of light and mechanics govern the system's behavior. Micromechanical elements can also interact strongly with other physical systems, which is the central aspect of many micro-electro-mechanical based sensors. Micromechanical elements can therefore act as a bridge between these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical interferometer. The coupling was mediated by a mechanical oscillator forming a mechanically compliant capacitor biased with a DC voltage. The latter enhances the electromechanical interaction all the way to the strong coupling regime. That scheme allowed optical detection of electronic signals with effective noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication techniques. We will furthermore present ongoing work to couple our transducer to an RF or microwave antenna, for low-noise detection of electromagnetic signals, including sensitive measurements of magnetic fields in an MRI detector. Suppression of thermomechanical noise is a key feature of electro-optomechanical transducers, and, more generally, hybrid systems involving mechanical degrees of freedom. We have shown that engineering of the phononic density of states allows improved isolation of the relevant mechanical modes from their thermal bath [2], enabling coherence times sufficient to realize quantum-coherent optomechanical coupling. This proves the potential of the employed platform for complex transducers all the way into the quantum regime. References: [1] Bagci et al, Nature 507, 81-85, (06 March 2014) [2] Tsaturyan, et al., Optics Express, Vol. 22, Issue 6, pp. 6810-6821 (2014)
Fault Analysis and Detection in Microgrids with High PV Penetration
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Khatib, Mohamed; Hernandez Alvidrez, Javier; Ellis, Abraham
In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgridmore » modes of operation.« less
Low-cost thermo-electric infrared FPAs and their automotive applications
NASA Astrophysics Data System (ADS)
Hirota, Masaki; Ohta, Yoshimi; Fukuyama, Yasuhiro
2008-04-01
This paper describes three low-cost infrared focal plane arrays (FPAs) having a 1,536, 2,304, and 10,800 elements and experimental vehicle systems. They have a low-cost potential because each element consists of p-n polysilicon thermocouples, which allows the use of low-cost ultra-fine microfabrication technology commonly employed in the conventional semiconductor manufacturing processes. To increase the responsivity of FPA, we have developed a precisely patterned Au-black absorber that has high infrared absorptivity of more than 90%. The FPA having a 2,304 elements achieved high resposivity of 4,300 V/W. In order to reduce package cost, we developed a vacuum-sealed package integrated with a molded ZnS lens. The camera aiming the temperature measurement of a passenger cabin is compact and light weight devices that measures 45 x 45 x 30 mm and weighs 190 g. The camera achieves a noise equivalent temperature deviation (NETD) of less than 0.7°C from 0 to 40°C. In this paper, we also present a several experimental systems that use infrared cameras. One experimental system is a blind spot pedestrian warning system that employs four infrared cameras. It can detect the infrared radiation emitted from a human body and alerts the driver when a pedestrian is in a blind spot. The system can also prevent the vehicle from moving in the direction of the pedestrian. Another system uses a visible-light camera and infrared sensors to detect the presence of a pedestrian in a rear blind spot and alerts the driver. The third system is a new type of human-machine interface system that enables the driver to control the car's audio system without letting go of the steering wheel. Uncooled infrared cameras are still costly, which limits their automotive use to high-end luxury cars at present. To promote widespread use of IR imaging sensors on vehicles, we need to reduce their cost further.
Mechery, Shelly John [Mississippi State, MS; Singh, Jagdish P [Starkville, MS
2007-07-03
A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.
Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector
NASA Astrophysics Data System (ADS)
Jones, James L.
1997-02-01
The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.
Fatigue crack detection and identification by the elastic wave propagation method
NASA Astrophysics Data System (ADS)
Stawiarski, Adam; Barski, Marek; Pająk, Piotr
2017-05-01
In this paper the elastic wave propagation phenomenon was used to detect the initiation of the fatigue damage in isotropic plate with a circular hole. The safety and reliability of structures mostly depend on the effectiveness of the monitoring methods. The Structural Health Monitoring (SHM) system based on the active pitch-catch measurement technique was proposed. The piezoelectric (PZT) elements was used as an actuators and sensors in the multipoint measuring system. The comparison of the intact and defected structures has been used by damage detection algorithm. One part of the SHM system has been responsible for detection of the fatigue crack initiation. The second part observed the evolution of the damage growth and assess the size of the defect. The numerical results of the wave propagation phenomenon has been used to present the effectiveness and accuracy of the proposed method. The preliminary experimental analysis has been carried out during the tension test of the aluminum plate with a circular hole to determine the efficiency of the measurement technique.
The Corralitos Observatory program for the detection of lunar transient phenomena
NASA Technical Reports Server (NTRS)
Hynek, J. A.; Dunlap, J. R.; Hendry, E. M.
1976-01-01
This is a final report on the establishment, observing procedures, and observational results of a survey program for the detection of lunar transient phenomena (LTP's) by electro-optical image conversion means. For survey, a unique detection system with an image orthicon was used as the primary element in conjunction with a 24-in. f/20 Cassegrainian telescope. Observations in three spectral ranges, with 6,466 man-hours of observing, were actually performed during the period from October 27, 1965, to April 26, 1972. Within this entire period, no color or feature change within the detection capabilities of the instrumentation was observed, either independently or in follow up of amateur LTP reports, with the exception of one general bluing and several localized bluings (probably ascribable to the effects of the terrestrial atmosphere) that were observed solely by the Corralitos system. A table is presented indicating amateur and professional reports of LTP's and the results of efforts to confirm these reports through the Corralitos system.
NASA Astrophysics Data System (ADS)
Prochazka, David; Bilík, Martin; Prochazková, Petra; Brada, Michal; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef
2016-04-01
Identification of the position, length and mainly beginning of a braking track has proven to be essential for determination of causes of a road traffic accident. With the introduction of modern safety braking systems and assistance systems such as the Anti-lock Braking System (ABS) or Electronic Stability Control (ESC), the visual identification of braking tracks that has been used up until the present is proving to be rather complicated or even impossible. This paper focuses on identification of braking tracks using a spectrochemical analysis of the road surface. Laser-Induced Breakdown Spectroscopy (LIBS) was selected as a method suitable for fast in-situ element detection. In the course of detailed observations of braking tracks it was determined that they consist of small particles of tire treads that are caught in intrusions in the road surface. As regards detection of the "dust" resulting from wear and tear of tire treads in the environment, organic zinc was selected as the identification element in the past. The content of zinc in tire treads has been seen to differ with regard to various sources and tire types; however, the arithmetic mean and modus of these values are approximately 1% by weight. For in-situ measurements of actual braking tracks a mobile LIBS device equipped with a special module was used. Several measurements were performed for 3 different cars and tire types respectively which slowed down with full braking power. Moreover, the influence of different initial speed, vehicle mass and braking track length on detected signal is discussed here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu
A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less
Biosensors for the Detection of Antibiotics in Poultry Industry—A Review
Mungroo, Nawfal Adam; Neethirajan, Suresh
2014-01-01
Antibiotic resistance is emerging as a potential threat in the next decades. This is a global phenomenon whereby globalization is acting as a catalyst. Presently, the most common techniques used for the detection of antibiotics are biosensors, ELISA and liquid chromatography—mass spectrometry. Each of these techniques has its benefits as well as drawbacks. This review aims to evaluate different biosensing techniques and their working principles in order to accurately, quickly and practically detect antibiotics in chicken muscle and blood serum. The review is divided into three main sections, namely: a biosensors overview, a section on biosensor recognition and a section on biosensor transducing elements. The first segment provides a detailed overview on the different techniques available and their respective advantages and disadvantages. The second section consists of an evaluation of several analyte systems and their mechanisms. The last section of this review studies the working principles of biosensing transducing elements, focusing mainly on surface plasmon resonance (SPR) technology and its applications in industries. PMID:25587435
PELAN: a pulsed neutron portable probe for UXO and land mine identification
NASA Astrophysics Data System (ADS)
Vourvopoulos, George; Womble, Phillip C.; Paschal, Jonathon
2000-12-01
There has been much work increasing the sensitivity of detecting metallic objects in soils and other environments. This has lead to a problem in discriminating unexploded ordnance (UXO) and landmines form other metallic clutter. PELAN is a small portable system for the detection of explosives. PELAN weights less than 45 kg and is man portable. It is based on the principle that explosives and other contraband contain various chemical elements such as H, C, N, O, etc. in quantities and ratios that differentiate them from other innocuous substances. The pulsed neutrons are produced with a 14 MeV neutron generator. Separate gamma-ray spectra form fast neutron, thermal neutron and activation reactions are accumulated and analyzed to determine elemental content. The data analysis is performed in an automatic manner and a result of whether a threat is present is returned to the operator. PELAN has successfully undergone field demonstrations for explosive detection. In this paper, we will discuss the application of PELAN to the problem of differentiating threats from metallic clutter.
USDA-ARS?s Scientific Manuscript database
Background: The presence of Multi-Drug Resistant (MDR) Salmonella in food animals is concerning. To understand how antimicrobial resistance (AR) develops, the genetic elements responsible for MDR phenotypes in Salmonella animal isolates were investigated. National Antimicrobial Resistance Monitoring...
DIYA: A Bacterial Annotation Pipeline for any Genomics Lab
2009-02-12
make more modules available. Functions we are looking to add to the DIYA pipeline include software for detection of prophages, CRISPR elements (Sorek...R. et al. (2008) CRISPR –a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol., 6, 181
Analyte sensing mediated by adapter/carrier molecules
Bayley, Hagan; Braha, Orit; Gu, LiQun
2002-07-30
This invention relates to an improved method and system for sensing of one or more analytes. A host molecule, which serves as an adapter/carrier, is used to facilitate interaction between the analyte and the sensor element. A detectable signal is produced reflecting the identity and concentration of analyte present.
Advances in HPLC-ICP-MS interface techniques for metal speciation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, S.J.
The relentless demand for lower detection limits is increasingly coupled to the requirement for elemental speciation. This is particularly true in environmental and clinical fields where total levels are often insufficient for mobility and toxicity studies. This demand for both qualitative and quantitative data on the individual species present in complex samples has led to the development of various interfaces to couple some form of chromatography, usually gas chromatography (GC) or high performance liquid chromatography (HPLC) to an element specific detector. Today inductively coupled plasma-mass spectrometry is often employed since it offers excellent detection limits, element specific information (including isotopicmore » data) and the potential for multi-element studies. Ms presentation will concentrate on HPLC couplings although the advantages and disadvantages of both GC and HPLC couplings to ICP-MS will be discussed. Particular attention will be given to the optimization of both the chromatography and detection systems. Details will be presented of several successful HPLC interface designs and ways of facilitating high levels of a range of organic solvents (e.g. methanol and THF) in the HPLC mobile phase will be highlighted. The advantages of using a sheath gas and practical ways of achieving this will also be discussed. Finally the use of isotope dilution analysis in conjunction with HPLC-ICP-MS will be outlined. In all cases the impact of using the most appropriate approach will be demonstrated using both environmental and clinical samples.« less
The application of signal detection theory to optics
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1971-01-01
The restoration of images focused on a photosensitive surface is treated from the standpoint of maximum likelihood estimation, taking into account the Poisson distributions of the observed data, which are the numbers of photoelectrons from various elements of the surface. A detector of an image focused on such a surface utilizes a certain linear combination of those numbers as the optimum detection statistic. Methods for calculating the false alarm and detection probabilities are proposed. It is shown that measuring noncommuting observables in an ideal quantum receiver cannot yield a lower Bayes cost than that attainable by a system measuring only commuting observables.
Underground pipeline laying using the pipe-in-pipe system
NASA Astrophysics Data System (ADS)
Antropova, N.; Krets, V.; Pavlov, M.
2016-09-01
The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.
NASA Astrophysics Data System (ADS)
Seagraves, P. H.; Elmore, David F.
1994-09-01
Systems using optical elements such as linear polarizers, retarders, and mirrors can be represented by Mueller matrices. Some polarimeters include elements with time-varying polarization properties, multiple light beams, light detectors, and signal processing equipment. Standard Mueller matrix forms describing time-varying retarders, and beam splitters are presented, as well as non-Mueller matrices which describe detection and signal processing. These matrices provide a compact and intuitive mathematical description of polarimeter response which can aid in the refining of instrument designs.
Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao
2018-02-19
Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.
A wide field-of-view microscope based on holographic focus grid
NASA Astrophysics Data System (ADS)
Wu, Jigang; Cui, Xiquan; Zheng, Guoan; Lee, Lap Man; Yang, Changhuei
2010-02-01
We have developed a novel microscope technique that can achieve wide field-of-view (FOV) imaging and yet possess resolution that is comparable to conventional microscope. The principle of wide FOV microscope system breaks the link between resolution and FOV magnitude of traditional microscopes. Furthermore, by eliminating bulky optical elements from its design and utilizing holographic optical elements, the wide FOV microscope system is more cost-effective. In our system, a hologram was made to focus incoming collimated beam into a focus grid. The sample is put in the focal plane and the transmissions of the focuses are detected by an imaging sensor. By scanning the incident angle of the incoming beam, the focus grid will scan across the sample and the time-varying transmission can be detected. We can then reconstruct the transmission image of the sample. The resolution of microscopic image is limited by the size of the focus formed by the hologram. The scanning area of each focus spot is determined by the separation of the focus spots and can be made small for fast imaging speed. We have fabricated a prototype system with a 2.4-mm FOV and 1-μm resolution. The prototype system was used to image onion skin cells for a demonstration. The preliminary experiments prove the feasibility of the wide FOV microscope technique, and the possibility of a wider FOV system with better resolution.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1992-01-01
Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.
Neutron Interrogation System For Underwater Threat Detection And Identification
NASA Astrophysics Data System (ADS)
Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.
2009-03-01
Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.
NASA Astrophysics Data System (ADS)
Wegrzecki, Maciej; Bar, Jan; Budzyński, Tadeusz; CieŻ, Michal; Grabiec, Piotr; Kozłowski, Roman; Kulawik, Jan; Panas, Andrzej; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecka, Iwona; Wielunski, Marek; Witek, Krzysztof; Yakushev, Alexander; Zaborowski, Michał
2013-07-01
The paper discusses the design of charged-particle detectors commissioned and developed at the Institute of Electron Technology (ITE) in collaboration with foreign partners, used in international research on transactinide elements and to build personal radiation protection devices in Germany. Properties of these detectors and the results obtained using the devices are also presented. The design of the following epiplanar detector structures is discussed: ♢ 64-element chromatographic arrays for the COMPACT (Cryo On-line Multidetector for Physics And Chemistry of Transactinides) detection system used at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt (GSI) for research on Hassium, Copernicium and Flerovium, as well as elements 119 and 120, ♢ 2-element flow detectors for the COLD (Cryo On-Line Detector) system used for research on Copernicium and Flerovium at the Joint Institute for Nuclear Research, Dubna, ♢ detectors for a radon exposimeter and sensors for a neutron dosimeter developed at the Institut für Strahlenschutz, Helmholtz Zentrum München. The design of planar detectors - single-sided and double-sided strip detectors for the Focal Plane Detector Box used at GSI for research on Flerovium and elements 119 and 120 is also discussed.
Built-in active sensing diagnostic system for civil infrastructure systems
NASA Astrophysics Data System (ADS)
Wu, Fan; Chang, Fu-Kuo
2001-07-01
A reliable, robust monitoring system can improve the maintenance of and provide safety protection for civil structures and therefore prolong their service lives. A built-in, active sensing diagnostic technique for civil structures has been under investigation. In this technique, piezoelectric materials are used as sensors/actuators to receive and generate signals. The transducers are embedded in reinforced concrete (RC) beams and are designed to detect damage, particularly debonding damage between the reinforcing bars and concrete. This paper presents preliminary results from a feasibility study of the technology. Laboratory experiments performed on RC beams, with piezo-electric sensors and actuators mounted on reinforced steel bars, have clearly demonstrated that the proposed technique could detect debonding damage. Analytical work, using a special purpose finite-element software, PZFlex, was also conducted to interpret the relationship between the measured data and actual debonding damage. Effectiveness of the proposed technique for detecting debonding damage in civil structures has been demonstrated.
NASA Technical Reports Server (NTRS)
Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.
1992-01-01
The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.
ORNL actinide materials and a new detection system for superheavy nuclei
NASA Astrophysics Data System (ADS)
Rykaczewski, Krzysztof P.; Roberto, James B.; Brewer, Nathan T.; Utyonkov, Vladimir K.
2016-12-01
The actinide resources and production capabilities at Oak Ridge National Laboratory (ORNL) are reviewed, including potential electromagnetic separation of rare radioactive materials. The first experiments at the Dubna Gas Filled Recoil Separator (DGFRS) with a new digital detection system developed at ORNL and University of Tennessee Knoxville (UTK) are presented. These studies used 240Pu material provided by ORNL and mixed-Cf targets made at ORNL. The proposal to use an enriched 251Cf target and a large dose of 58Fe beam to reach the N = 184 shell closure and to observe new elements with Z = 124, 122 and 120 is discussed.
NASA Astrophysics Data System (ADS)
Darker, Iain T.; Kuo, Paul; Yang, Ming Yuan; Blechko, Anastassia; Grecos, Christos; Makris, Dimitrios; Nebel, Jean-Christophe; Gale, Alastair G.
2009-05-01
Findings from the current UK national research programme, MEDUSA (Multi Environment Deployable Universal Software Application), are presented. MEDUSA brings together two approaches to facilitate the design of an automatic, CCTV-based firearm detection system: psychological-to elicit strategies used by CCTV operators; and machine vision-to identify key cues derived from camera imagery. Potentially effective human- and machine-based strategies have been identified; these will form elements of the final system. The efficacies of these algorithms have been tested on staged CCTV footage in discriminating between firearms and matched distractor objects. Early results indicate the potential for this combined approach.
Burchett, John; Shankar, Mohan; Hamza, A Ben; Guenther, Bob D; Pitsianis, Nikos; Brady, David J
2006-05-01
We use pyroelectric detectors that are differential in nature to detect motion in humans by their heat emissions. Coded Fresnel lens arrays create boundaries that help to localize humans in space as well as to classify the nature of their motion. We design and implement a low-cost biometric tracking system by using off-the-shelf components. We demonstrate two classification methods by using data gathered from sensor clusters of dual-element pyroelectric detectors with coded Fresnel lens arrays. We propose two algorithms for person identification, a more generalized spectral clustering method and a more rigorous example that uses principal component regression to perform a blind classification.
In-flight Fault Detection and Isolation in Aircraft Flight Control Systems
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann
2005-01-01
In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.
Crack detection and fatigue related delamination in FRP composites applied to concrete
NASA Astrophysics Data System (ADS)
Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew
2008-03-01
Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.
[Prokaryotic expression systems].
Porowińska, Dorota; Wujak, Magdalena; Roszek, Katarzyna; Komoszyński, Michał
2013-03-01
For overproduction of recombinant proteins both eukaryotic and prokaryotic expression systems are used. Choosing the right system depends, among other things, on the growth rate and culture of host cells, level of the target gene expression and posttranslational processing of the synthesized protein. Regardless of the type of expression system, its basic elements are the vector and the expression host. The most widely used system for protein overproduction, both on a laboratory and industrial scale, is the prokaryotic system. This system is based primarily on the bacteria E. coli, although increasingly often Bacillus species are used. The prokaryotic system allows one to obtain large quantities of recombinant proteins in a short time. A simple and inexpensive bacterial cell culture and well-known mechanisms of transcription and translation facilitate the use of these microorganisms. The simplicity of genetic modifications and the availability of many bacterial mutants are additional advantages of the prokaryotic system. In this article we characterize the structural elements of prokaryotic expression vectors. Also strategies for preparation of the target protein gene that increase productivity, facilitate detection and purification of recombinant protein and provide its activity are discussed. Bacterial strains often used as host cells in expression systems as well as the potential location of heterologous proteins are characterized. Knowledge of the basic elements of the prokaryotic expression system allows for production of biologically active proteins in a short time and in satisfactory quantities.
NASA Astrophysics Data System (ADS)
Atta Yaseen, Amer; Bayart, Mireille
2017-01-01
In this work, a new approach will be introduced as a development for the attack-tolerant scheme in the Networked Control System (NCS). The objective is to be able to detect an attack such as the Stuxnet case where the controller is reprogrammed and hijacked. Besides the ability to detect the stealthy controller hijacking attack, the advantage of this approach is that there is no need for a priori mathematical model of the controller. In order to implement the proposed scheme, a specific detector for the controller hijacking attack is designed. The performance of this scheme is evaluated be connected the detector to NCS with basic security elements such as Data Encryption Standard (DES), Message Digest (MD5), and timestamp. The detector is tested along with networked PI controller under stealthy hijacking attack. The test results of the proposed method show that the hijacked controller can be significantly detected and recovered.
Fall prevention walker during rehabilitation
NASA Astrophysics Data System (ADS)
Tee, Kian Sek; E, Chun Zhi; Saim, Hashim; Zakaria, Wan Nurshazwani Wan; Khialdin, Safinaz Binti Mohd; Isa, Hazlita; Awad, M. I.; Soon, Chin Fhong
2017-09-01
This paper proposes on the design of a walker for the prevention of falling among elderlies or patients during rehabilitation whenever they use a walker to assist them. Fall happens due to impaired balance or gait problem. The assistive device is designed by applying stability concept and an accelerometric fall detection system is included. The accelerometric fall detection system acts as an alerting device that acquires body accelerometric data and detect fall. Recorded accelerometric data could be useful for further assessment. Structural strength of the walker was verified via iterations of simulation using finite element analysis, before being fabricated. Experiments were conducted to identify the fall patterns using accelerometric data. The design process and detection of fall pattern demonstrates the design of a walker that could support the user without fail and alerts the helper, thus salvaging the users from injuries due to fall and unattended situation.
NASA Astrophysics Data System (ADS)
Yong, Cheng
2018-03-01
The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher Thomas
2014-08-26
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G; Tringe, Joseph W
2014-12-02
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.
2016-08-02
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture configured to receive first light from a scene input, a second input aperture configured to receive second light from a local oscillator input, a broadband local oscillator configured to provide the second light to the second input aperture, a dispersive element configured to disperse the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
Shang, Fengjun; Muimhneacháin, Eoin Ó; Jerry Reen, F; Buzid, Alyah; O'Gara, Fergal; Luong, John H T; Glennon, Jeremy D; McGlacken, Gerard P
2014-10-01
Pseudomonas aeruginosa uses a hierarchical cell-cell communication system consisting of a number of regulatory elements to coordinate the expression of bacterial virulence genes. Sensitive detection of quorum sensing (QS) molecules has the potential for early identification of P. aeruginosa facilitating early medical intervention. A recently isolated cell-cell communication molecule, a thiazole termed IQS, can bypass the las QS system of P. aeruginosa under times of stress, activating a subset of QS-controlled genes. This compound offers a new target for pathogen detection and has been prepared in a one step protocol. A simple electrochemical strategy was employed for its sensitive detection using boron-doped diamond and glassy carbon electrodes by cyclic voltammetry and amperometry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cybersecurity for aerospace autonomous systems
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2015-05-01
High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.
Interactive display system having a matrix optical detector
Veligdan, James T.; DeSanto, Leonard
2007-01-23
A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.
``Sleeping reactor`` irradiations: Shutdown reactor determination of short-lived activation products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerde, E.A.; Glasgow, D.C.
1998-09-01
At the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, the principal irradiation system has a thermal neutron flux ({phi}) of {approximately} 4 {times} 10{sup 14} n/cm{sup 2} {center_dot} s, permitting the detection of elements via irradiation of 60 s or less. Irradiations of 6 or 7 s are acceptable for detection of elements with half-lives of as little as 30 min. However, important elements such as Al, Mg, Ti, and V have half-lives of only a few minutes. At HFIR, these can be determined with irradiation times of {approximately} 6 s, but the requirement of immediate countingmore » leads to increased exposure to the high activity produced by irradiation in the high flux. In addition, pneumatic system timing uncertainties (about {+-} 0.5 s) make irradiations of < 6 s less reliable. Therefore, the determination of these ultra-short-lived species in mixed matrices has not generally been made at HFIR. The authors have found that very short lived activation products can be produced easily during the period after reactor shutdown (SCRAM), but prior to the removal of spent fuel elements. During this 24- to 36-h period (dubbed the ``sleeping reactor``), neutrons are produced in the beryllium reflector by the reaction {sup 9}Be({gamma},n){sup 8}Be, the gamma rays principally originating in the spent fuel. Upon reactor SCRAM, the flux drops to {approximately} 1 {times} 10{sup 10} n/cm{sup 2} {center_dot} s within 1 h. By the time the fuel elements are removed, the flux has dropped to {approximately} 6 {times} 10{sup 8}. Such fluxes are ideal for the determination of short-lived elements such as Al, Ti, Mg, and V. An important feature of the sleeping reactor is a flux that is not constant.« less
Water-Tree Modelling and Detection for Underground Cables
NASA Astrophysics Data System (ADS)
Chen, Qi
In recent years, aging infrastructure has become a major concern for the power industry. Since its inception in early 20th century, the electrical system has been the cornerstone of an industrial society. Stable and uninterrupted delivery of electrical power is now a base necessity for the modern world. As the times march-on, however, the electrical infrastructure ages and there is the inevitable need to renew and replace the existing system. Unfortunately, due to time and financial constraints, many electrical systems today are forced to operate beyond their original design and power utilities must find ways to prolong the lifespan of older equipment. Thus, the concept of preventative maintenance arises. Preventative maintenance allows old equipment to operate longer and at better efficiency, but in order to implement preventative maintenance, the operators must know minute details of the electrical system, especially some of the harder to assess issues such water-tree. Water-tree induced insulation degradation is a problem typically associated with older cable systems. It is a very high impedance phenomenon and it is difficult to detect using traditional methods such as Tan-Delta or Partial Discharge. The proposed dissertation studies water-tree development in underground cables, potential methods to detect water-tree location and water-tree severity estimation. The dissertation begins by developing mathematical models of water-tree using finite element analysis. The method focuses on surface-originated vented tree, the most prominent type of water-tree fault in the field. Using the standard operation parameters of North American electrical systems, the water-tree boundary conditions are defined. By applying finite element analysis technique, the complex water-tree structure is broken down to homogeneous components. The result is a generalized representation of water-tree capacitance at different stages of development. The result from the finite element analysis is used to model water-tree in large system. Both empirical measurements and the mathematical model show that the impedance of early-stage water-tree is extremely large. As the result, traditional detection methods such Tan-Delta or Partial Discharge are not effective due to the excessively high accuracy requirement. A high-frequency pulse detection method is developed instead. The water-tree impedance is capacitive in nature and it can be reduced to manageable level by high-frequency inputs. The method is able to determine the location of early-stage water-tree in long-distance cables using economically feasible equipment. A pattern recognition method is developed to estimate the severity of water-tree using its pulse response from the high-frequency test method. The early-warning system for water-tree appearance is a tool developed to assist the practical implementation of the high-frequency pulse detection method. Although the equipment used by the detection method is economically feasible, it is still a specialized test and not designed for constant monitoring of the system. The test also place heavy stress on the cable and it is most effective when the cable is taken offline. As the result, utilities need a method to estimate the likelihood of water-tree presence before subjecting the cable to the specialized test. The early-warning system takes advantage of naturally occurring high-frequency events in the system and uses a deviation-comparison method to estimate the probability of water-tree presence on the cable. If the likelihood is high, then the utility can use the high-frequency pulse detection method to obtain accurate results. Specific pulse response patterns can be used to calculate the capacitance of water-tree. The calculated result, however, is subjected to margins of error due to limitations from the real system. There are both long-term and short-term methods to improve the accuracy. Computation algorithm improvement allows immediate improvement on accuracy of the capacitance estimation. The probability distribution of the calculation solution showed that improvements in waveform time-step measurement allow fundamental improves to the overall result.
NASA Technical Reports Server (NTRS)
Alvarado, U. R. (Editor); Chafaris, G.; Chestek, J.; Contrad, J.; Frippel, G.; Gulatsi, R.; Heath, A.; Hodara, H.; Kritikos, H.; Tamiyasu, K.
1980-01-01
The potential of space systems and technology for detecting and monitoring ocean oil spills and waste pollution was assessed as well as the impact of this application on communication and data handling systems. Agencies charged with responsibilities in this area were identified and their measurement requirements were ascertained in order to determine the spatial resolution needed to characterize operational and accidental discharges. Microwave and optical sensors and sensing techniques were evaluated as candidate system elements. Capabilities are described for the following: synthetic aperture radar, microwave scatterometer, passive microwave radiometer, microwave altimeter, electro-optical sensors currently used in airborne detection, existing space-based optical sensors, the thematic mapper, and the pointable optical linear array.
Optical Indoor Positioning System Based on TFT Technology.
Gőzse, István
2015-12-24
A novel indoor positioning system is presented in the paper. Similarly to the camera-based solutions, it is based on visual detection, but it conceptually differs from the classical approaches. First, the objects are marked by LEDs, and second, a special sensing unit is applied, instead of a camera, to track the motion of the markers. This sensing unit realizes a modified pinhole camera model, where the light-sensing area is fixed and consists of a small number of sensing elements (photodiodes), and it is the hole that can be moved. The markers are tracked by controlling the motion of the hole, such that the light of the LEDs always hits the photodiodes. The proposed concept has several advantages: Apart from its low computational demands, it is insensitive to the disturbing ambient light. Moreover, as every component of the system can be realized by simple and inexpensive elements, the overall cost of the system can be kept low.
Optical flip-flops in a polarization-encoded optical shadow-casting scheme.
Rizvi, R A; Zubairy, M S
1994-06-10
We propose a novel scheme that optically implements various types of binary sequential logic elements. This is based on a polarization-encoded optical shadow-casting system. The proposed system architecture is capable of implementing synchronous as well as asynchronous sequential circuits owing to the inherent structural flexibility of optical shadow casting. By employing the proposed system, we present the design and implementation schemes of a J-K flip-flop and clocked R-S and D latches. The main feature of these flip-flops is that the propagation of the signal from the input plane to the output (i.e., processing) and from the output plane to the source plane (i.e., feedback) is all optical. Consequently the efficiency of these elements in terms of speed is increased. The only electronic part in the system is the detection of the outputs and the switching of the source plane.
Operational field evaluation of the PAC-MAG man-portable magnetometer array
NASA Astrophysics Data System (ADS)
Keranen, Joe; Topolosky, Zeke; Schultz, Gregory; Miller, Jonathan
2013-06-01
Detection and discrimination of unexploded ordnance (UXO) in areas of prior conflict is of high importance to the international community and the United States government. For humanitarian applications, sensors and processing methods need to be robust, reliable, and easy to train and implement using indigenous UXO removal personnel. This paper describes system characterization, system testing, and a continental United States (CONUS) Operational Field Evaluations (OFE) of the PAC-MAG man-portable UXO detection system. System testing occurred at a government test facility in June, 2010 and December, 2011 and the OFE occurred at the same location in June, 2012. NVESD and White River Technologies personnel were present for all testing and evaluation. The PAC-MAG system is a manportable magnetometer array for the detection and characterization of ferrous UXO. System hardware includes four Cesium vapor magnetometers for detection, a Real-time Kinematic Global Position System (RTK-GPS) for sensor positioning, an electronics module for merging array data and WiFi communications and a tablet computer for transmitting and logging data. An odometer, or "hipchain" encoder, provides position information in GPS-denied areas. System software elements include data logging software and post-processing software for detection and characterization of ferrous anomalies. The output of the post-processing software is a dig list containing locations of potential UXO(s), formatted for import into the system GPS equipment for reacquisition of anomalies. Results from system characterization and the OFE will be described.
Gómez-Ariza, José Luis; Lorenzo, Fernando; García-Barrera, Tamara
2005-05-01
Mercury and arsenic are two elements of undoubted importance owing to their toxic character. Although speciation of these elements has been developed separately, in this work for the first time the speciation of As and Hg using two atomic fluorescence detectors in a sequential ensemble is presented. A coupling based on the combination of high-performance liquid chromatography (where mercury and arsenic species are separated) and two atomic fluorescence detectors in series, with several online treatments, including photooxidation (UV) and hydride generation, has allowed the determination of mercury and arsenic compounds simultaneously. The detection limits for this device were 16, 3, 17, 12 and 8 ng mL(-1) for As(III), monomethylarsinic acid, As(V), Hg2+ and methylmercury, respectively. This coupling was compared with an analogous one based on inductively coupled plasma-mass spectrometry (ICP-MS) detection, with detection limits of 0.7, 0.5, 0.8, 0.9 and 1.1 ng mL(-1), respectively. Multispeciation based on ICP-MS exhibits better sensitivity than the coupling based on tandem atomic fluorescence, but this second device is a very robust system and exhibits obvious advantages related to the low cost of acquisition and maintenance, as well as easy handling, which makes it a suitable system for routine laboratories.
Gamma-Ray Signatures Improvement of the EURITRACK Tagged Neutron Inspection System Database
NASA Astrophysics Data System (ADS)
Kanawati, Wassila El; Carasco, Cedric; Perot, Bertrand; Mariani, Alain; Raoux, Anne-Cecile; Valkovic, Vladivoj; Sudac, Davorin; Obhodas, Jasmina; Baricevic, Martina
2010-10-01
The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system uses 14 MeV neutrons produced by the D(T,n α) reaction to detect explosives in cargo containers. Reactions induced by fast neutrons inside the container produce gamma rays, which are detected in coincidence with the associated alpha particle, the detection of which allows the neutron direction to be determined. The neutron path length is obtained from a neutron time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined, while the chemical composition of the target material is correlated with their energy spectrum. Gamma-ray spectra have been collected with the inspection portal equipped with large volume NaI (Tl) detectors, in order to build a database of signatures for various elements (C, O, N, Fe, Pb, Al, Na, Si, Cl, Cu, Zn) with a low energy threshold of 0.6 MeV. The spectra are compared with previous ones, which were acquired with a 1.35 MeV threshold. The new library is currently being tested to unfold the energy spectra of transported goods into elemental contributions. Results are compared with data processed with the old 1.35 MeV threshold database, thus illustrating the improvement for material identification.
Deep convolutional networks for automated detection of posterior-element fractures on spine CT
NASA Astrophysics Data System (ADS)
Roth, Holger R.; Wang, Yinong; Yao, Jianhua; Lu, Le; Burns, Joseph E.; Summers, Ronald M.
2016-03-01
Injuries of the spine, and its posterior elements in particular, are a common occurrence in trauma patients, with potentially devastating consequences. Computer-aided detection (CADe) could assist in the detection and classification of spine fractures. Furthermore, CAD could help assess the stability and chronicity of fractures, as well as facilitate research into optimization of treatment paradigms. In this work, we apply deep convolutional networks (ConvNets) for the automated detection of posterior element fractures of the spine. First, the vertebra bodies of the spine with its posterior elements are segmented in spine CT using multi-atlas label fusion. Then, edge maps of the posterior elements are computed. These edge maps serve as candidate regions for predicting a set of probabilities for fractures along the image edges using ConvNets in a 2.5D fashion (three orthogonal patches in axial, coronal and sagittal planes). We explore three different methods for training the ConvNet using 2.5D patches along the edge maps of `positive', i.e. fractured posterior-elements and `negative', i.e. non-fractured elements. An experienced radiologist retrospectively marked the location of 55 displaced posterior-element fractures in 18 trauma patients. We randomly split the data into training and testing cases. In testing, we achieve an area-under-the-curve of 0.857. This corresponds to 71% or 81% sensitivities at 5 or 10 false-positives per patient, respectively. Analysis of our set of trauma patients demonstrates the feasibility of detecting posterior-element fractures in spine CT images using computer vision techniques such as deep convolutional networks.
Photoacoustic method for measuring concentration of chemical species
Autrey, S Thomas [West Richland, WA; Posakony, Gerald J [Richland, WA; Amonette, James E [Richland, WA; Foster-Mills, Nancy S [Richland, WA
2001-01-01
The present invention is a transducer for photoacoustic detection having at least two piezoelectric elements wherein at least a first piezoelectric element has a first frequency and at least a second piezoelectric element has a second frequency. The improvement according to the present invention is that at least two piezoelectric elements are longitudinal elements for longitudinal waves; and the first frequency is different from said second frequency. In other words, the invention is a multi-frequency longitudinal transducer for photoacoustic detection.
DOE R&D Accomplishments Database
Burr, B.; Burr, F.A.
1980-05-28
This report describes our initial attempts at the molecular characterization of a maize controlling element. We have prepared a cDNA probe and used it to detect changes at a locus where Ds elements are found. Evidence of their presence are indicated by changes in the restriction patterns, but there is as yet no information on the physical nature of the controlling elements nor on the kinds of rearrangements they cause.
Dinon, Andréia Z; Prins, Theo W; van Dijk, Jeroen P; Arisi, Ana Carolina M; Scholtens, Ingrid M J; Kok, Esther J
2011-05-01
Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples.
Runway Safety Monitor Algorithm for Runway Incursion Detection and Alerting
NASA Technical Reports Server (NTRS)
Green, David F., Jr.; Jones, Denise R. (Technical Monitor)
2002-01-01
The Runway Safety Monitor (RSM) is an algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety Program's Synthetic Vision System element. The RSM algorithm provides pilots with enhanced situational awareness and warnings of runway incursions in sufficient time to take evasive action and avoid accidents during landings, takeoffs, or taxiing on the runway. The RSM currently runs as a component of the NASA Integrated Display System, an experimental avionics software system for terminal area and surface operations. However, the RSM algorithm can be implemented as a separate program to run on any aircraft with traffic data link capability. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Dallas-Ft Worth International Airport (DFW) during September and October of 2000, and the RSM performance results and lessons learned from those flight tests.
Optical system storage design with diffractive optical elements
NASA Technical Reports Server (NTRS)
Kostuk, Raymond K.; Haggans, Charles W.
1993-01-01
Optical data storage systems are gaining widespread acceptance due to their high areal density and the ability to remove the high capacity hard disk from the system. In magneto-optical read-write systems, a small rotation of the polarization state in the return signal from the MO media is the signal which must be sensed. A typical arrangement used for detecting these signals and correcting for errors in tracking and focusing on the disk is illustrated. The components required to achieve these functions are listed. The assembly and alignment of this complex system has a direct impact on cost, and also affects the size, weight, and corresponding data access rates. As a result, integrating these optical components and improving packaging techniques is an active area of research and development. Most designs of binary optic elements have been concerned with optimizing grating efficiency. However, rigorous coupled wave models for vector field diffraction from grating surfaces can be extended to determine the phase and polarization state of the diffracted field, and the design of polarization components. A typical grating geometry and the phase and polarization angles associated with the incident and diffracted fields are shown. In our current stage of work, we are examining system configurations which cascade several polarization functions on a single substrate. In this design, the beam returning from the MO disk illuminates a cascaded grating element which first couples light into the substrate, then introduces a quarter wave retardation, then a polarization rotation, and finally separates s- and p-polarized fields through a polarization beam splitter. The input coupler and polarization beam splitter are formed in volume gratings, and the two intermediate elements are zero-order elements.
Bahrdt, C; Krech, A B; Wurz, A; Wulff, D
2010-03-01
For years, an increasing number and diversity of genetically modified plants has been grown on a commercial scale. The need for detection and identification of these genetically modified organisms (GMOs) calls for broad and at the same time flexible high throughput testing methods. Here we describe the development and validation of a hexaplex real-time polymerase chain reaction (PCR) screening assay covering more than 100 approved GMOs containing at least one of the GMO targets of the assay. The assay comprises detection systems for Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens NOS terminator, Figwort Mosaic Virus 34S promoter and two construct-specific sequences present in novel genetically modified soybean and maize that lack common screening elements. Additionally a detection system for an internal positive control (IPC) indicating the presence or absence of PCR inhibiting substances was included. The six real-time PCR systems were allocated to five detection channels showing no significant crosstalk between the detection channels. As part of an extensive validation, a limit of detection (LOD(abs)) < or = ten target copies was proven in hexaplex format. A sensitivity < or = ten target copies of each GMO detection system was still shown in highly asymmetric target situations in the presence of 1,000 copies of all other GMO targets of each detection channel. Furthermore, the applicability to a broad sample spectrum and reliable indication of inhibition by the IPC system was demonstrated. The presented hexaplex assay offers sensitive and reliable detection of GMOs in processed and unprocessed food, feed and seed samples with high efficiency.
NASA Technical Reports Server (NTRS)
Totman, Peter D. (Inventor); Everton, Randy L. (Inventor); Egget, Mark R. (Inventor); Macon, David J. (Inventor)
2007-01-01
A method and apparatus for detecting and determining event characteristics such as, for example, the material failure of a component, in a manner which significantly reduces the amount of data collected. A sensor array, including a plurality of individual sensor elements, is coupled to a programmable logic device (PLD) configured to operate in a passive state and an active state. A triggering event is established such that the PLD records information only upon detection of the occurrence of the triggering event which causes a change in state within one or more of the plurality of sensor elements. Upon the occurrence of the triggering event, the change in state of the one or more sensor elements causes the PLD to record in memory which sensor element detected the event and at what time the event was detected. The PLD may be coupled with a computer for subsequent downloading and analysis of the acquired data.
SPI/U3.2. Security Profile Inspector for UNIX Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartoletti, A.
1994-08-01
SPI/U3.2 consists of five tools used to assess and report the security posture of computers running the UNIX operating system. The tools are: Access Control Test: A rule-based system which identifies sequential dependencies in UNIX access controls. Binary Authentication Tool: Evaluates the release status of system binaries by comparing a crypto-checksum to provide table entries. Change Detection Tool: Maintains and applies a snapshot of critical system files and attributes for purposes of change detection. Configuration Query Language: Accepts CQL-based scripts (provided) to evaluate queries over the status of system files, configuration of services and many other elements of UNIX systemmore » security. Password Security Inspector: Tests for weak or aged passwords. The tools are packaged with a forms-based user interface providing on-line context-sensistive help, job scheduling, parameter management and output report management utilities. Tools may be run independent of the UI.« less
NASA Astrophysics Data System (ADS)
Hui, Yu; Rinaldi, Matteo
2013-03-01
This letter presents a miniaturized, fast, and high resolution thermal detector, in which a heat absorbing element and a temperature sensitive microelectromechanical system (MEMS) resonator are perfectly overlapped but separated by a microscale air gap. This unique design guarantees efficient and fast (˜10s μs) heat transfer from the absorbing element to the temperature sensitive device and enables high resolution thermal power detection (˜nW), thanks to the low noise performance of the high quality factor (Q = 2305) MEMS resonant thermal detector. A device prototype was fabricated, and its detection capabilities were experimentally characterized. A thermal power as low as 150 nW was experimentally measured, and a noise equivalent power of 6.5 nW/Hz1/2 was extracted. A device thermal time constant of only 350 μs was measured (smallest ever reported for MEMS resonant thermal detectors), indicating the great potential of the proposed technology for the implementation of ultra-fast and high resolution un-cooled resonant thermal detectors.
Atomic hydrogen in. gamma. -irradiated hydroxides of alkaline-earth elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitsyn, V.I.; Yurik, T.K.; Barsova, L.I.
1982-04-01
Atomic hydrogen is an important intermediate product formed in the radiolysis of compounds containing X-H bonds. H atoms have been detected in irradiated matrices of H/sub 2/ and inert gases at 4/sup 0/K, in irradiated ice and frozen solutions of acids in irradiated salts and in other systems. Here results are presented from a study of the ESR spectra of H atoms generated in polycrystalline hydroxides of alkaline-earth elements that have been ..gamma..-irradiated at 77/sup 0/K, after preliminary treatment at various temperatures. For the first time stabilization of atomic hydrogen in ..gamma..-irradiated polycrystalline alkaline-earth element hydroxides has been detected. Dependingmore » on the degree of dehydroxylation, several types of hydrogen atoms may be stabilized in the hydroxides, these hydrogen atoms having different radiospectroscopic parameters. In the magnesium-calcium-strontium-barium hydroxide series, a regular decrease has been found in the hfi constants for H atoms with the cations in the immediate surroundings. A direct proportionality has been found between the parameters ..delta..A/A/sub 0/ and the polarizability of the cation.« less
Robust pattern decoding in shape-coded structured light
NASA Astrophysics Data System (ADS)
Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai
2017-09-01
Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.
NASA Astrophysics Data System (ADS)
Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro
2014-05-01
Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.
Fast photoacoustic imaging system based on 320-element linear transducer array.
Yin, Bangzheng; Xing, Da; Wang, Yi; Zeng, Yaguang; Tan, Yi; Chen, Qun
2004-04-07
A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis.
Behar, Vera; Adam, Dan
2005-12-01
An effective aperture approach is used for optimization of a sparse synthetic transmit aperture (STA) imaging system with coded excitation and frequency division. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. In order to increase the signal-to-noise ratio in a synthetic aperture system, temporal encoding of the excitation signals is employed. When comparing the excitation by linear frequency modulation (LFM) signals and phase shift key modulation (PSKM) signals, the analysis shows that chirps are better for excitation, since at the output of a compression filter the sidelobes generated are much smaller than those produced by the binary PSKM signals. Here, an implementation of a fast STA imaging is studied by spatial encoding with frequency division of the LFM signals. The proposed system employs a 64-element array with only four active elements used during transmit. The two-dimensional point spread function (PSF) produced by such a sparse STA system is compared to the PSF produced by an equivalent phased array system, using the Field II simulation program. The analysis demonstrates the superiority of the new sparse STA imaging system while using coded excitation and frequency division. Compared to a conventional phased array imaging system, this system acquires images of equivalent quality 60 times faster, when the transmit elements are fired in pairs consecutively and the power level used during transmit is very low. The fastest acquisition time is achieved when all transmit elements are fired simultaneously, which improves detectability, but at the cost of a slight degradation of the axial resolution. In real-time implementation, however, it must be borne in mind that the frame rate of a STA imaging system depends not only on the acquisition time of the data but also on the processing time needed for image reconstruction. Comparing to phased array imaging, a significant increase in the frame rate of a STA imaging system is possible if and only if an equivalent time efficient algorithm is used for image reconstruction.
NASA Astrophysics Data System (ADS)
Kaplan, M. L.; van Cleve, J. E.; Alcock, C.
2003-12-01
Detection and characterization of the small bodies of the outer solar system presents unique challenges to terrestrial based sensing systems, principally the inverse 4th power decrease of reflected and thermal signals with target distance from the Sun. These limits are surpassed by new techniques [1,2,3] employing star-object occultation event sensing, which are capable of detecting sub-kilometer objects in the Kuiper Belt and Oort cloud. This poster will present an instrument and space mission concept based on adaptations of the NASA Discovery Kepler program currently in development at Ball Aerospace and Technologies Corp. Instrument technologies to enable this space science mission are being pursued and will be described. In particular, key attributes of an optimized payload include the ability to provide: 1) Coarse spectral resolution (using an objective spectrometer approach) 2) Wide FOV, simultaneous object monitoring (up to 150,000 stars employing select data regions within a large focal plane mosaic) 3) Fast temporal frame integration and readout architectures (10 to 50 msec for each monitored object) 4) Real-time, intelligent change detection processing (to limit raw data volumes) The Minor Body Surveyor combines the focal plane and processing technology elements into a densely packaged format to support general space mission issues of mass and power consumption, as well as telemetry resources. Mode flexibility is incorporated into the real-time processing elements to allow for either temporal (Occultations) or spatial (Moving targets) change detection. In addition, a basic image capture mode is provided for general pointing and field reference measurements. The overall space mission architecture is described as well. [1] M. E. Bailey. Can 'Invisible' Bodies be Observed in the Solar System. Nature, 259:290-+, January 1976. [2] T. S. Axelrod, C. Alcock, K. H. Cook, and H.-S. Park. A Direct Census of the Oort Cloud with a Robotic Telescope. In ASP Conf. Ser. 34: Robotic Telescopes in the 1990s, pages 171-181, 1992. [3] F. Roques and M. Moncuquet. A Detection Method for Small Kuiper Belt Objects: The Search for Stellar Occultations. Icarus, 147:530-544, October 2000.
Toward a Micro Gas Chromatograph/Mass Spectrometer (GC/MS) System
NASA Technical Reports Server (NTRS)
Wiberg, D. V.; Eyre, F. B.; Orient, O.; Chutjian, A.; Garkarian, V.
2001-01-01
Miniature mass filters (e.g., quadrupoles, ion traps) have been the subject of several miniaturization efforts. A project is currently in progress at JPL to develop a miniaturized Gas Chromatograph/Mass Spectrometer (GC/MS) system, incorporating and/or developing miniature system components including turbomolecular pumps, scroll type roughing pump, quadrupole mass filter, gas chromatograph, precision power supply and other electronic components. The preponderance of the system elements will be fabricated using microelectromechanical systems (MEMS) techniques. The quadrupole mass filter will be fabricated using an X-ray lithography technique producing high precision, 5x5 arrays of quadrupoles with pole lengths of about 3 mm and a total volume of 27 cubic mm. The miniature scroll pump will also be fabricated using X-ray lithography producing arrays of scroll stages about 3 mm in diameter. The target detection range for the mass spectrometer is 1 to 300 atomic mass units (AMU) with are solution of 0.5 AMU. This resolution will allow isotopic characterization for geochronology, atmospheric studies and other science efforts dependant on the understanding of isotope ratios of chemical species. This paper will discuss the design approach, the current state-of-the art regarding the system components and the progress toward development of key elements. The full system is anticipated to be small enough in mass, volume and power consumption to allow in situ chemical analysis on highly miniaturized science craft for geochronology, atmospheric characterization and detection of life experiments applicable to outer planet roadmap missions.
Primary and Secondary Superresolution by Data Inversion (Postprint)
2005-06-06
4. H. Liu, Y. Yan, Q. Tan, and G. Jin, “Theories for the design of diffractive superresolution elements and limits of optical superresolution ,” J...optical system. This latter approach is often referred to as “ optical superresolution ” and is useful when a narrow pre-detection PSF is desired as is the
Yamaoka, Shuhei; Yoshimura, Kazusa; Kondou, Youichi; Onogi, Akio; Matsui, Minami; Iwata, Hiroyoshi; Ban, Tomohiro
2017-01-01
Profiling elemental contents in wheat grains and clarifying the underlying genetic systems are important for the breeding of biofortified crops. Our objective was to evaluate the genetic potential of 269 Afghan wheat landraces for increasing elemental contents in wheat cultivars. The contents of three major (Mg, K, and P) and three minor (Mn, Fe, and Zn) elements in wheat grains were measured by energy dispersive X-ray fluorescence spectrometry. Large variations in elemental contents were observed among landraces. Marker-based heritability estimates were low to moderate, suggesting that the elemental contents are complex quantitative traits. Genetic correlations between two locations (Japan and Afghanistan) and among the six elements were estimated using a multi-response Bayesian linear mixed model. Low-to-moderate genetic correlations were observed among major elements and among minor elements respectively, but not between major and minor elements. A single-response genome-wide association study detected only one significant marker, which was associated with Zn, suggesting it will be difficult to increase the elemental contents of wheat by conventional marker-assisted selection. Genomic predictions for major elemental contents were moderately or highly accurate, whereas those for minor elements were mostly low or moderate. Our results indicate genomic selection may be useful for the genetic improvement of elemental contents in wheat. PMID:28072876
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.
1983-01-01
The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.
Finite element model for MOI applications using A-V formulation
NASA Astrophysics Data System (ADS)
Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.
2001-04-01
Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.
Imaging System With Confocally Self-Detecting Laser.
Webb, Robert H.; Rogomentich, Fran J.
1996-10-08
The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.
Ivahnenko, Tamara; Szabo, Zoltan; Hall, G.S.
1996-01-01
Water samples were collected during 1993 from 22 public supply wells screened in the Kirkwood-Cohansey aquifer system; concentrations of 18 trace elements were determined primarily by using inductively coupled plasma-mass spectrometry (ICP-MS) techniques, though graphite furnace atomic adsorption, hydride generation, and cold- vapor flameless atomic adsorption techniques were used for thallium, arsenic, and mercury, respectively, at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL). In addition, laboratory measurements of alkalinity and turbidity were made. The ground-water samples were collected by using ultra-clean sampling protocols developed by the USGS for collecting ground-water samples in areas with water containing low concentrations of trace elements. This technique is based on recently gained experience in sampling surface water for these elements. Field parameters (water temperature, specific conductance, pH, and dissolved-oxygen concentration) were monitored prior to sample collection. Three equipment blanks were collected to ensure that low-level trace-element contamination did not occur during sample collection. One split sample and a commercially- prepared reference standard were submitted to the NWQL o evaluate laboratory precision and accuracy, respectively. Trace-element concentrations in 10 sample splits and one equipment blank were also determined at the Rutgers University Chemistry Department laboratory. Results of the ICP-MS analyses and cold vapor flameless atomic absorption indicated that five trace elements-- cobalt, copper, lead, mercury, and nickel--were detectable in low concentrations (<0.1-29 mg/L) in most of the samples from the 22 wells, and four elements--aluminum, barium, manganese and zinc--were detected in higher concentrations than the other elements (30-710 mg/L for aluminum; 4-180 mg/L for barium, manganese, and zinc). The remaining nine trace elements were present in concentrations consistently lower than the minimum reporting limit. Turbidity was low (less than 1 nephelometric turbidity unit (NTU)), indicating that the trace-element concentrations were present in the dissolved phase and ideally would be reproducible in the absence of highly variable concentrations of particulates. The concentration of lead in one sample exceeded the U.S. Environmental Protection Agency (USEPA) action level of 15 mg/L; concentrations ranged from <1 to 16 mg/L. Mercury was frequently detected; concentrations ranged from <0.1 to 1.1 mg/L but did not exceed the USEPA maximum contaminant level. Results of analyses of the equipment blanks indicated that samples collected by using the new ultra-clean sampling protocols were free of low-level (< 1mg/L) trace-element contamination. The analysis of the split sample sent to the NWQL had a difference of 5 percent or less for all constituents except aluminum, for which the analysis had a difference of 10 percent. Results of ICP-MS analyses of split water samples sent to the Rutgers University Chemistry Department laboratory were, in general, in good agreement (within 10 percent) with those of the NWQL. Results of the analysis of the commercial standard agreed (within 5 percent) with the known concentrations of the trace elements. The quality-assurance data (three blanks, one split sample, and one standard), although not statistically evaluated because of the small data set, indicate that the measured trace-element concentrations are precise and accurate and that the samples were free of contamination at the microgram-per-liter level of contamination.
Ranjbar, Lily; Farsoni, Abi T; Becker, Eric M
2017-04-01
Measurement of elevated concentrations of xenon radioisotopes ( 131m Xe, 133m Xe, 133 Xe and 135 Xe) in the atmosphere has been shown to be a very powerful method for verifying whether or not a detected explosion is nuclear in nature. These isotopes are among the few with enough mobility and with half-lives long enough to make their detection at long distances realistic. Existing radioxenon detection systems used by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) suffer from problems such as complexity, need for high maintenance and memory effect. To study the response of CdZnTe (CZT) detectors to xenon radioisotopes and investigate whether it is capable of mitigating the aforementioned issues with the current radioxenon detection systems, a prototype detector utilizing two coplanar CZT detectors was built and tested at Oregon State University. The detection system measures xenon radioisotopes through beta-gamma coincidence technique by detecting coincidence events between the two detectors. In this paper, we introduce the detector design and report our measurement results with radioactive lab sources and 135 Xe produced in the OSU TRIGA reactor. Minimum Detectable Concentration (MDC) for 135 Xe was calculated to be 1.47 ± 0.05 mBq/m 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS
Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Omagari, Daisuke; Komiyama, Kazuo; Miyazaki, Serika; Numako, Chiya; Noguchi, Tadahide; Jinbu, Yoshinori; Kusama, Mikio; Mori, Yoshiyuki
2015-01-01
Oral lichen planus (OLP) and oral lichenoid contact lesions (OLCL) are chronic inflammatory mucocutaneous reactions with a risk of malignant transformation that alter the epithelium. OLP and OLCL have similar clinical and histopathological features and it is difficult to distinguish one from the other. Metallic restorations are suspected to generate OLCLs. Trace metal analysis of OLCL specimens may facilitate the discrimination of symptoms and identification of causative metallic restorations. The purpose of this study was to assess OLCL tissue samples for the prevalence of metallic elements derived from dental restorations, and to discriminate OLCL from OLP by using synchrotron radiation-excited X-ray fluorescence analysis (SR-XRF), particle-induced X-ray emission (PIXE), and X-ray absorption fine structure (XAFS). Typical elements of dental materials were detected in the OLCL, whereas no obvious element accumulation was detected in OLP and negative control specimens. The origin of the detected metallic elements was presumed to be dental alloys through erosion. Therefore, our findings support the feasibility of providing supporting information to distinguish OLCL from OLP by using elemental analysis. PMID:26085368
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Williams, Phillip; Simpson, John
2007-01-01
The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.
NASA Technical Reports Server (NTRS)
Billingham, J.; Brocker, D. H.
1991-01-01
In 1959, it was proposed that a sensible way to conduct interstellar communication would be to use radio at or near the frequency of hydrogen. In 1960, the first Search for Extraterrestrial Intelligence (SETI) was conducted using a radiotelescope at Green Bank in West Virginia. Since 1970, NASA has systematically developed a definitive program to conduct a sophisticated search for evidence of extraterrestrial intelligent life. The basic hypothesis is that life may be widespread in the univers, and that in many instances extraterrestrial life may have evolved into technological civilizations. The underlying scientific arguments are based on the continuously improving knowledge of astronomy and astrophysics, especially star system formation, and of planetary science, chemical evolution, and biological evolution. If only one in a million sun-like stars in our galaxy harbors species with cognitive intelligence, then there are 100,000 civilizations in the Milky Way alone. The fields of radioastronomy digital electronic engineering, spectrum analysis, and signal detection have advanced rapidly in the last twenty years and now allow for sophisticated systems to be built in order to attempt the detection of extraterrestrial intelligence signals. In concert with the scientific and engineering communities, NASA has developed, over the last several years, a Microwave Observing Project whose goal is to design, build, and operate SETI systems during the decade of the nineties in pursuit of the goal signal detection. The Microwave Observing Project is now approved and underway. There are two major components in the project: the Target Search Element and the Sky Survey Element.
Two modulator generalized ellipsometer for complete mueller matrix measurement
Jellison, Jr., Gerald E.; Modine, Frank A.
1999-01-01
A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.
Infrasound workshop for CTBT monitoring: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christie, D.; Whitaker, R.
1998-11-01
It is expected that the establishment of new infrasound stations in the global IMS network by the Provisional Technical Secretariat of the CTBTO in Vienna will commence in the middle of 1998. Thus, decisions on the final operational design for IMS infrasound stations will have to be made within the next 12 months. Though many of the basic design problems have been resolved, it is clear that further work needs to be carried out during the coming year to ensure that IMS infrasound stations will operate with maximum capability in accord with the specifications determined during the May 1997 PrepCommore » Meeting. Some of the papers presented at the Workshop suggest that it may be difficult to design a four-element infrasound array station that will reliably detect and locate infrasound signals at all frequencies in the specified range from 0.02 to 4.0 Hz in all noise environments. Hence, if the basic design of an infrasound array is restricted to four array elements, the final optimized design may be suited only to the detection and location of signals in a more limited pass-band. Several participants have also noted that the reliable discrimination of infrasound signals could be quite difficult if the detection system leads to signal distortion. Thus, it has been emphasized that the detection system should not, if possible, compromise signal fidelity. This report contains the workshop agenda, a list of participants, and abstracts and viewgraphs from each presentation.« less
NASA Astrophysics Data System (ADS)
Sengupta, A.; Kletzing, C.; Howk, R.; Kurth, W. S.
2017-12-01
An important goal of the Van Allen Probes mission is to understand wave particle interactions that can energize relativistic electron in the Earth's Van Allen radiation belts. The EMFISIS instrumentation suite provides measurements of wave electric and magnetic fields of wave features such as chorus that participate in these interactions. Geometric signal processing discovers structural relationships, e.g. connectivity across ridge-like features in chorus elements to reveal properties such as dominant angles of the element (frequency sweep rate) and integrated power along the a given chorus element. These techniques disambiguate these wave features against background hiss-like chorus. This enables autonomous discovery of chorus elements across the large volumes of EMFISIS data. At the scale of individual or overlapping chorus elements, topological pattern recognition techniques enable interpretation of chorus microstructure by discovering connectivity and other geometric features within the wave signature of a single chorus element or between overlapping chorus elements. Thus chorus wave features can be quantified and studied at multiple scales of spectral geometry using geometric signal processing techniques. We present recently developed computational techniques that exploit spectral geometry of chorus elements and whistlers to enable large-scale automated discovery, detection and statistical analysis of these events over EMFISIS data. Specifically, we present different case studies across a diverse portfolio of chorus elements and discuss the performance of our algorithms regarding precision of detection as well as interpretation of chorus microstructure. We also provide large-scale statistical analysis on the distribution of dominant sweep rates and other properties of the detected chorus elements.
Measuring weather for aviation safety in the 1980's
NASA Technical Reports Server (NTRS)
Wedan, R. W.
1980-01-01
Requirements for an improved aviation weather system are defined and specifically include the need for (1) weather observations at all airports with instrument approaches, (2) more accurate and timely radar detection of weather elements hazardous to aviation, and (3) better methods of timely distribution of both pilot reports and ground weather data. The development of the discrete address beacon system data link, Doppler weather radar network, and various information processing techniques are described.
Deep Water Munitions Detection System
2010-03-01
information if it does not display a currently valid OMB control number. 1. REPORT DATE MAR 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00...water systems to deeper water depths would result in even greater costs. While some of the cost escalation may be unavoidable, it is desirable to...magnetometers, spaced 61 cm apart, on a towed sensor platform. The sensor platform has active control elements that allow its depth to be changed
A sensitive and quantitative element-tagged immunoassay with ICPMS detection.
Baranov, Vladimir I; Quinn, Zoë; Bandura, Dmitry R; Tanner, Scott D
2002-04-01
We report a set of novel immunoassays in which proteins of interest can be detected using specific element-tagged antibodies. These immunoassays are directly coupled with an inductively coupled plasma mass spectrometer (ICPMS) to quantify the elemental (in this work, metal) component of the reacted tagged antibodies. It is demonstrated that these methods can detect levels of target proteins as low as 0.1-0.5 ng/mL and yield a linear response to protein concentration over 3 orders of magnitude.
Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices.
Fraiture, Marie-Alice; Herman, Philippe; Lefèvre, Loic; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H
2015-08-14
In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element. Food/feed matrices containing transgenic crops (Bt rice or MON863 maize) were analysed using the integrated DNA walking system. First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples. Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix.
Development of the electromagnetic technology for broken rail detection from a mobil platform
NASA Astrophysics Data System (ADS)
Plotnikov, Yuri; Raghunathan, Arun; Kumar, Ajith; Noffsinger, Joseph; Fries, Jeffrey; Ehret, Steven; Frangieh, Tannous; Palanganda, Samhitha
2016-02-01
Timely detection of breaks in running rails remains a topic of significant importance for the railroad industry. GE has been investigating new ideas of the Rail Integrity Monitoring or RIM technology that can be implemented on a wide range of the rolling stock platforms including locomotives, passenger and freight cars. The focus of the project is to establish a simple, non-contact, and inexpensive means of nondestructive inspection by fusion of known solutions with new technology development that can result in detection with high reliability. A scaled down model of a typical locomotive-track system has been developed at GE Global research for detailed study of the detection process. In addition, a finite element model has been established and used to understand distribution of the magnetic field and currents in such a system. Both models have been using the rails and wheel-axles geometry to establish a realistic model that would provide the electric current and magnetic field distribution close to the real world phenomenon. Initial magnetic field maps were obtained by scanning a 1:15 model constructed of steel bars using a 3D scanner and an inductive coil. Sensitivity to a broken rail located between two locomotive axles simulated by an opening in this metallic frame was demonstrated. Further investigation and optimization was conducted on a larger, 1:3 scale, physical model and by running mathematical simulations. Special attention was paid to consistency between the finite element and physical model results. The obtained results allowed establishment of a working frequency range, inductive current injection into the rail-wheel-axle loop and measuring the electromagnetic response to a broken rail. The verification and full scale system prototype tests are following the laboratory experiments and mathematical simulations.
Chen, Wei-Yu; Jou, Li-John; Chen, Suz-Hsin; Liao, Chung-Min
2012-05-01
Arsenic (As) is the element of greatest ecotoxicological concern in aquatic environments. Effective monitoring and diagnosis of As pollution via a biological early warning system is a great challenge for As-affected regions. The purpose of this study was to synthesize water chemistry-based bioavailability and valve daily rhythm in Corbicula fluminea to design a biomonitoring system for detecting waterborne As. We integrated valve daily rhythm dynamic patterns and water chemistry-based Hill dose-response model to build into a programmatic mechanism of inductance-based valvometry technique for providing a rapid and cost-effective dynamic detection system. A LabVIEW graphic control program in a personal computer was employed to demonstrate completely the functional presentation of the present dynamic system. We verified the simulated dissolved As concentrations based on the valve daily rhythm behavior with published experimental data. Generally, the performance of this proposed biomonitoring system demonstrates fairly good applicability to detect waterborne As concentrations when the field As concentrations are less than 1 mg L(-1). We also revealed that the detection times were dependent on As exposure concentrations. This biomonitoring system could particularly provide real-time transmitted information on the waterborne As activity under various aquatic environments. This parsimonious C. fluminea valve rhythm behavior-based real-time biomonitoring system presents a valuable effort to promote the automated biomonitoring and offers early warnings on potential ecotoxicological risks in regions with elevated As exposure concentrations.
Ion detection device and method with compressing ion-beam shutter
Sperline, Roger P [Tucson, AZ
2009-05-26
An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.
High temperature ion channels and pores
NASA Technical Reports Server (NTRS)
Cheley, Stephen (Inventor); Gu, Li Qun (Inventor); Bayley, Hagan (Inventor); Kang, Xiaofeng (Inventor)
2011-01-01
The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.
Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K
2015-06-15
The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bundick, W. T.
1985-01-01
The application of the failure detection filter to the detection and identification of aircraft control element failures was evaluated in a linear digital simulation of the longitudinal dynamics of a B-737 Aircraft. Simulation results show that with a simple correlator and threshold detector used to process the filter residuals, the failure detection performance is seriously degraded by the effects of turbulence.
Huang, Genin Gary; Lee, Chung-Jay; Tsai, Bo-Chan; Yang, Jyisy; Sathiyendiran, Malaichamy; Lu, Kuang-Lieh
2011-07-15
Water-stable and cavity-contained rhenium metallacycles were synthesized, and their ability to selectively interact with volatile organic compounds (VOCs) systematically studied using attenuated total reflection infrared (ATR-IR) spectroscopy. Integrating the unique properties of rhenium metallacycles into optical sensing technologies significantly improves selectivity in detecting aromatic compounds. To explore the interaction of rhenium metallacycles with VOCs, the surface of ATR sensing elements was modified with the synthesized rhenium metallacycles and used to detect VOCs. The results indicate that rhenium metallacycles have crown ether-like recognition sites, which can selectively interact with aromatic compounds, especially those bearing polar functional groups. The IR absorption bands of rhenium metallacycles shift significantly upon adsorption of aromatic VOCs, revealing a strong interaction between the tetra-rhenium metallacycles and guest aromatic compounds. Optimizing the thickness of the metallacycles coated on the surface of the sensing element led to rapid response in detection. The dynamic range of response was generally up to 30 mg/L with detection limits ca. 30 μg/L. Further studies of the effect of interferences indicate that recovery can be higher than 95% for most of the compounds tested. The results on the flow-cell device indicated that the performances were similar to a static detection system but the detection of VOCs can be largely simplified. Copyright © 2011 Elsevier B.V. All rights reserved.
Photoacoustic Imaging with a Commercial Ultrasound System and a Custom Probe
Wang, Xueding; Fowlkes, J. Brian; Cannata, Jonathan M.; Hu, Changhong; Carson, Paul L.
2010-01-01
Building photoacoustic imaging (PAI) systems by using stand-alone ultrasound (US) units makes it convenient to take advantage of the state-of-the-art ultrasonic technologies. However, the sometimes limited receiving sensitivity and the comparatively narrow bandwidth of commercial US probes may not be sufficient to acquire high quality photoacoustic images. In this work, a high-speed PAI system has been developed using a commercial US unit and a custom built 128-element piezoelectric-polymer array (PPA) probe using a P(VDF-TrFE) film and flexible circuit to define the elements. Since the US unit supports simultaneous signal acquisition from 64 parallel receive channels, PAI data for synthetic image formation from a 64 or 128 element array aperture can be acquired after a single or dual laser firing, respectively. Therefore, 2D B-scan imaging can be achieved with a maximum frame rate up to 10 Hz, limited only by the laser repetition rate. The uniquely properties of P(VDF-TrFE) facilitated a wide -6 dB receiving bandwidth of over 120 % for the array. A specially designed 128-channel preamplifier board made the connection between the array and the system cable which not only enabled element electrical impedance matching but also further elevated the signal-to-noise ratio (SNR) to further enhance the detection of weak photoacoustic signals. Through the experiments on phantoms and rabbit ears, the good performance of this PAI system was demonstrated. PMID:21276653
Søndergaard, Jens; Asmund, Gert; Larsen, Martin M.
2015-01-01
Trace element determination in seawater is analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. A common way to address the challenge is to pre-concentrate the trace elements on a chelating resin, then rinse the matrix elements from the resin and subsequently elute and detect the trace elements using inductively coupled plasma mass spectrometry (ICP-MS). This technique typically involves time-consuming pre-treatment of the samples for ‘off-line’ analyses or complicated sample introduction systems involving several pumps and valves for ‘on-line’ analyses. As an alternative, the following method offers a simple method for ‘on-line’ analyses of seawater by ICP-MS. As opposed to previous methods, excess seawater was pumped through the nebulizer of the ICP-MS during the pre-concentration step but the gas flow was adjusted so that the seawater was pumped out as waste without being sprayed into the instrument. Advantages of the method include: • Simple and convenient analyses of seawater requiring no changes to the ‘standard’ sample introduction system except from a resin-filled micro-column connected to the sample tube. The ‘standard’ sample introduction system refers to that used for routine digest-solution analyses of biota and sediment by ICP-MS using only one peristaltic pump; and • Accurate determination of the elements V, Mn, Co, Ni, Cu, Zn, Cd and Pb in a range of different seawater matrices verified by participation in 6 successive rounds of the international laboratory intercalibration program QUASIMEME. PMID:26258050
Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A
2016-12-01
Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.
NASA Astrophysics Data System (ADS)
Khonina, S. N.; Karpeev, S. V.; Paranin, V. D.
2018-06-01
A technique for simultaneous detection of individual vortex states of the beams propagating in a randomly inhomogeneous medium is proposed. The developed optical system relies on the correlation method that is invariant to the beam wandering. The intensity distribution formed at the optical system output does not require digital processing. The proposed technique based on a multi-order phase diffractive optical element (DOE) is studied numerically and experimentally. The developed detection technique is used for the analysis of Laguerre-Gaussian vortex beams propagating under conditions of intense absorption, reflection, and scattering in transparent and opaque microparticles in aqueous suspensions. The performed experimental studies confirm the relevance of the vortex phase dependence of a laser beam under conditions of significant absorption, reflection, and scattering of the light.
Favazza, Christopher P; Fetterly, Kenneth A; Hangiandreou, Nicholas J; Leng, Shuai; Schueler, Beth A
2015-01-01
Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks.
Microaneurysm detection with radon transform-based classification on retina images.
Giancardo, L; Meriaudeau, F; Karnowski, T P; Li, Y; Tobin, K W; Chaum, E
2011-01-01
The creation of an automatic diabetic retinopathy screening system using retina cameras is currently receiving considerable interest in the medical imaging community. The detection of microaneurysms is a key element in this effort. In this work, we propose a new microaneurysms segmentation technique based on a novel application of the radon transform, which is able to identify these lesions without any previous knowledge of the retina morphological features and with minimal image preprocessing. The algorithm has been evaluated on the Retinopathy Online Challenge public dataset, and its performance compares with the best current techniques. The performance is particularly good at low false positive ratios, which makes it an ideal candidate for diabetic retinopathy screening systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartoletti, T.
SPI/U3.1 consists of five tools used to assess and report the security posture of computers running the UNIX operating system. The tools are: Access Control Test: A rule-based system which identifies sequential dependencies in UNIX access controls. Binary Inspector Tool: Evaluates the release status of system binaries by comparing a crypto-checksum to provide table entries. Change Detection Tool: Maintains and applies a snapshot of critical system files and attributes for purposes of change detection. Configuration Query Language: Accepts CQL-based scripts (provided) to evaluate queries over the status of system files, configuration of services and many other elements of UNIX systemmore » security. Password Security Inspector: Tests for weak or aged passwords. The tools are packaged with a forms-based user interface providing on-line context-sensistive help, job scheduling, parameter management and output report management utilities. Tools may be run independent of the UI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartoletti, Tony
SPI/U3.2 consists of five tools used to assess and report the security posture of computers running the UNIX operating system. The tools are: Access Control Test: A rule-based system which identifies sequential dependencies in UNIX access controls. Binary Authentication Tool: Evaluates the release status of system binaries by comparing a crypto-checksum to provide table entries. Change Detection Tool: Maintains and applies a snapshot of critical system files and attributes for purposes of change detection. Configuration Query Language: Accepts CQL-based scripts (provided) to evaluate queries over the status of system files, configuration of services and many other elements of UNIX systemmore » security. Password Security Inspector: Tests for weak or aged passwords. The tools are packaged with a forms-based user interface providing on-line context-sensistive help, job scheduling, parameter management and output report management utilities. Tools may be run independent of the UI.« less
Ultrasonic Leak Detection System
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)
1998-01-01
A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.
Anderholm, Scott K.
1997-01-01
This report describes the quality of shallow ground water and the relations between land use and the quality of that shallow ground water in an urban area in and adjacent to Albuquerque, New Mexico. Water samples were collected from 24 shallow wells. Samples were analyzed for selected common constituents, nutrients, trace elements, radionuclides, volatile organic compounds, and pesticides. The study area, which is in the Albuquerque Basin in central New Mexico, was limited to the Rio Grande flood plain; depth to water in this area generally is less than 25 feet. The amount and composition of recharge to the shallow ground-water system are important factors that affect shallow ground-water composition in this area. Important sources of recharge that affect shallow ground-water quality in the area include infiltration of surface water, which is used in agricultural land-use areas to irrigate crops, and infiltration of septic-system effluent in residential areas. Agricultural land use represents about 28 percent of the area, and residential land use represents about 35 percent of the total study area. In most of the study area, agricultural land use is interspersed with residential land use and neither is the dominant land use in the area. Land use in the study area historically has been changing from agricultural to urban. The composition of shallow ground water in the study area varies considerably. The dissolved solids concentration in shallow ground water in the study area ranges from 272 to 1,650 milligrams per liter, although the relative percentages of selected cations and anions do not vary substantially. Calcium generally is the dominant cation and bicarbonate generally is the dominant anion. Concentrations of nutrients generally were less than 1 milligram per liter. The concentration of many trace elements in shallow ground water was below or slightly above 1 microgram per liter and there was little variation in the concentrations. Barium, iron, manganese, molybdenum, and uranium were the only trace elements analyzed for that had median concentrations greater than 5 micrograms per liter. Volatile organic compounds were detected in 5 of 24 samples. Cis-1,2-dichloroethene and 1,1-dichloroethane were the most commonly detected volatile organic compounds (detected in two samples each). Pesticides were detected in 8 of 24 samples. Prometon was the most commonly detected pesticide (detected in 5 of 24 samples). Concentrations of volatile organic compounds and pesticides detected were much smaller than any U.S. Environmental Protection Agency standards that have been established. Infiltration of surface water and the evaporation or transpiration of this water, which partially is the result of past and present agricultural land use, seem to affect the concentrations of common constituents in shallow ground water in the study area. The small excess chloride in shallow ground water relative to surface water that has been affected by evaporation or transpiration could be due to mixing of shallow ground water with small amounts of precipitation/bulk deposition or septic-system effluent. Infiltration of septic-system effluent (residential land use) has affected the shallow ground-water composition in parts of the study area on the basis of the small dissolved oxygen concentrations, large dissolved organic carbon concentrations, and excess chloride. Despite the loading of nitrogen to the shallow ground-water system as the result of infiltration of septic-system effluent, the small nitrogen concentrations in shallow ground water probably are due to the small dissolved oxygen concentrations and relatively large dissolved organic carbon concentrations. The small concentrations and lack of variation of most trace elements indicate that land use has not substantially affected the concentration
NASA Astrophysics Data System (ADS)
Lage, E.; Tapias, G.; Villena, J.; Desco, M.; Vaquero, J. J.
2010-08-01
We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 × 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s-1 when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.
Lage, E; Tapias, G; Villena, J; Desco, M; Vaquero, J J
2010-08-07
We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 x 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s(-1) when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.
Elemental investigation of Syrian medicinal plants using PIXE analysis
NASA Astrophysics Data System (ADS)
Rihawy, M. S.; Bakraji, E. H.; Aref, S.; Shaban, R.
2010-09-01
Particle induced X-ray emission (PIXE) technique has been employed to perform elemental analysis of K, Ca, Mn, Fe, Cu, Zn, Br and Sr for Syrian medicinal plants used traditionally to enhance the body immunity. Plant samples were prepared in a simple dried base. The results were verified by comparing with those obtained from both IAEA-359 and IAEA-V10 reference materials. Relative standard deviations are mostly within ±5-10% suggest good precision. A correlation between the elemental content in each medicinal plant with its traditional remedial usage has been proposed. Both K and Ca are found to be the major elements in the samples. Fe, Mn and Zn have been detected in good levels in most of these plants clarifying their possible contribution to keep the body immune system in good condition. The contribution of the elements in these plants to the dietary recommended intakes (DRI) has been evaluated. Advantages and limitations of PIXE analytical technique in this investigation have been reviewed.
High resolution analysis of soil elements with laser-induced breakdown
Ebinger, Michael H [Santa Fe, NM; Harris, Ronny D [Los Alamos, NM
2010-04-06
The invention is a system and method of detecting a concentration of an element in a soil sample wherein an opening or slot is formed in a container that supports a soil sample that was extracted from the ground whereupon at least a length of the soil sample is exposed via the opening. At each of a plurality of points along the exposed length thereof, the soil sample is ablated whereupon a plasma is formed that emits light characteristic of the elemental composition of the ablated soil sample. Each instance of emitted light is separated according to its wavelength and for at least one of the wavelengths a corresponding data value related to the intensity of the light is determined. As a function of each data value a concentration of an element at the corresponding point along the length of the soil core sample is determined.
Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong
2018-01-01
Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.
NASA Technical Reports Server (NTRS)
Rauh, R. David (Inventor)
1990-01-01
A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.
Parallel search for conjunctions with stimuli in apparent motion.
Casco, C; Ganis, G
1999-01-01
A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal integration of feature conjunctions before they are identified by the static system; and (iii) target detectability in these stimuli relies upon a nonattentive, cooperative, directionally selective motion mechanism that responds to high-level attributes (conjunction of size and orientation).
NASA Astrophysics Data System (ADS)
Williams, Ammon Ned
The primary objective of this research is to develop an applied technology and provide an assessment for remotely measuring and analyzing the real time or near real time concentrations of used nuclear fuel (UNF) elements in electroreners (ER). Here, Laser-Induced Breakdown Spectroscopy (LIBS) in UNF pyroprocessing facilities was investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis; (ii) Direct detection of elements and impurities in the system with low limits of detection (LOD); and (iii) Little to no sample preparation is required. One important challenge to overcome is achieving reproducible spectral data over time while being able to accurately quantify fission products, rare earth elements, and actinides in the molten salt. Another important challenge is related to the accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment within an argon gas atmosphere. This dissertation aims to address these challenges and approaches in the following phases with their highlighted outcomes: 1. Aerosol-LIBS system design and aqueous testing: An aerosol-LIBS system was designed around a Collison nebulizer and tested using deionized water with Ce, Gd, and Nd concentrations from 100 ppm to 10,000 ppm. The average %RSD values between the sample repetitions were 4.4% and 3.8% for the Ce and Gd lines, respectively. The univariate calibration curve for Ce using the peak intensities of the Ce 418.660 nm line was recommended and had an R 2 value, LOD, and RMSECV of 0.994, 189 ppm, and 390 ppm, respectively. The recommended Gd calibration curve was generated using the peak areas of the Gd 409.861 nm line and had an R2, LOD, and RMSECV of 0.992, 316 ppm, and 421 ppm, respectively. The partial least squares (PLS) calibration curves yielded similar results with RMSECV of 406 ppm and 417 ppm for the Ce and Gd curves, respectively. 2. High temperature aerosol-LIBS system design and CeCl3 testing: The aerosol-LIBS system was transitioned to a high temperature and used to measure Ce in molten LiCl-KCl salt within a glovebox environment. The concentration range studied was from 0.1 wt% to 5 wt% Ce. Normalization was necessary due to signal degradation over time; however, with the normalization the %RSD values averaged 5% for the mid and upper concentrations studied. The best univariate calibration curve was generated using the peak areas of the Ce 418.660 nm line. The LOD for this line was 148 ppm with the RMSECV of 647 ppm. The PLS calibration curve was made using 7 latent variables (LV) and resulting in the RMSECV of 622 ppm. The LOD value was below the expected rare earth concentration within the ER. 3. Aerosol-LIBS testing using UCl3: Samples containing UCl 3 with concentrations ranging from 0.3 wt% to 5 wt% were measured. The spectral response in this range was linear. The best univariate calibration curves were generated using the peak areas of the U 367.01 nm line and had an R2 value of 0.9917. Here, the LOD was 647 ppm and the RMSECV was 2,290 ppm. The PLS model was substantially better with a RMSECV of 1,110 ppm. The LOD found here is below the expected U concentrations in the ER. The successful completion of this study has demonstrated the feasibility of using an aerosol-LIBS analytical technique to measure rare earth elements and actinides in the pyroprocessing salt.
Bramblett, Richard L.; Preskitt, Charles A.
1987-03-03
Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.
LIBS coupled with ICP/OES for the spectral analysis of betel leaves
NASA Astrophysics Data System (ADS)
Rehan, I.; Rehan, K.; Sultana, S.; Khan, M. Z.; Muhammad, R.
2018-05-01
Laser-induced breakdown spectroscopy (LIBS) system was optimized and was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air. Pulsed Nd:YAG (1064 nm) in conjunction with a suitable detector (LIBS 2000+, Ocean Optics, Inc) having the optical resolution of 0.06 nm was used to record the emission spectra from 200 to 720 nm. Elements like Al, Ba, Ca, Cr, Cu, P, Fe, K, Mg, Mn, Na, P, S, Sr, and Zn were found to be present in the samples. The abundances of observed elements were calculated through normalized calibration curve method, integrated intensity ratio method, and calibration free-LIBS approach. Quantitative analyses were accomplished under the assumption of local thermodynamic equilibrium (LTE) and optically thin plasma. LIBS findings were validated by comparing its results with the results obtained using a typical analytical technique of inductively coupled plasma-optical emission spectroscopy (ICP/OES). Limit of detection (LOD) of the LIBS system was also estimated for heavy metals.
Finite Element Methods for Modelling Mechanical Loss in LIGO coating optics.
NASA Astrophysics Data System (ADS)
Newport, Jonathan; Harry, Gregg; LIGO Collaboration
2015-04-01
Gravitational waves from sources such as binary star systems, supernovae explosions and stochastic background radiation have yet to be directly detected by experimental observations. Alongside international collaborators, the Laser Interferometer Gravitational-Wave Observatory (LIGO) is designed to realize detection of gravitational waves using interferometric techniques. The second generation of gravitational wave observatories, known as Advanced LIGO, are currently undergoing installation and commissioning at sites in Hanford, Washington and Livingston, Louisiana. The ultimate sensitivity of Advanced LIGO within select spectral bands is limited by thermal noise in the coatings of the interferometer optics. The LIGO lab at American University is measuring the mechanical loss of coated substrates to predict thermal noise within these spectral bands. These predictions use increasingly sophisticated finite element models to ensure the ultimate design sensitivity of Advanced LIGO and to study coating and substrate materials for future gravitational wave detectors.
Laminography using resonant neutron attenuation for detection of drugs and explosives
NASA Astrophysics Data System (ADS)
Loveman, R. A.; Feinstein, R. L.; Bendahan, J.; Gozani, T.; Shea, P.
1997-02-01
Resonant neutron attenuation has been shown to be usable for assaying elements which constitute explosives, cocaine, and heroin. By careful analysis of attenuation measurements, the determination of the presence or absence of explosives can be determined. Simple two dimensional radiographic techniques only give results for areal density and consequently will be limited in their effectiveness. Classical tomographic techniques are both computationally very intensive and place strict requirements on the quality and amount of data acquired. These requirements and computations take time and are likely to be very difficult to perform in real time. Simulation studies described in this article have shown that laminographic image reconstruction can be used effectively with resonant neutron attenuation measurements to interrogate luggage for explosives or drugs. The design of the system described in this article is capable of pseudo-three dimensional image reconstruction of all of the elemental densities pertinent to explosive and drug detection.
NASA Technical Reports Server (NTRS)
Kellogg, E.; Brissenden, R.; Flanagan, K.; Freeman, M.; Hughes, J.; Jones, M.; Ljungberg, M.; Mckinnon, P.; Podgorski, W.; Schwartz, D.
1992-01-01
Advanced X-ray Astrophysics Facility (AXAF) X-ray optics testing is conducted by VETA-I, which consists of six nested Wolter type I grazing-incidence mirrors; VETA's X-ray Detection System (VXDS) in turn measures the imaging properties of VETA-I, yielding FWHM and encircled energy of the X-ray image obtained, as well as its effective area. VXDS contains a high resolution microchannel plate imaging X-ray detector and a pinhole scanning system in front of proportional-counter detectors. VETA-I's X-ray optics departs from the AXAF flight configuration in that it uses a temporary holding fixture; its mirror elements are not cut to final length, and are not coated with the metal film used to maximize high-energy reflection.
Weiser, H; Vitz, R C; Moos, H W; Weinstein, A
1976-12-01
An evacuated high transmission prism spectrograph using a microchannel plate detection system with resistive strip readout was flown behind a precision pointing telescope on a sounding rocket. The construction, preparation, flight performance, and calibration stability of the system are discussed. Despite the adverse environmental conditions associated with sounding rocket flights, the microchannel detector system performed well. Far uv spectra (1160-1750 A) of stellar and planetary objects were obtained; spectral features with fluxes as low as 0.06 photons cm(-2) sec(-1) were detectable. This was achieved by operating the plates at lower than normal gains, using sensitive pulse counting electronics with both upper and lower limit discriminators, and maintaining the spectrograph and detector at a pressure of ~10(-6) Torr until reaching altitude.
Couvin, David; Bernheim, Aude; Toffano-Nioche, Claire; Touchon, Marie; Michalik, Juraj; Néron, Bertrand; C Rocha, Eduardo P; Vergnaud, Gilles; Gautheret, Daniel; Pourcel, Christine
2018-05-22
CRISPR (clustered regularly interspaced short palindromic repeats) arrays and their associated (Cas) proteins confer bacteria and archaea adaptive immunity against exogenous mobile genetic elements, such as phages or plasmids. CRISPRCasFinder allows the identification of both CRISPR arrays and Cas proteins. The program includes: (i) an improved CRISPR array detection tool facilitating expert validation based on a rating system, (ii) prediction of CRISPR orientation and (iii) a Cas protein detection and typing tool updated to match the latest classification scheme of these systems. CRISPRCasFinder can either be used online or as a standalone tool compatible with Linux operating system. All third-party software packages employed by the program are freely available. CRISPRCasFinder is available at https://crisprcas.i2bc.paris-saclay.fr.
A digital protection system incorporating knowledge based learning
NASA Astrophysics Data System (ADS)
Watson, Karan; Russell, B. Don; McCall, Kurt
A digital system architecture used to diagnoses the operating state and health of electric distribution lines and to generate actions for line protection is presented. The architecture is described functionally and to a limited extent at the hardware level. This architecture incorporates multiple analysis and fault-detection techniques utilizing a variety of parameters. In addition, a knowledge-based decision maker, a long-term memory retention and recall scheme, and a learning environment are described. Preliminary laboratory implementations of the system elements have been completed. Enhanced protection for electric distribution feeders is provided by this system. Advantages of the system are enumerated.
Expanding the detection efficiency of silicon drift detectors
NASA Astrophysics Data System (ADS)
Schlosser, D. M.; Lechner, P.; Lutz, G.; Niculae, A.; Soltau, H.; Strüder, L.; Eckhardt, R.; Hermenau, K.; Schaller, G.; Schopper, F.; Jaritschin, O.; Liebel, A.; Simsek, A.; Fiorini, C.; Longoni, A.
2010-12-01
To expand the detection efficiency Silicon Drift Detectors (SDDs) with various customized radiation entrance windows, optimized detector areas and geometries have been developed. Optimum values for energy resolution, peak to background ratio (P/B) and high count rate capability support the development. Detailed results on sensors optimized for light element detection down to Boron or even lower will be reported. New developments for detecting medium and high X-ray energies by increasing the effective detector thickness will be presented. Gamma-ray detectors consisting of a SDD coupled to scintillators like CsI(Tl) and LaBr 3(Ce) have been examined. Results of the energy resolution for the 137Cs 662 keV line and the light yield (LY) of such detector systems will be reported.
Survey of Enabling Technologies for CAPS
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.
2005-01-01
The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.
Method for detection of antibodies for metallic elements
Barrick, C.W.; Clarke, S.M.; Nordin, C.W.
1993-11-30
An apparatus and method for detecting antibodies specific to non-protein antigens. The apparatus is an immunological plate containing a plurality of plastic projections coated with a non-protein material. Assays utilizing the plate are capable of stabilizing the non-protein antigens with detection levels for antibodies specific to the antigens on a nanogram level. A screening assay with the apparatus allows for early detection of exposure to non-protein materials. Specifically metallic elements are detected. 10 figures.
MUSIC algorithm DoA estimation for cooperative node location in mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Warty, Chirag; Yu, Richard Wai; ElMahgoub, Khaled; Spinsante, Susanna
In recent years the technological development has encouraged several applications based on distributed communications network without any fixed infrastructure. The problem of providing a collaborative early warning system for multiple mobile nodes against a fast moving object. The solution is provided subject to system level constraints: motion of nodes, antenna sensitivity and Doppler effect at 2.4 GHz and 5.8 GHz. This approach consists of three stages. The first phase consists of detecting the incoming object using a highly directive two element antenna at 5.0 GHz band. The second phase consists of broadcasting the warning message using a low directivity broad antenna beam using 2× 2 antenna array which then in third phase will be detected by receiving nodes by using direction of arrival (DOA) estimation technique. The DOA estimation technique is used to estimate the range and bearing of the incoming nodes. The position of fast arriving object can be estimated using the MUSIC algorithm for warning beam DOA estimation. This paper is mainly intended to demonstrate the feasibility of early detection and warning system using a collaborative node to node communication links. The simulation is performed to show the behavior of detecting and broadcasting antennas as well as performance of the detection algorithm. The idea can be further expanded to implement commercial grade detection and warning system
A System for Fault Management for NASA's Deep Space Habitat
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Spirkovska, Liljana; Aaseng, Gordon B.; Mccann, Robert S.; Baskaran, Vijayakumar; Ossenfort, John P.; Smith, Irene Skupniewicz; Iverson, David L.; Schwabacher, Mark A.
2013-01-01
NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy.
A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat
NASA Technical Reports Server (NTRS)
Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark
2013-01-01
NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy
Intelligent Integrated Health Management for a System of Systems
NASA Technical Reports Server (NTRS)
Smith, Harvey; Schmalzel, John; Figueroa, Fernando
2008-01-01
An intelligent integrated health management system (IIHMS) incorporates major improvements over prior such systems. The particular IIHMS is implemented for any system defined as a hierarchical distributed network of intelligent elements (HDNIE), comprising primarily: (1) an architecture (Figure 1), (2) intelligent elements, (3) a conceptual framework and taxonomy (Figure 2), and (4) and ontology that defines standards and protocols. Some definitions of terms are prerequisite to a further brief description of this innovation: A system-of-systems (SoS) is an engineering system that comprises multiple subsystems (e.g., a system of multiple possibly interacting flow subsystems that include pumps, valves, tanks, ducts, sensors, and the like); 'Intelligent' is used here in the sense of artificial intelligence. An intelligent element may be physical or virtual, it is network enabled, and it is able to manage data, information, and knowledge (DIaK) focused on determining its condition in the context of the entire SoS; As used here, 'health' signifies the functionality and/or structural integrity of an engineering system, subsystem, or process (leading to determination of the health of components); 'Process' can signify either a physical process in the usual sense of the word or an element into which functionally related sensors are grouped; 'Element' can signify a component (e.g., an actuator, a valve), a process, a controller, an actuator, a subsystem, or a system; The term Integrated System Health Management (ISHM) is used to describe a capability that focuses on determining the condition (health) of every element in a complex system (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK) not just data to control systems for safe and effective operation. A major novel aspect of the present development is the concept of intelligent integration. The purpose of intelligent integration, as defined and implemented in the present IIHMS, is to enable automated analysis of physical phenomena in imitation of human reasoning, including the use of qualitative methods. Intelligent integration is said to occur in a system in which all elements are intelligent and can acquire, maintain, and share knowledge and information. In the HDNIE of the present IIHMS, an SoS is represented as being operationally organized in a hierarchical-distributed format. The elements of the SoS are considered to be intelligent in that they determine their own conditions within an integrated scheme that involves consideration of data, information, knowledge bases, and methods that reside in all elements of the system. The conceptual framework of the HDNIE and the methodologies of implementing it enable the flow of information and knowledge among the elements so as to make possible the determination of the condition of each element. The necessary information and knowledge is made available to each affected element at the desired time, satisfying a need to prevent information overload while providing context-sensitive information at the proper level of detail. Provision of high-quality data is a central goal in designing this or any IIHMS. In pursuit of this goal, functionally related sensors are logically assigned to groups denoted processes. An aggregate of processes is considered to form a system. Alternatively or in addition to what has been said thus far, the HDNIE of this IIHMS can be regarded as consisting of a framework containing object models that encapsulate all elements of the system, their individual and relational knowledge bases, generic methods and procedures based on models of the applicable physics, and communication processes (Figure 2). The framework enables implementation of a paradigm inspired by how expert operators monitor the health of systems with the help of (1) DIaK from various sources, (2) software tools that assist in rapid visualization of the condition of the system, (3) analical software tools that assist in reasoning about the condition, (4) sharing of information via network communication hardware and software, and (5) software tools that aid in making decisions to remedy unacceptable conditions or improve performance.
Electromagnetic Detection of Fatigue Cracks under Protruding Head Ferromagnetic Fasteners
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min
2004-01-01
The detection of fatigue cracks under installed fasteners has been a major goal of the aging aircraft NDE community. The Sliding Probe, Magneto-Optic Imager, Rotating Self-Nulling Probe, Low Frequency Eddy Current Array, and Eddyscan systems are among the instruments developed for this inspection. It has been verified that the detection of fatigue cracks under flush head aluminum and titanium fasteners can be accomplished with a high resolution by the above techniques. The detection of fatigue cracks under ferromagnetic and protruding head fasteners, however, has been found to be much more difficult. For the present work, the inspection for fatigue cracks under SAE 4340 Steel Hi-Lok fasteners is explored. Modifications to the Rotating Self-Nulling Eddy Current Probe System are presented which enable the detection of fatigue cracks hidden under the protruding head of the ferromagnetic fastener. Inspection results for samples with varying length EDM notches are shown, as well as a comparison between the signature from an EDM notch and an actual fatigue crack. Finite Element Modeling is used to investigate the effect of the ferromagnetic fastener on the induced eddy current distribution in order to help explain the detection characteristics of the system. This paper will also introduce a modification to the Rotating Probe System designed specifically for the detection of deeply buried flaws in multilayer conductors. The design change incorporates a giant magnetoresistive (GMR) sensor as the pickup device to improve the low frequency performance of the probe. The flaw detection capabilities of the GMR based Self- Nulling Probe are presented along with the status of the GMR based Rotating Probe System for detection of deeply buried flaws under installed fasteners.
Damage assessment of composite plate structures with material and measurement uncertainty
NASA Astrophysics Data System (ADS)
Chandrashekhar, M.; Ganguli, Ranjan
2016-06-01
Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problem in damage assessment. A recently developed C0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data.
Transcriptional regulation of Saccharomyces cerevisiaeCYS3 encoding cystathionine γ-lyase
Hiraishi, Hiroyuki; Miyake, Tsuyoshi
2008-01-01
In studying the regulation of GSH11, the structural gene of the high-affinity glutathione transporter (GSH-P1) in Saccharomyces cerevisiae, a cis-acting cysteine responsive element, CCGCCACAC (CCG motif), was detected. Like GSH-P1, the cystathionine γ-lyase encoded by CYS3 is induced by sulfur starvation and repressed by addition of cysteine to the growth medium. We detected a CCG motif (−311 to −303) and a CGC motif (CGCCACAC; −193 to −186), which is one base shorter than the CCG motif, in the 5′-upstream region of CYS3. One copy of the centromere determining element 1, CDE1 (TCACGTGA; −217 to −210), being responsible for regulation of the sulfate assimilation pathway genes, was also detected. We tested the roles of these three elements in the regulation of CYS3. Using a lacZ-reporter assay system, we found that the CCG/CGC motif is required for activation of CYS3, as well as for its repression by cysteine. In contrast, the CDE1 motif was responsible for only activation of CYS3. We also found that two transcription factors, Met4 and VDE, are responsible for activation of CYS3 through the CCG/CGC and CDE1 motifs. These observations suggest a dual regulation of CYS3 by factors that interact with the CDE1 motif and the CCG/CGC motifs. PMID:18317767
Ultrasonic Array for Obstacle Detection Based on CDMA with Kasami Codes
Diego, Cristina; Hernández, Álvaro; Jiménez, Ana; Álvarez, Fernando J.; Sanz, Rebeca; Aparicio, Joaquín
2011-01-01
This paper raises the design of an ultrasonic array for obstacle detection based on Phased Array (PA) techniques, which steers the acoustic beam through the environment by electronics rather than mechanical means. The transmission of every element in the array has been encoded, according to Code Division for Multiple Access (CDMA), which allows multiple beams to be transmitted simultaneously. All these features together enable a parallel scanning system which does not only improve the image rate but also achieves longer inspection distances in comparison with conventional PA techniques. PMID:22247675
Damage Detection in Concrete Elements with Surface Wave Measurements
1992-01-01
Structures, identified the need for "Better techniques for detection of flaws or defects inside structural members". At the same conference, the...1 6 12 1 7 13 19 13 7 18 12 6 17 11 5 14 8 2 10 8 2 83 Saw cut Sawm cu Saw cut Sawcu SSaw cut Figre4. -I ltie ocaio o Dmae ndSoc- RcieAra 84 4.2...cracking and defects . Some methods used in the past to determine the size and location of cracks are the P-wave arrival time, imaging systems, time
Distributed fiber optic moisture intrusion sensing system
Weiss, Jonathan D.
2003-06-24
Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.
A Hybrid FPGA/Tilera Compute Element for Autonomous Hazard Detection and Navigation
NASA Technical Reports Server (NTRS)
Villalpando, Carlos Y.; Werner, Robert A.; Carson, John M., III; Khanoyan, Garen; Stern, Ryan A.; Trawny, Nikolas
2013-01-01
To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.
A hybrid FPGA/Tilera compute element for autonomous hazard detection and navigation
NASA Astrophysics Data System (ADS)
Villalpando, C. Y.; Werner, R. A.; Carson, J. M.; Khanoyan, G.; Stern, R. A.; Trawny, N.
To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.
Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission.
Jönsson, H Olof; Caleman, Carl; Andreasson, Jakob; Tîmneanu, Nicuşor
2017-11-01
Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000 pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.
Thermoelectric infrared imager and automotive applications
NASA Astrophysics Data System (ADS)
Hirota, Masaki; Satou, Fuminori; Saito, Masanori; Kishi, Youichi; Nakajima, Yasushi; Uchiyama, Makato
2001-10-01
This paper describes a newly developed thermoelectric infrared imager having a 48 X 32 element thermoelectric focal plane array (FPA) and an experimental vehicle featuring a blind spot pedestrian warning system, which employs four infrared imagers. The imager measures 100 mm in width, 60 mm in height and 80 mm in depth, weighs 400 g, and has an overall field of view (FOV) of 40 deg X 20 deg. The power consumption of the imager is 3 W. The pedestrian detection program is stored in a CPU chip on a printed circuit board (PCB). The FPA provides high responsivity of 2,100 V/W, a time constant of 25 msec, and a low cost potential. Each element has external dimensions of 190 μm x 190 μm, and consists of six pairs of thermocouples and an Au-black absorber that is precisely patterned by low-pressure evaporation and lift-off technologies. The experimental vehicle is called the Nissan ASV-2 (Advanced Safety Vehicle-2), which incorporates a wide range of integrated technologies aimed at reducing traffic accidents. The blind spot pedestrian warning system alerts the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person's body. This system also prevents the vehicle from moving in the direction of the pedestrian.
Bustos, Alejandro; Rubio, Higinio; Castejón, Cristina; García-Prada, Juan Carlos
2018-03-06
An efficient maintenance is a key consideration in systems of railway transport, especially in high-speed trains, in order to avoid accidents with catastrophic consequences. In this sense, having a method that allows for the early detection of defects in critical elements, such as the bogie mechanical components, is a crucial for increasing the availability of rolling stock and reducing maintenance costs. The main contribution of this work is the proposal of a methodology that, based on classical signal processing techniques, provides a set of parameters for the fast identification of the operating state of a critical mechanical system. With this methodology, the vibratory behaviour of a very complex mechanical system is characterised, through variable inputs, which will allow for the detection of possible changes in the mechanical elements. This methodology is applied to a real high-speed train in commercial service, with the aim of studying the vibratory behaviour of the train (specifically, the bogie) before and after a maintenance operation. The results obtained with this methodology demonstrated the usefulness of the new procedure and allowed for the disclosure of reductions between 15% and 45% in the spectral power of selected Intrinsic Mode Functions (IMFs) after the maintenance operation.
EMD-Based Methodology for the Identification of a High-Speed Train Running in a Gear Operating State
García-Prada, Juan Carlos
2018-01-01
An efficient maintenance is a key consideration in systems of railway transport, especially in high-speed trains, in order to avoid accidents with catastrophic consequences. In this sense, having a method that allows for the early detection of defects in critical elements, such as the bogie mechanical components, is a crucial for increasing the availability of rolling stock and reducing maintenance costs. The main contribution of this work is the proposal of a methodology that, based on classical signal processing techniques, provides a set of parameters for the fast identification of the operating state of a critical mechanical system. With this methodology, the vibratory behaviour of a very complex mechanical system is characterised, through variable inputs, which will allow for the detection of possible changes in the mechanical elements. This methodology is applied to a real high-speed train in commercial service, with the aim of studying the vibratory behaviour of the train (specifically, the bogie) before and after a maintenance operation. The results obtained with this methodology demonstrated the usefulness of the new procedure and allowed for the disclosure of reductions between 15% and 45% in the spectral power of selected Intrinsic Mode Functions (IMFs) after the maintenance operation. PMID:29509690
[Determination of trace elements in waste beer yeasts by ICP-MS with microwave digestion].
Cheng, Xian-zhong; Jin, Can; Zhang, Kai-cheng
2008-10-01
The waste beer yeast has rich nutritional compositions and is widely used in food, medical and forage industries. The security of the yeast plays an important role in everyone's daily life. But the yeast contanining microamount of lead, cadmium, chromium, arsenic and other harmful metals is endangering human health. A new method was developed for the direct determination of eight elements, namely copper, lead, zinc, iron, manganese, cadmium, chromium and arsenic in waste beer yeast by inductively coupled plasma-mass spectrometry (ICP-MS) with microwave digestion. The parameters of plasma system, mass system, vacuum system and spectrometer system were optimized. The spectral interferences were eliminated by selecting alternation analytical isotopes of 65Cu, 208Pb, 66Zn, 57Fe, 55Mn, 114Cd, 52Cr and 5As, and the internal standards of Rh was selected to compensate the drift of analytical signals. The samples were digested with concentrated nitric acid-hydrogen peroxide (2:1) mixed solution more rapidly and more effectively. The effects of the type of mixed acid , the volume of digesting solution, heating time, and heating power were investigated in detail. In the closed system, the complete digestion was performed using 4 mL HNO3 and 2mL H2O2 for 2.0 min at 0.5 MPa, 3 min at 1.0 MPa and 5 min at 1.5 MPa. The detection limits of these eight elements were 0.013-0.122 microg x L(-1). The relative standard deviation (RSD) was 0.94%-3.26% (n=9), and the addition standard recovery was 98.4%-102.6% for all elements. The proposed method has been applied to the determination of trace elements of Cu, Pb, Zn, Fe, Mn, Cd, Cr and As in waste beer yeast samples with satisfactory results. The determination results indicated that the content of trace elements of Cu, Pb, Cd and As in waste beer yeast samples are significantly low.