EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.
Hadinia, M; Jafari, R; Soleimani, M
2016-06-01
This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.
NASA Technical Reports Server (NTRS)
Chen, T.; Raju, I. S.
2002-01-01
A coupled finite element (FE) method and meshless local Petrov-Galerkin (MLPG) method for analyzing two-dimensional potential problems is presented in this paper. The analysis domain is subdivided into two regions, a finite element (FE) region and a meshless (MM) region. A single weighted residual form is written for the entire domain. Independent trial and test functions are assumed in the FE and MM regions. A transition region is created between the two regions. The transition region blends the trial and test functions of the FE and MM regions. The trial function blending is achieved using a technique similar to the 'Coons patch' method that is widely used in computer-aided geometric design. The test function blending is achieved by using either FE or MM test functions on the nodes in the transition element. The technique was evaluated by applying the coupled method to two potential problems governed by the Poisson equation. The coupled method passed all the patch test problems and gave accurate solutions for the problems studied.
NASA Astrophysics Data System (ADS)
Liu, Yu; Xu, Chao; Feng, ZuDe
2014-09-01
Fe-doped TiO2 thin films were fabricated by liquid phase deposition (LPD) method, using Fe(III) nitrate as both Fe element source and fluoride scavenger instead of commonly-used boric acid (H3BO3). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis spectrum were employed to examine the effects of Fe element on morphology, structure and optical characteristics of TiO2 films. The as-prepared films were served as photoanode applied to photogenerated cathodic protection of SUS304 stainless steel (304SS). It was observed that the photoelectrochemical properties of the as-prepared films were enhanced with the addition of Fe element compared to the undoped TiO2 film. The highest photoactivity was achieved for Ti13Fe (Fe/Ti = 3 molar ratio) film prepared in precursor bath containing 0.02 M TiF4 + 0.06 M Fe(NO3)3 under white-light illumination. The effective anticorrosion behaviors can be attributed to the Fe element incorporation which decreases the probability of photogenerated charge-carrier recombination and extends the light response range of Fe-doped TiO2 films appeared to visible-light region.
NASA Astrophysics Data System (ADS)
Nakashima, Hiroshi; Takatsu, Yuzuru
The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.
Kondou, Youichi; Manickavelu, Alagu; Komatsu, Kenji; Arifi, Mujiburahman; Kawashima, Mika; Ishii, Takayoshi; Hattori, Tomohiro; Iwata, Hiroyoshi; Tsujimoto, Hisashi; Ban, Tomohiro; Matsui, Minami
2016-01-01
This study was carried out with the aim of developing the methodology to determine elemental composition in wheat and identify the best germplasm for further research. Orphan and genetically diverse Afghan wheat landraces were chosen and EDXRF was used to measure the content of some of the elements to establish elemental composition in grains of 266 landraces using 10 reference lines. Four elements, K, Mg, P, and Fe, were measured by standardizing sample preparation. The results of hierarchical cluster analysis using elemental composition data sets indicated that the Fe content has an opposite pattern to the other elements, especially that of K. By systematic analysis the best wheat germplasms for P content and Fe content were identified. In order to compare the sensitivity of EDXRF, the ICP method was also used and the similar results obtained confirmed the EDXRF methodology. The sampling method for measurement using EDXRF was optimized resulting in high-throughput profiling of elemental composition in wheat grains at low cost. Using this method, we have characterized the Afghan wheat landraces and isolated the best genotypes that have high-elemental content and have the potential to be used in crop improvement. PMID:28163583
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
NASA Astrophysics Data System (ADS)
Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-11-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.
Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun
2016-02-01
Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.
[Experimental study and correction of the absorption and enhancement effect between Ti, V and Fe].
Tuo, Xian-Guo; Mu, Ke-Liang; Li, Zhe; Wang, Hong-Hui; Luo, Hui; Yang, Jian-Bo
2009-11-01
The absorption and enhancement effects in X-ray fluorescence analysis for Ti, V and Fe elements were studied in the present paper. Three bogus duality systems of Ti-V/Ti-Fe/V-Fe samples were confected and measured by X-ray fluorescence analysis technique using HPGe semiconductor detector, and the relation curve between unitary coefficient (R(K)) of element count rate and element content (W(K)) were obtained after the experiment. Having analyzed the degree of absorption and enhancement effect between every two elements, the authors get the result, and that is the absorption and enhancement effect between Ti and V is relatively distinctness, while it's not so distinctness in Ti-Fe and V-Fe. After that, a mathematics correction method of exponential fitting was used to fit the R(K)-W(K) curve and get a function equation of X-ray fluorescence count rate and content. Three groups of Ti-V duality samples were used to test the fitting method and the relative errors of Ti and V were less than 0.2% as compared to the actual results.
Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude
2014-05-14
NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.
Luboz, Vincent; Chabanas, Matthieu; Swider, Pascal; Payan, Yohan
2005-08-01
This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific finite element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the mesh-matching method, followed by a process that corrects mesh irregularities. The mesh-matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element. This method for generating patient-specific FE models is first applied to computer-assisted maxillofacial surgery, and more precisely, to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven FE patient-specific models were successfully generated by our method. For one patient, the prediction of the FE model is qualitatively compared with the patient's post-operative appearance, measured from a computer tomography scan. Then, our methodology is applied to computer-assisted orbital surgery. It is, therefore, evaluated for the generation of 11 patient-specific FE poroelastic models of the orbital soft tissues. These models are used to predict the consequences of the surgical decompression of the orbit. More precisely, an average law is extrapolated from the simulations carried out for each patient model. This law links the size of the osteotomy (i.e. the surgical gesture) and the backward displacement of the eyeball (the consequence of the surgical gesture).
Cui, Shihai; Shan, Leilei; Li, Haiyan; Lu, Wenle; He, Lijuan; Ruan, Shijie
2017-02-01
Finite element(FE) model of thorax with high biofidelity is one of the most important methods to investigate thoracic injury mechanism because of the absence of pediatric cadaver experiments. Based on the validated thorax finite element model, the FE models with equivalent muscles and real geometric muscles were developed respectively, and the effect of muscle biofidelity on thoracic injury was analyzed with reconstructing pediatric cadaver thorax impact experiments. The simulation results showed that the thoracic impact force, the maximum displacement and the maximum von-Mises stress of FE models with equivalent muscles were slightly greater than those from FE models with real geometric muscles, and the maximum principal strains of heart and lung were a little lower. And the correlation coefficient between cadaver corridor and FE model with real muscles was also greater than that between cadaver corridor and FE model with equivalent muscles. As a conclusion, the FE models with real geometric muscles can accurately reflect the biomechanical response of thorax during the impact.
NASA Astrophysics Data System (ADS)
Stedman, J. D.; Spyrou, N. M.
1994-12-01
The trace element concentrations in porcine brain samples as determined by particle-induced X-ray emission (PIXE) analysis, instrumental neutron activation analysis (INAA) and particle-induced gamma-ray emission (PIGE) analysis are compared. The matrix composition was determined by Rutherford backscattering (RBS). Al, Si, P, S, Cl, K, Ca, Mn, Fe and Cd were determined by PIXE analysis Na, K, Sc, Fe, Co, Zn, As, Br, Rb, and Cs by INAA and Na, Mg and Fe by PIGE analysis. The bulk elements C, N, O, Na Cl and S were found by RBS analysis. Elemental concentrations are obtained using the comparator method of analysis rather than an absolute method, the validity which is examined by comparing the elemental concentrations obtained in porcine brain using two separate certified reference materials.
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh-ishi, Katsuyoshi, E-mail: oh-ishi@kc.chuo-u.ac.jp; Nagumo, Kenta; Tateishi, Kazuya
Mo-Re-C compounds containing Mo{sub 7}Re{sub 13}C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo{sub 7}Re{sub 13}C with the β-Mn structure using the solid state method. Almost single-phase Mo{sub 7}Re{sub 13}C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with amore » pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K. - Graphical abstract: Temperature dependence of the magnetic susceptibility measured under 10 Oe for the superconducting PBM-T samples without Fe element and non-superconducting PBM-S with Fe element. The inset is the enlarged view of the data for the PBM-S sample.« less
Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process.
Kitagawa, Jiro; Uemura, Ryohei
2017-08-14
There is considerable interest in extraction of rare earth elements from NdFeB magnets to enable recycling of these elements. In practical extraction methods using wet processes, the acid waste solution discharge is a problem that must be resolved to reduce the environmental impact of the process. Here, we present an encouraging demonstration of rare earth element extraction from a NdFeB magnet using a closed-loop hydrochloric acid (HCl)-based process. The extraction method is based on corrosion of the magnet in a pretreatment stage and a subsequent ionic liquid technique for Fe extraction from the HCl solution. The rare earth elements are then precipitated using oxalic acid. Triple extraction has been conducted and the recovery ratio of the rare earth elements from the solution is approximately 50% for each extraction process, as compared to almost 100% recovery when using a one-shot extraction process without the ionic liquid but with sufficient oxalic acid. Despite its reduced extraction efficiency, the proposed method with its small number of procedures at almost room temperature is still highly advantageous in terms of both cost and environmental friendliness. This study represents an initial step towards realization of a closed-loop acid process for recycling of rare earth elements.
Quantification of multiple elements in dried blood spot samples.
Pedersen, Lise; Andersen-Ranberg, Karen; Hollergaard, Mads; Nybo, Mads
2017-08-01
Dried blood spots (DBS) is a unique matrix that offers advantages compared to conventional blood collection making it increasingly popular in large population studies. We here describe development and validation of a method to determine multiple elements in DBS. Elements were extracted from punches and analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The method was evaluated with quality controls with defined element concentration and blood spiked with elements to assess accuracy and imprecision. DBS element concentrations were compared with concentrations in venous blood. Samples with different hematocrit were spotted onto filter paper to assess hematocrit effect. The established method was precise and accurate for measurement of most elements in DBS. There was a significant but relatively weak correlation between measurement of the elements Mg, K, Fe, Cu, Zn, As and Se in DBS and venous whole blood. Hematocrit influenced the DBS element measurement, especially for K, Fe and Zn. Trace elements can be measured with high accuracy and low imprecision in DBS, but contribution of signal from the filter paper influences measurement of some elements present at low concentrations. Simultaneous measurement of K and Fe in DBS extracts may be used to estimate sample hematocrit. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou
2012-10-09
Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.
Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou
2012-01-01
Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz–5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication. PMID:23202010
Thermal elastic properties of liquid Fe-C at high pressure
NASA Astrophysics Data System (ADS)
Shimoyama, Y.; Terasaki, H. G.; Urakawa, S.; Takubo, Y.; Watanuki, T.; Katayama, Y.; Kondo, T.
2015-12-01
Planetary outer core contains some light elements and these elements affect thermo-elastic parameters of pure iron. The effect of light elements on density and bulk modulus of liquid iron is necessary for estimating of these core compositions. Sound velocity of liquid iron alloys is also important for identifying light elements in the core by comparison with observed seismic data. We have measured sound velocity and density of liquid Fe-C simultaneously at high pressure. High pressure experiments were performed using a DIA-type cubic anvil press (SMAP-180) at BL22XU beamline, SPring-8 synchrotron in Japan. Sound velocity (VP) was measured using pulse-echo overlapping method (Higo et al., 2009). Density (ρ) was measured using X-ray absorption method (Katayama et al., 1993). We measured velocity and density of liquid Fe-C between 1.1-5.8 GPa and 1480-1700 K. Obtained density and velocity of Fe-C was found to increase with pressure. This study shows the VP of liquid Fe-C decreased with increasing temperature. Previous study of liquid Fe-S shows little change with increasing temperature at all pressure conditions (Nishida et al., 2013, Jing et al., 2014). We fit the relationship between VP and pressure using Murnaghan's equation of state. We obtained KS0 = 102.5(1.2) GPa, K'S = 5.2(0.4) at 1700 K. Comparison of the present data with previous study, KS is similar to liquid Fe but liquid Fe-S is small. We compared the relation between density and sound velocity of liquid Fe-C. We have found that the behavior of liquid Fe-C is similar to that of liquid Fe in the Birch's plot. The effect of carbon on liquid Fe is small on Birch's plot.
Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com
Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.
pK(A) in proteins solving the Poisson-Boltzmann equation with finite elements.
Sakalli, Ilkay; Knapp, Ernst-Walter
2015-11-05
Knowledge on pK(A) values is an eminent factor to understand the function of proteins in living systems. We present a novel approach demonstrating that the finite element (FE) method of solving the linearized Poisson-Boltzmann equation (lPBE) can successfully be used to compute pK(A) values in proteins with high accuracy as a possible replacement to finite difference (FD) method. For this purpose, we implemented the software molecular Finite Element Solver (mFES) in the framework of the Karlsberg+ program to compute pK(A) values. This work focuses on a comparison between pK(A) computations obtained with the well-established FD method and with the new developed FE method mFES, solving the lPBE using protein crystal structures without conformational changes. Accurate and coarse model systems are set up with mFES using a similar number of unknowns compared with the FD method. Our FE method delivers results for computations of pK(A) values and interaction energies of titratable groups, which are comparable in accuracy. We introduce different thermodynamic cycles to evaluate pK(A) values and we show for the FE method how different parameters influence the accuracy of computed pK(A) values. © 2015 Wiley Periodicals, Inc.
Fu, Hongbo; Dong, Fengzhong; Wang, Huadong; Jia, Junwei; Ni, Zhibo
2017-08-01
In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered. Based on the concentration and rich spectral lines of Fe, the Stark broadening of Fe(I) 381.584 nm and Saha-Boltzmann plots of this element are used to calculate the electron density and the plasma temperature, respectively. In order to determine the plasma temperature accurately, which is seriously affected by self-absorption, a pre-selection procedure for eliminating those spectral lines with strong self-absorption is employed. Then, one spectral line of each element is selected to calculate its corresponding concentration. The results from the standard reference lines with and without self-absorption of Fe are compared. This method allows us to measure trace element content and effectively avoid the adverse effects due to self-absorption.
Power flow as a complement to statistical energy analysis and finite element analysis
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram
2018-03-01
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.
Kojic, Milos; Filipovic, Nenad; Tsuda, Akira
2012-01-01
A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier–Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples – simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method. PMID:23814322
Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement
Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.
2007-01-01
The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different abandoned mines within a single watershed. Hence, Cu, Fe, and Zn isotopic measurements may be a powerful tool for fingerprinting specific metal sources and/or examining biogeochemical reactions within fresh water systems.
NASA Astrophysics Data System (ADS)
Søe-Knudsen, Alf; Sorokin, Sergey
2011-06-01
This rapid communication is concerned with justification of the 'rule of thumb', which is well known to the community of users of the finite element (FE) method in dynamics, for the accuracy assessment of the wave finite element (WFE) method. An explicit formula linking the size of a window in the dispersion diagram, where the WFE method is trustworthy, with the coarseness of a FE mesh employed is derived. It is obtained by the comparison of the exact Pochhammer-Chree solution for an elastic rod having the circular cross-section with its WFE approximations. It is shown that the WFE power flow predictions are also valid within this window.
NASA Astrophysics Data System (ADS)
Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd
2018-04-01
A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.
Mapping Metal Elements of Shuangbai Dinosaur Fossil by Synchrotron X-ray Fluorescence Microprobe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Qun, Y; Ablett, J
The metal elements mapping of Shuangbai dinosaur fossil, was obtained by synchrotron x-ray fluorescence (SXRF). Eight elements, Ca, Mn, Fe, Cu, Zn, As, Y and Sr were determined. Elements As and Y were detected for the first time in the dinosaur fossil. The data indicated that metal elements are asymmetrical on fossil section. This is different from common minerals. Mapping metals showed that metal element As is few. The dinosaur most likely belongs to natural death. This is different from Zigong dinosaurs which were found dead from poisoning. This method has been used to find that metals Fe and Mnmore » are accrete, and the same is true for Sr and Y. This study indicated that colloid granule Fe and Mn, as well as Sr and Y had opposite electric charges in lithification process of fossils. By this analysis, compound forms can be ascertained. Synchrotron light source x-ray fluorescence is a complementary method that shows mapping of metal elements at the dinosaur fossil, and is rapid, exact and intuitionist. This study shows that dinosaur fossil mineral imaging has a potential in reconstructing the paleoenvironment and ancient geology.« less
The band gap properties of the three-component semi-infinite plate-like LRPC by using PWE/FE method
NASA Astrophysics Data System (ADS)
Qian, Denghui; Wang, Jianchun
2018-06-01
This paper applies coupled plane wave expansion and finite element (PWE/FE) method to calculate the band structure of the proposed three-component semi-infinite plate-like locally resonant phononic crystal (LRPC). In order to verify the accuracy of the result, the band structure calculated by PWE/FE method is compared to that calculated by the traditional finite element (FE) method, and the frequency range of the band gap in the band structure is compared to that of the attenuation in the transmission power spectrum. Numerical results and further analysis demonstrate that a band gap is opened by the coupling between the dominant vibrations of the rubber layer and the matrix modes. In addition, the influences of the geometry parameters on the band gap are studied and understood with the help of the simple “base-spring-mass” model, the influence of the viscidity of rubber layer on the band gap is also investigated.
INAA Application for Trace Element Determination in Biological Reference Material
NASA Astrophysics Data System (ADS)
Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.
2017-06-01
Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.
NASA Astrophysics Data System (ADS)
Matveev, A. D.
2016-11-01
To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.
NASA Technical Reports Server (NTRS)
Wang, Ren H.
1991-01-01
A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.
Simple Common Plane contact detection algorithm for FE/FD methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev, O
2006-07-19
Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact detection algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles in the original CP method. The method does not require iterations. It is very robust and easy to implement both in 2D and 3D case.
Zhao, Ning; Yang, Bin; Duan, Yu-Cen; Lei, Ran
2011-08-01
Abstract Five different pretreatment methods, including dry ashing and microwave digestion with four acid systems (HNO3 + H2O2, HNO3 + H2O2 + HF, HNO3 + HClO4 and HNO3 + HClO4 + HF), were employed for digestion of the samples of Rosa rugosa. Nine major and trace elements were determined using ICP-OES method. The addition standard recovery rates indicate that, with the system of HNO3 + HClO4, better results can be obtained for most of the determined elements. With this method, except for Fe, the recovery rates are in the range of 95.4%-104.6%. For Fe, higher recovery rate (99%) was obtained with HNO3 + H2O2 + HF system.
Chen, Yen-Ju; Lee, Yen-I; Chang, Wen-Cheng; Hsiao, Po-Jen; You, Jr-Shian; Wang, Chun-Chieh; Wei, Chia-Min
2017-01-01
Abstract Hot deformation of Nd-Fe-B magnets has been studied for more than three decades. With a good combination of forming processing parameters, the remanence and (BH)max values of Nd-Fe-B magnets could be greatly increased due to the formation of anisotropic microstructures during hot deformation. In this work, a methodology is proposed for visualizing the material flow in hot-deformed Nd-Fe-B magnets via finite element simulation. Material flow in hot-deformed Nd-Fe-B magnets could be predicted by simulation, which fitted with experimental results. By utilizing this methodology, the correlation between strain distribution and magnetic properties enhancement could be better understood. PMID:28970869
NASA Astrophysics Data System (ADS)
Balusu, K.; Huang, H.
2017-04-01
A combined dislocation fan-finite element (DF-FE) method is presented for efficient and accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed separately; the dislocation fan (DF) method is introduced to balance the singular traction stresses in the half-spaces while the finite element method (FEM) is employed to enforce the non-singular boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to the surfaces.
To generate a finite element model of human thorax using the VCH dataset
NASA Astrophysics Data System (ADS)
Shi, Hui; Liu, Qian
2009-10-01
Purpose: To generate a three-dimensional (3D) finite element (FE) model of human thorax which may provide the basis of biomechanics simulation for the study of design effect and mechanism of safety belt when vehicle collision. Methods: Using manually or semi-manually segmented method, the interested area can be segmented from the VCH (Visible Chinese Human) dataset. The 3D surface model of thorax is visualized by using VTK (Visualization Toolkit) and further translated into (Stereo Lithography) STL format, which approximates the geometry of solid model by representing the boundaries with triangular facets. The data in STL format need to be normalized into NURBS surfaces and IGES format using software such as Geomagic Studio to provide archetype for reverse engineering. The 3D FE model was established using Ansys software. Results: The generated 3D FE model was an integrated thorax model which could reproduce human's complicated structure morphology including clavicle, ribs, spine and sternum. It was consisted of 1 044 179 elements in total. Conclusions: Compared with the previous thorax model, this FE model enhanced the authenticity and precision of results analysis obviously, which can provide a sound basis for analysis of human thorax biomechanical research. Furthermore, using the method above, we can also establish 3D FE models of some other organizes and tissues utilizing the VCH dataset.
Jeong, Jong Seob; Shung, K. Kirk
2013-01-01
We present an improved fabrication technique for the focused single element poly (vinylidene fluoride–trifluoroethylene) P(VDF–TrFE) transducer. In this work, a conductive epoxy for a backing layer was directly bonded to the 25 μm thick P(VDF–TrFE) film and thus made it easy to conform the aperture of the P(VDF–TrFE) transducer. Two prototype focused P(VDF–TrFE) transducers with disk- and ring-type aperture were fabricated and their performance was evaluated using the UBM (Ultrasound Biomicroscopy) system with a wire phantom. All transducers had a spherically focused aperture with a low f-number (focal depth/aperture size = 1). The center frequency of the disk-type P(VDF–TrFE) transducer was 23 MHz and −6 dB bandwidth was 102%. The ring-type P(VDF–TrFE) transducer had 20 MHz center frequency and −6 dB bandwidth of 103%. The measured pulse echo signal had reduced reverberation due to no additional adhesive layer between the P(VDF–TrFE) film and the backing layer. Hence, the proposed method is promising to fabricate a single element transducer using P(VDF–TrFE) film for high frequency applications. PMID:23021238
Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials.
Choi, Yoojin; Park, Tae Jung; Lee, Doh C; Lee, Sang Yup
2018-06-05
Nanomaterials (NMs) are mostly synthesized by chemical and physical methods, but biological synthesis is also receiving great attention. However, the mechanisms for biological producibility of NMs, crystalline versus amorphous, are not yet understood. Here we report biosynthesis of 60 different NMs by employing a recombinant Escherichia coli strain coexpressing metallothionein, a metal-binding protein, and phytochelatin synthase that synthesizes a metal-binding peptide phytochelatin. Both an in vivo method employing live cells and an in vitro method employing the cell extract are used to synthesize NMs. The periodic table is scanned to select 35 suitable elements, followed by biosynthesis of their NMs. Nine crystalline single-elements of Mn 3 O 4 , Fe 3 O 4 , Cu 2 O, Mo, Ag, In(OH) 3 , SnO 2 , Te, and Au are synthesized, while the other 16 elements result in biosynthesis of amorphous NMs or no NM synthesis. Producibility and crystallinity of the NMs are analyzed using a Pourbaix diagram that predicts the stable chemical species of each element for NM biosynthesis by varying reduction potential and pH. Based on the analyses, the initial pH of reactions is changed from 6.5 to 7.5, resulting in biosynthesis of various crystalline NMs of those previously amorphous or not-synthesized ones. This strategy is extended to biosynthesize multi-element NMs including CoFe 2 O 4 , NiFe 2 O 4 , ZnMn 2 O 4 , ZnFe 2 O 4 , Ag 2 S, Ag 2 TeO 3 , Ag 2 WO 4 , Hg 3 TeO 6 , PbMoO 4, PbWO 4 , and Pb 5 (VO 4 ) 3 OH NMs. The strategy described here allows biosynthesis of NMs with various properties, providing a platform for manufacturing various NMs in an environmentally friendly manner.
New method for the direct determination of dissolved Fe(III) concentration in acid mine waters
To, T.B.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.; McCleskey, R. Blaine
1999-01-01
A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), Al(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2/??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.
Strategic coating of NdFeB magnets with Dy to improve the coercivity of permanent magnets
Ucar, Huseyin; Parker, David S.; Nlebedim, I. C.; ...
2015-12-25
Here, we present a method, supported by theoretical analysis, for optimizing the usage of the critical rare earth element dysprosium in Nd 2Fe 14B (NdFeB)-based permanent magnets. In this method, we use Dy selectively in locations such as magnet edges and faces, where demagnetization factors are most significant, rather than uniformly throughout the bulk sample. A 200 nm thick Dy film was sputtered onto commercial N-38, NdFeB magnets with a thickness of 3 mm and post-annealed at temperatures from 600 - 700 C. Magnets displayed enhanced coercivities after post-annealing. Furthermore, our experimental results indicate as large as a 5 percentmore » increase in the energy product of NdFeB magnets, achieved for a total Dy weight percentage of 0.06 percent, much less than that used in commercial grade Dy-NdFeB magnets. Finally, by assuming all Dy diffused into NdFeB magnets, the improvement in energy product corresponds to a saving of over 1% Dy (critical element). Magnets manufactured using this technique will therefore be higher performing and significantly less expensive than those made presently.« less
Simple Common Plane contact algorithm for explicit FE/FD methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev, O
2006-12-18
Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles used in the original CP method. The new method does not require iterations even for very stiff contacts. It is very robust and easy to implement both in 2D and 3D parallel codes.
A finite element head and neck model as a supportive tool for deformable image registration.
Kim, Jihun; Saitou, Kazuhiro; Matuszak, Martha M; Balter, James M
2016-07-01
A finite element (FE) head and neck model was developed as a tool to aid investigations and development of deformable image registration and patient modeling in radiation oncology. Useful aspects of a FE model for these purposes include ability to produce realistic deformations (similar to those seen in patients over the course of treatment) and a rational means of generating new configurations, e.g., via the application of force and/or displacement boundary conditions. The model was constructed based on a cone-beam computed tomography image of a head and neck cancer patient. The three-node triangular surface meshes created for the bony elements (skull, mandible, and cervical spine) and joint elements were integrated into a skeletal system and combined with the exterior surface. Nodes were additionally created inside the surface structures which were composed of the three-node triangular surface meshes, so that four-node tetrahedral FE elements were created over the whole region of the model. The bony elements were modeled as a homogeneous linear elastic material connected by intervertebral disks. The surrounding tissues were modeled as a homogeneous linear elastic material. Under force or displacement boundary conditions, FE analysis on the model calculates approximate solutions of the displacement vector field. A FE head and neck model was constructed that skull, mandible, and cervical vertebrae were mechanically connected by disks. The developed FE model is capable of generating realistic deformations that are strain-free for the bony elements and of creating new configurations of the skeletal system with the surrounding tissues reasonably deformed. The FE model can generate realistic deformations for skeletal elements. In addition, the model provides a way of evaluating the accuracy of image alignment methods by producing a ground truth deformation and correspondingly simulated images. The ability to combine force and displacement conditions provides flexibility for simulating realistic anatomic configurations.
Stayton, C Tristan
2009-05-01
Finite element (FE) models are popular tools that allow biologists to analyze the biomechanical behavior of complex anatomical structures. However, the expense and time required to create models from specimens has prevented comparative studies from involving large numbers of species. A new method is presented for transforming existing FE models using geometric morphometric methods. Homologous landmark coordinates are digitized on the FE model and on a target specimen into which the FE model is being transformed. These coordinates are used to create a thin-plate spline function and coefficients, which are then applied to every node in the FE model. This function smoothly interpolates the location of points between landmarks, transforming the geometry of the original model to match the target. This new FE model is then used as input in FE analyses. This procedure is demonstrated with turtle shells: a Glyptemys muhlenbergii model is transformed into Clemmys guttata and Actinemys marmorata models. Models are loaded and the resulting stresses are compared. The validity of the models is tested by crushing actual turtle shells in a materials testing machine and comparing those results to predictions from FE models. General guidelines, cautions, and possibilities for this procedure are also presented.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shi, Yacheng
1997-01-01
A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.
Gao, Hao; Wang, Huiming; Berry, Colin; Luo, Xiaoyu; Griffith, Boyce E
2014-01-01
Finite stress and strain analyses of the heart provide insight into the biomechanics of myocardial function and dysfunction. Herein, we describe progress toward dynamic patient-specific models of the left ventricle using an immersed boundary (IB) method with a finite element (FE) structural mechanics model. We use a structure-based hyperelastic strain-energy function to describe the passive mechanics of the ventricular myocardium, a realistic anatomical geometry reconstructed from clinical magnetic resonance images of a healthy human heart, and a rule-based fiber architecture. Numerical predictions of this IB/FE model are compared with results obtained by a commercial FE solver. We demonstrate that the IB/FE model yields results that are in good agreement with those of the conventional FE model under diastolic loading conditions, and the predictions of the LV model using either numerical method are shown to be consistent with previous computational and experimental data. These results are among the first to analyze the stress and strain predictions of IB models of ventricular mechanics, and they serve both to verify the IB/FE simulation framework and to validate the IB/FE model. Moreover, this work represents an important step toward using such models for fully dynamic fluid–structure interaction simulations of the heart. © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. PMID:24799090
Sound velocity of iron-light element compounds and the chemical structure of the inner core
NASA Astrophysics Data System (ADS)
Ohtani, E.; Sakamaki, T.; Fukui, H.; Tanaka, R.; Shibazaki, Y.; Kamada, S.; Sakairi, T.; Takahashi, S.; Tsutsui, S.; Baron, A. Q. R.
2016-12-01
The light elements in the core could constrain the conditions of accretion, subsequent magma ocean, and core formation stages of the Earth. There are several studies for sound velocity measurements of the iron-light elements alloys. However, the measurements are not enough to constrain the light element abundance in the core tightly at present due to inter-laboratory inconsistencies using different methods which are originated from the difficulties to make such measurements under the extreme conditions. We measured the sound velocity of iron alloy compounds at high pressure and temperature relevant to the Earth's core using double-sided laser heating of a DAC combined with inelastic X-ray scattering at SPring-8. We measured the compressional velocity of hcp-Fe up to 166 GPa and 3000 K, and derived a clear temperature dependence of the Birch's law for hcp-Fe. We measured the compressional velocity of Fe0.89Si0.11 alloy and Fe3C at high pressure and temperature, and we could not detect temperature dependency in Birch's law in these compounds. Additionally, we measured the sound velocity of Fe3S, Fe0.83Ni0.09Si0.08 alloy, and FeH at high pressure. Combining our new data set which showed remarkable differences from previous data on the sound velocity, we present a model of the chemical structure of the inner core. The outer core composition was also estimated based on partitioning behaviors of these light elements between solid and liquid iron alloys under the core conditions.
In situ determination of binary alloy melt compositions in the LHDAC by X- Radiography
NASA Astrophysics Data System (ADS)
Lord, O. T.; Walter, M. J.; Walker, D.; Clark, S. M.
2008-12-01
Constraining the light element in Earth's molten outer core requires an understanding of the melting phase relations in iron-light element binary systems. For example, it is critical to determine the composition of liquids at binary eutectics. Typically such measurements are carried out after the sample has been quenched in temperature and pressure. Such 'cook and look' methods possibly suffer from systematic errors introduced by exsolution of the light element from the melt on quench and error in the reintegration of the liquid composition [1]. Here, we present a novel method for the determination of melt compositions in iron-light element binary systems in situ in the LHDAC at simultaneous high-pressure, high-temperature conditions. Samples consist of a light element bearing compound, such as FeO, surrounded by a pure iron ring, forming a donut ~100 μm in diameter and ~15 μm thick. The donuts are loaded into stainless steel gaskets in the DAC, sandwiched between discs fabricated from sol-gel deposited nanocrystalline Al2O3 with similar dimensions to the donut. Pressure is monitored by ruby fluorescence during compression. The sample is heated at the boundary between the iron and light element compound using two 100 W IR lasers in a double-sided configuration at beamline 12.2.2 at the Advanced Light Source. Temperature is measured by spectroradiometry. Before, during and after melting, X-radiographic images of the sample are taken by shining a defocused beam of synchrotron X-rays through the sample and onto a CdWO4 phosphor. The visible light from the phosphor is then focused onto a high resolution CCD, where absorption contrast images are recorded. The absorption of the molten region is then determined, and it's composition calculated by linear interpolation between the absorption of the two solid end members. As a test of the reliability of the method we measured the Fe-FeS eutectic to 20 GPa and our results are in good agreement with previous studies that are based on various ex situ techniques. We measured the eutectic composition between Fe and Fe3C up to 44 GPa, and found that the carbon content of the eutectic drops rapidly above about 10 GPa, dropping to less that 1 wt% by 44 GPa. This result is generally consistent with the thermodynamic calculations of Wood [2]. Experiments on the Fe-FeSi eutectic yielded an increase in the Si content of the eutectic to 35 GPa, consistent with data from large volume press experiments [3] Notably, melting experiments at 35-43 GPa and ~2500 K on a boundary between Fe and FeO failed to yield evidence of a melt with a composition distinguishable from pure iron. However, an experiment at 12 GPa and 2700 K between Fe and FeO(OH) did yield a melt with a composition intermediate between the two end members. This suggests that O solubility in the Fe-O eutectic melt is low at mid-mantle pressures, but that H may dissolve into the melt by itself or in combination with O. [1] Walker, D., 2005. Core-Mantle chemical issues. Canad. Min., 43, 1553-1564 [2] Wood, B. J., 1993. Carbon in the core. Earth Planet Sci. Lett., 117, 593-607 [3] Kuwayama, Y. & Hirose, K., 2004. Phase relations in the system Fe-FeSi at 21 GPa. Am. Min., 89, 273-276.
NASA Astrophysics Data System (ADS)
Yang, YuQi; Si, HengGang; Yang, Hao; Zhang, Lan; Huang, DongFang; Chen, BaiYi; Xu, Fang; Hu, YongMei; Han, BaoJun
2018-01-01
According to the decoupling hypothesis for magnetic grains, the coercivity in sintered Nd-Fe-B magnets is increased after Cu doping, which is due to the formation of non-magnetic grain boundaries. However, this method partially fails, and ferromagnetic Fe-segregation occurs at the grain boundary. We discovered both experimentally and through calculation that the Fe content at the grain boundaries can be tuned across a wide range by introducing another element of Ag. Segregated Fe at high temperature at the grain boundary re-dissolves into Nd2Fe14B grains during annealing at low temperature. Both configurable and magnetic entropies contribute a large driving force for the formation of nonmagnetic grain boundaries. Almost zero Fe content could be achieved at the grain boundaries of sintered Nd-Fe-B magnet.
Calibration under uncertainty for finite element models of masonry monuments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin
2010-02-01
Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, andmore » there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.« less
NASA Astrophysics Data System (ADS)
Nakashima, Hiroshi; Takatsu, Yuzuru; Shinone, Hisanori; Matsukawa, Hisao; Kasetani, Takahiro
Soil-tire system interaction is a fundamental and important research topic in terramechanics. We applied a 2D finite element, discrete element method (FE-DEM), using FEM for the tire and the bottom soil layer and DEM for the surface soil layer. Satisfactory performance analysis was achieved. In this study, to clarify the capabilities and limitations of the method for soil-tire interaction analysis, the tractive performance of real automobile tires with two different tread patterns—smooth and grooved—was analyzed by FE-DEM, and the numerical results compared with the experimental results obtained using an indoor traction measurement system. The analysis of tractive performance could be performed with sufficient accuracy by the proposed 2D dynamic FE-DEM. FE-DEM obtained larger drawbar pull for a tire with a grooved tread pattern, which was verified by the experimental results. Moreover, the result for the grooved tire showed almost the same gross tractive effort and similar running resistance as in experiments. However, for a tire with smooth tread pattern, the analyzed gross tractive effort and running resistance behaved differently than the experimental results, largely due to the difference in tire sinkage in FE-DEM.
de Souza, Edna Santos; Fernandes, Antonio Rodrigues; de Souza Braz, Anderson Martins; Sabino, Lorena Lira Leite; Alleoni, Luís Reynaldo Ferracciú
2015-01-01
The Trans-Amazonian Highway (TAH) is located in the northern region of Brazil, comprising a border region where agricultural, mining, and logging activities are the main activities responsible for fostering economic development, in addition to large hydroelectric plants. Such activities lead to environmental contamination by potentially toxic elements (PTEs). Environmental monitoring is only possible through the determination of element contents under natural conditions. Many extraction methods have been proposed to determine PTEs' bioavailability in the soil; however, there is no consensus about which extractor is most suitable. In this study, we determined the contents of PTEs in soils in the surroundings of TAH after mineral extraction with diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), Mehlich I, and Mehlich III solutions. Soil samples were collected in areas of natural vegetation in the vicinity of TAH in the state of Pará, Brazil. Chemical attributes and particle size were determined, besides concentrations of Fe, Al, Mn, and Ti by sulfuric acid digestion, Si after alkaline solution attack, and poorly crystalline Fe, Al, and "free" Fe oxides. Mehlich III solution extracted greater contents from Fe, Al, and Pb as compared to Mehlich I and DTPA-TEA and similar contents from Cd, Mn, Zn, and Cu. Significant correlations were found between concentrations of PTEs and the contents of Fe and Mn oxides as well as organic carbon and soil cation exchange capacity. Contents of Cu, Mn, Fe, and Zn by the three methods were positively correlated.
NASA Astrophysics Data System (ADS)
Wang, Jinting; Lu, Liqiao; Zhu, Fei
2018-01-01
Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
Spear, Ashley D.; Hochhalter, Jacob D.; Cerrone, Albert R.; ...
2016-04-27
In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulationsmore » for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spear, Ashley D.; Hochhalter, Jacob D.; Cerrone, Albert R.
In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulationsmore » for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.« less
Zhang, Zhihong; Tendulkar, Amod; Sun, Kay; Saloner, David A; Wallace, Arthur W; Ge, Liang; Guccione, Julius M; Ratcliffe, Mark B
2011-01-01
Both the Young-Laplace law and finite element (FE) based methods have been used to calculate left ventricular wall stress. We tested the hypothesis that the Young-Laplace law is able to reproduce results obtained with the FE method. Magnetic resonance imaging scans with noninvasive tags were used to calculate three-dimensional myocardial strain in 5 sheep 16 weeks after anteroapical myocardial infarction, and in 1 of those sheep 6 weeks after a Dor procedure. Animal-specific FE models were created from the remaining 5 animals using magnetic resonance images obtained at early diastolic filling. The FE-based stress in the fiber, cross-fiber, and circumferential directions was calculated and compared to stress calculated with the assumption that wall thickness is very much less than the radius of curvature (Young-Laplace law), and without that assumption (modified Laplace). First, circumferential stress calculated with the modified Laplace law is closer to results obtained with the FE method than stress calculated with the Young-Laplace law. However, there are pronounced regional differences, with the largest difference between modified Laplace and FE occurring in the inner and outer layers of the infarct borderzone. Also, stress calculated with the modified Laplace is very different than stress in the fiber and cross-fiber direction calculated with FE. As a consequence, the modified Laplace law is inaccurate when used to calculate the effect of the Dor procedure on regional ventricular stress. The FE method is necessary to determine stress in the left ventricle with postinfarct and surgical ventricular remodeling. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota
2017-01-01
Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.
NASA Astrophysics Data System (ADS)
Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua
2017-05-01
We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.
Sulfide Melts and Chalcophile Element Behavior in High Temperature Systems
NASA Astrophysics Data System (ADS)
Wood, B. J.; Kiseeva, K.
2016-12-01
We recently found that partition coefficients (Di) of many weakly and moderately chalcophile elements (e.g., Cd, Zn, Co, Cr, Pb, Sb, In) between sulfide and silicate melts are simple functions of the FeO content of the silicate liquid: logDi A-Blog[FeO] where [FeO] is the FeO concentration in the silicate, A and B are constants and the latter is related to the valency of the element of interest. In contrast, some strongly chalcophile (e.g Cu, Ni, Ag) and lithophile elements (e.g Mn) show marked deviations from linearity on a plot of logDi vs log[FeO]. More recent experiments show that linear behavior is confined to elements whose affinities for S and O are similar to those of Fe. In the case of elements more strongly lithophile than Fe (Ti, U, REE, Zr, Nb, Ta, Mn) a plot of logDi versus log[FeO] describes a U-shape with the element partitioning strongly into the sulfide at very low FeO and again at very high FeO content of the silicate melt. In contrast, strongly chalcophile elements (Cu, Ni, Ag) describe an n-shape on the plot of logD vs log[FeO]. The result is that lithophile elements such as Nb become more "chalcophile" than Cu at very low and very high FeO contents of the silicate melt. The reasons for this surprising behavior are firstly that, at very low FeO contents the silicate melt dissolves substantial amounts of sulfur, which drives down the activity of FeO and, from mass-action "pulls" the lihophile element into the sulfide. At high FeO contents of the silicate the sulfide itself starts to dissolve substantial amounts of oxygen and lithophile elements follow the oxygen into the sulfide. Given the principles which we have established, we are able to describe the patterns of chalcophile element behavior during partial melting and fractional crystallisation on Earth and also on bodies such as Mercury and Mars which are, respectively, strongly reduced relative to Earth and more oxidised than Earth.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules
NASA Astrophysics Data System (ADS)
Inoue, Hiroyuki; Kobayashi, Takahide; Kato, Masahiko; Yoneda, Seiji
2016-03-01
A method is proposed to reduce the production cost of power generation thermoelectric modules. FeSi2 is employed as the thermoelectric material because of its low cost, low environmental load, and oxidation resistance. The raw materials were prepared in the composition of Fe0.96Si2.1Co0.04 for n-type and Fe0.92Si2.1Mn0.08 for p-type, which were added with 0.5 wt.% Cu as the starting materials. They were sintered without pressure at 1446 K to be formed into elements. The Seebeck coefficient and resistivity at room temperature were determined to be -182 μV/K and 0.13 mΩm for n-type, and 338 μV/K and 1.13 mΩm for p-type, respectively. The brazing conditions of the direct joining between the element and the solder were examined. Pastes of BNi-6, BNi-7 or TB-608T were tried as the solder. TB-608T was useable for metallizing of insulation substrates and joining of thermoelectric elements in order to manufacture thermoelectric modules. The joining strength was determined to be 50 MPa between the alumina plate and the elements. No mechanical failure was observed in the modules after repetition of 10 or more exposures to a heat source of 670 K. No change was found in the internal resistance. The present production method will provide modules with high durability and low production cost, which will enable high-power multi-stage cascade modules at a reasonable cost.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Nixon, Andrew; Barber, Tom; Budyn, Nicolas; Bevan, Rhodri; Croxford, Anthony; Wilcox, Paul
2018-04-01
In this paper, a methodology of using finite element (FE) model to validate a ray-based model in the simulation of full matrix capture (FMC) ultrasonic array data set is proposed. The overall aim is to separate signal contributions from different interactions in FE results for easier comparing each individual component in the ray-based model results. This is achieved by combining the results from multiple FE models of the system of interest that include progressively more geometrical features while preserving the same mesh structure. It is shown that the proposed techniques allow the interactions from a large number of different ray-paths to be isolated in FE results and compared directly to the results from a ray-based forward model.
NASA Astrophysics Data System (ADS)
Chabot, N. L.
2017-12-01
As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.
Papp, C.S.E.; Harms, T.F.
1985-01-01
In order to find the most efficient digestion method for the total elemental recovery in peat, ten samples were subjected to different techniques and analysed for Ca, Mg, Fe, AI, Na, K, Mn, P, Zn, Cu, Li, Cd, Co, Ni, Pb and Si using atomic-absorption spectrophotometry. The most satisfactory procedures were dry ashing followed by hydrofluoric acid treatment and wet digestion using a mixture of hot nitric, perchloric and hydrofluoric acids. The wet digestion offers the advantage of a single decomposition method for the determination of Ca, Mg, Fe, AI, K, Na, Mn, Cu, Li, Zn and P. An alkaline fusion technique was required for the determination of Si. Hydrogen peroxide was used to separate the peat into its organic and inorganic components, leading to the total recovery of the elements for both fractions.
Gómez, Fátima Somovilla; Lorza, Rubén Lostado; Bobadilla, Marina Corral; García, Rubén Escribano
2017-09-21
The kinematic behavior of models that are based on the finite element method (FEM) for modeling the human body depends greatly on an accurate estimate of the parameters that define such models. This task is complex, and any small difference between the actual biomaterial model and the simulation model based on FEM can be amplified enormously in the presence of nonlinearities. The current paper attempts to demonstrate how a combination of the FEM and the MRS methods with desirability functions can be used to obtain the material parameters that are most appropriate for use in defining the behavior of Finite Element (FE) models of the healthy human lumbar intervertebral disc (IVD). The FE model parameters were adjusted on the basis of experimental data from selected standard tests (compression, flexion, extension, shear, lateral bending, and torsion) and were developed as follows: First, three-dimensional parameterized FE models were generated on the basis of the mentioned standard tests. Then, 11 parameters were selected to define the proposed parameterized FE models. For each of the standard tests, regression models were generated using MRS to model the six stiffness and nine bulges of the healthy IVD models that were created by changing the parameters of the FE models. The optimal combination of the 11 parameters was based on three different adjustment criteria. The latter, in turn, were based on the combination of stiffness and bulges that were obtained from the standard test FE simulations. The first adjustment criteria considered stiffness and bulges to be equally important in the adjustment of FE model parameters. The second adjustment criteria considered stiffness as most important, whereas the third considered the bulges to be most important. The proposed adjustment methods were applied to a medium-sized human IVD that corresponded to the L3-L4 lumbar level with standard dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm. Agreement between the kinematic behavior that was obtained with the optimized parameters and that obtained from the literature demonstrated that the proposed method is a powerful tool with which to adjust healthy IVD FE models when there are many parameters, stiffnesses, and bulges to which the models must adjust.
Somovilla Gómez, Fátima
2017-01-01
The kinematic behavior of models that are based on the finite element method (FEM) for modeling the human body depends greatly on an accurate estimate of the parameters that define such models. This task is complex, and any small difference between the actual biomaterial model and the simulation model based on FEM can be amplified enormously in the presence of nonlinearities. The current paper attempts to demonstrate how a combination of the FEM and the MRS methods with desirability functions can be used to obtain the material parameters that are most appropriate for use in defining the behavior of Finite Element (FE) models of the healthy human lumbar intervertebral disc (IVD). The FE model parameters were adjusted on the basis of experimental data from selected standard tests (compression, flexion, extension, shear, lateral bending, and torsion) and were developed as follows: First, three-dimensional parameterized FE models were generated on the basis of the mentioned standard tests. Then, 11 parameters were selected to define the proposed parameterized FE models. For each of the standard tests, regression models were generated using MRS to model the six stiffness and nine bulges of the healthy IVD models that were created by changing the parameters of the FE models. The optimal combination of the 11 parameters was based on three different adjustment criteria. The latter, in turn, were based on the combination of stiffness and bulges that were obtained from the standard test FE simulations. The first adjustment criteria considered stiffness and bulges to be equally important in the adjustment of FE model parameters. The second adjustment criteria considered stiffness as most important, whereas the third considered the bulges to be most important. The proposed adjustment methods were applied to a medium-sized human IVD that corresponded to the L3–L4 lumbar level with standard dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm. Agreement between the kinematic behavior that was obtained with the optimized parameters and that obtained from the literature demonstrated that the proposed method is a powerful tool with which to adjust healthy IVD FE models when there are many parameters, stiffnesses, and bulges to which the models must adjust. PMID:28934161
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime
2017-01-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J
2018-04-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.
Atomization methods for forming magnet powders
Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.
2000-01-01
The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.
Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang
2015-01-01
Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721
NASA Astrophysics Data System (ADS)
Nissen, P. E.
2016-09-01
Aims: A previous study of correlations between element abundances and ages of solar twin stars in the solar neighborhood is extended to include Sc, Mn, Cu, and Ba to obtain new information on the nucleosynthetic history of these elements. Methods: HARPS spectra with S/N ≳ 600 are used to derive very precise (σ ~ 0.01 dex) differential abundances of Sc, Mn, Cu, and Ba for 21 solar twins and the Sun. The analysis is based on MARCS model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Stellar ages with internal errors less than 1 Gyr are obtained by interpolation in the log g - Teff diagram between isochrones based on the Aarhus Stellar Evolution Code. Results: For stars younger than 6 Gyr, [Sc/Fe], [Mn/Fe], [Cu/Fe], and [Ba/Fe] are tightly correlated with stellar age, which is also the case for the other elements previously studied; linear relations between [X/Fe] and age have χ^2red ˜ 1, and for most stars the residuals do not depend on elemental condensation temperature. For ages between 6 and 9 Gyr, the [X/Fe] - age correlations break down and the stars split up into two groups having respectively high and low [X/Fe] for the odd-Z elements Na, Al, Sc, and Cu. Conclusions: While stars in the solar neighborhood younger than ~ 6 Gyr were formed from interstellar gas with a smooth chemical evolution, older stars seem to have originated from regions enriched by supernovae with different neutron excesses. Correlations between abundance ratios and stellar age suggest that: (I) Sc is made in Type II supernovae along with the α-capture elements; (II) the Type II to Ia yield ratio is about the same for Mn and Fe; (III) Cu is mainly made by the weak s-process in massive stars; (iv) the Ba/Y yield ratio for asymptotic giant branch stars increases with decreasing stellar mass; (v) [Y/Mg] and [Y/Al] can be used as chemical clocks when determining ages of solar metallicity stars. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programs 072.C-0488, 088.C-0323, 183.C-0972, 188.C-0265.
Model's sparse representation based on reduced mixed GMsFE basis methods
NASA Astrophysics Data System (ADS)
Jiang, Lijian; Li, Qiuqi
2017-06-01
In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.
Model's sparse representation based on reduced mixed GMsFE basis methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn
2017-06-01
In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a largemore » number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.« less
[Determination of multi-element contents in gypsum by ICP-AES].
Guo, Zhong-bao; Bai, Yong-zhi; Cui, Jin-hua; Mei, Yi-fei; Ma, Zhen-zhu
2014-08-01
The content of multi-element in gypsum was determined by ICP-AES. The sample was pretreated by acid-soluble method or alkali-fusion method. Acid-soluble method is suitable for the determination of CaO, SOs, Al2O3, Fe2O3, MgO, K2O, Na2O, TiO2, P2O5, MnO, SrO and BaO. Alkali-fusion method is suitable for the determination of CaO, SO3, SiO2, Al2O3, Fe2O3, MgO, TiO2, P2O5, MnO, SrO, BaO and B2O3. Different series standard solutions were prepared considering the properties and content of elements and solution matrix. The limit of detection and quantification were confirmed for each element under their best analysis spectral lines. The recoveries of the two pretreatment methods were from 93% to 110%, besides that for TiO2 was 81%-87% as pretreated by acid-soluble method. All RSDs (n=6) of tests were from 0.70%-3.42%. The accuracies of CaO and SO3 with ICP-AES method were less than the chemical analysis method. The determination of CaO and SO3 with ICP-AES method is only suitable for the case of low accuracy requirement. The results showed that the method can be used for the determination of multi-element contents in gypsum, with simple operation, fast analysis and reliable results. Total elements can be analysed with both acid-soluble method and alkali-fusion method.
Study on validation method for femur finite element model under multiple loading conditions
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu
2018-03-01
Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.
A time-domain finite element boundary integral approach for elastic wave scattering
NASA Astrophysics Data System (ADS)
Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.
2018-04-01
The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.
NASA Astrophysics Data System (ADS)
Cui, Tao
2018-01-01
After exploring migration laws of major elements in Laowashan bauxite of northern Guizhou Province by geochemical methods, it was found that: 1) Si was negatively correlated to Al and Ti; Al showed significant negative correlations with Si and Fe; Al was positively correlated to Ti. 2) The content of Si and Fe was low in the middle part, high at the top and the highest at the bottom. The content of Al and Ti is the highest in the middle, followed by the content at the top and the bottom successively. 3) Karst depressions are favorable for groundwater discharge through leaching, leading to heavy loss of Fe in ZK-CS1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M.; Ma, L.Q.
1998-11-01
It is critical to compare existing sample digestion methods for evaluating soil contamination and remediation. USEPA Methods 3050, 3051, 3051a, and 3052 were used to digest standard reference materials and representative Florida surface soils. Fifteen trace metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and Za), and six macro elements (Al, Ca, Fe, K, Mg, and P) were analyzed. Precise analysis was achieved for all elements except for Cd, Mo, Se, and Sb in NIST SRMs 2704 and 2709 by USEPA Methods 3050 and 3051, and for all elements except for As, Mo,more » Sb, and Se in NIST SRM 2711 by USEPA Method 3052. No significant differences were observed for the three NIST SRMs between the microwave-assisted USEPA Methods 3051 and 3051A and the conventional USEPA Method 3050 Methods 3051 and 3051a and the conventional USEPA Method 3050 except for Hg, Sb, and Se. USEPA Method 3051a provided comparable values for NIST SRMs certified using USEPA Method 3050. However, for method correlation coefficients and elemental recoveries in 40 Florida surface soils, USEPA Method 3051a was an overall better alternative for Method 3050 than was Method 3051. Among the four digestion methods, the microwave-assisted USEPA Method 3052 achieved satisfactory recoveries for all elements except As and Mg using NIST SRM 2711. This total-total digestion method provided greater recoveries for 12 elements Ag, Be, Cr, Fe, K, Mn, Mo, Ni, Pb, Sb, Se, and Zn, but lower recoveries for Mg in Florida soils than did the total-recoverable digestion methods.« less
Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems
NASA Astrophysics Data System (ADS)
Zuchowski, Loïc; Brun, Michael; De Martin, Florent
2018-05-01
The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.
NASA Astrophysics Data System (ADS)
Astroza, Rodrigo; Ebrahimian, Hamed; Conte, Joel P.
2015-03-01
This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification and further used for damage prognosis. To update the unknown time-invariant parameters of the FE model, two alternative stochastic filtering methods are used: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). A three-dimensional, 5-story, 2-by-1 bay reinforced concrete (RC) frame is used to verify the proposed framework. The RC frame is modeled using fiber-section displacement-based beam-column elements with distributed plasticity and is subjected to the ground motion recorded at the Sylmar station during the 1994 Northridge earthquake. The results indicate that the proposed framework accurately estimate the unknown material parameters of the nonlinear FE model. The UKF outperforms the EKF when the relative root-mean-square error of the recorded responses are compared. In addition, the results suggest that the convergence of the estimate of modeling parameters is smoother and faster when the UKF is utilized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamachi, Eiji; Yoshida, Takashi; Yamaguchi, Toshihiko
2014-10-06
We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture andmore » hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.« less
NASA Astrophysics Data System (ADS)
Nakamachi, Eiji; Yoshida, Takashi; Kuramae, Hiroyuki; Morimoto, Hideo; Yamaguchi, Toshihiko; Morita, Yusuke
2014-10-01
We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.
NASA Astrophysics Data System (ADS)
Liu, Ying; Xu, Zhenhuan; Li, Yuguo
2018-04-01
We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.
Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.
Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun
2014-09-01
The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.
NASA Astrophysics Data System (ADS)
Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.
2014-02-01
A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.
Frequency response function (FRF) based updating of a laser spot welded structure
NASA Astrophysics Data System (ADS)
Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.
2018-04-01
The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.
A Thermo-Optic Propagation Modeling Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrader, Karl; Akau, Ron
2014-10-01
A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developedmore » for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.« less
NASA Astrophysics Data System (ADS)
Labrador, A. W.; Sollitt, L. S.; Cohen, C.; Cummings, A. C.; Leske, R. A.; Mason, G. M.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.; Wiedenbeck, M. E.
2017-12-01
We have estimated mean high-energy ionic charge states of solar energetic particles (SEPs) using the Sollitt et al. (2008) method. The method applies to abundant elements (e.g. N, O, Ne, Mg, Si, and Fe) in SEP events at the energy ranges covered by the STEREO/LET instrument (e.g. 2.7-70 MeV/nuc for Fe) and the ACE/SIS instrument (e.g. 11-168 MeV/nuc for Fe). The method starts by fitting SEP time-intensity profiles during the decay phase of a given, large SEP event in order to obtain energy-dependent decay times. The mean charge state for each element is estimated from the relationship between the energy dependence of its decay times to that for selected calibration references. For simultaneous estimates among multiple elements, we assume a common rigidity dependence across all elements. Earlier calculations by Sollitt et al. incorporated helium time intensity profile fits with an assumed charge state of 2. Subsequent analysis dropped helium as a reference element, for simplicity, but we have recently reincorporated He for calibration, from either STEREO/LET or ACE/SIS data, combined with C as an additional reference element with an assumed mean charge state of 5.9. For this presentation, we will present validation of the reanalysis using data from the 8 March 2012 SEP event in ACE data and the 28 September 2012 event in STEREO data. We will also introduce additional low-energy He from publicly available ACE/ULEIS and STEREO/SIT data, which should further constrain the charge state calibration. Better charge state calibration could yield more robust convergence to physical solutions for SEP events for which this method has not previously yielded results. Therefore, we will also present analysis for additional SEP events from 2005 to 2017, and we will investigate conditions for which this method yields or does not yield charge states.
NASA Astrophysics Data System (ADS)
Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges
2012-07-01
Laser ablation ICP-MS analysis has been applied to many accessory minerals in order to understand better the process by which the rock formed and for provenance discrimination. We have determined trace element concentrations of Fe-oxides in massive sulfides that form Ni-Cu-PGE deposits at the base of the Sudbury Igneous Complex in Canada. The samples represent the crystallization products of fractionating sulfide liquids and consist of early-forming Fe-rich monosulfide solution (MSS) cumulates and residual Cu-rich intermediate solid solution (ISS). This study shows that Fe-oxide geochemistry is a sensitive petrogenetic indicator for the degree of fractionation of the sulfide liquid and provides an insight into the partitioning of elements between sulfide and Fe-oxide phases. In addition, it is useful in determining the provenance of detrital Fe-oxide. In a sulfide melt, all lithophile elements (Cr, Ti, V, Al, Mn, Sc, Nb, Ga, Ge, Ta, Hf, W and Zr) are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming Fe-oxide (titanomagnetite) which crystallized with Fe-rich MSS. Upon the continual crystallization of Fe-oxide from the sulfide liquid, the lithophile elements gradually decrease so that late-forming Fe-oxide (magnetite), which crystallized from the residual Cu-rich liquid, is depleted in these elements. This behavior is in contrast with Fe-oxides that crystallized from a fractionating silicate melt, whereby the concentration of incompatible elements, such as Ti, increases rather than decreases. The behavior of the chalcophile elements in magnetite is largely controlled by the crystallization of the sulfide minerals with only Ni, Co, Zn, Mo, Sn and Pb present above detection limit in magnetite. Nickel, Mo and Co are compatible in Fe-rich MSS and thus the co-crystallizing Fe-oxide is depleted in these elements. In contrast, magnetite that crystallized later from the fractionated liquid with Cu-rich ISS is enriched in Ni, Mo and Co because Fe-rich MSS is absent. The concentrations of Sn and Pb, which are incompatible with Fe-rich MSS, are highest in magnetite that formed from the fractionated Cu-rich liquid. At subsolidus temperatures, ilmenite exsolved from titanomagnetite whereas Al-spinel exsolved from the cores of some magnetite, locally redistributing the trace elements. However, during laser ablation ICP-MS analysis of these Fe-oxides both the magnetite and its exsolution products are ablated so that the analysis represents the original magmatic composition of the Fe-oxide that crystallized from the sulfide melt.
NASA Astrophysics Data System (ADS)
Ee, K. C.; Dillon, O. W.; Jawahir, I. S.
2004-06-01
This paper discusses the influence of major chip-groove parameters of a cutting tool on the chip formation process in orthogonal machining using finite element (FE) methods. In the FE formulation, a thermal elastic-viscoplastic material model is used together with a modified Johnson-Cook material law for the flow stress. The chip back-flow angle and the chip up-curl radius are calculated for a range of cutting conditions by varying the chip-groove parameters. The analysis provides greater understanding of the effectiveness of chip-groove configurations and points a way to correlate cutting conditions with tool-wear when machining with a grooved cutting tool.
A data-driven dynamics simulation framework for railway vehicles
NASA Astrophysics Data System (ADS)
Nie, Yinyu; Tang, Zhao; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2018-03-01
The finite element (FE) method is essential for simulating vehicle dynamics with fine details, especially for train crash simulations. However, factors such as the complexity of meshes and the distortion involved in a large deformation would undermine its calculation efficiency. An alternative method, the multi-body (MB) dynamics simulation provides satisfying time efficiency but limited accuracy when highly nonlinear dynamic process is involved. To maintain the advantages of both methods, this paper proposes a data-driven simulation framework for dynamics simulation of railway vehicles. This framework uses machine learning techniques to extract nonlinear features from training data generated by FE simulations so that specific mesh structures can be formulated by a surrogate element (or surrogate elements) to replace the original mechanical elements, and the dynamics simulation can be implemented by co-simulation with the surrogate element(s) embedded into a MB model. This framework consists of a series of techniques including data collection, feature extraction, training data sampling, surrogate element building, and model evaluation and selection. To verify the feasibility of this framework, we present two case studies, a vertical dynamics simulation and a longitudinal dynamics simulation, based on co-simulation with MATLAB/Simulink and Simpack, and a further comparison with a popular data-driven model (the Kriging model) is provided. The simulation result shows that using the legendre polynomial regression model in building surrogate elements can largely cut down the simulation time without sacrifice in accuracy.
NASA Astrophysics Data System (ADS)
Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan
2017-09-01
Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.
Identification of deposit types of natural corundum by PIXE
NASA Astrophysics Data System (ADS)
Chulapakorn, T.; Intarasiri, S.; Bootkul, D.; Singkarat, S.
2014-07-01
Natural corundum, one of the most important exports of Thailand, is a rare, durable and valuable gemstone. The value of these precious stones is determined by their visual appearances, including brilliance, color, fire (light dispersion) and luster. Corundum is an allochromatic mineral whose trace element concentration depends on the origin and has influence on price setting. This work attempts to use an alternative method to identify the geological deposits of rubies and sapphires found in the Thai market which came from various countries, e.g., Africa, Cambodia, Myanmar, Sri Lanka, Thailand and USA. Interrelations between most important major trace elements are the main results of this work. Quantitative analysis of trace elements were performed by particle-induced X-ray emission (PIXE) technique, using 2-MeV proton beam generated and accelerated by the 1.7 MV tandem accelerator at Chiang Mai University. The trace elements of interest are Ti, Cr, Fe and Ga. We have found that the relationships between the ratios of trace element concentration can be used to classify the deposit type. Moreover, this method shows a clear separation between two main types of geological deposits, basaltic and metamorphic deposits, which further helps in determining the gemstone origin. For example, the gemstones from Cambodia, Thailand and the USA can be classified as the basaltic deposits with their high concentration in Fe but low in Ti, while the gemstones from Africa, Myanmar and Sri Lanka are metamorphic deposits because they have low Fe but high Ti concentrations. Both deposits required plots of pairs of trace elements and their ratios in population field appearance in order to distinguish their origins. The advantageous of these methods appear to be a new and a sustainable procedure for determining gemstone origins.
Research on simplified parametric finite element model of automobile frontal crash
NASA Astrophysics Data System (ADS)
Wu, Linan; Zhang, Xin; Yang, Changhai
2018-05-01
The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.
Wang, Wen-ming; Zhang, Zhen-hua; Song, Hai-xing; Liu, Qiang; Rong, Xiang-min; Guan, Chun-yun; Zeng, Jing; Yuan, Dan
2015-07-01
Effect of elevated atmospheric-CO2 (780 µmol . mol-1) on the absorption and transportation of secondary nutrient elements (calcium, magnesium, sulphur) and micronutrient elements (iron, manganese, zinc, molybdenum and boron) in oilseed rape at the stem elongation stage were studied by greenhouse simulated method. Compared with the ambient CO2 condition, the content of Zn in stem was increased and the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with no nitrogen (N) application; the contents of Ca, S, B and Zn were increased, and the contents of Mg, Mn, Mo and Fe were decreased under the elevated atmospheric CO2 with N application (0.2 g N . kg-1 soil); except the content of Mo in leaf was increased, the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with two levels of N application. Compared with the ambient CO2 condition, the amounts of Ca and S relative to the total amount of secondary nutrient elements in stem and the amounts of B and Zn relative to the total amount of micronutrient elements in stem were increased under the elevated-CO2 treatment with both levels of N application, and the corresponding values of Mg, Fe, Mn and Mo were decreased; no-N application treatment increased the proportion of Ca distributed into the leaves, and the proportion of Mg distributed into leaves was increased by the normal-N application level; the proportions of Mn, Zn and Mo distributed into the leaves were increased at both N application levels. Without N application, the elevation of atmospheric CO2 increased the transport coefficients of SFe, Mo and SS,B, but decreased the transport coefficients of SMg,Fe, SMg, Mn and SS,Fe, indicating the proportions of Mo, S transported into the upper part of plant tissues was higher than that of Fe, and the corresponding value of B was higher than that observed for S, the corresponding value of Mg was higher than that of Fe and Mn. Under normal-N application, the elevation of atmospheric CO2 increased the transport coefficients of SMg,Fe, SMg,Mn and SS,B, but decreased the transport coefficients of SCa, Mg, SFe,Mo and SS,Fe indicating the proportions of Fe, Mn and Ca transported into the upper part of plant tissues was higher than that of Mg; the corresponding value of B was higher than that observed for S, the corresponding value of Fe was higher than that of Mo, and the corresponding value of S was higher than that of Fe.
Wang, Hailong; Wang, Meng; Wang, Bing; Zheng, Lingna; Chen, Hanqing; Chai, Zhifang; Feng, Weiyue
2017-02-01
Cellular heterogeneity is an inherent condition of cell populations, which results from stochastic expression of genes, proteins, and metabolites. The heterogeneity of individual cells can dramatically influence cellular decision-making and cell fate. So far, our knowledge about how the variation of endogenous metals and non-metals in individual eukaryotic cells is limited. In this study, ICP-MS equipped with a high efficiency cell introduction system (HECIS) was developed as a method of single-cell ICP-MS (SC-ICP-MS). The method was applied to the single-cell analysis of Mn, Fe, Co, Cu, Zn, P, and S in human cancer cell lines (HeLa and A549) and normal human bronchial epithelial cell line (16HBE). The analysis showed obvious variation of the masses of Cu, Fe, Zn, and P in individual HeLa cells, and variation of Fe, Zn, and P in individual A549 cells. On the basis of the single-cell data, a multimodal distribution of the elements in the cell population was fitted, which showed marked differences among the various cell lines. Importantly, subpopulations of the elements were found in the cell populations, especially in the HeLa cancer cells. This study demonstrates that SC-ICP-MS is able to unravel the extent of variation of endogenous elements in individual cells, which will help to improve our fundamental understanding of cellular biology and reveal novel insights into human biology and medicine. Graphical abstract The variations of masses and distribution patterns of elements Mn, Fe, Co, Cu, Zn, P, and S in single cells were successfully detected by ICP-MS coupled with a high efficiency cell introduction system (HECIS).
Critical evaluation and thermodynamic optimization of the Iron-Rare-Earth systems
NASA Astrophysics Data System (ADS)
Konar, Bikram
Rare-Earth elements by virtue of its typical magnetic, electronic and chemical properties are gaining importance in power, electronics, telecommunications and sustainable green technology related industries. The Magnets from RE-alloys are more powerful than conventional magnets which have more longevity and high temperature workability. The dis-equilibrium in the Rare-Earth element supply and demand has increased the importance of recycling and extraction of REE's from used permanent Magnets. However, lack of the thermodynamic data on RE alloys has made it difficult to design an effective extraction and recycling process. In this regard, Computational Thermodynamic calculations can serve as a cost effective and less time consuming tool to design a waste magnet recycling process. The most common RE permanent magnet is Nd magnet (Nd 2Fe14B). Various elements such as Dy, Tb, Pr, Cu, Co, Ni, etc. are also added to increase its magnetic and mechanical properties. In order to perform reliable thermodynamic calculations for the RE recycling process, accurate thermodynamic database for RE and related alloys are required. The thermodynamic database can be developed using the so-called CALPHAD method. The database development based on the CALPHAD method is essentially the critical evaluation and optimization of all available thermodynamic and phase diagram data. As a results, one set of self-consistent thermodynamic functions for all phases in the given system can be obtained, which can reproduce all reliable thermodynamic and phase diagram data. The database containing the optimized Gibbs energy functions can be used to calculate complex chemical reactions for any high temperature processes. Typically a Gibbs energy minimization routine, such as in FactSage software, can be used to obtain the accurate thermodynamic equilibrium in multicomponent systems. As part of a large thermodynamic database development for permanent magnet recycling and Mg alloy design, all thermodynamic and phase diagram data in the literature for the fourteen Fe-RE binary systems: Fe-La, Fe-Ce, Fe-Pr, Fe-Nd, Fe-Sm, Fe-Gd, Fe-Tb, Fe-Dy, Fe-Ho, Fe-Er, Fe-Tm, Fe-Lu, Fe-Sc and Fe-Y are critically evaluated and optimized to obtain thermodynamic model parameters. The model parameters can be used to calculate phase diagrams and Gibbs energies of all phases as functions of temperature and composition. This database can be incorporated with the present thermodynamic database in FactSage software to perform complex chemical reactions and phase diagram calculations for RE magnet recycling process.
Solvothermal synthesis of Au@Fe3O4 nanoparticles for antibacterial applications
NASA Astrophysics Data System (ADS)
Kelgenbaeva, Zhazgul; Abdullaeva, Zhypargul; Murzubraimov, Bektemir
2018-04-01
We present Au@Fe3O4 nanoparticles obtained from Fe nanoparticles and HAuCl4 using a simple solvothermal method. Trisodium citrate (C6H5Na3O7*2H2O) served as a reducing agent for Au. X-ray diffraction analysis, electronic microscopes and energy-dispersive X-ray spectroscopy revealed cubic structure, elemental composition (Au, Fe and O) and spherical shape of nanoparticles. Antibacterial activity of the sample was tested against E. coli bacteria and obtained results were discussed.
Geochemical studies of Fe, Mn, Co, As, Cr, Sb, Zn, Sc and V in surface sediments from Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Wu, Run; Li, Pei-Quan; Miao, Lu-Tian; Zhang, Shu-Xin; Tian, Wei-Zhi
1994-12-01
The contents of nearly forty-elements in surface sediments in Jiaozhou Bay were determined using a Neutron Activation Analysis Technique (Grancini, et al., 1976; Li Peiquan et al., 1985, 1986; Li Xiuxia et al., 1986). This paper's detailed discussion on only nine elements (Fe, Mn, Co, Cr, Sc, As, Sb, Zn and V) includes their distributions, concentrations, correlationships, material sources, background, etc. Based on Zavaristski's classification method, Fe, Mn, Co, Cr and V belong to the second group; As and Sb to the eighth groups: Sc and Zn to the third and sixth groups. It was found that their notably good correlationship is mainly due to the similarity of their ionic structures and that their variation is controlled by the Fe content (except Mn). The source of sediments is mainly terristrial material, and the composition of sediment is similar to that of shale and shale+clay. The contents for a large number of elements are within the scope of the background level, but there still is pollution of Zn and Cr, at least in a few stations.
Repositioning the knee joint in human body FE models using a graphics-based technique.
Jani, Dhaval; Chawla, Anoop; Mukherjee, Sudipto; Goyal, Rahul; Vusirikala, Nataraju; Jayaraman, Suresh
2012-01-01
Human body finite element models (FE-HBMs) are available in standard occupant or pedestrian postures. There is a need to have FE-HBMs in the same posture as a crash victim or to be configured in varying postures. Developing FE models for all possible positions is not practically viable. The current work aims at obtaining a posture-specific human lower extremity model by reconfiguring an existing one. A graphics-based technique was developed to reposition the lower extremity of an FE-HBM by specifying the flexion-extension angle. Elements of the model were segregated into rigid (bones) and deformable components (soft tissues). The bones were rotated about the flexion-extension axis followed by rotation about the longitudinal axis to capture the twisting of the tibia. The desired knee joint movement was thus achieved. Geometric heuristics were then used to reposition the skin. A mapping defined over the space between bones and the skin was used to regenerate the soft tissues. Mesh smoothing was then done to augment mesh quality. The developed method permits control over the kinematics of the joint and maintains the initial mesh quality of the model. For some critical areas (in the joint vicinity) where element distortion is large, mesh smoothing is done to improve mesh quality. A method to reposition the knee joint of a human body FE model was developed. Repositions of a model from 9 degrees of flexion to 90 degrees of flexion in just a few seconds without subjective interventions was demonstrated. Because the mesh quality of the repositioned model was maintained to a predefined level (typically to the level of a well-made model in the initial configuration), the model was suitable for subsequent simulations.
NASA Astrophysics Data System (ADS)
Shimoyama, Yuta; Terasaki, Hidenori; Ohtani, Eiji; Urakawa, Satoru; Takubo, Yusaku; Nishida, Keisuke; Suzuki, Akio; Katayama, Yoshinori
2013-11-01
Carbon is a plausible light element candidate in the Earth’s outer core. We measured the density of liquid Fe-3.5 wt% C up to 6.8 GPa and 2200 K using an X-ray absorption method. The compression curve of liquid Fe-C was fitted using the third-order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are K0,1500K = 55.3 ± 2.5 GPa and (dK0/dP)T = 5.2 ± 1.5, and the thermal expansion coefficient is α = 0.86 ± 0.04 × 10-4 K-1. The Fe-C density abruptly increases at pressures between 4.3 and 5.5 GPa in the range of present temperatures. Compared with the results of previous density measurements of liquid Fe-C, the effect of carbon on the density of liquid Fe shows a nonideal mixing behavior. The abrupt density increase and nonideal mixing behavior are important factors in determining the light element content in the Earth’s core.
NASA Astrophysics Data System (ADS)
Florini, Nikoletta; Dimitrakopulos, George P.; Kioseoglou, Joseph; Pelekanos, Nikos T.; Kehagias, Thomas
2017-04-01
We are briefly reviewing the current status of elastic strain field determination in III-V heteroepitaxial nanostructures, linking finite elements (FE) calculations with quantitative nanoscale imaging and atomistic calculation techniques. III-V semiconductor nanostructure systems of various dimensions are evaluated in terms of their importance in photonic and microelectronic devices. As elastic strain distribution inside nano-heterostructures has a significant impact on the alloy composition, and thus their electronic properties, it is important to accurately map its components both at the interface plane and along the growth direction. Therefore, we focus on the determination of the stress-strain fields in III-V heteroepitaxial nanostructures by experimental and theoretical methods with emphasis on the numerical FE method by means of anisotropic continuum elasticity (CE) approximation. Subsequently, we present our contribution to the field by coupling FE simulations on InAs quantum dots (QDs) grown on (211)B GaAs substrate, either uncapped or buried, and GaAs/AlGaAs core-shell nanowires (NWs) grown on (111) Si, with quantitative high-resolution transmission electron microscopy (HRTEM) methods and atomistic molecular dynamics (MD) calculations. Full determination of the elastic strain distribution can be exploited for band gap tailoring of the heterostructures by controlling the content of the active elements, and thus influence the emitted radiation.
Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo
2009-12-01
A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.
A view on elemental distribution alterations of coronary artery walls in atherogenesis
NASA Astrophysics Data System (ADS)
Pallon, J.; Homman, P.; Pinheiro, T.; Halpern, M. J.; Malmqvist, K.
1995-09-01
In this study, the Nuclear Microprobe technique was employed to investigate the elemental concentration alterations of minor and trace elements at the different cellular layers and structures of freeze-dried cryosections of human coronary arteries. Nuclear microprobe analyses enable to determine 7 elements, i.e., P, S, Cl, K, Ca, Fe and Zn in the artery walls. Furthermore, it was possible to identify early modifications of the artery due to the atherosclerosis progression that cannot be detected with specific staining or conventional histological methods. These modifications are shown to be related to abnormal Fe and Zn depositions in the surroundings of the elastic laminae. Later on, the calcifications of these regions occur, contributing to the elastic laminae damage and leading to the atheroma growing and maturation.
NASA Astrophysics Data System (ADS)
Yan, Ping; He, Man; Chen, Beibei; Hu, Bin
2017-10-01
In this work, di(2-ethylhexyl)phosphoric acid (P204) grafted magnetic nanoparticles were synthesized by fabricating P204 onto Fe3O4@TiO2 nanoparticles based on Lewis acid-base interaction between Ti and phosphate group under weakly acidic condition. The prepared Fe3O4@TiO2@P204 nanoparticles exhibited excellent selectivity for rare earth elements, and good anti-interference ability. Based on it, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for fast preconcentration and determination of trace rare earth elements in environmental samples. Under the optimal conditions, the detection limits of rare earth elements were in the range of 0.01 (Tm)-0.12 (Nd) ng L- 1 with an enrichment factor of 100-fold, and the relative standard deviations ranged from 4.9 (Pr) to 10.7% (Er). The proposed method was successfully applied to the determination of rare earth elements in environmental samples, including river water, lake water, seawater and sediment.
NASA Astrophysics Data System (ADS)
Fang, T.; Guo, H.; Verma, V.; Peltier, R. E.; Weber, R. J.
2015-06-01
Water-soluble redox-active metals are potentially toxic due to the ability to catalytically generate reactive oxygen species (ROS) in vivo, leading to oxidative stress. As part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE), we developed a method to quantify water-soluble elements, including redox-active metals, from a large number of filter samples (N = 530) in support of the Center's health studies. PM2.5 samples were collected during 2012-2013 at various sites (three urban, two rural, a near-road, and a road-side site) in the southeastern US, using high-volume samplers. Water-soluble elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Br, Sr, Ba, and Pb) were determined by extracting filters in deionized water and re-aerosolized for analyses by X-ray fluorescence (XRF) using an online aerosol element analyzer (Xact, Cooper Environmental). Concentrations ranged from detection limits (nominally 0.1 to 30 ng m-3) to 1.2 μg m-3, with S as the most abundant element, followed by Ca, K, Fe, Cu, Zn, and Ba. Positive Matrix Factorization (PMF) identified four factors that were associated with specific sources based on relative loadings of various tracers. These include: brake/tire wear (with tracers Ba and Cu); biomass burning (K); secondary formation (S, Se, and WSOC); and mineral dust (Ca). Of the four potentially toxic and relatively abundant metals (redox active Cu, Mn, Fe, and redox-inactive Zn), 51 % of Cu, 32 % of Fe, 17 % of Mn, and 45 % of Zn, were associated with the brake/tire factor. Mn was mostly associated with the mineral dust factor (45 %). These two factors were higher in warm (dryer) periods that favored particle re-suspension. Zn was found in a mixture of factors, with 26 % associated with mineral dust, 14 % biomass burning, and 13 % secondary formation. Roughly 50 % of Fe and 40 % of Cu was apportioned to the secondary formation factor, likely through increased solubility by sulfur-driven aerosol acidity. Linkages between sulfate and water-soluble Fe and Cu may account for some of the past observed associations between sulfate/sulfur oxide and health outcomes. For Cu, Mn, Fe, and Zn, only Fe was correlated with PM2.5 mass (r = 0.73-0.80). Overall, mobile source emissions generated through mechanical processes (re-entrained road dust, tire and break wear) and processing by secondary sulfate were major contributors to water-soluble metals known to be capable of generating ROS.
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Kempel, L. C.; Sliva, R.; Wang, H. T. G.; Woo, A. G.
1994-01-01
The goal of this project was to develop analysis codes for computing the scattering and radiation of antennas on cylindrically and doubly conformal platforms. The finite element-boundary integral (FE-BI) method has been shown to accurately model the scattering and radiation of cavity-backed patch antennas. Unfortunately extension of this rigorous technique to coated or doubly curved platforms is cumbersome and inefficient. An alternative approximate approach is to employ an absorbing boundary condition (ABC) for terminating the finite element mesh thus avoiding use of a Green's function. A FE-ABC method is used to calculate the radar cross section (RCS) and radiation pattern of a cavity-backed patch antenna which is recessed within a metallic surface. It is shown that this approach is accurate for RCS and antenna pattern calculations with an ABC surface displaced as little as 0.3 lambda from the cavity aperture. These patch antennas may have a dielectric overlay which may also be modeled with this technique.
Lin, Kunning; Ma, Jian; Yuan, Dongxing; Feng, Sichao; Su, Haitao; Huang, Yongming; Shangguan, Qipei
2017-05-15
An integrated system was developed for automatic and sequential determination of NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ in natural waters based on reverse flow injection analysis combined with spectrophotometric detection. The system operation was controlled by a single chip microcomputer and laboratory-programmed software written in LabVIEW. The experimental parameters for each nutrient element analysis were optimized based on a univariate experimental design, and interferences from common ions were evaluated. The upper limits of the linear range (along with detection limit, µmolL -1 ) of the proposed method was 20 (0.03), 200 (0.7), 12 (0.3), 5 (0.03), 5 (0.03), 9 (0.2) µmolL -1 , for NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ , respectively. The relative standard deviations were below 5% (n=9-13) and the recoveries varied from 88.0±1.0% to 104.5±1.0% for spiked water samples. The sample throughput was about 20h -1 . This system has been successfully applied for the determination of multi-nutrient elements in different kinds of water samples and showed good agreement with reference methods (slope 1.0260±0.0043, R 2 =0.9991, n=50). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Z.; Jones, C. M.
2002-05-01
Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.
Evaluation of Trace Elements and Their Relationship with Growth and Development of Young Children.
Cao, Jia; Gao, Zhenyan; Yan, Jin; Li, Minming; Su, Jia; Xu, Jian; Yan, Chong-Huai
2016-06-01
This study was conducted to assess the levels of trace elements and their relationship with growth and development of children in Shanghai, China, to offer scientific evidence for supplementing trace elements in children. A stratified, clustered, random sampling method was used in the study. Blood samples were taken from 2141 Shanghai children from 0 to 6.0 years old, and the concentrations of zinc (Zn), calcium (Ca), iron (Fe), copper (Cu), and magnesium (Mg) were measured using inductively coupled plasma mass spectrometry (ICP-MS). Nutritional status was determined and Z-scores of anthropometric parameters, such as height for age (HFA), weight for age (WFA), and body mass index (BMI) were calculated, indicated by HAZ, WAZ, and BMIZ, respectively. The overall median blood levels of Zn, Ca, Fe, Cu, and Mg were 8.83, 79.02, 9.49, 1.04, and 15.45 mg/L, respectively. Fe, Cu, and Mg increased with age and Zn, Fe, and Cu differed by sex. HAZ and WAZ were positively correlated with Zn (r (2) = 0.072 and 0.053, respectively; P < 0.05). Trace elements were significantly related to children's growth and development. Dietary supplementation and screening of nutritional states are potential solutions to improve children's growth and development.
DOT National Transportation Integrated Search
2017-04-04
This paper employs the finite element (FE) modeling : method to investigate the contributing factors to the horizontal : splitting cracks observed in the upper strand plane in some : concrete crossties made with seven-wire strands. The concrete...
[Contents of nutrient elements in NH4(+)-N fertilizer and urea].
Wang, Zheng-Rui; Qu, Gui-Qin; Rui, Yu-Kui; Shen, Jian-Bo; Zhang, Fu-Suo
2009-03-01
Fertilizer contains not only one compound or one element, so it is important to determine the contents of other elements necessitous and beneficial to plant. All the other nutrient elements for plant, including necessitous elements and beneficial elements in ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2, were analyzed by method of ICP-MS. The results showed that ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2 both contain many necessitous elements, Mg, P, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo, thereinto the contents of Mg, P, K, Ca, Mn and Fe were on microg x g(-1) the level, and Ni, Cu, Zn and Mo were on the ng x g(-1) level; compared with CO(NH2)2, ammonia nitrogen fertilizer ((NH4)2SO4) contains more necessitous elements and beneficial elements except Mo and Si. All the above elements could influence the results of nitrogen fertilizer efficiency experiments, so pure fertilizer should be used in the future nitrogen fertilizer efficiency experiments and the comparative experiments of different form nitrogen fertilizer.
Kerckhoffs, Roy C. P.; Neal, Maxwell L.; Gu, Quan; Bassingthwaighte, James B.; Omens, Jeff H.; McCulloch, Andrew D.
2010-01-01
In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system. PMID:17111210
Iron Partitioning in Ferropericlase and Consequences for the Magma Ocean.
NASA Astrophysics Data System (ADS)
Braithwaite, J. W. H.; Stixrude, L. P.; Holmstrom, E.; Pinilla, C.
2016-12-01
The relative buoyancy of crystals and liquid is likely to exert a strong influence on the thermal and chemical evolution of the magma ocean. Theory indicates that liquids approach, but do not exceed the density of iso-chemical crystals in the deep mantle. The partitioning of heavy elements, such as Fe, is therefore likely to control whether crystals sink or float. While some experimental results exist, our knowledge of silicate liquid-crystal element partitioning is still limited in the deep mantle. We have developed a method for computing the Mg-Fe partitioning of Fe in such systems. We have focused initially on ferropericlase, as a relatively simple system where the buoyancy effects of Fe partitioning are likely to be large. The method is based on molecular dynamics driven by density functional theory (spin polarized, PBEsol+U). We compute the free energy of Mg for Fe substitution in simulations of liquid and B1 crystalline phases via adiabatic switching. We investigate the dependence of partitioning on pressure, temperature, and iron concentration. We find that the liquid is denser than the coexisting crystalline phase at all conditions studies. We also find that the high-spin to low-spin transition in the crystal and the liquid, have an important influence on partitioning behavior.
NASA Astrophysics Data System (ADS)
Wu, Jie; Yan, Quan-sheng; Li, Jian; Hu, Min-yi
2016-04-01
In bridge construction, geometry control is critical to ensure that the final constructed bridge has the consistent shape as design. A common method is by predicting the deflections of the bridge during each construction phase through the associated finite element models. Therefore, the cambers of the bridge during different construction phases can be determined beforehand. These finite element models are mostly based on the design drawings and nominal material properties. However, the accuracy of these bridge models can be large due to significant uncertainties of the actual properties of the materials used in construction. Therefore, the predicted cambers may not be accurate to ensure agreement of bridge geometry with design, especially for long-span bridges. In this paper, an improved geometry control method is described, which incorporates finite element (FE) model updating during the construction process based on measured bridge deflections. A method based on the Kriging model and Latin hypercube sampling is proposed to perform the FE model updating due to its simplicity and efficiency. The proposed method has been applied to a long-span continuous girder concrete bridge during its construction. Results show that the method is effective in reducing construction error and ensuring the accuracy of the geometry of the final constructed bridge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spemann, D., E-mail: spemann@uni-leipzig.de; Esquinazi, P., E-mail: esquin@physik.uni-leipzig.de; Setzer, A.
In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearlymore » exceeds the maximum contribution from pure Fe or Fe{sub 3}C. For most samples the temperature dependence of the remanence decreases linearly with T – a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.« less
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel.
Li, Fangjie; Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-10-19
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as "pre-alloying", has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7-4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3-5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel
Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-01-01
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as “pre-alloying”, has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7–4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3–5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards. PMID:29048379
NASA Astrophysics Data System (ADS)
Li, Zhu-bai; Wang, Li-chen; Geng, Xiao-peng; Hu, Feng-xia; Sun, Ji-rong; Shen, Bao-gen
2017-03-01
Magnetic materials of MM-Fe-B (MM=mischmetal) ribbons were prepared using melt spinning method by varying the content of MM. The ribbons contain minor phases besides the main phase of Re2Fe14B. X-ray techniques show that the diffraction peak intensities of the minor phase Fe3B vary with the content of constituent elements, indicating that the amount of minor phase could be tunable. The squareness of hysteresis loop is the best in MM13Fe80.5B6.5 ribbons, which should mainly ascribe to the less amount of minor phase. Henkel plots verify the more uniform magnetization reversals in MM13Fe80.5B6.5 ribbons, and the energy product achieves to the maximum of 12.74 MGOe with the coercivity of 6.50 kOe. With the increase of MM content the coercivity increases monotonically, and reaches to 9.13 kOe in MM15Fe77.5B7.5 ribbons, which should be related with the nature of the defects in the main phase. These investigations show that optimizing the content of constituent elements and phase constitution could improve magnetic properties in the resource-saving magnets of MM-Fe-B ribbons.
Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars
NASA Astrophysics Data System (ADS)
Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.
2018-03-01
Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter, first peak elements. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 165.N-0276(A), (PI R.Cayrel).
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Wang, R.; Secunde, R.
1992-01-01
A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.
Intermetallic M--Sn.sub.5 (M=Fe, Cu, Co, Ni) compound and a method of synthesis thereof
Wang, Xiao-Liang; Han, Weiqiang
2017-09-05
Novel intermetallic materials are provided that are composed of tin and one or more additional metal(s) having a formula M.sub.(1-x)-Sn.sub.5, where -0.1.ltoreq.x.ltoreq.0.5, with 0.01.ltoreq.x.ltoreq.0.4 being more preferred and the second metallic element (M) is selected from iron (Fe), copper (Cu), cobalt (Co), nickel (Ni), and a combination of two or more of those metals. Due to low concentration of the second metallic element, the intermetallic compound affords an enhanced capacity applicable for electrochemical cells and may serve as an intermediate phase between Sn and MSn.sub.2. A method of synthesizing these intermetallic materials is also disclosed.
Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate.
Liu, Haofei; Sun, Wei
2017-08-01
Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an approximation method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the approximation method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the approximation method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.
Local atomic structure of Fe/Cr multilayers: Depth-resolved method
NASA Astrophysics Data System (ADS)
Babanov, Yu. A.; Ponomarev, D. A.; Devyaterikov, D. I.; Salamatov, Yu. A.; Romashev, L. N.; Ustinov, V. V.; Vasin, V. V.; Ageev, A. L.
2017-10-01
A depth-resolved method for the investigation of the local atomic structure by combining data of X-ray reflectivity and angle-resolved EXAFS is proposed. The solution of the problem can be divided into three stages: 1) determination of the element concentration profile with the depth z from X-ray reflectivity data, 2) determination of the X-ray fluorescence emission spectrum of the element i absorption coefficient μia (z,E) as a function of depth and photon energy E using the angle-resolved EXAFS data Iif (E , ϑl) , 3) determination of partial correlation functions gij (z , r) as a function of depth from μi (z , E) . All stages of the proposed method are demonstrated on a model example of a multilayer nanoheterostructure Cr/Fe/Cr/Al2O3. Three partial pair correlation functions are obtained. A modified Levenberg-Marquardt algorithm and a regularization method are applied.
Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer
2012-01-01
The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations. PMID:22470474
Preparation of High-Quality FeV55N Using Ammonia as a Reductant and Nitrogen Source
NASA Astrophysics Data System (ADS)
Wu, Yue-Dong; Zhang, Guo-Hua; Chou, Kuo-Chih
2018-05-01
High-quality FeV55N has been prepared by using ammonia as a reductant and nitrogen source. The raw materials comprised ammonium vanadate and Fe2O3, which were first reduced and nitrided by ammonia to prepare FeV55N composite powders of VN and Fe2N. Subsequently, the composite powders were sintered at high temperature to obtain a bulk FeV55N alloy. The final products obtained by this method do not contain elemental Al, Si, or C impurities. Furthermore, the residual oxygen content of the final products can be reduced to 0.56 wt.%. After sintering, it is possible to obtain a FeV55N alloy with a density of up to 5.4 g/cm3.
The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Bridge
NASA Astrophysics Data System (ADS)
Peters, Geraldine J.; Adelman, Saul J.
2016-01-01
The abundances of three Fe Group elements (V, Cr, and Fe) in 9 early main-sequence band B stars in the LMC, 7 in the SMC , and two in the Magellanic Bridge have been determined from archival FUSE observations and the Hubeny/Lanz NLTE programs TLUSTY/SYNSPEC. Lines from the Fe group elements, except for a few weak multiplets of Fe III, are not observable in the optical spectral region. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. The abundances of these elements in early B stars are a marker for recent SNe Ia activity, as a single exploding white dwarf can deliver 0.5 solar masses of Ni-56 that decays into Fe to the ISM. The Fe group abundances in an older population of stars primarily reflect SNe II activity, in which a single explosion delivers only 0.07 solar masses of Ni-56 to the ISM (the rest remains trapped in the neutron star). The abundances of the Fe group elements in early B stars not only track SNe Ia activity but are also important for computing evolutionary tracks for massive stars. In general, the Fe abundance relative to the sun's value is comparable to the mean abundances for the lighter elements in the Clouds/Bridge but the values of [V,Cr/Fe]sun are smaller. This presentation will discuss the spatial distribution of the Fe Group elements in the Magellanic Clouds, and compare it with our galaxy in which the abundance of Fe declines with radial distance from the center. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC's Women in Science and Engineering (WiSE) program is greatly appreciated.
NASA Astrophysics Data System (ADS)
Pérez García-Pando, Carlos; Miller, Ron L.; Perlwitz, Jan P.; Rodríguez, Sergio; Prospero, Joseph M.
2016-10-01
Regional variations of dust mineral composition are fundamental to climate impacts but generally neglected in climate models. A challenge for models is that atlases of soil composition are derived from measurements following wet sieving, which destroys the aggregates potentially emitted from the soil. Aggregates are crucial to simulating the observed size distribution of emitted soil particles. We use an extension of brittle fragmentation theory in a global dust model to account for these aggregates. Our method reproduces the size-resolved dust concentration along with the approximately size-invariant fractional abundance of elements like Fe and Al in the decade-long aerosol record from the Izaña Observatory, off the coast of West Africa. By distinguishing between Fe in structural and free forms, we can attribute improved model behavior to aggregation of Fe and Al-rich clay particles. We also demonstrate the importance of size-resolved measurements along with elemental composition analysis to constrain models.
Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca
2013-01-01
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.
Synthesis of cobalt doped BiFeO3 multiferroic thin films on p-Si substrate by sol-gel method
NASA Astrophysics Data System (ADS)
Prasannakumara, R.; Shrisha, B. V.; Naik, K. Gopalakrishna
2018-05-01
Bismuth ferrite (BiFeO3) and cobalt doped BiFeO3 (BiFe1-xCoxO3) nanostructure thin films were grown on p-silicon substrates by sol-gel spin coating method with a sequence of coating and annealing process. The post-annealing of the grown films was carried out under high pure argon atmosphere. The grown nanostructure thin films were characterized using XRD, FESEM, and AFM for the structural, morphological and topological studies, respectively. The elemental compositions of the samples were studied by EDX spectra. The PL spectra of the grown sample shows a narrow emission peak around 559 nm which corresponds to the energy band gap of BFO thin films. The XRD peaks of the BiFeO3 nanostructure thin film reveals the rhombohedral structure and transformed from rhombohedral to orthorhombic or tetragonal structure in Co doped BiFeO3 thin films. The Co substitution in BiFeO3 helped to obtain higher dense nanostructure thin films with smaller grain size than the BiFeO3 thin films.
Global Geochemical Variation on the Lunar Surface: A Three-Element Approach
NASA Technical Reports Server (NTRS)
Thomsen, D. R.; Lawrence, D. J.; Vaniman, D.; Feldman, W. C.; Elphic, R. C.; Barraclough, B. L.; Maurice, S.; Lucey, P. G.; Binder, A. B.
1999-01-01
We present a method for displaying the relative abundances of three important elements (Th, Fe, and Ti) on the same map projection of the lunar surface. Using Th-, Fe-, and Ti-elemental abundances from orbital geochemical data and assigning each element a primary color, a false-color map of the lunar surface was created. This approach is similar to the ternary diagram approach presented by Davis and Spudis with some important differences, discussed later. For the present maps, Th abundances were measured by the Lunar Prospector (LP) Gamma-Ray Spectrometer(GRS).The new LPGRS low-altitude dataset was used in this analysis. Iron and Ti weight percentages were based on Clementine spectral reflectance data smoothed to the LP low altitude footprint. This method of presentation was designed to aid in the location and recognition of three principal lunar compositions: ferroan anorthosite (FAN), mare basalts (MB), and the Mg suite/ KREEP-rich rocks on the lunar surface, with special emphasis on the highlands and specific impact basins. In addition to the recognition of these endmember rock compositions, this method is an attempt to examine the relationship between elemental compositions that do not conform readily to previously accepted or observed endmember rocks in various specific regions of interest, including eastern highlands regions centered on 150 deg longitude, and a northern highlands Th-rich region observed. The LP low-altitude data has full width at half-maximum spatial resolution of about 40 km. The Clementine spectral reflectance datasets were adapted using an equal-area, gaussian smoothing routine to this footprint. In addition, these datasets, reported in weight percent of FeO and of Ti02, were adjusted to Fe and Ti weight percentages. Each dataset was then assigned one of the three primary colors: blue for Th, red for Fe, and green for Ti. For each element, the data range was normalized to represent the ratio of each point to the maximum in the dataset. (To view the color table, go to http://cass.jsc.nasa.gov/meetings/moon99/pdf/8033.pdf.) The full range of lunar longitudes is represented, but due to the lack of coverage of the Clementine data for latitudes > 70 deg and <-70 deg, the data for these regions is excluded. The differences between this approach and the ternary diagram approach of Davis and Spudis eliminate some of the uncertainty and ambiguity of the ternary diagram approach. Rather than using a ratio of Th to Ti normalized to CI chondritic ratios, and a ternary diagram with ternary apexes located at specific endmember compositional values, elemental compositions were used independently, eliminating the errors resulting from dividing numbers that can have high uncertainties, especially at low concentration. The three elements used in this method of presentation were chosen for several reasons. One reason for the inclusion of Th in this study is that it is an accurate indicator of KREEP. Iron and Ti concentrations are both low in highland regolith, causing any small fluctuations in Th to stand out very well. In addition, Fe and Ti are good compositional indicators of different mare basalts. Mixed with red for Fe, the green for Ti produces a yellow signal in high-Ti basalts. While universally high in Fe relative to the surrounding highlands, mare basalts have a diverse range of Ti values, making Ti concentration a valuable asset to the classification and identification of different basalt types. Finally, an important constraint in element selection is the availability of the global data, both from LP and Clementine results. Data for Th, Fe, and Ti are among the highest quality of existing lunar remote-sensing data. In addition, LP data for Fe and Ti will become available, enabling these data to be incorporated into the analysis. Using upper-limit values for end member rock compositions calculated from Korotev et al., attempts were made to locate the different endmember compositions of terranes on this diagram. Most strikingly, ferroan anorthosite (Th < and = 0.37 micro g/g; Fe (wt%)< and =2.29; Ti (wt%) < and = 0.22), which should appear as an almost black, reddish color, does not appear on the diagram at any noticeable frequency. Based on this analysis, the suggestion of extensive FAN regions on the lunar surface is not strong, especially at the presently accepted values for Fe and Th. However, to make sure this effect is not due to systematic errors, a thorough investigation of the precision, accuracy, and uncertainties of the Fe, Ti, and Th abundances needs to be carried out, especially at low concentrations. A particular region of interest is an area of high Th concentrations relative to Fe and Ti content north and east of Humboldtianum Crater. First observed by Lawrence et al., this region does not coincide with any visible impact structure and comprises one of the closest approximations to pure blue (high Th, very low Ti and Fe) on the lunar surface. Such an elemental composition does not lend itself readily to classification, and presents something of an anomaly. More detailed analysis of this region is needed to understand its structure and origin. There seems to be a longitudinal asymmetry in the Th concentrations of the highlands regolith. High-Th, low-Ti, and Fe regions are located between 135 deg and 180 deg longitude and between -30 deg and +30 deg latitude. While the Th levels are not high enough to attract attention in a single elemental display, the variation in the abundance of Th relative to Fe and Ti abundances can be clearly seen. The composition that these data suggest is not well represented in the sample return suite. In addition, these regions were largely missed by the Apollo orbital ground tracks, which only covered the outer edge of the areas of interest. The LP orbital Th data represent the first information about the Th concentrations in these regions of the highlands. Additional information contained in original.
Hinsin, Duangduean; Pdungsap, Laddawan; Shiowatana, Juwadee
2002-12-06
A continuous-flow extraction system originally developed for sequential extraction was applied to study elemental association of a synthetic metal-doped amorphous iron hydroxide phase. The homogeneity and metal association of the precipitates were evaluated by gradual leaching using the system. Leachate was collected in fractions for determination of elemental concentrations. The result obtained as extractograms indicated that the doped metals were adsorbed more on the outermost surface rather than homogeneously distributed in the precipitates. The continuous-flow extraction method was also used for effective removal of surface adsorbed metals to obtain a homogeneous metal-doped synthetic iron hydroxide by a sequential extraction using acetic acid and small volume of hydroxylamine hydrochloride solution. The system not only ensures complete washing, but the extent of metal immobilization in the synthetic iron hydroxide could be determined with high accuracy from the extractograms. The initial metal/iron mole ratio (M/Fe) in solution affected the M/Fe mole ratio in homogeneous doped iron hydroxide phase. The M/Fe mole ratio of metal incorporation was approximately 0.01-0.02 and 0.03-0.06, for initial solution M/Fe mole ratio of 0.025 and 0.100, respectively.
Mining the Sloan Digital Sky Survey in Search of Extremely α-poor Stars in the Galaxy
NASA Astrophysics Data System (ADS)
Xing, Q. F.; Zhao, G.
2014-07-01
As we know, the majority of metal-poor Galactic halo stars appear to have chemical abundances that were enhanced by α-elements (e.g., O, Mg, Si, Ca, and Ti) during the early stage of the Galaxy. Observed metal-poor halo stars preserved this pattern by exhibiting abundance ratios [α/Fe] ~+0.4. A few striking exceptions that show severe departures from the general enhanced α-element chemical abundance trends of the halo have been discovered in recent years. They possess relatively low [α/Fe] compared to other comparable-metallicity stars, with abundance ratios over 0.5 dex lower. These stars may have a different chemical enrichment history from the majority of the halo. Similarly, low-α abundances are also displayed by satellite dwarf spheroidal (dSph) galaxies. We present a method to select extremely α-poor (EAP) stars from the SDSS/SEGUE survey. The method consists of a two-step approach. In the first step, we select suspected metal-poor ([Fe/H] <-0.5) and α-poor ([Mg/Fe] <0) stars as our targets. In the second step, we determine [Mg/Fe] from low-resolution (R = 2000) stellar spectra for our targets and select stars with [Mg/Fe] <-0.1 as candidate EAP stars. In a sample of 40,000 stars with atmospheric parameters in the range of T eff = [4500, 7000] K, log g = [1.0, 5.0], and [Fe/H] = [-4.0, +0.5], 14 candidate stars were identified. Three of these stars are found to have already been confirmed by other research.
Free and forced vibrations of a tyre using a wave/finite element approach
NASA Astrophysics Data System (ADS)
Waki, Y.; Mace, B. R.; Brennan, M. J.
2009-06-01
Free and forced vibrations of a tyre are predicted using a wave/finite element (WFE) approach. A short circumferential segment of the tyre is modelled using conventional finite element (FE) methods, a periodicity condition applied and the mass and stiffness matrices post-processed to yield wave properties. Since conventional FE methods are used, commercial FE packages and existing element libraries can be utilised. An eigenvalue problem is formulated in terms of the transfer matrix of the segment. Zhong's method is used to improve numerical conditioning. The eigenvalues and eigenvectors give the wavenumbers and wave mode shapes, which in turn define transformations between the physical and wave domains. A method is described by which the frequency dependent material properties of the rubber components of the tyre can be included without the need to remesh the structure. Expressions for the forced response are developed which are numerically well-conditioned. Numerical results for a smooth tyre are presented. Dispersion curves for real, imaginary and complex wavenumbers are shown. The propagating waves are associated with various forms of motion of the tread supported by the stiffness of the side wall. Various dispersion phenomena are observed, including curve veering, non-zero cut-off and waves for which the phase velocity and the group velocity have opposite signs. Results for the forced response are compared with experimental measurements and good agreement is seen. The forced response is numerically determined for both finite area and point excitations. It is seen that the size of area of the excitation is particularly important at high frequencies. When the size of the excitation area is small enough compared to the tread thickness, the response at high frequencies becomes stiffness-like (reactive) and the effect of shear stiffness becomes important.
Nanocrystal dispersed amorphous alloys
NASA Technical Reports Server (NTRS)
Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)
2001-01-01
Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, A. S.; Rovani, P. R.; Lima, J. C. de, E-mail: joao.cardoso.lima@ufsc.br
A nanostructured Ti{sub 50}Ni{sub 25}Fe{sub 25} phase (B2) was formed by mechanical alloying and its structural stability was studied as a function of pressure. The changes were followed by X-ray diffraction. The B2 phase was observed up to 7 GPa; for larger pressures, the B2 phase transformed into a trigonal/hexagonal phase (B19) that was observed up to the highest pressure used (18 GPa). Besides B2 and B19, elemental Ni or a SS-(Fe,Ni) and FeNi{sub 3} were observed. With decompression, the B2 phase was recovered. Using in situ angle-dispersive X-ray diffraction patterns, the single line method was applied to obtain the apparent crystallitemore » size and the microstrain for both the B2 and the B19 phases as a function of the applied pressure. Values of the bulk modulus for the B2, B19, elemental Ni or SS-(Fe,Ni) and FeNi{sub 3} phases were obtained by fitting the pressure dependence of the volume to a Birch–Murnaghan equation of state (BMEOS)« less
Trace element contamination in feather and tissue samples from Anna’s hummingbirds
Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.
2017-01-01
Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.
Laursen, Jens; Milman, Nils; Pind, Niels; Pedersen, Henrik; Mulvad, Gert
2014-01-01
Meta-analysis of previous studies evaluating associations between content of elements sulphur (S), chlorine (Cl), potassium (K), iron (Fe), copper (Cu), zinc (Zn) and bromine (Br) in normal and cirrhotic autopsy liver tissue samples. Normal liver samples from 45 Greenlandic Inuit, median age 60 years and from 71 Danes, median age 61 years. Cirrhotic liver samples from 27 Danes, median age 71 years. Element content was measured using X-ray fluorescence spectrometry. Dual hierarchical clustering analysis, creating a dual dendrogram, one clustering element contents according to calculated similarities, one clustering elements according to correlation coefficients between the element contents, both using Euclidian distance and Ward Procedure. One dendrogram separated subjects in 7 clusters showing no differences in ethnicity, gender or age. The analysis discriminated between elements in normal and cirrhotic livers. The other dendrogram clustered elements in four clusters: sulphur and chlorine; copper and bromine; potassium and zinc; iron. There were significant correlations between the elements in normal liver samples: S was associated with Cl, K, Br and Zn; Cl with S and Br; K with S, Br and Zn; Cu with Br. Zn with S and K. Br with S, Cl, K and Cu. Fe did not show significant associations with any other element. In contrast to simple statistical methods, which analyses content of elements separately one by one, dual hierarchical clustering analysis incorporates all elements at the same time and can be used to examine the linkage and interplay between multiple elements in tissue samples. Copyright © 2013 Elsevier GmbH. All rights reserved.
[Determination of metal elements in Achyranthis bidentatae radix from various habitats].
Tu, Wan-Qian; Zhang, Liu-Ji
2011-12-01
To establish an atomic absorption spectrometry method for determination of the contents of metal elements in Achyranthis Bidentatae Radix and analyze 21 batches of samples from different areas. Fe, Mn, Ca, Mg, K, Zn and Cu were detected by atomic absorption spectrometry with hydrogen flame detector, Pb, As and Cd were detected by graphite furnace atomic absorption, Hg was detected by cold atomic absorption. The heavy metal contents met the requirement of Chinese Pharmacopoeia. The contents of K, Mg, Cu and Mn in the samples of geo-authentic areas were higher,while the contents of Fe, Zn, Hg and Pb in the samples of non-authentic areas were higher. This method is sample, accurate, repeatable and could be used to evaluate the quality of Achyranthis Bidentatae Radix.
CoFe-microwires with stress-dependent magnetostriction as embedded sensing elements
NASA Astrophysics Data System (ADS)
Salem, M. M.; Nematov, M. G.; Uddin, A.; Panina, L. V.; Churyukanova, M. N.; Marchenko, A. T.
2017-10-01
Testing internal stress/strain condition of polymer composite materials is of high importance in structural health monitoring. We are presenting here a new method of monitoring internal stresses. The method can be referred to as embedded sensing technique, where the sensing element is a glass-coated ferromagnetic microwire with a specific magnetic anisotropy and stress-dependent magnetostriction. When the microwire is remagnetized the sharp voltage is induced which is characterized by high frequency harmonics. The amplitude of these harmonics sensitively depends on various stresses. The microwire of composition Co71Fe5B11Si10Cr3 with the metallic core diameter of 22.8 μm show abrupt transformation of the magnetization process under applied tensile stress owing to the stress-dependent magnetostriction.
NASA Astrophysics Data System (ADS)
Vincenzo, F.; Matteucci, F.; Spitoni, E.
2017-04-01
We present a theoretical method for solving the chemical evolution of galaxies by assuming an instantaneous recycling approximation for chemical elements restored by massive stars and the delay time distribution formalism for delayed chemical enrichment by Type Ia Supernovae. The galaxy gas mass assembly history, together with the assumed stellar yields and initial mass function, represents the starting point of this method. We derive a simple and general equation, which closely relates the Laplace transforms of the galaxy gas accretion history and star formation history, which can be used to simplify the problem of retrieving these quantities in the galaxy evolution models assuming a linear Schmidt-Kennicutt law. We find that - once the galaxy star formation history has been reconstructed from our assumptions - the differential equation for the evolution of the chemical element X can be suitably solved with classical methods. We apply our model to reproduce the [O/Fe] and [Si/Fe] versus [Fe/H] chemical abundance patterns as observed at the solar neighbourhood by assuming a decaying exponential infall rate of gas and different delay time distributions for Type Ia Supernovae; we also explore the effect of assuming a non-linear Schmidt-Kennicutt law, with the index of the power law being k = 1.4. Although approximate, we conclude that our model with the single-degenerate scenario for Type Ia Supernovae provides the best agreement with the observed set of data. Our method can be used by other complementary galaxy stellar population synthesis models to predict also the chemical evolution of galaxies.
NASA Astrophysics Data System (ADS)
Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew
2012-02-01
We present detailed chemical abundances in eight clusters in the Large Magellanic Cloud (LMC). We measure abundances of 22 elements for clusters spanning a range in age of 0.05-12 Gyr, providing a comprehensive picture of the chemical enrichment and star formation history of the LMC. The abundances were obtained from individual absorption lines using a new method for analysis of high-resolution (R ~ 25,000), integrated-light (IL) spectra of star clusters. This method was developed and presented in Papers I, II, and III of this series. In this paper, we develop an additional IL χ2-minimization spectral synthesis technique to facilitate measurement of weak (~15 mÅ) spectral lines and abundances in low signal-to-noise ratio data (S/N ~ 30). Additionally, we supplement the IL abundance measurements with detailed abundances that we measure for individual stars in the youngest clusters (age < 2 Gyr) in our sample. In both the IL and stellar abundances we find evolution of [α/Fe] with [Fe/H] and age. Fe-peak abundance ratios are similar to those in the Milky Way (MW), with the exception of [Cu/Fe] and [Mn/Fe], which are sub-solar at high metallicities. The heavy elements Ba, La, Nd, Sm, and Eu are significantly enhanced in the youngest clusters. Also, the heavy to light s-process ratio is elevated relative to the MW ([Ba/Y] >+0.5) and increases with decreasing age, indicating a strong contribution of low-metallicity asymptotic giant branch star ejecta to the interstellar medium throughout the later history of the LMC. We also find a correlation of IL Na and Al abundances with cluster mass in the sense that more massive, older clusters are enriched in the light elements Na and Al with respect to Fe, which implies that these clusters harbor star-to-star abundance variations as is common in the MW. Lower mass, intermediate-age, and young clusters have Na and Al abundances that are lower and more consistent with LMC field stars. Our results can be used to constrain both future chemical evolution models for the LMC and theories of globular cluster formation. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
NASA Astrophysics Data System (ADS)
Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.; de Callafon, Raymond A.
2017-02-01
This paper presents a framework for structural health monitoring (SHM) and damage identification of civil structures. This framework integrates advanced mechanics-based nonlinear finite element (FE) modeling and analysis techniques with a batch Bayesian estimation approach to estimate time-invariant model parameters used in the FE model of the structure of interest. The framework uses input excitation and dynamic response of the structure and updates a nonlinear FE model of the structure to minimize the discrepancies between predicted and measured response time histories. The updated FE model can then be interrogated to detect, localize, classify, and quantify the state of damage and predict the remaining useful life of the structure. As opposed to recursive estimation methods, in the batch Bayesian estimation approach, the entire time history of the input excitation and output response of the structure are used as a batch of data to estimate the FE model parameters through a number of iterations. In the case of non-informative prior, the batch Bayesian method leads to an extended maximum likelihood (ML) estimation method to estimate jointly time-invariant model parameters and the measurement noise amplitude. The extended ML estimation problem is solved efficiently using a gradient-based interior-point optimization algorithm. Gradient-based optimization algorithms require the FE response sensitivities with respect to the model parameters to be identified. The FE response sensitivities are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities with respect to the model parameters. The accuracy of the proposed uncertainty quantification approach is verified using a sampling approach based on the unscented transformation. Two validation studies, based on realistic structural FE models of a bridge pier and a moment resisting steel frame, are performed to validate the performance and accuracy of the presented nonlinear FE model updating approach and demonstrate its application to SHM. These validation studies show the excellent performance of the proposed framework for SHM and damage identification even in the presence of high measurement noise and/or way-out initial estimates of the model parameters. Furthermore, the detrimental effects of the input measurement noise on the performance of the proposed framework are illustrated and quantified through one of the validation studies.
Transient finite element modeling of functional electrical stimulation.
Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J
2011-03-01
Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.
Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys
NASA Astrophysics Data System (ADS)
La Roca, P.; Baruj, A.; Sade, M.
2017-03-01
Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.
Shim, Moo-Joon; Swarzenski, Peter W.; Shiller, Alan M.
2012-01-01
The Mississippi River delta outflow region is periodically disturbed by tropical weather systems including major hurricanes, which can terminate seasonal bottom water hypoxia and cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, Hurricanes Katrina and Rita passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we collected water samples in the Mississippi River delta outflow, examining the distributions of trace elements to study the effect of Hurricanes Katrina and Rita. We observed limited stratification on the shelf and bottom waters that were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn–O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 μm) from colloidal (0.02–0.45 μm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity of the Fe in estuarine systems.
NASA Astrophysics Data System (ADS)
Shim, Moo-Joon; Swarzenski, Peter W.; Shiller, Alan M.
2012-07-01
The Mississippi River delta outflow region is periodically disturbed by tropical weather systems including major hurricanes, which can terminate seasonal bottom water hypoxia and cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, Hurricanes Katrina and Rita passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we collected water samples in the Mississippi River delta outflow, examining the distributions of trace elements to study the effect of Hurricanes Katrina and Rita. We observed limited stratification on the shelf and bottom waters that were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn-O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 μm) from colloidal (0.02-0.45 μm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity of the Fe in estuarine systems.
Effect of Te doping on FeSe superconductor synthesized by powder-in-tube
NASA Astrophysics Data System (ADS)
Imaduddin, A.; Nisa, K.; Yudanto, S. D.; Nugraha, H.; Siswayanti, B.
2017-04-01
FeSe is a superconducting material, which has the simplest crystal structure among the Fe-based superconductors. It has no arsenic element, which is very harmful to the human body. In this study, we analyzed the effects of milling time and Te doping on FeSe superconductors. The synthesis of the samples were carried out using powder-in-tube method in a SS304 stainless steel tube. After the pressing process, followed by the sintering process at 500° C for 20 hours, the samples were removed from the tubes. Later, we analyzed its crystal structures, surfaces morphology and the superconductivity properties. Δ-FeSe phase (hexagonal, non-superconductor) and β-FeSe (tetragonal, superconductor) were formed in the samples, including minor phases of Fe and Fe3Se4. Te doping changed the crystal structure from β-FeSe and Δ-FeSe into FeSe0.5Te0.5. In addition, the onset critical temperature (TC, onset) shifted to higher temperature.
Skrivan, M; Skrivanová, V; Marounek, M
2005-10-01
An experiment was conducted to evaluate the effect of dietary content and combinations of Zn, Fe, and Cu on deposition of these elements in egg components, liver, and excreta. Excreta were applied as a manure to a lawn, and 3 mo later soil and herbage samples were taken and analyzed. The experiment comprised 144 hens in 8 groups. The basal diet contained Zn, Fe, and Cu at 63.4, 92.8, and 9.0 mg/kg, respectively. It was supplemented with 1, 2, or 3 trace elements (inorganic forms) at 80 mg of Zn/kg, 120 mg of Fe/kg, and 25 mg of Cu/kg. Recovery of Zn, Fe, and Cu in eggs of hens fed the basal diet was 10.7, 9.8, and 4.4% of the alimentary intake, respectively. A Zn-Cu antagonism was observed; deposition of Zn in the yolk was significantly decreased by Cu addition and vice versa (P < 0.01). Supplementation of the basal diet with Fe increased Fe concentration in egg yolk and white by 6.3 and 2.2%, respectively. The combination of Fe with Zn and Cu, however, increased Fe concentration in the yolk and white by 36.7 and 34.9%, respectively (P < 0.01). The enrichment of eggs with the other elements was marginal (Cu) or absent (Zn). Effects of Zn, Fe, and Cu of the basal diet on liver concentrations of these elements were relatively small, and no antagonism between Zn and Cu was apparent. Supplementation of the basal diet with the combination of Zn and Fe, however, significantly decreased hepatic concentration of Cu. On the other hand, Cu supplementation significantly increased Fe concentration in livers of hens fed the Fe-supplemented diet (P < 0.01). Concentrations of Zn, Fe, and Cu in excreta were related to their dietary content. High concentrations of Zn, Fe, and Cu in excreta corresponded with limited deposition of the 3 elements in eggs and liver. Concentrations of Zn, Fe, and Cu in herbage correlated significantly with the supply of these elements by hen excreta into soil. The Zn supplied by hen excreta was more stable than Fe and Cu; thus Zn could accumulate in the soil.
Chen, Lingyun; Shen, Mei; Ma, Ande; Han, Weili
2018-03-01
Fresh Mashui orange samples were pretreated with microwave digestion using an HNO 3 -H 2 O 2 system. The levels of Mg, K, Ca, Fe, Mn, Cu, Zn, As, Cd, and Pb in the seeds, pulp, and peel were then determined using inductively coupled plasma mass spectrometry (ICP-MS) combined with collision cell technology (CCT) and kinetic energy discrimination (KED). The standard curve coefficient of determinations of the ten tested elements were between 0.9995 and 0.9999. The instrument detection limit was between 0.112 ng/L and 3.05 ng/mL. The method detection limit was between 0.0281 and 763 ng/g. The average recovery rate was between 85.0 and 117%. The current results showed that Mashui oranges are rich in three elements, namely Mg, K, and Ca. The concentrations of K and Ca were significantly higher than that of Mg in the peel. The content of K was the highest in the seeds. Fe, Mn, Cu, and Zn had the second highest concentrations, and Fe was the highest in the seeds, while Cu was the lowest in the peel. As, Cd, and Pb (hazardous elements) had the lowest concentrations of all the tested elements.
Kim, Young-Sung; Jeoung, Tae-Hoon; Nam, Sung-Pill; Lee, Seung-Hwan; Kim, Jea-Chul; Lee, Sung-Gap
2015-03-01
LiFePO4/C composite powder as cathode material and graphite powder as anode material for Li-ion batteries were synthesized by using the sol-gel method. An electrochemical improvement of LiFePO4 materials has been achieved by adding polyvinyl alcohol as a carbon source into as-prepared materials. The samples were characterized by elemental analysis (EA), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-EM). The chemical composition of LiFePO4/C powders was in a good agreement with that of the starting solution. The capacity loss after 500 cycles of LiFePO4/C cell is 11.1% in room temperature. These superior electrochemical properties show that LiFePO4/C composite materials are promising candidates as cathode materials.
Wang, Dong; Yang, Zhuang-qun; Hu, Xiao-yi
2007-08-01
To analyze the stress and displacement distribution of 3D-FE models in three conjunctive methods of vascularized iliac bone graft for established mandibular body defects. Using computer image process technique, a series of spiral CT images were put into Ansys preprocess programe to establish three 3D-FE models of different conjunctions. The three 3D-FE models of established mandibular body defects by vascularized iliac bone graft were built up. The distribution of Von Mises stress and displacement around mandibular segment, grafted ilium, plates and screws was obtained. It may be determined successfully that the optimal conjunctive shape be the on-lay conjunction.
Structure and conformational dynamics of scaffolded DNA origami nanoparticles
2017-05-08
all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conforma... finite element (FE) modeling approach CanDo is also routinely used to predict the 3D equilibrium conformation of programmed DNA assemblies based on a...model with both experimental cryo-electron microscopy (cryo-EM) data and all-atom modeling. MATERIALS AND METHODS Lattice-free finite element model
NASA Astrophysics Data System (ADS)
Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.
2011-01-01
As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.
Numerical modelling and experimental analysis of acoustic emission
NASA Astrophysics Data System (ADS)
Gerasimov, S. I.; Sych, T. V.
2018-05-01
In the present paper, the authors report on the application of non-destructive acoustic waves technologies to determine the structural integrity of engineering components. In particular, a finite element (FE) system COSMOS/M is used to investigate propagation characteristics of ultrasonic waves in linear, plane and three-dimensional structures without and with geometric concentrators. In addition, the FE results obtained are compared to the analytical and experimental ones. The study illustrates the efficient use of the FE method to model guided wave propagation problems and demonstrates the FE method’s potential to solve problems when an analytical solution is not possible due to “complicated” geometry.
NASA Astrophysics Data System (ADS)
Battistini, Chiara; Bensby, Thomas
2015-05-01
Context. Elements heavier than Li are produced in the interiors of stars. However, for many elements the exact production sites and the timescales on which they are dispersed into the interstellar medium are unknown. Having a clear picture on the origins of the elements is important for our ability to trace and understand the formation and chemical evolution of the Milky Way and its stellar populations. Aims: The aim of this study is to investigate the origin and evolution of Sc, V, Mn, and Co for a homogeneous and statistically significant sample of stars probing the different populations of the Milky Way, in particular the thin and thick disks. Methods: Using high-resolution spectra obtained with the MIKE, FEROS, SOFIN, FIES, UVES, and HARPS spectrographs, we determine Sc, V, Mn, and Co abundances for a large sample of F and G dwarfs in the solar neighborhood. The method is based on spectral synthesis and using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. The non-LTE (NLTE) corrections from the literature were applied to Mn and Co. Results: We find that the abundance trends derived for Sc (594 stars), V (466 stars), and Co (567 stars) are very similar to what has been observed for the α-elements in the thin and thick disks. On the contrary, Mn (569 stars) is generally underabundant relative to the Sun (i.e., [ Mn/Fe ] < 0) for [ Fe/H ] < 0. In addition, for Mn, when NLTE corrections are applied, the trend changes and is almost flat over the entire metallicity range of the stars in our sample (-2 ≲ [ Fe/H ] ≲ + 0.4). The [Sc/Fe]-[Fe/H] abundance trends show a small separation between the thin and thick disks, while for V and Co they completely overlap. For Mn there is a small difference in [Mn/Fe], but only when NLTE corrections are used. Comparisons with Ti as a reference element show flat trends for all the elements except for Mn that show well separated [Mn/Ti]-[Ti/H] trends for the thin and thick disks. Conclusions: The elements Sc and V present trends compatible with production from type II supernovae (SNII) events. In addition, Sc clearly shows a metallicity dependence for [ Fe/H ] < -1. Instead, Mn is produced in SNII events for [ Fe/H ] ≲ -0.4 and then type Ia supernovae start to produce Mn. Finally, Co appears to be produced mainly in SNII with suggestion of enrichment from hypernovae at low metallicities. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5-m, 2.2-m. and 3.6-m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full versions of Tables 2 and 5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A9Appendices are available in electronic form at http://www.aanda.org
A General Interface Method for Aeroelastic Analysis of Aircraft
NASA Technical Reports Server (NTRS)
Tzong, T.; Chen, H. H.; Chang, K. C.; Wu, T.; Cebeci, T.
1996-01-01
The aeroelastic analysis of an aircraft requires an accurate and efficient procedure to couple aerodynamics and structures. The procedure needs an interface method to bridge the gap between the aerodynamic and structural models in order to transform loads and displacements. Such an interface method is described in this report. This interface method transforms loads computed by any aerodynamic code to a structural finite element (FE) model and converts the displacements from the FE model to the aerodynamic model. The approach is based on FE technology in which virtual work is employed to transform the aerodynamic pressures into FE nodal forces. The displacements at the FE nodes are then converted back to aerodynamic grid points on the aircraft surface through the reciprocal theorem in structural engineering. The method allows both high and crude fidelities of both models and does not require an intermediate modeling. In addition, the method performs the conversion of loads and displacements directly between individual aerodynamic grid point and its corresponding structural finite element and, hence, is very efficient for large aircraft models. This report also describes the application of this aero-structure interface method to a simple wing and an MD-90 wing. The results show that the aeroelastic effect is very important. For the simple wing, both linear and nonlinear approaches are used. In the linear approach, the deformation of the structural model is considered small, and the loads from the deformed aerodynamic model are applied to the original geometry of the structure. In the nonlinear approach, the geometry of the structure and its stiffness matrix are updated in every iteration and the increments of loads from the previous iteration are applied to the new structural geometry in order to compute the displacement increments. Additional studies to apply the aero-structure interaction procedure to more complicated geometry will be conducted in the second phase of the present contract.
NASA Technical Reports Server (NTRS)
Padovan, J.; Adams, M.; Lam, P.; Fertis, D.; Zeid, I.
1982-01-01
Second-year efforts within a three-year study to develop and extend finite element (FE) methodology to efficiently handle the transient/steady state response of rotor-bearing-stator structure associated with gas turbine engines are outlined. The two main areas aim at (1) implanting the squeeze film damper element into a general purpose FE code for testing and evaluation; and (2) determining the numerical characteristics of the FE-generated rotor-bearing-stator simulation scheme. The governing FE field equations are set out and the solution methodology is presented. The choice of ADINA as the general-purpose FE code is explained, and the numerical operational characteristics of the direct integration approach of FE-generated rotor-bearing-stator simulations is determined, including benchmarking, comparison of explicit vs. implicit methodologies of direct integration, and demonstration problems.
Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-03-26
Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less
Rare earth/iron fluoride and methods for making and using same
Schmidt, Frederick A.; Wheelock, John T.; Peterson, David T.
1991-12-17
A particulate mixture of Fe.sub.2 O.sub.3 and RE.sub.2 O.sub.3, where RE is a rare earth element, is reacted with an excess of HF acid to form an insoluble fluoride compound (salt) comprising REF.sub.3 and FeF.sub.3 present in solid solution in the REF.sub.3 crystal lattice. The REF.sub.3 /FeF.sub.3 compound is dried to render it usable as a reactant in the thermite reduction process as well as other processes which require an REF.sub.3 /FeF.sub.3 mixture. The dried REF.sub.3 /FeF.sub.3 compound comprises about 5 weight % to about 40 weight % of FeF.sub.3 and the balance REF.sub.3 to this end.
Development of new vibration energy flow analysis software and its applications to vehicle systems
NASA Astrophysics Data System (ADS)
Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.
2005-09-01
The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.
Chalcophile element partitioning in highly oxidised and highly reduced bodies.
NASA Astrophysics Data System (ADS)
Kiseeva, K.; Wood, B. J.
2015-12-01
In our recent studies [1-3] we showed that partitioning of many chalcophile elements could be described by a simple relationship as a function of the FeO content of the silicate liquid. LogDi ~= A-0.5nlog[FeO] where A is a constant, n is the constant related to the valency of element i and [FeO] is the concentration of FeO in the silicate melt. For many chalcophile and moderately chalcophile elements (e.g., Zn, Cr, Pb, Sb, In), the fitted slope n depends only on the valency of the element. More lithophile elements (e.g., Ti, Nb, Ce, Ga) exhibit concave upwards behavior on a plot of logD versus log[FeO] due to their strong interaction with oxygen in sulphide, which increases with the increasing FeO content of the silicate liquid. Strongly chalcophile elements, like Cu, Ag and Ni have the opposite trend (concave downwards) and their D decreases both at high (> 10-12wt %) and very low (< 1wt%) FeO contents of the silicate melt. These changes correlate with increasing S content of the silicate melt (up to 11 wt%) as the FeO content of the silicate melt declines to ~0.3wt%. An experiment at 1.5 GPa/1420oC having 4 wt% S and 0.28 wt% FeO in the silicate melt has DCu (sulf/sil) ~ 84, which is about 6 times lower than the DCu(sulf/sil) at identical p-T conditions but at 8 wt% FeO in the silicate melt. Our new experimental data on Re partitioning between sulphide and silicate melt in the CMAS+FeO system show that Re behaves similarly to the highly chalcophile elements and exhibits concave downwards behaviour on the LogD/LogFeO diagram. With the highest DRe (sulf/sil) at around 1.5-2.0x104 at 1.5-6.0 wt% FeO in the silicate melt, DRe (sulf/sil) declines to the values of 50-150 at ~0.5 wt% and > ~15 wt% FeO in the silicate melt, respectively. This means that at highly reducing conditions Re is similarly or less chalcophile than some of the highly lithophile elements, like Ta (D ≈ 9), Nb (D ≈ 600), Ti (D ≈ 6) [3]. The results mean that in oxidised bodies like Mars and reduced bodies like Mercury, most "lithophile" elements partition more strongly into sulphide than Re and Cu. [1] Kiseeva E. S., Wood B. J. (2013). EPSL 383, p. 68-81. [2] Kiseeva E. S., Wood B. J. (2015). EPSL 424, p. 280-294. [3] Wood B. J., Kiseeva E. S. (2015). AmMin (in press).
NASA Astrophysics Data System (ADS)
Jönsson, H.; Ryde, N.; Schultheis, M.; Zoccali, M.
2017-02-01
Context. Determining elemental abundances of bulge stars can, via chemical evolution modeling, help to understand the formation and evolution of the bulge. Recently there have been claims both for and against the bulge having a different [α/Fe] versus [Fe/H] trend as compared to the local thick disk. This could possibly indicate a faster, or at least different, formation timescale of the bulge as compared to the local thick disk. Aims: We aim to determine the abundances of oxygen, magnesium, calcium, and titanium in a sample of 46 bulge K giants, 35 of which have been analyzed for oxygen and magnesium in previous works, and compare this sample to homogeneously determined elemental abundances of a local disk sample of 291 K giants. Methods: We used spectral synthesis to determine both the stellar parameters and elemental abundances of the bulge stars analyzed here. We used the exact same method that we used to analyze the comparison sample of 291 local K giants in Paper I of this series. Results: Compared to the previous analysis of the 35 stars in our sample, we find lower [Mg/Fe] for [Fe/H] >-0.5, and therefore contradict the conclusion about a declining [O/Mg] for increasing [Fe/H]. We instead see a constant [O/Mg] over all the observed [Fe/H] in the bulge. Furthermore, we find no evidence for a different behavior of the alpha-iron trends in the bulge as compared to the local thick disk from our two samples. Note to the reader: following the publication of the corrigendum, the subtitle of the article was corrected on April 6, 2017. "O, Mg, Co, and Ti" has been replaced by "O, Mg, Ca, and Ti".Based on observations collected at the European Southern Observatory, Chile (ESO programs 71.B-0617(A), 073.B-0074(A), and 085.B-0552(A)).
The role of impurity ions in the formation of phase composition of Norilsk ore types
NASA Astrophysics Data System (ADS)
Mashukov, Anatoly; Mashukova, Alla
2013-04-01
Using the methods of X-ray and Mössbauer spectroscopy, scanning electron microscopy, there were studied the samples of Norilsk ore types in order to identify compounds containing Cu and Ni. Depending on elemental composition there were singled out two sample series. Maximum concentration in percentage of selected elements for this series is presented below. 1: Ni (0), Cu (0,42), S (11,2), O (20,2), H (0.02), Fe(46,8), Ca (5,85), Mg (1,75), K (0,47), Na (0). 2: Ni (4,93), Cu (0), S (14,9), O (27,1), H (0,11), Fe (28,1), Ca (14,9), Mg (0), K (0), Na (1,61). The research conducted by using the method of scanning electron microscopy and the X-ray microanalysis showed that iron and sulfur are spread uniformly over the scanned area. Sulfur is absent in the inclusions containing Fe and Ni. There are areas, sizes 8 - 120 microns, strongly enriched by Fe. The inclusions of rectangular and rhomboid shapes sizes 8 - 15 microns contain Ni as the content of Fe increases. There were identified the inclusions having a high content of Cu, with a maximum concentration of Ni. The presence of native elements testifies to the reducing mode of ore formation processes. The phases, containing Cu ? Ni, have a complex composition: pentlandite (FeNiS2), chalcopyrite (CuFeS2), bornite (CuFeS4), nickelhexahydrite (NiSO4 [6H2O]), wroewolfeite (Cu4 (OH) 6 (SO4) • 2H2O), pyrrhotine (Fe7S8), pyrite (FeS2). The position of the absorption lines in the magnetically ordered areas indicates the presence of stoichiometric FeS and CuFeS2. Some of the samples of this group have broadened lines, indicating the existence of various positions of the Fe ions in the sublattices. The ingrowths of CuFeS2 are characterized by the degree of the structure defectiveness, by various impurities, which is reflected in the studied parameters. As regards the other sample series, containing FeS and CuFeS2 in pyrrhotine matrix of Fe 1-xSx, the spectra are the superposition of the unsolved doublet, which shows the presence of paramagnetic areas. The magnetic phase has the spectrum composed of two six-linear spectrums. The peaks on the spectrum borders show the oxide presence. The isomer shifts of the samples range from 0 to 1.394 mm/s, quadrupole splitting ranges from 0 to 2.688 mm/s. This indicates that the local electronic structure depends on the genesis of compounds. Thus, most of the bulk of Cu, Ni is not dissipated in the crystal lattices of the ore, but it is part of the ore sulphides. The presence of the characteristic structures of the solid solutions decomposition shows a wide temperature range of sulphide crystallization.
Nowlan, G.A.
1976-01-01
Correlation studies of 400 samples of sieved stream sediments and 325 samples of fluvial, concretionary Mn-Fe oxides from Maine resulted in the separation of elements into the following categories: (1) elements not scavenged by Mn-Fe oxides - B, Cr, K, Mg, Rb, Sc, Ti, V, and Zr; (2) elements probably not scavenged by Mn-Fe oxides - Ag, Be, Ca, Ga, La, Sb, and Y; (3) elements scavenged weakly by Mn-Fe oxides - Cu, Mo, Pb, and Sr; (4) elements scavenged strongly by Mn oxides - Ba, Cd, Co, Ni, Tl, and Zn; and (5) elements scavenged strongly by Fe oxides - As and In. Studies of the scavenged elements showed that the deviation from the mean is characteristically greater in oxide samples as compared to sieved sediments from the same locality. However, a significant increase in contrast between anomalous and background localities, when oxides are the sample medium, more than offsets the disadvantage of data scatter. The use of oxides as a sampling medium clearly and significantly accentuates anomalous localities. In general, non-ratioed data on oxides give very nearly the same results as data consisting of scavenged elements ratioed to Mn and Fe. However, ratioed data expand the geographic area of specific anomalies. Cd and Zn consistently show strong correlations with concretionary Mn-Fe oxides, but their concentrations in the oxides do not generally show as much contrast between anomalous and background localities as do Cu, Mo, and Pb. These latter elements are strongly scavenged where rocks are mineralized. ?? 1976.
A parametric model order reduction technique for poroelastic finite element models.
Lappano, Ettore; Polanz, Markus; Desmet, Wim; Mundo, Domenico
2017-10-01
This research presents a parametric model order reduction approach for vibro-acoustic problems in the frequency domain of systems containing poroelastic materials (PEM). The method is applied to the Finite Element (FE) discretization of the weak u-p integral formulation based on the Biot-Allard theory and makes use of reduced basis (RB) methods typically employed for parametric problems. The parametric reduction is obtained rewriting the Biot-Allard FE equations for poroelastic materials using an affine representation of the frequency (therefore allowing for RB methods) and projecting the frequency-dependent PEM system on a global reduced order basis generated with the proper orthogonal decomposition instead of standard modal approaches. This has proven to be better suited to describe the nonlinear frequency dependence and the strong coupling introduced by damping. The methodology presented is tested on two three-dimensional systems: in the first experiment, the surface impedance of a PEM layer sample is calculated and compared with results of the literature; in the second, the reduced order model of a multilayer system coupled to an air cavity is assessed and the results are compared to those of the reference FE model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co
The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes withmore » medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.« less
NASA Astrophysics Data System (ADS)
Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.
2016-07-01
The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.
Wu, Yaketon; Zhang, Huimin; Liu, Guihua; Zhang, Jianqing; Wang, Jizhong; Yu, Yingxin; Lu, Shaoyou
2016-02-01
This study aimed to investigate the levels of trace elements in animal-derived food in Shenzhen, Southern China. The concentrations of 14 trace elements (Cd, Hg, Pb, As, Cr, Cu, Fe, Zn, Mn, Mo, Ni, Co, Se and Ti) in a total of 220 meat samples, collected from the local markets of Shenzhen were determined. Cu, Fe and Zn were the major elements, with concentrations approximately 2-3 orders of magnitude higher than those of other elements. However, the daily intakes of Cu, Fe and Zn merely via the consumption of the meat products were lower than the recommended nutrient intake values provided by the 2013 Chinese Dietary Guide. Among the non-essential trace elements, Cd was accumulated in animal viscera, and the concentration ratios of chicken gizzard/chicken, chicken liver/chicken, pig kidney/pork and pig liver/pork were 41.6, 55.2, 863 and 177, respectively. In addition, high concentrations of As were found in aquatic products, especially in marine fish. The concentration of As in marine fish was slightly higher than the limits recommended by China, USA and Croatia. The health risk assessment of trace elements through the consumption of meat products by adult residents in Shenzhen was evaluated by using the target hazard quotient (THQ) method. The total THQ was greater than 1, implying a potential health risk. Approximately 66% of total THQ values, mainly from As, were from the consumption of aquatic products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chemical Analysis of a Carbon-enhanced Very Metal-poor Star: CD-27 14351
NASA Astrophysics Data System (ADS)
Karinkuzhi, Drisya; Goswami, Aruna; Masseron, Thomas
2017-01-01
We present, for the first time, an abundance analysis of a very metal-poor carbon-enhanced star CD-27 14351 based on a high-resolution (R ˜ 48,000) FEROS spectrum. Our abundance analysis performed using local thermodynamic equilibrium model atmospheres shows that the object is a cool star with stellar atmospheric parameters, effective temperature Teff = 4335 K, surface gravity log g = 0.5, microturbulence ξ = 2.42 km s-1, and metallicity [Fe/H] = -2.6. The star exhibits high carbon and nitrogen abundances with [C/Fe] = 2.89 and [N/Fe] = 1.89. Overabundances of neutron-capture elements are evident in Ba, La, Ce, and Nd, with estimated [X/Fe] > 1, the largest enhancement being seen in Ce with [Ce/Fe] = 2.63. While the first peak s-process elements Sr and Y are found to be enhanced with respect to Fe, ([Sr/Fe] = 1.73 and [Y/Fe] = 1.91), the third peak s-process element Pb could not be detected in our spectrum at the given resolution. Europium, primarily an r-process element also shows an enhancement with [Eu/Fe] = 1.65. With [Ba/Eu] = 0.12, the object CD-27 14351 satisfies the classification criterion for a CEMP-r/s star. The elemental abundance distributions observed in this star are discussed in light of the chemical abundances observed in other CEMP stars in the literature.
Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys
NASA Astrophysics Data System (ADS)
Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.
2016-08-01
Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.
NASA Astrophysics Data System (ADS)
Rushmer, T.; Corgne, A.
2008-12-01
One important method in which to gain insight into metallic liquid compositions and their ability to control HSE (highly siderophile element) distribution is through experimentation. Deformation experiments can additionally provide information into mechanisms and chemical consequences of dynamic liquid metal segregation under a variety of conditions. We report results on metallic liquid HSE compositions and their distribution from a set of deformation experiments on a natural H6 ordinary chondrite, performed under very reducing conditions and a series of phase equilibria experiments focused on HSE partitioning between Si-rich and S-rich Fe molten alloys. The deformation experiments were conducted at temperatures between 925°C and 950°C, at 1.3 GPa confining pressure with a strain rate of 10-4/s. Major element analyses of both silicate and metal phases show that they are considerably reduced and the typically lithophile elements are behaving like siderophiles. Fe-Ni-Si compositions are found in the shear zones produced during the deformation experiment. Metallic compositions also include (Mg,Fe,Ca)S, Fe-Ni-Si, FeP, and Fe-Ni-S quench metal. Silicate phases include forsterite (Fo92-96) and enstatite (En98). Highly siderophile element (HSE) concentrations have been measured in the sulphide ((Fe,Mg,Ca)S) and metal (Fe- Ni-Si) phases by LA-ICPMS and compared with results from an earlier set of experiments on the same material but which were not performed under reducing conditions. The partitioning of the PGE is modified by the changing conditions with elements such as Ir and Os having higher DMetal/Sulphide values under reducing conditions. Partitioning experiments between molten FeS and Ni-, Si-bearing molten Fe were performed at 1.5-5.0 GPa and 1500-1750° to further investigate this observation. The starting material is synthetic, doped with a range of trace and HSE elements. The results confirm the preference of the HSE for the metallic phase with DMetal/Sulphide > 100 in most cases, in contrast to Cu and Ag, which have D values near or below 1, respectively. Our results also suggest the possibility of significant PGE fractionation since D values are larger for Ir and Os and smaller for Pd and Au, with Pt, Ru, Rh having intermediate values. It is not clear with the present data set whether T and P variations can affect significantly HSE partitioning. These results have been applied to the most naturally reduced material we know, the Enstatite chondrites. Several E chondrites have bulk HSE data available, but no HSE data available on sulphide and metallic phases themselves. We have now a set of HSE data for individual metallic phases in several enstatite chondrites, both EH and ELs. The bulk data show that for elements such as Os and Pd, the abundances are positively correlated and overall Pd is much higher in abundance. We find in the experiments that DPd ranges between 10-100, but do not fully explain the bulk trends. Additional phases, such as FeP have therefore been analyzed and we find that Pd is concentrated in FeP and the presence of schreibersite may help explain the high Pd ratios (e.g. Pd/Ir) observed in the Enstatite chondrites.
Physical Properties of NiFeCrCo-based High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Zaddach, Alexander Joseph
Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated using first-principles modeling. Adding Zn in addition to Mn resulted in an alloy that preferred to form multiple phases. After the optimal heat treatment, it forms nano-sized grains of FeCo, which results in permanent magnetic behavior at room temperature.
Sulphursoil - Delano Development Corporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1985-06-01
A sizable amount of technical information has been accumulated on the effects of agricultural applications of the natural mineral product called Sul-Fe. This technical information supports the field observations of farmers, landscapers and gardeners who have used the product. Sul-Fe is often evaluated in terms of its sulphur content alone. When compared to elemental sulphur (100% sulphur), the 18 to 21% sulphur content of Sul-Fe seems relatively low. However, as the following technical data indicates, when judged on actual effects, Sul-Fe's complex mixture of minerals has several advantages over elemental sulphur. When judged on the basis of soil acidulation, Sul-Femore » has more immediate effects than elemental sulphur. The rapid acidifying effect is due to Sul-Fe's content of crystalline sulphuric acid. Sul-Fe also has long-term effects on soil pH due to its content of sulphur and sulfides and the time required to oxidize these materials. Elemental sulphur contains sulphur in only one chemical form which must be microbially oxidized before it becomes reactive in the soil solution, a reaction that takes quite some time in some soils. Sul-Fe is thus better than elemental sulphur in terms of immediate effects and comparable in terms of long term effects. Applied blends of Sul-Fe supplemented with elemental sulphur may provide for a maximization of both short and long term effects. An additional benefit derived from the use of Sul-Fe is the addition to the soil of a variety of trace nutrients including iron, calcium, zinc, copper, manganese, magnesium, and molybdenum.« less
Simulation of crash tests for high impact levels of a new bridge safety barrier
NASA Astrophysics Data System (ADS)
Drozda, Jiří; Rotter, Tomáš
2017-09-01
The purpose is to show the opportunity of a non-linear dynamic impact simulation and to explain the possibility of using finite element method (FEM) for developing new designs of safety barriers. The main challenge is to determine the means to create and validate the finite element (FE) model. The results of accurate impact simulations can help to reduce necessary costs for developing of a new safety barrier. The introductory part deals with the creation of the FE model, which includes the newly-designed safety barrier and focuses on the application of an experimental modal analysis (EMA). The FE model has been created in ANSYS Workbench and is formed from shell and solid elements. The experimental modal analysis, which was performed on a real pattern, was employed for measuring the modal frequencies and shapes. After performing the EMA, the FE mesh was calibrated after comparing the measured modal frequencies with the calculated ones. The last part describes the process of the numerical non-linear dynamic impact simulation in LS-DYNA. This simulation was validated after comparing the measured ASI index with the calculated ones. The aim of the study is to improve professional public knowledge about dynamic non-linear impact simulations. This should ideally lead to safer, more accurate and profitable designs.
Zheng, Manxu; Zou, Zhenmin; Bartolo, Paulo Jorge Da Silva; Peach, Chris; Ren, Lei
2017-02-01
The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to investigate shoulder biomechanics have been reviewed according to the physiological and clinical problems addressed: glenohumeral joint stability, rotator cuff tears, joint capsular and labral defects and shoulder arthroplasty. The major findings, limitations, potential clinical applications and modelling techniques of those FE studies are critically discussed. The main challenges faced in order to accurately represent the realistic physiological functions of the shoulder mechanism in FE simulations involve (1) subject-specific representation of the anisotropic nonhomogeneous material properties of the shoulder tissues in both healthy and pathological conditions; (2) definition of boundary and loading conditions based on individualised physiological data; (3) more comprehensive modelling describing the whole shoulder complex including appropriate three-dimensional (3D) representation of all major shoulder hard tissues and soft tissues and their delicate interactions; (4) rigorous in vivo experimental validation of FE simulation results. Fully validated shoulder FE models would greatly enhance our understanding of the aetiology of shoulder disorders, and hence facilitate the development of more efficient clinical diagnoses, non-surgical and surgical treatments, as well as shoulder orthotics and prosthetics. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
Santos, Reginaldo da S; Faria, Guilherme A; Giles, Carlos; Leite, Carlos A P; Barbosa, Herbert de S; Arruda, Marco A Z; Longo, Claudia
2012-10-24
Iron-doped TiO(2) (Fe:TiO(2)) nanoparticles were synthesized by the sol-gel method (with Fe/Ti molar ratio corresponding to 1, 3, and 5%), followed by hydrothermal treatment, drying, and annealing. A similar methodology was used to synthesize TiO(2) and α-Fe(2)O(3) nanoparticles. For comparison, a mixture hematite/titania, with Fe/Ti = 4% was also investigated. Characterization of the samples using Rietveld refinement of X-ray diffraction data revealed that TiO(2) consisted of 82% anatase and 18% brookite; for Fe:TiO(2), brookite increased to 30% and hematite was also identified (0.5, 1.0, and 1.2 wt % for samples prepared with 1, 3, and 5% of Fe/Ti). For hematite/titania mixture, Fe/Ti was estimated as 4.4%, indicating the Rietveld method reliability for estimation of phase composition. Because the band gap energy, estimated as 3.2 eV for TiO(2), gradually ranged from 3.0 to 2.7 eV with increasing Fe content at Fe:TiO(2), it can be assumed that a Fe fraction was also inserted as dopant in the TiO(2) lattice. Extended X-ray absorption fine structure spectra obtained for the Ti K-edge and Fe K-edge indicated that absorbing Fe occupied a Ti site in the TiO(2) lattice, but hematite features were not observed. Hematite particles also could not be identified in the images obtained by transmission electron microscopy, in spite of iron identification by elemental mapping, suggesting that hematite can be segregated at the grain boundaries of Fe:TiO(2).
SRXRF Study of Chemical Elements Content in the Atherosclerotic Plaque of Heart Vessels
NASA Astrophysics Data System (ADS)
Zhuravskaya, E. Ya.; Savchenko, T. I.; Chankina, O. V.; Polonskaya, Ya. V.; Chernyavskii, A. M.; Ragino, Yu. I.; Shcherbakova, L. V.
The SRXRF method has made it possible, for the first time, to determine the multielement composition in the atherosclerotic substrates of heart vessels after surgical interventions. The main advantage of the method is the possibility to analyze small samples without their destruction. As the amount of material to test is insufficient, we have developed a special technique for sample preparation. The concentrations of K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, and Pb were measured in stable and unstable plaques. In all the samples studied, Ca is dominating, particularly, in the unstable plaque. No reliable difference was established for other elements measured. A high degree of the association of Ca with Fe, Zn and Sr has been revealed in the atherosclerotic plaques. Measurements were performed using SR from the VEPP-3 storage ring.
Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng
2008-08-01
Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.
EDXRF quantitative analysis of chromophore chemical elements in corundum samples.
Bonizzoni, L; Galli, A; Spinolo, G; Palanza, V
2009-12-01
Corundum is a crystalline form of aluminum oxide (Al(2)O(3)) and is one of the rock-forming minerals. When aluminum oxide is pure, the mineral is colorless, but the presence of trace amounts of other elements such as iron, titanium, and chromium in the crystal lattice gives the typical colors (including blue, red, violet, pink, green, yellow, orange, gray, white, colorless, and black) of gemstone varieties. The starting point for our work is the quantitative evaluation of the concentration of chromophore chemical elements with a precision as good as possible to match the data obtained by different techniques as such as optical absorption photoluminescence. The aim is to give an interpretation of the absorption bands present in the NIR and visible ranges which do not involve intervalence charge transfer transitions (Fe(2+) --> Fe(3+) and Fe(2+) --> Ti(4+)), commonly considered responsible of the important features of the blue sapphire absorption spectra. So, we developed a method to evaluate as accurately as possible the autoabsorption effects and the secondary excitation effects which frequently are sources of relevant errors in the quantitative EDXRF analysis.
Determination of elements in ayurvedic medicinal plants by AAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teerthe, Santoshkumar S.; Kerur, B. R., E-mail: kerurbrk@yahoo.com
India has a rich country for the uses of Ayurvedic medicinal plants for treatment and also the north- Karnataka boasts an unparallel diversity of medicinal plants. The present study attempts to estimate and compare the level of trace and heavy metals in some selected leaves and root samples of Ayurvedic medicinal plants such as Mg, Al, K, Cr, Mn, Fe, Cu, Zn, and Cd. The samples are collected from different places of North-Karnataka regions and sample solutions prepared as the ratio of 1:25:25+950ml=1000ppm.the trace and heavy elemental concentration was estimated using Atomic Absorption Spectrometric (AAS) Method. The average concentrations ofmore » Mg, Mn, Fe and Zn, are ranging from 2ppm to 5250.2ppm and potassium (K) has more concentration as compare to all other. The other elements likes Al, Cr, Cu, and Cd were also estimed and presented in the table. Therefore, these medicinal plants are rich in some essential minerals, especially K, Mg, Mn, Fe and Zn which are essential for human health.« less
An improved finite element modeling of the cerebrospinal fluid layer in the head impact analysis.
Wu, John Z; Pan, Christopher S; Wimer, Bryan M; Rosen, Charles L
2017-01-01
The finite element (FE) method has been widely used to investigate the mechanism of traumatic brain injuries (TBIs), because it is technically difficult to quantify the responses of the brain tissues to the impact in experiments. One of technical challenges to build a FE model of a human head is the modeling of the cerebrospinal fluid (CSF) of the brain. In the current study, we propose to use membrane elements to construct the CSF layer. Using the proposed approach, we demonstrate that a head model can be built by using existing meshes available in commercial databases, without using any advanced meshing software tool, and with the sole use of native functions of the FE package Abaqus. The calculated time histories of the intracranial pressures at frontal, posterior fossa, parietal, and occipital positions agree well with the experimental data and the simulations in the literature, indicating that the physical effects of the CSF layer have been accounted for in the proposed modeling approach. The proposed modeling approach would be useful for bioengineers to solve practical problems.
Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Guo, Jun; Huang, Xuefei; Huang, Weigang
2017-07-01
FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn; ...
2015-09-05
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Jordana R.; Gill, Gary A.; Kuo, Li-Jung
2016-04-20
Trace element determinations in seawater by inductively coupled plasma mass spectrometry are analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. In this study, we did a comparison for uranium analysis using inductively coupled plasma mass spectrometry (ICP-MS) of Sequim Bay seawater samples and three seawater certified reference materials (SLEW-3, CASS-5 and NASS-6) using seven different analytical approaches. The methods evaluated include: direct analysis, Fe/Pd reductive precipitation, standard addition calibration, online automated dilution using an external calibration with and without matrix matching, and online automated pre-concentration. The methodmore » which produced the most accurate results was the method of standard addition calibration, recovering uranium from a Sequim Bay seawater sample at 101 ± 1.2%. The on-line preconcentration method and the automated dilution with matrix-matched calibration method also performed well. The two least effective methods were the direct analysis and the Fe/Pd reductive precipitation using sodium borohydride« less
Overview Of 100 Sols Of Chemcam Operations At Gale Crater
NASA Astrophysics Data System (ADS)
Maurice, Sylvestre; Wiens, Roger; MSL Science Team
2013-04-01
The Curiosity rover carries the ChemCam instrument suite, a Laser-Induced Breakdown Spectroscopy (LIBS) instrument that can analyze the chemical composition of geological samples at distances up to 7 meters from the rover, and a high resolution camera for context imaging (RMI). In the first 100 sols after landing, ChemCam performed 343 single point measurements on approximately 50 different rocks or soil areas, for over 12,000 laser shots. Each time at least two RMI images are acquired before and after the laser shots to visualize the area of investigation and the geological context. LIBS lines are identified using primarily a martian dedicated database; to date, ChemCam has detected unambiguously major elements (Si, Al, Fe, Mg, Ca, Na, K, O), minor/trace elements of interest (Li, Cr, Mn, Rb, Sr, Ba, Ti, S, C, H). These observations allow a qualitative/quantitative assessment of the presence of dust (first few shots), the sample surface composition and chemical heterogeneity with depth. Several techniques have been developed to analyze ChemCam's data: (1) Univariate analysis refers to peak height studies of well-chosen LIBS lines and a training dataset to build calibration curves. Peak ratios K/Si, Na/Si, Al/Si, Fe+Mg/Si, or Mg/Mg+Fe have been calculated from the onboard calibration targets. The technique also applies to minor and trace elements which yield low intensity emission lines, such as Lin, Rb, H, C. (2) Multivariate methods give better results in terms of elemental composition, since they examine simultaneously and statistically several peaks of the same elements. A Partial Least Squares (PLS) regression algorithm is used for rapid major-element abundance determination. (3) Composition trends, clusters and end-members can also be identified using component analysis methods. Independent Component Analysis (ICA) identifies components that are directly related to Chemical elements: Al, Ca, Fe, H, K, Mg, Na, O, Si, Ti, but also mixture like a "soil" component. On top of this classification, clustering methods such as k-means and hierarchical clustering allow the differentiation and filation of different geochemical populations encountered so far at Mars. The ChemCam instruments are performing very well. The 100-sol dataset is rich of thousands of spectra and hundreds of images. We will present a status of the data set acquired during that period, a review of the analysis techniques and an introduction to the results which have been obtained so far.
Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic
NASA Astrophysics Data System (ADS)
Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.
2017-12-01
Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.
NASA Astrophysics Data System (ADS)
Zhang, Yanqiu; Jiang, Shuyong; Hu, Li; Zhao, Yanan; Sun, Dong
2017-10-01
The behavior of primary static recrystallization (SRX) in a NiTiFe shape memory alloy (SMA) subjected to cold canning compression was investigated using the coupling crystal plasticity finite element method (CPFEM) with the cellular automaton (CA) method, where the distribution of the dislocation density and the deformed grain topology quantified by CPFEM were used as the input for the subsequent SRX simulation performed using the CA method. The simulation results were confirmed by the experimental ones in terms of microstructures, average grain size and recrystallization fraction, which indicates that the proposed coupling method is well able to describe the SRX behavior of the NiTiFe SMA. The results show that the dislocation density exhibits an inhomogeneous distribution in the deformed sample and the recrystallization nuclei mainly concentrate on zones where the dislocation density is relatively higher. An increase in the compressive deformation degree leads to an increase in nucleation rate and a decrease in grain boundary spaces in the compression direction, which reduces the growth spaces for the SRX nuclei and impedes their further growth. In addition, both the mechanisms of local grain refinement in the incomplete SRX and the influence of compressive deformation degree on the grain size of SRX were vividly illustrated by the corresponding physical models.
Abundances of neutron-capture elements in stars of the Galactic disk substructures
NASA Astrophysics Data System (ADS)
Mishenina, T. V.; Pignatari, M.; Korotin, S. A.; Soubiran, C.; Charbonnel, C.; Thielemann, F.-K.; Gorbaneva, T. I.; Basak, N. Yu.
2013-04-01
Aims: The aim of this work is to present and discuss the observations of the iron peak (Fe, Ni) and neutron-capture element (Y, Zr, Ba, La, Ce, Nd, Sm, and Eu) abundances for 276 FGK dwarfs, located in the Galactic disk with metallicity -1 < [Fe/H] < +0.3. Methods: Atmospheric parameters and chemical composition of the studied stars were determined from an high resolution, high signal-to-noise echelle spectra obtained with the echelle spectrograph ELODIE at the Observatoire de Haute-Provence (France). Effective temperatures were estimated by the line depth ratio method and from the Hα line-wing fitting. Surface gravities (log g) were determined by parallaxes and the ionization balance of iron. Abundance determinations were carried out using the LTE approach, taking the hyperfine structure for Eu into account, and the abundance of Ba was computed under the NLTE approximation. Results: We are able to assign most of the stars in our sample to the substructures of the Galaxy thick disk, thin disk, or Hercules stream according to their kinematics. The classification of 27 stars is uncertain. For most of the stars in the sample, the abundances of neutron-capture elements have not been measured earlier. For all of them, we provide the chemical composition and discuss the contribution from different nucleosynthesis processes. Conclusions: The [Ni/Fe] ratio shows a flat value close to the solar one for the whole metallicity range, with a small scatter, pointing to a nearly solar Ni/Fe ratio for the ejecta of both core-collapse SN and SNIa. The increase in the [Ni/Fe] for metallicity higher than solar is confirmed, and it is due to the metallicity dependence of 56Ni ejecta from SNIa. Under large uncertainty in the age determination of observed stars, we verified that there is a large dispersion in the AMR in the thin disk, and no clear trend as in the thick disk. That may be one of the main reasons for the dispersion, observed for the s-process elements in the thin disk (e.g., Ba and La), whereas much narrower dispersion can be seen for r-process elements (e.g., Eu). Within the current uncertainties, we do not see a clear decreasing trend of [Ba/Fe] or [La/Fe] with metallicity in the thin disk, except maybe for super-solar metallicities. We cannot confirm an increase in the mentioned ratios with decreasing stellar age. Based on spectra collected with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute Provence (France).Tables 4 and 5 are only available at the CDS via anonymous ftp to ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A128
Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema.
Amin, Mohammad Nurul; Liza, Kaniz Fatema; Sarwar, Md Shahid; Ahmed, Jamiuddin; Adnan, Md Tareek; Chowdhury, Manjurul Islam; Hossain, Mohammad Zahid; Islam, Mohammad Safiqul
2015-09-01
The exact etiology and pathogenesis of eczema are not yet fully understood, although different factors are considered as pathogenic mechanisms in the development of eczema. Our study was designed to determine extent of serum lipid peroxidation, antioxidants, macro minerals and trace elements in patients with eczema, and thereby, find any pathophysiological correlation. The study was conducted as a case-control study with 65 eczema patients as cases and 65 normal healthy individuals as controls. Lipid peroxidation was assessed by measuring the serum level of malondialdehyde (MDA). Antioxidants- vitamin A and E concentration was determined by RP-HPLC method whereas vitamin C was evaluated for serum ascorbic acid by UV spectrophotometric method. Serum macro minerals (Na, K, Ca) and trace elements (Zn, Fe) were determined by Atomic Absorption Spectroscopy (AAS). This study found significantly higher level of MDA (p < 0.001) and lower level of antioxidants (p < 0.05) in patients in comparison to the control subjects. Analysis of serum macro minerals (Na, K and Ca) and trace elements (Zn, Fe) found that the mean values of Na, K, Ca, Zn and Fe were 2771.60 ± 75.64, 66.33 ± 3.03, 48.41 ± 2.50, 0.30 ± 0.02 and 0.29 ± 0.009 mg/L for the patient group and 3284.81 ± 34.51, 162.18 ± 3.72, 87.66 ± 2.10, 0.75 ± 0.06 and 0.87 ± 0.06 mg/L for the control group, accordingly. There was a significant difference for all the minerals between the patients and controls (p < 0.001). This study suggests a strong association between the pathogenesis of eczema with the elevated level of MDA and depleted level of antioxidants, macro minerals, and trace elements.
NASA Astrophysics Data System (ADS)
Griesel, S.; Mundry, R.; Kakuschke, A.; Fonfara, S.; Siebert, U.; Prange, A.
2006-11-01
Mineral and essential trace elements are involved in numerous physiological processes in mammals. Often, diseases are associated with an imbalance of the electrolyte homeostasis. In this study, the concentrations of mineral elements (P, S, K, Ca) and essential trace elements (Fe, Cu, Zn, Se, Rb, Sr) in whole blood of harbor seals ( Phoca vitulina) were determined using total-reflection X-ray fluorescence spectrometry (TXRF). Samples from 81 free-ranging harbor seals from the North Sea and two captive seals were collected during 2003-2005. Reference ranges and element correlations for health status determination were derived for P, S, K, Ca, Fe, Cu, and Zn level in whole blood. Grouping the seals by age, gender and sample location the concentration levels of the elements were compared. The blood from two captive seals with signs of diseases and four free-ranging seals showed reduced element levels of P, S, and Ca and differences in element correlation of electrolytes were ascertained. Thus, simultaneous measurements of several elements in only 500 μL volumes of whole blood provide the possibility to obtain information on both, the electrolyte balance and the hydration status of the seals. The method could therefore serve as an additional biomonitoring tool for the health assessment.
Trace Elements in Ovaries: Measurement and Physiology.
Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J
2016-04-01
Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.
Cui, Shihai; Li, Haiyan; Li, Xiangnan; Ruan, Jesse
2015-01-01
Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE) method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT) data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.
Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana
2016-01-01
Purpose: To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Methods: Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. Results: The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. Conclusion: The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases. PMID:27478794
Forming a structure of the CoNiFe alloys by X-ray irradiation
NASA Astrophysics Data System (ADS)
Valko, Natalia; Kasperovich, Andrey; Koltunowicz, Tomasz N.
The experimental data of electrodeposition kinetics researches and structure formation of ternary CoNiFe alloys deposited onto low-carbon steel 08kp in the presence of X-rays are presented. Relations of deposit rate, current efficiencies, element and phase compositions of CoNiFe coatings formed from sulfate baths with respect to cathode current densities (0.5-3A/dm2), electrolyte composition and irradiation were obtained. It is shown that, the CoNiFe coatings deposited by the electrochemical method involving exposure of the X-rays are characterized by more perfect morphology surfaces with less developed surface geometry than reference coatings. The effect of the X-ray irradiation on the electrodeposition of CoNiFe coatings promotes formatting of alloys with increased electropositive component and modified phase composition.
NASA Astrophysics Data System (ADS)
Polukhin, V. A.; Belyakova, R. M.; Rigmant, L. K.
2008-02-01
The nature of microdopant effects of surfactant Te and H2 reagents on structure-phase transitions in rapidly quenched and crystallized eutectic Fe-C-based melts were studied by experimental and computer methods. On the base of results of statistic-geometrical analysis the new information about the structure changes in multi-scaling systems -from meso- to nano-ones were obtained.
NASA Astrophysics Data System (ADS)
Dobromyslov, A. V.; Taluts, N. I.
2017-06-01
Al-Fe alloys prepared by casting, rapid quenching from the melt, and mechanical alloying from elemental powders have been studied using X-ray diffraction analysis, optical metallography, transmission electron microscopy, and microhardness measurements in the initial state and after severe plastic deformation by high-pressure torsion using Bridgman anvils. The relationship between the phase composition, microstructure, and the microhardness of the investigated alloys has been established.
Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity
NASA Astrophysics Data System (ADS)
Lai, Timothy Yu
2002-01-01
Geomaterials such as soils and rocks undergo strain localization during various loading conditions. Strain localization manifests itself in the form of a shear band, a narrow zone of intense straining. It is now generally recognized that these localized deformations lead to an accelerated softening response and influence the response of structures at or near failure. In order to accurately predict the behavior of geotechnical structures, the effects of strain localization must be included in any model developed. In this thesis, a multi-scale Finite Element (FE) model has been developed that captures the macro- and micro-field deformation patterns present during strain localization. The FE model uses a strong discontinuity approach where a jump in the displacement field is assumed. The onset of strain localization is detected using bifurcation theory that checks when the governing equations lose ellipticity. Two types of bifurcation, continuous and discontinuous are considered. Precise conditions for plane strain loading conditions are reported for each type of bifurcation. Post-localization behavior is governed by the traction relations on the band. Different plasticity models such as Mohr-Coulomb, Drucker-Prager and a Modified Mohr-Coulomb yield were implemented together with cohesion softening and cutoff for the post-localization behavior. The FE model is implemented into a FORTRAN code SPIN2D-LOC using enhanced constant strain triangular (CST) elements. The model is formulated using standard Galerkin finite element method, applicable to problems under undrained conditions and small deformation theory. A band-tracing algorithm is implemented to track the propagation of the shear band. To validate the model, several simulations are performed from simple compression test of soft rock to simulation of a full-scale geosynthetic reinforced soil wall model undergoing strain localization. Results from both standard and enhanced FE method are included for comparison. The resulting load-displacement curves show that the model can represent the softening behavior of geomaterials once strain localization is detected. The orientation of the shear band is found to depend on both the friction and dilation angle of the geomaterial. For most practical problems, slight mesh dependency can be expected but is associated with the standard FE interpolation rather than the strong discontinuity enhancements.
Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry
Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.
1990-01-01
X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.
NASA Astrophysics Data System (ADS)
Agata, Ryoichiro; Ichimura, Tsuyoshi; Hori, Takane; Hirahara, Kazuro; Hashimoto, Chihiro; Hori, Muneo
2018-04-01
The simultaneous estimation of the asthenosphere's viscosity and coseismic slip/afterslip is expected to improve largely the consistency of the estimation results to observation data of crustal deformation collected in widely spread observation points, compared to estimations of slips only. Such an estimate can be formulated as a non-linear inverse problem of material properties of viscosity and input force that is equivalent to fault slips based on large-scale finite-element (FE) modeling of crustal deformation, in which the degree of freedom is in the order of 109. We formulated and developed a computationally efficient adjoint-based estimation method for this inverse problem, together with a fast and scalable FE solver for the associated forward and adjoint problems. In a numerical experiment that imitates the 2011 Tohoku-Oki earthquake, the advantage of the proposed method is confirmed by comparing the estimated results with those obtained using simplified estimation methods. The computational cost required for the optimization shows that the proposed method enabled the targeted estimation to be completed with moderate amount of computational resources.
Kartal, Mehmet E.
2013-01-01
The contour method is one of the most prevalent destructive techniques for residual stress measurement. Up to now, the method has involved the use of the finite-element (FE) method to determine the residual stresses from the experimental measurements. This paper presents analytical solutions, obtained for a semi-infinite strip and a finite rectangle, which can be used to calculate the residual stresses directly from the measured data; thereby, eliminating the need for an FE approach. The technique is then used to determine the residual stresses in a variable-polarity plasma-arc welded plate and the results show good agreement with independent neutron diffraction measurements. PMID:24204187
Bayat, I; Etehadiyan, M; Ansar, M
1995-01-01
Concentration of trace elements in Nescafé, Fariman sugar, and Sadaf turmeric and mercury content in cancerous blood were determined by radiochemical, neutron activation analysis. By this separation method levels of 110mAg, 198Au, 203Hg, 76Se, 51Cr, 24Na, 42K, 99Mo, 122Sb, 82Br, 59Fe, 60Co were measured without interference in the gamma spectroscopy. A nondestructive method has also been used for the analysis of sodium, potassium, and bromine.
Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.
Bu, Hongmei; Song, Xianfang; Guo, Fen
2017-01-15
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERT and Well Data Tie for Nickel Laterite Characterization
NASA Astrophysics Data System (ADS)
Aswad, Sabrianto; Mamela Mais, Difar; Syamsuddin; Wanni
2018-03-01
The need of ERT method in nickel latentes exploration can’t be deny. This method have capability to make exploration more effective and efficient. In reality this method still remain ambiguity in its application, especially for geologist and mining expert. These ambiguity related with layer zone determination (limonite, saprolite and bedrock), the same resistivity values in the different zones and determination of bedrock. This paper try to expose interesting fact to overcome this ambiguity by using ERT data and drill data tie. This tie will show characteristic of nickel lateric based on resisitivity value and the contribution of chemistry element for resistivity value. Data ERT was collected by using gradient configuration and well data consist of mayor element and minor element. Tie result showed difference resistivity value in limonite layer influence by Fe, H2O and Ni, where resistivity value from saprolite layer influenced by Fe, H2O, Si02, MgO, Al, Cr, and Ni in certain accumulation. In bedrock layer, almost all drill data did not reach bedrock but only reached the boulder alone, it is supported by the value of the resistivity of rock unserpentinized peridotite which should show a relatively large resistivity value
Germanium and Tin Based Anode Materials for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Ji, Dongsheng
The discovery of safe anode materials with high energy density for lithium-ion batteries has always been a significant topic. Group IV elements have been under intensive study for their high capability of alloying with lithium. Batteries with graphite and tin based anode material have already been applied in cell phones and vehicles. In order to apply group IV elements, their dramatic volume change during lithiation and delithiation processes is the key point to work on. Reducing the particle size is the most common method to buffer the volume expansion. This strategy has been applied on both germanium and tin based materials. Germanium based anode material has been made by two different synthesis methods. The amorphous Ge-C-Ti composite material was made by ball milling method and performed much better than other germanium alloy including Ge-Mg, Ge-Fe and Ge-Fe.Germanium sphere nano particles with diameter of around 50 nm have been made by solution method. After ball milled with graphite, the resulted product performed stable capacity over 500 mAh˙g-1 for more than 20 cycles. Ball milled graphite in the composite plays an important role of buffering volume change and stabilizing germanium. Sn-Fe alloy is one of the feasible solutions to stabilize tin. Sn 2Fe-C composite has been made by ball milling method. After optimizations of the ratio of precursors, reaction time, milling balls and electrolyte additives, the electrochemistry performance was improved. The anode performed 420 mAh˙ -1 at 1.0 mA/cm2 and maintained its structure after cycling at 2.0 mA/cm2. At 0.3 mA/cm2 cycling rate, the anode performed 978 mAh/cm3 after 500 cycles, which still exceeds the theoretical capacity of graphite.
NASA Astrophysics Data System (ADS)
Shim, M.; Swarzenski, P. W.; Shiller, A. M.
2010-12-01
The Mississippi River (MR) plays an important role as a major fluvial source of dissolved and particulate materials for the Gulf of Mexico (GOM). This region is periodically disturbed by tropical weather systems including major hurricanes. Such storms have the potential to stir up the normally stratified water column of the Louisiana Shelf and thus can serve as a mechanism for the abrupt termination of seasonal bottom water hypoxia. Additionally, strong tropical systems can cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, two major hurricanes, Katrina and Rita, passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we participated in a survey of the waters of the Mississippi River delta outflow, examining the distributions of trace elements (including Ba, Co, Cr, Cs, Cu, Fe, Mn, Ni, Re, U, V, and Zn) in a comparison with previous results in this area. We indeed observed that there was limited stratification on the shelf and that bottom waters were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn-O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 µm) from colloidal (0.02 - 0.45 µm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity of the Fe in estuarine systems.
The origin and evolution of r- and s-process elements in the Milky Way stellar disk
NASA Astrophysics Data System (ADS)
Battistini, Chiara; Bensby, Thomas
2016-02-01
Context. Elements heavier than iron are produced through neutron-capture processes in the different phases of stellar evolution. Asymptotic giant branch (AGB) stars are believed to be mainly responsible for elements that form through the slow neutron-capture process, while the elements created in the rapid neutron-capture process have production sites that are less understood. Knowledge of abundance ratios as functions of metallicity can lead to insight into the origin and evolution of our Galaxy and its stellar populations. Aims: We aim to trace the chemical evolution of the neutron-capture elements Sr, Zr, La, Ce, Nd, Sm, and Eu in the Milky Way stellar disk. This will allow us to constrain the formation sites of these elements, as well as to probe the evolution of the Galactic thin and thick disks. Methods: Using spectra of high resolution (42 000 ≲ R ≲ 65 000) and high signal-to-noise (S/N ≳ 200) obtained with the MIKE and the FEROS spectrographs, we determine Sr, Zr, La, Ce, Nd, Sm, and Eu abundances for a sample of 593 F and G dwarf stars in the solar neighborhood. The abundance analysis is based on spectral synthesis using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. Results: We present abundance results for Sr (156 stars), Zr (311 stars), La (242 stars), Ce (365 stars), Nd (395 stars), Sm (280 stars), and Eu (378 stars). We find that Nd, Sm, and Eu show trends similar to what is observed for the α elements in the [X/Fe]-[Fe/H] abundance plane. For [Sr/Fe] and [Zr/Fe], we find decreasing abundance ratios for increasing metallicity, reaching sub-solar values at super-solar metallicities. [La/Fe] and [Ce/Fe] do not show any clear trend with metallicity, and they are close to solar values at all [Fe/H]. The trends of abundance ratios [X/Fe] as a function of stellar ages present different slopes before and after 8 Gyr. Conclusions: The rapid neutron-capture process is active early in the Galaxy, mainly in type-II supernovae from stars in the mass range 8-10 M⊙. Europium is almost completely produced by the r-process, but Nd and Sm show similar trends to Eu even if their s-process component is higher. Strontium and Zr are thought to be mainly produced by the s-process, but show significant enrichment at low metallicity that requires extra r-process production, which probably is different from the classical r-process. Finally, La and Ce are mainly produced via s-process from AGB stars in the mass range 2-4 M⊙, which can be seen by the decrease in [La/Eu] and [Ce/Eu] at [Fe/H] ≈ -0.5. The trend of [X/Fe] with age could be explained by considering that the decrease in [X/Fe] for the thick disk stars can be due to the decrease in type-II supernovae with time, meaning a reduced enrichment of r-process elements in the interstellar medium. In the thin disk, the trends are flatter, which is probably due to the main production from the s-process being balanced by Fe production from type-Ia supernovae. This paper includes data gathered with the 6.5 m Magellan Telescopes at the Las Campanas Observatory, Chile and the ESO 1.5-m, 2.2-m. and 3.6-m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A49
Finite element analysis of the valgus knee joint of an obese child.
Sun, Jun; Yan, Songhua; Jiang, Yan; Wong, Duo Wai-Chi; Zhang, Ming; Zeng, Jizhou; Zhang, Kuan
2016-12-28
Knee valgus and varus morbidity is at the second top place in children lower limb deformity diseases. It may cause abnormal stress distribution. The magnitude and location of contact forces on tibia plateau during gait cycle have been indicated as markers for risk of osteoarthritis. So far, few studies reported the contact stress and force distribution on tibial plateau of valgus knee of children. To estimate the contact stresses and forces on tibial plateau of an 8-year old obese boy with valgus knee and a 7-year old healthy boy, three-dimensional (3D) finite element (FE) models of their left knee joints were developed. The valgus knee model has 36,897 nodes and 1,65,106 elements, and the normal knee model has 78,278 nodes and 1,18,756 elements. Paired t test was used for the comparison between the results from the 3D FE analysis method and the results from traditional kinematic measurement methods. The p value of paired t test is 0.12. Maximum stresses shifted to lateral plateau in knee valgus children while maximum stresses were on medial plateau in normal knee child at the first peak of vertical GRF of stance phase. The locations of contact centers on medial plateau changed 3.38 mm more than that on lateral plateau, while the locations of contact centers on medial plateau changed 1.22 mm less than that on lateral plateau for healthy child from the first peak to second peak of vertical GRF of stance phase. The paired t test result shows that there is no significant difference between the two methods. The results of FE analysis method suggest that knee valgus malalignment could be the reason for abnormal knee load that may cause knee problems in obese children with valgus knee in the long-term. This study may help to understand biomechanical mechanism of valgus knees of obese children.
Development of phase analysis methods of impurity elements in alloys based on iron and nickel
NASA Astrophysics Data System (ADS)
Andreeva, N. A.; Anuchkin, S. N.; Volchenkova, V. A.; Kazenas, E. K.; Penkina, T. N.; Fomina, A. A.
2018-04-01
Using the method of AES with ICP, new methods have been developed for quantifying the content of various forms of existence of impurity elements: Al-Al2O3; Zr-ZrO2 in alloys based on iron (Fe-Sn) and nickel (Ni-Sn). Open systems were used to dissolve Al and Zr. To translate difficult-to-open aluminum oxides (corundum) and zirconium oxide (baddeleyite) into the solution, accelerated techniques were developed using the microwave system Mars 5. To confirm the completeness of the dissolution of oxides, a classical scheme of alloy fusion with alkali metal salts was used. Optimal analytical parameters for determining the elements: Al and Zr were chosen. The influence of matrix elements (iron and nickel) and methods of its elimination were studied. This made it possible to determine the elements in a wide concentration range from 1 • 10-3 to n% Al and from 1 • 10-4 to n% Zr without preliminary separation of the matrix with good metrological characteristics. The relative standard deviation (Sr) does not exceed 0,2. The separate determination of the contents of aluminum and aluminium oxide in the model melt of Fe-Sn-Al2O3 and zirconium and zirconium oxide in the Ni-Sn-ZrO2 model melt allowed us to estimate the number of nanoparticles participating in the heterophase interaction with tin and retired to the interface in the form of ensembles and the number of nanoparticles present in the melt and affecting the crystallization process and the structure of the metal.
NASA Astrophysics Data System (ADS)
Xue, Jilin; Zhou, Changyu
2016-03-01
Creep continuum damage finite element (FE) analyses were performed for P91 steel pipe containing local wall thinning (LWT) defect subjected to monotonic internal pressure, monotonic bending moment and combined internal pressure and bending moment by orthogonal experimental design method. The creep damage lives of pipe containing LWT defect under different load conditions were obtained. Then, the creep damage life formulas were regressed based on the creep damage life results from FE method. At the same time a skeletal point rupture stress was found and used for life prediction which was compared with creep damage lives obtained by continuum damage analyses. From the results, the failure lives of pipe containing LWT defect can be obtained accurately by using skeletal point rupture stress method. Finally, the influence of LWT defect geometry was analysed, which indicated that relative defect depth was the most significant factor for creep damage lives of pipe containing LWT defect.
Adhesive and Cohesive Strength in FeB/Fe2B Systems
NASA Astrophysics Data System (ADS)
Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.
2018-05-01
In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.
Biomechanical behavior of cavity configuration on micropush-out test: a finite-element-study.
Cekic-Nagas, Isil; Shinya, Akikazu; Ergun, Gulfem; Vallittu, Pekka K; Lassila, Lippo V J
2011-01-01
The objective of this study was to simulate the micropush-out bond strength test from a biomechanical point of view. For this purpose, stress analysis using finite element (FE) method was performed. Three different occlusal cavity shapes were simulated in disc specimens (model A: 1.5 mm cervical, 2 mm occlusal diameter; model B: 1.5 mm cervical, 1.75 mm occlusal diameter; model C: 1.5 mm cervical, 1.5 mm occlusal diameter). Quarter sizes of 3D FE specimen models of 4.0 x 4.0 x 1.25 mm3 were constructed. In order to avoid quantitative differences in the stress value in the models, models were derived from a single mapping mesh pattern that generated 47.182 elements and 66.853 nodes. The materials that were used were resin composite (Filtek Z250, 3M ESPE), bonding agent (Adper Scotchbond Multi-Purpose, 3M ESPE) and dentin as an isotropic material. Loading conditions consisted of subjecting a press of 4 MPa to the top of the resin composite discs. The postprocessing files allowed the calculation of the maximum principal stress, minimum principal stress and displacement within the disc specimens and stresses at the bonding layer. FE model construction and analysis were performed on PC workstation (Precision Work Station 670, Dell Inc.) using FE analysis program (ANSYS 10 Sp, ANSYS Inc.). Compressive stress concentrations were observed equally in the bottom interface edge of dentin. Tensile stresses were observed on the top area of dentin and at the half of lower side of composite under the loading point in all of the FE models. The FE model revealed differences in displacement and stress between different cavity shaped disc specimens. As the slope of the cavity was increased, the maximum displacement, compressive and tensile stresses also increased.
Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method
NASA Astrophysics Data System (ADS)
Song, Liangfeng; Wu, Mingxin; Wang, Jinting; Xu, Yanjie
2016-09-01
This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.
Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA
NASA Astrophysics Data System (ADS)
Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji
2018-01-01
A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.
Research on the self-absorption corrections for PGNAA of large samples
NASA Astrophysics Data System (ADS)
Yang, Jian-Bo; Liu, Zhi; Chang, Kang; Li, Rui
2017-02-01
When a large sample is analysed with the prompt gamma neutron activation analysis (PGNAA) neutron self-shielding and gamma self-absorption affect the accuracy, the correction method for the detection efficiency of the relative H of each element in a large sample is described. The influences of the thickness and density of the cement samples on the H detection efficiency, as well as the impurities Fe2O3 and SiO2 on the prompt γ ray yield for each element in the cement samples, were studied. The phase functions for Ca, Fe, and Si on H with changes in sample thickness and density were provided to avoid complicated procedures for preparing the corresponding density or thickness scale for measuring samples under each density or thickness value and to present a simplified method for the measurement efficiency scale for prompt-gamma neutron activation analysis.
Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films
NASA Astrophysics Data System (ADS)
Prasannakumara, R.; Naik, K. Gopalakrishna
2018-05-01
Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.
Serum trace elements in obese women with or without diabetes
Yerlikaya, F. Hümeyra; Toker, Aysun; Arıbaş, Alpay
2013-01-01
Background & objectives: Relationship of trace elements with obesity and diabetes is complex, alterations in their metabolism can be induced by the diseases and their complications. To study the role of the trace elements in diabetes and obesity, serum trace elements levels (Cr, Se, Fe, Zn, Cu and Mn) were measured in obese women with or without diabetes as well as healthy women. Further, correlation between serum trace elements levels and glucose, insulin, homeostasis model assessment (HOMA-IR), glycated haemoglobin (HbA1c), body mass index (BMI), waist circumferences, waist -to -hip ratio and high-sensitivity C-reactive protein(hsCRP) were also determined in these women. Methods: This study was performed with morbidly obese (BMI >40 kg/m2) women with diabetes (n=41), without diabetes (n=45) and 50 healthly non obese women. Anthropometric measurements were taken and levels of serum Zn, Cr, Fe Cu and Mn were determined. Biochemical parameters included serum glucose, insulin, lipids, haemoglobin, hsCRP and HbA1C. Results: The levels of Zn (P<0.001), Mn (P<0.05), Fe (P<0.05) were significantly lower and the level of Cu (P<0.001) and Cu / Zn ratio (P<0.05) were significantly higher in the diabetic obese women than those of the healthy women. Also, the levels of Zn and Fe were significantly lower and the levels of Cu were significantly higher in the non diabetic obese women than those of the healthy group. Serum Zn levels negatively and serum Cu levels positively correlated with anthropometric values in diabetic and non diabetic obese women. Further, serum Zn, Mn and Cr levels negatively correlated and serum Se levels positively correlated glycaemia control parameters in diabetic obese women. In addition, serum Zn levels negatively correlated with hsCRP in diabetic and nondiabetic obese females. Interpretation & conclusions: Our findings showed significant association between Zn and Fe deficiencies and obesity. Also, obese women with diabetes may be at a greater risk of developing imbalances and deficiencies of trace elements compared with obese women without diabetes. PMID:23563378
An interlaboratory comparison study on the measurement of elements in PM10
NASA Astrophysics Data System (ADS)
Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna
2016-01-01
An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.
Substitution of Nd with other rare earth elements in melt spun Nd{sub 2}Fe{sub 14}B magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D. N.; Lau, D.; Chen, Z.
2016-05-15
This is a contemporary study of rapidly quenched Nd{sub 1.6}X{sub 0.4}Fe{sub 14}B magnetic materials (where X= Nd, Y, Ce, La, Pr, Gd and Ho). A 20% substitution of the Nd component from Nd{sub 2}Fe{sub 14}B can bring about some commercial advantage. However, there will be some compromise to the magnetic performance. Light rare earth elements are definitely more abundant (Y, Ce, La) than the heavier rare earth elements, but when they are included in RE{sub 2}Fe{sub 14}B magnets they tend to lower magnetic performance and thermal stability. Substituting heavy rare earth elements (Gd, Ho) for Nd in Nd{sub 2}Fe{sub 14}Bmore » improves the thermal stability of magnets but causes a loss in magnet remanence.« less
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1991-01-01
A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.
NASA Astrophysics Data System (ADS)
Yudasari, N.; Prasetyo, S.; Suliyanti, M. M.
2018-03-01
The laser-induced breakdown spectroscopy (LIBS) technique was applied to detect the nutrient elements contained in fresh carrot. Nd:YAG laser the wavelength of 1064 nm was employed in the experiments for ablation. Employing simple set-up of LIBS and preparing the sample with less step method, we are able to detect 18 chemical elements including some fundamental element of carrot, i.e Mg, Al, Fe, Mn, Ti, Ca, and Mn. By applying normalized profiles calculation on some of the element, we are able to compare the concentration level of each element of the outer and inner part of carrot.
CHEMICAL ANALYSIS OF A CARBON-ENHANCED VERY METAL-POOR STAR: CD-27 14351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karinkuzhi, Drisya; Goswami, Aruna; Masseron, Thomas
2017-01-01
We present, for the first time, an abundance analysis of a very metal-poor carbon-enhanced star CD-27 14351 based on a high-resolution ( R ∼ 48,000) FEROS spectrum. Our abundance analysis performed using local thermodynamic equilibrium model atmospheres shows that the object is a cool star with stellar atmospheric parameters, effective temperature T {sub eff} = 4335 K, surface gravity log g = 0.5, microturbulence ξ = 2.42 km s{sup −1}, and metallicity [Fe/H] = −2.6. The star exhibits high carbon and nitrogen abundances with [C/Fe] = 2.89 and [N/Fe] = 1.89. Overabundances of neutron-capture elements are evident in Ba, La, Ce, and Nd, with estimated [X/Fe] > 1, the largest enhancementmore » being seen in Ce with [Ce/Fe] = 2.63. While the first peak s -process elements Sr and Y are found to be enhanced with respect to Fe, ([Sr/Fe] = 1.73 and [Y/Fe] = 1.91), the third peak s -process element Pb could not be detected in our spectrum at the given resolution. Europium, primarily an r -process element also shows an enhancement with [Eu/Fe] = 1.65. With [Ba/Eu] = 0.12, the object CD-27 14351 satisfies the classification criterion for a CEMP-r/s star. The elemental abundance distributions observed in this star are discussed in light of the chemical abundances observed in other CEMP stars in the literature.« less
NASA Astrophysics Data System (ADS)
Wang, W.; Liu, J.
2016-12-01
Forward modelling is the general way to obtain responses of geoelectrical structures. Field investigators might find it useful for planning surveys and choosing optimal electrode configurations with respect to their targets. During the past few decades much effort has been put into the development of numerical forward codes, such as integral equation method, finite difference method and finite element method. Nowadays, most researchers prefer the finite element method (FEM) for its flexible meshing scheme, which can handle models with complex geometry. Resistivity Modelling with commercial sofewares such as ANSYS and COMSOL is convenient, but like working with a black box. Modifying the existed codes or developing new codes is somehow a long period. We present a new way to obtain resistivity forward modelling codes quickly, which is based on the commercial sofeware FEPG (Finite element Program Generator). Just with several demanding scripts, FEPG could generate FORTRAN program framework which can easily be altered to adjust our targets. By supposing the electric potential is quadratic in each element of a two-layer model, we obtain quite accurate results with errors less than 1%, while more than 5% errors could appear by linear FE codes. The anisotropic half-space model is supposed to concern vertical distributed fractures. The measured apparent resistivities along the fractures are bigger than results from its orthogonal direction, which are opposite of the true resistivities. Interpretation could be misunderstood if this anisotropic paradox is ignored. The technique we used can obtain scientific codes in a short time. The generated powerful FORTRAN codes could reach accurate results by higher-order assumption and can handle anisotropy to make better interpretations. The method we used could be expand easily to other domain where FE codes are needed.
NASA Astrophysics Data System (ADS)
Buono, A. S.; Dasgupta, R.; Walker, D.
2011-12-01
Secular cooling of terrestrial planets is known to cause crystallization of a solid inner core from metallic liquid core. Fractionation of light and siderophile elements is important during such crystallization for evolution of outer core and possible core-mantle interaction. Thus far studies focused on a pure Fe inner core in simple binary systems but the effects of possible formation of a carbide inner core component on siderophile element partitioning in a multi-component system has yet to be looked at in detail. We investigated the effects of pressure and S content on partition coefficients (D) between cohenite and liquid in the Fe-Ni-S-C system. Multi-anvil experiments were performed at 3 and 6 GPa at 1150 °C, in an Fe-rich mix containing a constant C and Ni to which S contents of 0, 5, and 14 wt.% were added. All the mixes were doped with W, Re, Os, Pt, and Co. Samples were imaged and analyzed for Fe, Ni, S, and C using an EPMA. Fe, Ni, and trace elements were analyzed using a LA-ICP-MS. All the experiments produced cohenite and Fe-Ni-C±S liquid. Compared to solid-Fe/melt Ds [1-2], cohenite/melt Ds are lower for all elements except W. The light element (S+C) content of the liquid is the dominant controlling factor in siderophile element partitioning between cohenite and liquid as it is between crystalline Fe and liquid. In the cohenite-metallic melt experiments, D Ni decreases as S+C increases. Ni is excluded from the crystallizing solid if the solid is cohenite. We also find that in the Fe-Ni-S-C system, cohenite is stabilized to higher P than in the Fe-S-C system [3-5]. Similar to the Fe-metallic liquid systems the non-metal avoidance model [6] is applicable to the Fe3C-metallic liquid system studied here. Our study has implications for both the cores of smaller planets and the mantles of larger planets. If inner core forms a cohenite layer we would predict that depletions in the outer core will be less than they might be for Fe metal crystallization. For the mantle of the earth, which is thought to become Fe-Ni metal-saturated as shallow as 250 km, the sub-system Fe-Ni + C + S becomes relevant and Fe-Ni carbide rather than metallic Fe-Ni alloy may become the crystalline phase of interest. Our study implies that because the partition coefficients between cohenite and Fe-C-S melts are significantly lower than those between Fe-metal and S-rich liquid, in the presence of cohenite and Fe-C-S melt in the mantle, the mantle budget of Ni, Co, and Pt may be dominated by Fe-C-S liquid. W, Re, and Os will also be slightly enriched in C-rich Fe-Ni liquid over cohenite if the metal sub-system of interest is S-free. [1] Chabot et al., GCA 70, 1322-1335, 2006 [2] Chabot et al., GCA 72, 4146-4158, 2008 [3] Chabot et al., Meteorit. Planet. Sci. 42, 1735-1750, 2007 [4] Stewart et al., EPSL 284, 302-309, 2009 [5] Van Orman et al., EPSL 274, 250-257, 2008 [6] Jones, J.H., Malvin, D.J., Metall Mater Trans B 21, 697-706, 1990
Composite CuFe1 - xSnxO2/p-type silicon photodiodes
NASA Astrophysics Data System (ADS)
Al-Sehemi, Abdullah G.; Mensah-Darkwa, K.; Al-Ghamdi, Ahmed A.; Soylu, M.; Gupta, R. K.; Yakuphanoglu, F.
2017-06-01
CuFe1 - xSnxO2 composite thin film/p-type silicon diodes were prepared on substrate by sol-gel method (x = 0.00, 0.01, 0.03, 0.05, 0.07). The structure of CuFe1 - xSnxO2 composite thin films was studied using XRD analysis and films exhibited amorphous behavior. The elemental compositions and surface morphology of the films were characterized using SEM and EDX. EDX results confirmed the presence of the compositional elements. The optical band gap of CuFe1 - xSnxO2 composite thin films was determined using the optic spectra. The optical band gaps of the CuFe1 - xSnxO2 composite thin films were calculated using optical data and were found to be 3.75, 3.78, 3.80, 3.85 and 3.83 eV for x = 0.00, 0.01, 0.03, 0.05 and 0.07, respectively. The photoresponse and electrical properties of the Al/CuFe1 - xSnxO2/p-Si/Al diode were studied. The barrier height and ideality factor were determined to be averagely 0.67 eV and 2.6, respectively. The electrical and photoresponse characteristics of the diodes have been investigated under dark and solar light illuminations, respectively. The interface states were used to explain the results obtained in present study. CuFe1 - xSnxO2 photodiodes exhibited a high photoresponsivity to be used in optoelectronic applications.
NASA Astrophysics Data System (ADS)
Cardoso, P.; Mateus, T. C.; Velu, G.; Singh, R. P.; Santos, J. P.; Carvalho, M. L.; Lourenço, V. M.; Lidon, F.; Reboredo, F.; Guerra, M.
2018-03-01
X-ray fluorescence analysis has been performed in wheat grains from a field trial where some biofortified and non-biofortified wheat varieties were subjected to Zn biofortification through soil fertilizer application. A set of ten biofortified and non-biofortified wheat varieties developed at the International Maize and Wheat Improvement Center, Mexico, were used for this study. Two analytical methods were employed to investigate the contents and localization of the trace metals Zn and Fe within the grains, one with polarized monochromatic X-rays for lower limits of detection, and another featuring polycapillary lenses for micrometric beam size (μ-EDXRF). Elemental maps were obtained with μ-EDXRF allowing for the study of Zn and Fe localization in plants grown in normal and Zn-enriched soil. It is acknowledged that the biofortification procedures result in around 30% average increase in overall Zn concentration when compared to other high Zn genotypes grown in normal soil. A genotypic ranking was performed taking into account the influence of the measurement methods and field conditions and the obtained results show that two of the top three varieties regarding zinc contents also rank among the top three in terms of Fe concentration. Elemental mapping analysis seems to favor the use of integral flour for the manufacture of bread and pasta products, as the bran retains most of the minerals.
Determination of Metal Elements in Wine Using Laser-Induced Breakdown Spectroscopy (LIBS).
Bocková, Jana; Tian, Ye; Yin, Hualiang; Delepine-Gilon, Nicole; Chen, Yanping; Veis, Pavel; Yu, Jin
2017-08-01
We developed a method for sensitive elemental analysis of wines using laser-induced breakdown spectroscopy (LIBS). In order to overcome the inefficiency of direct ablation of bulk wine (an organic liquid), a thin layer of wine residue was prepared on a metallic target according to an appropriated heating procedure applied to an amount of liquid wine dropped on the target surface. The obtained ensemble was thus ablated. Such a sample preparation procedure used a very small volume of 2 mL of wine and took only 30 min without reagent or solvent. The results show the detection of tens of metal and non-metal elements including majors (Na, Mg, K, Ca), minors, and traces (Li, B, Si, P, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Ba, and Pb) in wines purchased from local supermarkets and from different production places in France. Commercially available wines were then spiked with certified standard solutions of Ti and Fe. Three series of laboratory reference samples were thus prepared using three different wines (a red wine and a white wine from a same production region and a red wine from another production region) with concentrations of Ti and Fe in the range of 1-40 mg/L. Calibration graphs established with the spiked samples allowed extracting the figures-of-merit parameters of the method for wine analysis such as the coefficient of determination ( R 2 ) and the limits of detection and quantification (LOD and LOQ). The calibration curves built with the three wines were then compared. We studied the residual matrix effect between these wines in the determination of the concentrations of Ti and Fe.
Integration of system identification and finite element modelling of nonlinear vibrating structures
NASA Astrophysics Data System (ADS)
Cooper, Samson B.; DiMaio, Dario; Ewins, David J.
2018-03-01
The Finite Element Method (FEM), Experimental modal analysis (EMA) and other linear analysis techniques have been established as reliable tools for the dynamic analysis of engineering structures. They are often used to provide solutions to small and large structures and other variety of cases in structural dynamics, even those exhibiting a certain degree of nonlinearity. Unfortunately, when the nonlinear effects are substantial or the accuracy of the predicted response is of vital importance, a linear finite element model will generally prove to be unsatisfactory. As a result, the validated linear FE model requires further enhancement so that it can represent and predict the nonlinear behaviour exhibited by the structure. In this paper, a pragmatic approach to integrating test-based system identification and FE modelling of a nonlinear structure is presented. This integration is based on three different phases: the first phase involves the derivation of an Underlying Linear Model (ULM) of the structure, the second phase includes experiment-based nonlinear identification using measured time series and the third phase covers augmenting the linear FE model and experimental validation of the nonlinear FE model. The proposed case study is demonstrated on a twin cantilever beam assembly coupled with a flexible arch shaped beam. In this case, polynomial-type nonlinearities are identified and validated with force-controlled stepped-sine test data at several excitation levels.
Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches
2015-10-01
This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.
Realistic finite temperature simulations of magnetic systems using quantum statistics
NASA Astrophysics Data System (ADS)
Bergqvist, Lars; Bergman, Anders
2018-01-01
We have performed realistic atomistic simulations at finite temperatures using Monte Carlo and atomistic spin dynamics simulations incorporating quantum (Bose-Einstein) statistics. The description is much improved at low temperatures compared to classical (Boltzmann) statistics normally used in these kind of simulations, while at higher temperatures the classical statistics are recovered. This corrected low-temperature description is reflected in both magnetization and the magnetic specific heat, the latter allowing for improved modeling of the magnetic contribution to free energies. A central property in the method is the magnon density of states at finite temperatures, and we have compared several different implementations for obtaining it. The method has no restrictions regarding chemical and magnetic order of the considered materials. This is demonstrated by applying the method to elemental ferromagnetic systems, including Fe and Ni, as well as Fe-Co random alloys and the ferrimagnetic system GdFe3.
Distribution and speciation of trace elements in iron and manganese oxide cave deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-10-24
Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redoxmore » conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.« less
Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana
2016-06-01
To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases.
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet; Howard, Carl Q.; Hansen, Colin H.; Köpke, Uwe G.
2018-03-01
In this paper, numerically modelled vibration response of a rolling element bearing with a localised outer raceway line spall is presented. The results were obtained from a finite element (FE) model of the defective bearing solved using an explicit dynamics FE software package, LS-DYNA. Time domain vibration signals of the bearing obtained directly from the FE modelling were processed further to estimate time-frequency and frequency domain results, such as spectrogram and power spectrum, using standard signal processing techniques pertinent to the vibration-based monitoring of rolling element bearings. A logical approach to analyses of the numerically modelled results was developed with an aim to presenting the analytical validation of the modelled results. While the time and frequency domain analyses of the results show that the FE model generates accurate bearing kinematics and defect frequencies, the time-frequency analysis highlights the simulation of distinct low- and high-frequency characteristic vibration signals associated with the unloading and reloading of the rolling elements as they move in and out of the defect, respectively. Favourable agreement of the numerical and analytical results demonstrates the validation of the results from the explicit FE modelling of the bearing.
A probability-based approach for assessment of roadway safety hardware.
DOT National Transportation Integrated Search
2017-03-14
This report presents a general probability-based approach for assessment of roadway safety hardware (RSH). It was achieved using a reliability : analysis method and computational techniques. With the development of high-fidelity finite element (FE) m...
The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys
NASA Astrophysics Data System (ADS)
Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.
2014-12-01
Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.
Trace element contaminants in mineral fertilizers used in Iran.
Latifi, Zahra; Jalali, Mohsen
2018-05-25
The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.
Fe-based bulk amorphous alloys with iron contents as high as 82 at%
NASA Astrophysics Data System (ADS)
Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu; Yao, Ke-Fu
2015-07-01
Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe81P8.5C5.5B2Si3 BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe82Mo1P6.5C5.5B2Si3 BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications.
Laurent, Cédric P; Latil, Pierre; Durville, Damien; Rahouadj, Rachid; Geindreau, Christian; Orgéas, Laurent; Ganghoffer, Jean-François
2014-12-01
The use of biodegradable scaffolds seeded with cells in order to regenerate functional tissue-engineered substitutes offers interesting alternative to common medical approaches for ligament repair. Particularly, finite element (FE) method enables the ability to predict and optimise both the macroscopic behaviour of these scaffolds and the local mechanic signals that control the cell activity. In this study, we investigate the ability of a dedicated FE code to predict the geometrical evolution of a new braided and biodegradable polymer scaffold for ligament tissue engineering by comparing scaffold geometries issued from FE simulations and from X-ray tomographic imaging during a tensile test. Moreover, we compare two types of FE simulations the initial geometries of which are issued either from X-ray imaging or from a computed idealised configuration. We report that the dedicated FE simulations from an idealised reference configuration can be reasonably used in the future to predict the global and local mechanical behaviour of the braided scaffold. A valuable and original dialog between the fields of experimental and numerical characterisation of such fibrous media is thus achieved. In the future, this approach should enable to improve accurate characterisation of local and global behaviour of tissue-engineering scaffolds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Tong, Yang; Jin, Ke
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...
2018-06-16
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Synthesis of FeCoNi nanoparticles by galvanostatic technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budi, Setia, E-mail: setiabudi@unj.ac.id; Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Negeri Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta 13220; Hafizah, Masayu Elita
Soft magnetic nanoparticles of FeCoNi have been becoming interesting objects for many researchers due to its potential application in electronic devices. One of the most promising methods for material preparation is the electrodeposition which capable of growing nanoparticles alloy directly onto the substrate. In this paper, we report our electrodeposition studies on nanoparticles synthesis using galvanostatic electrodeposition technique. Chemical composition of the synthesized FeCoNi was successfully controlled through the adjustment of the applied currents. It is revealed that the content of each element, obtained from quantitative analysis using atomic absorption spectrometer (AAS), could be modified by the adjustment of currentmore » in which Fe and Co content decreased at larger applied currents, while Ni content increased. The nanoparticles of Co-rich FeCoNi and Ni-rich FeCoNi were obtained from sulphate electrolyte at the range of applied current investigated in this work. Broad diffracted peaks in the X-ray diffractograms indicated typical nanostructures of the solid solution of FeCoNi.« less
Dynamic analysis of I cross beam section dissimilar plate joined by TIG welding
NASA Astrophysics Data System (ADS)
Sani, M. S. M.; Nazri, N. A.; Rani, M. N. Abdul; Yunus, M. A.
2018-04-01
In this paper, finite element (FE) joint modelling technique for prediction of dynamic properties of sheet metal jointed by tungsten inert gas (TTG) will be presented. I cross section dissimilar flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by TTG are used. In order to find the most optimum set of TTG welding dissimilar plate, the finite element model with three types of joint modelling were engaged in this study; bar element (CBAR), beam element and spot weld element connector (CWELD). Experimental modal analysis (EMA) was carried out by impact hammer excitation on the dissimilar plates that welding by TTG method. Modal properties of FE model with joints were compared and validated with model testing. CWELD element was chosen to represent weld model for TTG joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, average percentage of error of the natural frequencies for CWELD model is improved significantly.
Kulkarni, Ankur H; Ghosh, Prasenjit; Seetharaman, Ashwin; Kondaiah, Paturu; Gundiah, Namrata
2018-05-09
Traction forces exerted by adherent cells are quantified using displacements of embedded markers on polyacrylamide substrates due to cell contractility. Fourier Transform Traction Cytometry (FTTC) is widely used to calculate tractions but has inherent limitations due to errors in the displacement fields; these are mitigated through a regularization parameter (γ) in the Reg-FTTC method. An alternate finite element (FE) approach computes tractions on a domain using known boundary conditions. Robust verification and recovery studies are lacking but essential in assessing the accuracy and noise sensitivity of the traction solutions from the different methods. We implemented the L2 regularization method and defined a maximum curvature point in the traction with γ plot as the optimal regularization parameter (γ*) in the Reg-FTTC approach. Traction reconstructions using γ* yield accurate values of low and maximum tractions (Tmax) in the presence of up to 5% noise. Reg-FTTC is hence a clear improvement over the FTTC method but is inadequate to reconstruct low stresses such as those at nascent focal adhesions. FE, implemented using a node-by-node comparison, showed an intermediate reconstruction compared to Reg-FTTC. We performed experiments using mouse embryonic fibroblast (MEF) and compared results between these approaches. Tractions from FTTC and FE showed differences of ∼92% and 22% as compared to Reg-FTTC. Selection of an optimum value of γ for each cell reduced variability in the computed tractions as compared to using a single value of γ for all the MEF cells in this study.
NASA Technical Reports Server (NTRS)
Go, B. M.; Righter, K.; Danielson, L.; Pando, K.
2015-01-01
Previous geochemical and geophysical experiments have proposed the presence of a small, metallic lunar core, but its composition is still being investigated. Knowledge of core composition can have a significant effect on understanding the thermal history of the Moon, the conditions surrounding the liquid-solid or liquid-liquid field, and siderophile element partitioning between mantle and core. However, experiments on complex bulk core compositions are very limited. One limitation comes from numerous studies that have only considered two or three element systems such as Fe-S or Fe-C, which do not supply a comprehensive understanding for complex systems such as Fe-Ni-S-Si-C. Recent geophysical data suggests the presence of up to 6% lighter elements. Reassessments of Apollo seismological analyses and samples have also shown the need to acquire more data for a broader range of pressures, temperatures, and compositions. This study considers a complex multi-element system (Fe-Ni-S-C) for a relevant pressure and temperature range to the Moon's core conditions.
Chemical Compositions of Kinematically Selected Outer Halo Stars
NASA Astrophysics Data System (ADS)
Zhang, Lan; Ishigaki, Miho; Aoki, Wako; Zhao, Gang; Chiba, Masashi
2009-12-01
Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including α-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [α/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens & Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong
2018-01-01
Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.
Althaf Hussain, Shaik; Kareem, Mohammed Abdul; Rasool, Shaik Nayab; Al Omar, Suliman Yousef; Saleh, Alwasel; Al-Fwuaires, Manal Abdulrahman; Daddam, Jayasimha Rayalu; Devi, Kodidhela Lakshmi
2018-01-01
The trace elements and minerals in Terminalia pallida fruit ethanolic extract (TpFE) were determined by the instrument inductively coupled plasma-mass spectrometry (ICP-MS), and the cardioprotection of TpFE against isoproterenol (ISO)-administered rats was studied. Rats were pretreated with TpFE (100, 300, and 500 mg/kg bw) for 30 days, with concurrent administration of ISO (85 mg/kg bw) for two consecutive days. The levels of trace elements and minerals in TpFE were below the permitted limits of World Health Organization standards. ISO administration significantly increased the heart weight and cardiac marker enzymes in serum, xanthine oxidase, sodium, and calcium in the heart, whereas significantly decreased body weight, reduced glutathione, glutathione-S-transferase, superoxide dismutase, and potassium in the heart. Oral pretreatment of TpFE significantly prevented the ISO-induced alterations. This is the first report that revealed the determination of trace elements and mineral nutrients of TpFE by ICP-MS which plays a principal role in the herbal drug discovery for the treatment of cardiovascular diseases.
The geochemical cycling of trace elements in a biogenic meromictic lake
NASA Astrophysics Data System (ADS)
Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara
1994-10-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).
The geochemical cycling of trace elements in a biogenic meromictic lake
Balistrieri, L.S.; Murray, J.W.; Paul, B.
1994-01-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.
Bjørklund, Geir; Aaseth, Jan; Skalny, Anatoly V; Suliburska, Joanna; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A
2017-05-01
Iron (Fe) deficiency is considered as the most common nutritional deficiency. Iron deficiency is usually associated with low Fe intake, blood loss, diseases, poor absorption, gastrointestinal parasites, or increased physiological demands as in pregnancy. Nutritional Fe deficiency is usually treated with Fe tablets, sometimes with Fe-containing multimineral tablets. Trace element interactions may have a significant impact on Fe status. Existing data demonstrate a tight interaction between manganese (Mn) and Fe, especially in Fe-deficient state. The influence of Mn on Fe homeostasis may be mediated through its influence on Fe absorption, circulating transporters like transferrin, and regulatory proteins. The existing data demonstrate that the influence of zinc (Zn) on Fe status may be related to their competition for metal transporters. Moreover, Zn may be involved in regulation of hepcidin production. At the same time, human data on the interplay between Fe and Zn especially in terms of Fe-deficiency and supplementation are contradictory, demonstrating both positive and negative influence of Zn on Fe status. Numerous data also demonstrate the possibility of competition between Fe and chromium (Cr) for transferrin binding. At the same time, human data on the interaction between these metals are contradictory. Therefore, while managing hypoferremia and Fe-deficiency anemia, it is recommended to assess the level of other trace elements in parallel with indices of Fe homeostasis. It is supposed that simultaneous correction of trace element status in Fe deficiency may help to decrease possible antagonistic or increase synergistic interactions. Copyright © 2017 Elsevier GmbH. All rights reserved.
Computer simulation of liquid metals
NASA Astrophysics Data System (ADS)
Belashchenko, D. K.
2013-12-01
Methods for and the results of the computer simulation of liquid metals are reviewed. Two basic methods, classical molecular dynamics with known interparticle potentials and the ab initio method, are considered. Most attention is given to the simulated results obtained using the embedded atom model (EAM). The thermodynamic, structural, and diffusion properties of liquid metal models under normal and extreme (shock) pressure conditions are considered. Liquid-metal simulated results for the Groups I - IV elements, a number of transition metals, and some binary systems (Fe - C, Fe - S) are examined. Possibilities for the simulation to account for the thermal contribution of delocalized electrons to energy and pressure are considered. Solidification features of supercooled metals are also discussed.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Bi, Chuan-Xing; Zhang, Chuanzeng; Gao, Hai-Feng; Chen, Hai-Bo
2018-04-01
The vibration behavior of thin elastic structures can be noticeably influenced by the surrounding water, which represents a kind of heavy fluid. Since the feedback of the acoustic pressure onto the structure cannot be neglected in this case, a strong coupled scheme between the structural and fluid domains is usually required. In this work, a coupled finite element and boundary element (FE-BE) solver is developed for the free vibration analysis of structures submerged in an infinite fluid domain or a semi-infinite fluid domain with a free water surface. The structure is modeled by the finite element method (FEM). The compressibility of the fluid is taken into account, and hence the Helmholtz equation serves as the governing equation of the fluid domain. The boundary element method (BEM) is employed to model the fluid domain, and a boundary integral formulation with a half-space fundamental solution is used to satisfy the Dirichlet boundary condition on the free water surface exactly. The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear one by using a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenfrequencies of interest. The Burton-Miller method is used to filter out the fictitious eigenfrequencies of the boundary integral formulations. Numerical examples are given to demonstrate the accuracy and applicability of the developed eigensolver, and also show that the fluid-loading effect strongly depends on both the water depth and the mode shapes.
NASA Astrophysics Data System (ADS)
Fan, S.; Yu, S.; Lai, B.; Gao, Y.
2017-12-01
Iron is a limiting micronutrient element critical for the marine ecosystem. In the extensive high-nutrient low-chlorophyll (HNLC) regions of the Southern Ocean, the activities of phytoplankton are partly controlled by iron (Fe) from different sources, including atmospheric deposition. Among important properties of atmospheric Fe are the elemental composition and Fe oxidation state of Fe-containing aerosol particles, as these properties affect aerosol Fe solubility. To explore these issues, aerosol samples were collected at Palmer Station in West Antarctic Peninsula. Samples were analyzed by submicron synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) spectroscopy for the Fe oxidation state and elemental composition of aerosol particles. The morphological information of aerosol particles was also observed by the high-resolution fluorescence microscopy, revealing possible sources and formation processes of iron-containing particles. More detailed results will be discussed in this presentation.
Iron supported on bioinspired green silica for water remediation.
Alotaibi, Khalid M; Shiels, Lewis; Lacaze, Laure; Peshkur, Tanya A; Anderson, Peter; Machala, Libor; Critchley, Kevin; Patwardhan, Siddharth V; Gibson, Lorraine T
2017-01-01
Iron has been used previously in water decontamination, either unsupported or supported on clays, polymers, carbons or ceramics such as silica. However, the reported synthesis procedures are tedious, lengthy (involving various steps), and either utilise or produce toxic chemicals. Herein, the use of a simple, rapid, bio-inspired green synthesis method is reported to prepare, for the first time, a family of iron supported on green nanosilica materials (Fe@GN) to create new technological solutions for water remediation. In particular, Fe@GN were employed for the removal of arsenate ions as a model for potentially toxic elements in aqueous solution. Several characterization techniques were used to study the physical, structural and chemical properties of the new Fe@GN. When evaluated as an adsorption platform for the removal of arsenate ions, Fe@GN exhibited high adsorption capacity (69 mg of As per g of Fe@GN) with superior kinetics (reaching ∼35 mg As per g sorbent per hr) - threefold higher than the highest removal rates reported to date. Moreover, a method was developed to regenerate the Fe@GN allowing for a full recovery and reuse of the adsorbent in subsequent extractions; strongly highlighting the potential technological benefits of these new green materials.
SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating
Lee, Young-Joo; Cho, Soojin
2016-01-01
Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125
Process for synthesizing compounds from elemental powders and product
Rabin, B.H.; Wright, R.N.
1993-12-14
A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.
Process for synthesizing compounds from elemental powders and product
Rabin, Barry H.; Wright, Richard N.
1993-01-01
A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.
A voxel-based finite element model for the prediction of bladder deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.
2012-01-15
Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classicalmore » FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to manual contours and <0.02 cm difference in mean standard deviation of residual errors). The average equation solving time (without manual intervention) for the first two types of hexahedral meshes increased to 2.3 h and 2.6 h compared to the 1.1 h needed for the tetrahedral mesh, however, the low-resolution nonuniform hexahedral mesh dramatically decreased the equation solving time to 3 min without reducing accuracy. Conclusions: Voxel-based mesh generation allows fast, automatic, and robust creation of finite element bladder models directly from binary segmentation images without user intervention. Even the low-resolution voxel-based hexahedral mesh yields comparable accuracy in bladder shape prediction and more than 20 times faster in computational speed compared to the tetrahedral mesh. This approach makes it more feasible and accessible to apply FE method to model bladder deformation in adaptive radiotherapy.« less
NASA Astrophysics Data System (ADS)
Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank
2016-07-01
High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.
NASA Astrophysics Data System (ADS)
Zhong, Xin; Frehner, Marcel; Kunze, Karsten; Zappone, Alba
2014-10-01
A novel electron backscatter diffraction (EBSD) -based finite-element (FE) wave propagation simulation is presented and applied to investigate seismic anisotropy of peridotite samples. The FE model simulates the dynamic propagation of seismic waves along any chosen direction through representative 2D EBSD sections. The numerical model allows separation of the effects of crystallographic preferred orientation (CPO) and shape preferred orientation (SPO). The obtained seismic velocities with respect to specimen orientation are compared with Voigt-Reuss-Hill estimates and with laboratory measurements. The results of these three independent methods testify that CPO is the dominant factor controlling seismic anisotropy. Fracture fillings and minor minerals like hornblende only influence the seismic anisotropy if their volume proportion is sufficiently large (up to 23%). The SPO influence is minor compared to the other factors. The presented FE model is discussed with regard to its potential in simulating seismic wave propagation using EBSD data representing natural rock petrofabrics.
A CAD Approach to Integrating NDE With Finite Element
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Downey, James; Ghosn, Louis J.; Baaklini, George Y.
2004-01-01
Nondestructive evaluation (NDE) is one of several technologies applied at NASA Glenn Research Center to determine atypical deformities, cracks, and other anomalies experienced by structural components. NDE consists of applying high-quality imaging techniques (such as x-ray imaging and computed tomography (CT)) to discover hidden manufactured flaws in a structure. Efforts are in progress to integrate NDE with the finite element (FE) computational method to perform detailed structural analysis of a given component. This report presents the core outlines for an in-house technical procedure that incorporates this combined NDE-FE interrelation. An example is presented to demonstrate the applicability of this analytical procedure. FE analysis of a test specimen is performed, and the resulting von Mises stresses and the stress concentrations near the anomalies are observed, which indicates the fidelity of the procedure. Additional information elaborating on the steps needed to perform such an analysis is clearly presented in the form of mini step-by-step guidelines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young Sun; Beers, Timothy C.; Prieto, Carlos Allende
We present a method for the determination of [{alpha}/Fe] ratios from low-resolution (R = 2000) SDSS/SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-resolution (R = 15, 000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [{alpha}/Fe] from SDSS/SEGUE spectra (with S/N>20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range T{sub eff} = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, +0.3], over themore » range [{alpha}/Fe] = [-0.1, +0.6]. For stars with [Fe/H] <-1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N>25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [{alpha}/Fe] can be obtained from our approach is [Fe/H] {approx}-2.5; preliminary tests indicate that a metallicity limit as low as [Fe/H] {approx}-3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [{alpha}/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [{alpha}/Fe] from previous studies. The results of the comparison with NGC 6791 imply that the metallicity range for the method may extend to {approx}+0.5.« less
NASA Astrophysics Data System (ADS)
Corrigan, Catherine M.; Chabot, Nancy L.; McCoy, Timothy J.; McDonough, William F.; Watson, Heather C.; Saslow, Sarah A.; Ash, Richard D.
2009-05-01
To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems. Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element's natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.
Naturally occurring levels of elements in fishes as determined by PIXE and XRF methods
NASA Astrophysics Data System (ADS)
Tallandini, L.; Giacobini, F.; Turchetto, M.; Galassini, S.; Liu, Q. X.; Shao, H. R.; Moschini, G.; Moro, R.; Gialanella, G.; Ghermandi, G.; Cecchi, R.; Injuk, J.; Valković, V.
1989-04-01
Naturally occurring levels of S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Sb, Sr and Pb were measured in the gills, liver and muscles of fishes ( Zosterisessor ophiocephalus Pall) in the northwestern region of the Adriatic Sea. The overall performance of PIXE and XRF methods was tested by the analysis of standard reference materials. The mean concentration values for elements were calculated from the distribution of experimentally determined concentration values. The obtained data are discussed in the framework of metal metabolism and toxicology.
Horai, Sawako; Itai, Takaaki; Noguchi, Takako; Yasuda, Yusuke; Adachi, Haruki; Hyobu, Yuika; Riyadi, Adi S; Boggs, Ashley S P; Lowers, Russell; Guillette, Louis J; Tanabe, Shinsuke
2014-08-01
Concentrations of 28 trace elements (Li, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Tl, Hg, Pb, and Bi) in the livers of juvenile and adult American alligators inhabiting two central Florida lakes, Lake Apopka (LA), and Lake Woodruff National Wildlife Refuge (LW) and one lagoon population located in Merritt Island National Wildlife Refuge (MINWR; NASA), were determined. In juveniles from MINWR, concentrations of nine elements (Li, Fe, Ni, Sr, In, Sb, Hg, Pb and Bi) were significantly higher, whereas six elements (V, Fe, As, Sr, Hg and Bi) were elevated in adults (p<0.05) obtained from MINWR. Significant enrichment of some trace elements in adults, relative to juveniles, was observed at all three sampling areas. Specifically, Fe, Pb and Hg were significantly elevated in adults when compared to juveniles, suggesting age-dependent accumulation of these elements. Further, As, Se and Sn showed the same trend but only in animals collected from MINWR. Mean Fe concentrations in the livers of adults from LA, LW and MINWR were 1770 μg g(-1) DW, 3690 μg g(-1) DW and 5250 μg g(-1) DW, respectively. More than half of the adult specimens from LW and MINWR exhibited elevated hepatic Fe concentrations that exceed the threshold value for toxic effects in donkey, red deer and human. These results prompted us to express our concern on possible exposure and health effects in American alligators by some trace elements derived from NASA activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Bilin; Chen, Xinjun; Fang, Zhou; Hu, Song; Song, Qian
2015-12-01
We applied solution-based ICP-MS method to quantify the trace-elemental signatures in statoliths of jumbo flying squid, Dosidius gigas, which were collected from the waters off northern and central Chile during the scientific surveys carried out by Chinese squid jigging vessels in 2007 and 2008. The age and spawning date of the squid were back-calculated based on daily increments in statoliths. Eight elemental ratios (Sr/Ca, Ba/Ca, Mg/Ca, Mn/Ca, Na/Ca, Fe/Ca, Cu/Ca and Zn/Ca) were analyzed. It was found that Sr is the second most abundant element next to Ca, followed by Na, Fe, Mg, Zn, Cu, Ba and Mn. There was no significant relationship between element/Ca and sea surface temperature (SST) and sea surface salinity (SSS), although weak negative or positive tendency was found. MANOVA analysis showed that multivariate elemental signatures did not differ among the cohorts spawned in spring, autumn and winter, and no significant difference was found between the northern and central sampling locations. Classification results showed that all individuals of each spawned cohorts were correctly classified. This study demonstrates that the elemental signatures in D. gigas statoliths are potentially a useful tool to improve our understanding of its population structure and habitat environment.
NASA Astrophysics Data System (ADS)
Yu, T.; Long, H.; Young, C.; Wang, L.; Chen, J.
2005-12-01
From previous experimental and theoretical studies, sulfur has been considered one of the possible light elements in the core that might be responsible for the large density deficit when compared with the theoretical pure Fe core (Ganapathy and Anders, 1974; Ahrens and Jeanloz, 1987). Therefore, understanding the physical properties of liquid FeS will help us reveal the details of the Earth?|s core. This study focused on the liquid state of sulfur in iron due to sulfur?|s lack of amount in the mantle; easiness to alloy with iron; and the predicted 5 wt% ~10 wt% amount of this light element in the core (Ahrens, 1979; Sherman, 1997). Modern development of the multi-anvil high pressure apparatus limits the pressure range of the experiments (<30 GPa). It is somewhat low if comparing with the outer core pressure condition. Therefore, extrapolation of data derived at low pressure range to the condition of the outer core (>130 GPa) has to be applied, and may produce results that are far from the true numbers. However, at the point while the techniques are limited, studying the physical properties of the liquid-phase FeS at relatively low pressures still provides us a better picture of the physical behavior of the outer core comparing with data derived from solid state FeS experiments. Pervious studies on the viscosity of the Fe-FeS system (LeBlanc and Secco, 1996; Dobson et al., 2000; Urakawa et al., 2001; Secco et al., 2002) have presented different values of viscosity numbers with a maximum difference of two orders of magnitude. We have conducted the density measurements of liquid FeS (~36 wt% of S) up to 5.6 GPa in pressure and 1673K in temperature using the in-situ synchrotron-source x-ray absorption setup at Beamline X17B2, NSLS. The viscosity measurements were conducted by the x-ray radiograph technique combined with the falling sphere method. The falling sphere method applied at the experiment is suitable for liquids with viscosities between 10-3 Pa-s and 105 Pa-s (LeBlanc et al., 1999). We used tungsten spheres in our viscosity measurement experiments. We analyzed the sphere falling motion in the sample chamber at high pressure and high temperature. And by applying our density compression curve of liquid FeS to the Stokes?| viscometry method, we were able to derive the viscosity of liquid FeS.
Iron and boron removal from sodium silicate using complexation methods
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Suharty, N. S.; Pramono, E.; Ramelan, A. H.; Sasongko, B.; Dewi, A. O. T.; Hidayat, R.; Sulistyono, E.; Handayani, M.; Firdiyono, F.
2018-05-01
Silica purification of other materials is needed to improve the purity of silica that suitable for solar cells requirement. The silica is obtained from roasting of sand minerals in sodium silicate form. Iron (Fe) and boron (B) are an impurity that must be separated to obtain high pure silica. Separation of Fe and B used complexation methods. Chitosan-EDTA is used to remove Fe component and curcumin is used to remove B component. The elemental analysis with Atomic Absorption Spectrophotometer (AAS) showed the amount of Fe in sodium silicate decreased after binding to Chitosan EDTA. The contact duration between sodium silicate and chitosan-EDTA at baseline did not affect the results. Then the removal of B from sodium silicate using curcumin was done under basic conditions. B-Curcumin complexes were known from the wavelength number shifts of O-H, C-O, and C = O vibrational in the IR spectrum. The results showed that the optimum concentration of curcumin for removal B was 2 × 10-7 M.
Cui, Shihai; Li, Haiyan; Li, Xiangnan; Ruan, Jesse
2015-01-01
Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE) method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT) data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters. PMID:26495031
NASA Astrophysics Data System (ADS)
Braziewicz, Janusz; Kownacka, Ludwika; Majewska, Urszula; Korman, Andrzej
Element concentrations of K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Se, Br, Sr and Pb as well as the activity of natural radionuclides 210Pb and 226Ra in air were measured. The aerosol samples were collected during tropospheric and stratospheric aircraft flights over the Northeastern region of Poland, which is mostly an agricultural and wooded area. The air volumes were filtered using Petrianov filters at 1, 3, 6, 9, 12 and 15 km above the ground level by special equipment attached to a jet plane. Aircraft flights were provided from September 1997 to August 1998 in 5 separate sampling runs. The long sampling distances served as a good representation of mean aerosol composition and distribution. Concentrations of the same elements were also measured using stationary equipment near the ground level at the outskirts of Warsaw. The vertical profiles of element concentration were obtained and the elemental compositions for the tropospheric and stratospheric aerosols were compared with those from the near-ground level. Contribution of K, Ca, Ti and Fe, which are the main components of soil, in total mass of all detected ones was estimated. Relative concentrations of all measured elements, which show any differences in the composition of the aerosol were calculated. The results obtained confirm the fact that the stratospheric reservoir is observed in the bottom stratosphere. The XRF method based on molybdenum X-ray tube was used as an analytical tool in the determination of aerosols trace elements. The altitude distributions of radioactivity of 226Ra and 210Pb were determined using radiochemical methods.
Decolourization of methyl orange using iron- immobilize MKSF in UV assisted Fenton-like reaction
NASA Astrophysics Data System (ADS)
Abdullah, N. H.; Zubir, N. A.; Hassan, H.
2017-09-01
In this work, montmorillonite KSF clay was used to immobilize iron species as a potential heterogeneous UV assisted Fenton-like reaction. Iron-immobilized MKSF (Fe-MKSF) was synthesized via hydrothermal method in an autoclave. Fe-MKSF was tested on methyl orange (MO) removal by adsorption (5%) and hydrogen peroxide (H2O2) activation (63%) and these prominent margins proved Fe-MKSF performance was attributed by UV assisted Fenton-like reaction. Fe-MKSF show superior performance with 63% color removal within 180 mins reaction in comparison to iron oxide and pristine MKSF. The Fe-MKSF increased in the surface area from 91.1 to 101.9 m2/g and pore volume from 0.13 to 0.45 cm3/g compared to pristine MKSF. The SEM images of Fe-MKSF show iron aggregates indicating successful immobilizing process and the elemental weight percent of iron which increase from 6.12% to 55.38% in Fe-MKSF. These findings prove Fe-MKSF as a promising alternative catalyst in dye contaminated wastewater treatment.
Wei, Fanan; Yang, Haitao; Liu, Lianqing; Li, Guangyong
2017-03-01
Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force-time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young's modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young's modulus, Poisson's ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.
Chen, Shaoshan; Li, Shengyi; Peng, Xiaoqiang; Hu, Hao; Tie, Guipeng
2015-02-20
A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing a KDP crystal. MRF polishing is easy to result in the embedding of carbonyl iron (CI) powders; meanwhile, Fe contamination on the KDP crystal surface will affect the laser induced damage threshold seriously. This paper puts forward an appropriate MRF polishing process to avoid the embedding. Polishing results show that the embedding of CI powders can be avoided by controlling the polishing parameters. Furthermore, on the KDP crystal surface, magnetorheological fluids residua inevitably exist after polishing and in which the Fe contamination cannot be removed completely by initial ultrasonic cleaning. To solve this problem, a kind of ion beam figuring (IBF) polishing is introduced to remove the impurity layer. Then the content of Fe element contamination and the depth of impurity elements are measured by time of flight secondary ion mass spectrometry. The measurement results show that there are no CI powders embedding in the MRF polished surface and no Fe contamination after the IBF polishing process, respectively. That verifies the feasibility of MRF polishing-IBF polishing (cleaning) for processing a KDP crystal.
Wang, Chong; Sun, Qun; Wahab, Magd Abdel; Zhang, Xingyu; Xu, Limin
2015-09-01
Rotary cup brushes mounted on each side of a road sweeper undertake heavy debris removal tasks but the characteristics have not been well known until recently. A Finite Element (FE) model that can analyze brush deformation and predict brush characteristics have been developed to investigate the sweeping efficiency and to assist the controller design. However, the FE model requires large amount of CPU time to simulate each brush design and operating scenario, which may affect its applications in a real-time system. This study develops a mathematical regression model to summarize the FE modeled results. The complex brush load characteristic curves were statistically analyzed to quantify the effects of cross-section, length, mounting angle, displacement and rotational speed etc. The data were then fitted by a multiple variable regression model using the maximum likelihood method. The fitted results showed good agreement with the FE analysis results and experimental results, suggesting that the mathematical regression model may be directly used in a real-time system to predict characteristics of different brushes under varying operating conditions. The methodology may also be used in the design and optimization of rotary brush tools. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna
2014-11-15
A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.
Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N
2016-07-01
The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Saether, E.; Glaessgen, E.H.; Yamakov, V.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
Altundag, Huseyin; Tuzen, Mustafa
2011-11-01
The aim of this study was used to investigate the level of trace metals (Ba, Pb, Cd, Mn, Cr, Co, Ni, Cu, Mn, Zn, Sr and Fe) in some dried fruits (Prunus domestica L., Ficus carica L., Morus alba L., Vitis vinifera L., Prunus armeniaca L., and Malus domestica) samples from Turkey. Trace elements were determined by ICP-OES after dry, wet and microwave digestion methods in dried fruit samples. Validation of the proposed method was carried out by using a NIST-SRM 1515-Apple Leaves certified reference material. Element concentrations in dried fruit samples were 0.33-1.77 (Ba), 0.12-0.54 (Cd), 0.25-1.03 (Co), 0.45-2.30 (Cr), 0.43-2.74 (Cu), 0.56-4.87 (Mn), 0.61-2.54 (Ni), 0.40-2.14 (Pb), 2.16-6.54 (Zn), 0.83-12.02 (Al), 11.82-40.80 (Fe) and 0.16-6.34 (Sr) μg/g. The analytical parameters show that the microwave oven digestion procedure provided best results as compared to the wet and dry digestion procedures. The results were compared with the literature values. Copyright © 2011 Elsevier Ltd. All rights reserved.
Finite Element analyses of soil bioengineered slopes
NASA Astrophysics Data System (ADS)
Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar
2014-05-01
Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio-engineering methods of slope stabilization.
NASA Astrophysics Data System (ADS)
Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal
2018-04-01
Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.
Hydrogen Decrepitation Press-Less Process recycling of NdFeB sintered magnets
NASA Astrophysics Data System (ADS)
Xia, Manlong; Abrahamsen, Asger B.; Bahl, Christian R. H.; Veluri, Badrinath; Søegaard, Allan I.; Bøjsøe, Poul
2017-11-01
A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d < 100 μm. Adding a ball milling step resulted in full density isotropic magnets for d > 100 μm. The coercivity reached Hci = 957 kA/m being 86% of the original N48M material without addition of rare earth elements.
Self-assembled NiFe2O4/carbon nanotubes sponge for enhanced glucose biosensing application
NASA Astrophysics Data System (ADS)
Li, Yingchun; Zhao, Minggang; Chen, Jing; Fan, Sisi; Liang, Jingjing; Ding, Longjiang; Chen, Shougang
2016-01-01
In this work, self-assembled NiFe2O4/carbon nanotubes (CNTs) sponge was prepared by ice-templating method. The device synergized the advantageous features of both the 3D porous nanostructure and the catalytic properties of CNTs with GOx and NiFe2O4 nanoparticles. The porous network construction of the NiFe2O4/CNTs sheets offered enlarged specific surface for GOx immobilization and opened channels for facilitating the electrons transport and reactants diffusion. With the help of the abnormal-valence elements Ni and Fe, double catalysis has happened and the enhanced glucose biosensing performance has been achieved. The fabricated glucose biosensor exhibited two large linear ranges (0-3.0 and 3.2-12.4 mM) and distinct sensitivities (84.1 and 24.6 μA mM-1 cm-2).
Sturgeon, Gregory M; Kiarashi, Nooshin; Lo, Joseph Y; Samei, E; Segars, W P
2016-05-01
The authors are developing a series of computational breast phantoms based on breast CT data for imaging research. In this work, the authors develop a program that will allow a user to alter the phantoms to simulate the effect of gravity and compression of the breast (craniocaudal or mediolateral oblique) making the phantoms applicable to multimodality imaging. This application utilizes a template finite-element (FE) breast model that can be applied to their presegmented voxelized breast phantoms. The FE model is automatically fit to the geometry of a given breast phantom, and the material properties of each element are set based on the segmented voxels contained within the element. The loading and boundary conditions, which include gravity, are then assigned based on a user-defined position and compression. The effect of applying these loads to the breast is computed using a multistage contact analysis in FEBio, a freely available and well-validated FE software package specifically designed for biomedical applications. The resulting deformation of the breast is then applied to a boundary mesh representation of the phantom that can be used for simulating medical images. An efficient script performs the above actions seamlessly. The user only needs to specify which voxelized breast phantom to use, the compressed thickness, and orientation of the breast. The authors utilized their FE application to simulate compressed states of the breast indicative of mammography and tomosynthesis. Gravity and compression were simulated on example phantoms and used to generate mammograms in the craniocaudal or mediolateral oblique views. The simulated mammograms show a high degree of realism illustrating the utility of the FE method in simulating imaging data of repositioned and compressed breasts. The breast phantoms and the compression software can become a useful resource to the breast imaging research community. These phantoms can then be used to evaluate and compare imaging modalities that involve different positioning and compression of the breast.
NASA Technical Reports Server (NTRS)
Brown, I. I.; Bryant, D.; Sarkisova, S.; Shen, G.; Garrison, D.; McKay, D. S.
2009-01-01
Of all extant environments, iron-depositing hot springs may constitute the most appropriate natural models (Pierson and Parenteau, 2000) for analysis of the ecophysiology of ancient cyanobacteria (CB) which may have emerged in association with hydrothermal activity (Brown et al., 2007) and elevated levels of environmental Fe (Rouxel et al., 2005). Elevated environmental Fe2+ posed a significant challenge to the first oxygenic phototrophs - CB - because reduced Fe2+ induces toxic Fenton reactions (Wiedenheft et al., 2005). Ancient CB could have also been stressed by occasional migrations from the Fe2+-rich Ocean to the basaltic land which was almost devoid of dissolved Fe2+. That is why the study of the adaptation reactions of siderophilic CB, which inhabit iron-depositing hot springs, to up and down shifts in levels of dissolved Fe may shed light on the paleophysiology of ancient oxygenic prokaryotes. Methods. Siderophilic CB (Brown et al., 2007) were cultivated in media with different concentrations of added Fe3+. In some cases basaltic rocks were used as a source of Fe and trace elements. The processes of Fe mineralization and rock dissolution were studied using TEM, SEM and EDS techniques. Fluorescence spectroscopy was used for checking chlorophyll-protein complexes. Results. It was found that five siderophilic isolates Chroogloeocystis siderophila, JSC-1, JSC-3, JSC-11 and JSC-12 precipitated Fe-bearing phases on the exopolymeric sheaths of their cells if [Fe3+] was approx. 400-600 M (high Fe). Same [Fe3+] was most optimal one for the cultures proliferation rate (Brown et al., 2005; Brown et al., 2007). Higher concentrations of Fe3+ repressed the growth of some siderophilic CB (Brown et al., 2005). No mineralized Fe3+ was observed on the sheath of freshwater isolates Synechocystis sp. PCC 6803 and Phormidium aa. Scanning TEM in conjunction with thin-window energy dispersive X-ray spectroscopy (EDS) revealed intracellular Fe-rich phases within all three isolates studied JSC-1, JSC-3 and JSC-11. The elemental composition of the Fe-rich precipitates indicates P, Fe, and O as the major elements with minor amounts of Al and Ca. It was also found that the PSI:PSII ratio is higher in JSC-1 and JSC-3 isolates than in CB without detectable ability to mineralize Fe. SEM-EDS studies of the interaction of siderophilic cyanobacteria with Fe-rich minerals and rocks revealed, for the first time, their ability to leach ilmenite, olivine, FeS, ZnS and ferrosilicates, perhaps because the cyanobacteria studied can secrete 2-oxo-glutarate and malate which possess chelating properties. The draft of Cyanobacterium JSC-1 is currently being completed. This will help to verify the molecular mechanisms of Fe mineralization and Fe-rich minerals by siderophilic CB. Conclusions. The results obtained suggest that colloidal Fe3+ is transported in CB cytoplasm most likely through ABC-type Fe3+ transport system (Braun et al., 2004). The prevalence of PSI components over PSII in some species of siderophilic CB may indirectly support the Y. Cohen s hypothesis that PSI in cyanobacteria can be involved in Fe2+ oxidation (Cohen, 1984; 1989). The ability of siderophilic CB to mineralize Fe within their cytoplasms could be a protective survival mechanism induced by high levels of [Fe2+] and UV radiation, while the ability to leach Fe-rich minerals could have supported the expansion of ancient CB onto basaltic land.
Determination of ferrous and total iron in refractory spinels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amonette, James E.; Matyas, Josef
2015-12-30
Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a seriesmore » of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with published values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.05 wt% Fe) and total Fe values slightly higher than obtained by total elemental analysis. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite.« less
Nondestructive evaluation of pavement structural condition for rehabilitation design : final report.
DOT National Transportation Integrated Search
2016-05-31
Falling Weight Deflectometer (FWD) is the common non-destructive testing method for in-situ evaluation of pavement condition. : This study aims to develop finite element (FE) models that can simulate FWD loading on pavement system and capture the : c...
NASA Astrophysics Data System (ADS)
Jones, Adele M.; Pham, A. Ninh; Collins, Richard N.; Waite, T. David
2009-05-01
The rate at which iron- and aluminium-natural organic matter (NOM) complexes dissociate plays a critical role in the transport of these elements given the readiness with which they hydrolyse and precipitate. Despite this, there have only been a few reliable studies on the dissociation kinetics of these complexes suggesting half-times of some hours for the dissociation of Fe(III) and Al(III) from a strongly binding component of NOM. First-order dissociation rate constants are re-evaluated here at pH 6.0 and 8.0 and 25 °C using both cation exchange resin and competing ligand methods for Fe(III) and a cation exchange resin method only for Al(III) complexes. Both methods provide similar results at a particular pH with a two-ligand model accounting satisfactorily for the dissociation kinetics results obtained. For Fe(III), half-times on the order of 6-7 h were obtained for dissociation of the strong component and 4-5 min for dissociation of the weak component. For aluminium, the half-times were on the order of 1.5 h and 1-2 min for the strong and weak components, respectively. Overall, Fe(III) complexes with NOM are more stable than analogous complexes with Al(III), implying Fe(III) may be transported further from its source upon dilution and dispersion.
Minor element distribution in iron disulfides in coal: a geochemical review
Kolker, Allan
2012-01-01
Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to the environment through coal mining and use, as well as for potential reduction by coal preparation, and for delineating diagenetic compositional changes throughout and after coal formation.
The effect of oxygen on density of liquid iron at high pressure
NASA Astrophysics Data System (ADS)
Takubo, Y.; Terasaki, H.; Shimoyama, Y.; Urakawa, S.; Suzuki, A.; Nishida, K.; Kamuro, R.; Kishimoto, S.; Kondo, T.; Ohtani, E.; Yoshinori, K.
2012-12-01
The Earth's outer core has been thought to be composed of liquid iron alloys with 10 % of light elements, such as sulfur, carbon, silicon and oxygen. Density of liquid iron alloy is one of the key parameters to understand the composition and structure of the Earth's outer core. The effect of various light elements (e.g., S, Si, and C) on the density of liquid iron at high pressure and high temperature has been studied (Nishida et al., 2011; Tateyama et al., 2011 Sanloup et al., 2011; Terasaki et al., 2010). It was revealed that the density depression is quite different depending on dissolving light element. However the effect of oxygen on the density of liquid iron has not been investigated due to high liquidus temperature of Fe-O system, although oxygen is one of the major candidates of the light elements in the Earth's outer core (e.g., Ringwood, 1977). Oxygen could be incorporated into the core during early terrestrial evolution (Corgne et al., 2009). In this study, we have measured the density of liquid Fe-O in the pressure and temperature ranges of 2.3-3.0 GPa and 2000-2250 K using X-ray absorption method. High pressure experiment was performed using a cubic-type multi-anvil press installed at BL22XU of the SPring-8 synchrotron radiation facility in Japan. Monochromatic X-ray of 35 keV was used. Mixture of Fe and FeO powders with 0.5 wt% oxygen, which corresponds to the eutectic composition at 3 GPa (Ohtani et al., 1984) was used as a sample. The sample was inserted in a single crystal sapphire capsule. The obtained density of this study is 6.7 g/cm3 at 3 GPa and 2005 K. Compared to the density of pure liquid iron (Anderson and Ahrens, 1994) at the present experimental condition, the density of liquid Fe-O is about 5.3 % smaller than that of pure liquid iron. On the other hand, thermal expansion coefficient of liquid Fe-O shows similar value to that of liquid iron.
Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...
2018-04-13
This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Huan; Qian, Yu; Cochran, J. Kirk
This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less
Ruan, Jesse S; El-Jawahri, Raed; Rouhana, Stephen W; Barbat, Saeed; Prasad, Priya
2006-11-01
The biofidelity of the Ford Motor Company human body finite element (FE) model in side impact simulations was analyzed and evaluated following the procedures outlined in ISO technical report TR9790. This FE model, representing a 50th percentile adult male, was used to simulate the biomechanical impact tests described in ISO-TR9790. These laboratory tests were considered as suitable for assessing the lateral impact biofidelity of the head, neck, shoulder, thorax, abdomen, and pelvis of crash test dummies, subcomponent test devices, and math models that are used to represent a 50th percentile adult male. The simulated impact responses of the head, neck, shoulder, thorax, abdomen, and pelvis of the FE model were compared with the PMHS (Post Mortem Human Subject) data upon which the response requirements for side impact surrogates was based. An overall biofidelity rating of the human body FE model was determined using the ISO-TR9790 rating method. The resulting rating for the human body FE model was 8.5 on a 0 to 10 scale with 8.6-10 being excellent biofidelity. In addition, in order to explore whether there is a dependency of the impact responses of the FE model on different analysis codes, three commercially available analysis codes, namely, LS-DYNA, Pamcrash, and Radioss were used to run the human body FE model. Effects of these codes on biofidelity when compared with ISO-TR9790 data are discussed. Model robustness and numerical issues arising with three different code simulations are also discussed.
Development of a Certified Reference Material (NMIJ CRM 7203-a) for Elemental Analysis of Tap Water.
Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Miyashita, Shin-Ichi; Kuroiwa, Takayoshi; Ariga, Tomoko; Kudo, Izumi; Koguchi, Masae; Heo, Sung Woo; Suh, Jung Ki; Lee, Kyoung-Seok; Yim, Yong-Hyeon; Lim, Youngran
2017-01-01
A certified reference material (CRM), NMIJ CRM 7203-a, was developed for the elemental analysis of tap water. At least two independent analytical methods were applied to characterize the certified value of each element. The elements certified in the present CRM were as follows: Al, As, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, and Zn. The certified value for each element was given as the (property value ± expanded uncertainty), with a coverage factor of 2 for the expanded uncertainty. The expanded uncertainties were estimated while considering the contribution of the analytical methods, the method-to-method variance, the sample homogeneity, the long-term stability, and the concentrations of the standard solutions for calibration. The concentration of Hg (0.39 μg kg -1 ) was given as the information value, since loss of Hg was observed when the sample was stored at room temperature and exposed to light. The certified values of selected elements were confirmed by a co-analysis carried out independently by the NMIJ (Japan) and the KRISS (Korea).
Liu, Shi-Yuan; Li, Shu-Jin; Wu, Shun; Wang, Li-Jun; Chou, Kuo-Chih
2018-07-15
Vanadium slag is a by-product from steelmaking process of vanadium-titanium magnetite, which mainly contains FeO, MnO, V 2 O 3 , and Cr 2 O 3 , The elements Fe and Mn are major components of Mn-Zn ferrite. The elements V and Cr are major components of V-Cr alloy. In view of the potential application in these study, a Mn 0.8 Zn 0.2 Fe 2 O 4 of high saturation magnetization (Ms = 68.6 emu/g) and low coercivity (Hc = 3.3 Oe) was successfully synthesized from the leaching solutions of vanadium slag by adding appropriate chemical reagents, ZnCl 2 and MnCl 2 ·4H 2 O, via roasting at 1300 °C for 1 h. The minor components (CaO and SiO 2 ) in the leaching solution of vanadium slag segregated to the grain boundaries resulting in increasing the resistivity of ferrite. The value of DC resistivity of Mn 0.8 Zn 0.2 Fe 2 O 4 at 25 °C reached 1230.7Ω m. The residue containing Fe, V and Cr was chlorinated by AlCl 3 and the Fe 3+ , V 3+ , and Cr 3+ ions were released into the NaCl-KCl eutectic. The current-time curve for the electrolysis of molten salt was investigated. Alloy (Fe, V, and Cr) of granular shape was obtained. The residue can be used to produce the mulite. This process provided a new approach to utilize slag from steelmaking. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Kai; Cao, Libo; Fanta, Abeselom; Reed, Matthew P; Neal, Mark; Wang, Jenne-Tai; Lin, Chin-Hsu; Hu, Jingwen
2017-07-26
Field data analyses have shown that small female, obese, and/or older occupants are at increased risks of death and serious injury in motor-vehicle crashes compared with mid-size young men. The current adult finite element (FE) human models represent occupants in the same three body sizes (large male, mid-size male, and small female) as those for the contemporary adult crash dummies. Further, the time needed to develop an FE human model using the traditional method is measured in months or even years. In the current study, an improved regional mesh morphing method based on landmark-based radial basis function (RBF) interpolation was developed to rapidly morph a mid-size male FE human model into different geometry targets. A total of 100 human models with a wide range of human attributes were generated. A pendulum chest impact condition was applied to each model as an initial assessment of the resulting variability in response. The morphed models demonstrated mesh quality similar to the baseline model. The peak impact forces and chest deflections in the chest pendulum impacts varied substantially with different models, supportive of consideration of population variation in evaluating the occupant injury risks. The method developed in this study will enable future safety design optimizations targeting at various vulnerable populations that cannot be considered with the current models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zinc abundances in Galactic bulge field red giants: Implications for damped Lyman-α systems
NASA Astrophysics Data System (ADS)
Barbuy, B.; Friaça, A. C. S.; da Silveira, C. R.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A.
2015-08-01
Context. Zinc in stars is an important reference element because it is a proxy to Fe in studies of damped Lyman-α systems (DLAs), permitting a comparison of chemical evolution histories of bulge stellar populations and DLAs. In terms of nucleosynthesis, it behaves as an alpha element because it is enhanced in metal-poor stars. Abundance studies in different stellar populations can give hints to the Zn production in different sites. Aims: The aim of this work is to derive the iron-peak element Zn abundances in 56 bulge giants from high resolution spectra. These results are compared with data from other bulge samples, as well as from disk and halo stars, and damped Lyman-α systems, in order to better understand the chemical evolution in these environments. Methods: High-resolution spectra were obtained using FLAMES+UVES on the Very Large Telescope. We computed the Zn abundances using the Zn i lines at 4810.53 and 6362.34 Å. We considered the strong depression in the continuum of the Zn i 6362.34 Å line, which is caused by the wings of the Ca i 6361.79 Å line suffering from autoionization. CN lines blending the Zn i 6362.34 Å line are also included in the calculations. Results: We find [Zn/Fe] = +0.24 ± 0.02 in the range -1.3 < [Fe/H] < -0.5 and [Zn/Fe] = + 0.06 ± 0.02 in the range -0.5 < [Fe/H] < -0.1, whereas for [Fe/H] ≥ -0.1, it shows a spread of -0.60 < [Zn/Fe] < + 0.15, with most of these stars having low [Zn/Fe] < 0.0. These low zinc abundances at the high metallicity end of the bulge define a decreasing trend in [Zn/Fe] with increasing metallicities. A comparison with Zn abundances in DLA systems is presented, where a dust-depletion correction was applied for both Zn and Fe. When we take these corrections into account, the [Zn/Fe] vs. [Fe/H] of the DLAs fall in the same region as the thick disk and bulge stars. Finally, we present a chemical evolution model of Zn enrichment in massive spheroids, representing a typical classical bulge evolution. Observations collected both at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196).Table 6 is available in electronic form at http://www.aanda.org
Uncertainty estimation in the determination of metals in superficial water by ICP-OES
NASA Astrophysics Data System (ADS)
Faustino, Mainara G.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M. V.; Silva, Tatiane B. S. C.; da Silva, Douglas B.; Pires, Maria Aparecida F.; Cotrim, Marycel E. B.
2016-07-01
From validation studies, it was possible to estimate a measurement uncertainty of several elements such as Al, Ba, Ca, Cu, Cr, Cd, Fe, Mg, Mn, Ni and K in water samples from Guarapiranga Dam. These elements were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES). The value of relative estimated uncertainties were between 3% and 15%. The greatest uncertainty contributions were analytical curve, and the recovery method, which were related with elements concentrations and the equipment response. Water samples analyzed were compared with CONAMA Resolution #357/2005.
Novel catalytic properties of quadruple perovskites
Yamada, Ikuya
2017-01-01
ABSTRACT Quadruple perovskite oxides AA′3 B 4O12 demonstrate a rich variety of structural and electronic properties. A large number of constituent elements for A/A′/B-site cations can be introduced using the ultra-high-pressure synthesis method. Development of novel functional materials consisting of earth-abundant elements plays a crucial role in current materials science. In this paper, functional properties, especially oxygen reaction catalysis, for quadruple perovskite oxides CaCu3Fe4O12 and AMn7O12 (A = Ca, La) composed of earth-abundant elements are reviewed. PMID:28970864
NASA Technical Reports Server (NTRS)
Binns, W. R.; Israel, M. H.; Jones, Michael D.; Kamionkowski, M. P.; Garrard, T. L.
1988-01-01
Results from the Heavy Nuclei experiment on HEAO 3 are used to determine the primary abundances of Ni and Fe. Ni and Fe are found to have nearly constant relative abundances over the interval of 10 to about 500 GeV per amu. Individual secondary elements derived principally from interactions of primary Fe nuclei are shown to display a power-law decrease in relative abundance up to about 150 GeV per amu. Ar/Fe and Ca/Fe ratios of 2.6 + or - 0.7 percent and 8.8 + or - 0.7 percent, respectively, are found, confirming a fractionation of source abundances in which elements with high values of the first ionization potential are depleted relative to those with low first ionization potential.
Yang, Shijian; Guo, Yongfu; Yan, Naiqiang; Wu, Daqing; He, Hongping; Xie, Jiangkun; Qu, Zan; Yang, Chen; Jia, Jinping
2010-11-28
A novel magnetic Fe-Ti-V spinel catalyst showed an excellent performance for elemental mercury capture at 100 °C, and the formed HgO can be catalytically decomposed by the catalyst at 300 °C to reclaim elemental mercury and regenerate the catalyst.
NASA Astrophysics Data System (ADS)
Dresvyannikov, A. F.; Kolpakov, M. E.
2018-05-01
X-ray fluorescence, X-ray phase analysis, and transmission Mössbauer and NGR spectrometry are used to study the formation, phase, and elemental composition of Fe-Ti particles. The interaction between Fe(III) ions and dispersed titanium in an aqueous solution containing chloride ions and HF is studied. It is shown that the resulting Fe-Ti samples are a set of core-shell microparticles with titanium cores coated with micro- and nanosized α-Fe nucleation centers with the thinness outer layer of iron(III) oxide characterized by a developed surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.
In this study, using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe(Fe ,Fe/Ni) 3 and XeNi 3 compounds at thermodynamic conditions representative of Earth’s core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. In conclusion, the results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
NASA Astrophysics Data System (ADS)
Rahman, N.; Alam, M. N.
2018-02-01
Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.
Andrew Fowler
2015-04-01
Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.
Andrew Fowler
2015-05-01
Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.
The Absolute Abundance of Iron in the Solar Corona.
White; Thomas; Brosius; Kundu
2000-05-10
We present a measurement of the abundance of Fe relative to H in the solar corona using a technique that differs from previous spectroscopic and solar wind measurements. Our method combines EUV line data from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory with thermal bremsstrahlung radio data from the VLA. The coronal Fe abundance is derived by equating the thermal bremsstrahlung radio emission calculated from the EUV Fe line data to that observed with the VLA, treating the Fe/H abundance as the sole unknown. We apply this technique to a compact cool active region and find Fe&solm0;H=1.56x10-4, or about 4 times its value in the solar photosphere. Uncertainties in the CDS radiometric calibration, the VLA intensity measurements, the atomic parameters, and the assumptions made in the spectral analysis yield net uncertainties of approximately 20%. This result implies that low first ionization potential elements such as Fe are enhanced in the solar corona relative to photospheric values.
Channel scaling and field-effect mobility extraction in amorphous InZnO thin film transistors
NASA Astrophysics Data System (ADS)
Lee, Sunghwan; Song, Yang; Park, Hongsik; Zaslavsky, A.; Paine, D. C.
2017-09-01
Amorphous oxide semiconductors (AOSs) based on indium oxides are of great interest for next generation ultra-high definition displays that require much smaller pixel driving elements. We describe the scaling behavior in amorphous InZnO thin film transistors (TFTs) with a significant decrease in the extracted field-effect mobility μFE with channel length L (from 39.3 to 9.9 cm2/V·s as L is reduced from 50 to 5 μm). Transmission line model measurements reveal that channel scaling leads to a significant μFE underestimation due to contact resistance (RC) at the metallization/channel interface. Therefore, we suggest a method of extracting correct μFE when the TFT performance is significantly affected by RC. The corrected μFE values are higher (45.4 cm2/V·s) and nearly independent of L. The results show the critical effect of contact resistance on μFE measurements and suggest strategies to determine accurate μFE when a TFT channel is scaled.
Characterisation of sub-micrometre features with the FE-EPMA
NASA Astrophysics Data System (ADS)
McSwiggen, P.
2014-03-01
The goal of this work is to compare two strategies for doing sub-micrometre analyses using the Fe-Ni binary system, as an example. The first approach involves reducing the overvoltage to 1 - 3 kV over the critical ionisation energy of the K X-ray lines. Using such a small overvoltage greatly restricts the size of the analytical volume. Upon entering the sample, the beam electrons quickly lose the additional energy required to excite the X-rays of interest. As a result, the K X-ray line for Fe and Ni will only be produced very near the surface. The second strategy is to use the L-lines for Fe and Ni, and drop the accelerating voltage to a level that will produce the smallest overall interaction volume of the beam electrons. Each strategy has its advantages and disadvantages that depend on the ultimate goal of the analysis and the elements involved. Both methods produce small analytical volumes. However, the L-lines from the transition elements are more problematic because of uncertainties with their mass absorption coefficients. Therefore, using the L-lines in low-kV analyses are more challenging to get good quantitative results. The advantage of using L-lines is that they travel a shorter distance within the sample, and therefore secondary fluorescence becomes less of an issue. The best results will come from a combination of these strategies. Using a multiple kV approach allows the user to select the optimum conditions for each element.
Low Cost Solar Array Project: Composition Measurements by Analytical Photo Catalysis
NASA Technical Reports Server (NTRS)
Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III
1979-01-01
The applicability of the photon catalysis technique for effecting composition analysis of silicon samples is discussed. A detector for the impurities Al, Cr, Fe, Mn, Ti, V, Mo and Zr is evaluated. During the first reporting period Al, Cr, Fe, and Mn were detected with the photon catalysis method. The best fluorescence lines to monitor and determine initial sensitivities to each of these elements by atomic absorption calibration were established. In the course of these tests vapor pressure curves for these four pure substances were also mapped. Ti and Si were detected. The best lines to monitor were catalogued and vapor pressure curves were determined. Attempts to detect vanadium were unsuccessful due to the refractory nature of this element and the limited temperature range of the evaporator.
[Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].
Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin
2014-09-01
To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2 02 digested system was used to completely decomposed the organic compounds effectually by microwave digestion. 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camrnara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaves of Lantana camara were more than that in the root and the branch. The contents of Fe and Na in the root of Lantana camara were more than that in the leaves and the branch. The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity,which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.
Zarnegar, Zohre; Safari, Javad
2015-04-01
Chitosan-modified magnetic carbon nanotubes (CS-MCNTs) were synthesized and were investigated by FT-IR, EDX, FE-SEM, elemental analysis, XRD, VSM and TGA. In order to synthesize the CS-MCNTs composites, Fe3O4 decorated carbon nanotubes (CNTs-Fe3O4) were modified with a silica layer by the ammonia-catalysed hydrolysis of tetraethyl orthosilicate (CNTs-Fe3O4@SiO2). Then, CS-MCNTs were successfully grafted on the surface of CNTs-Fe3O4@SiO2via a suspension cross-linking method. The CS-MCNT was found to be an excellent heterogeneous catalyst for the synthesis of 1,4-dihydropyridines (DHPs). The attractive advantages of the present process include short reaction times, milder and cleaner conditions, higher purity and yields, easy isolation of products, easier work-up procedure and lower generation of waste or pollutions. This catalyst was easily separated by an external magnet and the recovered catalyst was reused several times without any significant loss of activity. A combination of the advantages of CNTs, chitosan and magnetic nanoparticles provides an important methodology for carrying out catalytic transformations. Therefore, this method provides a green and much improved protocol over the existing methods. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Liu, Zhiguo; Lin, Xiaoyan; Liu, Xin; Ye, Lei; Wang, Xingyi; Pan, Kai; Li, Yude
2018-05-01
Two samples of ancient Chinese coins were analyzed with a confocal three-dimensional micro-X-ray fluoroscope. The depth distributions of elemental iron (Fe), calcium (Ca) and copper (Cu) were obtained based on this non-destructive measurement method. One coin, named "Chongning Tongbao", was certified as genuine in accordance with the available archaeological data, whereas another coin, named "Zhenglong Yuanbao", was identified as a reproduction.
Characterizing suspended sediments from the Piracicaba River Basin by means of k0-INAA
NASA Astrophysics Data System (ADS)
França, E. J.; Fernandes, E. A. N.; Cavalca, I. P. O.; Fonseca, F. Y.; Camilli, L.; Rodrigues, V. S.; Bardini Junior, C.; Ferreira, J. R.; Bacchi, M. A.
2010-10-01
The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k0 method ( k0-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k0-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems.
Fabretti, Jean-François; Sauret, Nathalie; Gal, Jean-François; Maria, Pierre-Charles; Schärer, Urs
2007-09-01
An analytical methodology was developed for the determination of 21 trace elements in suspended particulate matter (PM) using a microwave digestion procedure associated with an inductively coupled plasma mass spectrometry (ICP-MS). The dynamic reaction cell (DRC) of the instrument was carefully optimized to eliminate polyatomic species causing spectral interferences for three specified elements (Cr, Fe, Mn). With this method, the detection limits based on the analysis of seven quartz fibre filters (QFF) considering a one-week sample (250 m3) varied between 0.2 and 650 pg m(-3) for trace elements and between 2.1 and 5.6 ng m(-3) for major elements (Fe, Ti, Zn). The recovery of the analytes was tested with NIST SRM 1648 urban dust within 10% of the certified values only for 3-4 mg of material. The first results were discussed for a field campaign which was carried out simultaneously in the heaviest traffic road tunnel of the centre of Nice and near the landing-taking-off runways in the international airport of Nice Côte d'Azur. The behaviour of some combustion tracers was especially studied.
Determination of elements in hospital waste with neutron activation analysis method
NASA Astrophysics Data System (ADS)
Dwijananti, P.; Astuti, B.; Alwiyah; Fianti
2018-03-01
The producer of the biggest B3 waste is hospital. The waste is from medical and laboratory activities. The purpose of this study is to determine the elements contained in the liquid waste from hospital and calculate the levels of these elements. This research was done by analysis of the neutron activation conducted at BATAN Yogyakarta. The neutron activation analysis is divided into two stages: activation of the samples using neutron sources of reactor Kartini, then chopping by using a set of tools, gamma spectrometer with HPGe detector. Qualitative and quantitative analysis were done by matching the gamma spectrum peak to the Neutron Activation Table. The sample was taken from four points of the liquid waste treatment plant (WWTP) Bhakti Wira Tamtama Semarang hospital. The results showed that the samples containing elements of Cr, Zn, Fe, Co, and Na, with the levels of each element is Cr (0.033 - 0.075) mg/L, Zn (0.090 - 1.048) mg/L, Fe (2.937-37.743) mg/L, Co (0.005-0.023) mg/L, and Na (61.088-116.330) mg/L. Comparing to the standard value, the liquid is safe to the environment.
Rotational Stiffness of Precast Beam-Column Connection using Finite Element Method
NASA Astrophysics Data System (ADS)
Hashim, N.; Agarwal, J.
2018-04-01
Current design practice in structural analysis is to assume the connection as pinned or rigid, however this cannot be relied upon for safety against collapse because during services the actual connection reacts differently where the connection has rotated in relevance. This situation may lead to different reactions and consequently affect design results and other frame responses. In precast concrete structures, connections play an important part in ensuring the safety of the whole structure. Thus, investigates on the actual connection behavior by construct the moment-rotation relationship is significant. Finite element (FE) method is chosen for modeling a 3-dimensional beam-column connection. The model is built in symmetry to reduce analysis time. Results demonstrate that precast billet connection is categorized as semi-rigid connection with Sini of 23,138kNm/rad. This is definitely different from the assumption of pinned or rigid connection used in design practice. Validation were made by comparing with mathematical equation and small differences were achieved that led to the conclusion where precast billet connection using FE method is acceptable.
Thermal stability and reduction of iron oxide nanowires at moderate temperatures.
Paolone, Annalisa; Angelucci, Marco; Panero, Stefania; Betti, Maria Grazia; Mariani, Carlo
2014-01-01
The thermal stability of iron oxide nanowires, which were obtained with a hard template method and are promising elements of Li-ion based batteries, has been investigated by means of thermogravimetry, infrared and photoemission spectroscopy measurements. The chemical state of the nanowires is typical of the Fe2O3 phase and the stoichiometry changes towards a Fe3O4 phase by annealing above 440 K. The shape and morphology of the nanowires is not modified by moderate thermal treatment, as imaged by scanning electron microscopy. This complementary spectroscopy-microscopy study allows to assess the temperature limits of these Fe2O3 nanowires during operation, malfunctioning or abuse in advanced Li-ion based batteries.
Data-driven train set crash dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, Zhao; Zhu, Yunrui; Nie, Yinyu; Guo, Shihui; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2017-02-01
Traditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force-displacement curves and predicts a force-displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency.
NASA Astrophysics Data System (ADS)
Kowalski, Piotr; Kasina, Monika; Michalik, Marek
2017-04-01
Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively 70%, 15% and 5% of the total amount of fragments. Fe occurred mainly as component of metallic inclusions and separate grains. Al was mostly present in metallic fragments on grains boundaries and also and as separate grains (often oxidised), moreover Al was important component of aluminosilicates and amorphous phase. Zn-rich metallic fragments were mostly in the form of separate grains. In complex composition of metallic fragments some regularities in elements co-occurrences were observed: Fe often co-existed with Si, Ca, P, Al and Ti; Al co-occurred with Fe, Si and Ca; Zn co-existed with Ca, Al and Si. Forms and composition of metallic fragments allows to evaluate them as potential polymetallic resource, however an economically reasonable extraction techniques must be applied. Acknowledgment Research was funded by Polish National Science Centre (NCN). Scientific grant No. UMO-2014/15/B/ST10/04171. Reference Kowalski, P.R., Kasina, M. and Michalik M.: Metallic elements fractionation in municipal solid waste incineration residues, Energy Procedia, 97, 31-36, doi: 10.1016/j.egypro.2016.10.013, 2016.
DOT National Transportation Integrated Search
2012-04-17
This paper describes work in-progress that applies the : finite element (FE) method in predicting the responses of : individual railroad crossties to rail seat pressure loading in a : ballasted track. Both wood and prestressed concrete crossties : ar...
Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition
NASA Astrophysics Data System (ADS)
Zhang, Qiushuang; Guo, Shuai; Yang, Xiao; Zeng, Jiling; Cao, Xuejing; Chen, Renjie; Yan, Aru
2018-05-01
The chemical bath deposition (CBD) method is used to diffuse the heavy rare earth element in order to obtain the high coercivity magnets with low heavy rare earth element. The jet mill powders are soaked in the alcohol suspension of Dy(CH3CHOHCH3)3 (Dy-ipa) so that Nd2Fe14B powder particles are surrounded by Dy-ipa homogeneously. By adding 1.0 wt. % Dy, the coercivity of magnet is increased from 14.47 kOe to 17.55 kOe with slight reduction of remanence after grain boundary diffusion (GBD) in the sintering and annealing processes. The temperature coefficient of coercivity optimizes from -0.629 %/°C to -0.605 %/°C as well as that of remanence improves from -0.108 %/°C to -0.100 %/°C. The CBD method is helpful for thermal stability and alignment either. The relation between the microstructure and the coercivity has been studied systematically.
NASA Astrophysics Data System (ADS)
Khebbab, Mohamed; Feliachi, Mouloud; El Hadi Latreche, Mohamed
2018-03-01
In this present paper, a simulation of eddy current non-destructive testing (EC NDT) on unidirectional carbon fiber reinforced polymer is performed; for this magneto-dynamic formulation in term of magnetic vector potential is solved using finite element heterogeneous multi-scale method (FE HMM). FE HMM has as goal to compute the homogenized solution without calculating the homogenized tensor explicitly, the solution is based only on the physical characteristic known in micro domain. This feature is well adapted to EC NDT to evaluate defect in carbon composite material in microscopic scale, where the defect detection is performed by coil impedance measurement; the measurement value is intimately linked to material characteristic in microscopic level. Based on this, our model can handle different defects such as: cracks, inclusion, internal electrical conductivity changes, heterogeneities, etc. The simulation results were compared with the solution obtained with homogenized material using mixture law, a good agreement was found.
Shan, Ming-Qiu; Yu, Sheng; Yu, Li-Xia; Ding, An-Wei
2014-02-01
To study the main storage organ of each mineral element in Schizonepeta tenuifolia, and explain its reasonable harvesting time and medicinal parts in view of mineral elements. The mineral elements of Schizonepeta tenuifolia in different organs at different harvesting times were determined by ICP-AES technique. The mineral elements, K, Ca, Na, P, Mg, Mn, Zn, Cu, Fe, Mo, were determined in the study. The results showed that at different harvesting times, (1) the contents of K, P, Cu in fringe and the contents of Mg, Ca, Na, Fe, Mn, Zn in leaf were highest among different organs. (2) among the macroelements, the contents of K and Ca were highest while the content of Na was lowest; among the microelements, the content of Fe was highest while the content of Mo was lowest. (3) in item, the proportion of K:P was highest while the proportion of Zn: Cu was lowest; in fringe, the proportions of Ca:Mg and Fe:Mn were lowest. (4) within the harvest period, variations of the mineral elements were not obvious. In the stem of Schizonepeta tenuifolia, the contents of every mineral elements were lower than other organs, including leaves and spikes. Considering the mineral elements, the correlations of harvesting time and content change were not remarkable.
Causes of Different Vivid Colors in Chalcedonies: Kutahya-Turkey
NASA Astrophysics Data System (ADS)
Ozcan Kilic, Cumhur; Kagan Kadıoglu, Yusuf
2016-04-01
Chalcedony is a silicate mineral which is a mixture of fibrous quartz (trigonal) and granular moganite (monoclinic) minerals. They are both SiO2 in composition but differs in crystal system. Chalcedony is widely used as semi-precious gemstone in many countries. It has many different kinds due to their various colors and structures. The colour changes in mineral depends on different causes. Most important causes are transition metal impurities in minerals chemical composition and charge transfer between ions. Different chalcedony types have different colors due to their elemental composition. Chalcedony can be show almost every colour strating from white, black, gray, red, blue, green to brown or a combinations of more than one color in case of agates and jasper formations. Although they have same major oxide compositions,chrysopras (green chalcedony) have Ni which gives the green color and carnelian (orange chalcedony) have Fe+3 which gives the orange color. Kutahya, Eskisehir, Ankara, Manisa, Balıkesir, Canakkale and Yozgat represent the most cities which chalcedony can be mostly observed in Turkey. In Kutahya, chalcedony occurs in cavity or vein fillings in pyroclastic rocks such as tuff and formed by precipitation of silica bearing fluids in low temperatures. They can be also formed within the hydrothermal alteration zone of ultramafic rocks. Although chalcedonies in Kutahya form under almost same condition, they have various colors within the same unit. To specify the cause of the different colors, chemical analysis and Confocal Raman studies performed on Kutahya chalcedonies. Firstly, samples are crushed to 2 mm. size. After that, different colors of chalcedonies are separated by hand picking under binocular microscope and grouped into different color sets such as white, blue, dark yellow, light orange, dark orange and claret red. Each color set is measured by PED-XRF method to obtain chemical compositions. Also Raman studies performed to identify the effect of Fe element and OH bonds in each color set groups. Due to chemical results, 'Fe2O3-TiO2'assemblage gives claret red-dark orange, only "Fe2O3"gives claret red, 'Fe2O3-Ni' assemblage gives orange to claret red, 'Cr-Ni-Co' assemblage gives light orange, 'As' gives yellow, 'Fe2O3-Cu' assemblage gives claret red to orange, 'As-Zr' and 'Cr2O3-MgO' assemblage gives blue color to chalcedonies in Kutahya. Also 'Fe' Raman shift is figured in Raman studies in Fe containing orange-claret red colored samples. The vivid colors in all the sets derived from the OH Raman shift bonds of the chalcedony. Chemical results show that the colour differences in chalcedony is not related with only one element.The mobility and charge of Fe element with some other (Co, Mn, Cu, Cr, Ni etc.) elements also effects the variability of the colour.
NASA Astrophysics Data System (ADS)
Moon, J.; Roh, Y.; Yeary, L. W.; Lauf, R. J.; Phelps, T. J.
2006-12-01
A metal reducing bacterium, Thermoanaerobacter ethanolicus successfully converted the precursor of L (lanthanide)-mixed akaganeite (LxFe1-xOOH) phase to L-substituted magnetite (LyFe3-yO4) while avoiding the potentially toxic effects of soluble L-ions. Antibiotic elements, lanthanide (Nd, Gd, Tb, Ho, and Er)-substituted magnetites were produced by microbial fermentation using LxFe1-xOOH, where x was up to 0.02 which is equivalent to 0.72 mM. Combining lanthanides into the akaganeite precursor phase mitigated some of the toxicity when compared to the traditional method by using pure akaganeite and the dissolved L-salt form. This new technique showed that an upper limit of L-concentrations between 0.02 and 0.1 mM might suppress bacterial activity. At the equivalent L-cation mole fraction, the traditional method increased the concentration of soluble toxic L ions in the final media. The precursor method enabled production of microbially synthesized L- substituted magnetite with an L-concentration 36-fold greater than could be obtained when the lanthanides were added as soluble salts. These results were confirmed by protein assay. The increase of L-concentration in the magnetite evidently manipulates its physical properties such as decreasing Curie temperature and decreasing saturation magnetism of L-substituted magnetite. This mixed precursor method can therefore be used to extend the application for nanofermentation and other bacterial synthesis fields where there is a need for economically low-energy consumable microbial production of nanoscale materials that should involve toxic or inhibitory elements to bacterial growth.
Bouvier, Adeline; Deleaval, Flavien; Doyley, Marvin M; Yazdani, Saami K; Finet, Gérard; Le Floc'h, Simon; Cloutier, Guy; Pettigrew, Roderic I; Ohayon, Jacques
2016-01-01
The peak cap stress (PCS) amplitude is recognized as a biomechanical predictor of vulnerable plaque (VP) rupture. However, quantifying PCS in vivo remains a challenge since the stress depends on the plaque mechanical properties. In response, an iterative material finite element (FE) elasticity reconstruction method using strain measurements has been implemented for the solution of these inverse problems. Although this approach could resolve the mechanical characterization of VPs, it suffers from major limitations since (i) it is not adapted to characterize VPs exhibiting high material discontinuities between inclusions, and (ii) does not permit real time elasticity reconstruction for clinical use. The present theoretical study was therefore designed to develop a direct material-FE algorithm for elasticity reconstruction problems which accounts for material heterogeneities. We originally modified and adapted the extended FE method (Xfem), used mainly in crack analysis, to model material heterogeneities. This new algorithm was successfully applied to six coronary lesions of patients imaged in vivo with intravascular ultrasound. The results demonstrated that the mean relative absolute errors of the reconstructed Young's moduli obtained for the arterial wall, fibrosis, necrotic core, and calcified regions of the VPs decreased from 95.3±15.56%, 98.85±72.42%, 103.29±111.86% and 95.3±10.49%, respectively, to values smaller than 2.6 × 10−8±5.7 × 10−8% (i.e. close to the exact solutions) when including modified-Xfem method into our direct elasticity reconstruction method. PMID:24240392
Physical validation of a patient-specific contact finite element model of the ankle.
Anderson, Donald D; Goldsworthy, Jane K; Li, Wendy; James Rudert, M; Tochigi, Yuki; Brown, Thomas D
2007-01-01
A validation study was conducted to determine the extent to which computational ankle contact finite element (FE) results agreed with experimentally measured tibio-talar contact stress. Two cadaver ankles were loaded in separate test sessions, during which ankle contact stresses were measured with a high-resolution (Tekscan) pressure sensor. Corresponding contact FE analyses were subsequently performed for comparison. The agreement was good between FE-computed and experimentally measured mean (3.2% discrepancy for one ankle, 19.3% for the other) and maximum (1.5% and 6.2%) contact stress, as well as for contact area (1.7% and 14.9%). There was also excellent agreement between histograms of fractional areas of cartilage experiencing specific ranges of contact stress. Finally, point-by-point comparisons between the computed and measured contact stress distributions over the articular surface showed substantial agreement, with correlation coefficients of 90% for one ankle and 86% for the other. In the past, general qualitative, but little direct quantitative agreement has been demonstrated with articular joint contact FE models. The methods used for this validation enable formal comparison of computational and experimental results, and open the way for objective statistical measures of regional correlation between FE-computed contact stress distributions from comparison articular joint surfaces (e.g., those from an intact versus those with residual intra-articular fracture incongruity).
Herrera, Mónica Alejandra; Rosende, María; Arruda, Marco Aurélio Zezzi; Miró, Manuel
2016-10-05
In-vitro physiologically relevant gastrointestinal extraction based on the validated Unified BARGE Method (UBM) is in this work hyphenated to inductively coupled plasma optical emission spectrometry in a batch-flow configuration for real-time monitoring of oral bioaccessibility assays with high temporal resolution. A fully automated flow analyzer is designed to foster in-line filtration of gastrointestinal extracts at predefined times (≤15 min) followed by on-line multi-elemental analysis of bioaccessible micro-nutrients, viz., Cu, Fe and Mn, in well-defined volumes of extracts (300 μL) of transgenic and non-transgenic soybean seeds taken as model samples. The hyphenated flow setup allows for recording of temporal extraction profiles to gain full knowledge of the kinetics of the gastrointestinal digestion processes, including element leaching and concomitant precipitation and complexation reactions hindering bioavailability. Simplification of the overall standard procedure is also feasible by identification of steady-state extraction conditions. Our findings indicate that reliable measurement of oral bioaccessible pools of Cu, Fe and Mn in soybean might be obtained in less than 180 min rather than 240 min as endorsed by UBM. Using a matrix-matched external calibration, limits of detection according to the 3s criteria were 0.5 μg/g for Mn, 0.6 μg/g for Cu and 2.3 μg/g for Fe. Trueness of the automatic bioaccessibility method was confirmed by mass balance validation with recoveries ranging from 87 to 116% regardless of the target element and sample. Cu was the micronutrient with the highest oral bioaccessibility ranging from 73% to 83% (7.5-7.9 μg/g) for non-transgenic and transgenic soybeans, respectively, followed by Mn and Fe within the ranges of 29-31% (10.8-11.4 μg/g) and 11-15% (8-14 μg/g), respectively, regardless of transgenesis. The proposed kinetic method is proven suitable for fast and expedient estimation of the nutritional value of soybeans and elucidation of the potential effect of transgenesis onto bioaccessible fractions of elements. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Geng, Hongmin; Ji, Yuan; Zhang, Jingjing; Gao, Yuchao; Yan, Yu; Wang, Wenquan; Su, Feng; Du, Xiaobo
2017-11-01
Nd2Fe14C-based magnet is prepared by a mechanochemical method, namely high-energy ball-milling Nd2Fe11Bx (x = 0-0.15) alloy in heptane (C7H16), followed by annealing to 850 °C in vacuum. Under the action of high-energy ball-milling, Nd2Fe11Bx react with heptane to form NdH2+δ, Fe-(CB), C, etc. H2 is released and Nd2Fe17, Nd2Fe17Cx (x = 0-3), Nd2Fe14C, Nd carbides and α-Fe are formed in the subsequent annealing. C amount depends on ball-milling time t. Long time ball milling or high C content suppresses the formation of 2:17 phase and favors the formation of 2:14:1 phase in the final products. Excessive ball-milling results in the quick increase of α-Fe. The maximum of magnetically hard Nd2Fe14C is obtained at t = 4 h. For Nd2Fe11 samples, there exists considerable quantity of Nd carbides and α-Fe phase appears earlier and increases rapidly with extending the ball-milling time t. The addition of B element shortens the ball-milling time of the formation of maximum Nd2Fe14C and prominently suppresses the formation of Nd carbide and α-Fe. The optimum magnetic properties, coercivity iHc of 1193.7 kA/m, remanence Mr of 580.9 kA/m, maximum magnetic energy product (BH)max of 91.7 kJ/m3 is approaching to its theoretic value of 99.2 kJ/m3 for isotropic Nd2Fe14C magnet, are obtained in Nd2Fe11B0.06 alloy ball milled for 3.5 h.
Cell-Sediment Separation and Elemental Stoichiometries in Extreme Environments
NASA Astrophysics Data System (ADS)
Neveu, M.; Poret-peterson, A. T.; Lee, Z. M.; Anbar, A. D.; Elser, J. J.
2012-12-01
Better understanding of the coupling of major biogeochemical cycles requires knowledge of the cellular elemental composition of key microbes. This is difficult in benthic sediments and mats, because of the contributions of non-living components. We are particularly interested in microbial extremophiles, and therefore sought to determine and interpret bulk and cellular elemental ratios in complex field-collected sediment samples from diverse hot spring ecosystems of Yellowstone National Park (YNP). These samples covered a broad range of temperature, pH, and chemical composition. We also sought to extend stoichiometric analysis to a broader suite of elements, including metals (Fe, Ni, Cu, Zn, Mo, etc.) of biological importance (Sterner and Elser, 2002). To overcome the challenge of rigorously isolating communities from their complex mineral matrices (Havig et al., 2011), we adapted a cell-sediment separation procedure from Amalfitano and Fazi (2008). The method involves chemical (use of a detergent and a chelating agent) and physical methods (stirring, gentle sonication, and gradient centrifugation) to break the microbe-mineral bonds. C and N elemental and isotopic abundances were determined by elemental analysis - isotope ratio - mass spectrometry (EA-IR-MS), while P, Na, Mg, Al, K, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, and Mo contents were determined by inductively coupled plasma - mass spectrometry (ICP-MS). We sought to assess the existence of an "Extended Redfield Ratio" (ERR) for these microbes; that is, to establish the multi-element stoichiometric envelope within which extremophilic microbes must operate. Elemental and isotopic mass balance analyses of cultured E. coli before and after separation showed that our procedure preserved cellular C, N, P, Fe, and trace metal contents: neither loss of these elements (e.g., by cell lysis) nor contamination by reagents were observed. On the other hand, cation-forming elements (Na, Mg, K, Ca), were not conserved. Cell counting by epifluorescence microscopy indicated a cell recovery yield between 6 and 40% in field-collected samples (95% for cultured E. coli). Aluminum, assumed to be non-biological in origin, was used to estimate the extent of mineral contamination of isolated cell communities. These results show that our method is successful at separating microbial cells from sediment collected in extreme environments and preserving them for analysis of a broad suite of elements. Photosynthetic sites yielded much more cell material than hotter, chemosynthetic sites (Cox et al., 2011). We are currently measuring cellular elemental abundances and ratios in samples from relatively low-temperature (25 to 65°C), photosynthetic areas, spanning a wide range of pH (2 to 9.5) and composition. These measurements will be compared to existing datasets on the bulk sediment stoichiometry of these ecosystems, and to previous observations of cellular elemental composition. References: Redfield, A.C. (1934) In Daniel, R.J. [Ed.], James Johnstone Memorial Volume, pp. 176-192, Univ. Press Liverpool. Sterner, R.W., Elser, J.J. (2002) Ecological Stoichiometry Princeton Univ. Press, 441p. Havig, J.R., et al. (2011) JGR 116, G01005. Amalfitano, S., Fazi, S. (2008) J. of Microbiol. Methods 75, 237-243. Cox, A., et al. (2011) Chem. Geol. 280, 344-351.
A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
Hu, Yong; Dong, Wei-Xin; Hann, Shannon; Yuan, Zhen-Shan; Sun, Xiao-Yang; Xie, Hui; Zhang, Meichao
To investigate the stress distribution on artificial atlantoaxial-odontoid joint (AAOJ) components during flexion, extension, lateral bending and rotation of AAOJ model constructed with the finite element (FE) method. Human cadaver specimens of normal AAOJ were CT scanned with 1 mm -thickness and transferred into Mimics software to reconstruct the three-dimensional models of AAOJ. These data were imported into Freeform software to place a AAOJ into a atlantoaxial model. With Ansys software, a geometric model of AAOJ was built. Perpendicular downward pressure of 40 N was applied to simulate gravity of a skull, then 1.53 N• m torque was exerted separately to simulate the range of motion of the model. An FE model of atlantoaxial joint after AAOJ replacement was constructed with a total of 103 053 units and 26 324 nodes. In flexion, extension, right lateral bending and right rotation, the AAOJ displacement was 1.109 mm, 3.31 mm, 0.528 mm, and 9.678 mm, respectively, and the range of motion was 1.6°, 5.1°, 4.6° and 22°. During all ROM, stress distribution of atlas-axis changed after AAOJ replacement indicating that AAOJ can offload stress. The stress distribution in the AAOJ can be successfully analyzed with the FE method.
NASA Astrophysics Data System (ADS)
Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.
2016-04-01
The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.
Siderophile trace element diffusion in Fe-Ni alloys
NASA Astrophysics Data System (ADS)
Watson, Heather C.; Watson, E. Bruce
2003-09-01
Experiments were performed in a piston cylinder apparatus to characterize the diffusion behavior of the siderophile elements, Mo, Cu, Pd, Au, and Re in solid Fe-Ni alloy (90 wt.% Fe, 10 wt.% Ni). All experiments were conducted at 1 GPa and temperatures ranging from 1175 to 1400 °C. Activation energies of all elements fall between 270 kJ/mol (Cu) and 360 kJ/mol (Mo). Mo, Cu, Pd, and Au all show similar diffusivities at the same conditions, but the diffusivity of Re was consistently close to an order of magnitude lower. Initial experiments on other refractory elements (Os, Pt, and Ir) indicate that their diffusivities are close to or slightly lower than that of Re.
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Phillips, D.; Glaessgen, E. H.
2004-01-01
In this paper, a multiscale modelling strategy is used to study the effect of grain-boundary sliding on stress localization in a polycrystalline microstructure with an uneven distribution of grain size. The development of the molecular dynamics (MD) analysis used to interrogate idealized grain microstructures with various types of grain boundaries and the multiscale modelling strategies for modelling large systems of grains is discussed. Both molecular-dynamics and finite-element (FE) simulations for idealized polycrystalline models of identical geometry are presented with the purpose of demonstrating the effectiveness of the adapted finite-element method using cohesive zone models to reproduce grain-boundary sliding and its effect on the stress distribution in a polycrystalline metal. The yield properties of the grain-boundary interface, used in the FE simulations, are extracted from a MD simulation on a bicrystal. The models allow for the study of the load transfer between adjacent grains of very different size through grain-boundary sliding during deformation. A large-scale FE simulation of 100 grains of a typical microstructure is then presented to reveal that the stress distribution due to grain-boundary sliding during uniform tensile strain can lead to stress localization of two to three times the background stress, thus suggesting a significant effect on the failure properties of the metal.
NASA Astrophysics Data System (ADS)
Ambrozinski, Mateusz; Bzowski, Krzysztof; Mirek, Michal; Rauch, Lukasz; Pietrzyk, Maciej
2013-05-01
The paper presents simulations of the manufacturing of the automotive part, which has high influence on improvement of passengers safety. Two approaches to the Finite Element (FE) modelling of stamping of a part that provides extra stiffening of construction subassemblies in the back of a car were considered. The first is conventional simulation, which assumes that the material is a continuum with flow stress model and anisotropy coefficients determined from the tensile tests. In the second approach two-phase microstructure of the DP steel is accounted for in simulations. The FE2 method, which belongs to upscaling techniques, is used. Representative Volume Element (RVE), which is the basis of the upscaling approach and reflects the real microstructure, was obtained by the image analysis of the micrograph of the DP steel. However, since FE2 simulations with the real picture of the microstructure in the micro scale, are extremely time consuming, the idea of the Statistically Similar Representative Volume Element (SSRVE) was applied. SSRVE obtained for the DP steel, used for production of automotive part, is presented in the paper in the form of 3D inclusion. The macro scale model of the simulated part is described in details, as well as the results obtained for macro and micro-macro simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Stocks, George Malcolm; Zhang, Yanwen
2016-08-03
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni 0.5Co 0.5, Nimore » 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.« less
Percutaneous Mitral Valve Dilatation: Single Balloon versus Double Balloon - A Finite Element Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schievano, Silvia; Kunzelman, Karyn; Nicosia, Mark
2009-01-01
Background: Percutaneous mitral valve (MV) dilatation is performed with either a single balloon (SB) or double balloon (DB) technique. The aim of this study was to compare the two balloon system results using the finite element (FE) method. Methods and Results: An established FE model of the MV was modified by fusing the MV leaflet edges at commissure level to simulate a stenotic valve (orifice area=180mm2). A FE model of a 30mm SB (low-pressure, elastomeric balloon) and an 18mm DB system (high-pressure, non-elastic balloon) was created. Both SB and DB simulations resulted in splitting of the commissures and subsequent stenosismore » dilatation (final MV area=610mm2 and 560mm2 respectively). Stresses induced by the two balloon systems varied across the valve. At the end of inflation, SB showed higher stresses in the central part of the leaflets and at the commissures compared to DB simulation, which demonstrated a more uniform stress distribution. The higher stresses in the SB analysis were due to the mismatch of the round balloon shape with the oval mitral orifice. The commissural split was not easily accomplished with the SB due to its high compliance. The high pressure applied to the DB guaranteed the commissural split even when high forces were required to break the commissure welds. Conclusions: The FE model demonstrated that MV dilatation can be accomplished by both SB and DB techniques. However, the DB method resulted in higher probability of splitting of the fused commissures and less damage caused to the MV leaflets by overstretching.« less
Zhao, Shijun; Stocks, G Malcolm; Zhang, Yanwen
2016-09-14
It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.
Finite element dynamic analysis of soft tissues using state-space model.
Iorga, Lucian N; Shan, Baoxiang; Pelegri, Assimina A
2009-04-01
A finite element (FE) model is employed to investigate the dynamic response of soft tissues under external excitations, particularly corresponding to the case of harmonic motion imaging. A solid 3D mixed 'u-p' element S8P0 is implemented to capture the near-incompressibility inherent in soft tissues. Two important aspects in structural modelling of these tissues are studied; these are the influence of viscous damping on the dynamic response and, following FE-modelling, a developed state-space formulation that valuates the efficiency of several order reduction methods. It is illustrated that the order of the mathematical model can be significantly reduced, while preserving the accuracy of the observed system dynamics. Thus, the reduced-order state-space representation of soft tissues for general dynamic analysis significantly reduces the computational cost and provides a unitary framework for the 'forward' simulation and 'inverse' estimation of soft tissues. Moreover, the results suggest that damping in soft-tissue is significant, effectively cancelling the contribution of all but the first few vibration modes.
High Temperature Oxidation of Hot-Dip Aluminized T92 Steels
NASA Astrophysics Data System (ADS)
Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok
2018-03-01
The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.
High Temperature Oxidation of Hot-Dip Aluminized T92 Steels
NASA Astrophysics Data System (ADS)
Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok
2018-05-01
The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.
NASA Astrophysics Data System (ADS)
Feltzing, S.; Primas, F.; Johnson, R. A.
2009-01-01
Context: Metal-rich globular clusters provide important tracers of the formation of our Galaxy. Moreover, and not less important, they are very important calibrators for the derivation of properties of extra-galactic metal-rich stellar populations. Nonetheless, only a few of the metal-rich globular clusters in the Milky Way have been studied using high-resolution stellar spectra to derive elemental abundances. Additionally, Rosenberg et al. identified a small group of metal-rich globular clusters that appeared to be about 2 billion years younger than the bulk of the Milky Way globular clusters. However, it is unclear if like is compared with like in this dataset as we do not know the enhancement of α-elements in the clusters and the amount of α-elements is well known to influence the derivation of ages for globular clusters. Aims: We derive elemental abundances for the metal-rich globular cluster NGC 6352 and we present our methods to be used in up-coming studies of other metal-rich globular clusters. Methods: We present a study of elemental abundances for α- and iron-peak elements for nine HB stars in the metal-rich globular cluster NGC 6352. The elemental abundances are based on high-resolution, high signal-to-noise spectra obtained with the UVES spectrograph on VLT. The elemental abundances have been derived using standard LTE calculations and stellar parameters have been derived from the spectra themselves by requiring ionizational as well as excitational equilibrium. Results: We find that NGC 6352 has [Fe/H] = -0.55, is enhanced in the α-elements to about +0.2 dex for Ca, Si, and Ti relative to Fe. For the iron-peak elements we find solar values. Based on the spectroscopically derived stellar parameters we find that an E(B-V) = 0.24 and (m-M) ≃ 14.05 better fits the data than the nominal values. An investigation of log gf-values for suitable Fe i lines lead us to the conclusion that the commonly used correction to the May et al. (1974) data should not be employed. Full Table [see full text] are also only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/493/913 Based on observations collected at the European Southern Observatory, Chile, ESO No. 69.B-0467.
Determination of Fe, Hg, Mn, and Pb in three-rings of poplar (Populus alba L.) by U-shaped DC arc
NASA Astrophysics Data System (ADS)
Marković, D. M.; Novović, I.; Vilotić, D.; Ignjatović, Lj.
2007-09-01
The U-shaped DC arc with aerosol supply was applied for the determination of Fe, Hg, Mn, and Pb in poplar (Populus alba L.) tree-rings. By optimization of the operating parameters and by selection of the most appropriate signal integration time (20 s for Fe, Mn, and Pb and 30 s for Hg), the obtained limits of detection for Fe, Hg, Mn, and Pb are 5.8, 2.6, 1.6, and 2.0 ng/ml, respectively. The detection limits achieved by this method for Fe, Hg, Mn, and Pb are comparable with the detection limits obtained for these elements by such methods as inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasmatomic emission spectrometry (DCP-AES), and microwave-induced plasma-atomic emission spectrometry (MIP-AES). We used the tree-rings of poplar from two different locations. The first one is in the area close to the power plant “Nikola Tesla” TENT A, Obrenovac, while the other one is in the urban area of Novi Sad. In almost all cases, samples from the location at Obrenovac registered elevated average concentrations of Fe, Hg, Mn, and Pb in the tree-rings of poplar.
Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3
NASA Astrophysics Data System (ADS)
Akai, Hisazumi; Ogura, Masako
2015-03-01
High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Melting Experiments in the Fe-FeSi System at High Pressure
NASA Astrophysics Data System (ADS)
Ozawa, H.; Hirose, K.
2013-12-01
The principal light element in the Earth's core must reproduce the density jump at the inner core boundary (ICB). Silicon is thought to be a plausible light element in the core, and the melting phase relations in Fe-FeSi binary system at the ICB pressure are of great importance. Theoretical calculations on the Fe-FeSi binary system suggested that the difference in Si content between the outer core and the inner core would be too small to satisfy the observed density jump at the ICB [Alfè et al., 2002 EPSL], which requires other light elements in addition to silicon. Here we experimentally examined partitioning of silicon between liquid and solid iron up to 97 GPa. High pressure and temperature conditions were generated in a laser-heated diamond-anvil cell. Chemical compositions of co-existing quenched liquid and solid Fe-Si alloys were determined with a field-emission-type electron probe micro-analyzer. We used Fe-Si alloy containing 9 wt% Si as a starting material. Chemical analyses on the recovered samples from 39 and 49 GPa demonstrated the coexistence of quenched Si-depleted liquid and Si-enriched solid. In contrast, silicon partitions preferentially into liquid metal at 97 GPa, suggesting the starting composition (Fe-9wt% Si) lies on the iron-rich part of the eutectic. These results indicate the eutectic composition shifts toward FeSi between 49 and 97 GPa.
Wang, Zhi-gang; Yu, Hong-mei
2012-01-01
The content of the elements C, H, O and N in Jinhua bergamot was analysed by using Vario III elemental analyser, the bergamot sample was scanned by using X-ray fluorescence spectrometer with PW2400 wavelength dispersion, and the content of the elements Mg, Al, P, S, Cl, K, Ca, Mn, Fe and Sr was analysed by using IQ+ analytical method. It turned out that the result is more ideal if the content of the elements C, H, O and N is processed as fix phase, and the analytical result is more ideal if, to prevent the sample skin from coming off, the sample is wrapped with mylar film with the film coefficient adjusted.
Liu, B; Zheng, Y F
2011-03-01
Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a concluding remark, Co, W, C and S are recommended as alloying elements for biodegradable iron-based biomaterials. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Method for preparing high cure temperature rare earth iron compound magnetic material
Huang, Yuhong; Wei, Qiang; Zheng, Haixing
2002-01-01
Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.
Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors
Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir
2016-01-01
Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated. PMID:27110783
Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition
NASA Astrophysics Data System (ADS)
Ohtsuki, T.; Kojima, T.; Kotsugi, M.; Ohkochi, T.; Mizuguchi, M.; Takanashi, K.
2014-01-01
FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu3Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along ⟨110⟩ direction, and that the magnetic domain structure is composed only of 90∘ wall.
Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors.
Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir
2016-04-21
Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.
Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen
2018-09-01
Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elardo, S. M.; Shahar, A.
2015-12-01
There are numerous studies that show well-resolved Fe isotope fractionations in igneous materials from different planetary bodies. Potential explanations for these fractionations include a non-chondritic bulk planetary Fe isotopic composition, and equilibrium fractionation between Fe-alloys or minerals and silicate melts during planetary differentiation, mantle melting, or fractional crystallization. This is further complicated by the fact that these processes are not mutually exclusive, making the interpretation of Fe isotope data a complex task. Here we present new experimental results investigating the effect of C on Fe isotope fractionation between molten peridotite and an Fe-alloy. Experiments were conducted at 1 GPa and 1850° C for 0.5 - 3 hours on a mixture of an 54Fe-spiked peridotite and Fe-metal with and without Ni metal in an end-loaded piston cylinder at the Geophysical Laboratory. Carbon saturation was achieved with a graphite capsule, and resulted in C contents of the Fe-alloy in our experiments ranging from 3.8 - 4.9 wt. %. The metal and silicate phases from half of each experiment were separated manually and dissolved in concentrated acids. Iron was separated from matrix elements by anion exchange chromatagraphy. Iron-isotopic compositions were determined with the Nu Plasma II MC-ICP-MS at GL. The other half of each experiment was used for quantitative microbeam analysis. Equilibrium was assessed with a time series and the three-isotope exchange method. The Ni-free experiments resulted in no resolvable Fe isotope fractionation between the Fe-C-alloy and molten silicate. This is in contrast to the results of Shahar et al. (2015) which showed a fractionation for Δ57Fe of ~0.18 ‰ between a peridotite and an Fe-alloy with a similar S abundance to C in these experiments. The one experiment thus far that contained Ni (~4 wt. % in the alloy) showed a resolvable fractionation between the Fe-Ni-C alloy and silicate of ~0.10 ‰. Shahar et al. found a similar magnitude fractionation to our Ni bearing experiment in experiments with no C or S. The difference in temperature (1650° C in Shahar et al. vs. 1850° C here) may be partially responsible for these discrepancies. Ongoing experiments will further investigate the effects of C and other light elements on Fe isotope fractionation during core segregation.
Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth's Core Thermodynamic Conditions
NASA Astrophysics Data System (ADS)
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; Lobanov, Sergey S.; Zaug, Joseph M.; Liu, Hanyu; Greenberg, Eran; Prakapenka, Vitali B.
2018-03-01
Using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe (Fe ,Fe /Ni )3 and XeNi3 compounds at thermodynamic conditions representative of Earth's core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. The results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
NASA Astrophysics Data System (ADS)
Jing, Z.; Chantel, J.; Yu, T.; Sakamaki, T.; Wang, Y.
2015-12-01
Liquid iron is likely the dominant constituent in the cores of terrestrial planets and icy satellites such as Earth, Mars, Mercury, the Moon, Ganymede, and Io. Suggested by geophysical and geochemical observations, light elements such as S, C, Si, etc., are likely present in planetary cores. These light elements can significantly reduce the density and melting temperature of the Fe cores, and hence their abundances are crucial to our understanding of the structure and thermal history of planetary cores, as well as the generation of intrinsic magnetic fields. Knowledge on the density of Fe-light element alloying liquids at high pressures is critical to place constraints on the composition of planetary cores. However, density data on liquid Fe-light element alloys at core pressures are very limited in pressure and composition and are sometimes controversial. In this study, we extend the density dataset for Fe-rich liquids by measuring the density of Fe, Fe-10wt%S, Fe-20wt%S, Fe-27wt%S, and FeS liquids using the X-ray absorption technique in a DIA-type multianvil apparatus up to 7 GPa and 2173 K. An ion chamber (1D-detector) and a CCD camera (2D-detector) were used to measure intensities of transmitted monochromatic X-rays through molten samples, with the photon energy optimized at 40 keV. The densities were then determined from the Beer-Lambert law using the mass absorption coefficients, calibrated by solid standards using X-ray diffraction. At each pressure, density measurements were conducted at a range of temperatures above the liquidus of the samples, enabling the determination of thermal expansion. Combined with our previous results on the sound velocity of Fe and Fe-S liquids at high pressures (Jing et al., 2014, Earth Planet. Sci. Lett. 396, 78-87), these data provide tight constraints on the equation of state and thermodynamic properties such as the adiabatic temperature gradient for Fe-S liquids. We will discuss these results with implications to planetary cores.
PWSCC Assessment by Using Extended Finite Element Method
NASA Astrophysics Data System (ADS)
Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk
2015-12-01
The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.
Local Energies and Energy Fluctuations — Applied to the High Entropy Alloy CrFeCoNi
NASA Astrophysics Data System (ADS)
Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori; Ogura, Masako; Zeller, Rudolf; Dederichs, Peter H.
2017-11-01
High entropy alloys show a variety of fascinating properties like high hardness, wear resistance, corrosion resistance, etc. They are random solid solutions of many components with rather high concentrations. We perform ab-initio calculations for the high entropy alloy CrFeCoNi, which equal concentration of 25% for each element. By the KKRnano program package, which is based on an order-N screened Korringa-Kohn-Rostoker Green's function method, we consider a face-centered cubic (FCC) supercell with 1372 randomly distributed elements, and in addition also smaller supercells with 500 and 256 atoms. It is found from our calculations that the local moments of the Cr atoms show a large environmental variation, ranging from -1.70 μB to +1.01 μB with an average of about -0.51 μB. We present a new method to calculate "local energies" of all atoms. This is based on the partitioning of the whole space into Voronoi cells and allows to calculate the energetic contribution of each atomic cell to the total energy of the supercell. The supercell calculations show very large variations of the local energies, analogous to the variations of the local moments. This shows that the random solid solution is not stable and has a tendency to form an L12-structure with the Cr-atoms ordered at the corner of the cube and the elements Fe, Co, and Ni randomly distributed on the three other FCC sublattices. For this structure the variation of the local moments are much smaller.
NASA Technical Reports Server (NTRS)
Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.
2007-01-01
CR carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.
NASA Technical Reports Server (NTRS)
Perronnet, M.; Zolensky, M. E.; Gounelle, M.; Schwandt, C. S.
2007-01-01
carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.
The GALAH Survey: Second Data Release
NASA Astrophysics Data System (ADS)
Buder, Sven; Asplund, Martin; Duong, Ly; Kos, Janez; Lind, Karin; Ness, Melissa K.; Sharma, Sanjib; Bland-Hawthorn, Joss; Casey, Andrew R.; De Silva, Gayandhi M.; D'Orazi, Valentina; Freeman, Ken C.; Lewis, Geraint F.; Lin, Jane; Martell, Sarah L.; Schlesinger, Katharine J.; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaž; Amarsi, Anish M.; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Čotar, Klemen; Cottrell, Peter L.; Da Costa, Gary; Gao, Xudong D.; Hayden, Michael R.; Horner, Jonathan; Ireland, Michael J.; Kafle, Prajwal R.; Munari, Ulisse; Nataf, David M.; Nordlander, Thomas; Stello, Dennis; Ting, Yuan-Sen; Traven, Gregor; Watson, Fred; Wittenmyer, Robert A.; Wyse, Rosemary F. G.; Yong, David; Zinn, Joel C.; Žerjal, Maruša
2018-05-01
The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way, designed to deliver complementary chemical information to a large number of stars covered by the Gaia mission. We present the GALAH second public data release (GALAH DR2) containing 342,682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multi-step approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels (Teff, log g, [Fe/H], [X/Fe], vmic, vsin i, A_{K_S}) for a representative training set of stars. This information is then propagated to the whole sample with the data-driven method of The Cannon. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence to our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from Gaia will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.
Zhao, Yueran; Dou, Deqiang; Guo, Yueqiu; Qi, Yue; Li, Jun; Jia, Dong
2018-06-01
Thirteen trace elements and active constituents of 40 batches of Lonicera japonica flos and Lonicera flos were comparatively studied using inductively coupled plasma mass-spectrometry (ICP-MS) and high-performance liquid chromatography-photodiode array (HPLC-PDA). The trace elements were 24 Mg, 52 Cr, 55 Mn, 57 Fe, 60 Ni, 63 Cu, 66 Zn, 75 As, 82 Se, 98 Mo, 114 Cd, 202 Hg, and 208 Pb, and the active compounds were chlorogenic acid, 3,5-O-dicaffeoylquinc acid, 4,5-O-dicaffeoylquinc acid, luteolin-7-O-glucoside, and 4-O-caffeoylquinic acid. The data of 18 variables were statistically processed using principal component analysis (PCA) and discriminate analysis (DA) to classify L. japonica flos and L. flos. The validated method was developed to divide the 40 samples into two groups based on the PCA in terms of 18 variables. Furthermore, the species of Lonicera was better discriminated by using DA with 12 variables. These results suggest that the method and statistical analysis of the contents of trace elements and chemical components can classify the L. japonica flos and L. flos using 12 variables, such as 3,5-O-dicaffeoylquincacid, luteolin-7-O-glucoside, Cd, Mn, Hg, Pb, Ni, 4-O-caffeoyl-quinic acid, 4,5-O-dicaffeoylquinc acid, Fe, Mg, and Cr.
Diffusion, phase equilibria and partitioning experiments in the Ni-Fe-Ru system
NASA Technical Reports Server (NTRS)
Blum, Joel D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.
1989-01-01
Results are presented on thin-film diffusion experiments designed to investigate phase equilibria in systems containing high concentrations of Pt-group elements, such as Ni-Fe-Ru-rich systems containing Pt, at temperatures of 1273, 1073, and 873 K. The rate of Ru diffusion in Ni was determined as a function of temperature, and, in addition, the degree of Pt and Ir partitioning between phases in a Ni-Fe-Ru-rich system and of V between phases in a Ni-Fe-O-rich system at 873 were determined. It was found that Pt preferentially partitions into the (gamma)Ni-Fe phase, whereas Ir prefers the (epsilon)Ru-Fe phase. V partitions strongly into Fe oxides relative to (gamma)Ni-Fe. These results have direct application to the origin and thermal history of the alloys rich in Pt-group elements in meteorites.
An Experimental Analog for Metal-Sulfide Partitioning in Acapulcoite-Lodranite Meteorites
NASA Astrophysics Data System (ADS)
Dhaliwal, J. K.; Chabot, N. L.; Ash, R. D.; McCoy, T. J.
2018-05-01
This study builds on prior analyses of highly siderophile element (HSE) abundances in primitive achondrites. We performed melting experiments of naturally occurring FeNi and FeS to examine the effect of sulfur on HSE inter-element partitioning.
Richard, Egbe Edmund; Augusta Chinyere, Nsonwu-Anyanwu; Jeremaiah, Offor Sunday; Opara, Usoro Chinyere Adanna; Henrieta, Etukudo Maise; Ifunanya, Egbe Deborah
2016-01-01
Background. Cement dust inhalation is associated with deleterious health effects. The impact of cement dust exposure on the peak expiratory flow rate (PEFR), liver function, and some serum elements in workers and residents near cement factory were assessed. Methods. Two hundred and ten subjects (50 workers, 60 residents, and 100 controls) aged 18–60 years were studied. PEFR, liver function {aspartate and alanine transaminases (AST and ALT) and total and conjugated bilirubin (TB and CB)}, and serum elements {lead (Pb), copper (Cu), manganese (Mn), iron (Fe), cadmium (Cd), selenium (Se), chromium (Cr), zinc (Zn), and arsenic (As)} were determined using peak flow meter, colorimetry, and atomic absorption spectrometry, respectively. Data were analysed using ANOVA and correlation at p = 0.05. Results. The ALT, TB, CB, Pb, As, Cd, Cr, Se, Mn, and Cu were significantly higher and PEFR, Fe, and Zn lower in workers and residents compared to controls (p < 0.05). Higher levels of ALT, AST, and Fe and lower levels of Pb, Cd, Cr, Se, Mn, and Cu were seen in cement workers compared to residents (p < 0.05). Negative correlation was observed between duration of exposure and PEFR (r = −0.416, p = 0.016) in cement workers. Conclusions. Cement dust inhalation may be associated with alterations in serum elements levels and lung and liver functions while long term exposure lowers peak expiratory flow rate. PMID:26981118
NASA Astrophysics Data System (ADS)
Shimoyama, Yuta; Terasaki, Hidenori; Urakawa, Satoru; Takubo, Yusaku; Kuwabara, Soma; Kishimoto, Shunpachi; Watanuki, Tetsu; Machida, Akihiko; Katayama, Yoshinori; Kondo, Tadashi
2016-11-01
Carbon is one of the possible light elements in the cores of the terrestrial planets. The P wave velocity (VP) and density (ρ) are important factors for estimating the chemical composition and physical properties of the core. We simultaneously measured the VP and ρ of Fe-3.5 wt % C up to 3.4 GPa and 1850 K by using ultrasonic pulse-echo method and X-ray absorption methods. The VP of liquid Fe-3.5 wt % C decreased linearly with increasing temperature at constant pressure. The addition of carbon decreased the VP of liquid Fe by about 2% at 3 GPa and 1700 K and decreased the Fe density by about 2% at 2 GPa and 1700 K. The bulk modulus of liquid Fe-C and its pressure (P) and temperature (T) effects were precisely determined from directly measured ρ and VP data to be K0,1700 K = 83.9 GPa, dKT/dP = 5.9(2), and dKT/dT = -0.063 GPa/K. The addition of carbon did not affect the isothermal bulk modulus (KT) of liquid Fe, but it decreased the dK/dT of liquid Fe. In the ρ-VP relationship, VP increases linearly with ρ and can be approximated as VP (m/s) = -6786(506) + 1537(71) × ρ (g/cm3), suggesting that Birch's law is valid for liquid Fe-C at the present P-T conditions. Our results imply that at the conditions of the lunar core, the elastic properties of an Fe-C core are more affected by temperature than those of Fe-S core.
Content and Bioaccumulation of Nine Mineral Elements in Ten Mushroom Species of the Genus Boletus
Wang, Xue-Mei; Zhang, Ji; Li, Tao; Wang, Yuan-Zhong; Liu, Hong-Gao
2015-01-01
Concentrations and bioconcentration potential of nine elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn) in ten species of wild edible Boletus and the corresponding underlying soils were analyzed. The analyses were performed using inductively coupled plasma atomic emission spectrophotometer. Boletus showed relative abundant contents of P, K, Fe, Mg, Ca, and Na and less of Zn, Cu, and Mn. Caps compared to stalks were enriched in P, K, Cu, Mg, and Zn, while stalks were enriched in Mn. The elements such as P and K were accumulated (BCF > 1), while Ca, Fe, Mg, Mn, and Na were excluded (BCF < 1) in the fruiting bodies. The correlation analysis indicated high correlations between Cu, Mn, Ca, and Fe in the mushrooms as compared to the corresponding soils. Significant correlations were also obtained between Cu-P (r = 0.775), Fe-P (r = 0.728), and Zn-P (r = 0.76) for caps and Cu-Mg (r = 0.721), Fe-Mg (r = 0.719), Zn-Mg (r = 0.824), and Zn-P (r = 0.818) for stalks. The results of this study imply that ability of fungi to accumulate elements from substrate could be influenced by mushroom species and underlying soil substrates. PMID:26146585
Content and Bioaccumulation of Nine Mineral Elements in Ten Mushroom Species of the Genus Boletus.
Wang, Xue-Mei; Zhang, Ji; Li, Tao; Wang, Yuan-Zhong; Liu, Hong-Gao
2015-01-01
Concentrations and bioconcentration potential of nine elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn) in ten species of wild edible Boletus and the corresponding underlying soils were analyzed. The analyses were performed using inductively coupled plasma atomic emission spectrophotometer. Boletus showed relative abundant contents of P, K, Fe, Mg, Ca, and Na and less of Zn, Cu, and Mn. Caps compared to stalks were enriched in P, K, Cu, Mg, and Zn, while stalks were enriched in Mn. The elements such as P and K were accumulated (BCF > 1), while Ca, Fe, Mg, Mn, and Na were excluded (BCF < 1) in the fruiting bodies. The correlation analysis indicated high correlations between Cu, Mn, Ca, and Fe in the mushrooms as compared to the corresponding soils. Significant correlations were also obtained between Cu-P (r = 0.775), Fe-P (r = 0.728), and Zn-P (r = 0.76) for caps and Cu-Mg (r = 0.721), Fe-Mg (r = 0.719), Zn-Mg (r = 0.824), and Zn-P (r = 0.818) for stalks. The results of this study imply that ability of fungi to accumulate elements from substrate could be influenced by mushroom species and underlying soil substrates.
NASA Astrophysics Data System (ADS)
Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.; NuGrid Collaboration
2017-08-01
Atmospheric parameters and chemical compositions for 10 stars with metallicities in the region of -2.2 < [Fe/H] < -0.6 were precisely determined using high-resolution, high signal-to-noise, spectra. For each star, the abundances, for 14-27 elements, were derived using both local thermodynamic equilibrium (LTE) and non-LTE (NLTE) approaches. In particular, differences by assuming LTE or NLTE are about 0.10 dex; depending on [Fe/H], Teff, gravity and element lines used in the analysis. We find that the O abundance has the largest error, ranging from 0.10 and 0.2 dex. The best measured elements are Cr, Fe, and Mn; with errors between 0.03 and 0.11 dex. The stars in our sample were included in previous different observational work. We provide a consistent data analysis. The data dispersion introduced in the literature by different techniques and assumptions used by the different authors is within the observational errors, excepting for HD103095. We compare these results with stellar observations from different data sets and a number of theoretical galactic chemical evolution (GCE) simulations. We find a large scatter in the GCE results, used to study the origin of the elements. Within this scatter as found in previous GCE simulations, we cannot reproduce the evolution of the elemental ratios [Sc/Fe], [Ti/Fe], and [V/Fe] at different metallicities. The stellar yields from core-collapse supernovae are likely primarily responsible for this discrepancy. Possible solutions and open problems are discussed.
NASA Astrophysics Data System (ADS)
Matsuno, Tadafumi; Aoki, Wako; Beers, Timothy C.; Lee, Young Sun; Honda, Satoshi
2017-08-01
We present elemental abundances for eight unevolved extremely metal-poor (EMP) stars with {T}{eff}> 5500 {{K}}, among which seven have [{Fe}/{{H}}]< -3.5. The sample is selected from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE) and our previous high-resolution spectroscopic follow-up with the Subaru Telescope. Several methods to derive stellar parameters are compared, and no significant offset in the derived parameters is found in most cases. From an abundance analysis relative to the standard EMP star G64-12, an average Li abundance for stars with [{Fe}/{{H}}]< -3.5 is A({Li})=1.90, with a standard deviation of σ =0.10 dex. This result confirms that lower Li abundances are found at lower metallicity, as suggested by previous studies, and demonstrates that the star-to-star scatter is small. The small observed scatter could be a strong constraint on Li-depletion mechanisms proposed for explaining the low Li abundance at lower metallicity. Our analysis for other elements obtained the following results: (I) a statistically significant scatter in [{{X}}/{Fe}] for Na, Mg, Cr, Ti, Sr, and Ba, and an apparent bimodality in [{Na}/{Fe}] with a separation of ˜ 0.8 {dex}, (II) an absence of a sharp drop in the metallicity distribution, and (III) the existence of a CEMP-s star at [{Fe}/{{H}}]≃ -3.6 and possibly at [{Fe}/{{H}}]≃ -4.0, which may provide a constraint on the mixing efficiency of unevolved stars during their main-sequence phase. Based on data collected with the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Modeling of optical mirror and electromechanical behavior
NASA Astrophysics Data System (ADS)
Wang, Fang; Lu, Chao; Liu, Zishun; Liu, Ai Q.; Zhang, Xu M.
2001-10-01
This paper presents finite element (FE) simulation and theoretical analysis of novel MEMS fiber-optical switches actuated by electrostatic attraction. FE simulation for the switches under static and dynamic loading are first carried out to reveal the mechanical characteristics of the minimum or critical switching voltages, the natural frequencies, mode shapes and response under different levels of electrostatic attraction load. To validate the FE simulation results, a theoretical (or analytical) model is then developed for one specific switch, i.e., Plate_40_104. Good agreement is found between the FE simulation and the analytical results. From both FE simulation and theoretical analysis, the critical switching voltage for Plate_40_104 is derived to be 238 V for the switching angel of 12 degree(s). The critical switching on and off times are 431 microsecond(s) and 67 microsecond(s) , respectively. The present study not only develops good FE and analytical models, but also demonstrates step by step a method to simplify a real optical switch structure with reference to the FE simulation results for analytical purpose. With the FE and analytical models, it is easy to obtain any information about the mechanical behaviors of the optical switches, which are helpful in yielding optimized design.
NASA Astrophysics Data System (ADS)
Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping
2018-05-01
Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.
[Determination of 27 elements in Maca nationality's medicine by microwave digestion ICP-MS].
Yu, Gui-fang; Zhong, Hai-jie; Hu, Jun-hua; Wang, Jing; Huang, Wen-zhe; Wang, Zhen-zhong; Xiao, Wei
2015-12-01
An analysis method has been established to test 27 elements (Li, Be, B, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Mo, Cd, Sn, Sb, Ba, La, Hg, Pb, Bi) in Maca nationality's medicine with microwave digestion-ICP-MS. Sample solutions were analyzed by ICP-MS after microwave digestion, and the contents of elements were calculated according to their calibration curves, and internal standard method was adopted to reduce matrix effect and other interference effects. The experimental results showed that the linear relations of all the elements were very good; the correlation coefficient (r) was 0.9994-1.0000 (Hg was 0.9982) ; the limits of detection were 0.003-2.662 microg x L(-1); the relative standard deviations for all elements of reproducibility were lower than 5% (except the individual elements); the recovery rate were 78.5%-123.7% with RSD lower than 5% ( except the individual elements). The analytical results of standard material showed acceptable agreement with the certified values. This method was applicable to determinate the contents of multi-elements in Maca which had a high sensitivity, good specificity and good repeatability, and provide basis for the quality control of Maca.
Harangi, Sándor; Baranyai, Edina; Fehér, Milán; Tóth, Csilla Noémi; Herman, Petra; Stündl, László; Fábián, István; Tóthmérész, Béla; Simon, Edina
2017-05-01
Many oxbows are contaminated by Fe and Mn as a consequence of the elemental concentration of sediment and water originating from the Upper Tisza Region of Hungary. The phenomenon is partly caused by anthropogenic activities and mainly due to the geochemical characteristics of the region. The effects of Fe and Mn on the aquatic ecosystem of these wetlands were investigated in a model experiments in this study. Survival, individual body weight and the elemental concentrations of organs were determined in common carp (Cyprinus carpio) juveniles reared in Fe and Mn contaminated media (treatment 1: Fe 0.57 mg L -1 , Mn 0.29 mg L -1 , treatment 2: Fe 0.57 mg L -1 , Mn 0.625 mg L -1 , treatment 3: Fe 1.50 mg L -1 , Mn 0.29 mg L -1 , treatment 4: Fe 1.50 mg L -1 , Mn 0.625 mg L -1 and control: Fe 0.005 mg L -1 , Mn 0.003 mg L -1 ), for rearing time of 49 days. The treatment with Fe and Mn did not have any effect on the survival data and individual body weight in the levels tested. The highest concentration of Fe and Mn was found in the liver and brain of carp juveniles, while the lowest concentration of these elements occurred in the muscular tissue and gills. The treatment where Fe and Mn were applied in the highest concentrations resulted in a statistically higher level of these elements in the brain, grills and muscle tissues. The treatment where only Mn was present in the highest concentration caused increased level of Mn only in the liver. We found metal accumulation in almost every organ; however, the applied concentrations and exposure time did not affect the survival and average body weight of carp juveniles.
Plastic deformation of FeSi at high pressures: implications for planetary cores
NASA Astrophysics Data System (ADS)
Kupenko, Ilya; Merkel, Sébastien; Achorner, Melissa; Plückthun, Christian; Liermann, Hanns-Peter; Sanchez-Valle, Carmen
2017-04-01
The cores of terrestrial planets is mostly comprised of a Fe-Ni alloy, but it should additionally contain some light element(s) in order to explain the observed core density. Silicon has long been considered as a likely candidate because of geochemical and cosmochemical arguments: the Mg/Si and Fe/Si ratios of the Earth does not match those of the chondrites. Since silicon preferentially partition into iron-nickel metal, having 'missing' silicon in the core would solve this problem. Moreover, the evidence of present (e.g. Mercury) or ancient (e.g. Mars) magnetic fields on the terrestrial planets is a good indicator of (at least partially) liquid cores. The estimated temperature profiles of these planets, however, lay below iron melting curve. The addition of light elements in their metal cores could allow reducing their core-alloy melting temperature and, hence, the generation of a magnetic field. Although the effect of light elements on the stability and elasticity of Fe-Ni alloys has been widely investigated, their effect on the plasticity of core materials remains largely unknown. Yet, this information is crucial for understanding how planetary cores deform. Here we investigate the plastic deformation of ɛ-FeSi up to 50 GPa at room temperature employing a technique of radial x-ray diffraction in diamond anvil cells. Stoichiometric FeSi endmember is a good first-order approximation of the Fe-FeSi system and a good starting material to develop new experimental perspectives. In this work, we focused on the low-pressure polymorph of FeSi that would be the stable phase in the cores of small terrestrial planets. We will present the analysis of measured data and discuss their potential application to constrain plastic deformation in planetary cores.
Hein, J.R.; Koschinsky, A.; Halliday, A.N.
2003-01-01
Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth's crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth's crustal mean of about 1 ppb, compared with 250 times for the next most enriched element. We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide samples collected from a variety of tectonic environments in the Pacific. In the Fe-Mn crust samples, Te varies from 3 to 205 ppm, with mean contents for Pacific and Atlantic samples of about 50 ppm and a mean of 39 ppm for Indian crust samples. Hydrothermal Mn samples have Te contents that range from 0.06 to 1 ppm. Continental margin Fe-Mn crusts have lower Te contents than open-ocean crusts, which is the result of dilution by detrital phases and differences in growth rates of the hydrogenetic phases. Correlation coefficient matrices show that for hydrothermal deposits, Te has positive correlations with elements characteristic of detrital minerals. In contrast, Te in open-ocean Fe-Mn crusts usually correlates with elements characteristic of the MnO2, carbonate fluorapatite, and residual biogenic phases. In continental margin crusts, Te also correlates with FeOOH associated elements. In addition, Te is negatively correlated with water depth of occurrence and positively correlated with crust thickness. Q-mode factor analyses support these relationships. However, sequential leaching results show that most of the Te is associated with FeOOH in Fe-Mn crusts and ???10% is leached with the MnO2. Thermodynamic calculations indicate that Te occurs predominantly as H5TeO6- in ocean water. The speciation of Te in ocean water and charge balance considerations indicate that Te should be scavenged by FeOOH, which is in agreement with our leaching results. The thermodynamically more stable Te(IV) is less abundant by factors of 2 to 3.5 than Te(VI) in ocean water. This can be explained by preferential (not exclusive) scavenging of Te(IV) by FeOOH at the Fe-Mn crust surface and by Fe-Mn colloids in the water column. We propose a model in which the extreme enrichment of Te in Fe-Mn crusts is likely the result of an oxidation reaction on the surface of FeOOH. A similar oxidation process has been confirmed for Co, Ce, and Tl at the surface of MnO2 in crusts, but has not been suggested previously to occur in association with FeOOH in Fe-Mn crusts. Mass-balance considerations indicate that ocean floor Fe-Mn deposits are the major sink for Te in the oceans. The concentration and redox chemistry of Te in the global ocean are likely controlled by scavenging on Fe-Mn colloids in the water column and Fe-Mn deposits on the ocean floor, as is also the case for Ce. ?? 2003 Elsevier Science Ltd.
Finite element simulation of the gating mechanism of mechanosensitive ion channels
NASA Astrophysics Data System (ADS)
Bavi, Navid; Qin, Qinghua; Martinac, Boris
2013-08-01
In order to eliminate limitations of existing experimental or computational methods (such as patch-clamp technique or molecular dynamic analysis) a finite element (FE) model for multi length-scale and time-scale investigation on the gating mechanism of mechanosensitive (MS) ion channels has been established. Gating force value (from typical patch clamping values) needed to activate Prokaryotic MS ion channels was applied as tensional force to the FE model of the lipid bilayer. Making use of the FE results, we have discussed the effects of the geometrical and the material properties of the Escherichia coli MscL mechanosensitive ion channel opening in relation to the membrane's Young's modulus (which will vary depending on the cell type or cholesterol density in an artificial membrane surrounding the MscL ion channel). The FE model has shown that when the cell membrane stiffens the required channel activation force increases considerably. This is in agreement with experimental results taken from the literature. In addition, the present study quantifies the relationship between the membrane stress distribution around a `hole' for modeling purposes and the stress concentration in the place transmembrane proteins attached to the hole by applying an appropriate mesh refinement as well as well defining contact condition in these areas.
Zhang, Qi; Kindig, Matthew; Li, Zuoping; Crandall, Jeff R; Kerrigan, Jason R
2014-08-22
Clavicle injuries were frequently observed in automotive side and frontal crashes. Finite element (FE) models have been developed to understand the injury mechanism, although no clavicle loading response corridors yet exist in the literature to ensure the model response biofidelity. Moreover, the typically developed structural level (e.g., force-deflection) response corridors were shown to be insufficient for verifying the injury prediction capacity of FE model, which usually is based on strain related injury criteria. Therefore, the purpose of this study is to develop both the structural (force vs deflection) and material level (strain vs force) clavicle response corridors for validating FE models for injury risk modeling. 20 Clavicles were loaded to failure under loading conditions representative of side and frontal crashes respectively, half of which in axial compression, and the other half in three point bending. Both structural and material response corridors were developed for each loading condition. FE model that can accurately predict structural response and strain level provides a more useful tool in injury risk modeling and prediction. The corridor development method in this study could also be extended to develop corridors for other components of the human body. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced transition metal phosphide materials from single-source molecular precursors
NASA Astrophysics Data System (ADS)
Colson, Adam Caleb
In this thesis, the feasibility of employing organometallic single-source precursors in the preparation of advanced transition metal pnictide materials such as colloidal nanoparticles and films has been investigated. In particular, the ternary FeMnP phase was targeted as a model for preparing advanced heterobimetallic phosphide materials, and the iron-rich Fe3P phase was targeted due to its favorable ferromagnetic properties as well as the fact that the preparation of advanced Fe3P materials has been elusive by commonly used methods. Progress towards the synthesis of advanced Fe2--xMn xP nanomaterials and films was facilitated by the synthesis of the novel heterobimetallic complexes FeMn(CO)8(mu-PR1R 2) (R1 = H, R2 = H or R1 = H, R2 = Ph), which contain the relatively rare mu-PH2 and mu-PPhH functionalities. Iron rich Fe2--xMnxP nanoparticles were obtained by thermal decomposition of FeMn(CO)8(mu-PH 2) using solution-based synthetic methods, and empirical evidence suggested that oleic acid was responsible for manganese depletion. Films containing Fe, Mn, and P with the desired stoichiometric ratio of 1:1:1 were prepared using FeMn(CO)8(mu-PH2) in a simple low-pressure metal-organic chemical vapor deposition (MOCVD) apparatus. Although the elemental composition of the precursor was conserved in the deposited film material, spectroscopic evidence indicated that the films were not composed of pure-phase FeMnP, but were actually mixtures of crystalline FeMnP and amorphous FeP and Mn xOy. A new method for the preparation of phase-pure ferromagnetic Fe 3P films on quartz substrates has also been developed. This approach involved the thermal decomposition of the single-source precursors H 2Fe3(CO)9PR (R = tBu or Ph) at 400 °C. The films were deposited using a simple home-built MOCVD apparatus and were characterized using a variety of analytical methods. The films exhibited excellent phase purity, as evidenced by X-ray diffraction, X-ray photoelectron spectroscopy, and field-dependent magnetization measurements, the results of which were all in good agreement with measurements obtained from bulk Fe3P. As-deposited Fe3P films were found to be amorphous, and little or no magnetic hysteresis was observed in plots of magnetization versus applied field. Annealing the Fe3P films at 550 °C resulted in improved crystallinity as well as the observation of magnetic hysteresis.
Titanium as a Beneficial Element for Crop Production
Lyu, Shiheng; Wei, Xiangying; Chen, Jianjun; Wang, Cun; Wang, Xiaoming; Pan, Dongming
2017-01-01
Titanium (Ti) is considered a beneficial element for plant growth. Ti applied via roots or leaves at low concentrations has been documented to improve crop performance through stimulating the activity of certain enzymes, enhancing chlorophyll content and photosynthesis, promoting nutrient uptake, strengthening stress tolerance, and improving crop yield and quality. Commercial fertilizers containing Ti, such as Tytanit and Mg-Titanit, have been used as biostimulants for improving crop production; however, mechanisms underlying the beneficial effects still remain unclear. In this article, we propose that the beneficial roles Ti plays in plants lie in its interaction with other nutrient elements primarily iron (Fe). Fe and Ti have synergistic and antagonistic relationships. When plants experience Fe deficiency, Ti helps induce the expression of genes related to Fe acquisition, thereby enhancing Fe uptake and utilization and subsequently improving plant growth. Plants may have proteins that either specifically or nonspecifically bind with Ti. When Ti concentration is high in plants, Ti competes with Fe for ligands or proteins. The competition could be severe, resulting in Ti phytotoxicity. As a result, the beneficial effects of Ti become more pronounced during the time when plants experience low or deficient Fe supply. PMID:28487709
Kara, Derya; Fisher, Andrew; Hill, Steve
2015-11-01
A new method for the extraction and preconcentration of trace elements (Al, Ba, Cd, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn) from edible oils by producing detergentless micro-emulsions via an ultrasound-assisted extraction using a water phase containing Lipase at pH 3 as an extractant was developed. The trace elements in the water phase post-extraction were determined against matrix matched standards using ICP-MS. In the first step of the work, the parameters that affect extraction, such as pH, the volume of 1% lipase in the water phase and the ultrasonic and centrifugation times were optimized. Under the optimal conditions, the detection limits (µg kg(-1)) were 0.46, 0.03, 0.007, 0.028, 0.67, 0.038, 0.022, 0.14, 0.17, 0.05 and 0.07 for Al, Ba, Cd, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn respectively for edible oils (3 Sb/m). A certified reference material (EnviroMAT HU-1 Used oil) was analysed to check the accuracy of the developed method. Results obtained were in agreement with certified values with a t-test showing that no significant differences at the 95% confidence levels were found. The proposed method was applied to different edible oils such as sunflower oil, rapeseed oil, olive oil and salmon oil. Copyright © 2015 Elsevier B.V. All rights reserved.
Ghobadi, Misagh; Gharabaghi, Mahdi; Abdollahi, Hadi; Boroumand, Zohreh; Moradian, Marzieh
2018-06-05
In recent decades, considerable amounts of rare earth elements have been used and then released into industrial wastewater, which caused serious environmental problems. In this work, in order to recycle rare earth cations (La 3+ and Ce 3+ ) from aqueous solutions, MnFe 2 O 4 -Graphene oxide magnetic nanoparticles were synthesized and after characterization studies, their adsorption isotherms, kinetics, thermodynamics and desorption were comprehensively investigated. Characterized was performed using XRD, FE-SEM, FT-IR, Raman spectroscopy, VSM, BET and DLS. REE adsorption on MnFe 2 O 4 -GO was studied for the first time in the present work and the maximum adsorption capacity at the optimum condition (room temperature and pH = 7) for La 3+ and Ce 3+ were 1001 and 982 mg/g respectively, and the reactions were completed within 20 min. In addition, the adsorption data were well matched with the Langmuir model and the adsorption kinetics were fitted with the pseudo-second order model. The thermodynamic parameters were calculated and the reactions were found to be endothermic and spontaneous. Moreover, the Dubinin-Radushkevich model predicted chemical ion-exchange adsorption. Desorption studies also demonstrated that MnFe 2 O 4 -GO can be regenerated for multiple reuses. Overall, high adsorption capacity, chemical stability, reusability, fast kinetics, easy magnetic separation, and simple synthesis method indicated that MnFe 2 O 4 -GO is a high-performance adsorbent for REE. Copyright © 2018. Published by Elsevier B.V.
Three-Dimensional Plasma-Based Stall Control Simulations with Coupled First-Principles Approaches
2006-07-01
flow code, developed at the Computational Plasma Dynamics Laboratory at Kettering University. The method is based on a versatile finite-element ( FE ...McLaughlin, T., and Baughn, J., 2005. “Acoustic testing of the dielectric barrier dis- charge ( dbd ) plasma actuator”. AIAA Paper 2005-0565, Jan
PIXE analysis of ancient Chinese Changsha porcelain
NASA Astrophysics Data System (ADS)
Lin, E. K.; Yu, Y. C.; Wang, C. W.; Liu, T. Y.; Wu, C. M.; Chen, K. M.; Lin, S. S.
1999-04-01
In this work, proton induced X-ray emission (PIXE) method was applied for the analysis of ancient Chinese Changsha porcelain produced in the Tang dynasty (AD 618-907). A collection of glazed potsherds was obtained in the complex of the famous kiln site at Tongguan, Changsha city, Hunan province. Studies of elemental composition were carried out on ten selected Changsha potsherds. Minor and trace elements such as Ti, Mn, Fe, Co, Cu, Rb, Sr, and Zr in the material of the porcelain glaze were determined. Variation of these elements from sample to sample was investigated. Details of results are presented and discussed.
Banakar, V.K.; Hein, J.R.; Rajani, R.P.; Chodankar, A.R.
2007-01-01
The major element relationships in ferromanganese (Fe-Mn) crusts from Afanasiy-Nikitin seamount (ANS), eastern equatorial Indian Ocean, appear to be atypical. High positive correlations (r = 0.99) between Mn/Co and Fe/Co ratios, and lack of correlation of those ratios with Co, Ce, and Ce/Co, indicate that the ANS Fe-Mn crusts are distinct from Pacific seamount Fe-Mn crusts, and reflect region-specific chemical characteristics. The platinum group elements (PGE: Ir, Ru, Rh, Pt, and Pd) and Au in ANS Fe-Mn crusts are derived from seawater and are mainly of terrestrial origin, with a minor cosmogenic component. The Ru/Rh (0.5-2) and Pt/Ru ratios (7-28) are closely comparable to ratios in continental basalts, whereas Pd/Ir ratios exhibit values ( 0.75) correlations between water depth and Mn/Co, Fe/Co, Ce/Co, Co, and the PGEs. Fractionation of the PGE-Au from seawater during colloidal precipitation of the major-oxide phases is indicated by well-defined linear positive correlations (r > 0.8) of Co and Ce with Ir, Ru, Rh, and Pt; Au/Co with Mn/Co; and by weak or no correlations of Pd with water depth, Co-normalized major-element ratios, and with the other PGE (r < 0.5). The strong enrichment of Pt (up to 1 ppm) relative to the other PGE and its positive correlations with Ce and Co demonstrate a common link for the high concentrations of all three elements, which likely involves an oxidation reaction on the Mn-oxide and Fe-oxyhydroxide surfaces. The documented fractionation of PGE-Au and their positive association with redox sensitive Co and Ce may have applications in reconstructing past-ocean redox conditions and water masses.
Multiscale Modeling of Carbon Nanotube-Epoxy Nanocomposites
NASA Astrophysics Data System (ADS)
Fasanella, Nicholas A.
Epoxy-composites are widely used in the aerospace industry. In order to improve upon stiffness and thermal conductivity; carbon nanotube additives to epoxies are being explored. This dissertation presents multiscale modeling techniques to study the engineering properties of single walled carbon nanotube (SWNT)-epoxy nanocomposites, consisting of pristine and covalently functionalized systems. Using Molecular Dynamics (MD), thermomechanical properties were calculated for a representative polymer unit cell. Finite Element (FE) and orientation distribution function (ODF) based methods were used in a multiscale framework to obtain macroscale properties. An epoxy network was built using the dendrimer growth approach. The epoxy model was verified by matching the experimental glass transition temperature, density, and dilatation. MD, via the constant valence force field (CVFF), was used to explore the mechanical and dilatometric effects of adding pristine and functionalized SWNTs to epoxy. Full stiffness matrices and linear coefficient of thermal expansion vectors were obtained. The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for the various nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. To obtain continuum-scale elastic properties from the MD data, multiscale modeling was considered to give better control over the volume fraction of nanotubes, and investigate the effects of nanotube alignment. Two methods were considered; an FE based method, and an ODF based method. The FE method probabilistically assigned elastic properties of elements from the MD lattice results based on the desired volume fraction and alignment of the nanotubes. For the ODF method, a distribution function was generated based on the desired amount of nanotube alignment; and the stiffness matrix was calculated. A rule of mixture approach was implemented in the ODF model to vary the SWNT volume fraction. Both the ODF and FE models are compared and contrasted. ODF analysis is significantly faster for nanocomposites and is a novel contribution in this thesis. Multiscale modeling allows for the effects of nanofillers in epoxy systems to be characterized without having to run costly experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Clara Sze-Yue
2015-07-02
Fe oxidation and biomineral formation is important in aquifers because the highly-reactive oxides can control the mobility of nutrients (e.g. phosphate, C) and metals (e.g. arsenic, uranium). Mineral formation also has the potential to affect hydrology, depending on the volume and distribution in pore spaces. In this exploratory study, we sought to understand how microbial Fe-oxidizers and their biominerals affect, and are affected by groundwater flow. As part of work at the Rifle aquifer in Colorado, we initially hypothesized that Fe-oxidizers were contributing to aquifer clogging problems associated with enhanced bioremediation. To demonstrate the presence of Fe-oxidizers in the Riflemore » aquifer, we enriched FeOM from groundwater samples, and isolated two novel chemolithotrophic, microaerophilic Fe-oxidizing Betaproteobacteria, Hydrogenophaga sp. P101 and Curvibacter sp. CD03. To image cells and biominerals in the context of pores, we developed a “micro-aquifer,” a sand-filled flow-through culture chamber that allows for imaging of sediment pore space with multiphoton confocal microscopy. Fe oxide biofilms formed on sand grains, demonstrating that FeOM produce Fe oxide sand coatings. Fe coatings are common on aquifer sands, and tend to sequester contaminants; however, it has never previously been shown that microbes are responsible for their formation. In contrast to our original hypothesis, the biominerals did not clog the mini-aquifer. Instead, Fe biofilm distribution was dynamic: they grew as coatings, then periodically sloughed off sand grains, with some flocs later caught in pore throats. This has implications for physical hydrology, including pore scale architecture, and element transport. The sloughing of coatings likely prevents the biominerals from clogging wells and aquifers, at least initially. Although attached biomineral coatings sequester Fe-associated elements (e.g. P, As, C, U), when biominerals detach, these elements are transported as particles through the aquifer. Our work shows that microbial mineralization impacts in aquifers are dynamic, and that the fate and transport of biomineral-associated elements depend not only on geochemical conditions, but also physical pore-scale processes.« less
The Abundances of the Iron Group Elements in Early B Stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Peters, C.
FUSE observations of four sharp-lined early B main-sequence band stars in the Magellanic Clouds will be carried through to determine the abundances of the heavy elements, especially those of the Fe group. The FUSE spectral region contains numerous Fe III lines, including the resonance multiplet (UV1) near 1130 A that is excellent for abundance determinations and two strong multiplets of V III, an ion that does not produce measurable lines longward of 1200 A in metal-deficient stars. In addition there are several measurable lines from Cr III and Mn III. Although abundances of the Fe-peak elements are of interest because they are important for assessing opacities for stellar evolution calculations and the validity of theoretical calculations of explosive nucleosynthesis, ground-based studies do not yield this information because measurable lines from these species, except for a few Fe III lines, are found only in the UV spectral region. The abundances of heavy elements provide information on the production of such elements in previous generations of stars. From FUSE data obtained in Cycle 3 we are determining the abundances of the Fe group elements in two sharp-lined early B stars in the SMC (AV 304, a field star, and NGC346-637, a star in a mini-starburst cluster). This project will allow one to compare the abundances in AV 304 and NGC346-637 with those in the LMC and other regions in the SMC and look for asymmetry in heavy element production in the Magellanic Clouds.
NASA Astrophysics Data System (ADS)
Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong
2017-04-01
He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.
Monitoring of metallic contaminants in energy drinks using ICP-MS.
Kilic, Serpil; Cengiz, Mehmet Fatih; Kilic, Murat
2018-03-09
In this study, an improved method was validated for the determination of some metallic contaminants (arsenic (As), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), copper (Cu), Mn, and antimony (Sb)) in energy drinks using inductive coupled plasma mass spectrometry (ICP-MS). The validation procedure was applied for the evaluation of linearity, repeatability, recovery, limit of detection, and quantification. In addition, to verify the trueness of the method, it was participated in an interlaboratory proficiency test for heavy metals in soft drink organized by the LGC (Laboratory of the Government Chemist) Standard. Validated method was used to monitor for the determination of metallic contaminants in commercial energy drink samples. Concentrations of As, Cr, Cd, Pb, Fe, Ni, Cu, Mn, and Sb in the samples were found in the ranges of 0.76-6.73, 13.25-100.96, 0.16-2.11, 9.33-28.96, 334.77-937.12, 35.98-303.97, 23.67-60.48, 5.45-489.93, and 0.01-0.42 μg L -1 , respectively. The results were compared with the provisional guideline or parametric values of the elements for drinking waters set by the WHO (World Health Organization) and EC (European Commission). As, Cd, Cu, and Sb did not exceed the WHO and EC provisional guideline or parametric values. However, the other elements (Cr, Pb, Fe, Ni, and Mn) were found to be higher than their relevant limits at various levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suess, D.; Abert, C.; Bruckner, F.
2015-04-28
The switching probability of magnetic elements for heat-assisted recording with pulsed laser heating was investigated. It was found that FePt elements with a diameter of 5 nm and a height of 10 nm show, at a field of 0.5 T, thermally written-in errors of 12%, which is significantly too large for bit-patterned magnetic recording. Thermally written-in errors can be decreased if larger-head fields are applied. However, larger fields lead to an increase in the fundamental thermal jitter. This leads to a dilemma between thermally written-in errors and fundamental thermal jitter. This dilemma can be partly relaxed by increasing the thickness of the FePtmore » film up to 30 nm. For realistic head fields, it is found that the fundamental thermal jitter is in the same order of magnitude of the fundamental thermal jitter in conventional recording, which is about 0.5–0.8 nm. Composite structures consisting of high Curie top layer and FePt as a hard magnetic storage layer can reduce the thermally written-in errors to be smaller than 10{sup −4} if the damping constant is increased in the soft layer. Large damping may be realized by doping with rare earth elements. Similar to single FePt grains in composite structure, an increase of switching probability is sacrificed by an increase of thermal jitter. Structures utilizing first-order phase transitions breaking the thermal jitter and writability dilemma are discussed.« less
NASA Astrophysics Data System (ADS)
Prescher, C.; Bykova, E.; Kupenko, I.; Glazyrin, K.; Kantor, A.; McCammon, C. A.; Mookherjee, M.; Miyajima, N.; Cerantola, V.; Nakajima, Y.; Prakapenka, V.; Rüffer, R.; Chumakov, A.; Dubrovinsky, L. S.
2013-12-01
The Earth's inner core consists mainly of iron (or iron-nickel alloy) with some amount of light element(s) whereby their nature remains controversial. Seismological data suggest that the material forming Earth's inner core (pressures over 330 GPa and temperatures above 5000 K) has an enigmatically high Poisson's ratio ~0.44, while iron or it alloys with Si, S, O, or H expected to have at appropriate thermodynamic conditions Poisson's ratio well below 0.39. We will present an experimental study on a new high pressure variant in the iron carbide system. We have synthesized and solved structure of high-pressure orthorhombic phase of o-Fe7C3, and investigated its stability and behavior at pressures over 180 GPa and temperatures above 3500 K by means of different methods including single crystal X-ray diffraction, Mössbauer spectroscopy, and nuclear resonance scattering. O-Fe7C3 is structurally stable to at least outer core conditions and demonstrates magnetic or electronic transitions at ~18 GPa and ~70 GPa. The high pressure phase of o-Fe7C3 above 70 GPa exhibits anomalous elastic properties. When extrapolated to the conditions of the Earth's inner core it shows shear wave velocities and Poisson's ratios close to the values inferred by seismological models. Our results not only support earlier works suggesting that carbon may be an important component of Earth's core, but shows that it may drastically change iron's elastic properties, thus explaining anomalous Earth's inner core elastic properties.
Park, Gwansik; Forman, Jason; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R
2018-02-28
The goal of this study was to explore a framework for developing injury risk functions (IRFs) in a bottom-up approach based on responses of parametrically variable finite element (FE) models representing exemplar populations. First, a parametric femur modeling tool was developed and validated using a subject-specific (SS)-FE modeling approach. Second, principal component analysis and regression were used to identify parametric geometric descriptors of the human femur and the distribution of those factors for 3 target occupant sizes (5th, 50th, and 95th percentile males). Third, distributions of material parameters of cortical bone were obtained from the literature for 3 target occupant ages (25, 50, and 75 years) using regression analysis. A Monte Carlo method was then implemented to generate populations of FE models of the femur for target occupants, using a parametric femur modeling tool. Simulations were conducted with each of these models under 3-point dynamic bending. Finally, model-based IRFs were developed using logistic regression analysis, based on the moment at fracture observed in the FE simulation. In total, 100 femur FE models incorporating the variation in the population of interest were generated, and 500,000 moments at fracture were observed (applying 5,000 ultimate strains for each synthesized 100 femur FE models) for each target occupant characteristics. Using the proposed framework on this study, the model-based IRFs for 3 target male occupant sizes (5th, 50th, and 95th percentiles) and ages (25, 50, and 75 years) were developed. The model-based IRF was located in the 95% confidence interval of the test-based IRF for the range of 15 to 70% injury risks. The 95% confidence interval of the developed IRF was almost in line with the mean curve due to a large number of data points. The framework proposed in this study would be beneficial for developing the IRFs in a bottom-up manner, whose range of variabilities is informed by the population-based FE model responses. Specifically, this method mitigates the uncertainties in applying empirical scaling and may improve IRF fidelity when a limited number of experimental specimens are available.
The origin of diverse α-element abundances in galaxy discs
NASA Astrophysics Data System (ADS)
Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu
2018-07-01
Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption time-scale of gas accreted in the earlier episode suppresses its enrichment with iron synthesized by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 per cent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.
The origin of diverse α-element abundances in galaxy discs
NASA Astrophysics Data System (ADS)
Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu
2018-04-01
Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption timescale of gas accreted in the earlier episode suppresses its enrichment with iron synthesised by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 percent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically-rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.
NASA Astrophysics Data System (ADS)
Jacobson, Yitzhak; Yam, Ruth; Shemesh, Aldo
2017-04-01
The Mediterranean Sea is a region under high anthropogenic stress, thus a hotspot for climate change studies. Natural conditions, such as SST, productivity, precipitation and dust fluxes along with human induced activity affect seawater chemistry. We study millennial variability of trace elements in East Mediterranean Sea high-resolution records, in attempt to connect them to environmental factors. The Mediterranean reef builder Vermetid, D. petraeum is a sessile gastropod, secreting its aragonite shells in tidal zones. Cores of Vermetid reefs from the South Eastern Mediterranean (Israel) were previously analyzed by Sisma?Ventura et al. (2014) to reconstruct seawater surface temperature (SST) and δ13C of dissolved inorganic carbon (DIC). In this study we analyzed trace elements of these vermetid cores, and reconstructed millennial records of elements to calcium (el/Ca) molar ratios. Vermetid trace element contents from recent decades are mostly in agreement with known values for marine biogenic aragonites from corals and mollusk. We divide vermetid trace element records into three element groups: 1) Sr and U are related to SST and DIC. These elements correlate with major climatic events of the last millennium, such as the Medieval Warm Period (900-1300 AD) and the Little Ice Age (1450-1850 AD). 2) Pb and Cd are related to anthropogenic pollution and demonstrate industrial sourced trends throughout the anthropocene (since 1750 AD). 3) Terrogenous elements, including Fe, Al, Mn and V. Al in seawater and sediments has been used to trace water masses and land derived sediment source. We observe a major change in average vermetid Al/Fe ratios from 0.5 to 2.5 over the recorded period (n=72). This vermetid Al/Fe change points at a possible shift from Nilotic sediments (0.1-0.5 Al/Fe molar ratio) to Saharan dust ratio (2-4 Al/Fe molar ratio). Mn and V show a similar variability to Fe. Understanding the variability of vermetid TE can help us interpret the relative dominance of different climate systems and anthropogenic processes on the East Mediterranean environment.
Abundances in very metal-poor stars
NASA Astrophysics Data System (ADS)
Johnson, Jennifer Anne
We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.
NASA Astrophysics Data System (ADS)
Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho
2014-07-01
An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.
[Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].
Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu
2013-01-01
The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.
NASA Astrophysics Data System (ADS)
Tith, Rany; Dutta, Jaydeep; Jung, Kichang; Martinez-Morales, Alfredo A.
2017-05-01
LiFePO4 is a highly researched cathode material that serves as an alternative material for traditional commercial lithiumion batteries such as LiCoO2. Currently, there are a number of different methods to synthesize LiFePO4 including: hydrothermal, solid state, spray pyrolysis, and coprecipitation. Our proposed method has the potential to provide an ecologically friendly and economically competitive way to synthesize LiFePO4 by utilizing ionic liquid and water, as a composite synthesis medium. The addition of water to ionic liquid can be beneficial as it can act as a mineralizer to bring insoluble precursors to form LiFePO4 seed crystals. Furthermore, this method provides the possibility of recycling the ionic liquid for repeated synthesis processes. In this work, we study the effects of ionic liquid to water ratio on the crystallinity and morphology of the synthesized material. Our group was able to conclude a reaction medium utilizing a ratio of equal parts of 1-ethyl-3-methyl imidazolium trifluoromethane sulfonate (EMIM Otf) and water, or a slightly favored ionic liquid ratio, increases the efficacy of the synthesis route. Crystallinity and purity was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) was used to determine morphology and crystal sizes, and energy dispersion spectroscopy (EDX) was used for elemental analysis.
A Finite Element Model of the THOR-K Dummy for Aerospace and Aircraft Impact Simulations
NASA Technical Reports Server (NTRS)
Putnam, Jacob; Untaroiu, Costin D.; Somers, Jeffrey T.; Pellettiere, Joseph
2013-01-01
1) Update and Improve the THOR Finite Element (FE) model to specifications of the latest mod kit (THOR-K). 2) Evaluate the kinematic and kinetic response of the FE model in frontal, spinal, and lateral impact loading conditions.
NASA Astrophysics Data System (ADS)
Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.
2008-02-01
Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.
A comparison of FE beam and continuum elements for typical nitinol stent geometries
NASA Astrophysics Data System (ADS)
Ballew, Wesley; Seelecke, Stefan
2009-03-01
With interest in improved efficiency and a more complete description of the SMA material, this paper compares finite element (FE) simulations of typical stent geometries using two different constitutive models and two different element types. Typically, continuum elements are used for the simulation of stents, for example the commercial FE software ANSYS offers a continuum element based on Auricchio's SMA model. Almost every stent geometry, however, is made up of long and slender components and can be modeled more efficiently, in the computational sense, with beam elements. Using the ANSYS user programmable material feature, we implement the free energy based SMA model developed by Mueller and Seelecke into the ANSYS beam element 188. Convergence behavior for both, beam and continuum formulations, is studied in terms of element and layer number, respectively. This is systematically illustrated first for the case of a straight cantilever beam under end loading, and subsequently for a section of a z-bend wire, a typical stent sub-geometry. It is shown that the computation times for the beam element are reduced to only one third of those of the continuum element, while both formulations display a comparable force/displacement response.
Chen, Yue; Zhang, Yuanyuan; Kou, Qiangwei; Liu, Yang; Han, Donglai; Wang, Dandan; Sun, Yantao; Zhang, Yongjun; Wang, Yaxin; Lu, Ziyang; Chen, Lei; Yang, Jinghai; Xing, Scott Guozhong
2018-01-01
In this work, we report the enhanced catalytic reduction of 4-nitrophenol driven by Fe3O4-Au magnetic nanocomposite interface engineering. A facile solvothermal method is employed for Fe3O4 hollow microspheres and Fe3O4-Au magnetic nanocomposite synthesis via a seed deposition process. Complementary structural, chemical composition and valence state studies validate that the as-obtained samples are formed in a pure magnetite phase. A series of characterizations including conventional scanning/transmission electron microscopy (SEM/TEM), Mössbauer spectroscopy, magnetic testing and elemental mapping is conducted to unveil the structural and physical characteristics of the developed Fe3O4-Au magnetic nanocomposites. By adjusting the quantity of Au seeds coating on the polyethyleneimine-dithiocarbamates (PEI-DTC)-modified surfaces of Fe3O4 hollow microspheres, the correlation between the amount of Au seeds and the catalytic ability of Fe3O4-Au magnetic nanocomposites for 4-nitrophenol (4-NP) is investigated systematically. Importantly, bearing remarkable recyclable features, our developed Fe3O4-Au magnetic nanocomposites can be readily separated with a magnet. Such Fe3O4-Au magnetic nanocomposites shine the light on highly efficient catalysts for 4-NP reduction at the mass production level. PMID:29789457
NASA Astrophysics Data System (ADS)
Al-Ebraheem, A.; Mersov, A.; Gurusamy, K.; Farquharson, M. J.
2010-07-01
A microbeam synchrotron X-ray fluorescence (μSRXRF) technique has been used to determine the localization and the relative concentrations of Zn, Cu, Fe and Ca in primary colorectal cancer and secondary colorectal liver metastases. 24 colon and 23 liver samples were examined, all of which were formalin fixed tissues arranged as microarrays of 1.0 mm diameter and 10 μm thickness. The distribution of these metals was compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cells. Histological details were provided for each sample which enable concentrations of all elements in different tissue types to be compared. In the case of liver, significant differences have been found for all elements when comparing tumour, normal, necrotic, fibrotic, and blood vessel tissues (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have also been found to be significantly different among tumour, necrotic, fibrotic, and mucin tissues in the colon samples (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have been compared between primary colorectal samples and colorectal liver metastases. Concentration of Zn, Cu, Fe and Ca are higher in all types of liver tissues compared to those in the colon tissues. Comparing liver tumour and colon tumour samples, significant differences have been found for all elements (Mann Whitney, P<0.0001). For necrotic tissues, significant increase has been found for Zn, Ca, Cu and Fe (Mann Whitney, P<0.0001 for Fe and Zn, 0.014 for Ca, and 0.001 for Cu). The liver fibrotic levels of Zn, Ca, Cu and Fe were higher than the fibrotic colon areas (independent T test, P=0.007 for Zn and Mann Whitney test P<0.0001 for Cu, Fe and Ca). For the blood vessel tissue, the analysis revealed that the difference was only significant for Fe ( P=0.009) from independent T test.
Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth’s Core Thermodynamic Conditions
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...
2018-02-28
In this study, using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe(Fe ,Fe/Ni) 3 and XeNi 3 compounds at thermodynamic conditions representative of Earth’s core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. In conclusion, the results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
Structure and high temperature oxidation of mechanical alloyed Fe-Al coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryanto, Didik, E-mail: Didik-phys@yahoo.co.id, E-mail: didi027@lipi.go.id; Sudiro, Toto; Wismogroho, Agus S.
2016-04-19
The structure and high temperature oxidation resistance of Fe-Al coating on low carbon steel were investigated. The Fe-Al coating was deposited on the surface of low carbon steel using a mechanical alloying method. The coating was then annealed at 600°C for 2 hour in a vacuum of 5 Pa. The cyclic-oxidation tests of low carbon steel, Fe-Al coatings with and without annealing were performed at 600°C for up to 60h in air. The structure of oxidized samples was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy X-ray spectroscopy (EDS). The results show that the Fe-Al coatingsmore » exhibit high oxidation resistance compared to the uncoated steel. After 60 h exposure, the uncoated steel formed mainly Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} layers with the total thickness of around 75.93 µm. Fe-Al coating without annealing formed a thin oxide layer, probably (Fe,Al){sub 2}O{sub 3}. Meanwhile, for annealed sample, EDX analysis observed the formation of two Fe-Al layers with difference in elements concentration. The obtained results suggest that the deposition of Fe-Al coating on low carbon steel can improve the oxidation resistance of low carbon steel.« less
Gakh, Oleksandr; Ranatunga, Wasantha; Galeano, Belinda K; Smith, Douglas S; Thompson, James R; Isaya, Grazia
2017-01-01
Although Fe-S clusters may assemble spontaneously from elemental iron and sulfur in protein-free systems, the potential toxicity of free Fe 2+ , Fe 3+ , and S 2- ions in aerobic environments underscores the requirement for specialized proteins to oversee the safe assembly of Fe-S clusters in living cells. Prokaryotes first developed multiprotein systems for Fe-S cluster assembly, from which mitochondria later derived their own system and became the main Fe-S cluster suppliers for eukaryotic cells. Early studies in yeast and human mitochondria indicated that Fe-S cluster assembly in eukaryotes is centered around highly conserved Fe-S proteins (human ISCU) that serve as scaffolds upon which new Fe-S clusters are assembled from (i) elemental sulfur, provided by a pyridoxal phosphate-dependent cysteine desulfurase (human NFS1) and its stabilizing-binding partner (human ISD11), and (ii) elemental iron, provided by an iron-binding protein of the frataxin family (human FXN). Further studies revealed that all of these proteins could form stable complexes that could reach molecular masses of megadaltons. However, the protein-protein interaction surfaces, catalytic mechanisms, and overall architecture of these macromolecular machines remained undefined for quite some time. The delay was due to difficulties inherent in reconstituting these very large multiprotein complexes in vitro or isolating them from cells in sufficient quantities to enable biochemical and structural studies. Here, we describe approaches we developed to reconstitute the human Fe-S cluster assembly machinery in Escherichia coli and to define its remarkable architecture. © 2017 Elsevier Inc. All rights reserved.
First principles study of the ground state properties of Si, Ga, and Ge doped Fe50Al50
NASA Astrophysics Data System (ADS)
Pérez, Carlos Ariel Samudio; dos Santos, Antonio Vanderlei
2018-06-01
The first principles calculation of the structural, electronic and associated properties of the Fe50Al50 alloy (B2 phase) doped by s-p elements (Im = Si, Ga, and Ge) are performed as a function of the atomic concentration on the basis of the Full Potential Linear Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k code. The Al substitution by Im (Si and Ge) atoms (principally at a concentration of 6.25 at%) induces a pronounced redistribution of the electronic charge leading to a strong Fe-Im interaction with covalent bonding character. At the same time, decrease the lattice volume (V) while increase the bulk modulus (B). For the alloys containing Ga, the Fe-Ga interaction is also observed but the V and B of the alloy are very near to that of pure Fe-Al alloy. The magnetic moment and hyperfine parameters observed at the lattice sites of studied alloys also show variations, they increase or decrease in relation to that in Fe50Al50 according to the Im that substitutes Al.
NASA Astrophysics Data System (ADS)
Macková, Hana; Horák, Daniel; Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich
2015-04-01
Maghemite (γ-Fe2O3) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe2O3 nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe2O3 nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe2O4 particles and the conventional antitumor agent cisplatin.
Tafen, De Nyago
2015-02-14
The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni 89.4Fe 10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of themore » alloying element. Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.« less
First oxygen from lunar basalt
NASA Technical Reports Server (NTRS)
Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.
1993-01-01
The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.
Analysis of Košice Meteorite by Mössbauer Spectroscopy
NASA Astrophysics Data System (ADS)
Sitek, Jozef; Dekan, Július; Sedlačková, Katarína
2016-07-01
The 57Fe Mössbauer spectroscopy method was used to investigate iron-containing compounds in town Košice meteorite fallen on the territory of Slovakia in February 2010. The results showed that the Mössbauer spectra consisted of magnetic and non-magnetic components related to different iron-bearing phases. The non-magnetic phase includes olivine, pyroxene and traces of Fe3+ phase and the magnetic component comprises troilite (FeS) and iron-rich Fe-Ni alloy with hyperfine magnetic field typical for kamacite. Samples from meteorite were obtained in powder from different depths to inspect its heterogeneous composition. The content of kamacite increases to the detriment of troilite from the surface toward the centre of the sample. Measurements at liquid nitrogen temperature confirmed phase composition of investigated meteorite. Main constituent elements of studied samples were also determined by X-ray fluorescence analysis.
Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T.
2014-01-28
FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that themore » FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.« less
NASA Astrophysics Data System (ADS)
Udisti, R.; Barbante, C.; Cozzi, G.; Fattori, I.; Largiuni, O.; Magaldi, L.; Traversi, R.
2003-04-01
Aerosol load of Al and Fe allows estimating the crustal contribution to the primary aerosol sources. While continental dust is the only significant source for Al, Fe takes part also to metabolic processes of living species as an essential oligo-element. For this reason, it has been assumed that atmospheric deposition of desert dust on the oceanic surface can constitute a phytoplanktonic growth factor. Besides, Fe content in aerosol during glacial/interglacial transitions is believed to play a relevant role in controlling oceanic phytoplanktonic uptake of atmospheric CO2. A detailed stratigraphy of Al and Fe in ice cores is basic in understanding the correlation between environmental and climatic changes. Here we report preliminary results of CFA methods able to determine, in field, the "available" (free form and labile complexes) fraction of Al and Fe in ice cores with high sensitivity (D.L. of 10 ppt for Al and 300 ppt for Fe) and reproducibility (around 2 % at ppb level). The two methods were applied to 32 selected sections coming from the EPICA-Dome C ice core (EDC96): 10 sections belonging to Holocene, 10 to the transition and 12 to the LGM. Though Al and Fe determined by CFA is representative of the only soluble fraction (or "available" in the measurement conditions after filtration on 5.0 um), a comparison with the Al and Fe "total" content, as measured by ICP-MS, was made. "Available" fractions represent a minor contribution to the ICP-MS Fe and Al content in the LGM, but this contribution increases during the transition. In the Holocene, the two different analytical methods give similar values. Anyway, also CFA Fe and Al profiles show a sharp concentration decrease in the glacial/interglacial transition, reflecting the lowering dust aerosol load. Fe, especially, shows a very high sensitivity for the ACR climatic change. Whereas CFA-Fe in the LGM is more than 10 times lower than ICP-MS-Fe, ACR values are similar. This evidence could be explained considering that during the LGM the insoluble continental dust is the main Fe source, while a sort of oceanic-recycled Fe, mainly distributed in the fine particles and as more soluble species, becomes more important during the ACR and in the Holocene. Further measurements, with a very higher temporal resolution, are necessary to confirm the observed behaviour.
Meyer, Sören; Markova, Mariya; Pohl, Gabriele; Marschall, Talke A; Pivovarova, Olga; Pfeiffer, Andreas F H; Schwerdtle, Tanja
2018-09-01
Multi-element determination in human samples is very challenging. Especially in human intervention studies sample volumes are often limited to a few microliters and due to the high number of samples a high-throughput is indispensable. Here, we present a state-of-the-art ICP-MS/MS-based method for the analysis of essential (trace) elements, namely Mg, Ca, Fe, Cu, Zn, Mo, Se and I, as well as food-relevant toxic elements such as As and Cd. The developed method was validated regarding linearity of the calibration curves, method LODs and LOQs, selectivity and trueness as well as precision. The established reliable method was applied to quantify the element serum concentrations of participants of a human intervention study (LeguAN). The participants received isocaloric diets, either rich in plant protein or in animal protein. While the serum concentrations of Mg and Mo increased in participants receiving the plant protein-based diet (above all legumes), the Se concentration in serum decreased. In contrast, the animal protein-based diet, rich in meat and dairy products, resulted in an increased Se concentration in serum. Copyright © 2018 Elsevier GmbH. All rights reserved.
Kolker, A.; Finkelman, R.B.
1998-01-01
Mode-of-occurrence data are summarized for 13 potentially hazardous elements (Be, Cr, Mn, Co, Ni, As, Se, Cd, Sb, Hg, Pb, Th, U) in coal. Recent work has refined mode-of-occurrence data for Ni, Cr, and As, as compared to previous summaries. For Cr, dominant modes of occurrence include the clay mineral illite, an amorphous CrO(OH) phase, and Cr-bearing spinels. Nickel is present in Fe-sulfides (pyrite and marcasite) and is also organically bound. Arsenic-bearing pyrite may be the dominant host of As in bituminous coals. Concentration data for the 13 HAPs, obtained primarily by quantitative microanalysis techniques, are compiled for mineral and organic portions of coal. HAPs element concentrations are greatest in Fe-sulfides, and include maxima of 2,300 ppm (Co), 4,500 ppm (Ni), 4.9wt.% (As), 2,000 ppm (Se), 171 ppm (Hg), and 5,500 ppm (Pb). Trace-element microanalysis is a significant refinement over bulk methods, and shows that there is considerable trace-element variation on a fine scale for a given coal, and from one coal to another. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
On the incorporation of trace elements into human hair measured with micro-PIXE
NASA Astrophysics Data System (ADS)
Bos, A. J. J.; Van Der Stap, C. C. A. H.; Valković, V.; Vis, R. D.; Verheul, H.
1984-04-01
A study has been made on the incorporation of trace elements into human hair by measuring concentration distributions across hair diameters of selected samples using the Amsterdam proton microbeam. Because hair is considered as a recording filament, reflecting metabolic changes over a period of time, a hair of a young mother was plucked 4 months after delivery of her first child. No change in the Zn and Cu concentrations correlated with the period of gestation was observed. A strong increase of Ca in the distal end must be attributed to outside contamination. From a study of a hair root, including the root sheaths, it is found that the method of incorporation of sulfur (minor element) differs strikingly from the behaviour of the trace elements Zn, Cu, Fe and Ca. The Zn and Cu distributions provide evidence of a, not yet reported, transversal transcellular input route, in which the root sheaths play an important role. From the results it is deduced that Zn and Cu seem to be distributed homogeneously by nature, while Fe, present at a high level in the root sheaths, seems to be peaked by nature on the periphery. The results are discussed against the background of the range of values of concentrations of certain elements found in the literature.
Zioła-Frankowska, Anetta; Kubaszewski, Łukasz; Dąbrowski, Mikołaj; Kowalski, Artur; Rogala, Piotr; Strzyżewski, Wojciech; Łabędź, Wojciech; Kanicky, Viktor
2015-01-01
The aim of the study was to determine the content of particular elements Ca, Mg, P, Na, K, Zn, Cu, Fe, Mo, Cr, Ni, Ba, Sr, and Pb in the proximal femur bone tissue (cancellous and cortical bone) of 96 patients undergoing total hip replacement for osteoarthritis using ICP-AES and FAAS analytical techniques. The interdependencies among these elements and their correlations depended on factors including age, gender, place of residence, tobacco consumption, alcohol consumption, exposure to environmental pollution, physical activity, and type of degenerative change which were examined by statistical and chemometric methods. The factors that exerted the greatest influence on the elements in the femoral head and neck were tobacco smoking (higher Cr and Ni content in smokers), alcohol consumption (higher concentrations of Ni, Cu in people who consume alcohol), and gender (higher Cu, Zn, and Ni concentrations in men). The factors influencing Pb accumulation in bone tissue were tobacco, alcohol, gender, and age. In primary and secondary osteoarthritis of the hip, the content and interactions of elements are different (mainly those of Fe and Pb). There were no significant differences in the concentrations of elements in the femoral head and neck that could be attributed to residence or physical activity. PMID:26357659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, M.O.M.; de Sousa, P.T.; Salvador, V.L.R.
The Anadenathera macrocarpa, Schinus molle, Hymenaea courbaril, Cariniana legalis, Solidago microglossa and Stryphnodendron barbatiman, were collected ''in natura'' samples (leaves, flowers, barks and seeds) from different commercial suppliers. The pharmaco-active compounds in ethanolic extracts had been made by the Mato Grosso Federal University (UFMT). The energy-dispersive x-ray fluorescence (ED-XRF) spectrometry was used for the elemental analysis in different parts of the plants and respective ethanolic extracts. The Ca, Cl, Cu, Fe, K, Mg, Mn, Na, Ni, P, Rb, S, Sr and Zn concentrations were determined by the fundamental parameters method. Some specimens showed a similar inorganic profile for ''in natura''more » and ethanolic extract samples and some ones showed a distinct inorganic profile. For example, the Anadenathera macrocarpa showed a similar concentration in Mg, P, Cu, Zn and Rb elements in ''in natura'' and ethanolic extract samples; however very different concentration in Na, S, Cl, K , Ca, Mn, Fe and Sr was observed in distinctive samples. The Solidago microglossa showed the K, Ca, Cl, S, Mg, P and Fe elements as major constituents in both samples, suggesting that the extraction process did not affect in a considerable way the ''in natura'' inorganic composition. The elemental composition of the different parts of the plants (leaves, flowers, barks and seeds) has been also determined. For example, the Schinus molle specimen showed P, K, Cl and Ca elements as major constituents in the seeds, Mg, K and Sr in the barks and Mg, S, Cl and Mn in the leaves, demonstrating a differentiated elementary distribution. These inorganic profiles will contribute to evaluate the quality control of the Brazilian herbaceous trade and also will assist to identify which parts of the medicinal plants has greater therapeutic effect.« less
Giersz, Jacek; Bartosiak, Magdalena; Jankowski, Krzysztof
2017-05-15
Continuous photo-induced generation of mercury cold vapor has been successfully coupled with conventional pneumatic nebulization in programmable temperature spray chamber (PCVG-PN-PTSC) allowing fast, sensitive and easy multi-element analysis. The applied technique enabled simultaneous determination of non-volatile forming elements (Fe, Cu, Mn) and volatile Hg, while 15% v/v formic acid is present in the sample. PTSC elevated temperature (40°C) causes partial conversion of sample matrix into vapor form, thus improving plasma robustness. The efficiency of Hg vapor generation and its transport to the plasma is close to 100%. Moreover, spray chamber temperature stabilization improved the precision of the measurements (Hg signal RSD below 0.5%). The achieved limit of detection for Hg (90pgmL -1 ) at 194.23nm with no monochromator purge is better by almost two orders of magnitude than that obtained by conventional PN-ICP-OES. On the other hand, LODs for non-vapor forming elements are comparable to those obtained with pneumatic nebulization. The linear dynamic ranges for all examined elements are at least three orders of magnitude up to 1000ngmL -1 . None mutual interference between examined analytes (Hg, Fe, Cu, Mn) has been observed. The method was validated by the analysis of two CRM materials of different matrix composition (waste water ERM CA713 and estuarine sediment ERM CC580) giving satisfactory results. As low as 2 ppb of Hg can he directly determined in waste water. The proposed procedure uses mild reagents and allows for fast multi-element analysis, and matches green chemistry requirements. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stosnach, Hagen; Mages, Margarete
2009-04-01
In clinical service laboratories, one of the most common analytical tasks with regard to inorganic traces is the determination of the nutrition-relevant elements Fe, Cu, Zn, and Se. Because of the high numbers of samples and the commercial character of these analyses, a time-consuming sample preparation must be avoided. In this presentation, the results of total reflection X-ray fluorescence measurements with a low-power system and different sample preparation procedures are compared with those derived from analysis with common methods like Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The results of these investigations indicate that the optimal total reflection X-ray fluorescence analysis of the nutrition-relevant elements Fe, Cu, Zn, and Se can be performed by preparing whole blood and serum samples after dilution with ultrapure water and transferring 10 μl of internally standardized sample to an unsiliconized quartz glass sample carrier with subsequent drying in a laboratory oven. Suitable measurement time was found to be 600 s. The enhanced sample preparation by means of microwave or open digestion, in parts combined with cold plasma ashing, led to an improvement of detection limits by a factor of 2 for serum samples while for whole blood samples an improvement was only observed for samples prepared by means of microwave digestion. As the matrix elements P, S, Cl, and for whole blood Fe have a major influence on the detection limits, most probably a further enhancement of analytical quality requires the removal of the organic matrix. However, for the routine analysis of the nutrition-relevant elements, the dilution preparation was found to be sufficient.
The Elemental Composition of Demospongiae from the Red Sea, Gulf of Aqaba
Mayzel, Boaz; Aizenberg, Joanna; Ilan, Micha
2014-01-01
Trace elements are vital for the growth and development of all organisms. Little is known about the elemental content and trace metal biology of Red Sea demosponges. This study establishes an initial database of sponge elemental content. It provides the necessary foundation for further research of the mechanisms used by sponges to regulate the uptake, accumulation, and storage of metals. The metal content of 16 common sponge species was determined using ICP measurements. A combination of statistical methods was used to determine the correlations between the metals and detect species with significantly high or low concentrations of these metals. Bioaccumulation factors were calculated to compare sponge metal content to local sediment. Theonella swinhoei contained an extremely high concentration of arsenic and barium, much higher (at least 200 times) than all other species and local sediment. Hyrtios erecta had significantly higher concentration of Al, Cr, Fe, Mn, Ti and V than all other species. This is due to sediment accumulation and inclusion in the skeleton fibers of this sponge species. Suberites clavatus was found to contain significantly higher concentration of Cd, Co, Ni and Zn than all other species and local sediment, indicating active accumulation of these metals. It also has the second highest Fe concentration, but without the comparably high concentrations of Al, Mn and Ti that are evident in H. erecta and in local sediment. These differences indicate active uptake and accumulation of Fe in S. clavatus, this was also noted in Niphates rowi. A significantly higher B concentration was found in Crella cyatophora compared to all other species. These results indicate specific roles of trace elements in certain sponge species that deserve further analysis. They also serve as a baseline to monitor the effects of anthropogenic disturbances on Eilat's coral reefs. PMID:24759635
Influence of Lanthanum Doping on the Structural and Optical Properties of Hematite Nanopowders
NASA Astrophysics Data System (ADS)
Justus, J. Sharmila; Dharma Roy, S. Dawn; Raj, A. Moses Ezhil
2016-10-01
Rare-earth elements are an attractive class of dopant elements, as they give easily trivalent cations that possibly altering the structure and other properties of the parent nanoparticles and creating multifunctional materials because of their f-electronic configurations. Herein, experimental evidence has been given for a better understanding of the factors that dictate the interactions of La doping on the structure and optical properties of iron oxide nanoparticles. For that, lanthanum doped hematite (α-Fe2O3) nanoparticles were prepared by a facile solution method using iron (III) chloride (FeCl3) as starting precursor and sodium hydroxide (NaOH) as reducing agent without templates at low temperature. As-prepared powders were subsequently calcined in air for 3 hr at 800 °C. Xray diffraction (XRD) technique was used to study the nanocrystal formation of α-Fe2O3 and Fourier Transform Raman (FT-Raman) spectral information identified the chemical bond structure of the nanoparticles. Morphology study of the nanoparticles was identified using Scanning Electron Microscope (SEM) and the incorporated La content was recognized from the Energy Dispersive X-ray Spectroscopy (EDS) analysis. The optical absorption spectrum was recorded in the wavelength range of 200-2000 nm and the optical parameters such as absorption coefficient and optical band gap energy of pure and doped Fe2O3 nanoparticles were determined. Obtained results are interpreted by considering the impregnation of trivalent La cations that replaced Fe cations of the host structure.
Isotope pattern deconvolution as a tool to study iron metabolism in plants.
Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes
2008-01-01
Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.
Fe-C and Fe-H systems at pressures of the Earth's inner core
NASA Astrophysics Data System (ADS)
Bazhanova, Zulfiya G.; Oganov, Artem R.; Gianola, Omar
2012-05-01
The solid inner core of Earth is predominantly composed of iron alloyed with several percent Ni and some lighter elements, Si, S, O, H, and C being the prime candidates. To establish the chemical composition of the inner core, it is necessary to find the range of compositions that can explain its observed characteristics. Recently, there have been a growing number of papers investigating C and H as possible light elements in the core, but the results were contradictory. Here, using ab initio simulations, we study the Fe-C and Fe-H systems at inner core pressures (330-364 GPa). Based on the evolutionary structure prediction algorithm USPEX, we have determined the lowest-enthalpy structures of all possible carbides (FeC, Fe2C, Fe3C, Fe4C, FeC2, FeC3, FeC4, Fe7C3) and hydrides (Fe4H, Fe3H, Fe2H, FeH, FeH2, FeH3, FeH4) and have found that Fe2C (space group Pnma) is the most stable iron carbide at pressures of the inner core, while FeH, FeH3, and FeH4 are the most stable iron hydrides at these conditions. For Fe3C, the cementite structure (space group Pnma) and the Cmcm structure recently found by random sampling are less stable than the I-4 and C2/m structures predicted here. We have found that FeH3 and FeH4 adopt chemically interesting thermodynamically stable crystal structures, containing trivalent iron in both compounds. We find that the density of the inner core can be matched with a reasonable concentration of carbon, 11-15 mol.% (2.6-3.7 wt.%) at relevant pressures and temperatures, yielding the upper bound to the C content in the inner core. This concentration matches that in CI carbonaceous chondrites and corresponds to the average atomic mass in the range 49.3-51.0, in close agreement with inferences from Birch's law for the inner core. Similarly made estimates for the maximum hydrogen content are unrealistically high: 17-22 mol.% (0.4-0.5 wt.%), which corresponds to the average atomic mass of the core in the range 43.8-46.5. We conclude that carbon is a better candidate light alloying element than hydrogen.
[Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].
Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin
2014-10-01
To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2O2 digested system was used to completely decompose the organic compounds effectually by microwave digestion. The 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaf were more those that in the root and branch; The contents of Fe, Na, Cr and Ni in the root were more than those in the leaf and branch; The contents of Mn, Zn, Sr and Cu in the branch were more than those in the root and the leaf; The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity, which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.
Meshing of a Spiral Bevel Gearset with 3D Finite Element Analysis
NASA Technical Reports Server (NTRS)
Bibel, George D.; Handschuh, Robert
1996-01-01
Recent advances in spiral bevel gear geometry and finite element technology make it practical to conduct a structural analysis and analytically roll the gearset through mesh. With the advent of user specific programming linked to 3D solid modelers and mesh generators, model generation has become greatly automated. Contact algorithms available in general purpose finite element codes eliminate the need for the use and alignment of gap elements. Once the gearset is placed in mesh, user subroutines attached to the FE code easily roll the gearset through mesh. The method is described in detail. Preliminary results for a gearset segment showing the progression of the contact lineload is given as the gears roll through mesh.
Gough, L.P.; Severson, R.C.; Jackson, L.L.
1988-01-01
Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.
Major and trace elements in igneous rocks from Apollo 15.
NASA Technical Reports Server (NTRS)
Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.
1973-01-01
The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.
Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang
2010-06-01
This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.
Enhanced thermal stability of Cu alloy films by strong interaction between Ni and Zr (or Fe)
NASA Astrophysics Data System (ADS)
Zheng, Yuehong; Li, Xiaona; Cheng, Xiaotian; Li, Zhuming; Liu, Yubo; Dong, Chuang
2018-04-01
Low resistivity, phase stability and nonreactivity with surrounding dielectrics are the key to the application of Cu to ultra-large-scale integrated circuits. Here, a stable solid solution cluster model was introduced to design the composition of barrierless Cu-Ni-Zr (or Fe) seed layers. The third elements Fe and Zr were dissolved into Cu via a second element Ni, which is soluble in both Cu and Zr (or Fe). The films were prepared by magnetron sputtering on the single-crystal p-Si (1 0 0) wafers. Since the diffusion characteristics of the alloying elements are different, the effects of the strong interaction between Ni and Zr (or Fe) on the film’s stability and resistivity were studied. The results showed that a proper addition of Zr-Ni (Zr/Ni ⩽ 0.6/12) into Cu could form a large negative lattice distortion, which inhibits Cu-Si interdiffusion and enhances the stability of Cu film. When Fe-Ni was co-added into Cu, the lattice distortion of Cu reached a lower value, 0.0029 Å ⩽ |Δa| ⩽ 0.0046 Å, and the films showed poor stability. Therefore, when the model is applied to the composition design of the films, the strong interaction between the elements and the addition ratio should be taken into consideration.
Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik
2014-10-21
Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.
NASA Astrophysics Data System (ADS)
Marguí, E.; Queralt, I.; García-Ruiz, E.; García-González, E.; Rello, L.; Resano, M.
2018-01-01
Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients. In this sense, dried blood spots (DBS) are proposed as a non-invasive and even self-administered alternative to sampling whole venous blood. This contribution explores the potential of energy dispersive X-ray fluorescence spectrometry for the simultaneous and direct determination of some major (S, Cl, K, Na), minor (P, Fe) and trace (Ca, Cu, Zn) elements in blood, after its deposition onto clinical filter papers, thus giving rise to DBS. For quantification purposes the best strategy was to use matrix-matched blood samples of known analyte concentrations. The accuracy and precision of the method were evaluated by analysis of a blood reference material (Seronorm™ trace elements whole blood L3). Quantitative results were obtained for the determination of P, S, Cl, K and Fe, and limits of detection for these elements were adequate, taking into account their typical concentrations in real blood samples. Determination of Na, Ca, Cu and Zn was hampered by the occurrence of high sample support (Na, Ca) and instrumental blanks (Cu, Zn). Therefore, the quantitative determination of these elements at the levels expected in blood samples was not feasible. The methodology developed was applied to the analysis of several blood samples and the results obtained were compared with those reported by standard techniques. Overall, the performance of the method developed is promising and it could be used to determine the aforementioned elements in blood samples in a simple, fast and economic way. Furthermore, its non-destructive nature enables further analyses by means of complementary techniques to be carried out.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.
2016-01-01
Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.
2018-01-01
The objective of this study was to investigate the content of essential elements in medicinal plants in the Kingdom of Saudi Arabia (KSA). Five different medical plants (mahareeb (Cymbopogon schoenanthus), sheeh (Artemisia vulgaris), harjal (Cynanchum argel delile), nabipoot (Equisetum arvense), and cafmariam (Vitex agnus-castus)) were collected from Madina city in the KSA. Five elements Fe, Mn, Zn, Cu, and Se were determined by using inductively coupled plasma mass spectrometry (ICP-MS). Fe levels were the highest and Se levels were the lowest in all plants. The range levels of all elements in all plants were as follows: Fe 193.4–1757.9, Mn 23.6–143.7, Zn 15.4–32.7, Se 0.13–0.92, and Cu 11.3–21.8 µg/g. Intakes of essential elements from the medical plants in infusion were calculated: Fe 4.6–13.4, Mn 6.7–123.2, Zn 7.0–42.7, Se 0.14–1.5, and Cu 1.5–5.0 µg/dose. The calculated intakes of essential elements for all plants did not exceed the daily intake set by the World Health Organization (WHO) and European Food Safety Authority (EFSA). These medicinal plants may be useful sources of essential elements, which are vital for health. PMID:29744234
Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing
Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.
2002-01-01
At least 15% of the low-FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x-ray mapping plus quantitative analysis), ion micropobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water-rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene- and olivine-rich chondrules may indicate that fractionation of low- and high-Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub-parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements between altered glass and surrounding matrix and rim material. Calcium was mainly lost during this process, and other nonvolatile elements may have been mobile as well. Some unzoned, low-FeO chondrules appear to have fully altered mesostasis.
Zou, Zhi-Qiang; Sun, Li-Min; Shi, Gao-Ming; Liu, Xiao-Yong; Li, Xu
2013-12-05
The growth of iron silicides on Si (111) using reactive deposition epitaxy method was studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy (XPS). Instead of the mixture of different silicide phases, a homogeneous crystalline film of c (4 × 8) phase was formed on the Si (111) surface at approximately 750°C. Scanning tunneling spectra show that the film exhibits a semiconducting character with a band gap of approximately 0.85 eV. Compared with elemental Fe, the Fe 2p peaks of the film exhibit a lower spin-orbit splitting (-0.3 eV) and the Fe 2p3/2 level has a smaller full-width at half maximum (-0.6 eV) and a higher binding energy (+0.3 eV). Quantitative XPS analysis shows that the c (4 × 8) phase is in the FeSi2 stoichiometry regime. The c (4 × 8) pattern could result from the ordered arrangement of defects of Fe vacancies in the buried Fe layers.
Phase composition and magnetic properties in hot deformed magnets based on Misch-metal
NASA Astrophysics Data System (ADS)
Ma, Q.; Zhang, Z. Y.; Zhang, X. F.; Hu, Z. F.; Liu, Y. L.; Liu, F.; Jv, X. M.; Wang, J.; Li, Y. F.; Zhang, J. X.
2018-04-01
In this paper, the Rare-earth Iron Boron (RE-Fe-B) magnets were fabricated successfully by using the double main phase method through mixing the Neodymium Iron Boron (Nd-Fe-B) powders and Misch-metal Iron Boron (MM-Fe-B) powders with different ratio. Aiming at the nanocrystalline RE2Fe14B magnets prepared by using spark plasma sintering technology, phase structure and magnetic properties were investigated. It is found that the Misch-metal (MM) alloys promote the domain nucleation during the the process of magnetization reversal and then damage the coercivity (Hcj) of isotropic RE2Fe14B magnets, while the Hcj could still remain more than 1114.08 kA/m when the mass proportion of MM (simplified as: "a") is 30%. Curie temperature and phase structure were also researched. Two kinds of mixed-solid-solution (MSS) main phases with different Lanthanum (La) and Cerium (Ce) content were believed to be responsible for the two curie temperature of the RE2Fe14B magnets with "a" ≥20%. This is resulted from the inhomogeneous elemental distribution of RE2Fe14B phase.
2013-01-01
The growth of iron silicides on Si (111) using reactive deposition epitaxy method was studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy (XPS). Instead of the mixture of different silicide phases, a homogeneous crystalline film of c (4 × 8) phase was formed on the Si (111) surface at approximately 750°C. Scanning tunneling spectra show that the film exhibits a semiconducting character with a band gap of approximately 0.85 eV. Compared with elemental Fe, the Fe 2p peaks of the film exhibit a lower spin-orbit splitting (−0.3 eV) and the Fe 2p3/2 level has a smaller full-width at half maximum (−0.6 eV) and a higher binding energy (+0.3 eV). Quantitative XPS analysis shows that the c (4 × 8) phase is in the FeSi2 stoichiometry regime. The c (4 × 8) pattern could result from the ordered arrangement of defects of Fe vacancies in the buried Fe layers. PMID:24305438
Jin, K.; Gao, Y. F.; Bei, H.
2017-04-07
Ternary single-phase concentrated solid solution alloys (SP-CSAs), so-called "medium entropy alloys", not only possess notable mechanical and physical properties but also form a model system linking the relatively simple binary alloys to the complex high entropy alloys. Our knowledge of their intrinsic properties is vital to understand the material behavior and to prompt future applications. To this end, three model alloys NiCoFe, NiCoCr, and NiFe-20Cr have been selected and grown as single crystals. We measured their elastic constants using an ultrasonic method, and several key materials properties, such as shear modulus, bulk modulus, elastic anisotropy, and Debye temperatures have beenmore » derived. Furthermore, nanoindentation tests have been performed on these three alloys together with Ni, NiCo and NiFe on their (100) surface, to investigate the strengthening mechanisms. NiCoCr has the highest hardness, NiFe, NiCoFe and NiFe-20Cr share a similar hardness that is apparently lower than NiCoCr; NiCo has the lowest hardness in the alloys, which is similar to elemental Ni. The Labusch-type solid solution model has been applied to interpret the nanoindentation data, with two approaches used to calculate the lattice mismatch. Finally, by adopting an interatomic spacing matrix method, the Labusch model can reasonably predict the hardening effects for the whole set of materials.« less
Koschinsky, A.; Hein, J.R.
2003-01-01
Marine Fe-Mn oxyhydroxide crusts form by precipitation of dissolved components from seawater. Three hydrogenetic crust samples (one phosphatized) and two hydrothermal Mn-oxide samples were subjected to a sequential-leaching procedure in order to determine the host phases of 40 elements. Those host-phase associations are discussed with respect to element speciation in seawater. The partitioning of elements between the two major phases, Mn oxide and Fe oxyhydroxide, can in a first-order approximation be explained by a simple sorption model related to the inorganic speciation of the elements in seawater, as has been proposed in earlier models. Free and weakly complexed cations, such as alkali and alkaline earth metals, Mn, Co, Ni, Zn, T1(I), and partly Y, are sorbed preferentially on the negatively charged surface of the MnO2 in hydrogenetic crusts. The driving force is a strong coulombic interaction. All neutral or negatively charged chloro (Cd, Hg, T1), carbonate (Cu, Y, Pb, and U), and hydroxide (Be, Sc, Ti, Fe, Zr, Nb, In, Sn, Sb, Te, Hf, Ta, Bi, Th, and T1(III)) complexes and oxyanions (V, Cr, As, Se, Mo, and W) bind to the slightly positively charged surface of the amorphous FeOOH phase. While coulombic interaction can explain the sorption of the negatively charged species, the binding of neutral species is based on specific chemical interaction. Organic complexation of elements in deep-ocean water seems to be at most of minor importance. Surface oxidation can explain some strong metal associations, e.g. of Co and T1 with the MnO2 and Te with the FeOOH. Sorption reactions initially driven by coulombic forces are often followed by the formation of specific bonds between the adsorbate and the atoms of the oxide surface. Differences in the associations of some metals between the non-phosphatized and phosphatized hydrogenetic crusts and between the hydrogenetic and the hydrothermal samples reflect the different physico-chemical environments of formation and speciations in oxic seawater vs. less-oxic fluids, especially for the redox-sensitive metals such as Mo and V. These environmental-related differences indicate that the methodology of chemical speciation used here in combination with spectroscopic methods may allow for the detection of changes in paleoceanographic conditions recorded during the several tens of millions of years of crust growth. ?? 2003 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Caracas, R.; Asimow, P. D.; Wolf, A. S.; Harvey, J. P.; Martin, A.; Torrent, M.
2015-12-01
We compute the solubility limits of Si in the hexagonal-close packed (hcp) phase of iron using standard thermodynamical treatment of solid solutions with data obtained from first-principles calculations. For this, we consider the system with end-members hcp Fe and the B2 phase of FeSi. Si and Fe enter both structures in substitution of one another. The system is characterized by an immiscibility gap, which according to our results widens with pressure. At core conditions about 5 wt.% Si can be dissolved into the hcp phase of Fe. Comparatively there is much more Fe that can enter the FeSi B2 phase. In a second step we start with the hcp Fe-Si alloys and add the most probable light elements found in the core: H, C, O, and S. The light elements can enter the hcp structure either as interstitial impurities, in case of H, C, O, or in substitution of Fe, in case of S. We consider several insertion patterns with the light elements both adjacent and far apart. For each of these new phases we compute the elastic constants tensors and the seismic properties. Based on our theoretical results and the comparisons with PREM we discuss in detail the possible composition of the Earth's inner core, we rule out certain light elements, like H, and we show that the distribution pattern is not important. This is also the first time the elastic constants tensor is computed from lattice dynamics using the response function in the Planar Augmented Wavefunction approach of the Density Functional Theory [1]. [1] A. Martin, M. Torrent, R. Caracas, submitted (2015); A. Martin, PhD thesis (2015).
Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets
NASA Astrophysics Data System (ADS)
Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans
2016-10-01
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.
Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets
Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans
2016-01-01
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials. PMID:27796339
Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets.
Li, Ling; Tirado, Angelica; Nlebedim, I C; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R R; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A; Paranthaman, M Parans
2016-10-31
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm 3 , and the room temperature magnetic properties are: intrinsic coercivity H ci = 688.4 kA/m, remanence B r = 0.51 T, and energy product (BH) max = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.
Big area additive manufacturing of high performance bonded NdFeB magnets
Li, Ling; Tirado, Angelica; Nlebedim, I. C.; ...
2016-10-31
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic propertiesmore » are: intrinsic coercivity Hci = 688.4 kA/m, remanence B r = 0.51 T, and energy product (BH) max = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.« less
Big area additive manufacturing of high performance bonded NdFeB magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ling; Tirado, Angelica; Nlebedim, I. C.
Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic propertiesmore » are: intrinsic coercivity Hci = 688.4 kA/m, remanence B r = 0.51 T, and energy product (BH) max = 43.49 kJ/m 3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.« less
Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed; Lindsay, James
2001-01-01
(Fe), manganese (Mn), arsenic (As), and cadmium (Cd). In general inter-laboratory correlations are better for samples within the compositional range of the Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST). Analyses by EWU are the most accurate relative to the NIST standards (mean recoveries within 1% for Pb, Fe, Mn, and As, 3% for Zn and 5% for Cd) and are the most precise (within 7% of the mean at the 95% confidence interval). USGS-EDXRF is similarly accurate for Pb and Zn. XRAL and ACZ are relatively accurate for Pb (within 5-8% of certified NIST values), but were considerably less accurate for the other 5 elements of concern (10-25% of NIST values). However, analyses of sample splits by more than one laboratory reveal that, for some elements, XRAL (Pb, Mn, Cd) and ACZ (Pb, Mn, Zn, Fe) analyses were comparable to EWU analyses of the same samples (when values are within the range of NIST SRMs). These results suggest that, for some elements, XRAL and ACZ dissolutions are more effective on the matrix of the CdA samples than on the matrix of the NIST samples (obtained from soils around Butte, Montana). Splits of CdA samples analyzed by CHEMEX were the least accurate, yielding values 10-25% less than those of EWU.
Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean
NASA Astrophysics Data System (ADS)
Özsoy, Türkan; Örnektekin, Sermin
2009-10-01
Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.
Serum trace elements in obese Egyptian children: a case–control study
2014-01-01
Background To date, only a few studies on child obesity concerned Trace Elements (TE). TE is involved in the pathogenesis of obesity and obesity related diseases. We tried to assess trace elements status [zinc (Zn), copper (Cu), selenium (Se), iron (Fe), and chromium (Cr)] in obese Egyptian children and their relationships with serum leptin and metabolic risk factors of obesity. Methods This was a case–control study performed with 80 obese children (BMI ≥ 95thcentile for age and gender) and 80 healthy non-obese children with comparable age and gender as the control group. For all subjects, serum Zn, Cu, Se, Fe, ferritin and Cr as well as biochemical parameters including lipid profile, serum glucose and homeostasis model assessment of insulin resistance (HOMA-IR) were assessed. Levels of serum leptin were measured by (enzyme-linked immunosorbent assay [ELISA] method), and serum insulin was measured by an electrochemiluminesce immunoassay. Results Compared to the control group, serum Zn, Se, and Fe levels were significantly lower (all P < 0.01) and serum Cu level was significantly higher (P < 0.01) in the obese children. Meanwhile, no significant differences were observed in serum ferritin or Cr levels (P > 0.05). A significant negative correlation was found between serum leptin and zinc levels in the obese children (r = −0.746; P < 0.01). Further, serum Zn showed significant negative correlations with total cholesterol TC levels (P < 0.05) and were positively correlated with high density lipoprotein- cholesterol HDL-C levels (P < 0.01) in the obese children. In addition, serum Se levels showed significant positive correlations with HOMA-IR values in the obese children (P < 0.01). Conclusion The obese children may be at a greater risk of developing imbalance (mainly deficiency) of trace elements which may be playing an important role in the pathogenesis of obesity and related metabolic risk factors. PMID:24555483
Dial, Angela R; Misra, Sambuddha; Landing, William M
2015-04-30
Accurate determination of trace metals has many applications in environmental and life sciences, such as constraining the cycling of essential micronutrients in biological production and employing trace metals as tracers for anthropogenic pollution. Analysis of elements such as Fe, As, Se, and Cd is challenged by the formation of polyatomic mass spectrometric interferences, which are overcome in this study. We utilized an Octopole Collision/Reaction Cell (CRC)-equipped Quadrupole-Inductively Coupled Plasma Mass Spectrometer for the rapid analysis of small volume samples (~250 μL) in a variety of matrices containing HNO3 and/or HCl. Efficient elimination of polyatomic interferences was demonstrated by the use of the CRC in Reaction Mode (RM; H2 gas) and in Collision-Reaction Mode (CRM; H2 and He gas), in addition to hot plasma (RF power 1500 W) and cool plasma (600 W) conditions. It was found that cool plasma conditions with RM achieved the greatest signal sensitivity while maintaining low detection limits (i.e. (56) Fe in 0.44 M HNO3 has a sensitivity of 160,000 counts per second (cps)-per-1 µg L(-1) and a limit of detection (LoD) of 0.86 ng L(-1) ). The average external precision was ≤ ~10% for minor (≤10 µg L(-1) ) elements measured in a 1:100 dilution of NIST 1643e and for iron in rainwater samples under all instrumental operating conditions. An improved method has been demonstrated for the rapid multi-element analysis of trace metals that are challenged by polyatomic mass spectrometric interferences, with a focus on (56) Fe, (75) As, (78) Se and (111) Cd. This method can contribute to aqueous environmental geochemistry and chemical oceanography, as well as other fields such as forensic chemistry, agriculture, food chemistry, and pharmaceutical sciences. Copyright © 2015 John Wiley & Sons, Ltd.
Nucleosynthesis by Type Ia Supernova for different Metallicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, Takuya; Umeda, Hideyuki; Nomoto, Ken'ichi
2006-07-12
We calculate nucleosynthesis by type Ia supernova for various metallicity. We adopt two typical hydrodynamical models, carbon deflagration and delayed detonation. The two main points of this research are to see that (1)how the ejected mass of 56Ni changes and (2)how abundance of each element (especially Fe-group elements) is influenced by varying metallicity. We find that (1)56Ni mass changes about 15% in the range of Z = 0.001 - 0.05 and insufficient to explain all of the observed variety of SNe Ia peak luminosity, and (2)[Mn/Fe] and [Ni/Fe] show fairy dependence on metallicity (especially for delayed detonation model) while [Cr/Fe]more » or [{alpha}/Fe] do not.« less
Crock, J.G.; Lichte, F.E.; Riddle, G.O.; Beech, C.L.
1986-01-01
The abundance of rare-earth elements (REE) and yttrium in geological materials is generally low, and most samples contain elements that interfere in the determination of the REE and Y, so a separation and/or preconcentration step is often necessary. This is often achieved by ion-exchange chromatography with either nitric or hydrochloric acid. It is advantageous, however, to use both acids sequentially. The final solution thus obtained contains only the REE and Y, with minor amounts of Al, Ba, Ca, Sc, Sr and Ti. Elements that potentially interfere, such as Be, Co, Cr, Fe, Mn, Th, U, V and Zr, are virtually eliminated. Inductively-coupled argon plasma atomic-emission spectroscopy can then be used for a final precise and accurate measurement. The method can also be used with other instrumental methods of analysis. ?? 1986.
NASA Astrophysics Data System (ADS)
Murakami, Takashi; Sreenivas, Bulusu; Sharma, Subrata Das; Sugimori, Hirokazu
2011-07-01
The increase in atmospheric oxygen during the Precambrian is a key to understand the co-evolution of life and environment and has remained as a debatable topic. Among various proxies for the estimation of atmospheric oxygen levels, paleosols, ancient weathering profiles, can provide a quantitative pattern of atmospheric oxygen increase during the Precambrian period of Earth history. We have re-evaluated the chemical compositions of paleosols, and presented a new method of applying Fe 2+ oxidation kinetics to the Fe 2+ and Fe 3+ concentrations in paleosols to decipher the quantitative partial pressure of atmospheric oxygen ( P) between 2.5 and 2.0 Ga. We first estimated the compaction factor ( CF, the fraction of original thickness) using the immobile elements such as Ti, Al and Zr on equal volume basis, which was then used to calculate retention fractions ( M R), a mass ratio of paleosol to parent rock, of redox-sensitive elements. The CF and Fe R values were evaluated for factors such as homogeneity of immobile elements, erosion, and formation time of weathering. Fe R increased gradually within the time window of ˜2.5-2.1 Ga and remained close to 1.0 since ˜2.1 Ga onwards. Mn R also increased gradually similar to Fe R but at a slower rate and near complete retention was observed ˜1.85 Ga, suggesting an almost continuous increase in the oxidation of Fe 2+ and Mn 2+ in paleosols ranging in age between ˜2.5 and 1.9 Ga. We have modeled P variations during the Paleoproterozoic by applying Fe 2+ oxidation kinetics to the Fe 2+ and Fe 3+ concentrations in paleosols, which enabled us to derive an Fe 2+ oxidation term referred to as ψ. Possible changes in temperature and P during this time window and their effects on resulting models of P evolution have been also considered. We assumed four cases for the calculations of P variations between 2.5 and 2.0 Ga: no change in either temperature or P, long-term change in only P, long-term changes in both temperature and P, and short-term fluctuations of both temperature and P during the possible, multiple global-scale glaciations. The calculations indicate that P increased gradually, linearly on the logarithmic scale, from <˜10 -6 to >˜10 -3 atm between 2.5 and 2.0 Ga. Our calculations show that the P levels would have fluctuated significantly, if intense, global glaciation(s) followed by period(s) of high temperature occurred during the Paleoproterozoic. This gradual rise model proposes a distinct, quantitative pattern for the first atmospheric oxygen rise with important implications for the evolution of life.
Sintered silicon carbide molded body and method for its production
NASA Technical Reports Server (NTRS)
Omori, M.; Sendai, M.; Ohira, K.
1984-01-01
Sintered silicon carbide shapes are described. They are produced by using a composition containing an oxide of at least one element chosen from the group: Li, Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, Ba, Tc, Ta, W and Th as a supplement to known sintering aids.
Prediction of the Iron-Based Polynuclear Magnetic Superhalogens with Pseudohalogen CN as Ligands.
Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Liu, Yun; Mu, Qiang
2017-07-17
To explore stable polynuclear magnetic superhalogens, we perform an unbiased structure search for polynuclear iron-based systems based on pseudohalogen ligand CN using the CALYPSO method in conjunction with density functional theory. The superhalogen properties, magnetic properties, and thermodynamic stabilities of neutral and anionic Fe 2 (CN) 5 and Fe 3 (CN) 7 clusters are investigated. The results show that both of the clusters have superhalogen properties due to their electron affinities (EAs) and that vertical detachment energies (VDEs) are significantly larger than those of the chlorine element and their ligand CN. The distribution of the extra electron analysis indicates that the extra electron is aggregated mainly into pseudohalogen ligand CN units in Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ cluster. These features contribute significantly to their high EA and VDE. Besides superhalogen properties, these two anionic clusters carry a large magnetic moment just like the Fe 2 F 5 ¯ cluster. Additionally, the thermodynamic stabilities are also discussed by calculating the energy required to fragment the cluster into various smaller stable clusters. It is found that Fe(CN) 2 is the most favorable fragmentation product for anionic Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ clusters, and both of the anions are less stable against ejection of Fe atoms than Fe(CN) n-x .
Analysis of Foundation of Tall R/C Chimney Incorporating Flexibility of Soil
NASA Astrophysics Data System (ADS)
Jayalekshmi, B. R.; Jisha, S. V.; Shivashankar, R.
2017-09-01
Three dimensional Finite Element (FE) analysis was carried out for 100 and 400 m high R/C chimneys having piled annular raft and annular raft foundations considering the flexibility of soil subjected to across-wind load. Stiffness of supporting soil and foundation were varied to evaluate the significance of Soil-Structure Interaction (SSI). The integrated chimney-foundation-soil system was analysed by finite element software ANSYS based on direct method of SSI assuming linear elastic material behaviour. FE analyses were carried out for two cases of SSI namely, (1) chimney with annular raft foundation and (2) chimney with piled annular raft foundation. The responses in raft such as bending moments and settlements were evaluated for both the cases and compared to those obtained from the conventional method of analysis of annular raft foundation. It is found that the responses in raft vary considerably depending on the stiffness of the underlying soil and the stiffness of foundation. Piled raft foundations are better suited for tall chimneys to be constructed in loose or medium sand.
Optimization of an electromagnetic linear actuator using a network and a finite element model
NASA Astrophysics Data System (ADS)
Neubert, Holger; Kamusella, Alfred; Lienig, Jens
2011-03-01
Model based design optimization leads to robust solutions only if the statistical deviations of design, load and ambient parameters from nominal values are considered. We describe an optimization methodology that involves these deviations as stochastic variables for an exemplary electromagnetic actuator used to drive a Braille printer. A combined model simulates the dynamic behavior of the actuator and its non-linear load. It consists of a dynamic network model and a stationary magnetic finite element (FE) model. The network model utilizes lookup tables of the magnetic force and the flux linkage computed by the FE model. After a sensitivity analysis using design of experiment (DoE) methods and a nominal optimization based on gradient methods, a robust design optimization is performed. Selected design variables are involved in form of their density functions. In order to reduce the computational effort we use response surfaces instead of the combined system model obtained in all stochastic analysis steps. Thus, Monte-Carlo simulations can be applied. As a result we found an optimum system design meeting our requirements with regard to function and reliability.
NASA Astrophysics Data System (ADS)
Mahler, Michael; Gaganidze, Ermile; Aktaa, Jarir
2018-04-01
The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past had shown that due to the anisotropic microstructure the fracture toughness varies by factor of about two for different orientations. The reason is the crack propagation direction, which is - in some orientations - not the typical crack propagation direction for mode I fracture. In some directions the crack is not growing perpendicular to the crack opening tensile load. Nevertheless, in the present paper, the microstructure is modelled by FE mesh including cohesive zone elements which mimic grain boundaries (GB). This is based on the assumption that GB's are the weakest links in the structure. The use of the correct parameters to describe the fracture process allows the description of the observed experimental orientation dependent fracture toughness.
A variationally coupled FE-BE method for elasticity and fracture mechanics
NASA Technical Reports Server (NTRS)
Lu, Y. Y.; Belytschko, T.; Liu, W. K.
1991-01-01
A new method for coupling finite element and boundary element subdomains in elasticity and fracture mechanics problems is described. The essential feature of this new method is that a single variational statement is obtained for the entire domain, and in this process the terms associated with tractions on the interfaces between the subdomains are eliminated. This provides the additional advantage that the ambiguities associated with the matching of discontinuous tractions are circumvented. The method leads to a direct procedure for obtaining the discrete equations for the coupled problem without any intermediate steps. In order to evaluate this method and compare it with previous methods, a patch test for coupled procedures has been devised. Evaluation of this variationally coupled method and other methods, such as stiffness coupling and constraint traction matching coupling, shows that this method is substantially superior. Solutions for a series of fracture mechanics problems are also reported to illustrate the effectiveness of this method.
The Phase Transformation and Crystal Structure Studies of Strontium Substituted Barium Monoferrite
NASA Astrophysics Data System (ADS)
Mulyawan, A.; Adi, W. A.; Mustofa, S.; Fisli, A.
2017-03-01
Unlike other AFe2O4 ferrite materials, Barium Monoferrite (BaFe2O4) have an orthorhombic structure which is very interesting to further study the crystal structure and phase formation. In this study, Strontium substituted Barium Monoferrite in the form of Ba(1-x)Sr(x)Fe2O4 has successfully been synthesized through solid state reaction method which includes BaCO3, SrCO3, and Fe2O3 as starting materials. Ba(1-x)Sr(x)Fe2O4 was made by varying the dopant composition of Strontium (Sr2+) from x = 0, 0.1, 0.3, and 0.5. Each composition was assisted by ethanol and continued to the milling process for 5 hours then followed by sintering process at 900 °C for 5 hours. The phase transformation was studied by using X-ray diffractometer (XRD) and Rietveld refinement using General Structure Analysis System (GSAS) also 3D crystal visualization using VESTA. Referring to the refinement results, a single phase of BaFe2O4 was formed in x = 0 and 0.1. The composition has orthorhombic structure, space group B b21m, and lattice parameters of a = 19.0229, b = 5.3814 c = 8.4524 Å, α = β = γ = 90° and a = 18.9978, b = 5.3802 c = 8.4385 Å, α = β = γ = 90° respectively. In the composition of x = 0.3 it was found that the phase of BaSrFe4O8 begin to form due to the overload expansion of the Sr2+ occupancy which made the distortion of the initial lattice parameters and finally in the x = 0.5 composition the single phase of BaSrFe4O8 was clearly formed. Energy Dispersive Spectroscopy (EDS) was used to confirm the change of the material structure by measuring the elemental compound composition ratio. The result of EDS spectra clearly exhibited the dominant elements were Barium (Ba), Strontium (Sr), Iron (Fe), and Oxygen (O) with the compound ratio (Atomic percentage and mass percentage) correspond to the BaFe2O4 and BaSrFe4O8 phase.
Simultaneous analysis of 18 mineral elements in Cyclocarya paliurus polysaccharide by ICP-AES.
Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Liu, Xin; Yin, Jun-Yi; Huang, Dan-Fei; Zhang, Hui; Xie, Ming-Yong
2013-04-15
The contents of 18 kinds of mineral elements in Cyclocarya paliurus polysaccharide samples were determined by ICP-AES. The limits of detection (LOD) of the method for 18 elements were in the range of 0.01-3.80 mg/kg. The average recoveries obtained by the standard addition method were found between 94.34% and 105.69% (RSD, 1.01-4.23%). The results showed that C. paliurus polysaccharides were abundant in major and trace elements which are healthy for human body. The contents of Ca, Al, Mg, K, Fe, Mn and P were very high, ranging from 274.5±10.3 to 5980.0±102.7 mg/kg, while the contents of Zn, Na, Se, Cr, Pb, Cu and As ranged from 0.9±0.1 to 37.1±4.2 mg/kg. Finally, the levels of Ni, Cd, V and Co were not detected in the samples. ICP-AES is a simple, precise and efficient method for the determination of many mineral elements in polysaccharide samples simultaneously. Copyright © 2013 Elsevier Ltd. All rights reserved.
Magnetic and magnetostrictive behavior of Dy 3+ doped CoFe 2O 4 single crystals grown by flux method
NASA Astrophysics Data System (ADS)
Kambale, Rahul C.; Song, K. M.; Won, C. J.; Lee, K. D.; Hur, N.
2012-02-01
We studied the effect of Dy 3+ content on the magnetic properties of cobalt ferrite single crystal. The single crystals of CoFe 1.9Dy 0.1O 4 were grown by the flux method using Na 2B 4O 7.10 H 2O (Borax) as a solvent (flux). The black and shiny single crystals were obtained as a product. The X-ray diffraction analysis at room temperature confirmed the spinel cubic structure with lattice constant a=8.42 Å of the single crystals. The compositional analysis endorses the presence of constituents Co, Fe and Dy elements after sintering at 1300 °C within the final structure. The magnetic hysteresis measurements at various temperatures viz. 10 K, 100 K, 200 K and 300 K reveal the soft ferrimagnetic nature of the single crystal than that of for pure CoFe 2O 4. The observed saturation magnetization ( Ms) and coercivity ( Hc) are found to be lower than that of pure CoFe 2O 4 single crystal. The magnetostriction ( λ) measurement was carried out along the [001] direction. The magnetic measurements lead to conclude that the present single crystals can be used for magneto-optic recording media.
Characterizing the Elastic Behaviour of a Press Table through Topology Optimization
NASA Astrophysics Data System (ADS)
Pilthammar, J.; Sigvant, M.; Hansson, M.; Pálsson, E.; Rutgersson, W.
2017-09-01
Sheet metal forming in the car industry is a highly competitive area. The use of digital techniques and numerical methods are therefore of high interest for reduced costs and lead times. One method for reducing the try-out phase is virtual rework of die surfaces. The virtual rework is based on Finite Element (FE) simulations and can reduce and support manual rework. The elastic behaviour of dies and presses must be represented in a reliable way in FE-models to be able to perform virtual rework. CAD-models exists for nearly all dies today, but not for press lines. A full geometrical representation of presses will also yield very large FE- models. This paper will discuss and demonstrate a strategy for measuring and characterizing a press table for inclusion in FE-models. The measurements of the elastic press deformations is carried out with force transducers and an ARAMIS 3D optical measurement system. The press table is then inverse modelled by topology optimization using the recorded results as boundary conditions. Finally, the press table is coupled with a FE-model of a die to demonstrate its influence on the deformations. This indicates the importance of having a reliable representation of the press deformations during virtual rework.
Su, Shaowei; Chen, Beibei; He, Man; Hu, Bin; Xiao, Zuowei
2014-02-01
A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, J.; Fei, Y.; Sturhahn, W.; Zhao, J.; Mao, H.; Hemley, R.
2004-05-01
Iron-nickel is the most abundant constituent of the Earth's core. The amount of Ni in the core is about 5.5 wt%. Geophysical and cosmochemical studies suggest that the Earth's outer core also contains approximately 10% of light element(s) and a certain amount of light element(s) may be present in the inner core. Si and S are believed to be alloying light elements in the iron-rich planetary cores such as the Earth and Mars. Therefore, understanding the alloying effects of Ni, Si, and S on the phase diagram and physical properties of Fe under core conditions is crucial for geophysical and geochemical models of planetary interiors. The addition of Ni and Si does not appreciably change the compressibility of hcp-Fe under high pressures. Studies of the phase relations of Fe and Fe-Ni alloys indicate that Fe with up to 10 wt% Ni is likely to be in the hcp structure under inner core conditions. On the other hand, adding Si into Fe strongly stabilizes the bcc structure to much higher pressures and temperatures (Lin et al., 2002). We have also studied the sound velocities and magnetic properties of Fe0.92Ni0.08, Fe0.85Si0.15, and Fe3S alloys with nuclear resonant inelastic x-ray scattering and nuclear forward scattering up to 106 GPa, 70 GPa, and 57 GPa, respectively. The sound velocities of the alloys are obtained from the measured partial phonon density of states for 57Fe incorporated in the alloys. Addition of Ni slightly decreases the VP and VS of Fe under high pressures (Lin et al., 2003). Si or S alloyed with Fe increases the VP and VS under high pressures, which provides a better match to seismological data of the Earth's core. We note that the increase in the VP and VS of Fe0.85Si0.15 and Fe3S is mainly contributed from the density decrease of adding Si and S in iron. Time spectra of the nuclear forward scattering reveal that the most iron rich sulfide, Fe3S, undergoes a magnetic to non-magnetic transition at approximately 18 GPa from a low-pressure magnetically ordered state to a high-pressure non-magnetic ordered state. The magnetic transition significantly affects the elastic, thermodynamic, and vibrational properties of Fe3S. It is conceivable that the magnetic collapse of Fe3S may also affect the binary phase diagram of the iron-sulfur system, changing the solubility of sulfur in iron under higher pressures. Study of the non-magnetic phase is more relevant to understand the properties of the Fe3S under planetary core conditions where high pressures and high temperature ensure the non-magnetic ordering state, affecting the interpretation of the amount and properties of sulfur being in the planetary cores. If the Martian core is in the solid state containing 14.2 wt% sulfur, it is likely that the non-magnetic Fe3S phase is a dominant component and that our measured sound velocities of Fe3S can be used to understand the velocity profile in the Martian core.
Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.
Nilsson, M; Andreas, L; Lagerkvist, A
2016-05-01
About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo. The effects of Fe(0) addition can be related to binding of the studied elements to newly formed iron oxides. The effects of Fe(0) addition were often more distinct at pH values between 7 and 9, which indicates that a single treatment with only Fe addition would be less effective and a combined treatment is recommended. The pHstat results showed that accelerated carbonation in combination with Fe(0)(0) addition widens the pH range for low solubility of about one unit for several of the studied elements. This indicates that pre-treating the bottom ash with a combination of accelerated carbonation and Fe(0) addition makes the leaching properties of the ash less sensitive to pH changes that may occur during reuse. All in all, the addition of Fe(0) in combination with carbonation could be an effective pre-treatment method for decreasing the mobility of potentially harmful components in bottom ash. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu
2010-03-01
A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.
NASA Astrophysics Data System (ADS)
Carozzani, T.; Digonnet, H.; Gandin, Ch-A.
2012-01-01
A three-dimensional model is presented for the prediction of grain structures formed in casting. It is based on direct tracking of grain boundaries using a cellular automaton (CA) method. The model is fully coupled with a solution of the heat flow computed with a finite element (FE) method. Several unique capabilities are implemented including (i) the possibility to track the development of several types of grain structures, e.g. dendritic and eutectic grains, (ii) a coupling scheme that permits iterations between the FE method and the CA method, and (iii) tabulated enthalpy curves for the solid and liquid phases that offer the possibility to work with multicomponent alloys. The present CAFE model is also fully parallelized and runs on a cluster of computers. Demonstration is provided by direct comparison between simulated and recorded cooling curves for a directionally solidified aluminum-7 wt% silicon alloy.
Evaluation of elemental enrichments in surface sediments off southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chen-Tung; Kandasamy, Selvaraj
2008-05-01
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.
NASA Astrophysics Data System (ADS)
Feltzing, S.; Gustafsson, B.
1998-04-01
We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.
Multiphase magnetic systems: Measurement and simulation
NASA Astrophysics Data System (ADS)
Cao, Yue; Ahmadzadeh, Mostafa; Xu, Ke; Dodrill, Brad; McCloy, John S.
2018-01-01
Multiphase magnetic systems are common in nature and are increasingly being recognized in technical applications. One characterization method which has shown great promise for determining separate and collective effects of multiphase magnetic systems is first order reversal curves (FORCs). Several examples are given of FORC patterns which provide distinguishing evidence of multiple phases. In parallel, a visualization method for understanding multiphase magnetic interaction is given, which allocates Preisach magnetic elements as an input "Preisach hysteron distribution pattern" to enable simulation of different "wasp-waisted" magnetic behaviors. These simulated systems allow reproduction of different major hysteresis loops and FORC patterns of real systems and parameterized theoretical systems. The experimental FORC measurements and FORC diagrams of four commercially obtained magnetic materials, particularly those sold as nanopowders, show that these materials are often not phase pure. They exhibit complex hysteresis behaviors that are not predictable based on relative phase fraction obtained by characterization methods such as diffraction. These multiphase materials, consisting of various fractions of BaFe12O19, ɛ-Fe2O3, and γ-Fe2O3, are discussed.
Cathode refunctionalization as a lithium ion battery recycling alternative
NASA Astrophysics Data System (ADS)
Ganter, Matthew J.; Landi, Brian J.; Babbitt, Callie W.; Anctil, Annick; Gaustad, Gabrielle
2014-06-01
An approach to battery end-of-life (EOL) management is developed involving cathode refunctionalization, which enables remanufacturing of the cathode from EOL materials to regain the electrochemical performance. To date, the optimal end-of-life management of cathode materials is based on economic value and environmental impact which can influence the methods and stage of recycling. Traditional recycling methods can recover high value metal elements (e.g. Li, Co, Ni), but still require synthesis of new cathode from a mix of virgin and recovered materials. Lithium iron phosphate (LiFePO4) has been selected for study as a representative cathode material due to recent mass adoption and limited economic recycling drivers due to the low inherent cost of iron. Refunctionalization of EOL LiFePO4 cathode was demonstrated through electrochemical and chemical lithiation methods where the re-lithiated LiFePO4 regained the original capacity of 150-155 mAh g-1. The environmental impact of the new recycling technique was determined by comparing the embodied energy of cathode material originating from virgin, recycled, and refunctionalized materials. The results demonstrate that the LiFePO4 refunctionalization process, through chemical lithiation, decreases the embodied energy by 50% compared to cathode production from virgin materials.
A downloadable meshed human canine tooth model with PDL and bone for finite element simulations.
Boryor, Andrew; Hohmann, Ansgar; Geiger, Martin; Wolfram, Uwe; Sander, Christian; Sander, Franz Günter
2009-09-01
The aim of this study is to relieve scientists from the complex and time-consuming task of model generation by providing a model of a canine tooth and its periradicular tissues for Finite Element Method (FEM) simulations. This was achieved with diverse commercial software, based on a micro-computed tomography of the specimen. The Finite Element (FE) Model consists of enamel, dentin, nerve (innervation), periodontal ligament (PDL), and the surrounding cortical bone with trabecular structure. The area and volume meshes are of a very high quality in order to represent the model in a detailed form. Material properties are to be set individually by every user. The tooth model is provided for Abaqus, Ansys, HyperMesh, Nastran and as STL files, in an ASCII format for free download. This can help reduce the cost and effort of generating a tooth model for some research institutions, and may encourage other research groups to provide their high quality models for other researchers. By providing FE models, research results, especially FEM simulations, could be easily verified by others.
Denecke, Melissa A; Somogyi, Andrea; Janssens, Koen; Simon, Rolf; Dardenne, Kathy; Noseck, Ulrich
2007-06-01
Micro-focused synchrotron radiation techniques to investigate actinide elements in geological samples are becoming an increasingly used tool in nuclear waste disposal research. In this article, results using mu-focus techniques are presented from a bore core section of a U-rich tertiary sediment collected from Ruprechtov, Czech Republic, a natural analog to nuclear waste repository scenarios in deep geological formations. Different methods are applied to obtain various, complementary information. Elemental and element chemical state distributions are obtained from micro-XRF measurements, oxidation states of As determined from micro-XANES, and the crystalline structure of selected regions are studied by means of micro-XRD. We find that preparation of the thin section created an As oxidation state artifact; it apparently changed the As valence in some regions of the sample. Results support our previously proposed hypothesis of the mechanism for U-enrichment in the sediment. AsFeS coating on framboid Fe nodules in the sediment reduced mobile groundwater-dissolved U(VI) to less-soluble U(IV), thereby immobilizing the uranium in the sediment.
Alloy Design Data Generated for B2-Ordered Compounds
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Bozzolo, Guillermo; Abel, Phillip B.
2003-01-01
Developing alloys based on ordered compounds is significantly more complicated than developing designs based on disordered materials. In ordered compounds, the major constituent elements reside on particular sublattices. Therefore, the addition of a ternary element to a binary-ordered compound is complicated by the manner in which the ternary addition is made (at the expense of which binary component). When ternary additions are substituted for the wrong constituent, the physical and mechanical properties usually degrade. In some cases the resulting degradation in properties can be quite severe. For example, adding alloying additions to NiAl in the wrong combination (i.e., alloying additions that prefer the Al sublattice but are added at the expense of Ni) will severely embrittle the alloy to the point that it can literally fall apart during processing on cooling from the molten state. Consequently, alloying additions that strongly prefer one sublattice over another should always be added at the expense of that component during alloy development. Elements that have a very weak preference for a sublattice can usually be safely added at the expense of either element and will accommodate any deviation from stoichiometry by filling in for the deficient component. Unfortunately, this type of information is not known beforehand for most ordered systems. Therefore, a computational survey study, using a recently developed quantum approximate method, was undertaken at the NASA Glenn Research Center to determine the preferred site occupancy of ternary alloying additions to 12 different B2-ordered compounds including NiAl, FeAl, CoAl, CoFe, CoHf, CoTi, FeTi, RuAl, RuSi, RuHf, RuTi, and RuZr. Some of these compounds are potential high temperature structural alloys; others are used in thin-film magnetic and other electronic applications. The results are summarized. The italicized elements represent the previous sum total alloying information known and verify the computational method used to establish the table. Details of the computational procedures used to determine the preferred site occupancy can be found in reference 2. As further substantiation of the validity of the technique, and its extension to even more complicated systems, it was applied to two simultaneous alloying additions in an ordered alloy.
NASA Astrophysics Data System (ADS)
Lai, Changliang; Wang, Junbiao; Liu, Chuang
2014-10-01
Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.
NASA Astrophysics Data System (ADS)
Hasan Rhaif Al-Sahlanee, Mayyadah; Maizan Ramli, Ramzun; Abdul Hassan Ali, Miami; Fadhil Tawfiq, Nada; Zahirah Noor Azman, Nurul; Abdul Rahman, Azhar; Shahrim Mustafa, Iskandar; Noor Ashikin Nik Abdul Razak, Nik; Zakiah Yahaya, Nor; Mohammed Al-Marri, Hana; Syuhada Ayob, Nur; Zakaria, Nabela
2017-10-01
Trace elements are essential nutritional components in humans and inconvenient tissue content that have a significant influence on infant size. The aim of this study is to evaluate the effects of concentration of elements (uranium (U), lead (Pb) and iron (Fe)) and absorption of Pb and Fe on maternal and umbilical cord blood samples. The concentration and absorption of Pb and Fe in blood samples were determined by using atomic absorption spectrophotometry device, while the uranium concentration was determined by using CR-39 detector. Fifty women of age 16-44 years are involved in this study. Results show that the maximum and minimum values of both concentration and absorption in the maternal samples were for Pb and Fe, respectively. In addition, for umbilical cord, the maximum values of concentration and absorption were for Fe and the minimum concentration and absorption were for U and Pb, respectively. A significant correlation between maternal and umbilical cord blood samples was found. This indicates that the Pb, U and Fe elements can easily transfer from maternal to the fetal body which impacts the growth of fetus.
NASA Astrophysics Data System (ADS)
Lavery, N.; Taylor, C.
1999-07-01
Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, Heather R.; Pilachowski, Catherine A.; Friel, Eileen D., E-mail: jacob189@msu.edu, E-mail: catyp@astro.indiana.edu, E-mail: edfriel@mac.com
We present a detailed chemical abundance study of evolved stars in 10 open clusters based on Hydra multi-object echelle spectra obtained with the WIYN 3.5 m telescope. From an analysis of both equivalent widths and spectrum synthesis, abundances have been determined for the elements Fe, Na, O, Mg, Si, Ca, Ti, Ni, Zr, and for two of the 10 clusters, Al and Cr. To our knowledge, this is the first detailed abundance analysis for clusters NGC 1245, NGC 2194, NGC 2355, and NGC 2425. These 10 clusters were selected for analysis because they span a Galactocentric distance range R{sub gc}more » {approx} 9-13 kpc, the approximate location of the transition between the inner and outer disks. Combined with cluster samples from our previous work and those of other studies in the literature, we explore abundance trends as a function of cluster R{sub gc}, age, and [Fe/H]. As found previously by us and other studies, the [Fe/H] distribution appears to decrease with increasing R{sub gc} to a distance of {approx}12 kpc and then flattens to a roughly constant value in the outer disk. Cluster average element [X/Fe] ratios appear to be independent of R{sub gc}, although the picture for [O/Fe] is more complicated with a clear trend of [O/Fe] with [Fe/H] and sample incompleteness. Other than oxygen, no other element [X/Fe] exhibits a clear trend with [Fe/H]; likewise, there does not appear to be any strong correlation between abundance and cluster age. We divided clusters into different age bins to explore temporal variations in the radial element distributions. The radial metallicity gradient appears to have flattened slightly as a function of time, as found by other studies. There is also some indication that the transition from the inner disk metallicity gradient to the {approx}constant [Fe/H] distribution of the outer disk occurs at different Galactocentric radii for different age bins. However, interpretation of the time evolution of radial abundance distributions is complicated by the unequal R{sub gc} and [Fe/H] ranges spanned by clusters in different age bins.« less
A new solution method for wheel/rail rolling contact.
Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei
2016-01-01
To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.
Zhai, Lin-Feng; Song, Wei; Tong, Zhong-Hua; Sun, Min
2012-12-01
Sulfide present in wastewaters and waste gases should be removed due to its toxicity, corrosivity, and malodorous property. Development of effective, stable, and feasible methods for sulfur recovery from sulfide attains a double objective of waste minimization and resource recovery. Here we report a novel fuel-cell-assisted iron redox (FC-IR) process for simultaneously recovering sulfur and electricity from synthetic sulfide wastewater. The FC-IR system consists of an oxidizing reactor where sulfide is oxidized to elemental sulfur by Fe(III), and a fuel cell where Fe(III) is regenerated from Fe(II) concomitantly with electricity producing. The oxidation of sulfide by Fe(III) is significantly dependent on solution pH. Increasing the pH from 0.88 to 1.96 accelerates the oxidation of sulfide, however, lowers the purity of the produced elemental sulfur. The performance of fuel cell is also a strong function of solution pH. Fe(II) is completely oxidized to Fe(III) when the fuel cell is operated at a pH above 6.0, whereas only partially oxidized below pH 6.0. At pH 6.0, the highest columbic efficiency of 75.7% is achieved and electricity production maintains for the longest time of 106 h. Coupling operation of the FC-IR system obtains sulfide removal efficiency of 99.90%, sulfur recovery efficiency of 78.6 ± 8.3%, and columbic efficiency of 58.6 ± 1.6%, respectively. These results suggest that the FC-IR process is a promising tool to recover sulfur and energy from sulfide. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhu, Rui; Rohlmann, Antonius
2014-06-01
In only a few published finite element (FE) simulations have muscle forces been applied to the spine. Recently, muscle forces determined using an inverse static (IS) model of the spine were transferred to a spinal FE model, and the effect of methodical parameters was investigated. However, the sensitivity of anthropometric differences between FE and IS models, such as body height and spinal orientation, was not considered. The aim of this sensitivity study was to determine the influence of those differences on the intervertebral rotations (IVRs) following the transfer of muscle forces from an IS model to a FE model. Muscle forces were estimated for 20° flexion and 10° extension of the upper body using an inverse static musculoskeletal model. These forces were subsequently transferred to a nonlinear FE model of the spino-pelvic complex, which includes 243 muscle fascicles. Deviations of body height (±10 cm), spinal orientation in the sagittal plane (±10°), and body weight (±10 kg) between both models were intentionally generated, and their influences on IVRs were determined. The changes in each factor relative to their corresponding reference value of the IS model were calculated. Deviations in body height, spinal orientation, and body weight resulted in maximum changes in the IVR of 19.2%, 26% and 4.2%, respectively, relative to T12-S1 IVR. When transferring muscle forces from an IS to a FE model, it is crucial that both models have the same spinal orientation and height. Additionally, the body weight should be equal in both models.
NASA Astrophysics Data System (ADS)
Tonkacheev, Dmitry; Chareev, Dmitry; Abramova, Vera; Tagirov, Boris
2016-04-01
Sphalerite and covellite are widespread minerals in the different genetic types of deposits and forms under the various conditions. The purpose of this work is to determine the possible range of concentration and chemical state of Au and PGE (Pt, Pd, Rh) in sphalerite (Zn,Fe) S and covellite (CuS). These minerals were synthesized using gas transport and salt flux techniques. The crystals of ZnS were grown using the gas transport method at 850°C and the salt flux one using NaCl/KCl, CsCl/NaCl/KCl, and LiCl/RbCl eutectic mixtures at 850, 645 and 470°C, respectively. CuS crystals were synthesized using the salt flux method in RbCl/LiCl melt at 470 and 340°C. The trace metal activity was always controlled by the presence of pure metal or its sulfide, and, therefore, the concentration of these elements in synthesized phases represent the maximum possible value for given T/f(S2) synthesis parameters. The LA-ICP-MS and/or EPMA techniques were used to determine the Au concentration in synthesized phases. The concentration of Au in sphalerite, synthesized at 850°C with admixture of Cd, Se, In, Fe, and Mn, reached 0.3wt%, whereas the sphalerite cell parameter extremely increased up to 5.4161Å relatively to 5.4060 Å for pure ZnS. It was found that the observed high Au concentration is caused by the presence of In (2091±46 ppm Au in sample with Fe and In in comparison with 14±7 for Se-bearing ZnS, 94±12 ppm for Fe-Mn-bearing sphalerite, and 96±46 for Fe-bearing sphalerite. The concentration of Au in Fe-bearing sphalerite synthesized at 645°C does not exceed 5 ppm. Therefore, increase of temperature results in the increase of Au concentration in sphalerite. The concentration of Au in another Fe-bearing-sphalerite series synthesized using gas transport method at 850°C various from 200 to 500 ppm and depends on the iron content. This fact could be related to the oxidation state or Fe in ZnS-FeS solid solution series. The concentration of Pt and Pd, Rh in sphalerite is below the detection limit of LA-ICP-MS (~30 ppb). However, these trace elements change the cathodoluminescence properties of ZnS. The concentration or gold in covellite was determined by both LA-ICP-MS and EPMA techniques and the final values clearly fit together. The maximum concentration can be observed at 450° and equal to 0.3wt%. This value changes minor due to the increasing of the temperature. In principle, adding admixtures of In, Zn, Se, Cu, Sb, Bi did not affect on the concentration of Au. However, in experiment where sulfur is excessive and a mixture of In, Zn, Se, Cu, Sb, Bi, were added the concentration of Au is equal 0.128+0.028 ppm. The gold distribution in covellite and sphalerite is always homogeneous. According to XANES data, atoms of Au in the crystal structure covellite is in triangles, formed by the atoms of Cu. In sphalerite gold is in "invisible" state too.
Stellar Abundances for Galactic Archaeology Database. IV. Compilation of stars in dwarf galaxies
NASA Astrophysics Data System (ADS)
Suda, Takuma; Hidaka, Jun; Aoki, Wako; Katsuta, Yutaka; Yamada, Shimako; Fujimoto, Masayuki Y.; Ohtani, Yukari; Masuyama, Miyu; Noda, Kazuhiro; Wada, Kentaro
2017-10-01
We have constructed a database of stars in Local Group galaxies using the extended version of the SAGA (Stellar Abundances for Galactic Archaeology) database that contains stars in 24 dwarf spheroidal galaxies and ultra-faint dwarfs. The new version of the database includes more than 4500 stars in the Milky Way, by removing the previous metallicity criterion of [Fe/H] ≤ -2.5, and more than 6000 stars in the Local Group galaxies. We examined the validity of using a combined data set for elemental abundances. We also checked the consistency between the derived distances to individual stars and those to galaxies as given in the literature. Using the updated database, the characteristics of stars in dwarf galaxies are discussed. Our statistical analyses of α-element abundances show that the change of the slope of the [α/Fe] relative to [Fe/H] (so-called "knee") occurs at [Fe/H] = -1.0 ± 0.1 for the Milky Way. The knee positions for selected galaxies are derived by applying the same method. The star formation history of individual galaxies is explored using the slope of the cumulative metallicity distribution function. Radial gradients along the four directions are inspected in six galaxies where we find no direction-dependence of metallicity gradients along the major and minor axes. The compilation of all the available data shows a lack of CEMP-s population in dwarf galaxies, while there may be some CEMP-no stars at [Fe/H] ≲ -3 even in the very small sample. The inspection of the relationship between Eu and Ba abundances confirms an anomalously Ba-rich population in Fornax, which indicates a pre-enrichment of interstellar gas with r-process elements. We do not find any evidence of anti-correlations in O-Na and Mg-Al abundances, which characterizes the abundance trends in the Galactic globular clusters.
NASA Astrophysics Data System (ADS)
Tsuchiyama, A.; Nakano, T.; Uesugi, K.; Uesugi, M.; Takeuchi, A.; Suzuki, Y.; Noguchi, R.; Matsumoto, T.; Matsuno, J.; Nagano, T.; Imai, Y.; Nakamura, T.; Ogami, T.; Noguchi, T.; Abe, M.; Yada, T.; Fujimura, A.
2013-09-01
We developed a novel technique called "analytical dual-energy microtomography" that uses the linear attenuation coefficients (LACs) of minerals at two different X-ray energies to nondestructively obtain three-dimensional (3D) images of mineral distribution in materials such as rock specimens. The two energies are above and below the absorption edge energy of an abundant element, which we call the "index element". The chemical compositions of minerals forming solid solution series can also be measured. The optimal size of a sample is of the order of the inverse of the LAC values at the X-ray energies used. We used synchrotron-based microtomography with an effective spatial resolution of >200 nm to apply this method to small particles (30-180 μm) collected from the surface of asteroid 25143 Itokawa by the Hayabusa mission of the Japan Aerospace Exploration Agency (JAXA). A 3D distribution of the minerals was successively obtained by imaging the samples at X-ray energies of 7 and 8 keV, using Fe as the index element (the K-absorption edge of Fe is 7.11 keV). The optimal sample size in this case is of the order of 50 μm. The chemical compositions of the minerals, including the Fe/Mg ratios of ferromagnesian minerals and the Na/Ca ratios of plagioclase, were measured. This new method is potentially applicable to other small samples such as cosmic dust, lunar regolith, cometary dust (recovered by the Stardust mission of the National Aeronautics and Space Administration [NASA]), and samples from extraterrestrial bodies (those from future sample return missions such as the JAXA Hayabusa2 mission and the NASA OSIRIS-REx mission), although limitations exist for unequilibrated samples. Further, this technique is generally suited for studying materials in multicomponent systems with multiple phases across several research fields.
Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon
van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.
2010-01-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062
Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.
Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W
2010-10-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.
NASA Astrophysics Data System (ADS)
Naseem, Swaleha; Ali, S. Asad; Khan, Wasi; Khan, Shakeel
2018-05-01
Ca substituted LaFeO3 orthoferrite nanostructure perovskite has been synthesized by gel combustion method using citric acid as a fuel. The structural and optical properties were investigated by various tools. The structural analysis through Rietveld refinement of the XRD data revealed single phase of orthorhombic structure in R-3c space group of the sample without presence of any other impurity phase. Scanning electron microscopy (SEM) image exhibits non-uniform distribution of the nanoparticles in agglomerated form. The purity of the sample and stoichiometric ratio of the elements were established through energy dispersive x-ray spectroscopy (EDS). FTIR spectroscopy measurement predicts the presence of various band relation of the chemical species of Ca with LaFeO3. Optical properties were explored through UV-visible absorption spectroscopy that showed absorption edge at 347 nm and energy band gap was estimated as 3.47eV using Tauc's relation.
Spectroscopic Study of HD 179821 (IRAS 19114+0002): Proto-Planetary Nebula or Supergiant?
NASA Technical Reports Server (NTRS)
Reddy, B. E.; Hrivnak, Bruce J.
1999-01-01
A detailed chemical composition analysis of the bright post-AGB candidate HD 179821 (IRAS 19114 + 0002) is presented. The LTE analysis, based on high-resolution (R approximately equal 50,000) and high-quality (S/N approximately equal 300) spectra, yields atmospheric parameters T(sub eff) = 6750 K, log g = 0.5, and xi(sub t) = 5.25 km/s. The elemental abundance results of HD 179821 are found to be [Fe/H] = -0.1, [C/Fe] = +0.2, [N/Fe] = +1.3, [O/Fe] = +0.2, [alpha-process/Fe] = +0.5, and [s-process/Fe] = +0.4. These values clearly differ from the elemental abundances of Population I F supergiants. The C, N, and O abundances and the total CNO abundance value relative to Fe, [C+N+O/Fe] = +0.5, indicate that the photosphere of HD 179821 is contaminated with both the H- and He-burning products of the AGB phase. The evidence for He burning through the 3.alpha process and deep AGB mixing also comes from the observed overabundances of s-process elements. Remarkably, the abundance of the element Na is found to be very large, [Na/Fe] = +0.9. The ratio O/C = 2.6 indicates that the atmosphere is oxygen rich. The results of this abundance study support the argument that HD 179821 is a proto-planetary nebula,. probably with an intermediate-mass progenitor. However, the strength of the O I triplet lines at 7774 A and the distance derived from the interstellar Na I D1 and D2 components imply that the star is a luminous object (M(sub bol) approximately -8.9 +/- 1) and thus a massive supergiant. Thus, while this study contributes important new observational results for this star, an unambiguous determination of its evolutionary status has yet to be achieved.
Ziegler, Brady A.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.
2015-01-01
Biodegradation of organic matter, including petroleum-based fuels and biofuels, can create undesired secondary water-quality effects. Trace elements, especially arsenic (As), have strong adsorption affinities for Fe(III) (oxyhydr)-oxides and can be released to groundwater during Fe-reducing biodegradation. We investigated the mobilization of naturally occurring As, cobalt (Co), chromium (Cr), and nickel (Ni) from wetland sediments caused by the introduction of benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol mixtures under iron- and nitrate-reducing conditions, using in situ push–pull tests. When BTEX alone was added, results showed simultaneous onset and similar rates of Fe reduction and As mobilization. In the presence of ethanol, the maximum rates of As release and Fe reduction were higher, the time to onset of reaction was decreased, and the rates occurred in multiple stages that reflected additional processes. The concentration of As increased from <1 μg/L to a maximum of 99 μg/L, exceeding the 10 μg/L limit for drinking water. Mobilization of Co, Cr, and Ni was observed in association with ethanol biodegradation but not with BTEX. These results demonstrate the potential for trace-element contamination of drinking water during biodegradation and highlight the importance of monitoring trace elements at natural and enhanced attenuation sites.
NASA Astrophysics Data System (ADS)
Fivet, V.; Quinet, P.; Bautista, M. A.
2016-01-01
Aims: Accurate and reliable atomic data for lowly ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are of paramount importance for analyzing the high-resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources, such as Herbig-Haro objects in the Orion Nebula and stars like Eta Carinae. However, forbidden M1 and E2 transitions between low-lying metastable levels of doubly charged iron-peak ions have been investigated very little so far, and radiative rates for those lines remain sparse or nonexistent. We attempt to fill that gap and provide transition probabilities for the most important forbidden lines of all doubly ionized iron-peak elements. Methods: We carried out a systematic study of the electronic structure of doubly ionized Fe-peak species. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities were computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan and the central Thomas-Fermi-Dirac-Amaldi potential approximation implemented in AUTOSTRUCTURE. This multiplatform approach allowed for consistency checks and intercomparison and has proven very useful in many previous works for estimating the uncertainties affecting the radiative data. Results: We present transition probabilities for the M1 and E2 forbidden lines depopulating the metastable even levels belonging to the 3dk and 3dk-14s configurations in Sc III (k = 1), Ti III (k = 2), V III (k = 3), Cr III (k = 4), Mn III (k = 5), Fe III (k = 6), Co III (k = 7), and Ni III (k = 8).
NASA Astrophysics Data System (ADS)
Naiman, Jill P.; Pillepich, Annalisa; Springel, Volker; Ramirez-Ruiz, Enrico; Torrey, Paul; Vogelsberger, Mark; Pakmor, Rüdiger; Nelson, Dylan; Marinacci, Federico; Hernquist, Lars; Weinberger, Rainer; Genel, Shy
2018-06-01
The distribution of elements in galaxies provides a wealth of information about their production sites and their subsequent mixing into the interstellar medium. Here we investigate the elemental distributions of stars in the IllustrisTNG simulations. We analyse the abundance ratios of magnesium and europium in Milky Way-like galaxies from the TNG100 simulation (stellar masses log (M⋆/M⊙) ˜ 9.7-11.2). Comparison of observed magnesium and europium for individual stars in the Milky Way with the stellar abundances in our more than 850 Milky Way-like galaxies provides stringent constraints on our chemical evolutionary methods. Here, we use the magnesium-to-iron ratio as a proxy for the effects of our SNII (core-collapse supernovae) and SNIa (Type Ia supernovae) metal return prescription and as a comparison to a variety of galactic observations. The europium-to-iron ratio tracks the rare ejecta from neutron star-neutron star mergers, the assumed primary site of europium production in our models, and is a sensitive probe of the effects of metal diffusion within the gas in our simulations. We find that europium abundances in Milky Way-like galaxies show no correlation with assembly history, present-day galactic properties, and average galactic stellar population age. We reproduce the europium-to-iron spread at low metallicities observed in the Milky Way, and find it is sensitive to gas properties during redshifts z ≈ 2-4. We show that while the overall normalization of [Eu/Fe] is susceptible to resolution and post-processing assumptions, the relatively large spread of [Eu/Fe] at low [Fe/H] when compared to that at high [Fe/H] is quite robust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Ke; Xu, Fei; Grunewald, Jonathan B.
The rapid growth of intermittent renewable energy (e.g., wind and solar) demands low-cost and large-scale energy storage systems for smooth and reliable power output, where redox-flow batteries (RFBs) could find their niche. In this work, we introduce the first all-soluble all-iron RFB based on iron as the same redox-active element but with different coordination chemistries in alkaline aqueous system. The adoption of the same redox-active element largely alleviates the challenging problem of cross-contamination of metal ions in RFBs that use two redox-active elements. An all-soluble all-iron RFB is constructed by combining an iron–triethanolamine redox pair (i.e., [Fe(TEOA)OH] –/[Fe(TEOA)(OH)] 2–) andmore » an iron–cyanide redox pair (i.e., Fe(CN) 6 3–/Fe(CN) 6 4–), creating 1.34 V of formal cell voltage. Furthermore, good performance and stability have been demonstrated, after addressing some challenges, including the crossover of the ligand agent. As exemplified by the all-soluble all-iron flow battery, combining redox pairs of the same redox-active element with different coordination chemistries could extend the spectrum of RFBs.« less
Optimal control penalty finite elements - Applications to integrodifferential equations
NASA Astrophysics Data System (ADS)
Chung, T. J.
The application of the optimal-control/penalty finite-element method to the solution of integrodifferential equations in radiative-heat-transfer problems (Chung et al.; Chung and Kim, 1982) is discussed and illustrated. The nonself-adjointness of the convective terms in the governing equations is treated by utilizing optimal-control cost functions and employing penalty functions to constrain auxiliary equations which permit the reduction of second-order derivatives to first order. The OCPFE method is applied to combined-mode heat transfer by conduction, convection, and radiation, both without and with scattering and viscous dissipation; the results are presented graphically and compared to those obtained by other methods. The OCPFE method is shown to give good results in cases where standard Galerkin FE fail, and to facilitate the investigation of scattering and dissipation effects.
Autoclave decomposition method for metals in soils and sediments.
Navarrete-López, M; Jonathan, M P; Rodríguez-Espinosa, P F; Salgado-Galeana, J A
2012-04-01
Leaching of partially leached metals (Fe, Mn, Cd, Co, Cu, Ni, Pb, and Zn) was done using autoclave technique which was modified based on EPA 3051A digestion technique. The autoclave method was developed as an alternative to the regular digestion procedure passed the safety norms for partial extraction of metals in polytetrafluoroethylene (PFA vessel) with a low constant temperature (119.5° ± 1.5°C) and the recovery of elements were also precise. The autoclave method was also validated using two Standard Reference Materials (SRMs: Loam Soil B and Loam Soil D) and the recoveries were equally superior to the traditionally established digestion methods. Application of the autoclave was samples from different natural environments (beach, mangrove, river, and city soil) to reproduce the recovery of elements during subsequent analysis.
High-resolution mapping of elemental abundances of the lunar regolith
NASA Astrophysics Data System (ADS)
Wöhler, Christian; Berezhnoy, Alexey; Evans, Richard
Many attempts have been made to derive elemental abundances of the lunar surface from mul-tispectral images (cf. e.g. [1]). The gamma ray spectrometer on board the Lunar Prospector spacecraft (LP GRS) provided the first "direct" global measurements of lunar elemental abun-dances including Fe, Th (15 km surface resolution), Ti, K, Sm (60 km), Al, O, Si, Mg, Ca, and U (150 km). In this study we rely on the elemental abundance estimation method intro-duced in [2], which is based on spectral features derived from the Clementine UVVIS+NIR data set and estimates the abundances of Ca, Al, Fe, Mg, Ti, and O by applying a second order polynomial regression model with the corresponding LP GRS abundances as "ground truth". The regarded spectral features are the continuum slope, the FWHM of the ferrous absorption trough near 1000 nm after continuum division, and the absorption wavelengths and relative absorption depths (cf. [2,3] for details). A petrographic analysis is performed based on the abundances of the key elements Al, Fe, and Mg [4]. The relative abundances of the endmem-bers mare basalt, Mg-rich rock, and ferroan anorthosite are estimated using Fe-Mg and Al-Mg diagrams, where the endmember compositions are determined based on the three-endmember plane fitted in Al-Fe-Mg space to the elemental abundances at 150 km resolution obtained with the regression model. The root-mean-square deviation from the three-endmember plane is only 0.3 wt percent. Our petrographic map shows Mg-rich rocks in the Mare Frigoris region, on the edges of large maria, in the South Pole Aitken basin, and in some cryptomaria such as the Schiller-Schickard basin. The presence of Mg-rich rocks in Mare Frigoris explains the Fe and Ti depletion discussed in [5]. Furthermore, our analysis confirms that the basalts of eastern mare Frigoris have an atypically high Al content [6]. The region south of Lichtenberg and around Seleucus and Briggs in northwestern Oceanus Procellarum is characterised by comparably large deviations from the three-endmember plane in Al-Fe-Mg space of 1 wt percent and more. These anomalous basalts have low ages of 1.7-2.8 Ga [7]. They are characterised by secondary absorption features near 1100 nm and high 2000/1500 spectral ratios, indicating a high olivine content. Anomalous material in lunar craters is generally interpreted as being excavated during crater formation from the lower lunar crust or upper mantle (cf. e.g. [8]). For the highland crater Tycho, our method reveals mafic units in the northern crater wall and in the central peaks and Mg-rich rock in the southwestern crater wall and distributed throughout the crater floor. This material is interpreted in [9] as anorthositic gabbro with a low Fe content and a mafic mineral assemblage dominated by high-Ca pyroxene. Our petrographic map of Copernicus shows the central peaks as small regions composed of the mare basalt endmember (interpreted as gabbroic material) with admixed troctolite (western peak) and mainly troctolite (eastern peak), respectively [8]. For the central peaks of the crater Bullialdus, our technique clearly reveals the Mg-rich rock component, which is interpreted as norite in [10]. We present very high resolution petrographic maps derived from newly released Selene multi-spectral data of the central peaks of Copernicus and Bullialdus. For the pyroclastic deposits (LPDs) on the floor of Alphonsus, our technique indicates high Mg/Al ratios between 1.4 (eastern LPDs) and 2.5 (western LPD) [11]. The secondary absorption near 1100 nm and the high 2000/1500 ratio suggest the presence of a major olivine component. As a general result, we show that our regression-based elemental abundance estimation method allows the detection of the main lunar terrain classes and rock types on small spatial scales based on multispectral imagery in the visible and near-infrared domain. [1] Lucey et al. (2000), JGR 105(E8), 20297-20306. [2] Wühler et al. (2009), EPSC 2009, 263. [3] Evans et al. (2009) LPSC XXXX, 1093. [4] Berezhnoy et al. (2005), PSS 53, 1097-1108. [5] Taylor et al. (1996), LPSC XXVII, 1317-1318. [6] Kramer et al. (2009), LPSC XXXX, 2369. [7] Hiesinger et al. (2003), JGR 108(E7), 5065-5091. [8] Pieters and Tompkins (1999), LPSC XXX, 1286. [9] Lucey et al. (2002), LPSC XXXIII, 1056. [10] Tompkins et al. (1994), Icarus 110(2), 261-274. [11] Schonfeld and Bielefeld (1978), LPSC V, 3037-3048.