Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.
Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun
2016-02-01
Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.
Spectral-element Method for 3D Marine Controlled-source EM Modeling
NASA Astrophysics Data System (ADS)
Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.
2017-12-01
As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).
NASA Astrophysics Data System (ADS)
Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi
2018-04-01
Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.
Spectral element method for elastic and acoustic waves in frequency domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min
Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the usemore » of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.« less
Symplectic discretization for spectral element solution of Maxwell's equations
NASA Astrophysics Data System (ADS)
Zhao, Yanmin; Dai, Guidong; Tang, Yifa; Liu, Qinghuo
2009-08-01
Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.
A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation
NASA Astrophysics Data System (ADS)
Terrana, S.; Vilotte, J. P.; Guillot, L.
2018-04-01
We introduce a time-domain, high-order in space, hybridizable discontinuous Galerkin (DG) spectral element method (HDG-SEM) for wave equations in coupled elastic-acoustic media. The method is based on a first-order hyperbolic velocity-strain formulation of the wave equations written in conservative form. This method follows the HDG approach by introducing a hybrid unknown, which is the approximation of the velocity on the elements boundaries, as the only globally (i.e. interelement) coupled degrees of freedom. In this paper, we first present a hybridized formulation of the exact Riemann solver at the element boundaries, taking into account elastic-elastic, acoustic-acoustic and elastic-acoustic interfaces. We then use this Riemann solver to derive an explicit construction of the HDG stabilization function τ for all the above-mentioned interfaces. We thus obtain an HDG scheme for coupled elastic-acoustic problems. This scheme is then discretized in space on quadrangular/hexahedral meshes using arbitrary high-order polynomial basis for both volumetric and hybrid fields, using an approach similar to the spectral element methods. This leads to a semi-discrete system of algebraic differential equations (ADEs), which thanks to the structure of the global conservativity condition can be reformulated easily as a classical system of first-order ordinary differential equations in time, allowing the use of classical explicit or implicit time integration schemes. When an explicit time scheme is used, the HDG method can be seen as a reformulation of a DG with upwind fluxes. The introduction of the velocity hybrid unknown leads to relatively simple computations at the element boundaries which, in turn, makes the HDG approach competitive with the DG-upwind methods. Extensive numerical results are provided to illustrate and assess the accuracy and convergence properties of this HDG-SEM. The approximate velocity is shown to converge with the optimal order of k + 1 in the L2-norm, when element polynomials of order k are used, and to exhibit the classical spectral convergence of SEM. Additional inexpensive local post-processing in both the elastic and the acoustic case allow to achieve higher convergence orders. The HDG scheme provides a natural framework for coupling classical, continuous Galerkin SEM with HDG-SEM in the same simulation, and it is shown numerically in this paper. As such, the proposed HDG-SEM can combine the efficiency of the continuous SEM with the flexibility of the HDG approaches. Finally, more complex numerical results, inspired from real geophysical applications, are presented to illustrate the capabilities of the method for wave propagation in heterogeneous elastic-acoustic media with complex geometries.
A hybrid method for the computation of quasi-3D seismograms.
NASA Astrophysics Data System (ADS)
Masson, Yder; Romanowicz, Barbara
2013-04-01
The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these Green's functions are computed using 2D SEM simulation in a 1D Earth model. Such seismograms account for the 3D structure inside the region of interest in a quasi-exact manner. Later we plan to extrapolate the misfit function computed from such seismograms at the stations back into the SEM region in order to compute local adjoint kernels. This opens a new path toward regional adjoint tomography into the deep Earth. Capdeville, Y., et al. (2002). "Coupling the spectral element method with a modal solution for elastic wave propagation in global Earth models." Geophysical Journal International 152(1): 34-67. Lekic, V. and B. Romanowicz (2011). "Inferring upper-mantle structure by full waveform tomography with the spectral element method." Geophysical Journal International 185(2): 799-831. Nissen-Meyer, T., et al. (2007). "A two-dimensional spectral-element method for computing spherical-earth seismograms-I. Moment-tensor source." Geophysical Journal International 168(3): 1067-1092. Robertsson, J. O. A. and C. H. Chapman (2000). "An efficient method for calculating finite-difference seismograms after model alterations." Geophysics 65(3): 907-918. Tape, C., et al. (2009). "Adjoint tomography of the southern California crust." Science 325(5943): 988-992.
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2012-06-01
Scanning electron microscopy with energy dispersive x-ray spectrometry (SEM/EDS) is a powerful and flexible elemental analysis method that can identify and quantify elements with atomic numbers > 4 (Be) present as major constituents (where the concentration C > 0.1 mass fraction, or 10 weight percent), minor (0.01<= C <= 0.1) and trace (C < 0.01, with a minimum detectable limit of ~+/- 0.0005 - 0.001 under routine measurement conditions, a level which is analyte and matrix dependent ). SEM/EDS can select specimen volumes with linear dimensions from ~ 500 nm to 5 μm depending on composition (masses ranging from ~ 10 pg to 100 pg) and can provide compositional maps that depict lateral elemental distributions. Despite the maturity of SEM/EDS, which has a history of more than 40 years, and the sophistication of modern analytical software, the method is vulnerable to serious shortcomings that can lead to incorrect elemental identifications and quantification errors that significantly exceed reasonable expectations. This paper will describe shortcomings in peak identification procedures, limitations on the accuracy of quantitative analysis due to specimen topography or failures in physical models for matrix corrections, and quantitative artifacts encountered in xray elemental mapping. Effective solutions to these problems are based on understanding the causes and then establishing appropriate measurement science protocols. NIST DTSA II and Lispix are open source analytical software available free at www.nist.gov that can aid the analyst in overcoming significant limitations to SEM/EDS.
Pinteala, Tudor; Chiriac, Anca Eduard; Rosca, Irina; Larese Filon, Francesca; Pinteala, Mariana; Chiriac, Anca; Podoleanu, Cristian; Stolnicu, Simona; Coros, Marius Florin; Coroaba, Adina
2017-01-01
Background Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques have been used in various fields of medical research, including different pathologies of the nails; however, no studies have focused on obtaining high-resolution microscopic images and elemental analysis of disorders caused by synthetic nails and acrylic adhesives. Methods Damaged/injured fingernails caused by the use of acrylate glue and synthetic nails were investigated using SEM and EDX methods. Results SEM and EDX proved that synthetic nails, acrylic glue, and nails damaged by contact with acrylate glue have a different morphology and different composition compared to healthy human nails. Conclusions SEM and EDX analysis can give useful information about the aspects of topography (surface sample), morphology (shape and size), hardness or reflectivity, and the elemental composition of nails. PMID:28232921
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekar, Kursat B; Miller, Thomas Martin; Patton, Bruce W
The characteristic X-rays produced by the interactions of the electron beam with the sample in a scanning electron microscope (SEM) are usually captured with a variable-energy detector, a process termed energy dispersive spectrometry (EDS). The purpose of this work is to exploit inverse simulations of SEM-EDS spectra to enable rapid determination of sample properties, particularly elemental composition. This is accomplished using penORNL, a modified version of PENELOPE, and a modified version of the traditional Levenberg Marquardt nonlinear optimization algorithm, which together is referred to as MOZAIK-SEM. The overall conclusion of this work is that MOZAIK-SEM is a promising method formore » performing inverse analysis of X-ray spectra generated within a SEM. As this methodology exists now, MOZAIK-SEM has been shown to calculate the elemental composition of an unknown sample within a few percent of the actual composition.« less
The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.
NASA Astrophysics Data System (ADS)
Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.
2009-04-01
Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D, which allows to handle the topography of the domain very accurately. Moreover, the fact that the resulting mass matrix is block-diagonal and that IPDG is compatible with the use of high-order finite element may let us suppose that its performances are similar to the ones of the SEM. In this presentation, we study the performances of IDPG through numerical comparisons with the SEM in 1D and 2D. We compare in particular the accuracy of the solutions obtained by the two methods with various order of approximation and the computational burden of the algorithms. The conclusion is IPDG and SEM perform similarly when considering low order finite elements while IPDG outperforms SEM in case of high order finite elements. Next we illustrate the impact of IPDG on the RTM, first through a simple configuration test (two-layered medium), then through realistic industrial applications in 2D.
High-precision solution to the moving load problem using an improved spectral element method
NASA Astrophysics Data System (ADS)
Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li
2018-02-01
In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
A Spectral Element Discretisation on Unstructured Triangle / Tetrahedral Meshes for Elastodynamics
NASA Astrophysics Data System (ADS)
May, Dave A.; Gabriel, Alice-A.
2017-04-01
The spectral element method (SEM) defined over quadrilateral and hexahedral element geometries has proven to be a fast, accurate and scalable approach to study wave propagation phenomena. In the context of regional scale seismology and or simulations incorporating finite earthquake sources, the geometric restrictions associated with hexahedral elements can limit the applicability of the classical quad./hex. SEM. Here we describe a continuous Galerkin spectral element discretisation defined over unstructured meshes composed of triangles (2D), or tetrahedra (3D). The method uses a stable, nodal basis constructed from PKD polynomials and thus retains the spectral accuracy and low dispersive properties of the classical SEM, in addition to the geometric versatility provided by unstructured simplex meshes. For the particular basis and quadrature rule we have adopted, the discretisation results in a mass matrix which is not diagonal, thereby mandating linear solvers be utilised. To that end, we have developed efficient solvers and preconditioners which are robust with respect to the polynomial order (p), and possess high arithmetic intensity. Furthermore, we also consider using implicit time integrators, together with a p-multigrid preconditioner to circumvent the CFL condition. Implicit time integrators become particularly relevant when considering solving problems on poor quality meshes, or meshes containing elements with a widely varying range of length scales - both of which frequently arise when meshing non-trivial geometries. We demonstrate the applicability of the new method by examining a number of two- and three-dimensional wave propagation scenarios. These scenarios serve to characterise the accuracy and cost of the new method. Lastly, we will assess the potential benefits of using implicit time integrators for regional scale wave propagation simulations.
A Data Matrix Method for Improving the Quantification of Element Percentages of SEM/EDX Analysis
NASA Technical Reports Server (NTRS)
Lane, John
2009-01-01
A simple 2D M N matrix involving sample preparation enables the microanalyst to peer below the noise floor of element percentages reported by the SEM/EDX (scanning electron microscopy/ energy dispersive x-ray) analysis, thus yielding more meaningful data. Using the example of a 2 3 sample set, there are M = 2 concentration levels of the original mix under test: 10 percent ilmenite (90 percent silica) and 20 percent ilmenite (80 percent silica). For each of these M samples, N = 3 separate SEM/EDX samples were drawn. In this test, ilmenite is the element of interest. By plotting the linear trend of the M sample s known concentration versus the average of the N samples, a much higher resolution of elemental analysis can be performed. The resulting trend also shows how the noise is affecting the data, and at what point (of smaller concentrations) is it impractical to try to extract any further useful data.
Self Diagnostic Adhesive for Bonded Joints in Aircraft Structures
2016-10-04
validated under the fatigue/dynamic loading condition. 3) Both SEM (Spectral Element Modeling) and FEM ( Finite Element Modeling) simulation of the...Sensors ..................................................................... 22 Parametric Study of Sensor Performance via Finite Element Simulation...The frequency range that we are interested is around 800 kHz. Conventional linear finite element method (FEM) requires a very fine spatial
In Situ Characterization of Boehmite Particles in Water Using Liquid SEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Juan; Arey, Bruce W.; Yang, Li
In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid. A synthesized AlOOH particle is used as a model in the liquid SEM illustration. Our results demonstrate that particles can be imaged in the SE modemore » with good resolution. The AlOOH EDX spectrum shows significant signal from the Al compared with deionized water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical details in how to conduct liquid SEM imaging and EDX analysis using SALVI and reduce potential pitfalls using this approach for other researchers.« less
Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology
Mustafi, Debarshi; Avishai, Amir; Avishai, Nanthawan; Engel, Andreas; Heuer, Arthur; Palczewski, Krzysztof
2011-01-01
Structurally deciphering complex neural networks requires technology with sufficient resolution to allow visualization of single cells and their intimate surrounding connections. Scanning electron microscopy (SEM), coupled with serial ion ablation (SIA) technology, presents a new avenue to study these networks. SIA allows ion ablation to remove nanometer sections of tissue for SEM imaging, resulting in serial section data collection for three-dimensional reconstruction. Here we highlight a method for preparing retinal tissues for imaging of photoreceptors by SIA-SEM technology. We show that this technique can be used to visualize whole rod photoreceptors and the internal disc elements from wild-type (wt) mice. The distance parameters of the discs and photoreceptors are in good agreement with previous work with other methods. Moreover, we show that large planes of retinal tissue can be imaged at high resolution to display the packing of normal rods. Finally, SIA-SEM imaging of retinal tissue from a mouse model (Nrl−/−) with phenotypic changes akin to the human disease enhanced S-cone syndrome (ESCS) revealed a structural profile of overall photoreceptor ultrastructure and internal elements that accompany this disease. Overall, this work presents a new method to study photoreceptor cells at high structural resolution that has a broad applicability to the visual neuroscience field. PMID:21439323
Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B
2014-03-01
The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.
Pendleton, Michael W.; Washburn, Dorothy K.; Ellis, E. Ann; Pendleton, Bonnie B.
2014-01-01
The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis. PMID:24600333
NASA Astrophysics Data System (ADS)
Wu, Zhijing; Li, Fengming; Zhang, Chuanzeng
2018-05-01
Inspired by the hierarchical structures of butterfly wing surfaces, a new kind of lattice structures with a two-order hierarchical periodicity is proposed and designed, and the band-gap properties are investigated by the spectral element method (SEM). The equations of motion of the whole structure are established considering the macro and micro periodicities of the system. The efficiency of the SEM is exploited in the modeling process and validated by comparing the results with that of the finite element method (FEM). Based on the highly accurate results in the frequency domain, the dynamic behaviors of the proposed two-order hierarchical structures are analyzed. An original and interesting finding is the existence of the distinct macro and micro stop-bands in the given frequency domain. The mechanisms for these two types of band-gaps are also explored. Finally, the relations between the hierarchical periodicities and the different types of the stop-bands are investigated by analyzing the parametrical influences.
In Situ Characterization of Boehmite Particles in Water Using Liquid SEM.
Yao, Juan; Arey, Bruce W; Yang, Li; Zhang, Fei; Komorek, Rachel; Chun, Jaehun; Yu, Xiao-Ying
2017-09-27
In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well. Synthesized boehmite (AlOOH) particles suspended in liquid are used as a model in the liquid SEM illustration. The results demonstrate that the particles can be imaged in the SE mode with good resolution (i.e., 400 nm). The AlOOH EDX spectrum shows significant signal from the aluminum (Al) when compared with the DI water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical know-how in order to conduct liquid SEM imaging and EDX analysis using SALVI and to reduce potential pitfalls when using this approach.
NASA Astrophysics Data System (ADS)
Leng, K.; Nissen-Meyer, T.; van Driel, M.; Al-Attar, D.
2016-12-01
We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models with laterally heterogeneous media and finite boundary perturbations. Our method is a hybrid of pseudo-spectral and spectral element methods (SEM). We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridional equations, which can be solved by a 2-D spectral element method (based on www.axisem.info). Computational efficiency of our method stems from lateral smoothness of global Earth models (with respect to wavelength) as well as axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. All boundary perturbations that violate geometric spherical symmetry, including Earth's ellipticity, topography and bathymetry, undulations of internal discontinuities such as Moho and CMB, are uniformly considered by means of a Particle Relabeling Transformation.The MPI-based high performance C++ code AxiSEM3D, is now available for forward simulations upon 3-D Earth models with fluid outer core, ellipticity, and both mantle and crustal structures. We show novel benchmarks for global wave solutions in 3-D mantle structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period going down to 5s. It is shown that our method runs up to two orders of magnitude faster than the 3-D SEM for such settings, and such computational advantage scales favourably with seismic frequency. By examining wavefields passing through hypothetical Gaussian plumes of varying sharpness, we identify in model-wavelength space the limits where our method may lose its advantage.
Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.
NASA Astrophysics Data System (ADS)
Monteiller, Vadim; Beller, Stephen; Operto, Stephane; Virieux, Jean
2015-04-01
The current development of dense seismic arrays and high performance computing make feasible today application of full-waveform inversion (FWI) on teleseismic data for high-resolution lithospheric imaging. In teleseismic configuration, the source is often considered to first order as a planar wave that impinges the base of the lithospheric target located below the receiver array. Recently, injection methods coupling global propagation in 1D or axisymmetric earth model with regional 3D methods (Discontinuous Galerkin finite element methods, Spectral elements methods or finite differences) allow us to consider more realistic teleseismic phases. Those teleseismic phases can be propagated inside 3D regional model in order to exploit not only the forward-scattered waves propagating up to the receiver but also second-order arrivals that are back-scattered from the free-surface and the reflectors before their recordings on the surface. However, those computation are performed assuming simple global model. In this presentation, we review some key specifications that might be considered for mitigating the effect on FWI of heterogeneities situated outside the regional domain. We consider synthetic models and data computed using our recently developed hybrid method AxiSEM/SEM. The global simulation is done by AxiSEM code which allows us to consider axisymmetric anomalies. The 3D regional computation is performed by Spectral Element Method. We investigate the effect of external anomalies on the regional model obtained by FWI when one neglects them by considering only 1D global propagation. We also investigate the effect of the source time function and the focal mechanism on results of the FWI approach.
Vibration band gaps for elastic metamaterial rods using wave finite element method
NASA Astrophysics Data System (ADS)
Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.
2016-10-01
Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are demonstrated and the results present good approximation to the experimental data.
Application of SEM and EDX in studying biomineralization in plant tissues.
He, Honghua; Kirilak, Yaowanuj
2014-01-01
This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-06-01
The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-11-01
The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.
Implementation of a novel efficient low cost method in structural health monitoring
NASA Astrophysics Data System (ADS)
Asadi, S.; Sepehry, N.; Shamshirsaz, M.; Vaghasloo, Y. A.
2017-05-01
In active structural health monitoring (SHM) methods, it is necessary to excite the structure with a preselected signal. More studies in the field of active SHM are focused on applying SHM on higher frequency ranges since it is possible to detect smaller damages, using higher excitation frequency. Also, to increase spatial domain of measurements and enhance signal to noise ratio (SNR), the amplitude of excitation signal is usually amplified. These issues become substantial where piezoelectric transducers with relatively high capacitance are used and consequently, need to utilize high power amplifiers becomes predominant. In this paper, a novel method named Step Excitation Method (SEM) is proposed and implemented for Lamb wave and transfer impedance-based SHM for damage detection in structures. Three different types of structure are studied: beam, plate and pipe. The related hardware is designed and fabricated which eliminates high power analog amplifiers and decreases complexity of driver significantly. Spectral Finite Element Method (SFEM) is applied to examine performance of proposed SEM. In proposed method, by determination of impulse response of the system, any input could be applied to the system by both finite element simulations and experiments without need for multiple measurements. The experimental results using SEM are compared with those obtained by conventional direct excitation method for healthy and damaged structures. The results show an improvement of amplitude resolution in damage detection comparing to conventional method which is due to achieving an SNR improvement up to 50%.
Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX
Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas
2014-01-01
Background During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Material/Methods Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). Results The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Conclusions Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients’ oral cavities. PMID:24857929
Molecular Analysis of Motility in Metastatic Mammary Adenocarcinoma Cells
1996-09-01
elements of epidermoid carcinoma (A43 1) cells. J. Cell. Biol. 103: 87-94 Winkler, M. (1988). Translational regulation in sea urchin eggs: a complex...and Methods. Error bars show SEM . Figure 2. Rhodamine-actin polymerizes preferentially at the tips of lamellipods in EGF- stimulated cells. MTLn3...lamellipods. B) rhodamine-actin intensity at the cell center. Data for each time point is the average and SEM of 15 different cells. Images A and B
[Spectral characteristics of decomposition of incorporated straw in compound polluted arid loess].
Fan, Chun-Hui; Zhang, Ying-Chao; Xu, Ji-Ting; Wang, Jia-Hong
2014-04-01
The original loess from western China was used as soil sample, the spectral methods of scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), elemental analysis, Fourier transform infrared spectroscopy (FT-IR) and 13C nuclear magnetic resonance (13C NMR) were used to investigate the characteristics of decomposed straw and formed humic acids in compound polluted arid loess. The SEM micrographs show the variation from dense to decomposed surface, and finally to damaged structure, and the EDS data reveal the phenomenon of element transfer. The newly-formed humic acids are of low aromaticity, helpful for increasing the activity of organic matters in loess. The FTIR spectra in the whole process are similar, indicating the complexity of transformation dynamics of humic acids. The molecular structure of humic acids becomes simpler, shown from 13C NMR spectra. The spectral methods are useful for humic acids identification in loess region in straw incorporation process.
Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.« less
Building a Relationship between Elements of Product Form Features and Vocabulary Assessment Models
ERIC Educational Resources Information Center
Lo, Chi-Hung
2016-01-01
Based on the characteristic feature parameterization and the superiority evaluation method (SEM) in extension engineering, a product-shape design method was proposed in this study. The first step of this method is to decompose the basic feature components of a product. After that, the morphological chart method is used to segregate the ideas so as…
[Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].
Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo
2015-08-01
The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.
A two-step FEM-SEM approach for wave propagation analysis in cable structures
NASA Astrophysics Data System (ADS)
Zhang, Songhan; Shen, Ruili; Wang, Tao; De Roeck, Guido; Lombaert, Geert
2018-02-01
Vibration-based methods are among the most widely studied in structural health monitoring (SHM). It is well known, however, that the low-order modes, characterizing the global dynamic behaviour of structures, are relatively insensitive to local damage. Such local damage may be easier to detect by methods based on wave propagation which involve local high frequency behaviour. The present work considers the numerical analysis of wave propagation in cables. A two-step approach is proposed which allows taking into account the cable sag and the distribution of the axial forces in the wave propagation analysis. In the first step, the static deformation and internal forces are obtained by the finite element method (FEM), taking into account geometric nonlinear effects. In the second step, the results from the static analysis are used to define the initial state of the dynamic analysis which is performed by means of the spectral element method (SEM). The use of the SEM in the second step of the analysis allows for a significant reduction in computational costs as compared to a FE analysis. This methodology is first verified by means of a full FE analysis for a single stretched cable. Next, simulations are made to study the effects of damage in a single stretched cable and a cable-supported truss. The results of the simulations show how damage significantly affects the high frequency response, confirming the potential of wave propagation based methods for SHM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail
Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzedmore » using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.« less
Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi
2016-11-01
Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.
Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?
Newbury, Dale E; Ritchie, Nicholas W M
2013-01-01
Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.
[Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].
Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou
2014-04-01
Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA.
NASA Astrophysics Data System (ADS)
Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka
2016-11-01
The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.
Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less
Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging
Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...
2016-04-18
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less
NASA Technical Reports Server (NTRS)
Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.
Morphology selection for cupric oxide thin films by electrodeposition.
Dhanasekaran, V; Mahalingam, T; Chandramohan, R
2011-10-01
Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.
Post-earthquake relaxation using a spectral element method: 2.5-D case
Pollitz, Fred
2014-01-01
The computation of quasi-static deformation for axisymmetric viscoelastic structures on a gravitating spherical earth is addressed using the spectral element method (SEM). A 2-D spectral element domain is defined with respect to spherical coordinates of radius and angular distance from a pole of symmetry, and 3-D viscoelastic structure is assumed to be azimuthally symmetric with respect to this pole. A point dislocation source that is periodic in azimuth is implemented with a truncated sequence of azimuthal order numbers. Viscoelasticity is limited to linear rheologies and is implemented with the correspondence principle in the Laplace transform domain. This leads to a series of decoupled 2-D problems which are solved with the SEM. Inverse Laplace transform of the independent 2-D solutions leads to the time-domain solution of the 3-D equations of quasi-static equilibrium imposed on a 2-D structure. The numerical procedure is verified through comparison with analytic solutions for finite faults embedded in a laterally homogeneous viscoelastic structure. This methodology is applicable to situations where the predominant structure varies in one horizontal direction, such as a structural contrast across (or parallel to) a long strike-slip fault.
Cehreli, S Burcak; Polat-Ozsoy, Omur; Sar, Cagla; Cubukcu, H Evren; Cehreli, Zafer C
2012-04-01
The amount of the residual adhesive after bracket debonding is frequently assessed in a qualitative manner, utilizing the adhesive remnant index (ARI). This study aimed to investigate whether quantitative assessment of the adhesive remnant yields more precise results compared to qualitative methods utilizing the 4- and 5-point ARI scales. Twenty debonded brackets were selected. Evaluation and scoring of the adhesive remnant on bracket bases were made consecutively using: 1. qualitative assessment (visual scoring) and 2. quantitative measurement (image analysis) on digital photographs. Image analysis was made on scanning electron micrographs (SEM) and high-precision elemental maps of the adhesive remnant as determined by energy dispersed X-ray spectrometry. Evaluations were made in accordance with the original 4-point and the modified 5-point ARI scales. Intra-class correlation coefficients (ICCs) were calculated, and the data were evaluated using Friedman test followed by Wilcoxon signed ranks test with Bonferroni correction. ICC statistics indicated high levels of agreement for qualitative visual scoring among examiners. The 4-point ARI scale was compliant with the SEM assessments but indicated significantly less adhesive remnant compared to the results of quantitative elemental mapping. When the 5-point scale was used, both quantitative techniques yielded similar results with those obtained qualitatively. These results indicate that qualitative visual scoring using the ARI is capable of generating similar results with those assessed by quantitative image analysis techniques. In particular, visual scoring with the 5-point ARI scale can yield similar results with both the SEM analysis and elemental mapping.
Effect of Sn on the oxide subscale structure formed on a 3% Si steel
NASA Astrophysics Data System (ADS)
Cesar, Maria das G. M. M.; Silveira, Carolina C.; Paolinelli, Sebastião C.; Cicale, Stefano
2018-04-01
Addition of tin in 3% Si steel is a method to improve magnetic properties since tin in steel is known as an element that segregates at grain boundaries, inhibits grain growth and has a dragging effect on grain boundary movement. However, tin is generally known as an element that has a harmful effect on surface coating properties. The oxide subscale formed on the decarburization annealing of a 3% Si steel containing tin was investigated by SEM, EDS, GDS and FTIR. The forsterite film was evaluated by SEM, EDS and GDS. The higher tin content decreased thickness, oxygen and fayalite/silica ratio in the subscale and resulted into a discontinuous forsterite film with poor oxidation resistance. After secondary coating the samples presented a reddish color due to the formation of iron oxide and poor dielectric property.
NASA Astrophysics Data System (ADS)
Trejos, Tatiana; Corzo, Ruthmara; Subedi, Kiran; Almirall, José
2014-02-01
Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (~ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has the advantage of being non-destructive to the sample in addition to providing imaging capabilities to further characterize toner samples by their particle morphology. Laser sampling methods resulted in an improvement of the discrimination between different sources with LIBS producing 89% discrimination and LA-ICP-MS resulting in 100% discrimination. In addition, a set of 21 black inkjet samples was examined by each method. The results show that SEM-EDS is not appropriate for inkjet examinations since their elemental composition is typically below the detection capabilities with only sulfur detected in this set, providing only 47.4% discrimination between possible comparison pairs. Laser sampling methods were shown to provide discrimination greater than 94% for this same inkjet set with false exclusion and false inclusion rates lower than 4.1% and 5.7%, for LA-ICP-MS and LIBS respectively. Overall these results confirmed the utility of the examination of printed documents by laser-based micro-spectrochemical methods. SEM-EDS analysis of toners produced a limited utility for discrimination within sources but was not an effective tool for inkjet ink discrimination. Both LA-ICP-MS and LIBS can be used in forensic laboratories to chemically characterize inks on documents and to complement the information obtained by conventional methods and enhance their evidential value.
Wille, G; Lerouge, C; Schmidt, U
2018-01-16
In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models
NASA Astrophysics Data System (ADS)
Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.
2017-12-01
Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.
Mineral content analysis of root canal dentin using laser-induced breakdown spectroscopy
2018-01-01
Objectives This study aimed to introduce the use of laser-induced breakdown spectroscopy (LIBS) for evaluation of the mineral content of root canal dentin, and to assess whether a correlation exists between LIBS and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods by comparing the effects of irrigation solutions on the mineral content change of root canal dentin. Materials and Methods Forty teeth with a single root canal were decoronated and longitudinally sectioned to expose the canals. The root halves were divided into 4 groups (n = 10) according to the solution applied: group NaOCl, 5.25% sodium hypochlorite (NaOCl) for 1 hour; group EDTA, 17% ethylenediaminetetraacetic acid (EDTA) for 2 minutes; group NaOCl+EDTA, 5.25% NaOCl for 1 hour and 17% EDTA for 2 minutes; a control group. Each root half belonging to the same root was evaluated for mineral content with either LIBS or SEM/EDS methods. The data were analyzed statistically. Results In groups NaOCl and NaOCl+EDTA, the calcium (Ca)/phosphorus (P) ratio decreased while the sodium (Na) level increased compared with the other groups (p < 0.05). The magnesium (Mg) level changes were not significant among the groups. A significant positive correlation was found between the results of LIBS and SEM/EDS analyses (r = 0.84, p < 0.001). Conclusions Treatment with NaOCl for 1 hour altered the mineral content of dentin, while EDTA application for 2 minutes had no effect on the elemental composition. The LIBS method proved to be reliable while providing data for the elemental composition of root canal dentin. PMID:29487841
[Bioinorganic chemical composition of the lens and methods of its investigation].
Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G
2018-01-01
Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.
NASA Astrophysics Data System (ADS)
Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.
2018-01-01
Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.
NASA Astrophysics Data System (ADS)
Sato, K.; Iijima, A.; Furuta, N.
2008-12-01
In our long-term monitoring of size-classified Airborne Particulate Matter (APM) in Tokyo since 1995, it had been demonstrated that toxic elements such as As, Se, Cd, Sb and Pb were extremely enriched in fine APM (PM2.5). However, in that study, total sampled APM on a filter was digested with acids, and thus only averaged elemental composition in fine APM could be obtained. One of the effective methods to determine the origin of APM is single particle measurement by using SEM-EDX. By using characteristic shapes observed by SEM and marker elements contained in APM measured by EDX, detailed information for source identification can be obtained. In this study, fine APM (PM2.5) was collected at various locations such as roadside, diesel vehicle exhaust, a heavy oil combustion plant and a waste incineration plant as well as ambient atmosphere in Tokyo, and characteristics of fine particles that will be utilized for identification of emission sources are elucidated. Fine particles can be classified into 3 main characteristic shape groups; edge-shaped, cotton-like and spherical. Shape of particles collected in a heavy oil combustion plant and a waste incineration plant was mostly spherical, and these particles may be associated with thermal process. Diesel exhaust particles were predominantly cotton-like which may consist of coagulated nano-sized particles. Most of brake abrasion dusts were edge-shaped, which may be associated with mechanical abrasion of brake pads. In the elemental analysis of fine particles, high concentrations of Sb, Cu, Ti and Ba were detected in brake abrasion dusts. Since these elements are major constituents of brake pads, these can be used for marker elements of brake abrasion dusts. High concentration of C was detected in diesel exhaust particles and oil combustion particles, and thus C can be used for marker elements of their origin. Furthermore, high concentrations of C, Ca and K were detected in fly ash from a waste incineration plant, which may be associated with emission from biomass combustion.
Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts
NASA Astrophysics Data System (ADS)
Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.
2016-12-01
Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.
Noninvasive Evaluation of Special Alloys for Prostheses Using Complementary Methods
NASA Astrophysics Data System (ADS)
Savin, A.; Vizureanu, P.; Prevorovsky, Z.; Chlada, M.; Krofta, J.; Baltatu, M. S.; Istrate, B.; Steigmann, R.
2018-06-01
Ti-Mo-Si alloys have gained the attention of biomedical industry due to specific strength and corrosion resistance and the best biocompatibility among metallic materials used in medical prostheses. In order to characterize the material, the experimental determination of elastic matrix, mechanical wear and the probability of appearance and propagation of thin cracks are imposed. Thus, resonant ultrasound spectroscopy and acoustic emission as non-invasive methods and complementary methods as SEM, EDX are involved, to choose the best concentration of elements with the aim of mechanical properties improvement.
NASA Astrophysics Data System (ADS)
van Driel, Martin; Nissen-Meyer, Tarje; Stähler, Simon; Waszek, Lauren; Hempel, Stefanie; Auer, Ludwig; Deuss, Arwen
2014-05-01
We present a numerical method to compute high-frequency 3D elastic waves in fully anisotropic axisymmetric media. The method is based on a decomposition of the wavefield into a series of uncoupled 2D equations, for which the dependence of the wavefield on the azimuth can be solved analytically. The remaining 2D problems are then solved using a spectral element method (AxiSEM). AxiSEM was recently published open-source (Nissen-Meyer et al. 2014) as a production ready code capable to compute global seismic wave propagation up to frequencies of ~2Hz. It accurately models visco-elastic dissipation and anisotropy (van Driel et al., submitted to GJI) and runs efficiently on HPC resources using up to 10K cores. At very short period, the Fresnel Zone of body waves is narrow and sensitivity is focused around the geometrical ray. In cases where the azimuthal variations of structural heterogeneity exhibit long spatial wavelengths, so called 2.5D simulations (3D wavefields in 2D models) provide a good approximation. In AxiSEM, twodimensional variations in the source-receiver plane are effectively modelled as ringlike structures extending in the out-of-plane direction. In contrast to ray-theory, which is widely used in high-frequency applications, AxiSEM provides complete waveforms, thus giving access to frequency dependency, amplitude variations, and peculiar wave effects such as diffraction and caustics. Here we focus on the practical implications of the inherent axisymmetric geometry and show how the 2.5D-features of our method method can be used to model realistic anisotropic structures, by applying it to problems such as the D" region and the inner core.
Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez
2018-03-01
This study investigates the use of Scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) as a diagnostic tool for the determination of the osseous origin of samples subjected to different temperatures. Sheep (Ovis aries) ribs of two experimental groups (fleshed and defleshed) were burned at temperatures of between 100°C and 1100°C in 100°C increments and subsequently analyzed with the SEM-EDX to determine the atomic percentage of present elements. Three-factor ANOVA analysis showed that neither the exposure temperature, nor whether the burning occurred with or without soft tissue present had any significant influence on the bone's overall elemental makeup (p > 0.05). The Ca/P ratio remained in the osseous typical range of between 1.6 and 2.58 in all analyzed samples. This demonstrates that even faced with high temperatures, the overall gross elemental content and atomic percentage of elements in bone remain stable, creating a unique "fingerprint" for osseous material, even after exposure to extreme conditions. © 2017 American Academy of Forensic Sciences.
Newbury, Dale E; Ritchie, Nicholas W M
2015-10-01
A scanning electron microscope with a silicon drift detector energy-dispersive X-ray spectrometer (SEM/SDD-EDS) was used to analyze materials containing the low atomic number elements B, C, N, O, and F achieving a high degree of accuracy. Nearly all results fell well within an uncertainty envelope of ±5% relative (where relative uncertainty (%)=[(measured-ideal)/ideal]×100%). Quantification was performed with the standards-based "k-ratio" method with matrix corrections calculated based on the Pouchou and Pichoir expression for the ionization depth distribution function, as implemented in the NIST DTSA-II EDS software platform. The analytical strategy that was followed involved collection of high count (>2.5 million counts from 100 eV to the incident beam energy) spectra measured with a conservative input count rate that restricted the deadtime to ~10% to minimize coincidence effects. Standards employed included pure elements and simple compounds. A 10 keV beam was employed to excite the K- and L-shell X-rays of intermediate and high atomic number elements with excitation energies above 3 keV, e.g., the Fe K-family, while a 5 keV beam was used for analyses of elements with excitation energies below 3 keV, e.g., the Mo L-family.
Tylko, G; Karasiński, J; Wróblewski, R; Roomans, G M; Kilarski, W M
2000-01-01
Heterogeneity of the elemental content of myogenic C2C12 cultured cells was studied by electron probe X-ray microanalysis (EPXMA) with scanning (SEM EPXMA) and scanning transmission electron microscopy (STEM EPXMA). The best plastic substrate for growing cells was Thermanox. For STEM EPXMA, a Formvar film coated with carbon was found to be suitable substrate. The cells examined by scanning transmission electron microscopy showed great heterogeneity in their elemental content in comparison with the cells examined in the scanning electron microscope despite of an almost identical preparation procedure for EPXMA. Nevertheless the K/Na ratios obtained from both methods of EPXMA were very close (4.1 and 4.3). We conclude that the observed discrepancy in the elemental content obtained by the two methods may be due to differences in instrumentation and this must be taken into account when planning a comparative study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guba, O.; Taylor, M. A.; Ullrich, P. A.
2014-11-27
We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, formore » regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less
Seeliger, Julia; Lipski, Mariusz; Wójcicka, Anna; Gedrange, Tomasz; Woźniak, Krzysztof
2016-01-01
Braces as foreign bodies in the mouth carry a risk of side effects and toxicity to the human body. This article presents the results indicating the possible toxic effects of tools used for cleaning the enamel after the completion of orthodontic treatment. The studies were carried out in vitro. The procedure of enamel etching, bonding orthodontic metal brackets, and enamel cleaning after their removal was performed under laboratory conditions. The enamel microstructure and elements present on its surface were evaluated using the scanning electron microscope (SEM). Silicon and aluminium were found in addition to the tooth building elements. PMID:27766265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.
The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samplesmore » (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).« less
NASA Astrophysics Data System (ADS)
Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun
2017-04-01
Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.
Michalak, Izabela; Marycz, Krzysztof; Basińska, Katarzyna; Chojnacka, Katarzyna
2014-01-01
The biomass of Vaucheria sessilis forms algal mats in many freshwaters. There is a need to find the method of algal biomass utilization. Vaucheria sessilis is a rich source of micro- and macronutrients and can be used as a soil amendment. In the paper, the elemental composition of enriched, via bioaccumulation process, macroalga was investigated. For this purpose, two independent techniques were used: scanning electron microscopy with an energy dispersive X-ray analytical system (SEMEDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The biomass was exposed to two microelemental solutions, with Cu(II) and Zn(II) ions. After two weeks of the experiment, macroalga accumulated 98.5 mg of Zn(II) ions in 1 g of dry biomass and 68.9 mg g(-1) of Cu(II) ions. Micrographs performed by SEM proved that bioaccumulation occurred. Metal ions were bound on the surface and in the interior of cells. Mappings of all cations showed that in the case of the surface of biomass (biosorption), the elements constituted aggregations and in the case of the cross section (bioaccumulation) they were evenly distributed. The algal biomass with permanently bound microelements can find an application in many branches of the industry (feed, natural fertilizers, etc.).
Michalak, Izabela; Marycz, Krzysztof; Basińska, Katarzyna; Chojnacka, Katarzyna
2014-01-01
The biomass of Vaucheria sessilis forms algal mats in many freshwaters. There is a need to find the method of algal biomass utilization. Vaucheria sessilis is a rich source of micro- and macronutrients and can be used as a soil amendment. In the paper, the elemental composition of enriched, via bioaccumulation process, macroalga was investigated. For this purpose, two independent techniques were used: scanning electron microscopy with an energy dispersive X-ray analytical system (SEMEDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The biomass was exposed to two microelemental solutions, with Cu(II) and Zn(II) ions. After two weeks of the experiment, macroalga accumulated 98.5 mg of Zn(II) ions in 1 g of dry biomass and 68.9 mg g−1 of Cu(II) ions. Micrographs performed by SEM proved that bioaccumulation occurred. Metal ions were bound on the surface and in the interior of cells. Mappings of all cations showed that in the case of the surface of biomass (biosorption), the elements constituted aggregations and in the case of the cross section (bioaccumulation) they were evenly distributed. The algal biomass with permanently bound microelements can find an application in many branches of the industry (feed, natural fertilizers, etc.). PMID:25180212
NASA Astrophysics Data System (ADS)
Morency, C.; Tromp, J.
2008-12-01
The mathematical formulation of wave propagation in porous media developed by Biot is based upon the principle of virtual work, ignoring processes at the microscopic level, and does not explicitly incorporate gradients in porosity. Based on recent studies focusing on averaging techniques, we derive the macroscopic porous medium equations from the microscale, with a particular emphasis on the effects of gradients in porosity. In doing so, we are able to naturally determine two key terms in the momentum equations and constitutive relationships, directly translating the coupling between the solid and fluid phases, namely a drag force and an interfacial strain tensor. In both terms, gradients in porosity arise. One remarkable result is that when we rewrite this set of equations in terms of the well known Biot variables us, w), terms involving gradients in porosity are naturally accommodated by gradients involving w, the fluid motion relative to the solid, and Biot's formulation is recovered, i.e., it remains valid in the presence of porosity gradients We have developed a numerical implementation of the Biot equations for two-dimensional problems based upon the spectral-element method (SEM) in the time domain. The SEM is a high-order variational method, which has the advantage of accommodating complex geometries like a finite-element method, while keeping the exponential convergence rate of (pseudo)spectral methods. As in the elastic and acoustic cases, poroelastic wave propagation based upon the SEM involves a diagonal mass matrix, which leads to explicit time integration schemes that are well-suited to simulations on parallel computers. Effects associated with physical dispersion & attenuation and frequency-dependent viscous resistance are addressed by using a memory variable approach. Various benchmarks involving poroelastic wave propagation in the high- and low-frequency regimes, and acoustic-poroelastic and poroelastic-poroelastic discontinuities have been successfully performed. We present finite-frequency sensitivity kernels for wave propagation in porous media based upon adjoint methods. We first show that the adjoint equations in porous media are similar to the regular Biot equations upon defining an appropriate adjoint source. Then we present finite-frequency kernels for seismic phases in porous media (e.g., fast P, slow P, and S). These kernels illustrate the sensitivity of seismic observables to structural parameters and form the basis of tomographic inversions. Finally, we show an application of this imaging technique related to the detection of buried landmines and unexploded ordnance (UXO) in porous environments.
NASA Astrophysics Data System (ADS)
Hapca, Simona
2015-04-01
Many soil properties and functions emerge from interactions of physical, chemical and biological processes at microscopic scales, which can be understood only by integrating techniques that traditionally are developed within separate disciplines. While recent advances in imaging techniques, such as X-ray computed tomography (X-ray CT), offer the possibility to reconstruct the 3D physical structure at fine resolutions, for the distribution of chemicals in soil, existing methods, based on scanning electron microscope (SEM) and energy dispersive X-ray detection (EDX), allow for characterization of the chemical composition only on 2D surfaces. At present, direct 3D measurement techniques are still lacking, sequential sectioning of soils, followed by 2D mapping of chemical elements and interpolation to 3D, being an alternative which is explored in this study. Specifically, we develop an integrated experimental and theoretical framework which combines 3D X-ray CT imaging technique with 2D SEM-EDX and use spatial statistics methods to map the chemical composition of soil in 3D. The procedure involves three stages 1) scanning a resin impregnated soil cube by X-ray CT, followed by precision cutting to produce parallel thin slices, the surfaces of which are scanned by SEM-EDX, 2) alignment of the 2D chemical maps within the internal 3D structure of the soil cube, and 3) development, of spatial statistics methods to predict the chemical composition of 3D soil based on the observed 2D chemical and 3D physical data. Specifically, three statistical models consisting of a regression tree, a regression tree kriging and cokriging model were used to predict the 3D spatial distribution of carbon, silicon, iron and oxygen in soil, these chemical elements showing a good spatial agreement between the X-ray grayscale intensities and the corresponding 2D SEM-EDX data. Due to the spatial correlation between the physical and chemical data, the regression-tree model showed a great potential in predicting chemical composition in particular for iron, which is generally sparsely distributed in soil. For carbon, silicon and oxygen, which are more densely distributed, the additional kriging of the regression tree residuals improved significantly the prediction, whereas prediction based on co-kriging was less consistent across replicates, underperforming regression-tree kriging. The present study shows a great potential in integrating geo-statistical methods with imaging techniques to unveil the 3D chemical structure of soil at very fine scales, the framework being suitable to be further applied to other types of imaging data such as images of biological thin sections for characterization of microbial distribution. Key words: X-ray CT, SEM-EDX, segmentation techniques, spatial correlation, 3D soil images, 2D chemical maps.
Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization
NASA Astrophysics Data System (ADS)
Morency, C.
2017-12-01
Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required.
NASA Astrophysics Data System (ADS)
Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.
2012-12-01
X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.
NASA Astrophysics Data System (ADS)
Nakamura, Takako; Ohana, Tsuguyori
2012-08-01
A useful method for direct sulfurization of diamond film surfaces by photoreaction of elemental sulfur was developed. The introduction of thiol groups onto the diamond films was confirmed by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and scanning electron microscopy (SEM) analyses. The sulfur-modified diamond films attached to gold nanoparticles by self-assembly. The degrees of thiol group introduction and gold attachment were found to depend on photoirradiation time by monitoring by XPS. The gold-modified diamond film was observed to act as a surface-enhanced Raman scattering substrate for measurement of picric acid.
Choël, Marie; Deboudt, Karine; Osán, János; Flament, Pascal; Van Grieken, René
2005-09-01
Atmospheric aerosols consist of a complex heterogeneous mixture of particles. Single-particle analysis techniques are known to provide unique information on the size-resolved chemical composition of aerosols. A scanning electron microscope (SEM) combined with a thin-window energy-dispersive X-ray (EDX) detector enables the morphological and elemental analysis of single particles down to 0.1 microm with a detection limit of 1-10 wt %, low-Z elements included. To obtain data statistically representative of the air masses sampled, a computer-controlled procedure can be implemented in order to run hundreds of single-particle analyses (typically 1000-2000) automatically in a relatively short period of time (generally 4-8 h, depending on the setup and on the particle loading). However, automated particle analysis by SEM-EDX raises two practical challenges: the accuracy of the particle recognition and the reliability of the quantitative analysis, especially for micrometer-sized particles with low atomic number contents. Since low-Z analysis is hampered by the use of traditional polycarbonate membranes, an alternate choice of substrate is a prerequisite. In this work, boron is being studied as a promising material for particle microanalysis. As EDX is generally said to probe a volume of approximately 1 microm3, geometry effects arise from the finite size of microparticles. These particle geometry effects must be corrected by means of a robust concentration calculation procedure. Conventional quantitative methods developed for bulk samples generate elemental concentrations considerably in error when applied to microparticles. A new methodology for particle microanalysis, combining the use of boron as the substrate material and a reverse Monte Carlo quantitative program, was tested on standard particles ranging from 0.25 to 10 microm. We demonstrate that the quantitative determination of low-Z elements in microparticles is achievable and that highly accurate results can be obtained using the automatic data processing described here compared to conventional methods.
Zhang, Lin; Chen, Beibei; He, Man; Hu, Bin
2013-07-01
A rapid and sensitive method based on polymer monolithic capillary microextraction combined on-line with microconcentric nebulization inductively coupled plasma MS has been developed for the determination of trace/ultratrace rare earth elements in biological samples. For this purpose, the iminodiacetic acid modified poly(glycidyl methacrylate-trimethylolpropane trimethacrylate) monolithic capillary was prepared and characterized by SEM and FTIR spectroscopy. Factors affecting the extraction efficiency, such as sample pH, sample flow rate, sample/eluent volume, and coexisting ions were investigated in detail. Under the optimal conditions, the LODs for rare earth elements were in the range of 0.08 (Er) to 0.97 ng/L (Nd) with a sampling frequency of 8.5 h(-1), and the RSDs were between 1.5% (Sm) and 7.4% (Nd) (c = 20 ng/L, n = 7). The proposed method was successfully applied to the analysis of trace/ultratrace rare earth elements in human urine and serum samples, and the recoveries for the spiked samples were in the range of 82-105%. The developed method was simple, rapid, sensitive, and favorable for the analysis of trace/ultratrace rare earth elements in biological samples with limited sample volume. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brake Fluid Compatibility with Hardware
2014-05-19
association or emblem usage considerations. All other legal considerations are the responsibility of the author and his/her/their employer(s...10 Figure 8. Backscatter SEM Image showing Elemental Analysis Scan Locations ....................... 11 Figure 9. Surface Scan jfs9176...Elemental Analysis .................................................................... 12 Figure 10. Particle Scan jfs9177 Elemental Analysis
SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts.
Wang, Zhong-Min; Wagner, Jeff; Ghosal, Sutapa; Bedi, Gagandeep; Wall, Stephen
2017-12-15
Microplastic particles from Atlantic and Pacific Ocean trawls, lab-fed fish guts and ocean fish guts have been characterized using optical microscopy and SEM/EDS in terms of size, morphology, and chemistry. We assessed whether these measurements could serve as a rapid screening process for subsequent identification of the likely microplastic candidates by micro-spectroscopy. Optical microscopy enabled morphological classification of the types of particles or fibers present in the sample, as well as the quantification of particle size ranges and fiber lengths. SEM/EDS analysis was used to rule out non-plastic particles and screen the prepared samples for potential microplastic, based on their element signatures and surface characteristics. Chlorinated plastics such as polyvinyl chloride (PVC) could be easily identified with SEM/EDS due to their unique elemental signatures including chlorine, as could mineral species that are falsely identified as plastics by optical microscopy. Particle morphology determined by optical microscopy and SEM suggests the fish ingested particles contained both degradation fragments from larger plastic pieces and also manufactured microplastics. SEM images of microplastic particle surfaces revealed characteristic cracks consistent with environmental exposure, as well as pigment particles consistent with manufactured materials. Most of the microplastic surfaces in the fish guts and ocean trawls were covered with biofilms, radiolarians, and crustaceans. Many of the fish stomachs contained micro-shell pieces which visually resembled microplastics. Copyright © 2017 Elsevier B.V. All rights reserved.
Spectral element modelling of fault-plane reflections arising from fluid pressure distributions
Haney, M.; Snieder, R.; Ampuero, J.-P.; Hofmann, R.
2007-01-01
The presence of fault-plane reflections in seismic images, besides indicating the locations of faults, offers a possible source of information on the properties of these poorly understood zones. To better understand the physical mechanism giving rise to fault-plane reflections in compacting sedimentary basins, we numerically model the full elastic wavefield via the spectral element method (SEM) for several different fault models. Using well log data from the South Eugene Island field, offshore Louisiana, we derive empirical relationships between the elastic parameters (e.g. P-wave velocity and density) and the effective-stress along both normal compaction and unloading paths. These empirical relationships guide the numerical modelling and allow the investigation of how differences in fluid pressure modify the elastic wavefield. We choose to simulate the elastic wave equation via SEM since irregular model geometries can be accommodated and slip boundary conditions at an interface, such as a fault or fracture, are implemented naturally. The method we employ for including a slip interface retains the desirable qualities of SEM in that it is explicit in time and, therefore, does not require the inversion of a large matrix. We performa complete numerical study by forward modelling seismic shot gathers over a faulted earth model using SEM followed by seismic processing of the simulated data. With this procedure, we construct post-stack time-migrated images of the kind that are routinely interpreted in the seismic exploration industry. We dip filter the seismic images to highlight the fault-plane reflections prior to making amplitude maps along the fault plane. With these amplitude maps, we compare the reflectivity from the different fault models to diagnose which physical mechanism contributes most to observed fault reflectivity. To lend physical meaning to the properties of a locally weak fault zone characterized as a slip interface, we propose an equivalent-layer model under the assumption of weak scattering. This allows us to use the empirical relationships between density, velocity and effective stress from the South Eugene Island field to relate a slip interface to an amount of excess pore-pressure in a fault zone. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C
2015-10-01
This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The bioavailability evaluation and the concentrations achieved for the five elements in the sediments samples analyzed demonstrated that the ecosystem studied does not present an environmental risk.
Mróz, Tomasz; Szufa, Katarzyna; Frontasyeva, Marina V; Tselmovich, Vladimir; Ostrovnaya, Tatiana; Kornaś, Andrzej; Olech, Maria A; Mietelski, Jerzy W; Brudecki, Kamil
2018-01-01
Seven lichens (Usnea antarctica and U. aurantiacoatra) and nine moss samples (Sanionia uncinata) collected in King George Island were analyzed using instrumental neutron activation analysis, and concentration of major and trace elements was calculated. For some elements, the concentrations observed in moss samples were higher than corresponding values reported from other sites in the Antarctica, but in the lichens, these were in the same range of concentrations. Scanning electron microscopy (SEM) and statistical analysis showed large influence of volcanic-origin particles. Also, the interplanetary cosmic particles (ICP) were observed in investigated samples, as mosses and lichens are good collectors of ICP and micrometeorites.
Enhancement of anticorrosion property of 304 stainless steel using silane coatings
NASA Astrophysics Data System (ADS)
Akhtar, Sultan; Matin, Asif; Madhan Kumar, A.; Ibrahim, Ahmed; Laoui, Tahar
2018-05-01
In the present work, silane coatings based on glycidoxypropyltrimethoxysilane/methyltrimethoxysilane (GPTMS/MTMS) and silica nanoparticles were prepared by a sol-gel method. A simple dip-coating method was applied for film deposition and the effect of immersion time and number of immersion cycles on corrosion behavior of 304 stainless steel (SS) was investigated. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS) was used to study the surface morphology and elemental composition of the modified surfaces. The corrosion behavior of the coated and uncoated SS substrates was studied by potentiodynamic polarization and electrochemical impedance spectroscopy in 0.6 M sodium chloride solution. Our results showed that the presence of coatings improved the anti-corrosion property of SS substrates. The coating with a dipping time of 10 min and 3 dipping cycles exhibited the best protection efficiency compared to other coatings and the uncoated substrate. SEM/EDS findings and contact angle measurements supported the conclusions drawn from the corrosion study.
Morphology and chemical composition of dentin in permanent first molars with the diagnose MIH.
Heijs, Suzanne C B; Dietz, Wolfram; Norén, Jörgen G; Blanksma, Nynke G; Jälevik, Birgitta
2007-01-01
The purpose of this investigation was to study the morphology and distribution of some inorganic elements in dentin in first permanent molars from children with Molar-Incisor Hypomineralization (MIH). Sixty four tooth sections from thirty two children were examined in polarized light. Fifteen representative sections were selected for SEM/XRMA analysis; 5 were used for SEM analysis and 10 for XRMA analysis. No morphological changes in the dentin were revealed in polarized light microscopy (PLM). However, in all but two sections interglobular dentin was found. The SEM analyzes confirmed the findings of the PLM with no structural changes to be found in the dentin. The XRMA results showed a difference in the concentration of elements between dentin below normal and dentin below carious or hypomineralized enamel. Elements related to organic matter appeared with higher values in dentin below hypomineralized and carious enamel. The morphological and chemical findings in dentin below hypomineralized enamel imply that the odontoblasts are not affected in cases of MIH, but may be affected by hypocalcemia, reflected by the presence of interglobular dentin.
Application of scanning laser Doppler vibrometry for delamination detection in composite structures
NASA Astrophysics Data System (ADS)
Kudela, Pawel; Wandowski, Tomasz; Malinowski, Pawel; Ostachowicz, Wieslaw
2017-12-01
In this paper application of scanning laser Doppler vibrometry for delamination detection in composite structures was presented. Delamination detection was based on a guided wave propagation method. In this papers results from numerical and experimental research were presented. In the case of numerical research, the Spectral Element Method (SEM) was utilized, in which a mesh was composed of 3D spectral elements. SEM model included also a piezoelectric transducer. In the experimental research guided waves were excited using the piezoelectric transducer whereas the sensing process was conducted using scanning laser Doppler vibrometer (SLDV). Analysis of guided wave propagation and its interaction with delamination was based on a full wavefield approach. Attention was focused on interactions of guided waves with delamination manifested by A0 mode reflection, A0 mode entrapment, and S0/A0 mode conversion. Delamination was simulated by a teflon insert located between plies of composite material. Results of interaction with symmetrically and nonsymmetrical placed delamination (in respect to the composite sample thickness) were presented. Moreover, the authors investigated different size of delaminations. Damage detection was based on a new signal processing algorithm proposed by the authors. In this approach the weighted RMS was utilized selectively. It means that the summation in RMS formula was performed only for a specially selected time instances. Results for simple composite panels, panel with honeycomb core, and real stiffened composite panel from the aircraft were presented.
Comparative analysis of textile metal threads from liturgical vestments and folk costumes in Croatia
NASA Astrophysics Data System (ADS)
Šimić, Kristina; Zamboni, Ivana; Fazinić, Stjepko; Mudronja, Domagoj; Sović, Lea; Gouasmia, Sabrina; Soljačić, Ivo
2018-02-01
Textile is essential for everyday life in all societies. It is used in clothes for protection and warmth but also to indicate class and position, show wealth and social status. Threads from precious metals have also been used in combination with fibres for decoration in order to create luxury fabrics for secular and religious elites. We performed elemental analysis of 17th to 20th century metal threads from various textile articles of liturgical vestments and festive folk costumes collected in the museums of northern, southern and central Croatian regions. In order to determine elemental concentrations in threads we performed comparative X-ray Spectroscopy measurements using: (i) Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) at the Faculty of Textile Technology, (ii) X-ray Fluorescence Spectroscopy (XRF) at the Croatian Conservation Institute and (iii) Particle Induced X-ray Spectroscopy (PIXE) at the Ruđer Bošković Institute Tandem Accelerator Facility using ion micro beam. Rutherford Backscattering Spectroscopy (RBS) was performed as well on selected samples. SEM-EDX investigations of cross-sections along with the surfaces were also performed. In this work we report and discuss the results obtained by the three X-ray methods and RBS for major (gold, silver, copper) and minor elements on different threads like stripes, wires and "srma" (metal thread wrapped around textile yarn).
Solid Lubricated Rolling Element Bearings
1980-02-15
ball paths (as received), at various SEM magnifications and EDX scrutiny 17 i. ■.- ■■ ••.■■ ■? • r 8. TMI TiC/MoS^ sputtered...MoS? removed with Oakite 126 HD), at various SEM magmtications and EDX scrutiny 19 10. TMI TiC/MoS^ sputtered 52100 gyro bearing inner race...ball path (MoS^ removed with Oakite 126 HD), at various SEM magnifications and EDX scrutiny 20 11. TMI TiC/MoS^ sputtered 52100 gyro bearing
Prescriptive Statements and Educational Practice: What Can Structural Equation Modeling (SEM) Offer?
ERIC Educational Resources Information Center
Martin, Andrew J.
2011-01-01
Longitudinal structural equation modeling (SEM) can be a basis for making prescriptive statements on educational practice and offers yields over "traditional" statistical techniques under the general linear model. The extent to which prescriptive statements can be made will rely on the appropriate accommodation of key elements of research design,…
Spatial investigation of some uranium minerals using nuclear microprobe
NASA Astrophysics Data System (ADS)
Valter, Anton A.; Knight, Kim B.; Eremenko, Gelij K.; Magilin, Dmitry V.; Ponomarov, Artem A.; Pisansky, Anatoly I.; Romanenko, Alexander V.; Ponomarev, Alexander G.
2018-01-01
In this work, several individual grains of uranium minerals—uraninite with high content of Ca, Ca-rich boltwoodite, growths of uranophane with β-uranophane, and weeksite—from different uranium deposits were studied by a scanning nuclear microprobe. Particle-induced X-ray emission technique provided by the microprobe (µ-PIXE) was carried out to obtain a concentration and 2D distribution of elements in these minerals. In addition, energy dispersive X-ray spectrometry (SEM-EDS) provided by a scanning electron microscope was used. The types of minerals were determined by X-ray diffraction methods. Results of this study improved the understanding of trace elemental composition of the uranium minerals depending on their origin. Obtained signatures could be linked then to the sample provenance. Such data are important for nuclear forensics to identify the ore types and even specific ore bodies, when only small samples may be available for analysis. In this study, the µ-PIXE technique was used for obtaining the 2D distribution of trace elements that are not commonly measured by SEM-EDS at the relevant concentrations. The detected levels and precisions of elements determination by µ-PIXE were also defined. Using µ-PIXE, several micro mineral inclusions such as phosphate with high level of V and Si were identified. The age of the uranium minerals was estimated due to a significant content of radiogenic Pb that provides an additional parameter for determination of the main attributive characteristics of the minerals. This work also showed that due to its high elemental sensitivity the nuclear microprobe can be a new analytical tool for creating a nuclear forensic database from the known uranium deposits and a subsequent analysis of the intercepted illicit materials.
Spatial investigation of some uranium minerals using nuclear microprobe
NASA Astrophysics Data System (ADS)
Valter, Anton A.; Knight, Kim B.; Eremenko, Gelij K.; Magilin, Dmitry V.; Ponomarov, Artem A.; Pisansky, Anatoly I.; Romanenko, Alexander V.; Ponomarev, Alexander G.
2018-06-01
In this work, several individual grains of uranium minerals—uraninite with high content of Ca, Ca-rich boltwoodite, growths of uranophane with β-uranophane, and weeksite—from different uranium deposits were studied by a scanning nuclear microprobe. Particle-induced X-ray emission technique provided by the microprobe (µ-PIXE) was carried out to obtain a concentration and 2D distribution of elements in these minerals. In addition, energy dispersive X-ray spectrometry (SEM-EDS) provided by a scanning electron microscope was used. The types of minerals were determined by X-ray diffraction methods. Results of this study improved the understanding of trace elemental composition of the uranium minerals depending on their origin. Obtained signatures could be linked then to the sample provenance. Such data are important for nuclear forensics to identify the ore types and even specific ore bodies, when only small samples may be available for analysis. In this study, the µ-PIXE technique was used for obtaining the 2D distribution of trace elements that are not commonly measured by SEM-EDS at the relevant concentrations. The detected levels and precisions of elements determination by µ-PIXE were also defined. Using µ-PIXE, several micro mineral inclusions such as phosphate with high level of V and Si were identified. The age of the uranium minerals was estimated due to a significant content of radiogenic Pb that provides an additional parameter for determination of the main attributive characteristics of the minerals. This work also showed that due to its high elemental sensitivity the nuclear microprobe can be a new analytical tool for creating a nuclear forensic database from the known uranium deposits and a subsequent analysis of the intercepted illicit materials.
Particle shape effects on the fracture of discontinuously-reinforced 6061-A1 matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, N.; Song, S.G.; Gray, G.T., III
1996-05-01
Effects on fracture and ductility of a spherical and an angular particulate-reinforced 6061-Al composite containing 20(vol)% Al{sub 2}O{sub 3} were studied using SEM fractography and modeled using finite element method (FEM). The spherical particulate composite exhibited a slightly lower yield strength and work hardening rate but a considerably higher ductility than the angular counterpart. SEM fractography showed that during tensile deformation the spherical composite failed through void nucleation and linking in the matrix near the reinforcement/matrix interface, whereas the angular composite failed through particle fracture and matrix ligament rupture. FEM results indicate that the distinction between the failure modes formore » these two composites can be attributed to differences in development of internal stresses and strains within the composites due to particle shape.« less
Vitrification of radioactive contaminated soil by means of microwave energy
NASA Astrophysics Data System (ADS)
Yuan, Xun; Qing, Qi; Zhang, Shuai; Lu, Xirui
2017-03-01
Simulated radioactive contaminated soil was successfully vitrified by microwave sintering technology and the solidified body were systematically studied by Raman, XRD and SEM-EDX. The Raman results show that the solidified body transformed to amorphous structure better at higher temperature (1200 °C). The XRD results show that the metamictization has been significantly enhanced by the prolonged holding time at 1200 °C by microwave sintering, while by conventional sintering technology other crystal diffraction peaks, besides of silica at 2θ = 27.830°, still exist after being treated at 1200 °C for much longer time. The SEM-EDX discloses the micro-morphology of the sample and the uniform distribution of Nd element. All the results show that microwave technology performs vitrification better than the conventional sintering method in solidifying radioactive contaminated soil.
NASA Astrophysics Data System (ADS)
Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.
2010-12-01
Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase. Finally, automated serial slicing and imaging in the FIB-SEM generated a stack of secondary electron images of the particles’ interior surfaces that allowed for the 3-D reconstruction of the particles, a process known as FIB tomography. Interior surface of light-absorbing carbonaceous particle from FIB-SEM analysis.
Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang
2017-01-11
Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α'-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.
Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers.
Qian, Lei; Yang, Xiurong
2006-08-24
Novel Au-Pt bimetallic flower nanostructures fabricated on a polyamidoamine dendrimers-modified surface by electrodeposition are reported. These polyamidoamine dendrimers were stable, and they assisted the formation of Au-Pt bimetallic nanoflowers during the electrodeposition process. These nanoflowers were characterized by field-emitted scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electrochemical methods. FE-SEM images showed that the bimetallic nanoflower included two parts: the "light" and the "pale" part. The two parts consisted of many small bimetallic nanoparticles, which was attributed to the progressive nucleation process. Moreover, the "light" part contained more bimetallic nanoparticles. The morphologies of bimetallic nanoflowers depended on the electrodeposition time and potential and the layer number of assembled dendrimers. The average size of nanoflowers increased with the increase in electrodeposition time. The layer number of assembled dendrimers obviously affected the size and morphologies of the "pale" parts of deposited nanoflowers. EDS and XPS indicated that the content of Au element was higher than that of Pt element in the nanoflowers. The bimetallic nanoflowers-modified electrode had electrochemical properties similar to those of bare gold and platinum electrodes. It also exhibited significant electrocatalytic activities toward oxygen reduction.
Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang
2017-01-01
Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α’-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics. PMID:28772416
Preparation of Cu2ZnSnS4 nano-crystalline powder by mechano-chemical method
NASA Astrophysics Data System (ADS)
Alirezazadeh, Farzaneh; Sheibani, Saeed; Rashchi, Fereshteh
2018-01-01
Copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising ceramic materials as an absorber layer in solar cells due to its suitable band gap, high absorption coefficient and non-toxic and environmental friendly constituent elements. In this work, nano-crystalline CZTS powder was synthesized by mechanical milling. Elemental powders of Cu, Zn, Sn and were mixed in atomic ratio of 2:1:1:4 according to the stoichiometry of Cu2ZnSnS4 and then milled in a planetary high energy ball mill under argon atmosphere. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffusion reflectance spectroscopy (DRS). XRD results confirm the formation of single-phase CZTS with kesterite structure after 20 h of milling. Also, the mean crystallite size was about 35 nm. SEM results show that after 20 h of milling, the product has a relatively uniform particle size distribution. Optical properties of the product indicate that the band gap of prepared CZTS is 1.6 eV which is near to the optimum value for photovoltaic solar cells showing as a light absorber material in solar energy applications.
Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX.
Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas
2014-05-25
During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients' oral cavities.
Ultrastructure and elemental analysis of Hypoxis hemerocallidea: a multipurpose medicinal plant.
Afolayan, Anthony J; Otunola, Gloria A
2014-01-01
Herbal medicine is a popular means of medical management in some parts of the world especially in Africa. Hypoxis hemerocallidea Fisch.C.A.Mey. & Avé-Lall, also known as African potato of the Hypoxidaecae family, is one of the medicinal plants that have enjoyed long usage as an herbal medicine in South Africa. In this study, the morphology and elemental constituents of H. hemerocallidea leaf was investigated to correlate the functional role of the ultrastructure in the production of therapeutic compounds. Fresh leaves of H. hemerocallidea were prepared for analysis using standard methods. The ultrastructure and crystal deposits of the plant were assessed using scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). It was observed that the leaves were characterised by multicelullar glandular and non glandular trichomes which are sparsely distributed over the entire surfaces. The glandular trichomes (GTs) in H. hemerocallidea leaf have boulbous heads which are probably filled with secretions, while the non glandular trichomes were long, fibrous and sparse. EDX-SEM of Hypoxis hemerocallidea leaf revealed that carbon, oxygen, nitrogen and silicon are the major components of the deposits, while other elements such as iron, sulphur, sodium, calcium, magnesium, potassium, manganese, iodine, chromium and iodine were present in small but variable amounts. The presence of these elements which are crucial to maintaining good health, in addition to other bioactive constituents might be accountable for the multipurpose therapeutic uses of Hypoxis hemerocallidea in the treatment of cancers, HIV/AIDS related diseases, urinary tract infections, cardiovascular disorders, diabetes and other chronic ailments of humans.
30 CFR 250.1920 - What are the auditing requirements for my SEMS program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... designated and qualified personnel according to the requirements of this subpart and API RP 75, Section 12... thirteen elements of your SEMS program to evaluate compliance with the requirements of this subpart and API... audit plan and procedures must meet or exceed all of the recommendations included in API RP 75 section...
Multifunctional Polymers and Composites for Self-Healing Applications
2006-09-30
linkages (Chen et al. 2002), and a phase separated system based on polydimethylsiloxane (Cho et al. 2006). Self-healing occurs when monomer is released...WCI6 is shown in Figure 1.1a. The average particle sizes determined by analysis of SEM images for all three delivery methods are listed in Table 1.1...were then sieved and the beads smaller than 355 um were kept for further study. Elemental analysis of the wax beads revealed that the concentration of
Neural Network for Nanoscience Scanning Electron Microscope Image Recognition.
Modarres, Mohammad Hadi; Aversa, Rossella; Cozzini, Stefano; Ciancio, Regina; Leto, Angelo; Brandino, Giuseppe Piero
2017-10-16
In this paper we applied transfer learning techniques for image recognition, automatic categorization, and labeling of nanoscience images obtained by scanning electron microscope (SEM). Roughly 20,000 SEM images were manually classified into 10 categories to form a labeled training set, which can be used as a reference set for future applications of deep learning enhanced algorithms in the nanoscience domain. The categories chosen spanned the range of 0-Dimensional (0D) objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces, and 3D patterned surfaces such as pillars. The training set was used to retrain on the SEM dataset and to compare many convolutional neural network models (Inception-v3, Inception-v4, ResNet). We obtained compatible results by performing a feature extraction of the different models on the same dataset. We performed additional analysis of the classifier on a second test set to further investigate the results both on particular cases and from a statistical point of view. Our algorithm was able to successfully classify around 90% of a test dataset consisting of SEM images, while reduced accuracy was found in the case of images at the boundary between two categories or containing elements of multiple categories. In these cases, the image classification did not identify a predominant category with a high score. We used the statistical outcomes from testing to deploy a semi-automatic workflow able to classify and label images generated by the SEM. Finally, a separate training was performed to determine the volume fraction of coherently aligned nanowires in SEM images. The results were compared with what was obtained using the Local Gradient Orientation method. This example demonstrates the versatility and the potential of transfer learning to address specific tasks of interest in nanoscience applications.
NASA Astrophysics Data System (ADS)
Chaljub, E. O.; Bard, P.; Tsuno, S.; Kristek, J.; Moczo, P.; Franek, P.; Hollender, F.; Manakou, M.; Raptakis, D.; Pitilakis, K.
2009-12-01
During the last decades, an important effort has been dedicated to develop accurate and computationally efficient numerical methods to predict earthquake ground motion in heterogeneous 3D media. The progress in methods and increasing capability of computers have made it technically feasible to calculate realistic seismograms for frequencies of interest in seismic design applications. In order to foster the use of numerical simulation in practical prediction, it is important to (1) evaluate the accuracy of current numerical methods when applied to realistic 3D applications where no reference solution exists (verification) and (2) quantify the agreement between recorded and numerically simulated earthquake ground motion (validation). Here we report the results of the Euroseistest verification and validation project - an ongoing international collaborative work organized jointly by the Aristotle University of Thessaloniki, Greece, the Cashima research project (supported by the French nuclear agency, CEA, and the Laue-Langevin institute, ILL, Grenoble), and the Joseph Fourier University, Grenoble, France. The project involves more than 10 international teams from Europe, Japan and USA. The teams employ the Finite Difference Method (FDM), the Finite Element Method (FEM), the Global Pseudospectral Method (GPSM), the Spectral Element Method (SEM) and the Discrete Element Method (DEM). The project makes use of a new detailed 3D model of the Mygdonian basin (about 5 km wide, 15 km long, sediments reach about 400 m depth, surface S-wave velocity is 200 m/s). The prime target is to simulate 8 local earthquakes with magnitude from 3 to 5. In the verification, numerical predictions for frequencies up to 4 Hz for a series of models with increasing structural and rheological complexity are analyzed and compared using quantitative time-frequency goodness-of-fit criteria. Predictions obtained by one FDM team and the SEM team are close and different from other predictions (consistent with the ESG2006 exercise which targeted the Grenoble Valley). Diffractions off the basin edges and induced surface-wave propagation mainly contribute to differences between predictions. The differences are particularly large in the elastic models but remain important also in models with attenuation. In the validation, predictions are compared with the recordings by a local array of 19 surface and borehole accelerometers. The level of agreement is found event-dependent. For the largest-magnitude event the agreement is surprisingly good even at high frequencies.
Structural and Optoelectronic Properties of SnO2 Thin Films Doped by Group-Ia Elements
NASA Astrophysics Data System (ADS)
Benhebal, Hadj; Benrabah, Bedhiaf; Ammari, Aek; Madoune, Yacine; Lambert, Stéphanie D.
This paper presents the results of an experimental work devoted to the synthesis and the characterization of tin dioxide (SnO2) thin layers doped with group-IA elements (Li, Na and K). The materials were synthesized by the sol-gel method and deposited by dip-coating, using tin (II) chloride dihydrate as a source of tin and absolute ethyl alcohol as solvent. Thin films prepared were characterized by several techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), visible and ultraviolet spectroscopy and complex impedance method. The results obtained show that the materials kept their tetragonal rutile structure with preferred orientation of (101), whereas doping leads to a reduction of their energy band gap. The complex impedance analysis suggests that the different processes occurring at the electrode interface are modeled by an electrical circuit not affected by the doping.
NASA Astrophysics Data System (ADS)
Liu, Yu; Xu, Chao; Feng, ZuDe
2014-09-01
Fe-doped TiO2 thin films were fabricated by liquid phase deposition (LPD) method, using Fe(III) nitrate as both Fe element source and fluoride scavenger instead of commonly-used boric acid (H3BO3). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis spectrum were employed to examine the effects of Fe element on morphology, structure and optical characteristics of TiO2 films. The as-prepared films were served as photoanode applied to photogenerated cathodic protection of SUS304 stainless steel (304SS). It was observed that the photoelectrochemical properties of the as-prepared films were enhanced with the addition of Fe element compared to the undoped TiO2 film. The highest photoactivity was achieved for Ti13Fe (Fe/Ti = 3 molar ratio) film prepared in precursor bath containing 0.02 M TiF4 + 0.06 M Fe(NO3)3 under white-light illumination. The effective anticorrosion behaviors can be attributed to the Fe element incorporation which decreases the probability of photogenerated charge-carrier recombination and extends the light response range of Fe-doped TiO2 films appeared to visible-light region.
SEM Imaging and Chemical Analysis of Aerosol Particles from Surface and Hi-altitudes in New Jersey.
NASA Astrophysics Data System (ADS)
Bandamede, M.; Boaggio, K.; Bancroft, L.; Hurler, K.; Magee, N. B.
2016-12-01
We report on Scanning Electron Microscopy analysis of aerosol particle morphology and chemistry. The work includes the first comparative SEM analysis of aerosol particles captured by balloon at high altitude. The particles were acquired in an urban/suburban environment in central New-Jersey. Particles were sampled from near the surface using ambient air filtration and at high-altitudes using a novel balloon-borne instrument (ICE-Ball, see abstract by K. Boaggio). Particle images and 3D geometry are acquired by a Hitachi SU-5000 SEM, with resolution to approximately 3 nm. Elemental analysis on particles is provided by Energy Dispersive X-Ray Spectroscopy (EDS, EDAX, Inc.). Uncoated imaging is conducted in low vacuum within the variable-pressure SEM, which provides improved detection and analysis of light-element compositions including Carbon. Preliminary results suggest that some similar particle types and chemical species are sampled at both surface and high-altitude. However, as expected, particle morphologies, concentrations, chemistry, and apparent origin vary significantly at different altitudes and under different atmospheric flow regimes. Improved characterization of high-altitude aerosol particles, and differences from surface particulate composition, may advance inputs for atmospheric cloud and radiation models.
Chakraborty, Rajesh; Bhattacharaya, Koustava; Chattopadhyay, Pabitra
2014-02-01
Nanostructured zirconium phosphates (ZPs) of different sizes were synthesized using Tritron X-100 (polyethylene glycol-p-isooctylphenyl ether) surfactant. The materials were characterized by FTIR and powdered X-ray diffraction (XRD). The structural and morphological details of the material were established by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM study was followed by energy dispersive spectroscopic analysis (EDS) for elemental analysis of the sample. The particle sizes were determined by dynamic light scattering (DLS) method. Ion exchange capacity of these nanomaterials towards different metal ions was measured and size-dependent ion exchange property of the materials was investigated thoroughly. The nanomaterial of the smallest size (ca. 21.04nm) was employed to separate carrier-free (137m)Ba from (137)Cs in column chromatographic technique using 1.0M HNO3 as eluting agent at pH=5. © 2013 Elsevier Ltd. All rights reserved.
First oxygen from lunar basalt
NASA Technical Reports Server (NTRS)
Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.
1993-01-01
The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.
Kaya, Murat; Bitim, Betül; Mujtaba, Muhammad; Koyuncu, Turgay
2015-11-01
This study was conducted to understand the differences in the physicochemical properties of chitin samples isolated from the wings and the other body parts except the wings (OBP) of a butterfly species (Argynnis pandora). The same isolation method was used for obtaining chitin specimens from both types of body parts. The chitin content of the wings (22%) was recorded as being much higher than the OBP (8%). The extracted chitin samples were characterized via FT-IR, TGA, XRD, SEM, and elemental analysis techniques. Results of these characterizations revealed that the chitins from both structures (wings and OBP) were very similar, except for their surface morphologies. SEM results demonstrated one type of surface morphology for the wings and four different surface morphologies for the OBP. Therefore, it can be hypothesized that the surface morphology of the chitin is highly related with the body part. Copyright © 2015 Elsevier B.V. All rights reserved.
On The Effect Of Zinc Melt Composition On The Structure Of Hot-Dip Galvanized Coatings
NASA Astrophysics Data System (ADS)
Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.
2007-04-01
Zinc hot-dip galvanizing is an effective method for the corrosion protection of ferrous materials. A way of improving the results is through the addition of various elements in the zinc melt. In the present work the effect of Ni, Bi, Cr, Mn, Se and Si at concentration of 0.5 or 1.5 wt.% was examined. Coupons of carbon steel St-37 were coated with zinc containing the above-mentioned elements and were exposed in a Salt Spray Chamber (SSC). The micro structure of these coatings was examined with SEM and XRD. In every case the usual morphology was observed, while differences at the thickness and the crystal size of each layer were induced. However the alloying elements were present in the coating affecting its reactivity and, at least in the case of Mn and Cr, improving corrosion resistance.
NASA Astrophysics Data System (ADS)
Sarecka-Hujar, Beata; Balwierz, Radoslaw; Ostrozka-Cieslik, Aneta; Dyja, Renata; Lukowiec, Dariusz; Jankowski, Andrzej
2017-11-01
The quality of the drug, its purity and identification of degradation products provide the highest quality of pharmaceutical products. The energy dispersive spectroscopy (EDS) method analyses the percentage of each element form as well as their distribution, and morphological characteristics of the drug form. We analysed the usefulness of EDS method in testing orally disintegrating tablets (ODT) with trimetazidine hydrochloride with high resolution scanning electron microscopy (SEM, SUPRA25 Carl Zeiss company) with spectrophotometer equipped with an X-ray energy dispersion (EDAX Company). The samples of the analysed tablets were imaged after applying conductive layers of gold on their surface. In the EDS analysis the compositions of each sample of the obtained tablets were observed to be virtually identical. The differences in the content of carbon and oxygen came from differences in the composition of particular tablets. The presence of gold in the composition resulted from the sputtering the surface of tablets with gold during the analysis. Knowing the composition of the tablet, SEM-EDS method helps to locate and identify the impurities and degradation products of the compounds, leading to a better understanding of the mechanisms of their formation.
Identification and significance of accessory minerals from a bituminous coal
Finkelman, R.B.; Stanton, R.W.
1978-01-01
A scanning electron microscope (SEM) has been used to study the in situ accessory minerals in polished blocks and pellets of petrographically analysed samples of the Waynesburg coal (hvb). Individual grains from the low-temperature ash (LTA) of the same coal were also studied. The visual resolution of the SEM permitted the detection of submicron mineral grains, which could then be analysed by the attached energy-dispersive system. Emphasis was placed on the highly reflective grains in the carbominerite bands. Among the most abundant accessory minerals observed were rutile, zircon, and rare-earth-bearing minerals. Small (1-5 ??m) particles of what may be authigenic iron-rich chromite and a nickel silicate form rims on quartz grains. The SEM also permits the observation of grain morphology and mineral intergrowths. These data are useful in determining authigenicity and diagenic alteration. Substances in density splits of LTA include authigenic, detrital, extraterrestrial magnetite, tourmaline, and evaporite (?) minerals, and a fluorine-bearing amphibole. This analytical approach allows the determination of specific sites for many of the trace elements in coals. In the Waynesburg coal, most of the chromium is in the iron-chromium rims, the fluorine is in the amphibole, and the rare-earth elements are in rare-earth-bearing minerals. The ability to relate trace-element data to specific minerals will aid in predicting the behaviour of elements in coal during combustion, liquefaction, gasification, weathering, and leaching processes. This ability also permits insight into the degree of mobility of these elements in coal and provides clues to sedimentological and diagenetic conditions. ?? 1978.
Automated SEM Modal Analysis Applied to the Diogenites
NASA Technical Reports Server (NTRS)
Bowman, L. E.; Spilde, M. N.; Papike, James J.
1996-01-01
Analysis of volume proportions of minerals, or modal analysis, is routinely accomplished by point counting on an optical microscope, but the process, particularly on brecciated samples such as the diogenite meteorites, is tedious and prone to error by misidentification of very small fragments, which may make up a significant volume of the sample. Precise volume percentage data can be gathered on a scanning electron microscope (SEM) utilizing digital imaging and an energy dispersive spectrometer (EDS). This form of automated phase analysis reduces error, and at the same time provides more information than could be gathered using simple point counting alone, such as particle morphology statistics and chemical analyses. We have previously studied major, minor, and trace-element chemistry of orthopyroxene from a suite of diogenites. This abstract describes the method applied to determine the modes on this same suite of meteorites and the results of that research. The modal abundances thus determined add additional information on the petrogenesis of the diogenites. In addition, low-abundance phases such as spinels were located for further analysis by this method.
NASA Astrophysics Data System (ADS)
Behera, S. S.; Jha, S.; Arakha, M.; Panigrahi, T. K.
2012-03-01
TRACT Nanoparticles synthesis by biological methods using various microorganisms, plants, and plant extracts and enzymes have attracted a great attention as these are cost effective, nontoxic, eco-friendly and an alternative to physical and chemical methods. In this research, Silver nanoparticles (Ag-NPs) were synthesized from AgNO3 solution by green synthesis process with the assistance of microbial source only. The detailed characterization of the Ag NPs were carried out using UV-visible spectroscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray Spectroscopy (EDS), Dynamic light scattering (DLS) analysis, and their antimicrobial evaluation was done against Escherichia coli. The UV-visible spectroscopy analysis showed the surface plasmon resonance property of nanoparticles. The DLS analysis showed the particle distribution of synthesized silver nanoparticles in solution, and SEM analysis showed the morphology of nanoparticles. The elemental composition of synthesized sample was confirmed by EDS analysis. Antibacterial assay of synthesized Ag NP was carried out in solid (Nutrient Agar) growth medium against E.coli. The presence of zone of inhibition clearly indicated the antibacterial activity of silver nanoparticles.
Synthesis and characterization of magnetic semiconducting Cu{sub 2}CoSnS{sub 4} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Aman; Mokurala, Krishnaiah; Kamble, Anvita
2015-06-24
Multifunctional wurtzite Cu{sub 2}CoSnS{sub 4} (CCoTS) nanoparticles were successfully synthesized by facile hot-injection method using elemental sulfur as sulfur source. As-synthesized CCoTS nanoparticles were characterized using X-ray diffraction (XRD) for phase identification. Morphology of as-prepared nanoparticles was examined using FEG-SEM and FEG-TEM. Resistivity of film was measured using four probe method and it’s value (0.8 Ωcm) lies in the range of semiconductors. Magnetization curve of Cu{sub 2}CoSnS{sub 4} nanoparticles (at room temperature) indicates weak ferromagnetic behavior.
Modeling Particle Exposure in US Trucking Terminals
Davis, ME; Smith, TJ; Laden, F; Hart, JE; Ryan, LM; Garshick, E
2007-01-01
Multi-tiered sampling approaches are common in environmental and occupational exposure assessment, where exposures for a given individual are often modeled based on simultaneous measurements taken at multiple indoor and outdoor sites. The monitoring data from such studies is hierarchical by design, imposing a complex covariance structure that must be accounted for in order to obtain unbiased estimates of exposure. Statistical methods such as structural equation modeling (SEM) represent a useful alternative to simple linear regression in these cases, providing simultaneous and unbiased predictions of each level of exposure based on a set of covariates specific to the exposure setting. We test the SEM approach using data from a large exposure assessment of diesel and combustion particles in the US trucking industry. The exposure assessment includes data from 36 different trucking terminals across the United States sampled between 2001 and 2005, measuring PM2.5 and its elemental carbon (EC), organic carbon (OC) components, by personal monitoring, and sampling at two indoor work locations and an outdoor “background” location. Using the SEM method, we predict: 1) personal exposures as a function of work related exposure and smoking status; 2) work related exposure as a function of terminal characteristics, indoor ventilation, job location, and background exposure conditions; and 3) background exposure conditions as a function of weather, nearby source pollution, and other regional differences across terminal sites. The primary advantage of SEMs in this setting is the ability to simultaneously predict exposures at each of the sampling locations, while accounting for the complex covariance structure among the measurements and descriptive variables. The statistically significant results and high R2 values observed from the trucking industry application supports the broader use of this approach in exposure assessment modeling. PMID:16856739
Kitamura, Hiroki; Dahlan, Astryd Viandila; Tian, Yu; Shimaoka, Takayuki; Yamamoto, Takashi; Takahashi, Fumitake
2018-05-12
Impacts of secondary generated minerals on mineralogical and physical immobilization of toxic elements were investigated for chelate-treated air pollution control (APC) fly ash of a municipal solid waste incinerator. Scanning electron microscope (SEM) observation showed that ettringite was generated after the moistening treatment with/without chelate. Although ettringite can incorporate toxic elements into its structure, elemental analysis by energy dispersive X-ray could not find concentrated points of toxic elements in ettringite structure. This implies that mineralogical immobilization of toxic element by the encapsulation to ettringite structure seems to be limited. Physical immobilization was also investigated by SEM observation of the same APC fly ash particles before and after the moistening treatment. The transfer of soluble elements was inhibited only when insoluble minerals such as gypsum were generated and covered the surface of fly ash particles. Neoformed insoluble minerals prevented soluble elements from leaching and transfer. However, such physical immobilization seems to be limited because insoluble mineral formation with surface coverage was monitored only one time of more than 20 observations. Although uncertainty owing to limited samples with limited observations should be considered, this study concludes that mineralogical and physical immobilization of toxic elements by secondary minerals is limited although secondary minerals are always generated on the surface of APC fly ash particles during chelate treatment.
NASA Astrophysics Data System (ADS)
Romanov, V. S.; Goldstein, V. G.
2018-01-01
In the organization of production and operation of submersible electric motors (ESP), as the most essential element of electric submersible plants (ESP) in the oil industry, it is necessary to consider specific operating conditions. The submersible electric motors (SEM) as most essential element of electrosubmersible installations (EI) in oil branch accounting of operation specific conditions is necessary in the process production and operation. They are determined by the conditions under which the EPU is operated. They are defined by the EPU operation conditions. For a complete picture the current state of the SED fleet in oil production, the results of its statistical analysis are given. For a comprehensive idea of the SEM park current state the results of statistical analysis are given in oil production. Currently, assessed the performance of submersible equipment produced by major manufacturers. Currently the operational characteristics assessment of the submersible equipment released by the main producers is given. It is stated that standard equipment cannot fully ensure efficient operation with the help of serial EIs, therefore new technologies and corresponding equipment are required to be developed. It is noted that the standard equipment could not provide fully effective operation by means of serial ESP therefore new technologies development and the corresponding equipment are required.
USDA-ARS?s Scientific Manuscript database
Araucaria angustifolia is a conifer species found in South American subtropical forests that comprises less than 3% of the native vegetation. Thus, little is known concerning the accumulation of nutritional elements in its needles. In this study, scanning electron microscopy (SEM) coupled with energ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozek, Eric M. ..; Washton, Nancy M.; Mueller, Karl T.
A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.
Studies on temperature coefficient of resistivity of Cu2Se - V2O5 nanocomposite
NASA Astrophysics Data System (ADS)
Sairam, S.; Rai, Ranjan; Molli, Muralikrishna
2018-05-01
Nanocomposite of Copper Selenide in Vanadium Pentoxide (Cu2Se-V2O5) was prepared and characterized using XRD for phase analysis, SEM for morphology, and EDAX for elemental analysis. Electrical resistivity measurement was carried out using van der Pauw method as a function of temperature from 35 °C to 170 °C for 5 mol% Cu2Se - 95 mol%V2O5 composite. The temperature coefficient of resistivity was found to be -1.8% per °C.
Elemental distribution analysis of urinary crystals.
Fazil Marickar, Y M; Lekshmi, P R; Varma, Luxmi; Koshy, Peter
2009-10-01
Various crystals are seen in human urine. Some of them, particularly calcium oxalate dihydrate, are seen normally. Pathological crystals indicate crystal formation initiating urinary stones. Unfortunately, many of the relevant crystals are not recognized in light microscopic analysis of the urinary deposit performed in most of the clinical laboratories. Many crystals are not clearly identifiable under the ordinary light microscopy. The objective of the present study was to perform scanning electron microscopic (SEM) assessment of various urinary deposits and confirm the identity by elemental distribution analysis (EDAX). 50 samples of urinary deposits were collected from urinary stone clinic. Deposits containing significant crystalluria (more than 10 per HPF) were collected under liquid paraffin in special containers and taken up for SEM studies. The deposited crystals were retrieved with appropriate Pasteur pipettes, and placed on micropore filter paper discs. The fluid was absorbed by thicker layers of filter paper underneath and discs were fixed to brass studs. They were then gold sputtered to 100 A and examined under SEM (Jeol JSM 35C microscope). When crystals were seen, their morphology was recorded by taking photographs at different angles. At appropriate magnification, EDAX probe was pointed to the crystals under study and the wave patterns analyzed. Components of the crystals were recognized by utilizing the data. All the samples analyzed contained significant number of crystals. All samples contained more than one type of crystal. The commonest crystals encountered included calcium oxalate monohydrate (whewellite 22%), calcium oxalate dihydrate (weddellite 32%), uric acid (10%), calcium phosphates, namely, apatite (4%), brushite (6%), struvite (6%) and octocalcium phosphate (2%). The morphological appearances of urinary crystals described were correlated with the wavelengths obtained through elemental distribution analysis. Various urinary crystals that are not reported under light microscopy could be recognized by SEM-EDAX combination. EDAX is a significant tool for recognizing unknown crystals not identified by ordinary light microscopy or SEM alone.
NASA Astrophysics Data System (ADS)
Zhou, Bing; Greenhalgh, S. A.
2011-01-01
We present an extension of the 3-D spectral element method (SEM), called the Gaussian quadrature grid (GQG) approach, to simulate in the frequency-domain seismic waves in 3-D heterogeneous anisotropic media involving a complex free-surface topography and/or sub-surface geometry. It differs from the conventional SEM in two ways. The first is the replacement of the hexahedral element mesh with 3-D Gaussian quadrature abscissae to directly sample the physical properties or model parameters. This gives a point-gridded model which more exactly and easily matches the free-surface topography and/or any sub-surface interfaces. It does not require that the topography be highly smooth, a condition required in the curved finite difference method and the spectral method. The second is the derivation of a complex-valued elastic tensor expression for the perfectly matched layer (PML) model parameters for a general anisotropic medium, whose imaginary parts are determined by the PML formulation rather than having to choose a specific class of viscoelastic material. Furthermore, the new formulation is much simpler than the time-domain-oriented PML implementation. The specified imaginary parts of the density and elastic moduli are valid for arbitrary anisotropic media. We give two numerical solutions in full-space homogeneous, isotropic and anisotropic media, respectively, and compare them with the analytical solutions, as well as show the excellent effectiveness of the PML model parameters. In addition, we perform numerical simulations for 3-D seismic waves in a heterogeneous, anisotropic model incorporating a free-surface ridge topography and validate the results against the 2.5-D modelling solution, and demonstrate the capability of the approach to handle realistic situations.
Chemometrics in biomonitoring: Distribution and correlation of trace elements in tree leaves.
Deljanin, Isidora; Antanasijević, Davor; Bjelajac, Anđelika; Urošević, Mira Aničić; Nikolić, Miroslav; Perić-Grujić, Aleksandra; Ristić, Mirjana
2016-03-01
The concentrations of 15 elements were measured in the leaf samples of Aesculus hippocastanum, Tilia spp., Betula pendula and Acer platanoides collected in May and September of 2014 from four different locations in Belgrade, Serbia. The objective was to assess the chemical characterization of leaf surface and in-wax fractions, as well as the leaf tissue element content, by analyzing untreated, washed with water and washed with chloroform leaf samples, respectively. The combined approach of self-organizing networks (SON) and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) aided by Geometrical Analysis for Interactive Aid (GAIA) was used in the interpretation of multiple element loads on/in the tree leaves. The morphological characteristics of the leaf surfaces and the elemental composition of particulate matter (PM) deposited on tree leaves were studied by using scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) detector. The results showed that the amounts of retained and accumulated element concentrations depend on several parameters, such as chemical properties of the element and morphological properties of the leaves. Among the studied species, Tilia spp. was found to be the most effective in the accumulation of elements in leaf tissue (70% of the total element concentration), while A. hippocastanum had the lowest accumulation (54%). After water and chloroform washing, the highest percentages of removal were observed for Al, V, Cr, Cu, Zn, As, Cd and Sb (>40%). The PROMETHEE/SON ranking/classifying results were in accordance with the results obtained from the GAIA clustering techniques. The combination of the techniques enabled extraction of additional information from datasets. Therefore, the use of both the ranking and clustering methods could be a useful tool to be applied in biomonitoring studies of trace elements. Copyright © 2015 Elsevier B.V. All rights reserved.
Mechanical properties of sol–gel derived SiO2 nanotubes
Antsov, Mikk; Vlassov, Sergei; Dorogin, Leonid M; Vahtrus, Mikk; Zabels, Roberts; Lange, Sven; Lõhmus, Rünno
2014-01-01
Summary The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol–gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young’s modulus values from the nanoindentation data. Finally, the Young’s moduli of SiO2 NTs measured by different methods were compared and discussed. PMID:25383292
The Development of a Strategic Prioritisation Method for Green Supply Chain Initiatives.
Masoumik, S Maryam; Abdul-Rashid, Salwa Hanim; Olugu, Ezutah Udoncy
2015-01-01
To maintain a competitive position, companies are increasingly required to integrate their proactive environmental strategies into their business strategies. The shift from reactive and compliance-based to proactive and strategic environmental management has driven companies to consider the strategic factors while identifying the areas in which they should focus their green initiatives. In previous studies little attention was given to providing the managers with a basis from which they could strategically prioritise these green initiatives across their companies' supply chains. Considering this lacuna in the literature, we present a decision-making method for prioritising green supply chain initiatives aligned with the preferred green strategies alternatives for the manufacturing companies. To develop this method, the study considered a position between determinism and the voluntarism orientation of environmental management involving both external pressures and internal competitive drivers and key resources as decision factors. This decision-making method was developed using the analytic network process (ANP) technique. The elements of the decision model were derived from the literature. The causal relationships among the multiple decision variables were validated based on the results of structural equation modelling (SEM) using a dataset collected from a survey of the ISO 14001-certified manufacturers in Malaysia. A portion of the relative weights required for computation in ANP was also calculated using the SEM results. A case study is presented to demonstrate the applicability of the method.
The Development of a Strategic Prioritisation Method for Green Supply Chain Initiatives
Masoumik, S. Maryam; Abdul-Rashid, Salwa Hanim; Olugu, Ezutah Udoncy
2015-01-01
To maintain a competitive position, companies are increasingly required to integrate their proactive environmental strategies into their business strategies. The shift from reactive and compliance-based to proactive and strategic environmental management has driven companies to consider the strategic factors while identifying the areas in which they should focus their green initiatives. In previous studies little attention was given to providing the managers with a basis from which they could strategically prioritise these green initiatives across their companies’ supply chains. Considering this lacuna in the literature, we present a decision-making method for prioritising green supply chain initiatives aligned with the preferred green strategies alternatives for the manufacturing companies. To develop this method, the study considered a position between determinism and the voluntarism orientation of environmental management involving both external pressures and internal competitive drivers and key resources as decision factors. This decision-making method was developed using the analytic network process (ANP) technique. The elements of the decision model were derived from the literature. The causal relationships among the multiple decision variables were validated based on the results of structural equation modelling (SEM) using a dataset collected from a survey of the ISO 14001-certified manufacturers in Malaysia. A portion of the relative weights required for computation in ANP was also calculated using the SEM results. A case study is presented to demonstrate the applicability of the method. PMID:26618353
Using ICP-OES and SEM-EDX in biosorption studies
Chojnacka, Katarzyna; Marycz, Krzysztof
2010-01-01
We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution. Figure The advantages and disadvantages of ICP-OES and SEM-EDX techniques Electronic supplementary material The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users. PMID:21423317
Using ICP-OES and SEM-EDX in biosorption studies.
Michalak, Izabela; Chojnacka, Katarzyna; Marycz, Krzysztof
2011-02-01
We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution.FigureThe advantages and disadvantages of ICP-OES and SEM-EDX techniques ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users.
Automated SEM-EDS GSR Analysis for Turkish Ammunitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakir, Ismail; Uner, H. Bulent
2007-04-23
In this work, Automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM-EDS) was used to characterize 7.65 and 9mm cartridges Turkish ammunition. All samples were analyzed in a SEM Jeol JSM-5600LV equipped BSE detector and a Link ISIS 300 (EDS). A working distance of 20mm, an accelerating voltage of 20 keV and gunshot residue software was used in all analysis. Automated search resulted in a high number of particles analyzed containing gunshot residues (GSR) unique elements (PbBaSb). The obtained data about the definition of characteristic GSR particles was concordant with other studies on this topic.
Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Honma, Satoru; Kaneko, Takeshi
2014-11-01
Ten years have passed since a serial block-face scanning electron microscopy (SBF-SEM) method was developed [1]. In this innovative method, samples were automatically sectioned with an ultramicrotome placed inside a scanning electron microscope column, and the block surfaces were imaged one after another by SEM to capture back-scattered electrons. The contrast-inverted images obtained by the SBF-SEM were very similar to those acquired using conventional TEM. SFB-SEM has made easy to acquire image stacks of the transmission electron microscopy (TEM) in the mesoscale, which is taken with the confocal laser-scanning microcopy(CF-LSM).Furthermore, serial-section SEM has been combined with the focused ion beam (FIB) milling method [2]. FIB-incorporated SEM (FIB-SEM) has enabled the acquisition of three-dimensional images with a higher z-axis resolution com- pared to ultramicrotome-equipped SEM.We tried immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in CF-LSM. Dendrites of neurons in the rat neostriatum were visualized using a recombinant viral vector. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively.We showed that conventional immuno-cytochemical staining for TEM was applicable to FIB-SEM. Furthermore, several synaptic contacts, which were thought to exist on the basis of CF-LSM findings, were confirmed with FIB-SEM, revealing the usefulness of the combined method of CF-LSM and FIB-SEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulawik, K., E-mail: kulawik@agh.edu.pl; Buffat, P.A., E-mail: philippe.buffat@epfl.ch; Ecole Polytechnique Fédérale de Lausanne, CIME, Station 12, CH-1015 Lausanne Switzerland
Microstructural characterization of Inconel 718 superalloy after three different heat treatment variants was performed by electron microscopy and electron tomography techniques, taking advantage of recent development in quantitative electron microscopy. Distribution maps of the chemical elements, collected by ChemiSTEM™ EDX system, offer a clear contrast between γ′, γ″, and the γ matrix. It was found that the γ′ phase contains mainly Ni, Al, and Ti, while the γ″ phase contains Ni, Nb, and Ti. Thus application of the Al and Nb STEM–EDX elemental maps enables identification and size measurements of γ′ and γ″ nanoparticles. 3D morphology of γ′ and γ″more » precipitates was examined by electron microscopy and FIB–SEM tomography. Employed methods revealed that in all three heat treatment variants the γ′ particles are almost spheroidal while the γ″ precipitates are mainly elongated-disc shaped. However, the precipitate sizes differed for each variant contributing to differences in the yield strength. Tomographic images were used for estimation of the volume fraction of the both strengthening phases. - Highlights: • ChemiSTEM™ EDX elemental maps bring a fast mean to differentiate γ′ and γ″ particles. • Such maps enable for the explicit size measurements of γ′ and γ″ nanoparticles. • Explicit γ′ and γ″ phases total volume fraction was measured employing FIB–SEM. • γ′/γ″ co-precipitates and sandwich-like γ′/γ″/γ′ particles were present. • HRSTEM-HAADF imaging revealed atomic columns of the γ′/γ″ co-precipitates.« less
Dey, Tania; Naughton, Daragh
2017-05-01
Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H 2 SO 4 ), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.
Hein, L R O; Campos, K A; Caltabiano, P C R O; Kostov, K G
2013-01-01
The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.
Stephant, Nicolas; Grissa, Rabeb; Guillou, Fanch; Bretaudeau, Mickaël; Borjon-Piron, Yann; Guillet, Jacques; Moreau, Philippe
2018-04-18
The surface of some materials reacts very quickly on contact with air, either because it is oxidized or because it gets humidity from the air. For the sake of original surface observation by scanning electron microscopy (SEM), we conceived an airtight transfer box to keep the samples under vacuum from the place of manufacturing to the SEM chamber. This object is designed to fit in all the models of SEM including those provided with an airlock chamber. The design is voluntarily simplified to allow the manufacturing of the object by a standard mechanical workshop. The transfer box can be easily opened by gravity inside the SEM and allows the preservation of the best vacuum inside, before opening. SEM images and energy dispersive spectroscopy (EDX) analyses of metallic lithium and sodium samples are presented prior and after exposure to the air. X-ray Photoelectron Spectroscopy (XPS) analyses of all samples are also discussed in order to investigate the chemical environments of the detected elements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy
NASA Astrophysics Data System (ADS)
Sindern, Sven; Meyer, F. Michael
2016-09-01
Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become increasingly important for supply of REEs in the future.
A new fabrication technique for complex refractive micro-optical systems
NASA Astrophysics Data System (ADS)
Tormen, Massimo; Carpentiero, Alessandro; Ferrari, Enrico; Cabrini, Stefano; Cojoc, Dan; Di Fabrizio, Enzo
2006-01-01
We present a new method that allows to fabricate structures with tightly controlled three-dimensional profiles in the 10 nm to 100 μm scale range. This consists of a sequence of lithographic steps such as Electron Beam (EB) or Focused Ion Beam (FIB) lithography, alternated with isotropic wet etching processes performed on a quartz substrate. Morphological characterization by SEM and AFM shows that 3D structures with very accurate shape control and nanometer scale surface roughness can be realized. Quartz templates have been employed as complex system of micromirrors after metal coating of the patterned surface or used as stamps in nanoimprint, hot embossing or casting processes to shape complex plastic elements. Compared to other 3D micro and nanostructuring methods, in which a hard material is directly "sculptured" by energetic beams, our technique requires a much less intensive use of expensive lithographic equipments, for comparable volumes of structured material, resulting in dramatic increase of throughput. Refractive micro-optical elements have been fabricated and characterized in transmission and reflection modes with white and monochromatic light. The elements produce a distribution of sharp focal spots and lines in the three dimensional space, opening the route for applications of image reconstruction based on refractive optics.
Hamada, Tsuyoshi; Nakai, Yousuke; Isayama, Hiroyuki; Togawa, Osamu; Kogure, Hirofumi; Kawakubo, Kazumichi; Tsujino, Takeshi; Sasahira, Naoki; Hirano, Kenji; Yamamoto, Natsuyo; Ito, Yukiko; Sasaki, Takashi; Mizuno, Suguru; Toda, Nobuo; Tada, Minoru; Koike, Kazuhiko
2014-03-01
Self-expandable metallic stent (SEMS) placement is widely carried out for distal malignant biliary obstruction, and survival analysis is used to evaluate the cumulative incidences of SEMS dysfunction (e.g. the Kaplan-Meier [KM] method and the log-rank test). However, these statistical methods might be inappropriate in the presence of 'competing risks' (here, death without SEMS dysfunction), which affects the probability of experiencing the event of interest (SEMS dysfunction); that is, SEMS dysfunction can no longer be observed after death. A competing risk analysis has rarely been done in studies on SEMS. We introduced the concept of a competing risk analysis and illustrated its impact on the evaluation of SEMS outcomes using hypothetical and actual data. Our illustrative study included 476 consecutive patients who underwent SEMS placement for unresectable distal malignant biliary obstruction. A significant difference between cumulative incidences of SEMS dysfunction in male and female patients via theKM method (P = 0.044 by the log-rank test) disappeared after applying a competing risk analysis (P = 0.115 by Gray's test). In contrast, although cumulative incidences of SEMS dysfunction via the KM method were similar with and without chemotherapy (P = 0.647 by the log-rank test), cumulative incidence of SEMS dysfunction in the non-chemotherapy group was shown to be significantly lower (P = 0.031 by Gray's test) in a competing risk analysis. Death as a competing risk event needs to be appropriately considered in estimating a cumulative incidence of SEMS dysfunction, otherwise analytical results may be biased. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xianyong, E-mail: xylu@buaa.edu.cn; Liu, Zhaoyue; Zhu, Ying
2011-10-15
Highlights: {yields} Mg-doped ZnO nanoparticles were synthesized by sonochemical strategy. {yields} Mg-doped ZnO nanoparticles present good photocatalytic properties. {yields} The change of band gap contributes to their high efficiency in photocatalyst. -- Abstract: Mg-doped ZnO nanoparticles were successfully synthesized by sonochemical method. The products were characterized by scan electron microscopy (SEM) and X-ray powder diffraction (XRD). SEM images revealed that ZnO doped with Mg(II) nanoparticles and ZnO nanoparticles synthesized by the same strategy all had spherical topography. XRD patterns showed that the doped nanoparticles had the same crystals structures as the pure ZnO nanoparticles. The Mg-doped ZnO nanoparticles had largermore » lattice volume than the un-doped nanoparticles. X-ray photoelectron spectroscopy (XPS) not only demonstrated the moral ratio of Mg and Zn element on the surface of nanoparticles, but their valence in nanoparticles as well. The Mg-doped ZnO nanoparticles presented good properties in photocatalyst compared with pure ZnO nanoparticles.« less
Progress toward Synthesis and Characterization of Rare-Earth Nanoparticles
NASA Astrophysics Data System (ADS)
Romero, Dulce G.; Ho, Pei-Chun; Attar, Saeed; Margosan, Dennis
2010-03-01
Magnetic nanoparticles exhibit interesting phenomena, such as enhanced magnetization and reduced magnetic ordering temperature (i.e. superparamagnetism), which has technical applications in industry, including magnetic storage, magnetic imaging, and magnetic refrigeration. We used the inverse micelle technique to synthesize Gd and Nd nanoparticles given its potential to control the cluster size, amount of aggregation, and prevent oxidation of the rare-earth elements. Gd and Nd were reduced by NaBH4 from the chloride salt. The produced clusters were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The results from the XRD show that the majority of the peaks match those of the surfactant, DDAB. No peaks of Gd were observed due to excess surfactant or amorphous clusters. However, the results from the SEM and EDX indicate the presence of Gd and Nd in our clusters microscopically, and current synthesized samples contain impurities. We are using liquid-liquid extraction method to purify the sample, and the results will be discussed.
NASA Astrophysics Data System (ADS)
Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel
2017-11-01
The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.
Field modeling and ray-tracing of a miniature scanning electron microscope beam column.
Loyd, Jody S; Gregory, Don A; Gaskin, Jessica A
2017-08-01
A miniature scanning electron microscope (SEM) focusing column design is introduced and its potential performance assessed through an estimation of parameters that affect the probe radius, to include source size, spherical and chromatic aberration, diffraction and space charge broadening. The focusing column, a critical component of any SEM capable of operating on the lunar surface, was developed by the NASA Marshall Space Flight Center and Advanced Research Systems. The ray-trace analysis presented uses a model of the electrostatic field (within the focusing column) that is first calculated using the boundary element method (BEM). This method provides flexibility in modeling the complex electrode shapes of practical electron lens systems. A Fourier series solution of the lens field is then derived within a cylindrical domain whose boundary potential is provided by the BEM. Used in this way, the Fourier series solution is an accuracy enhancement to the BEM solution, allowing sufficient precision to assess geometric aberrations through direct ray-tracing. Two modes of operation with distinct lens field solutions are described. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.
Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima
2014-03-01
In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.
[Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].
Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou
2014-08-01
In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).
Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum
NASA Astrophysics Data System (ADS)
Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.
2018-03-01
The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.
Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene
NASA Astrophysics Data System (ADS)
Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk
2017-07-01
We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.
NASA Astrophysics Data System (ADS)
Pogrebnjak, A. D.; Beresnev, V. M.; Bondar', A. V.; Kaverin, M. V.; Ponomarev, A. G.
2013-10-01
(Ti-Zr-Hf-V-Nb)N multicomponent nanostructured coatings with thickness of 1.0-1.4 μm synthesized by the method of cathode arc-vapor deposition at temperatures of 250-300°С are investigated by various mutually complementary methods of elemental structural analysis using slow positron beams (SPB), proton microbeam based particle-induced x-ray emission (μ-PIXE), energy-dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) analyses based on electron micro- and nanobeams, x-ray diffraction (XRD) method of phase structural analysis, and the "a-sin2φ" method of measuring a stressed-strained state (x-ray tensometry). The elemental composition, microstructure, residual stress in nanograins, profiles of defect and atom distributions with depth and over the coating surface in 3D-representation are studied for these coatings, and their phase composition, severely strained state, and composition of coatings before and after annealing at Tann = 600°С for annealing time τ = 30 min are investigated. It is demonstrated that the oxidation resistance of the examined coatings can be significantly increased by high-temperature annealing that leads to the formation of elastic severely strained compression state of the coating. Redistribution of elements and defects, their segregation near the interface boundaries and around grains and subgrains in the process of thermostimulated diffusion, and termination of spinodal segregation without considerable change of the average nanograin size are revealed.
Measurement of pattern roughness and local size variation using CD-SEM: current status
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Kawasaki, Takahiro; Kawada, Hiroki; Sakai, Kei; Kato, Takashi; Yamaguchi, Satoru; Ikota, Masami; Momonoi, Yoshinori
2018-03-01
Measurement of line edge roughness (LER) is discussed from four aspects: edge detection, PSD prediction, sampling strategy, and noise mitigation, and general guidelines and practical solutions for LER measurement today are introduced. Advanced edge detection algorithms such as wave-matching method are shown effective for robustly detecting edges from low SNR images, while conventional algorithm with weak filtering is still effective in suppressing SEM noise and aliasing. Advanced PSD prediction method such as multi-taper method is effective in suppressing sampling noise within a line edge to analyze, while number of lines is still required for suppressing line to line variation. Two types of SEM noise mitigation methods, "apparent noise floor" subtraction method and LER-noise decomposition using regression analysis are verified to successfully mitigate SEM noise from PSD curves. These results are extended to LCDU measurement to clarify the impact of SEM noise and sampling noise on LCDU.
NASA Astrophysics Data System (ADS)
Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi
2016-10-01
The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.
Structural equation modeling in pediatric psychology: overview and review of applications.
Nelson, Timothy D; Aylward, Brandon S; Steele, Ric G
2008-08-01
To describe the use of structural equation modeling (SEM) in the Journal of Pediatric Psychology (JPP) and to discuss the usefulness of SEM applications in pediatric psychology research. The use of SEM in JPP between 1997 and 2006 was examined and compared to leading journals in clinical psychology, clinical child psychology, and child development. SEM techniques were used in <4% of the empirical articles appearing in JPP between 1997 and 2006. SEM was used less frequently in JPP than in other clinically relevant journals over the past 10 years. However, results indicated a recent increase in JPP studies employing SEM techniques. SEM is an under-utilized class of techniques within pediatric psychology research, although investigations employing these methods are becoming more prevalent. Despite its infrequent use to date, SEM is a potentially useful tool for advancing pediatric psychology research with a number of advantages over traditional statistical methods.
Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters
NASA Astrophysics Data System (ADS)
Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel
2013-08-01
Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.
Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue
2012-01-01
Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter < 0.1 microm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.
Yuan, Linxi; Sun, Liguang; Fortin, Danielle; Wang, Yuhong; Yin, Xuebin
2015-01-01
An ancient wood layer dated at about 5600 yr BP by accelerator mass spectrometry (AMS) 14C was discovered in an intertidal zone of the East China Sea. Extensive and horizontally stratified sediments with black color on the top and yellowish-red at the bottom, and some nodule-cemented concretions with brown surface and black inclusions occurred in this intertidal zone. Microscale analysis methods were employed to study the microscale characterization and trace element distribution in the stratified sediments and concretions. Light microscopy, scanning electron microscopy (SEM) and backscattered electron imaging (BSE) revealed the presence of different coatings on the sand grains. The main mineral compositions of the coatings were ferrihydrite and goethite in the yellowish-red parts, and birnessite in the black parts using X-ray powder diffraction (XRD). SEM observations showed that bacteriogenic products and bacterial remnants extensively occurred in the coatings, indicating that bacteria likely played an important role in the formation of ferromanganese coatings. Post-Archean Australian Shale (PAAS)-normalized middle rare earth element (MREE) enrichment patterns of the coatings indicated that they were caused by two sub-sequential processes: (1) preferentially release of Fe-Mn from the beach rocks by fermentation of ancient woods and colloidal flocculation in the mixing water zone and (2) preferential adsorption of MREE by Fe-Mn oxyhydroxides from the seawater. The chemical results indicated that the coatings were enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Ba, especially with respect to Co, Ni. The findings of the present study provide an insight in the microscale features of ferromanganese coatings and the Fe-Mn biogeochemical cycling during the degradation of buried organic matter in intertidal zones or shallow coasts. PMID:25786213
Lozano-Carrascal, Naroa; Satorres-Nieto, Marta; Delgado-Ruiz, Rafael; Maté-Sánchez de Val, José Eduardo; Gehrke, Sergio Alexandre; Gargallo-Albiol, Jorge; Calvo-Guirado, José Luis
2017-01-01
The aim of the present study was to evaluate the feasibility of SEM and EDX microanalysis on evaluating the effect of porcine xenografts (MP3 ® ) supplemented with pamidronate during socket healing. Mandibular second premolars (P2) and first molars (M1) were extracted from six Beagle dogs. P2 were categorized as small defects (SD) and M1 as large defects (LD). Four random groups were created: SC (small control defects with MP3 ® ), ST (small test defects MP3 ® +pamidronate), LC (large control defects with MP3 ® ), and LT (large test defects MP3 ® +pamidronate). At four and eight weeks of healing the samples were evaluated fisically through scanning electron microscopy (SEM), and chemical element mapping was carried out by Energy dispersive X-ray spectroscopy (EDX). After four weeks of healing, SEM and EDX analysis revealed more mineralized bone in ST and LT groups compared with control groups (p<0.05). After eight weeks, Ca/P ratios were slightly higher for small defects (groups SC and ST); in SEM description, in both control and test groups, trabecular bone density was similar to the adjacent mineralized cortical bone. Within the limitations of this experimental study, SEM description and EDX elemental microanalysis have demonstrated to be useful techniques to assess bone remodelling of small and large defects. Both techniques show increased bone formation in test groups (MP3 ® modified with pamidronate) after four and eight weeks of healing. Copyright © 2016 Elsevier GmbH. All rights reserved.
Advanced electron microscopy methods for the analysis of MgB2 superconductor
NASA Astrophysics Data System (ADS)
Birajdar, B.; Peranio, N.; Eibl, O.
2008-02-01
Advanced electron microscopy methods used for the analysis of superconducting MgB2 wires and tapes are described. The wires and tapes were prepared by the powder in tube method using different processing technologies and thoroughly characterised for their superconducting properties within the HIPERMAG project. Microstructure analysis on μm to nm length scales is necessary to understand the superconducting properties of MgB2. For the MgB2 phase analysis on μm scale an analytical SEM, and for the analysis on nm scale a energy-filtered STEM is used. Both the microscopes were equipped with EDX detector and field emission gun. Electron microscopy and spectroscopy of MgB2 is challenging because of the boron analysis, carbon and oxygen contamination, and the presence of large number of secondary phases. Advanced electron microscopy involves, combined SEM, EPMA and TEM analysis with artefact free sample preparation, elemental mapping and chemical quantification of point spectra. Details of the acquisition conditions and achieved accuracy are presented. Ex-situ wires show oxygen-free MgB2 colonies (a colony is a dense arrangement of several MgB2 grains) embedded in a porous and oxygen-rich matrix, introducing structural granularity. In comparison, in-situ wires are generally more dense, but show inhibited MgB2 phase formation with significantly higher fraction of B-rich secondary phases. SiC additives in the in-situ wires forms Mg2Si secondary phases. The advanced electron microscopy has been used to extract the microstructure parameters like colony size, B-rich secondary phase fraction, O mole fraction and MgB2 grain size, and establish a microstructure-critical current density model [1]. In summary, conventional secondary electron imaging in SEM and diffraction contrast imaging in the TEM are by far not sufficient and advanced electron microscopy methods are essential for the analysis of superconducting MgB2 wires and tapes.
Iftekhar, Sidra; Srivastava, Varsha; Hammouda, Samia Ben; Sillanpää, Mika
2018-08-15
The work focus to enhance the properties of xanthan gum (XG) by anchoring metal ions (Fe, Zr) and encapsulating inorganic matrix (M@XG-ZA). The fabricated nanocomposite was characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), surface area (BET) and zeta potential analysis. The adsorption of Sc, Nd, Tm and Yb was investigated after screening of synthesized materials in detail to understand the influence of pH, contact time, temperature and initial REE (rare earth element) concentration both in single and multicomponent system via batch adsorption. The adsorption mechanism was verified by FTIR, SEM and elemental mapping. The SEM images of Zr@XG-ZA demonstrate scutes structure, which disappeared after adsorption of REEs. The maximum adsorption capacities were 132.30, 14.01, 18.15 and 25.73 mg/g for Sc, Nd, Tm and Yb, respectively. The adsorption efficiency over Zr@XG-ZA in multicomponent system was higher than single system and the REEs followed the order: Sc > Yb > Tm > Nd. The Zr@XG-ZA demonstrate good adsorption behavior for REEs up to five cycles and then it can be used as photocatalyst for the degradation of tetracycline. Thus, the work adds a new insight to design and preparation of efficient bifunctional adsorbents from sustainable materials for water purification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Jiye; Kim, MinJung; An, JinWook; Kim, Yunje
2016-05-01
The aim of this study was to verify that the combination of focused ion beam (FIB) and scanning electron microscope/energy-dispersive X-ray (SEM/EDX) could be applied to determine the sequence of line crossings. The samples were transferred into FIB/SEM for FIB milling and an imaging operation. EDX was able to explore the chemical components and the corresponding elemental distribution in the intersection. The technique was successful in determining the sequence of heterogeneous line intersections produced using gel pens and red sealing ink with highest success rate (100% correctness). These observations show that the FIB/SEM was the appropriate instrument for an overall examination of document. © 2016 American Academy of Forensic Sciences.
Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru
2018-05-01
A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma
2018-04-01
Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.
Heringer, Rodrigo D; Ranville, James F
2018-05-25
Single particle inductively coupled plasma mass spectrometry (spICP-MS) was investigated as a screening-level technique for the analysis and characterization of inorganic gunshot residue (IGSR) nanoparticles. spICP-MS works with undigested samples whereby nanoparticles (NPs) in a suspension are individually atomized and ionized as they reach the plasma, each resulting in a pulse of analyte ions that can be quantified. The method is rapid, and signals from hundreds of NPs can be collected in 1-2min per sample. The technique is quantitative for NP mass and number concentration when only one element (single element mode) is measured using a quadrupole MS. Likewise, a qualitative elemental fingerprint can be obtained for individual NPs when peak-hopping between two elements (dual element mode). For this proof of concept study, each shooter's hand was sampled with ultrapure water or swab to obtain NPs suspensions. Measurements of antimony, barium, and lead were performed using both analysis modes. With no sample preparation and fully automated sample introduction, it is possible to analyze more than 100 samples in a day. Results show that this technique opens a new perspective for future research on GSR sample identification and characterization and can complement SEM/EDX analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Occurrence modes of As, Sb, Te, Bi, Ag in sulfide assemblages of gold deposits of the Urals
NASA Astrophysics Data System (ADS)
Vikent'eva, O.; Vikentev, I.
2016-04-01
Review of occurrence modes of trace toxic elements ("potential pollutants") in ores from large gold deposits (the Urals) of different genetic types is presented. Mineral forms of these elements as well as their presence in main minerals from gold-bearing sulfide assemblages according to SEM, EPMA, INAA, ICP-MS and LA-ICP-MS are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unnikrishnan, V. K.; Nayak, Rajesh; Kartha, V. B.
2014-09-15
Laser-induced breakdown spectroscopy (LIBS), an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn) in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×10{sup 9} W/cm{sup 2}. The spatially integrated plasma emission was collected and imaged on tomore » the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX) surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.« less
NASA Astrophysics Data System (ADS)
Sarparandeh, Mohammadali; Hezarkhani, Ardeshir
2017-12-01
The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed methods and geological studies leads to finding some hidden information, and this approach has the best results compared to using only one of them.
NASA Astrophysics Data System (ADS)
Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan
2016-04-01
Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 -3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for the characterization of the training set. Consequently, for each zeolite species 250 EDS data (as elemental intensities) used for training and 200 ±50 analyses were tested. Finally, two prediction models were developed. The constructed models with various cross-correlation values (r) yielded an average accuracy of >91% for the best predictions using C5.0 Decision Tree algorithm and back propagation artificial neural network. Despite having similar accuracies, the developed models exhibit different prediction behaviors for some zeolite minerals. The results demonstrate that artificial neural network as a nonlinear tool and decision tree algorithm as a rule based prediction model would be employed to provide considerably efficient and reliable identification/classification of some zeolite minerals regardless of their similar elemental compositions. Keywords: mineral identification; zeolites; energy dispersive spectrometry; artificial neural networks; decision tree.
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Hollender, Fabrice; Bard, Pierre-Yves; Priolo, Enrico; Klin, Peter; de Martin, Florent; Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2015-04-01
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
Raman-in-SEM, a multimodal and multiscale analytical tool: performance for materials and expertise.
Wille, Guillaume; Bourrat, Xavier; Maubec, Nicolas; Lahfid, Abdeltif
2014-12-01
The availability of Raman spectroscopy in a powerful analytical scanning electron microscope (SEM) allows morphological, elemental, chemical, physical and electronic analysis without moving the sample between instruments. This paper documents the metrological performance of the SEMSCA commercial Raman interface operated in a low vacuum SEM. It provides multiscale and multimodal analyses as Raman/EDS, Raman/cathodoluminescence or Raman/STEM (STEM: scanning transmission electron microscopy) as well as Raman spectroscopy on nanomaterials. Since Raman spectroscopy in a SEM can be influenced by several SEM-related phenomena, this paper firstly presents a comparison of this new tool with a conventional micro-Raman spectrometer. Then, some possible artefacts are documented, which are due to the impact of electron beam-induced contamination or cathodoluminescence contribution to the Raman spectra, especially with geological samples. These effects are easily overcome by changing or adapting the Raman spectrometer and the SEM settings and methodology. The deletion of the adverse effect of cathodoluminescence is solved by using a SEM beam shutter during Raman acquisition. In contrast, this interface provides the ability to record the cathodoluminescence (CL) spectrum of a phase. In a second part, this study highlights the interest and efficiency of the coupling in characterizing micrometric phases at the same point. This multimodal approach is illustrated with various issues encountered in geosciences. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Method for Identifying Small-Molecule Aggregators Using Photonic Crystal Biosensor Microplates
Chan, Leo L.; Lidstone, Erich A.; Finch, Kristin E.; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.
2010-01-01
Small molecules identified through high-throughput screens are an essential element in pharmaceutical discovery programs. It is now recognized that a substantial fraction of small molecules exhibit aggregating behavior leading to false positive results in many screening assays, typically due to nonspecific attachment to target proteins. Therefore, the ability to efficiently identify compounds within a screening library that aggregate can streamline the screening process by eliminating unsuitable molecules from further consideration. In this work, we show that photonic crystal (PC) optical biosensor microplate technology can be used to identify and quantify small-molecule aggregation. A group of aggregators and nonaggregators were tested using the PC technology, and measurements were compared with those gathered by three alternative methods: dynamic light scattering (DLS), an α-chymotrypsin colorimetric assay, and scanning electron microscopy (SEM). The PC biosensor measurements of aggregation were confirmed by visual observation using SEM, and were in general agreement with the α-chymotrypsin assay. DLS measurements, in contrast, demonstrated inconsistent readings for many compounds that are found to form aggregates in shapes, very different from the classical spherical particles assumed in DLS modeling. As a label-free detection method, the PC biosensor aggregation assay is simple to implement and provides a quantitative direct measurement of the mass density of material adsorbed to the transducer surface, whereas the microplate-based sensor format enables compatibility with high-throughput automated liquid-handling methods used in pharmaceutical screening. PMID:20930952
NASA Astrophysics Data System (ADS)
Trocellier, P.; Djanarthany, S.; Chêne, J.; Haddi, A.; Brass, A. M.; Poissonnet, S.; Farges, F.
2005-10-01
Simple and complex alkali-borosilicate glasses were submitted to aqueous corrosion at room temperature, 60 and 90 °C in solutions with pH ranging between 0 and 12. Analytical scanning electron microscopy (SEM), ion beam analysis (IBA) techniques, isotopic tracing and secondary ion mass-depth profiling (SIMS) have been used to investigate the variations of the surface composition of glass. In acidic medium, the glass surface is generally covered by a thick hydrated silica layer, mobile elements like Li, Na and B and transition elements (Fe, Zr, Mo, etc.) are strongly depleted. Near pH 7, relative enrichments of aluminium, iron and rare earths are shown together with strong Li, Na and B depletions. In basic medium, the glass surface exhibits relative enrichments of the major part of transition metals (from Cr to U) whereas mobile elements seem to be kept close to their nominal concentration level at the glass surface and Si is severely impoverished. Hydrogen incorporated at the glass surface after leaching is much more immobile in neutral and basic media than in acid medium.
Deposition of lead and cadmium released by cigarette smoke in dental structures and resin composite.
Takeuchi, Cristina Yoshie Garcia; Corrêa-Afonso, Alessandra Marques; Pedrazzi, Hamilton; Dinelli, Welingtom; Palma-Dibb, Regina Guenka
2011-03-01
Cigarette smoke is a significant source of cadmium, lead, and toxic elements, which are absorbed into the human organism. In this context, the aim of this study was to investigate in vitro the presence of toxic elements, cadmium, and lead deriving from cigarette smoke in the resin composite, dentine, and dental enamel. Eight cylindrical specimens were fabricated from resin composite, bovine enamel, and root dentin fragments that were wet ground and polished with abrasive paper to obtain sections with 6-mm diameter and 2-mm thickness. All specimens were exposed to the smoke of 10 cigarettes/day during 8 days. After the simulation of the cigarette smoke, the specimens were examined with scanning electron microscopy (SEM) and the energy-dispersive X-ray analysis. In the photomicrographic analysis in SEM, no morphological alterations were found; however, the microanalysis identified the presence of cadmium, arsenic, and lead in the different specimens. These findings suggest that the deposition of these elements derived from cigarette smoke could be favored by dental structures and resin composite. Copyright © 2010 Wiley-Liss, Inc.
Combined PIXE and X-ray SEM studies on time-resolved deposits of welding shop aerosols
NASA Astrophysics Data System (ADS)
Barfoot, K. M.; Mitchell, I. V.; Verheyen, F.; Babeliowsky, T.
1981-03-01
Time-resolved deposits of welding shop air particulates have been obtained using a streak sampling system. PIXE analysis of these deposits, using 2 MeV protons, typically revealed the presence of a large number of elements, with many in the range Z = 11-30. Strong variations, up to three orders of magnitude, in the concentrations of several elements such as Al, Si and Fe as well as Zn, Na, K and Ca were found. The 2 h sampling resolution normally used was found to be insufficient to follow the short pollution episodes that regularly occur in a welding shop environment and so sampling with a 20 min resolution was used. The variation of elemental concentrations for different sampling times together with information on the physical nature of these air particulates, determined with a scanning electron microscope (SEM) and Si(Li) X-ray detector attachment, are presented. This type of information together with that obtained from the PIXE analysis is of importance in industrial hygiene studies. The need to make corrections for partial filter clogging, based on air-flow rate monitoring, is discussed.
Two novel approaches to study arthropod anatomy by using dualbeam FIB/SEM.
Di Giulio, Andrea; Muzzi, Maurizio
2018-03-01
Transmission Electron Microscopy (TEM) has always been the conventional method to study arthropod ultrastructure, while the use of Scanning Electron Microscopy (SEM) was mainly devoted to the examination of the external cuticular structures by secondary electrons. The new generation field emission SEMs are capable to generate images at sub-cellular level, comparable to TEM images employing backscattered electrons. The potential of this kind of acquisition becomes very powerful in the dual beam FIB/SEM where the SEM column is combined with a Focused Ion Beam (FIB) column. FIB uses ions as a nano-scalpel to slice samples fixed and embedded in resin, replacing traditional ultramicrotomy. We here present two novel methods, which optimize the use of FIB/SEM for studying arthropod anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn; Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn; Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate newmore » cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required. - Highlights: • Higher-order cubature points for degrees 7 to 9 are developed. • The effects of quadrature rule on the mass and stiffness matrices has been conducted. • The cubature points have always positive integration weights. • Freeing from the inversion of a wide bandwidth mass matrix. • The accuracy of the TSEM has been improved in about one order of magnitude.« less
Liquid petroleum gas sensing application of ZnO/CdO:ZnO nanocomposites at low temperature
NASA Astrophysics Data System (ADS)
Rajput, Jeevitesh K.; Pathak, T. K.; Kumar, V.; Swart, H. C.; Purohit, L. P.
2018-04-01
ZnO and CdO:ZnO nanoparticles are synthesized by sol-gel precipitation method. The structural analysis shows composite structure for CdO:ZnO nanoparticles with (002) and (111) phase. The SEM images show wedge like morphology and 3-D hexagonal morphology with ˜110 nm in size. The uniform growth of CdO:ZnO nanoparticles were observed in EDS element mapping image. LPG sensing was observed for CdO:ZnO nanoparticle with rapid sensing response 8.69% at operating temperature 50°C. This sensing response can be accounted due by absorption ions reactions at low operating temperature.
Elemental composition and structural characteristics of as-received TriTaniumTM orthodontic archwire
NASA Astrophysics Data System (ADS)
Ilievska, I.; Petrov, V.; Mihailov, V.; Karatodorov, S.; Andreeva, L.; Zaleski, A.; Mikli, V.; Gueorgieva, M.; Petrova, V.; Stoyanova-Ivanova, A.
2018-03-01
Orthodontic archwires are among the most important devices of fixed orthodontic therapy. Many types of archwires are made available on the market by various manufacturers with different elemental composition and structural characteristics. Knowing this information is important when choosing a suitable archwire for a particular stage of orthodontic treatment. The aim of our study is to characterize a new type orthodontic archwires (TriTaniumTM, American Orthodontics) before their placement in the oral cavity. To achieve the aim, we used modern methods for determining their elemental composition and structural characteristics: laser-induced plasma spectroscopy (LIBS), X-ray diffraction analysis (XRD), scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and differential scanning calorimetry (DSC). The results obtained from the qualitative elemental analysis by LIBS and the quantitative elemental analysis by EDX showed that Ni and Ti are the main elements in the archwire studied. The room-temperature XRD patterns showed peaks typical for a Ni-Ti alloy with an austenite-type structure. Monitoring the phase transitions by means of DSC measurements in the temperature range from –50 °C to +50 °C, we showed that in TriTaniumTM archwires, besides the austenite to martensite transition, there exists a rhombohedral intermediate phase (R phase). This study will be useful in assisting orthodontists in applying appropriate nickel-titanium orthodontic archwires in the clinical practice.
Scanning electron microscope image signal-to-noise ratio monitoring for micro-nanomanipulation.
Marturi, Naresh; Dembélé, Sounkalo; Piat, Nadine
2014-01-01
As an imaging system, scanning electron microscope (SEM) performs an important role in autonomous micro-nanomanipulation applications. When it comes to the sub micrometer range and at high scanning speeds, the images produced by the SEM are noisy and need to be evaluated or corrected beforehand. In this article, the quality of images produced by a tungsten gun SEM has been evaluated by quantifying the level of image signal-to-noise ratio (SNR). In order to determine the SNR, an efficient and online monitoring method is developed based on the nonlinear filtering using a single image. Using this method, the quality of images produced by a tungsten gun SEM is monitored at different experimental conditions. The derived results demonstrate the developed method's efficiency in SNR quantification and illustrate the imaging quality evolution in SEM. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasution, Erika L. Y.; Ahab, Atika; Nuryadin, Bebeh W.
2016-02-08
PEGylated gadolinium carbonate ((Gd{sub 2}(CO{sub 3}){sub 3})@PEG) powder was successfully synthesized by a modified solvothermal method. The synthesized products were characterized by means of X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy (EDS). A systematic change in the chemical surface composition, crystallinity and size properties of the Gd{sub 2}(CO{sub 3}){sub 3}@PEG particles was observed by increasing the reaction time at 5 hours, 7 hours, and 8 hours. The corresponding XRD patterns showed that the Gd{sub 2}(CO{sub 3}){sub 3} particles had hexagonal symmetry (JCPDS No. 37-0559) with a crystallite size of 3.5,more » 2.9, and 4.6 nm. FTIR spectra showed that the Gd{sub 2}(CO{sub 3}){sub 3})@PEG particles were formed with the PEG as carbonyl and hydroxyl group attached to the surface. SEM analysis showed that the Gd{sub 2}(CO{sub 3}){sub 3})@PEG particles had a flake-like morphology of homogeneous sized particles and agglomerates. EDS analysis confirmed the presence of constituent Gd{sub 2}(CO{sub 3}){sub 3} elements.« less
NASA Astrophysics Data System (ADS)
Kanagaraj, Thamaraiselvi; Thiripuranthagan, Sivakumar; Paskalis, Sahaya Murphin Kumar; Abe, Hideki
2017-12-01
Template free porous g-C3N4 (pGCN) and flower like bismuth oxybromide catalysts were synthesized by poly condensation and precipitation methods respectively. Various weight percentages of porous GCN-BiOBr composite catalysts (x% pGCN-BiOBr where x = 5, 10, 30, 50 & 70 wt% of pGCN) were synthesized by impregnation method. All the synthesized catalysts were characterized by X-Ray diffractometer, Fourier transform infrared spectrophotometer, BET surface area analyzer, UV Visible diffuse reflectance spectrophotometer, X-Ray photoelectron spectrophotometer, SEM with Energy dispersive X-ray analyzer (SEM/EDAX) and elemental mapping, Transmission electron microscope, Photoluminescence spectrophotometer and Electrochemical impedance. Photocatalytic degradation of all the synthesized catalysts were tested towards the harmful reactive dyes such as reactive blue 198 (RB 198), reactive black 5 (RB 5) and reactive yellow 145 (RY 145) in presence of visible irradiation. Among the catalysts 30% pGCN-BiOBr resulted in the highest photocatalytic activity towards the degradation of all the three dyes in presence of UV, visible and solar irradiations. Kinetics studies on the photocatalytic mineralization of dyes indicated that it followed pseudo first order. HPLC, TOC and COD studies confirm that the dyes are mineralized into CO2, water and mineral salts.
In search of the elusive IrB{sub 2}: Can mechanochemistry help?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Department of Physics, University of Central Florida, Orlando, FL 32816
The previously unknown hexagonal ReB{sub 2}-type IrB{sub 2} diboride and orthorhombic IrB monoboride phases were produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. In addition to XRD, scanning electron microscopy and transmission electron microscopy were employed to further characterize the microstructure of the phases produced. - Graphical abstract: ReB{sub 2}-type IrB{submore » 2} and a new IrB have been successfully synthesized for the first time using mechanochemical method. Crystal structures of IrB{sub 2} and IrB were studied by synchrotron X-ray diffraction. Microstructures of the new phases were characterized by SEM and TEM. - Highlights: • ReB{sub 2}-type IrB{sub 2} and a new IrB have been synthesized by mechanochemical method. • Crystal structures of IrB{sub 2} and IrB were studied by synchrotron XRD. • Microstructures of the new phases were characterized by SEM and TEM.« less
NASA Astrophysics Data System (ADS)
Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad
2015-02-01
In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.
Electronic structure and chemical bonding in La1-x Sr x MnO3 perovskite ceramics
NASA Astrophysics Data System (ADS)
Thenmozhi, N.; Sasikumar, S.; Sonai, S.; Saravanan, R.
2017-04-01
This study reports on the synthesis of La1-x Sr x MnO3 (x = 0.3, 0.4 and 0.5) manganites by high temperature solid state reaction method using lanthanum oxide, strontium carbonate and manganese oxide as starting materials. The synthesized samples were characterized by XRD, UV-vis, SEM/EDS and VSM. Structural characterization shows that all the prepared samples have the perovskite rhombohedral structure. Influence of Sr doping on electron density distributions in the lattice structure of LaMnO3 were analyzed through maximum entropy method (MEM). Cell parameters are found to be decreasing with the addition of Sr content. The qualitative and quantitative analysis by MEM reveals that, incorporation of Sr into LaMnO3 lattice enhances the ionic nature between La and O ions and decreases the covalent nature between Mn and O ions. Optical band gap values are determined from the UV-visible absorption spectra. Particles with polygonal form are observed from the SEM micrographs. The elemental compositions of the synthesized samples are confirmed by EDS. The magnetic properties studied from the M-H plot taken at room temperature indicated that, the prepared samples are exhibited ferromagnetic behavior.
Carbonate biomineralization in terrestrial gastropods: environmental vs. physiological constraints
NASA Astrophysics Data System (ADS)
Mierzwa, D.; Stolarski, J.
2009-04-01
Preservational potential of shells of terrestrial gastropods allows to use them as valuable (paleo)climatic proxies. Despite of the fact, that the elements incorporated in their skeleton derive almost entirely from their diet, details of the ion uptake routes have not been studied in details. This work is a first step in the investigations of element uptake and biomineralization processes in pulmonate gastropod Cepaea vindobonensis (Férussac, 1821). Although phenotypic plasticity in the shell characters of the species appears to be mainly genetic in nature, some differences seem to correlate with availability of ions used in biomineralization. For example, shells of individuals living in marginal parts of flood plains (environment extreme for the species and generally depleted in calcium) have weakened structure and faded color pattern, whereas individuals from the lime substrata form typically developed, pigmented shells with several cross-lamellar layers. Micro- and nanostructural characteristics of shells from different environments are visualized by SEM and AFM imaging techniques and some biogeochemical properties are characterized by spectroscopic and fluorescence methods. Further experiments are required to elucidate the ion/trace elements transfer between the substratum, nutrients, organism, and the shell.
Morphological classification and microanalysis of tire tread particles worn by abrasion or corrosion
NASA Astrophysics Data System (ADS)
Crosta, Giovanni F.
2011-06-01
Two types of tread wear particles are investigated: tread wear particles from a steel brush abrader (TrBP) and particles produced during a steering pad run (TrSP). A leaching experiment in water at pH = 7.5 for 24 and 48h was carried out on TrBP to simulate environmental degradation. Images of all materials were collected by a scanning electron microscope (SEM) together with element microanalytical (EDX) data. Surface morphology is described by a function of wave number (the "enhanced spectrum") obtained from SEM image analysis and non-linear filtering. A surface roughness index, ρ, is derived from the enhanced spectrum. The innovative contribution of this work is the representation of morphology by means of ρ, which, together with EDX data, allows the quantitative characterization of the materials. In particular, the surface roughness of leached TrBP is shown to decay in time and is related to the corresponding microanalytical data for the first time. The morphology of steering pad TrSP, affected by included mineral particles, is shown to be more heterogeneous. Differences in morphology (enhanced spectra and ρ), elemental composition and surface chemistry of TrBP and TrSP are discussed. All methods described and implemented herewith can be immediately applied to other types of tread wear material. The arguments put forward herewith should help in the proper design of those experiments aimed at assessing the impact of tread wear materials on the environment and on human health.
NASA Astrophysics Data System (ADS)
Dhaygude, H. D.; Shinde, S. K.; Velhal, Ninad B.; Takale, M. V.; Fulari, V. J.
2016-08-01
In the present study, a novel chemical route is used to synthesize the undoped and Cu-doped ZnO thin films in aqueous solution by successive ionic layer adsorption and reaction (SILAR) method. The synthesized thin films are characterized by x-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDAX), contact angle goniometer and UV-Vis spectroscopic techniques. XRD study shows that the prepared films are polycrystalline in nature with hexagonal crystal structure. The change in morphology for different doping is observed in the studies of FE-SEM. EDAX spectrum shows that the thin films consist of zinc, copper and oxygen elements. Contact angle goniometer is used to measure the contact angle between a liquid and a solid interface and after detection, the nature of the films is initiated from hydrophobic to hydrophilic. The optical band gap energy for direct allowed transition ranging between 1.60-2.91 eV is observed.
Sivakumar, S; Venkatesan, A; Soundhirarajan, P; Khatiwada, Chandra Prasad
2015-12-05
In this research, a chemical precipitation method was used to synthesize undoped and doped cadmium oxide nanoparticles and studied by TG-DTA, XRD, FT-IR, SEM, with EDX and antibacterial activities, respectively. The melting points, thermal stability and the kinetic parameters like entropy (ΔS), enthalpy (ΔH), Gibb's energy (ΔG), activation energy (E), frequency factor (A) were evaluated from TG-DTA measurements. X-ray diffraction analysis (XRD) brought out the information about the synthesized products exist in spherical in shape with cubic structure. The functional groups and band area of the samples were established by Fourier transform infrared (FT-IR) spectroscopy. The direct and indirect band gap energy of pure and doped samples were determined by UV-Vis-DRS. The surface morphological, elemental compositions and particles sizes were evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Finally, antibacterial activities indicated the Gram-positive and Gram-negative bacteria are more active in transporter, dehydrogenize and periplasmic enzymatic activities of pure and doped samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Charlier, Philippe; Huynh-Charlier, Isabelle; Munoz, Olivia; Billard, Michel; Brun, Luc; de la Grandmaison, Geoffroy Lorin
2010-07-01
This article describes the potential interest in forensic anthropology of the microscopic analysis of dental calculus deposits (DCD), a calcified residue frequently found on the surface of teeth. Its sampling and analysis seem straightforward and relatively reproducible. Samples came from archaeological material (KHB-1 Ra's al-Khabbah and RH-5 Ra's al-Hamra, two Prehistoric graveyards located in the Sultanate of Oman, dated between the 5th and 4th millennium B.C.; Montenzio Vecchia, an Etruscan-Celtic necropolis from the north of Italy, dated between the 5th and 3rd century B.C.; body rests of Agnès Sorel, French royal mistress died in 1450 A.D.; skeleton of Pierre Hazard, French royal notary from the 15th century A.D.). Samples were studies by direct optical microscope (OM) or scanning electron microscopy (SEM). Many cytological, histological and elemental analyses were possible, producing precious data for the identification of these remains, the reconstitution of their alimentation and occupational habits, and propositions for manner of death. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Recent Progress of B-Ga2O3 MOSFETs for Power Electronic Applications
2017-03-20
variety of group 4 elements such as Silicon, Tin , and Germanium.[2, 9] Multiple samples will be referenced throughout the text, but it should be noted...Ga2O3 channel. Fabrication steps 2-4 are used in the standard fabrication as seen in Figure 1. Figure 8a below shows a top-down SEM image of the gated...voltage of 567V. Please see reference [11] for more information. 393 Figure 8. (a) Colored SEM image of a β-Ga2O3 finFET. (b) Transfer
Kawakubo, Kazumichi; Kawakami, Hiroshi; Toyokawa, Yoshihide; Otani, Koichi; Kuwatani, Masaki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya
2015-01-01
Endoscopic double self-expandable metallic stent (SEMS) placement by the partial stent-in-stent (PSIS) method has been reported to be useful for the management of unresectable hilar malignant biliary obstruction. However, it is technically challenging, and the optimal SEMS for the procedure remains unknown. The aim of this study was to identify the risk factors for technical failure of endoscopic double SEMS placement for unresectable malignant hilar biliary obstruction (MHBO). Between December 2009 and May 2013, 50 consecutive patients with MHBO underwent endoscopic double SEMS placement by the PSIS method. We retrospectively evaluated the rate of successful double SEMS placement and identified the risk factors for technical failure. The technical success rate for double SEMS placement was 82.0% (95% confidence interval [CI]: 69.2-90.2). On univariate analysis, the rate of technical failure was high in patients with metastatic disease and unilateral placement. Multivariate analysis revealed that metastatic disease was a significant risk factor for technical failure (odds ratio: 9.63, 95% CI: 1.11-105.5). The subgroup analysis after double guidewire insertion showed that the rate of technical success was higher in the laser-cut type SEMS with a large mesh and thick delivery system than in the braided type SEMS with a small mesh and thick delivery system. Metastatic disease was a significant risk factor for technical failure of double SEMS placement for unresectable MHBO. The laser-cut type SEMS with a large mesh and thin delivery system might be preferable for the PSIS procedure. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Preconditioning to Reduce Decompression Stress in Scuba Divers.
Germonpré, Peter; Balestra, Costantino
2017-02-01
Using ultrasound imaging, vascular gas emboli (VGE) are observed after asymptomatic scuba dives and are considered a key element in the potential development of decompression sickness (DCS). Diving is also accompanied with vascular dysfunction, as measured by flow-mediated dilation (FMD). Previous studies showed significant intersubject variability to VGE for the same diving exposure and demonstrated that VGE can be reduced with even a single pre-dive intervention. Several preconditioning methods have been reported recently, seemingly acting either on VGE quantity or on endothelial inflammatory markers. Nine male divers who consistently showed VGE postdive performed a standardized deep pool dive (33 m/108 ft, 20 min in 33°C water temperature) to investigate the effect of three different preconditioning interventions: heat exposure (a 30-min session of dry infrared sauna), whole-body vibration (a 30-min session on a vibration mattress), and dark chocolate ingestion (30 g of chocolate containing 86% cocoa). Dives were made one day per week and interventions were administered in a randomized order. These interventions were shown to selectively reduce VGE, FMD, or both compared to control dives. Vibration had an effect on VGE (39.54%, SEM 16.3%) but not on FMD postdive. Sauna had effects on both parameters (VGE: 26.64%, SEM 10.4%; FMD: 102.7%, SEM 2.1%), whereas chocolate only improved FMD (102.5%, SEM 1.7%). This experiment, which had the same subjects perform all control and preconditioning dives in wet but completely standardized diving conditions, demonstrates that endothelial dysfunction appears to not be solely related to VGE.Germonpré P, Balestra C. Preconditioning to reduce decompression stress in scuba divers. Aerosp Med Hum Perform. 2017; 88(2):114-120.
Surface protection coating material for controlling the decay of major construction stone
NASA Astrophysics Data System (ADS)
Arun, T.; Ray, D. K.; Gupta, V. P.; Panda, S. S.; Sahoo, P. K.; Ghosh, Jaydip; Sengupta, Pranesh; Satyam, P. V.
2017-05-01
Degradation of the building stones are creating instability in the old building and monuments which is to be protected. To investigate the characteristics of such a stones used for the construction in eastern India, we have collected the khondalite stones. The microstructural and elemental composition analysis of the khondalite stones are analyzed by using SEM, EDX and PIXE trace elemental analysis. We have prepared surface protection coating material with graphene oxide and cobalt ferrite as a base material along with other residuals. The prepared coating materials is coated on the galvanized iron substrate for further characterization. The surface morphology characteristics of the coating material is analyzed by SEM and AFM. The corrosion resistance characteristics of the prepared coating material is studied by the electrochemical impedance spectroscopy. The results suggests that the prepared coating material can be used as a surface protection materials to control the self-destruction of khondalite stones.
Moreno, D A; Cano, E; Ibars, J R; Polo, J L; Montero, F; Bastidas, J M
2004-05-01
This paper studies the initial stages of iridescent tarnishes on titanium heat exchanger tubes in contact with running freshwater on the river Tagus in Spain for up to 20 months. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy [(SEM with energy dispersive X-ray (EDX)] and X-ray photoelectron spectroscopy (XPS) in conjunction with argon-ion sputtering were the techniques used. The EIS data indicated a capacitive behavior, showing a semicircle that was better defined as the experimental time increased, indicating a decreasing tarnishing resistance of titanium. XPS and EDX results indicated that the main elements identified were calcium, phosphorus, nitrogen, and iron. The amount of these elements was higher on the tarnished titanium specimens than on the untarnished specimens. SEM analysis showed the presence of diatoms in the iridescent tarnishes on titanium tubes. Copyright 2003 Springer-Verlag
Williamson, B J; Mikhailova, I; Purvis, O W; Udachin, V
2004-04-25
Scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX) of particulate matter on lichen transplant thalli (Hypogymnia physodes) was assessed as a complementary technique to wet chemical analysis for source apportionment of airborne contaminants. Transplants (2 month exposure) stationed in the Cu smelter and former mining town of Karabash were compared with those from a control site 30 km south. Particulate matter in Karabash samples (715 analyses) showed higher levels of S, Pb, Cu, Sn and Zn compared with the control (598 analyses). Complex element associations among the particles confounded detailed mineralogical identifications, and therefore a simplified particle classification scheme was devised for source apportionment. Karabash samples contained high levels of particles classified as mining-related (MRP), and these were also identified in control samples, indicating wide spatial dispersion from the smelter and highlighting the sensitivity of the method. It was noted that MRP <2.5-microm diameter were poorly represented on lichen surfaces suggesting this may limit the usefulness of Hypogymnia transplants as proxies when assessing human health impacts from airborne particulates. Analyses of the lichen thallus surface (away from surface particulates) revealed high levels of Cu, Zn, Fe and Pb associated with organics in the Karabash samples compared with the control, with a proportionate loss of K, interpreted as being due to a stress-related increase in cell membrane permeability. This type of analysis may provide a novel SEM-EDX-based method for assessing lichen vitality. The techniques developed are presented and further implications of the study are discussed.
Di Palma, Anna; Capozzi, Fiore; Spagnuolo, Valeria; Giordano, Simonetta; Adamo, Paola
2017-06-01
Particulate matter has to be constantly monitored because it is an important atmospheric transport form of potentially harmful contaminants. The cost-effective method of the moss-bags can be employed to evaluate both loads and chemical composition of PM. PM entrapped by the moss Pseudoscleropodium purum exposed in bags in 9 European sites was characterized for number, size and chemical composition by SEM/EDX. Moreover, moss elemental uptake of 53 elements including rare earth elements was estimated by ICP-MS analysis. All above was aimed to find possible relations between PM profile and moss uptake and to find out eventual element markers of the different land use (i.e. agricultural, urban, industrial) of the selected sites. After exposure, about 12,000 particles, mostly within the inhalable fraction, were counted on P. purum leaves; their number generally increased from the agricultural sites to the urban and industrial ones. ICP analysis indicated that twenty-three elements were significantly accumulated by mosses with different element profile according to the various land uses. The PM from agricultural sites were mainly made of natural/crustal elements or derived from rural activities. Industrial-related PM covered a wider range of sources, from those linked to specific industrial activities, to those related to manufacturing processes or use of heavy-duty vehicles. This study indicates a close association between PM amount and moss element-uptake, which increases in parallel with PM amount. Precious metals and REEs may constitute novel markers of air pollution in urban and agricultural sites, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of the new TAMZ titanium alloy for dental cast application.
Zhang, Y M; Guo, T W; Li, Z C
2000-12-01
To reveal the potential of the new titanium alloy as dental prosthodontic materials. Dental castings of TAMZ alloy were investigated in the casting machine specially designed for titanium. A mesh pattern was used to count the castability value. The mechanical properties were measured by means of a universal testing machine. Optical micrography was done on the exposed cross-section of TAMZ alloy casting. From the surface to the inner part the Knoop hardness in reacted layer of TAMZ alloy casting was measured. The structure and elemental analyses of the reacted layer were made by SEM and element line scanning observation. The castability value (Cv = 98%) and the tensile test (sigma b = 850 Mpa, sigma 0.2 = 575 Mpa, delta = 7.33%) data were collected. The castings microstructure showed main alpha phase and small beta phase. Knoop hardness in the surface reacted layer was greater than that in the inner part. From the SEM and element line scanning observation, there are three different layers in the surface reacted layer of the TAMZ alloy castings, and higher level of element of O, Al, Si and Zr were found in the reacted layer while the Si permeated deeper than others. TAMZ alloy can be accepted as a material for dental alloy in prosthodontics.
A new way of measuring wiggling pattern in SADP for 3D NAND technology
NASA Astrophysics Data System (ADS)
Mi, Jian; Chen, Ziqi; Tu, Li Ming; Mao, Xiaoming; Liu, Gong Cai; Kawada, Hiroki
2018-03-01
A new metrology method of quantitatively measuring wiggling patterns in a Self-Aligned Double Patterning (SADP) process for 2D NAND technology has been developed with a CD-SEM metrology program on images from a Review-SEM system. The metrology program provided accurate modeling of various wiggling patterns. The Review-SEM system provided a-few-micrometer-wide Field of View (FOV), which exceeds precision-guaranteed FOV of a conventional CD-SEM. The result has been effectively verified by visual inspection on vertically compressed images compared with Wiggling Index from this new method. A best-known method (BKM) system has been developed with connected HW and SW to automatically measure wiggling patterns.
NASA Astrophysics Data System (ADS)
Desbois, G.; Urai, J. L.; Kukla, P. A.
2009-12-01
Mudrocks and clay-rich fault gouges are important mechanical elements in the Earth’s crust and form seals for crustal fluids such as groundwater and hydrocarbons. Other fields of interest are the storage of anthropogenic carbon dioxide and radioactive waste in geologic formations. In addition, coupled flows, capillary processes, and associated deformation are of importance in many applied fields. A key factor to understanding these processes is a detailed understanding of the morphology of the pore space. Classic studies of porosity in fine grained materials are performed on dried or freeze dried samples and include metal injection methods, magnetic susceptibility measurement, SEM and TEM imaging, neutron scattering, NMR spectroscopy, and ESEM. Confocal microscopy and X-ray tomography are used to image porosity in coarse grained sediments but the resolution of these techniques is not sufficient at present for applications to mudrocks or clay-rich fault gouges. Therefore, observations and interpretations remain difficult because none of these approaches is able to directly describe the in-situ porosity at the pore scale. In addition, some methods require dried samples in which the natural structure of pores may have been damaged to some extent due to desiccation and dehydration of the clay minerals. A recently developed alternative is to study wet samples using a cryo-SEM, which allows stabilization of wet media at cryo-temperature, in-situ sample preparation by ion beam cross-sectioning (BIB, FIB) and observations of the stabilized microstructure at high resolution. We report on a study of Boom clay from a proposed disposal site of radioactive waste (Mol site, Belgium) using cryo-SEM at cryogenic temperature, with ion beam cross-sectioning to prepare smooth, damage free surfaces. Pores commonly have crack-like tips, preferred orientation parallel to bedding and power law size distribution. We define a number of pore types depending on shape and location in the microstructure. 3-D reconstruction by serial cross-sectioning shows 3-D connectivity of the pore space. These findings offer a new insight into the morphology of pores down to nano-scale and provide the basis for microstructure-based models of transport in clays. SEM image (SE) of a Broad Ion Beam polished cross-section performed on dry Boom clay (Mol site, Belgium) showing the 2D apparent porosity (26.3%). The cross-section is perpendicular to the bedding.
ERIC Educational Resources Information Center
Beretvas, S. Natasha; Furlow, Carolyn F.
2006-01-01
Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…
Seasonal variability of aerosols and their characteristics in urban and rural locations of Delhi-NCR
NASA Astrophysics Data System (ADS)
Bhardwaj, Purnima; Pandey, Alok Kumar; Kumar, Krishan; Jain, V. K.
2017-10-01
Present study shows the seasonal variation of the Aerosol Optical Depth (AOD) and aerosols characteristics in an urban and rural environment over Delhi-NCR. Aerosol sampling was carried out using a Mini-Volume sampler at an urban and rural location in Delhi-NCR. A relatively higher PM2.5 (particulate matter of size < 2.5 μm) concentrations were observed at the urban sampling site than the rural one in the summer as well as winter season. PM2.5 samples were further analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX) in order to understand the morphology and elemental composition of the PM2.5 aerosols. Summer SEM results showed the dominance of fluffy agglomerate (soot) in urban area whereas the rural area was relatively clean. The winter season SEM results showed the presence of aggregates of smaller particles at urban site whereas flaky, round and irregular shaped particles were observed at the rural site. EDX analysis showed the presence of elements such as C, Cu, Zn, Ga and Fe (representative elements) in varying concentrations at both the urban and rural sampling locations. NASA's Aqua satellite MODIS sensor AOD data for summer and winter seasons have been used to study the spatial distributions of aerosols over the study region. AOD was found to be relatively higher in urban area as compared to the rural area in both the summer and winter seasons indicating the contribution of high amount of anthropogenic aerosols in the urban atmosphere.
Imaging of surface spin textures on bulk crystals by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru
2016-11-01
Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.
NASA Astrophysics Data System (ADS)
Ledeuil, J. B.; Uhart, A.; Soulé, S.; Allouche, J.; Dupin, J. C.; Martinez, H.
2014-09-01
This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (~12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (~12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03211j
Yi, Feng; Stevanovic, Ana; Osborn, William A; Kolmakov, A; LaVan, David A
2017-11-01
We have developed a versatile nanocalorimeter sensor which allows imaging and electrical measurements of samples under different gaseous environments using the scanning electron microscope (SEM) and can simultaneously measure the sample temperature and associated heat of reaction. This new sensor consists of four independent heating/sensing elements for nanocalorimetry and eight electrodes for electrical measurements, all mounted on a 50 nm thick, 250 μm × 250 μm suspended silicon nitride membrane. This membrane is highly electron transparent and mechanically robust enabling in situ SEM observation under realistic temperatures, environmental conditions and pressures up to one atmosphere. To demonstrate this new capability, we report here on 1) in situ SEM-nanocalorimetry study of melting and solidification of polyethylene oxide, 2) the temperature dependence of conductivity of a nanowire; 3) the electron beam induced current measurements (EBID) of a nanowire in vacuum and air. Furthermore, the sensor is easily adaptable to operate in liquid environment and is compatible with most existing SEM. This versatile platform couples nanocalorimetry with in situ SEM imaging under various gaseous and liquid environments and is applicable to materials research, nanotechnology, energy, catalysis and biomedical applications.
Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method*
Guo, Xing-zhong; Yang, Hui
2005-01-01
Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’. PMID:15682507
NASA Astrophysics Data System (ADS)
Miler, M.; Gosar, M.
2010-02-01
Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Meža River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.
Ghosal, Sutapa; Wagner, Jeff
2013-07-07
We present correlated application of two micro-analytical techniques: scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS) for the non-invasive characterization and molecular identification of flame retardants (FRs) in environmental dusts and consumer products. The SEM/EDS-RMS technique offers correlated, morphological, molecular, spatial distribution and semi-quantitative elemental concentration information at the individual particle level with micrometer spatial resolution and minimal sample preparation. The presented methodology uses SEM/EDS analyses for rapid detection of particles containing FR specific elements as potential indicators of FR presence in a sample followed by correlated RMS analyses of the same particles for characterization of the FR sub-regions and surrounding matrices. The spatially resolved characterization enabled by this approach provides insights into the distributional heterogeneity as well as potential transfer and exposure mechanisms for FRs in the environment that is typically not available through traditional FR analysis. We have used this methodology to reveal a heterogeneous distribution of highly concentrated deca-BDE particles in environmental dust, sometimes in association with identifiable consumer materials. The observed coexistence of deca-BDE with consumer material in dust is strongly indicative of its release into the environment via weathering/abrasion of consumer products. Ingestion of such enriched FR particles in dust represents a potential for instantaneous exposure to high FR concentrations. Therefore, correlated SEM/RMS analysis offers a novel investigative tool for addressing an area of important environmental concern.
Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V
2011-01-01
Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.
Cubature versus Fekete-Gauss nodes for spectral element methods on simplicial meshes
NASA Astrophysics Data System (ADS)
Pasquetti, Richard; Rapetti, Francesca
2017-10-01
In a recent JCP paper [9], a higher order triangular spectral element method (TSEM) is proposed to address seismic wave field modeling. The main interest of this TSEM is that the mass matrix is diagonal, so that an explicit time marching becomes very cheap. This property results from the fact that, similarly to the usual SEM (say QSEM), the basis functions are Lagrange polynomials based on a set of points that shows both nice interpolation and quadrature properties. In the quadrangle, i.e. for the QSEM, the set of points is simply obtained by tensorial product of Gauss-Lobatto-Legendre (GLL) points. In the triangle, finding such an appropriate set of points is however not trivial. Thus, the work of [9] follows anterior works that started in 2000's [2,6,11] and now provides cubature nodes and weights up to N = 9, where N is the total degree of the polynomial approximation. Here we wish to evaluate the accuracy of this cubature nodes TSEM with respect to the Fekete-Gauss one, see e.g.[12], that makes use of two sets of points, namely the Fekete points and the Gauss points of the triangle for interpolation and quadrature, respectively. Because the Fekete-Gauss TSEM is in the spirit of any nodal hp-finite element methods, one may expect that the conclusions of this Note will remain relevant if using other sets of carefully defined interpolation points.
The SEM description of interaction of a transient electromagnetic wave with an object
NASA Technical Reports Server (NTRS)
Pearson, L. W.; Wilton, D. R.
1980-01-01
The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.
Optimization of SEM-EDS to determine the C–A–S–H composition in matured cement paste samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossen, J.E., E-mail: john.rossen@alumni.epfl.ch
Microanalysis of characteristic X-rays in the SEM is a powerful method to assess the chemical composition of phases in cement pastes, in particular the calcium silicate hydrate containing aluminium (C–A–S–H). Nevertheless, many variables may influence the results obtained, due mainly to the intimate mixing of C–A–S–H with other hydrate phases and the susceptibility of this phase to damage by the electron beam. In this study the effect of various acquisition parameters was examined, along with methods to determine an “average” C–A–S–H composition. The results acquired in the SEM were compared with the analysis of the same samples in the TEM,more » where phases can be analyzed without intermixing. A simple method was used to obtain compositions from SEM based analysis that are very close to those which can be obtained in the TEM. - Highlights: •The intermixing of phases is the limiting factor in the analysis of C–A–S–H composition by SEM-EDS •Guidelines to limit beam damage and properly analyze C–A–S–H composition by SEM-EDS are given •SEM-EDS and TEM-EDS give similar results when proper data treatment is made.« less
Balamurugan, S; Melba, K
2015-06-01
The Cu doped ZnO, (Zn(1-x)Cu(x))O (x = 0.02, 0.04, 0.06, 0.08, and 0.1) nanomaterials were prepared by ball milling technique (BMT), citrate sol gel (CSG), and molten salt flux (MSF) methods. The various as-prepared (Zn(1-x)Cu(x))O materials were analyzed by powder X-ray diffraction (pXRD), FT-IR, and SEM-EDX measurements in order to check the phase formation, purity, surface morphology and elements present in the annealed materials. Due to the preparation methods as well as doping of 'x' slight variations in cell parameters are seen. The average crystalline size of CSG method shows smaller size (25-35 nm) than BMT and MSF approaches. The materials obtained by MSF technique reveal the average crystalline size in the range of 32-72 nm whereas the BMT materials exhibit 36-50 nm for the composition, 0.02 ≤ x ≤ 0.1. The presence of functional groups and the chemical bonding in (Zn(1-x)Cu(x))O system is confirmed through FT-IR measurements. It is evident from the FT-IR data that bands seen at 400-500 cm(-1) are characteristics of M-O (M = metal ion) bonding in the studied materials. The micro images observed by SEM exhibiting polycrystalline character as compared with the crystallite size obtained from XRD. Among the three approaches employed in the present investigations, in terms of average particle size the CSG method may be concluded as an efficient method for the preparation of Zn(1-x)Cu(x)O nanomaterials.
Nondestructive SEM for surface and subsurface wafer imaging
NASA Technical Reports Server (NTRS)
Propst, Roy H.; Bagnell, C. Robert; Cole, Edward I., Jr.; Davies, Brian G.; Dibianca, Frank A.; Johnson, Darryl G.; Oxford, William V.; Smith, Craig A.
1987-01-01
The scanning electron microscope (SEM) is considered as a tool for both failure analysis as well as device characterization. A survey is made of various operational SEM modes and their applicability to image processing methods on semiconductor devices.
Honda, Shogo; Kohama, Takeshi; Tanaka, Tatsuro; Yoshida, Hisashi
2014-01-01
It is well known that a decline of arousal level causes of poor performance of movements or judgments. Our previous study indicates that microsaccade (MS) rates and pupil fluctuations change before slow eye movements (SEMs) (Honda et al. 2013). However, SEM detection of this study was obscure and insufficient. In this study, we propose a new SEM detection method and analyze MS rates and pupil fluctuations while subjects maintain their gaze on a target. We modified Shin et al.'s method, which is optimized for EOG (electrooculography) signals, to extract the period of sustaining SEMs using a general eye tracker. After SEM detection, we analyzed MS rates and pupil fluctuations prior to the initiation of SEMs. As a result, we were able to detect SEMs more precisely than in our previous study. Moreover, the results of eye movements and pupil fluctuations analyses show that gradual rise of MS rate and longitudinal miosis are observed prior to the initiation of SEMs, which is consistent with our previous study. These findings suggest that monitoring eye movements and pupil fluctuations may evaluate the arousal level more precisely. Further, we found that these tendencies become more significant when they are restricted to the initial SEMs.
Aziz, Shujahadeen B
2017-12-13
In this work, copper (Cu) nanoparticles with observable surface plasmonic resonance (SPR) peaks were synthesized by an in-situ method. Chitosan host polymer was used as a reduction medium and a capping agent for the Cu nanoparticles. The surface morphology of the samples was investigated through the use of scanning electron micrograph (SEM) technique. Copper nanoparticles appeared as chains and white specks in the SEM images. The strong peaks due to the Cu element observed in the spectrum of energy dispersive analysis of X-rays. For the nanocomposite samples, obvious peaks due to the SPR phenomena were obtained in the Ultraviolet-visible (UV-vis) spectra. The effect of Cu nanoparticles on the host band gap was understood from absorption edges shifting of absorption edges to lower photon energy. The optical dielectric loss parameter obtained from the measurable quantities was used as an alternative method to study the band structure of the samples. Quantum mechanical models drawbacks, in the study of band gap, were explained based on the optical dielectric loss. A clear dispersion region was able to be observed in refractive indices spectra of the composite samples. A linear relationship with a regression value of 0.99 was achieved between the refractive index and volume fractions of CuI content. Cu nanoparticles with various sizes and homogenous dispersions were also determined from transmission electron microscope (TEM) images.
2017-01-01
In this work, copper (Cu) nanoparticles with observable surface plasmonic resonance (SPR) peaks were synthesized by an in-situ method. Chitosan host polymer was used as a reduction medium and a capping agent for the Cu nanoparticles. The surface morphology of the samples was investigated through the use of scanning electron micrograph (SEM) technique. Copper nanoparticles appeared as chains and white specks in the SEM images. The strong peaks due to the Cu element observed in the spectrum of energy dispersive analysis of X-rays. For the nanocomposite samples, obvious peaks due to the SPR phenomena were obtained in the Ultraviolet-visible (UV-vis) spectra. The effect of Cu nanoparticles on the host band gap was understood from absorption edges shifting of absorption edges to lower photon energy. The optical dielectric loss parameter obtained from the measurable quantities was used as an alternative method to study the band structure of the samples. Quantum mechanical models drawbacks, in the study of band gap, were explained based on the optical dielectric loss. A clear dispersion region was able to be observed in refractive indices spectra of the composite samples. A linear relationship with a regression value of 0.99 was achieved between the refractive index and volume fractions of CuI content. Cu nanoparticles with various sizes and homogenous dispersions were also determined from transmission electron microscope (TEM) images. PMID:29236074
Nuclear Electromagnetic Pulse Review
NASA Astrophysics Data System (ADS)
Dinallo, Michael
2011-04-01
Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.
Investigation of the High Mobility IGZO Thin Films by Using Co-Sputtering Method
Hsu, Chao-Ming; Tzou, Wen-Cheng; Yang, Cheng-Fu; Liou, Yu-Jhen
2015-01-01
High transmittance ratio in visible range, low resistivity, and high mobility of IGZO thin films were prepared at room temperature for 30 min by co-sputtering of Zn2Ga2O5 (Ga2O3 + 2 ZnO, GZO) ceramic and In2O3 ceramic at the same time. The deposition power of pure In2O3 ceramic target was fixed at 100 W and the deposition power of GZO ceramic target was changed from 80 W to 140 W. We chose to investigate the deposition power of GZO ceramic target on the properties of IGZO thin films. From the SEM observations, all of the deposited IGZO thin films showed a very smooth and featureless surface. From the measurements of XRD patterns, only the amorphous structure was observed. We aimed to show that the deposition power of GZO ceramic target had large effect on the Eg values, Hall mobility, carrier concentration, and resistivity of IGZO thin films. Secondary ion mass spectrometry (SIMS) analysis in the thicknesses’ profile of IGZO thin films found that In and Ga elements were uniform distribution and Zn element were non-uniform distribution. The SIMS analysis results also showed the concentrations of Ga and Zn elements increased and the concentrations of In element was almost unchanged with increasing deposition power.
Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min
2015-04-01
In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.
Synthesis and characterization of pyrite (FeS{sub 2}) using microwave irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eun Jung, E-mail: ekim229@uwo.ca; Batchelor, Bill
2009-07-01
A procedure using microwave irradiation was studied to develop a fast and reliable method for synthesizing pyrite. Pyrite was successfully synthesized within a few minutes via reaction of ferric iron and hydrogen sulfide under the influence of irradiation by a conventional microwave oven. The SEM-EDX study revealed that the nucleation and growth of pyrite occurred on the surface of elemental sulfur, where polysulfides are available. Compared to conventional heating, using microwave energy results in rapid (<1 min) formation of smaller particulates of pyrite. Higher levels of microwave power can form pyrite even faster, but faster reaction can lead to themore » formation of pyrite with defects.« less
Manufacturing of novel low-cost adsorbent: Co-granulation of limestone and coffee waste.
Iakovleva, Evgenia; Sillanpää, Mika; Maydannik, Philipp; Liu, Jiang Tao; Allen, Stephen; Albadarin, Ahmad B; Mangwandi, Chirangano
2017-12-01
Limestone and coffee waste were used during the wet co-granulation process for the production of efficient adsorbents to be used in the removal of anionic and cationic dyes. The adsorbents were characterized using different analytical techniques such as XRD, SEM, FTIR, organic elemental analysis, the nitrogen adsorption method, with wettability, strength and adsorption tests. The adsorption capacity of granules was determined by removal of methylene blue (MB) and orange II (OR) from single and mixed solutions. In the mixed solution, co-granules removed 100% of MB and 85% of OR. The equilibria were established after 6 and 480 h for MB and OR, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xuexuan
2016-09-15
High quality AA6101 aluminum cables are critical to electrical industry to meet the energy consumption requests. In the present work, the influence of Mg/Si ratios on the electrical conductivity and mechanical properties of AA6101 aluminum alloy was investigated. Wheatstone Bridge method and tensile test were employed to characterize the mechanical properties. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were used to understand the morphology of the precipitation and the mechanism of age hardening. It is found that excessive Si benefits high strength and high conductivity while excessive Mg plays a negative role in the strengthmore » and the conductivity of AA6101 cables. Excessive Si elements promote both the precipitating rate and quantity of β″ phase therefore increase the tensile strength. Excessive Si elements also help with decreasing the lattice distortion, which contributes to the enhancement of the conductivity. Excessive Mg elements lead to more dissolved Mg after aging treatment, therefore increase lattice distortion of the matrix and promote the deposit of coarse Mg-enriched secondary phase. - Highlights: •A new available method to improve the mechanical and electrical properties of Al-Mg-Si alloy •Investigation on the role of various Mg/Si ratios in the changes of comprehensive performances •Discussions on the morphology of the precipitation phases and the mechanism of hardening.« less
Trace Elemental Characterization of Chalk Dust and Their Associated Health Risk Assessment.
Maruthi, Y A; Ramprasad, S; Lakshmana Das, N
2017-02-01
It is evident that chalk produces dust on use, i.e., particulate matter, which will alter the air quality of classrooms and can cause health hazards in teachers. The possible causes for health effects of chalk dust on teachers are still unclear. Hence, the aim of this study is to estimate the concentration of trace elements (Al, Cr, Mn, Fe, Co, Ni, Si, Pb) in chalk dust collected from classrooms by using ICP-MS. Both suspended and settled chalk dust was collected from selected classrooms. Suspended chalk dust was collected with PM2.5 filter paper using fine dust sampler, and settled chalk dust was collected by placing petriplates at a distance of 3 m from the board for a duration period of 30 min. Scanning electron microscopy images of chalk dust were taken up. Potential health risk analysis was also assessed. Results showed that Al, Fe, and Mn are in higher concentration (>1000 μg kg -1 ) in both settled and suspended chalk dust. Cr, Mn, Fe, Co, and Ni were beyond the minimal risk levels in both settled and suspended chalk dust. There are no minimal risk levels for the elements Al, Si, and Pb. The concentration of trace elements in suspended chalk dust was higher than that in settled chalk dust. The SEM images of PM2.5 filter papers (suspended chalk dust) showed that all pores of the sampled filter papers are clogged with chalk dust. The few SEM images of the settled chalk dust showed fibrous shape which is associated with good-quality chalk whereas others showed circular and more aggregated nature of chalk dust from low-quality chalk from which the dust production will be very high. As observed from the result that the trace elements concentration was high in the suspended chalk dust, the fact can be correlated with the SEM images which have shown high density of absorbed chalk dust. With reference to human health risk, dermal exposure was the main route of exposure followed by inhalation and ingestion. Al (aluminum), Fe (iron), Si (silicon), and Mn (manganese) are the major contributors for the non-carcinogenic effects. For all the elements, the carcinogenic effect calculated (LADD) is within the global acceptable limit (10 -6 -10 -4 ).
Merchán-Pérez, Angel; Rodriguez, José-Rodrigo; Alonso-Nanclares, Lidia; Schertel, Andreas; Defelipe, Javier
2009-01-01
The advent of transmission electron microscopy (TEM) in the 1950s represented a fundamental step in the study of neuronal circuits. The application of this technique soon led to the realization that the number of synapses changes during the course of normal life, as well as under certain pathological or experimental circumstances. Since then, one of the main goals in neurosciences has been to define simple and accurate methods to estimate the magnitude of these changes. Contrary to analysing single sections, TEM reconstructions are extremely time-consuming and difficult. Therefore, most quantitative studies use stereological methods to define the three-dimensional characteristics of synaptic junctions that are studied in two dimensions. Here, to count the exact number of synapses per unit of volume we have applied a new three-dimensional reconstruction method that involves the combination of focused ion beam milling and scanning electron microscopy (FIB/SEM). We show that the images obtained with FIB/SEM are similar to those obtained with TEM, but with the advantage that FIB/SEM permits serial reconstructions of large volumes of tissue to be generated rapidly and automatically. Furthermore, we compared the estimates of the number of synapses obtained with stereological methods with the values obtained by FIB/SEM reconstructions. We concluded that FIB/SEM not only provides the actual number of synapses per volume but it is also much easier and faster to use than other currently available TEM methods. More importantly, it also avoids most of the errors introduced by stereological methods and overcomes the difficulties associated with these techniques.
The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B
2013-11-01
More recently, alloys using a variety of the rare earth elements have been developed. Typically, these alloys have shown significant improvements...in mechanical properties and to a lesser degree in corrosion performance. However, rare earth elements are often costly and heavier than Mg. Thus...1.0 0.004 Max — — Note: Fe = iron; RE = rare earth . SEM micrograph and energy-dispersive x-ray (EDX) results for selected alloys are shown in
2014-06-01
6000 s. 7 Table 1: Case 3. Comparative results of front location at 900s. LES (SEM), VMS (FE), WRF -ARW V2.2 (FD), f-wave (FV), filtered Spectral Elements...NO 14629 VMS [15] (75 m) NO 14487 VMS [15] (100 m) NO 14355 WRF -ARW 50 m YES 14470 SE [6] 50m YES 14767 DG [6] 50m YES 14767 f-wave (FV) [1] 50 m YES
Defect induced guided waves mode conversion
NASA Astrophysics Data System (ADS)
Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw
2016-04-01
This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.
Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Vikram Babu, B.; Vijaya Babu, K.; Tewodros Aregai, G.; Seeta Devi, L.; Madhavi Latha, B.; Sushma Reddi, M.; Samatha, K.; Veeraiah, V.
2018-06-01
In this work we investigate Li4Ti5O12 (LTO) anode material synthesized by conventional solid state reaction method calcined at 850 °C for 16 h. Thermal analysis reveals the temperature dependence of the material properties. The phase composition, micro-morphology and elemental analysis of the compound are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectra (EDS) respectively. The results of XRD pattern possessed cubic spinel structure with space group Fd-3m. The morphological features of the powder sample are in the range of 1.1 μm. The EDS spectra confirm the constituent elemental composition of the sample. Electrical conductivity measurement at different frequencies and temperatures had been carried out; and at room temperature it is found to be 5.96 × 10-7 S/cm. Besides, for the different frequencies applied, the activation energies were calculated and obtained to be in the range of 0.2-0.4 eV.
Singh, Jiwan; Yang, Jae-Kyu; Chang, Yoon-Young
2016-06-15
The present study was carried out to investigate the degradation of phenol by ultrasonically dispersed nano-metallic particles (NMPs) in an aqueous solution of phenol. Leaching liquor from automobile shredder residue (ASR) was used to obtain the NMPs. The prepared NMPs were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and by X-ray diffraction (XRD). The SEM images show that the diameters of the NMPs were less than 50 nm. An SEM-EDX elemental analysis reveals that Fe was the most commonly found element (weight %) in the NMPs. The FTIR and XRD peaks indicate the presence of metals oxides on the surfaces of the NMPs. The results of the XPS analysis indicate that various elements (e.g., C, O, Zn, Cu, Mn, Fe) are present on the surfaces of the NMPs. The effects of the NMP dose, the initial solution pH, and of different concentrations of phenol and H2O2 on the phenol degradation characteristics were evaluated. The results of this study demonstrate that phenol degradation can be improved by increasing the amount of NMPs, whereas it is reduced with an increase in the phenol concentration. The degradation of phenol by ultrasonically dispersed NMPs followed the pseudo-first-order kinetics. The probable mechanism of phenol degradation by ultrasonically dispersed NMPs was the oxidation of phenol caused by the hydroxyl radicals produced during the reaction between H2O2 and the NMPs during the ultrasonication process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.
Cianconi, L; Palopoli, P; Campanella, V; Mancini, M
2016-12-01
The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.
Ruan, Chang-Qing; Strømme, Maria; Lindh, Jonas
2018-02-01
Micrometer sized 2,3-dialdehyde cellulose (DAC) beads were produced via a recently developed method relying on periodate oxidation of Cladophora nanocellulose. The produced dialdehyde groups and pristine hydroxyl groups provided the DAC beads with a vast potential for further functionalization. The sensitivity of the DAC beads to alkaline conditions, however, limits their possible functionalization and applications. Hence, alkaline-stable and porous cellulose beads were prepared via a reductive amination crosslinking reaction between 2,3-dialdehyde cellulose beads and chitosan. The produced materials were thoroughly characterized with different methods. The reaction conditions, including the amount of chitosan used, conditions for reductive amination, reaction temperature and time, were investigated and the maintained morphology of the beads after exposure to 1M NaOH (aq.) was verified with SEM. Different washing and drying procedures were used and the results were studied by SEM and BET analysis. Furthermore, FTIR, TGA, EDX, XPS, DLS and elemental analysis were performed to characterize the properties of the prepared beads. Finally, the alkaline-stable porous chitosan cross-linked 2,3-dialdehyde cellulose beads were applied as adsorbent for the dye Congo red. The crosslinked beads displayed fast and high adsorption capacity at pH 2 and good desorption properties at pH 12, providing a promising sorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Monteiro, Juliana S. C.; de Oliveira, Susana C. P. S.; Zanin, Fátima A. A.; Santos, Gustavo M. P.; Sampaio, Fernando J. P.; Gomes Júnior, Rafael Araújo; Gesteira, Maria F. M.; Vannier-Santos, Marcos A.; Pinheiro, Antônio Luiz B.
2014-02-01
Dental bleaching is a frequently requested procedure in clinical dental practice. The literature is contradictory regarding the effects of bleaching agents on both morphology and demineralization of enamel after bleaching. The aim of this study was to analyze by SEM the effect of 35% neutral hydrogen peroxide cured by green LED. Buccal surfaces of 15 pre-molars were sectioned and marked with a central groove to allow experimental and control groups on the same specimen. For SEM, 75 electron micrographs were evaluated by tree observers at 43X, 220X and 1000X. Quantitative analysis for the determination of the surface elemental composition of the samples through X-ray microanalysis by SEM was also performed. The protocol tested neither showed significant changes in mineral composition of the samples nor to dental enamel structure when compared to controls. SEM analysis allowed inferring that there were marked morphological differences between the enamel samples highlighting the need for the use of the same tooth in comparative morphological studies. The tested protocol did not cause morphological damage the enamel surface when compared to their respective controls.
Wullschleger, Marcel; Aghlmandi, Soheila; Egger, Marcel; Zwahlen, Marcel
2014-01-01
In biomedical journals authors sometimes use the standard error of the mean (SEM) for data description, which has been called inappropriate or incorrect. To assess the frequency of incorrect use of SEM in articles in three selected cardiovascular journals. All original journal articles published in 2012 in Cardiovascular Research, Circulation: Heart Failure and Circulation Research were assessed by two assessors for inappropriate use of SEM when providing descriptive information of empirical data. We also assessed whether the authors state in the methods section that the SEM will be used for data description. Of 441 articles included in this survey, 64% (282 articles) contained at least one instance of incorrect use of the SEM, with two journals having a prevalence above 70% and "Circulation: Heart Failure" having the lowest value (27%). In 81% of articles with incorrect use of SEM, the authors had explicitly stated that they use the SEM for data description and in 89% SEM bars were also used instead of 95% confidence intervals. Basic science studies had a 7.4-fold higher level of inappropriate SEM use (74%) than clinical studies (10%). The selection of the three cardiovascular journals was based on a subjective initial impression of observing inappropriate SEM use. The observed results are not representative for all cardiovascular journals. In three selected cardiovascular journals we found a high level of inappropriate SEM use and explicit methods statements to use it for data description, especially in basic science studies. To improve on this situation, these and other journals should provide clear instructions to authors on how to report descriptive information of empirical data.
Tang, Tang; Wei, Fangdi; Wang, Xu; Ma, Yujie; Song, Yueyue; Ma, Yunsu; Song, Quan; Xu, Guanhong; Cen, Yao; Hu, Qin
2018-02-15
A novel molecularly imprinted stir bar (MI-SB) for sorptive extraction of semicarbazide (SEM) was prepared in present paper. The coating of the stir bar was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamic adsorption and static adsorption tests. The saturated adsorption of MI-SB was about 4 times over that of non-imprinted stir bar (NI-SB). The selectivity of MI-SB for SEM was much better than NI-SB. A method to determine SEM was established by coupling MI-SB sorptive extraction with HPLC-UV. The liner range was 1-100ng/mL for SEM with a correlation coefficient of 0.9985. The limit of detection was about 0.59ng/mL, which was below the minimum required performance limit of SEM in meat products regulated by European Union. The method was applied to the determination of SEM in fish samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.
Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.
Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi
2018-04-12
Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.
Panduric, Dragana Gabric; Juric, Ivona Bago; Music, Svetozar; Molčanov, Krešimir; Sušic, Mato; Anic, Ivica
2014-07-01
The purpose of this study was to analyze morphological, chemical, and crystallographic changes of bone tissue after osteotomy performed with an erbium:yttrium-aluminium-garnet (Er:YAG) laser and a low speed pilot drill. Bone blocks were prepared from porcine ribs, and on each block, two tunnel preparations were performed using the Er:YAG laser (pulse energy: 1000 mJ, pulse duration: 300 μs, pulse repetition rate: 20 Hz) or the low-speed surgical pilot drill. The morphological changes of the cortical and the spongious surface of the tunnel preparations were analyzed under the field emission scanning electron microscopy (FE-SEM) at low and high resolution. The distribution and the level of chemical elements in the treated surfaces were evaluated by qualitative and semiquantitative energy dispersive x-ray analysis (SEM-EDX). Diffraction x-ray analysis was used to detect any differences and thermally induced modifications of hydroxyapatite crystals. FE-SEM revealed sharp edges of the Er:YAG preparations, with empty intertrabecular spaces and no signs of carbonization. In the drill group, the surface of the preparations was smooth, completely covered with smear layer and microcracks, and with hairy-like irregularities on the edges. SEM-EDX analysis did not reveal any differences in the number of specific chemical elements between the laser and the drill group. There were no thermally induced modifications of hydroxyapatite crystal structure in the bone tissue in either group. The Er:YAG laser ablation did not cause any chemical or crystallographic changes of the bone tissue. Compared with the drill, Er:YAG laser created well-defined edges of the preparations, and cortical bone had no smear layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James
Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizingmore » continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).« less
Yamashita, Taiji; Miyamoto, Kenji; Yonenobu, Hitoshi
2018-06-20
A new pretreatment method using room-temperature ionic liquid (IL) was proposed for observing wood specimens in scanning electron microscopy (SEM). A variety of concentrations were examined for ethanol solution of the IL, [Emim][MePO3Me], to determine an optimal pretreatment procedure. It was concluded that 10% ethanol solution of the IL was the most adequate to acquire good SEM images. Using the procedure optimized, SEM images were taken for typical anatomical types of modern soft and hardwood species and archeological wood. SEM images taken were sufficiently good in observing wood cells. The pretreatment method was also effective to archeological wood dated ca. 1600 years ago. It was thus concluded that the method developed in this study is more useful than those conventionally used. Additionally, pretreatment at the high temperature was performed to confirm morphological changes in softwood. Deformation of latewood cells (tracheids) was occurred by treating with undiluted IL at the high temperature of 50°C, probably due to higher accessibility of the IL into intercellular space. Nonetheless, it was confirmed that this happens under far more extreme conditions than our proposed method.
Structural and electrical properties of CZTS thin films by electrodeposition
NASA Astrophysics Data System (ADS)
Rao, M. C.; Basha, Sk. Shahenoor
2018-06-01
CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.
NASA Astrophysics Data System (ADS)
Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail
2015-11-01
CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.
Sun, Yuliang; Juzenas, Kevin
2017-01-01
Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585
Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak
2018-04-01
Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.
Structural studies on the substitution of Ag, Na doped LCSMO CMR manganites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subhashini, P., E-mail: subhashinisvu@gmail.com; Krishnaiah, M.; Munirathinam, B.
2016-05-06
Synthesis and characterization of colossal magnetoresistance (CMR) materials has been a subject of scientific research due to the unique transport, magnetotransport, and magnetic properties. The single phase polycrystalline La{sub 0.7}Ca{sub 0.1}Sr{sub 0.1}M{sub 0.1}MnO{sub 3} (LCSMO) (M=Ag and Na) samples prepared using nitrate route method. The structural properties are studied at different dopants by X-ray diffraction. The surface morphology and elemental analysis of both samples were carried out by scanning electron microscopy (SEM) and energy dispersive X-ray technique (EDAX) respectively. The structural analysis shows that the LCSMO is crystallized in an orthorhombic perovskite structure belonging to Pnma space group. The crystalmore » size of the sample is calculated using Scherrer formula. The SEM images show that the polycrystalline grains are observed to be near spherical shape and uniform in size. EDAX spectra taken from the surface of the synthesized powders show a nominal composition near the desired one for M=Na sample where as some vacancies are present in the A-site in the case of Ag substitution as will be discussed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id
2014-03-24
The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} ismore » also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.« less
Waidmann, Oliver; Trojan, Jörg; Friedrich-Rust, Mireen; Sarrazin, Christoph; Bechstein, Wolf Otto; Ulrich, Frank; Zeuzem, Stefan; Albert, Jörg Gerhard
2013-01-01
AIM: To compare clinical success and complications of uncovered self-expanding metal stents (SEMS) vs covered SEMS (cSEMS) in obstruction of the small bowel. METHODS: Technical success, complications and outcome of endoscopic SEMS or cSEMS placement in tumor related obstruction of the duodenum or jejunum were retrospectively assessed. The primary end points were rates of stent migration and overgrowth. Secondary end points were the effect of concomitant biliary drainage on migration rate and overall survival. The data was analyzed according to the Strengthening the Reporting of Observational Studies in Epidemiology guidelines. RESULTS: Thirty-two SEMS were implanted in 20 patients. In all patients, endoscopic stent implantation was successful. Stent migration was observed in 9 of 16 cSEMS (56%) in comparison to 0/16 SEMS (0%) implantations (P = 0.002). Stent overgrowth did not significantly differ between the two stent types (SEMS: 3/16, 19%; cSEMS: 2/16, 13%). One cSEMS dislodged and had to be recovered from the jejunum by way of laparotomy. Time until migration between SEMS and cSEMS in patients with and without concomitant biliary stents did not significantly differ (HR = 1.530, 95%CI 0.731-6.306; P = 0.556). The mean follow-up was 57 ± 71 d (range: 1-275 d). CONCLUSION: SEMS and cSEMS placement is safe in small bowel tumor obstruction. However, cSEMS is accompanied with a high rate of migration in comparison to uncovered SEMS. PMID:24115817
NASA Astrophysics Data System (ADS)
Gourcerol, B.; Kontak, D. J.; Thurston, P. C.; Petrus, J. A.
2018-01-01
Quantitative laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) element distribution maps combined with traverse mode analyses have been acquired on various sulfides (pyrite, pyrrhotite, arsenopyrite) from three Canadian Algoma-type BIF-hosted gold deposits ( 4 Moz Au Meadowbank, ≥ 2.8 Moz Au Meliadine district, 6 Moz Au Musselwhite). These data, in conjunction with detailed petrographic and SEM-EDS observations, provide insight into the nature and relative timing of gold events, the presence and implication of trace element zoning regarding crystallization processes, and elemental associations that fingerprint gold events. Furthermore, the use of an innovative method of processing the LA-ICP-MS data in map and traverse modes, whereby the results are fragmented into time-slice data, to generate various binary plots (Ag versus Ni) provides a means to identify elemental associations (Te, Bi) not otherwise apparent. This integrated means of treating geochemical data, along with petrography, allows multiple gold events and remobilization processes to be recognized and their elemental associations determined. The main gold event in each of these deposits is characterized by the coupling of an As-Se-Te-Ag element association coincident with intense stratabound sulfide-replacement of the Fe-rich host rock. Additionally, the data indicate presence of a later remobilization event, which upgraded the Au tenor, as either non-refractory or refractory type, along fracture networks due to the ingress of subsequent base metal-bearing metamorphic fluids (mainly a Pb-Bi association). Furthermore, the data reveal a stratigraphic influence, as reflected in the elemental associations and the elemental enrichments observed and the nature of the sulfide phase hosting the gold mineralization (arsenopyrite versus pyrite).
NASA Astrophysics Data System (ADS)
Kim, W.; Doh, S.; Park, Y.
2006-12-01
It has been previously reported that magnetic concentration parameter (e.g., magnetic susceptibility) has a close affinity with heavy metal concentration in roadside dust of the Seoul metropolitan area. Magnetic concentration and magnetic particle size show systematic seasonal fluctuations (high and large during winter; low and small in summer) because of seasonal influx variation of anthropogenic magnetic materials. These observations suggest that magnetic parameters could be utilized as a proxy method of assessing heavy metal pollution in urban areas. In order to characterize anthropogenic magnetic materials and to find their potential sources, magnetic extracts from roadside dusts of Seoul metropolitan area were subject to SEM observation, elemental analysis (EDS), and thermo-magnetic experiments. Magnetic materials from vehicle emission and abraded brake lining were also observed for the comparison. The magnetic particles can be classified based on the morphology and elemental composition of the particles. Magnetic spherules are the most frequently observed type of particle throughout the study area. These particles are often associated with the elemental C and Al-Ca-Na-Si materials, and are believed to be the product of fossil fuel combustions in power plants, industries, and domestic heating systems. Aggregates of iron-oxides and Fe-C-S materials are probably originated from vehicle emission, while aggregates of pure Fe and Al-Ca-Fe-K-Mg-Si materials appear to be derived from abrasion of motor vehicle brake system. These aggregates are frequently observed in industrial sections of the city as well as areas of heavy traffic. Angular magnetic particles accompanied by silicates are only observed in park area and probably formed by natural process such as pedogenesis or weathering. Thermo-magnetic experiments indicate that the major magnetic phase in the studied samples is magnetite. Two distinctive behaviors observed are the presence of low Curie temperature magnetic phase and under- recover of susceptibility on cooling. It is considered that Fe-C-S magnetic aggregates possibly behaved like pyrrhotite, and thus recognized as low Curie temperature magnetic phase. A factor causing under-recover of susceptibility is attributed to some of magnetic spherules associated with C and Al-Ca-Na-Si materials which possibly behaved like iron-oxide containing impurities. Overall, this study shows that the magnetic methods in conjunction with SEM observations and elemental analyses for urban roadside dust can be used as a powerful tool for assessment of pollution features in an urban area in terms of source and spatial distribution of anthropogenic magnetic materials and associated heavy metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Keri; Judge, Elizabeth J.; Dirmyer, Matthew R.
Surrogate nuclear explosive debris was synthesized and characterized for major, minor, and trace elemental composition as well as uranium isotopics. The samples consisted of an urban glass matrix, equal masses soda lime and cement, doped with 500 ppm uranium with varying enrichments. The surface and cross section morphology were measured with SEM, and the major elemental composition was determined by XPS. LA-ICP-MS was used to measure the uranium isotopic abundance comparing different sampling techniques. Furthermore, the results provide an example of the utility of LA-ICP-MS for forensics applications.
Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Díaz-Ricci, J C; Pedraza, R O
2014-07-01
The elemental composition of strawberry plants (Fragaria ananassa cv. Macarena) inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, and non-inoculated controls, was studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analysis. This allowed simultaneous semi-quantification of different elements in a small, solid sample. Plants were inoculated and grown hydroponically in 50% or 100% Hoagland solution, corresponding to limited or optimum nutrient medium, respectively. Bacteria-inoculated plants increased the growth index 45% and 80% compared to controls when grown in 100% and 50% Hoagland solution, respectively. Thus, inoculation with A. brasilense REC3 in a nutrient-limited medium had the strongest effect in terms of increasing both shoot and root biomass and growth index, as already described for Azospirillum inoculated into nutrient-poor soils. SEM-EDS spectra and maps showed the elemental composition and relative distribution of nutrients in strawberry tissues. Leaves contained C, O, N, Na, P, K, Ca and Cu, while roots also had Si and Cl. The organic fraction (C, O and N) accounted for over 96.3% of the total chemical composition; of the mineral fraction, Na had higher accumulation in both leaves and roots. Azospirillum-inoculated and control plants had similar elemental quantities; however, in bacteria-inoculated roots, P was significantly increased (34.33%), which constitutes a major benefit for plant nutrition, while Cu content decreased (35.16%). © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Jochum, Adrienne; Prozorova, Larisa; Sharyi-Ool, Mariana; Páll-Gergely, Barna
2015-01-01
A new genus of troglobitic Carychiidae Jeffreys, 1830 is designated from Nodong Cave, North Chungcheong Province, Danyang, South Korea. This remarkable find represents a great range extension and thus, a highly distant distribution of troglobitic Carychiidae in Asia. The Zospeum-like, carychiid snails were recently included, without a formal description, in records documenting Korean malacofauna. The present paper describes Koreozospeum Jochum & Prozorova, gen. n. and illustrates the type species, Koreozospeum nodongense Lee, Prozorova & Jochum, sp. n. using novel Nano-CT images, including a video, internal shell morphology, SEM and SEM-EDX elemental compositional analysis of the shell.
A hybrid 3D SEM reconstruction method optimized for complex geologic material surfaces.
Yan, Shang; Adegbule, Aderonke; Kibbey, Tohren C G
2017-08-01
Reconstruction methods are widely used to extract three-dimensional information from scanning electron microscope (SEM) images. This paper presents a new hybrid reconstruction method that combines stereoscopic reconstruction with shape-from-shading calculations to generate highly-detailed elevation maps from SEM image pairs. The method makes use of an imaged glass sphere to determine the quantitative relationship between observed intensity and angles between the beam and surface normal, and the detector and surface normal. Two specific equations are derived to make use of image intensity information in creating the final elevation map. The equations are used together, one making use of intensities in the two images, the other making use of intensities within a single image. The method is specifically designed for SEM images captured with a single secondary electron detector, and is optimized to capture maximum detail from complex natural surfaces. The method is illustrated with a complex structured abrasive material, and a rough natural sand grain. Results show that the method is capable of capturing details such as angular surface features, varying surface roughness, and surface striations. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Furlow, Carolyn F.; Beretvas, S. Natasha
2005-01-01
Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for…
Sim, K S; Norhisham, S
2016-11-01
A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Hobo, Seiji; Niwa, Hidekazu; Oku, Kazuomi
2012-03-01
Loop-mediated isothermal amplification (LAMP) constitutes a potentially valuable diagnostic tool for rapid diagnosis of contagious diseases. In this study, we developed a novel LAMP method (seM-LAMP) to detect the seM gene of Streptococcus equi subsp. equi (S. equi), the causative agent of strangles in equids. The seM-LAMP successfully amplified the target sequence of the seM gene at 63°C within 60 min. The sensitivity of the seM-LAMP was slightly lower than the 2nd reaction of the seM semi-nested PCR. To evaluate the species specificity of the seM-LAMP, we tested 100 S. equi and 189 non-S. equi strains. Significant amplification of the DNA originating from S. equi was observed within 60 min incubation, but no amplification of non-S. equi DNA occurred. The results were identical to those of seM semi-nested PCR. To investigate the clinical usefulness of the methods, the seM-LAMP and the seM semi-nested PCR were used to screen 590 nasal swabs obtained during an outbreak of strangles. Both methods showed that 79 and 511 swabs were S. equi positive and negative, respectively, and the results were identical to those of the culture examination. These results indicate that the seM-LAMP is potentially useful for the reliable routine diagnosis of Streptococcus equi subsp. equi infections.
de Oliveira, Martha Lima; de Melo, Edésio José Tenório; Miguens, Flávio Costa
2016-09-01
Airborne particulate matter (PM) has been included among the most important air pollutants by governmental environment agencies and academy researchers. The use of terrestrial plants for monitoring PM has been widely accepted, particularly when it is coupled with SEM/EDS. Herein, Tillandsia stricta leaves were used as monitors of PM, focusing on a comparative evaluation of Environmental SEM (ESEM) and High-Pressure SEM (HPSEM). In addition, specimens air-dried at formaldehyde atmosphere (AD/FA) were introduced as an SEM procedure. Hydrated specimen observation by ESEM was the best way to get information from T. stricta leaves. If any artifacts were introduced by AD/FA, they were indiscernible from those caused by CPD. Leaf anatomy was always well preserved. PM density was determined on adaxial and abaxial leaf epidermis for each of the SEM proceedings. When compared with ESEM, particle extraction varied from 0 to 20% in air-dried leaves while 23-78% of particles deposited on leaves surfaces were extracted by CPD procedures. ESEM was obviously the best choice over other methods but morphological artifacts increased in function of operation time while HPSEM operation time was without limit. AD/FA avoided the shrinkage observed in the air-dried leaves and particle extraction was low when compared with CPD. Structural and particle density results suggest AD/FA as an important methodological approach to air pollution biomonitoring that can be widely used in all electron microscopy labs. Otherwise, previous PM assessments using terrestrial plants as biomonitors and performed by conventional SEM could have underestimated airborne particulate matter concentration. © 2016 Wiley Periodicals, Inc.
Effect of copper and nickel doping on the optical and structural properties of ZnO
NASA Astrophysics Data System (ADS)
Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.
2017-02-01
The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.
Use of Computer-Generated Holograms in Security Hologram Applications
NASA Astrophysics Data System (ADS)
Bulanovs, A.; Bakanas, R.
2016-10-01
The article discusses the use of computer-generated holograms (CGHs) for the application as one of the security features in the relief-phase protective holograms. An improved method of calculating CGHs is presented, based on ray-tracing approach in the case of interference of parallel rays. Software is developed for the calculation of multilevel phase CGHs and their integration in the application of security holograms. Topology of calculated computer-generated phase holograms was recorded on the photoresist by the optical greyscale lithography. Parameters of the recorded microstructures were investigated with the help of the atomic-force microscopy (AFM) and scanning electron microscopy (SEM) methods. The results of the research have shown highly protective properties of the security elements based on CGH microstructures. In our opinion, a wide use of CGHs is very promising in the structure of complex security holograms for increasing the level of protection against counterfeit.
Simulation of FIB-SEM images for analysis of porous microstructures.
Prill, Torben; Schladitz, Katja
2013-01-01
Focused ion beam nanotomography-scanning electron microscopy tomography yields high-quality three-dimensional images of materials microstructures at the nanometer scale combining serial sectioning using a focused ion beam with SEM. However, FIB-SEM tomography of highly porous media leads to shine-through artifacts preventing automatic segmentation of the solid component. We simulate the SEM process in order to generate synthetic FIB-SEM image data for developing and validating segmentation methods. Monte-Carlo techniques yield accurate results, but are too slow for the simulation of FIB-SEM tomography requiring hundreds of SEM images for one dataset alone. Nevertheless, a quasi-analytic description of the specimen and various acceleration techniques, including a track compression algorithm and an acceleration for the simulation of secondary electrons, cut down the computing time by orders of magnitude, allowing for the first time to simulate FIB-SEM tomography. © Wiley Periodicals, Inc.
Effect of ultrasonic treatment on tensile properties of PLA/LNR/NiZn ferrite nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahdan, Dalila; Ahmad, Sahrim Hj.; Flaifel, Moayad Husein
2013-11-27
The influence of sonication treatment time on the morphological and mechanical properties of LNR/PLA composite impregnated with different filler loadings of NiZn ferrite nanoparticles was investigated. The nanocomposite was prepared using melt blending method with assistance of ultrasonic treatment of 0, 1 and 2 hrs. Structural characterization of the nanocomposites was examined using scanning electron microscopy (SEM) with their elemental composition being confirmed by energy dispersive X-ray spectroscopy (EDX). The tensile properties of LNR/PLA composite treated with different ultrasonication times have improved with increasing magnetic nanofiller signature in the nanocomposite. Further, the optimum sonication time of 1 hr was foundmore » to produce nanocomposite with maximum tensile properties.« less
NASA Astrophysics Data System (ADS)
Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.
2018-04-01
Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.
M, Sundrarajan; K, Bama; M, Bhavani; S, Jegatheeswaran; S, Ambika; A, Sangili; P, Nithya; R, Sumathi
2017-06-01
In this work, we synthesized titanium dioxide (TiO 2 ) nanoparticles using leaf extract of Morinda citrifolia (M. citrifolia) by the advanced hydrothermal method. The synthesized TiO 2 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transmission infrared (FT-IR), Ultraviolet-visible diffuse reflectance (UV-Vis DRS), Ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with EDX) techniques. The XRD major peak at 27.3° corresponds to the (110) lattice plane of tetragonal rutile TiO 2 phase and average crystalline size of nanoparticles is 10nm. The FT-IR result confirmed that TiO 2 nanoparticles and the presences of very few amount of anthraquinone and phenolic compounds of the leaf extract. The obtained nanoparticles were also characterized by UV-Vis DRS absorption spectroscopy and an intense band at 423nm clearly reveals the formation of nanoparticles. SEM images with EDX spectra clearly reveal the size of the nanoparticles, between 15 and 19nm in excellent quasi-spherical shape, by virtue of stabilization (capping) agent. The presence of elements-titanium and oxygen was verified with EDX spectrum. Furthermore, the inhibitory activity of green synthesized TiO 2 nanoparticles was tested against human pathogens like Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger by the agar well-diffusion method. The TiO 2 nanoparticles exhibited superior antimicrobial activity against Gram-positive bacteria, demonstrating their antimicrobial value against pathogenic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Nano characterization of gunshot residues from Brazilian ammunition.
Melo, Lis G A; Martiny, Andrea; Pinto, André L
2014-07-01
Gunshot residues (GSR) from a total of nine different caliber ammunitions produced in Brazil were analyzed and characterized by transmission (TEM) and scanning electron microscopy (SEM). GSR particles are composed of spherical particles of several micrometers of diameter containing distinct amounts of lead, barium and antimony, along with other organic and inorganic elements arising from the primer, gunpowder, the gun and the bullet itself. This study was carried out to obtain additional information on the properties of GSR nanoparticles originated from different types of regular ammunition produced in Brazil by CBC. Besides the SEM, we have used a TEM, exploring its high magnification capability and ability to explore internal structure and chemical composition of submicron particles. We observed that CBC ammunition generated smaller particles than usually reported for other ammunitions and that the three component particles are not a majority. TEM analysis revealed that GSR are partially composed of sub-micron particles as well. The electron diffraction pattern from these particles confirmed them to be mainly composed of lead oxides crystalline nanoparticles that may be agglomerated into larger particles. Energy dispersive X-ray spectroscopy revealed that most of them were composed of two elements, especially PbSb. Ba was not a common element found in the nanoparticles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Fialová, Dana; Skoupý, Radim; Drozdová, Eva; Paták, Aleš; Piňos, Jakub; Šín, Lukáš; Beňuš, Radoslav; Klíma, Bohuslav
2017-12-01
The great potential of scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) is in detection of unusual chemical elements included in ancient human dental calculus to verify hypotheses about life and burial habits of historic populations and individuals. Elemental spectra were performed from archeological samples of three chosen individuals from different time periods. The unusual presence of magnesium, aluminum, and silicon in the first sample could confirm the hypothesis of high degree of dental abrasion caused by particles from grinding stones in flour. In the second sample, presence of copper could confirm that bronze jewelery could lie near the buried body. The elemental composition of the third sample with the presence of lead and copper confirms the origin of individual to Napoleonic Wars because the damage to his teeth could be explained by the systematic utilization of the teeth for the opening of paper cartridges (a charge with a dose of gunpowder and a bullet), which were used during the 18th and the 19th century AD. All these results contribute to the reconstruction of life (first and third individual) and burial (second individual) habits of historic populations and individuals.
Huang, Hua; Wang, Ya-Xiong; Tang, Jing-Chun; Tang, Jing-Chun; Zhu, Wen-Ying
2014-05-01
Biochar was made from maize stalk under three different temperatures of 300, 500 and 700 degreeC. The elemental composition of biochar was measured by elemental analyzer. Scanning electron microscope (SEM) was used to measure the surface morphology. Sorption of naphthalene to biochar was researched by batch sorption experiments. Results showed that, with the increase of temperature, C content increased from 66. 79% to 76. 30% , H and O contents decreased from 4.92% and 19. 25% to 3. 18% and 9.53%, respectively; H/C, O/C, (O + N)/C, aromaticity and hydrophobicity increased, and polarity decreased. SEM results showed that maize stalk biochar was platy particles, and its roughness of surface increased with increasing temperature. The sorption of naphthalene on biochar followed the Lagergren pseudo-second order dynamic sorption model. Initial sorption rate and equilibrium sorption capacity increased as preparation temperatures increased at the same initial concentration of naphthalene. The isotherm sorption behavior can be described by the Freundlich model, which indicated that, as pyrolysis temperature increased, the sorption capacity of biochar increased, and nonlinearity increased first and then decreased. Biochar derived from maize stalk had distinct features when compared with other feedstocks, and its elemental composition, surface features and sorption behaviors were significantly influenced by pyrolysis temperature.
Kokolis, John; Chakmakchi, Makdad; Theocharopoulos, Antonios; Prombonas, Anthony
2015-01-01
PURPOSE The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a 45° bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (ε) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (α=.05) and Weibull analysis where Weibull modulus m and characteristic strength σο were identified. Fractured surfaces were imaged by a SEM. RESULTS SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ε, m and σο) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability. PMID:25722836
Nanophase Iron Globules in Lunar Soil
NASA Technical Reports Server (NTRS)
James, C. L.; Letsinger, S. L.; Wentworth, S. J.; McKay, D. S.; Basu, A.
2003-01-01
Micrometeoritic impacts on lunar soils produce melt and vapor. A patina of condensed vapor is deposited on lunar grains, the melt forms agglutinitic glass. In lunar soils, agglutinitic glass and rinds of grains host submicron-sized globules of pure Fe0 (Fe-rich globules larger than 1 micron usually contain other elements such as Ni, P, and S). Observation and measurement of such small size requires either back scattered electron (BSE) imaging with a high-resolution SEM or transmitted electron imaging with a TEM. The two techniques impose different limitations on the size-range of measurements. Resolution of BSE imaging of polished thin sections or grain mounts of lunar soils is at best around 4-5nm (JEOL 6340F field-emission (FE)-SEM at JSC). Therefore, Fe0 globules below 10nm in cross-sectional diameter are not truly measured. The upper limit of a millimeter or so is not a hindrance. In fact, it is an advantage because whole grains can be observed and mapped at varying magnifications. Angstrom-scale resolution of TEM images is more than sufficient to observe and measure the smallest of Fe0 globules that are about 1nm in cross-section. Microtoming edges of lunar grains; however, puts an upper size limitation of 50nm, at best, on the wafer, which more or less limits measuring Fe0 globules up to 30nm or so. Clearly, SEM and TEM techniques complement each other in obtaining the complete range of size distribution of Fe0 globules in lunar soils. Below we describe, in brief, our method of determining the size distribution of Fe0 globules in agglutinitic glass using BSE-SEM imaging and size measurement. Although our work is incomplete, we also include a table of results obtained so far, which understandably would be refined as we collect more data.
The physicochemical properties of coarse-mode, iron-containing particles, and their temporal and spatial distributions are poorly understood. Single particle analysis combining x-ray elemental mapping and computer-controlled scanning electron microscopy (CCSEM-EDX) of passively ...
Development and implementation of an 84-channel matrix gradient coil.
Littin, Sebastian; Jia, Feng; Layton, Kelvin J; Kroboth, Stefan; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim
2018-02-01
Design, implement, integrate, and characterize a customized coil system that allows for generating spatial encoding magnetic fields (SEMs) in a highly-flexible fashion. A gradient coil with a high number of individual elements was designed. Dimensions of the coil were chosen to mimic a whole-body gradient system, scaled down to a head insert. Mechanical shape and wire layout of each element were optimized to increase the local gradient strength while minimizing eddy current effects and simultaneously considering manufacturing constraints. Resulting wire layout and mechanical design is presented. A prototype matrix gradient coil with 12 × 7 = 84 elements consisting of two element types was realized and characterized. Measured eddy currents are <1% of the original field. The coil is shown to be capable of creating nonlinear, and linear SEMs. In a DSV of 0.22 m gradient strengths between 24 mT∕m and 78 mT∕m could be realized locally with maximum currents of 150 A. Initial proof-of-concept imaging experiments using linear and nonlinear encoding fields are demonstrated. A shielded matrix gradient coil setup capable of generating encoding fields in a highly-flexible manner was designed and implemented. The presented setup is expected to serve as a basis for validating novel imaging techniques that rely on nonlinear spatial encoding fields. Magn Reson Med 79:1181-1191, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Miao, Chengcheng; Zhu, Yanjuan; Huang, Liangguo; Zhao, Tengqi
2015-01-01
The multi-element doped alpha nickel hydroxide has been prepared by supersonic co-precipitation method. Three kinds of samples A, B and C are prepared by chemically coprecipitating Ni/Al, Ni/Al/Mn and Ni/Al/Mn/Yb, respectively. Inductively coupled plasma atomic emission spectroscopy (ICP-AES), Particle size distribution (PSD) measurement, X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) are used to characterize the physical properties of the synthesized α-Ni(OH)2 samples, such as chemical composition, morphology, structural stability of the crystal. The results show that all samples are nano-sized materials and the interlayer spacing becomes larger and the structural stability becomes better with the increase of doped elements and doped ratio. The prepared alpha nickel hydroxide samples are added into micro-sized beta nickel hydroxide to form biphase electrode materials for Ni-MH battery. The electrochemical characterization of the biphase electrodes, including cyclic voltammetry (CV) and charge/discharge test, are also performed. The results demonstrate that the biphase electrode with sample C exhibits better electrochemical reversibility and cyclic stability, higher charge efficient and discharge potential, larger proton diffusion coefficient (5.81 × 10-12 cm2 s-1) and discharge capacity (309.0 mAh g-1). Hence, it indicates that all doped elements can produce the synergic effect and further improve the electrochemical properties of the alpha nickel hydroxide.
Li, Xin; Xing, Pengfei; Du, Xinghong; Gao, Shuaibo; Chen, Chen
2017-09-01
In this paper, the ultrasound-assisted leaching of iron from boron carbide waste-scrap was investigated and the optimization of different influencing factors had also been performed. The factors investigated were acid concentration, liquid-solid ratio, leaching temperature, ultrasonic power and frequency. The leaching of iron with conventional method at various temperatures was also performed. The results show the maximum iron leaching ratios are 87.4%, 94.5% for 80min-leaching with conventional method and 50min-leaching with ultrasound assistance, respectively. The leaching of waste-scrap with conventional method fits the chemical reaction-controlled model. The leaching with ultrasound assistance fits chemical reaction-controlled model, diffusion-controlled model for the first stage and second stage, respectively. The assistance of ultrasound can greatly improve the iron leaching ratio, accelerate the leaching rate, shorten leaching time and lower the residual iron, comparing with conventional method. The advantages of ultrasound-assisted leaching were also confirmed by the SEM-EDS analysis and elemental analysis of the raw material and leached solid samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Mendil, Durali; Demirci, Zafer; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa
2017-04-15
A novel and simple solid phase extraction method was improved and recommended for selenium. Silica gel was modified with 2,6-diamino-4-phenil-1,3,5-triazine and characterized by FTIR, SEM and elemental analysis and used adsorbent for column solid phase extraction of selenium ions. The experimental parameters (pH, flow rates, amounts of the modified silica gel, concentration and type of eluent, volume of sample, etc.) on the recoveries of selenium were optimized. Standard reference materials were analyzed for validation of method. The present method was successfully applied to the detection of total selenium in water and microwave digested some food samples with quantitative recoveries (> 95%). The relative standard deviations were<8%. Matrix influences were not observed. The adsorption capacity of modified silica gel was 5.90mgg -1 . The LOD was 0.015μgL -1 . Enrichment factor was obtained as 50 for the introduced method. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, L.; Xie, J.; Ritzwoller, M. H.
2017-12-01
Two major types of surface wave anisotropy are commonly observed by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. With a full-waveform numerical solver based on the spectral element method (SEM), we verify the validity of the forward theory used for the inversion. We also present two examples, in the US and Tibet, in which we have successfully applied the tomographic method to demonstrate that the two types of apparent anisotropy can be interpreted jointly as a tilted hexagonally symmetric medium.
Multiscale Modeling of UHTC: Thermal Conductivity
NASA Technical Reports Server (NTRS)
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Extended mind and after: socially extended mind and actor-network.
Kono, Tetsuya
2014-03-01
The concept of extended mind has been impressively developed over the last 10 years by many philosophers and cognitive scientists. The extended mind thesis (EM) affirms that the mind is not simply ensconced inside the head, but extends to the whole system of brain-body-environment. Recently, some philosophers and psychologists try to adapt the idea of EM to the domain of social cognition research. Mind is socially extended (SEM). However, EM/SEM theory has problems to analyze the interactions among a subject and its surroundings with opposition, antagonism, or conflict; it also tends to think that the environment surrounding the subject is passive or static, and to neglect the power of non-human actants to direct and regulate the human subject. In these points, actor-network theory (ANT) proposed by Latour and Callon is more persuasive, while sharing some important ideas with EM/SEM theory. Actor-network is a hybrid community which is composed of a series of heterogeneous elements, animate and inanimate for a certain period of time. I shall conclude that EM/SEM could be best analyzed as a special case of actor-network. EM/SEM is a system which can be controlled by a human agent alone. In order to understand collective behavior, philosophy and psychology have to study the actor-network in which human individuals are situated.
Characterization of Pu-238 Heat Source Granule Containment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Paul Dean II; Sanchez, Joey Leo; Wall, Angelique Dinorah
The Milliwatt Radioisotopic Themoelectric Generator (RTG) provides power for permissive-action links. Essentially these are nuclear batteries that convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of 238Pu, in the form of 238PuO 2 granules. The granules are contained by 3 layers of encapsulation. A thin T-111 liner surrounds the 238PuO 2 granules and protects the second layer (strength member) from exposure to the fuel granules. An outer layer of Hastalloy-C protects the T-111 from oxygen embrittlement. The T-111 strength member is considered the critical component in thismore » 238PuO 2 containment system. Any compromise in the strength member seen during destructive testing required by the RTG surveillance program is characterized. The T-111 strength member is characterized through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in the Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of microphotographs. SEM mat further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray spectroscopy (EDS).« less
NASA Astrophysics Data System (ADS)
Alvear, B.; Morata, D.; Leisen, M.; Reich, M.; Barra, F.
2017-12-01
The study of mineral textures coupled with trace element geochemistry has proven to be a useful tool to understand the evolution of geological environments. The purpose of this study is to provide new constrains on the formation of an active geothermal system, specifically the Cerro Pabellón field. The Cerro Pabellón system is located at 4500 m above sea level and is the first geothermal power plant in operation in Chile and South America. Thirteen samples were collected from a 550 m long drill core. Samples were first studied under petrographic microscopy followed by scanning electron microscopy coupled with a cathodoluminescence detector (CL-SEM). The different textures recognized using petrography and the CL-SEM technique were later analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in order to determine variations in the trace element concentrations as a function of silica textures. Two vein types (A and B) with different silica polymorphs were identified by CL-SEM. Vein type A has only a colloform texture, whereas vein type B, younger and crosscutting the type A, shows zonation, colloform, and jigsaw textures. LA-ICPMS results show high concentrations of Li, Al, Na, K, As, and Sb for all types of silica. A comparison between vein type A and B, show that vein type A is Al-Na-K-Li poor (2088, 36, 309, and 122 ppm average, respectively) and As-Sb rich (43 and 249 ppm average, respectively). On the other hand, vein type B has variable concentrations of Al-Na-K-Li-Sb, but usually higher than in vein type A. Overall, the Cerro Pabellón geothermal system shows high concentrations of Li and Sb, reaching up to 360 and 703 ppm, respectively. Our preliminary results show that the trace element geochemistry is strongly related to the different silica textures, which formed as a response to different thermodynamic conditions and fluid-rock ratios. This work is a contribution to the FONDAP-CONICYT 15090013 Project.
Hapca, Simona; Baveye, Philippe C; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred
2015-01-01
There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented in this study can be easily adapted and applied to other types of data such as bacterial or fungal population densities for the 3D characterization of microbial distribution.
Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred
2015-01-01
There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented in this study can be easily adapted and applied to other types of data such as bacterial or fungal population densities for the 3D characterization of microbial distribution. PMID:26372473
NASA Technical Reports Server (NTRS)
Stanley, A. G.; Gauthier, M. K.
1977-01-01
A successful diagnostic technique was developed using a scanning electron microscope (SEM) as a precision tool to determine ionization effects in integrated circuits. Previous SEM methods radiated the entire semiconductor chip or major areas. The large area exposure methods do not reveal the exact components which are sensitive to radiation. To locate these sensitive components a new method was developed, which consisted in successively irradiating selected components on the device chip with equal doses of electrons /10 to the 6th rad (Si)/, while the whole device was subjected to representative bias conditions. A suitable device parameter was measured in situ after each successive irradiation with the beam off.
Hypothesis Testing Using Factor Score Regression
Devlieger, Ines; Mayer, Axel; Rosseel, Yves
2015-01-01
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and with structural equation modeling (SEM) by using analytic calculations and two Monte Carlo simulation studies to examine their finite sample characteristics. Several performance criteria are used, such as the bias using the unstandardized and standardized parameterization, efficiency, mean square error, standard error bias, type I error rate, and power. The results show that the bias correcting method, with the newly developed standard error, is the only suitable alternative for SEM. While it has a higher standard error bias than SEM, it has a comparable bias, efficiency, mean square error, power, and type I error rate. PMID:29795886
[The influence of surface conditioning on the shear bond strength of La-Porcelain and titanium].
Mo, Anchun; Cen, Yuankun; Liao, Yunmao
2003-04-20
To determine the influence of different surface conditioning methods on bonding strength of low fusing porcelain (La-Porcelain) and titanium. The surface of the samples were sandblasted for 2 min with 80-250 microns Al2O3 or coated for two times with Si-couple agent or conditioned by pre-oxidation. The shear bond strength was examined by push-type shear test with a speed of 0.5 mm/min in a universal testing machine. Scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA) were employed to explore the relationship between bonding strength and microstructures, as well as the element diffusion at the interface between porcelain coating and titanium when heated at 800 degrees C. Bonding strength was not statistically different (P > 0.05) after sandblasting with Al2O3 in particle size ranged from 80 microns to 250 microns. When a Si-couple agent was used, bond of porcelain to titanium was significantly lower (P < 0.05). The shear bond strength of the porcelain to the pre-oxidized titanium surface remained unchanged after heating (P > 0.05). The SEM results revealed integrity of porcelain and titanium. La-Porcelain showed a small effect of surface coarseness. Sandblasting the titanium surface with 150-180 microns Al2O3 can be recommended as a method for better bonding between La-Porcelain and titanium. The Si-couple agent coating and pre-oxidation of titanium surface is unnecessary.
Effects of Missing Data Methods in SEM under Conditions of Incomplete and Nonnormal Data
ERIC Educational Resources Information Center
Li, Jian; Lomax, Richard G.
2017-01-01
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N
2001-07-01
We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.
Synthesis and characterization of surrogate nuclear explosion debris: urban glass matrix
Campbell, Keri; Judge, Elizabeth J.; Dirmyer, Matthew R.; ...
2017-07-26
Surrogate nuclear explosive debris was synthesized and characterized for major, minor, and trace elemental composition as well as uranium isotopics. The samples consisted of an urban glass matrix, equal masses soda lime and cement, doped with 500 ppm uranium with varying enrichments. The surface and cross section morphology were measured with SEM, and the major elemental composition was determined by XPS. LA-ICP-MS was used to measure the uranium isotopic abundance comparing different sampling techniques. Furthermore, the results provide an example of the utility of LA-ICP-MS for forensics applications.
Landis, Jacob B; Ventura, Kayla L; Soltis, Douglas E; Soltis, Pamela S; Oppenheimer, David G
2015-04-01
Visualizing flower epidermal cells is often desirable for investigating the interaction between flowers and their pollinators, in addition to the broader range of ecological interactions in which flowers are involved. We developed a protocol for visualizing petal epidermal cells without the limitations of the commonly used method of scanning electron microscopy (SEM). Flower material was collected and fixed in glutaraldehyde, followed by dehydration in an ethanol series. Flowers were dissected to collect petals, and subjected to a Histo-Clear series to remove the cuticle. Material was then stained with aniline blue, mounted on microscope slides, and imaged using a compound fluorescence microscope to obtain optical sections that were reconstructed into a 3D image. This optical sectioning method yielded high-quality images of the petal epidermal cells with virtually no damage to cells. Flowers were processed in larger batches than are possible using common SEM methods. Also, flower size was not a limiting factor as often observed in SEM studies. Flowers up to 5 cm in length were processed and mounted for visualization. This method requires no special equipment for sample preparation prior to imaging and should be seen as an alternative method to SEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp
Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolutionmore » FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials. - Highlights: • We developed a high-resolution frequency transmission electric-field (FTE) system. • High-resolution FTE system is introduced in the field-emission SEM. • The spatial resolution of high-resolution FTE method is 8 nm. • High-resolution FTE system enables observation of the intact IgM particles in water.« less
Comparison of methods for the analysis of relatively simple mediation models.
Rijnhart, Judith J M; Twisk, Jos W R; Chinapaw, Mai J M; de Boer, Michiel R; Heymans, Martijn W
2017-09-01
Statistical mediation analysis is an often used method in trials, to unravel the pathways underlying the effect of an intervention on a particular outcome variable. Throughout the years, several methods have been proposed, such as ordinary least square (OLS) regression, structural equation modeling (SEM), and the potential outcomes framework. Most applied researchers do not know that these methods are mathematically equivalent when applied to mediation models with a continuous mediator and outcome variable. Therefore, the aim of this paper was to demonstrate the similarities between OLS regression, SEM, and the potential outcomes framework in three mediation models: 1) a crude model, 2) a confounder-adjusted model, and 3) a model with an interaction term for exposure-mediator interaction. Secondary data analysis of a randomized controlled trial that included 546 schoolchildren. In our data example, the mediator and outcome variable were both continuous. We compared the estimates of the total, direct and indirect effects, proportion mediated, and 95% confidence intervals (CIs) for the indirect effect across OLS regression, SEM, and the potential outcomes framework. OLS regression, SEM, and the potential outcomes framework yielded the same effect estimates in the crude mediation model, the confounder-adjusted mediation model, and the mediation model with an interaction term for exposure-mediator interaction. Since OLS regression, SEM, and the potential outcomes framework yield the same results in three mediation models with a continuous mediator and outcome variable, researchers can continue using the method that is most convenient to them.
Chai, Minwei; Shen, Xiaoxue; Li, Ruili; Qiu, Guoyu
2015-08-15
The risks of heavy metal in Futian mangrove forest sediment were assessed using the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) methods. The results indicated that AVS distributions were more variable than the SEM distributions at all 16 sampling sites. The positive correlation between AVS and SEM indicated that their similar formative and existing conditions and that AVS acted as an important carrier for SEM. The major SEM component was Zn (69.7.3-94.2%), whereas the Cd contribution (the most toxic metal present) to SEM was no more than 1%. The possible adverse effects caused by heavy metals at ten sampling sites may be due to higher levels of SEMs, rather than AVSs. The total organic carbon (TOC) was an important metal-binding phase in the sediments. Taking into account the TOC concentration, there were no adverse effects due to heavy metals in any of the Futian mangrove forest sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Standard deviation and standard error of the mean.
Lee, Dong Kyu; In, Junyong; Lee, Sangseok
2015-06-01
In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results.
Standard deviation and standard error of the mean
In, Junyong; Lee, Sangseok
2015-01-01
In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results. PMID:26045923
The development of comparative bias index
NASA Astrophysics Data System (ADS)
Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin
2017-08-01
Structural Equation Modeling (SEM) is a second generation statistical analysis techniques developed for analyzing the inter-relationships among multiple variables in a model simultaneously. There are two most common used methods in SEM namely Covariance-Based Structural Equation Modeling (CB-SEM) and Partial Least Square Path Modeling (PLS-PM). There have been continuous debates among researchers in the use of PLS-PM over CB-SEM. While there is few studies were conducted to test the performance of CB-SEM and PLS-PM bias in estimating simulation data. This study intends to patch this problem by a) developing the Comparative Bias Index and b) testing the performance of CB-SEM and PLS-PM using developed index. Based on balanced experimental design, two multivariate normal simulation data with of distinct specifications of size 50, 100, 200 and 500 are generated and analyzed using CB-SEM and PLS-PM.
NASA Astrophysics Data System (ADS)
Quan, Ying; Liu, Qinfu; Zhang, Shilong; Zhang, Shuai
2018-07-01
The structures of cryptocrystalline graphite (CG) and carbon black (CB) have been analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), organic elemental analysis (OEA), X-ray diffraction (XRD), RAMAN and high-resolution transmission electron microscopy (HRTEM). These results indicate that CG has the same elemental composition as CB, with carbon being the major element present. SL sample (CG with low graphitization degree) and CB exhibit similar microcrystalline structures. CG was shown to contain a layered graphitic structure that was significantly different to the primary spherical particles present in CB. It is proposed that these CG sheets may potentially be reduced and delaminated to afford multilayer graphene structures with improved material properties.
ERIC Educational Resources Information Center
Quin~ones, Rosalynn; Bayline, Jennifer Logan; Polvani, Deborah A.; Neff, David; Westfall, Tamara D.; Hijazi, Abdullah
2016-01-01
A series of undergraduate laboratory experiments that utilize reversed-phase HPLC separation, inductively coupled plasma spectroscopy (ICP), and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) are described for the analysis of commercial sunscreens. The active ingredients of many sunscreen brands include zinc or titanium…
NASA Astrophysics Data System (ADS)
Arif, Sajjad; Tanwir Alam, Md; Aziz, Tariq; Ansari, Akhter H.
2018-04-01
In the present work, aluminium matrix composites reinforced with 10 wt% SiC micro particles along with x% SiC nano particles (x = 0, 1, 3, 5 and 7 wt%) were fabricated through powder metallurgy. The fabricated hybrid composites were characterized by x-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrum (EDS) and elemental mapping. The relative density, hardness and wear behaviour of all hybrid nanocomposites were studied. The influence of various control factors like SiC reinforcement, sliding distance (300, 600, 900 and 1200 m) and applied load (20, 30 and 40 N) were explored using pin-on-disc wear apparatus. The uniform distribution of micro and nano SiC particles in aluminium matrix is confirmed by elemental maps. The hardness and wear test results showed that properties of the hybrid composite containing 5 wt% nano SiC was better than other hybrid composites. Additionally, the wear loss of all hybrid nanocomposites increases with increasing sliding distance and applied load. The identification of wear phenomenon were studied through the SEM images of worn surface.
NASA Astrophysics Data System (ADS)
Mohsin, Mohammad; Mohd, Aas; Suhaib, M.; Arif, Sajjad; Arif Siddiqui, M.
2017-10-01
In this experimental work, aluminium Al-20Fe-5Cr (in wt.%) matrix reinforced with varying wt.% Al2O3 (0, 10, 20 and 30) and compaction pressure (470, 550 and 600 MPa) were prepared by powder metallurgy technique. The characterization of composites were performed by scanning electron microscopy (SEM), x-ray diffraction (XRD), energy dispersive spectrum (EDS) and elemental mapping. Uniform distribution of Al2O3 in aluminium matrix were observed by elemental mapping. The composites showed an increase in density and hardness by increasing both alumina and compaction pressure. While, electrical conductivity decreased by the addition of alumina. The tribological study of the composites were performed on pin-on-disc apparatus at sliding conditions (applied load 40 N, sliding speed 1.5 m s-1, sliding distance 300 m). The tribological properties of the composites were improved by increasing alumina and compaction pressure. SEM analysis were also carried out to understand wear mechanism of the worn surfaces of various fabricated composites and aluminium matrix.
Edahbi, Mohamed; Plante, Benoît; Benzaazoua, Mostafa; Ward, Matthew; Pelletier, Mia
2018-05-01
The geochemical behavior of rare earth elements (REE) was investigated using weathering cells. The influence of sorption and precipitation on dissolved REE mobility and fractionation is evaluated using synthetic iron-oxides, carbonates, and phosphates. Sorption cell tests are conducted on the main lithologies of the expected waste rocks from the Montviel deposit. The sorbed materials are characterized using a scanning electron microscope (SEM) equipped with a microanalysis system (energy dispersive spectroscopy EDS) (SEM-EDS), X-ray diffraction (XRD), and X-ray absorption near edge structure (XANES) in order to understand the effect of the synthetic minerals on REE mobility. The results confirm that sorption and precipitation control the mobility and fractionation of REE. The main sorbent phases are the carbonates, phosphates (present as accessory minerals in the Montviel waste rocks), and iron oxides (main secondary minerals generated upon weathering of the Montviel lithologies). The XANES results show that REE are present as trivalent species after weathering. Thermodynamic equilibrium calculations results using Visual Minteq suggest that REE could precipitate as secondary phosphates (REEPO 4 ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Environmental scanning electron microscope imaging examples related to particle analysis.
Wight, S A; Zeissler, C J
1993-08-01
This work provides examples of some of the imaging capabilities of environmental scanning electron microscopy applied to easily charged samples relevant to particle analysis. Environmental SEM (also referred to as high pressure or low vacuum SEM) can address uncoated samples that are known to be difficult to image. Most of these specimens are difficult to image by conventional SEM even when coated with a conductive layer. Another area where environmental SEM is particularly applicable is for specimens not compatible with high vacuum, such as volatile specimens. Samples from which images were obtained that otherwise may not have been possible by conventional methods included fly ash particles on an oiled plastic membrane impactor substrate, a one micrometer diameter fiber mounted on the end of a wire, uranium oxide particles embedded in oil-bearing cellulose nitrate, teflon and polycarbonate filter materials with collected air particulate matter, polystyrene latex spheres on cellulosic filter paper, polystyrene latex spheres "loosely" sitting on a glass slide, and subsurface tracks in an etched nuclear track-etch detector. Surface charging problems experienced in high vacuum SEMs are virtually eliminated in the low vacuum SEM, extending imaging capabilities to samples previously difficult to use or incompatible with conventional methods.
NASA Technical Reports Server (NTRS)
Nittler, Larry R.
2003-01-01
This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.
Bejan, Cosmin Adrian; Wei, Wei-Qi; Denny, Joshua C
2015-01-01
Objective To evaluate the contribution of the MEDication Indication (MEDI) resource and SemRep for identifying treatment relations in clinical text. Materials and methods We first processed clinical documents with SemRep to extract the Unified Medical Language System (UMLS) concepts and the treatment relations between them. Then, we incorporated MEDI into a simple algorithm that identifies treatment relations between two concepts if they match a medication-indication pair in this resource. For a better coverage, we expanded MEDI using ontology relationships from RxNorm and UMLS Metathesaurus. We also developed two ensemble methods, which combined the predictions of SemRep and the MEDI algorithm. We evaluated our selected methods on two datasets, a Vanderbilt corpus of 6864 discharge summaries and the 2010 Informatics for Integrating Biology and the Bedside (i2b2)/Veteran's Affairs (VA) challenge dataset. Results The Vanderbilt dataset included 958 manually annotated treatment relations. A double annotation was performed on 25% of relations with high agreement (Cohen's κ = 0.86). The evaluation consisted of comparing the manual annotated relations with the relations identified by SemRep, the MEDI algorithm, and the two ensemble methods. On the first dataset, the best F1-measure results achieved by the MEDI algorithm and the union of the two resources (78.7 and 80, respectively) were significantly higher than the SemRep results (72.3). On the second dataset, the MEDI algorithm achieved better precision and significantly lower recall values than the best system in the i2b2 challenge. The two systems obtained comparable F1-measure values on the subset of i2b2 relations with both arguments in MEDI. Conclusions Both SemRep and MEDI can be used to extract treatment relations from clinical text. Knowledge-based extraction with MEDI outperformed use of SemRep alone, but superior performance was achieved by integrating both systems. The integration of knowledge-based resources such as MEDI into information extraction systems such as SemRep and the i2b2 relation extractors may improve treatment relation extraction from clinical text. PMID:25336593
From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology
Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.
2015-01-01
In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.
Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel
2005-05-01
CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2018-03-01
LER (Line Edge Roughness) and LWR (Line Width Roughness) of the semiconductor device are an important evaluation scale of the performance of the device. Conventionally, LER and LWR is evaluated from CD-SEM (Critical Dimension Scanning Electron Microscope) images. However, CD-SEM measurement has a problem that high frequency random noise is large, and resolution is not sufficiently high. For random noise of CD-SEM measurement, some techniques are proposed. In these methods, it is necessary to set parameters for model and processing, and it is necessary to verify the correctness of these parameters using reference metrology. We have already proposed a novel reference metrology using FIB (Focused Ion Beam) process and planar-TEM (Transmission Electron Microscope) method. In this study, we applied the proposed method to three new samples such as SAQP (Self-Aligned Quadruple Patterning) FinFET device, EUV (Extreme Ultraviolet Lithography) conventional resist, and EUV new material resist. LWR and PSD (Power Spectral Density) of LWR are calculated from the edge positions on planar-TEM images. We confirmed that LWR and PSD of LWR can be measured with high accuracy and evaluated the difference by the proposed method. Furthermore, from comparisons with PSD of the same sample by CD-SEM, the validity of measurement of PSD and LWR by CD-SEM can be verified.
Synthesis and spectral characterization of Zn(II) microsphere series for antimicrobial application
NASA Astrophysics Data System (ADS)
Singh, Ajay K.; Pandey, Sarvesh K.; Pandey, O. P.; Sengupta, S. K.
2014-09-01
Microsphere series have been synthesized by reacting zinc(II) acetate dihydrate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole/oxadiazole/triazole with salicylaldehyde. Elemental analysis suggests that the complexes have 1:2 and 1:1 stoichiometry of the type [Zn(L)2(H2O)2] and [Zn(L‧)(H2O)2]; LH = Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thia/oxadiazole with salicylaldehyde; L‧H2 = Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1,2,4-triazole and salicylaldehyde and were characterized by elemental analyses, IR, 1H NMR and 13C NMR spectral data. Scanning electron microscopy (SEM) showed that synthesized materials have microsphere like structure and there EDX analysis comparably matches with elemental analysis. For the antimicrobial application Schiff bases and their zinc(II) complexes were screened for four bacteria e.g. Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Streptococcus pyogenes and four fungi e.g. Cyrtomium falcatum, Aspergillus niger, Fusarium oxysporium and Curvularia pallescence by the reported method. Schiff base and Zn(II) compounds showed significant antimicrobial activities. However, activities increase upon chelation. Thermal analysis (TGA) data of compound (10) showed its stability up to 300 °C.
Electrochemical reduction of (U-40Pu-5Np)O 2 in molten LiCl electrolyte
NASA Astrophysics Data System (ADS)
Iizuka, Masatoshi; Sakamura, Yoshiharu; Inoue, Tadashi
2006-12-01
The electrochemical reduction of neptunium-containing MOX ((U-40Pu-5Np)O 2) was performed in molten lithium chloride melt at 923 K to investigate fundamental behavior of the transuranium elements and applicability of the method to reduction process for these materials. The Np-MOX was electrochemically reduced at the potential lower than -0.6 V vs. Bi-35 mol% Li reference electrode. The reduced metal grains in the surface region of the sample cohered with each other and made the layer of relatively high density, although it did not prevent the reduction of the sample toward the center. Complete reduction of the Np-MOX was shown by the weight change measurement through the electrochemical reduction and also by SEM-EDX observation. The chemical composition of the reduction products was homogeneous and agreed to that of the initial Np-MOX, which indicates that the reduction was completed and not selective among the actinides. The concentrations of the actinide elements, especially plutonium and americium in the electrolyte, increased with the progress of the tests, although their absolute values were very small. It is quite likely that plutonium and americium dissolve into the melt in the same manner as the lanthanide elements in the lithium reduction process.
Microstructure and mechanical properties of horns derived from three domestic bovines.
Zhang, Quan-bin; Li, Chun; Pan, Yan-ting; Shan, Guang-hua; Cao, Ping; He, Jia; Lin, Zhong-shi; Ao, Ning-jian; Huang, Yao-xiong
2013-12-01
The microstructure and mechanical properties of horns derived from three domestic bovines (buffalo, cattle and sheep) were examined. The effects of water content, sampling position and orientation of three bovid horns on mechanical properties were systematically investigated by uniaxial tension and micron indentation tests. Meanwhile, the material composition and metal element contents were determined by Raman spectroscopy and elemental analysis respectively, and the microstructures of the horns were measured by scanning electron microscopy (SEM). Results show that the mechanical properties of horns have negative correlation with water contents and depend on sampling position and orientation. The spatial variations of the mechanical properties in horns are attributed to the different keratinization degrees in the proximal, middle and distal parts. And the mechanical properties of horns in the longitudinal direction are better than those in transverse. Among the three kinds of horns, the mechanical properties of buffalo horn are the best, followed by cattle horn, and those in sheep horn are the worst. This is due to the differences in material composition, metal element, and the microstructures of the horns. But the mechanical properties of buffalo horns are not dependent on the source of the buffalo. Therefore, regular engineered buffalo keratinous materials with standard mechanical properties can be obtained from different buffalo horns by using proper preparation methods. © 2013.
NASA Astrophysics Data System (ADS)
Bilonick, Richard A.; Connell, Daniel P.; Talbott, Evelyn O.; Rager, Judith R.; Xue, Tao
2015-02-01
The objective of this study was to remove systematic bias among fine particulate matter (PM2.5) mass concentration measurements made by different types of samplers used in the Pittsburgh Aerosol Research and Inhalation Epidemiology Study (PARIES). PARIES is a retrospective epidemiology study that aims to provide a comprehensive analysis of the associations between air quality and human health effects in the Pittsburgh, Pennsylvania, region from 1999 to 2008. Calibration was needed in order to minimize the amount of systematic error in PM2.5 exposure estimation as a result of including data from 97 different PM2.5 samplers at 47 monitoring sites. Ordinary regression often has been used for calibrating air quality measurements from pairs of measurement devices; however, this is only appropriate when one of the two devices (the "independent" variable) is free from random error, which is rarely the case. A group of methods known as "errors-in-variables" (e.g., Deming regression, reduced major axis regression) has been developed to handle calibration between two devices when both are subject to random error, but these methods require information on the relative sizes of the random errors for each device, which typically cannot be obtained from the observed data. When data from more than two devices (or repeats of the same device) are available, the additional information is not used to inform the calibration. A more general approach that often has been overlooked is the use of a measurement error structural equation model (SEM) that allows the simultaneous comparison of three or more devices (or repeats). The theoretical underpinnings of all of these approaches to calibration are described, and the pros and cons of each are discussed. In particular, it is shown that both ordinary regression (when used for calibration) and Deming regression are particular examples of SEMs but with substantial deficiencies. To illustrate the use of SEMs, the 7865 daily average PM2.5 mass concentration measurements made by seven collocated samplers at an urban monitoring site in Pittsburgh, Pennsylvania, were used. These samplers, which included three federal reference method (FRM) samplers, three speciation samplers, and a tapered element oscillating microbalance (TEOM), operated at various times during the 10-year PARIES study period. Because TEOM measurements are known to depend on temperature, the constructed SEM provided calibration equations relating the TEOM to the FRM and speciation samplers as a function of ambient temperature. It was shown that TEOM imprecision and TEOM bias (relative to the FRM) both decreased as temperature increased. It also was shown that the temperature dependency for bias was non-linear and followed a sigmoidal (logistic) pattern. The speciation samplers exhibited only small bias relative to the FRM samplers, although the FRM samplers were shown to be substantially more precise than both the TEOM and the speciation samplers. Comparison of the SEM results to pairwise simple linear regression results showed that the regression results can differ substantially from the correctly-derived calibration equations, especially if the less-precise device is used as the independent variable in the regression.
Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin
2017-10-01
Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.
Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E
2012-11-01
The fabrication of the workhorse Ti-6Al-4V alloy and of the Ti-3Al-2.5V alloy was studied considering the master alloy addition variant of the blending elemental approach conventionally used for titanium powder metallurgy. The powders were characterised by means thermal analysis and X-ray diffraction and shaped by means of uniaxial pressing. The microstructural evolution with the sintering temperature (900-1400 °C) was evaluated by SEM and EDS was used to study the composition. XRD patterns as well as the density by Archimedes method were also obtained. The results indicate that master alloy addition is a suitable way to fabricate well developed titanium alloy but also to produce alloy with the desired composition, not available commercially. Density of 4.3 g/cm³ can be obtained where a temperature higher than 1200 °C is needed for the complete diffusion of the alloying elements. Flexural properties comparable to those specified for wrought Ti-6Al-4V medical devices are, generally, obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Green, Samuel B.; Yang, Yanyun
2009-01-01
A method is presented for estimating reliability using structural equation modeling (SEM) that allows for nonlinearity between factors and item scores. Assuming the focus is on consistency of summed item scores, this method for estimating reliability is preferred to those based on linear SEM models and to the most commonly reported estimate of…
The effects of sexually explicit material use on romantic relationship dynamics
Minarcik, Jenny; Wetterneck, Chad T.; Short, MARY B.
2016-01-01
Background and aims Pornography use has become increasingly common. Studies have shown that individuals who use sexually explicit materials (SEMs) report negative effects (Schneider, 2000b). However, Bridges (2008b) found that couples who use SEM together have higher relationship satisfaction than those who use SEM independently. A further investigation into various types of SEM use in relationships may highlight how SEM is related to various areas of couple satisfaction. Thus, the purpose of the current study is to examine the impact of SEM use related to different relationship dynamics. Methods The current study included a college and Internet sample of 296 participants divided into groups based upon the SEM use in relationships (i.e., SEM alone, SEM use with partner, and no SEM use). Results There were significant differences between groups in relationship satisfaction [F(2, 252) = 3.69, p = .026], intimacy [F(2, 252) = 7.95, p = <.001], and commitment [F(2, 252) = 5.30, p = .006]. Post-hoc analyses revealed additional differences in relationship satisfaction [t(174) = 2.13, p = .035] and intimacy [t(174) = 2.76, p = .006] based on the frequency of SEM use. Discussion Further exploration of the SEM use function in couples will provide greater understanding of its role in romantic relationships. PMID:27784182
Tree bark suber-included particles: A long-term accumulation site for elements of atmospheric origin
NASA Astrophysics Data System (ADS)
Catinon, Mickaël; Ayrault, Sophie; Spadini, Lorenzo; Boudouma, Omar; Asta, Juliette; Tissut, Michel; Ravanel, Patrick
2011-02-01
The deposition of atmospheric elements on and into the bark of 4-year-old Fraxinus excelsior L. was studied. The elemental composition of the suber tissue was established through ICP-MS analysis and the presence of solid mineral particles included in this suber was established and described through SEM-EDX. Fractionation of the suber elements mixture was obtained after ashing at 550 °C through successive water (C fraction) and HNO 3 2 M (D fraction) extraction, leading to an insoluble residue mainly composed of the solid mineral particles (E fraction). The triplicated % weight of C, D and E were respectively 34.4 ± 2.7, 64.8 ± 2.7 and 0.8 ± 0.1% of the suber ashes weight. The main component of C was K, of D was Ca. Noticeable amounts of Mg were also observed in D. The E fraction, composed of insoluble particles, was mostly constituted of geogenic products, with elements such as Si, Al, K, Mg, representing primary minerals. E also contained Ca 3(PO 4) 2 and concentrated the main part of Pb and Fe. Moreover, The SEM-EDX analysis evidenced that this fraction also concentrated several types of fly ashes of industrial origin. The study of the distribution between C, D and E was analysed through ICP-MS with respect to their origin. The origin of the elements found in such bark was either geogenic (clay, micas, quartz…), anthropogenic or biogenic (for instance large amounts of solid Ca organic salts having a storage role). As opposed to the E fraction, the C fraction, mainly composed of highly soluble K+ is characteristic of a biological pool of plant origin. In fraction D, the very high amount of Ca++ corresponds to two different origins: biological or acid soluble minerals such as calcite. Furthermore, the D fraction contains the most part of pollutants of anthropic origin such as Zn, Cu, Ni, Co, Cd. As a whole, the fractionation procedure of the suber samples allows to separate elements as a function of their origin but also gives valuable information on distribution and speciation of trace elements.
3-D simulation of hanging wall effect at dam site
NASA Astrophysics Data System (ADS)
Zhang, L.; Xu, Y.
2017-12-01
Hanging wall effect is one of the near fault effects. This paper focuses on the difference of the ground motions on the hanging wall side between the footwall side of the fault at dam site considering the key factors, such as actual topography, the rupture process. For this purpose, 3-D ground motions are numerically simulated by the spectrum element method (SEM), which takes into account the physical mechanism of generation and propagation of seismic waves. With the SEM model of 548 million DOFs, excitation and propagation of seismic waves are simulated to compare the difference between the ground motion on the hanging wall side and that on the footwall side. Take Dagangshan region located in China as an example, several seismogenic finite faults with different dip angle are simulated to investigate the hanging wall effect. Furthermore, by comparing the ground motions of the receiving points, the influence of several factors on hanging wall effect is investigated, such as the dip of the fault and the fault type (strike slip fault or dip-slip fault). The peak acceleration on the hanging wall side is obviously larger than those on the footwall side, which numerically evidences the hanging wall effect. Besides, the simulation shows that only when the dip is less than 70° does the hanging wall effect deserve attention.
Ledeuil, J B; Uhart, A; Soulé, S; Allouche, J; Dupin, J C; Martinez, H
2014-10-07
This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (≈12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.
NASA Astrophysics Data System (ADS)
Mylarappa, M.; Venkata Lakshmi, V.; Vishnu Mahesh, K. R.; Nagaswarupa, H. P.; Raghavendra, N.
2016-09-01
This work deliberates a method for manganese (Mn) recovery as manganese oxide obtained by leaching of waste batteries with 3M sulphuric acid. The Experimental test for the recovery of Mn present within the waste dry cell batteries were carried out by a reductive leachant. Elemental composition of leached sample was confirmed by Energy Dispersive X-ray analysis (EDAX), and Surface morphology of the recovered MnO2 was examined by using Scanning Electron microscopy (SEM). Phase composition was confirmed from X-ray Diffractro meter (XRD). The obtained leached solution was treated with 4M NaOH, yielded to Manganese Dioxide with high extraction degree, while it do not touches the Zn content within the solutions. The recovered samples were characterized using XRD, EDAX, SEM and Fourier transform infrared spectrometry (FTIR). The electrochemical properties of the as-recovered sample from leached solution was examined used cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Remarkably, the 80 wt.% MnO2 displays reversibility, diffusion constant, smaller equivalent series resistance and charge transfer resistance in 0.5M NaOH showed superior results as compared to alternative electrolytes. The ideal capacitive behaviour of MnO2 electrode and nano particle was applied to photocatalytic degradation of dyes.
Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys
Eshed, Eyal; Larianovsky, Natalya; Kovalevsky, Alexey; Popov, Vladimir; Gorbachev, Igor; Popov, Vladimir; Katz-Demyanetz, Alexander
2018-01-01
Refractory-based high entropy alloys (HEAs) of the 2nd-generation type are new intensively-studied materials with a high potential for structural high-temperature applications. This paper presents investigation results on microstructural evolution and phase formation in as-cast and subsequently heat-treated HEAs at various temperature-time regimes. Microstructural examination was performed by means of scanning electron microscopy (SEM) combined with the energy dispersive spectroscopy (EDS) mode of electron probe microanalysis (EPMA) and qualitative X-ray diffraction (XRD). The primary evolutionary trend observed was the tendency of Zr to gradually segregate as the temperature rises, while all the other elements eventually dissolve in the BCC solid solution phase once the onset of Laves phase complex decomposition is reached. The performed thermodynamic modelling was based on the Calculation of Phase Diagrams method (CALPHAD). The BCC A2 solid solution phase is predicted by the model to contain increasing amounts of Cr as the temperature rises, which is in perfect agreement with the actual results obtained by SEM. However, the model was not able to predict the existence of the Zr-rich phase or the tendency of Zr to segregate and form its own solid solution—most likely as a result of the Zr segregation trend not being an equilibrium phenomenon. PMID:29360763
Laser Induced Hydrogen Generation from Coal in Water
NASA Astrophysics Data System (ADS)
Seyitliyev, Dovletgeldi; Kholikov, Khomidkhodzha; Er, Ali
We report an alternative way of obtaining hydrogen using nanosecond laser pulses and various ranks of coal and coke. SEM-EDS analysis shows the atomic concentrations of elements on each of the powders which also is in good agreement with calorimeter analysis. Coal and coke powders were irradiated with 1064nm IR and 532 nm green Nd:YAG pulsed laser beam for 45 minutes. The volume of the total gas generated after irradiation of each rank was measured using the water displacement method. The amount of gas generated increased when using 532 nm compared to 1064 nm. Post-irradiation SEM images show structural differences with samples before irradiation. The amount of gas generation with respect to laser energy density shows nonlinear correlation. Generated gas concentrations were then analyzed using gas chromatography (GC). Hydrogen and carbon monoxide were the two most highly generated gases, and the efficiency of each rank of coal was determined by analyzing the hydrogen to carbon monoxide ratio. The highest efficiency rank was anthracite, with hydrogen to carbon monoxide ratio of 1.4. GC analysis also showed that the maximum hydrogen generation occurs at 100 mJ/pulse laser energy. The efficiency of each rank of coal was observed to correlate with carbon content. American Chemical Society Petroleum Research Fund.
SEM viewing of gypsiferous material and study of their influence on electrical resistivity
NASA Astrophysics Data System (ADS)
Dafalla, M.; Fouzan, F. Al
2012-04-01
The gypsum rich material is often linked to the cavity formation due to the high solubility of cal-cium carbonate in the presence of acidic media. This work is dedicated to a close-up look to the structure of materials rich of gypsum and material of less or traces of sulfate ions. Electrical resistivity measurements were conducted along extended lines on sections involving cavities and the resulting profiles were examined for any changes. Forms and features of gypsum and minerals containing sulfates were studied and compared to sam-ples tested using SEM (scanning electron microscope). The chemical analyses (EDAX) using electron beam was carried out and the elements present within these samples were established. Quantitative chemical testing for some parameters including sulfate ions was carried out. Structural forms variation and changes are studied in view of the chemical composition. The electrical resistivity was measured using Syscal R1 electerical resis-tivity equipment for several spots near surface. Statistical correlations between sulfate ions content and elec-trical resistivity, for near surface soils, is presented. This study is aiming at utilizing the geophysical testing methods of sulfate rich soils and predicting future cavity formation in areas of high risk to cavities due to chemical weathering.
Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications
Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis
2013-01-01
Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091
Silicone intraocular lens surface calcification in a patient with asteroid hyalosis.
Matsumura, Kazuhiro; Takano, Masahiko; Shimizu, Kimiya; Nemoto, Noriko
2012-07-01
To confirm a substance presence on the posterior intraocular lens (IOL) surface in a patient with asteroid hyalosis. An 80-year-old man had IOLs for approximately 12 years. Opacities and neodymium-doped yttrium aluminum garnet pits were observed on the posterior surface of the right IOL. Asteroid hyalosis and an epiretinal membrane were observed OD. An IOL exchange was performed on 24 March 2008, and the explanted IOL was analyzed using a light microscope and a transmission electron microscope with a scanning electron micrograph and an energy-dispersive X-ray spectrometer for elemental analysis. To confirm asteroid hyalosis, asteroid bodies were examined with the ionic liquid (EtMeIm+ BF4-) method using a field emission scanning electron microscope (FE-SEM) with digital beam control RGB mapping. X-ray spectrometry of the deposits revealed high calcium and phosphorus peaks. Spectrometry revealed that the posterior IOL surface opacity was due to a calcium-phosphorus compound. Examination of the asteroid bodies using FE-SEM with digital beam control RGB mapping confirmed calcium and phosphorus as the main components. Calcium hydrogen phosphate dihydrate deposits were probably responsible for the posterior IOL surface opacity. Furthermore, analysis of the asteroid bodies demonstrated that calcium and phosphorus were its main components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, Fowzia
This method describes the characterization of HE powders by Scanning Electron Microscopy (SEM). HE particles are dispersed onto an aluminum standard SEM specimen mount. Electron micrographs are collected at various magnifications (150 to 10,000 X) depending on HE particle size.
Wang, Fang; Ouyang, Guang; Zhou, Changsong; Wang, Suiping
2015-01-01
A number of studies have explored the time course of Chinese semantic and syntactic processing. However, whether syntactic processing occurs earlier than semantics during Chinese sentence reading is still under debate. To further explore this issue, an event-related potentials (ERPs) experiment was conducted on 21 native Chinese speakers who read individually-presented Chinese simple sentences (NP1+VP+NP2) word-by-word for comprehension and made semantic plausibility judgments. The transitivity of the verbs was manipulated to form three types of stimuli: congruent sentences (CON), sentences with a semantically violated NP2 following a transitive verb (semantic violation, SEM), and sentences with a semantically violated NP2 following an intransitive verb (combined semantic and syntactic violation, SEM+SYN). The ERPs evoked from the target NP2 were analyzed by using the Residue Iteration Decomposition (RIDE) method to reconstruct the ERP waveform blurred by trial-to-trial variability, as well as by using the conventional ERP method based on stimulus-locked averaging. The conventional ERP analysis showed that, compared with the critical words in CON, those in SEM and SEM+SYN elicited an N400-P600 biphasic pattern. The N400 effects in both violation conditions were of similar size and distribution, but the P600 in SEM+SYN was bigger than that in SEM. Compared with the conventional ERP analysis, RIDE analysis revealed a larger N400 effect and an earlier P600 effect (in the time window of 500-800 ms instead of 570-810ms). Overall, the combination of conventional ERP analysis and the RIDE method for compensating for trial-to-trial variability confirmed the non-significant difference between SEM and SEM+SYN in the earlier N400 time window. Converging with previous findings on other Chinese structures, the current study provides further precise evidence that syntactic processing in Chinese does not occur earlier than semantic processing.
Special raster scanning for reduction of charging effects in scanning electron microscopy.
Suzuki, Kazuhiko; Oho, Eisaku
2014-01-01
A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.
Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.
Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi
2015-11-05
Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nyambe, Anayawa; Van Hal, Guido; Kampen, Jarl K
2016-11-17
Vaccination and screening are forms of primary and secondary prevention methods. These methods are recommended for controlling the spread of a vast number of diseases and conditions. To determine the most effective preventive methods to be used by a society, multi-level models have shown to be more effective than models that focus solely on individual level characteristics. The Social Ecological Model (SEM) and the Theory of Triadic Influence (TTI) are such models. The purpose of this systematic review was to identify main differences and similarities of SEM and TTI regarding screening and vaccination in order to prepare potentially successful prevention programs for practice. A systematic review was conducted. Separate literature searches were performed during January and February 2015 using Medline, Ovid, Proquest, PubMed, University of Antwerp Discovery Service and Web of Science, for articles that apply the SEM and TTI. A Data Extraction Form with mostly closed-end questions was developed to assist with data extraction. Aggregate descriptive statistics were utilized to summarize the general characteristics of the SEM and TTI as documented in the scientific literature. A total of 290 potentially relevant articles referencing the SEM were found. As for the TTI, a total of 131 potentially relevant articles were found. After strict evaluation for inclusion and exclusion criteria, 40 SEM studies and 46 TTI studies were included in the systematic review. The SEM and TTI are theoretical frameworks that share many theoretical concepts and are relevant for several types of health behaviors. However, they differ in the structure of the model, and in how the variables are thought to interact with each other, the TTI being a matrix while the SEM has a ring structure. The main difference consists of the division of the TTI into levels of causation (ultimate, distal and proximal) which are not considered within the levels of the SEM. It was further found that in the articles studied in this systematic review, both models are often considered effective, while the empirical basis of these (and other) conclusions reached by their authors is in many cases unclear or incompletely specified.
In situ identification and X-ray imaging of microorganisms distribution on the Tatahouine meteorite
NASA Astrophysics Data System (ADS)
Lemelle, L.; Salomé, M.; Fialin, M.; Simionovici, A.; Gillet, Ph.
2004-10-01
Microorganisms were searched for among the complex microstructures observed on the surface of a fragment of the Tatahouine meteorite inherited from the Tunisian soil in which they were buried. In this view, the chemical compositions, particularly the nitrogen, phosphorus, and sulphur compositions, including the sulphur speciation, were investigated using scanning electron microscopy (SEM), electron probe microanalysis (EPMA) mapping, and scanning X-ray microscopy (SXM). A few 2-μm-thick filaments, partly covered by patches of calcite ensuring they were not deposited by a laboratory contamination, were observed by SEM. The EPMA maps show that the portions free of calcite of the filaments have low but constant contents of nitrogen, sulphur, and phosphorus. The SXM maps were recorded at 2473.5, 2478, and 2482.2 eV, which are respectively characteristic for amino acid linked sulphur, sulphite (SO32-), and sulphate (SO42-). The portions of the filaments detected by EPMA are also those that are enriched in amino acid linked sulphur. The calculated (N/S) elemental ratio is consistent with the one of the dehydrated Escherichia coli matter, contrary to the much lower (P/S) elemental ratio. In living cells, the bulk N and S elements are mainly located in large polymers by covalent bonds, whereas a significant amount of P belongs to small and reactive molecules. We thus can propose that the observed microstructures are dehydrated microorganisms, in which most of the elements that were composing the polymers were retained, whereas the small electrolytes and molecules were removed.
NASA Astrophysics Data System (ADS)
Tazaki, Kazue; Morii, Issei
Environmental changes recorded in the shell nacre of Sinohyliopsis schlegeli were observed with elemental factors of characteristic water and nutrition for eight months in a cultivated drainage pond at Kanazawa University, Ishikawa Prefecture, Japan. Tetracycline as an indicator was injected into the shell nacre once every month from May to November in 2007. Water qualities such as the pH, redox potential, electrical conductivity, dissolved oxygen concentration, and water temperature were measured periodically, and the suspended solids in the water were removed by filtration for optical microscopy, X-ray fluorescence analysis, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) observations. X-ray fluorescence chemical analysis of shell nacre indicated layers with strong tetracycline accumulation corresponding to high concentrations of Si, Mn, Fe, and Sr ions. The redox potential and dissolved oxygen concentration measurements supported the existence of layers in the nacre. The suspended materials in the drainage pond water comprised mainly of Si, Mn, and Fe elements, which were the same elements involved in microbial immobilization in the shell nacre during the summer of 2007. SEM-EDX analyses confirmed that the ions originated from diatoms, Siderocapsa sp. and Gallionella ferruginea in the stomach. There was little microbial immobilization of the ions in winter. The results suggested elemental immobilization in the layered shell nacre and indicated that Sinohyliopsis schlegeli fed on the ions, to grow the nacre during summer. Sinohyliopsis schlegeli with these biogenic oxides might contribute to the scavenging of heavy metals in natural water.
NASA Astrophysics Data System (ADS)
Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan
2018-05-01
Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.
Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.
Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J
2015-11-01
The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels. © 2015 Wiley Periodicals, Inc.
[Evaluation of three methods for forensic diatom test].
Wang, Yuzhong; Zhao, Jian; Li, Peng; Hu, Sunlin; Wang, Huipin; Wang, Huijun; Liu, Chao
2015-03-01
To compare the efficacy of three methods for forensic diatom test, namely strong acid digestion-centrifuge enrichment-light microscopy (SD-CE-LM), microwave digestion-membrane filtration-automated scanning electron microscopy (MD-ME-SEM), and microwave digestion-membrane filtration-light microscopy (MD-MF-LM). Sixty samples were randomly divided into 3 groups for diatom test using three methods, and the sample preparation time, degree of digestion and recovery rate of diatoms were compared. The sample preparation time was the shortest with MD-MF-LM and the longest with SD-CE-LM (P<0.05). MD-ME-SEM and MD-MF-LM allowed more thorough tissue digestion than SD-CE-LM. MD-ME-SEM resulted in the highest total recovery rate of diatom, followed by MD-MF-LM and then by SD-CE-LM (P<0.05); the recover rate of different diatom species was the highest with MD-ME-SEM, followed by MD-MF-LM and SD-CE-LM (P<0.05). SD-CE-LM has a low recovery rate of diatoms especially for those with lengths shorter than 40 µm or densities less than 1/5. With a high recovery rate and accuracy in diatom test, MD-ME-SEM is suitable for diagnosis of suspected drowning cases. MD-MF-LM is highly efficient, sensitive and convenient for forensic diatom test.
CD-SEM real time bias correction using reference metrology based modeling
NASA Astrophysics Data System (ADS)
Ukraintsev, V.; Banke, W.; Zagorodnev, G.; Archie, C.; Rana, N.; Pavlovsky, V.; Smirnov, V.; Briginas, I.; Katnani, A.; Vaid, A.
2018-03-01
Accuracy of patterning impacts yield, IC performance and technology time to market. Accuracy of patterning relies on optical proximity correction (OPC) models built using CD-SEM inputs and intra die critical dimension (CD) control based on CD-SEM. Sub-nanometer measurement uncertainty (MU) of CD-SEM is required for current technologies. Reported design and process related bias variation of CD-SEM is in the range of several nanometers. Reference metrology and numerical modeling are used to correct SEM. Both methods are slow to be used for real time bias correction. We report on real time CD-SEM bias correction using empirical models based on reference metrology (RM) data. Significant amount of currently untapped information (sidewall angle, corner rounding, etc.) is obtainable from SEM waveforms. Using additional RM information provided for specific technology (design rules, materials, processes) CD extraction algorithms can be pre-built and then used in real time for accurate CD extraction from regular CD-SEM images. The art and challenge of SEM modeling is in finding robust correlation between SEM waveform features and bias of CD-SEM as well as in minimizing RM inputs needed to create accurate (within the design and process space) model. The new approach was applied to improve CD-SEM accuracy of 45 nm GATE and 32 nm MET1 OPC 1D models. In both cases MU of the state of the art CD-SEM has been improved by 3x and reduced to a nanometer level. Similar approach can be applied to 2D (end of line, contours, etc.) and 3D (sidewall angle, corner rounding, etc.) cases.
NASA Astrophysics Data System (ADS)
Tape, Carl; Liu, Qinya; Tromp, Jeroen
2007-03-01
We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Fréchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectral-element method (SEM) and a phase-speed model for southern California. A `target' phase-speed model is used to generate the `data' at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana-doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Fréchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.
NASA Astrophysics Data System (ADS)
Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh
2014-06-01
We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.
The seismic signatures of the solar system
NASA Astrophysics Data System (ADS)
Stähler, Simon C.; Kedar, Sharon; van Driel, Martin; Vance, Steven D.; Panning, Mark P.
2017-04-01
Seismology is a powerful tool to image the interior of planetary bodies. At the same time, its results are often difficult to visualize. The spectral-element solver AxiSEM (Nissen-Meyer et al. 2014) enables calculations of the broadband seismic response of terrestrial bodies with solid crusts and mantles, as well as icy moons with solid ice crusts overlying liquid oceans. In its database mode, Instaseis (van Driel et al. 2015), AxiSEM can efficiently calculate the seismic response for earthquakes at arbitrary distances and depths. We use this method to present a set of global stacks of seismograms, similar to the iconic global stack that Astiz and Shearer (1996) created for IRIS from thousands of seismograms on Earth. We present these stacks for models of Europa, Enceladus, Ganymede, Mercury, Venus, Moon and - for comparison - Earth. The results are based on thermodynamical modeling for the icy moons and orbital observations for the terrestrial planets. The results visualize how each planet and moon has its own unique seismic wavefield and which observables exist to infer its detailed structure by future lander missions. Astiz, L., P. Earle and P. Shearer, Global stacking of broadband seismograms, Seis. Res. Lett., 67, 8-18, 1996. M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, and T. Nissen-Meyer (2015), "Instaseis: instant global seismograms based on a broadband waveform database," Solid Earth, 6, 701-717, doi:10.5194/se-6-701-2015. Nissen-Meyer, T., van Driel, M., Stähler, S. C., Hosseini, K., Hempel, S., Auer, L., … Fournier, A. (2014). AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth, 5(1), 425-445. https://doi.org/10.5194/se-5-425-2014
Scanning electron microscopy of Strongylus spp. in zebra.
Els, H J; Malan, F S; Scialdo-Krecek, R C
1983-12-01
The external ultrastructure of the anterior and posterior extremities of the nematodes, Strongylus asini , Strongylus vulgaris, Strongylus equinus and Strongylus edentatus, was studied with scanning electron microscopy (SEM). Fresh specimens of S. asini were collected from the caecum, ventral colon and vena portae of Equus burchelli and Equus zebra hartmannae ; S. vulgaris from the caecum, colon and arteria ileocolica of E. burchelli ; S. equinus from the ventral colon of E. z. hartmannae and S. edentatus from the caecum and ventral colon of both zebras , during surveys of parasites in zebras in the Etosha Game Reserve, South West Africa/Namibia, and the Kruger National Park, Republic of South Africa. The worms were cleaned, fixed and mounted by standard methods and photographed in a JEOL JSM - 35C scanning electron microscope (SEM) operating at 12kV . The SEM showed the following differences: the tips of the external leaf-crowns varied and were fine and delicate in S. asini , coarse and broad in S. vulgaris and, in S. equinus and S. edentatus, closely adherent, separating into single elements for half their length. The excretory pores showed only slight variation, and the morphology of the copulatory bursae did not differ from those seen with light microscopy. The genital cones differed markedly: S. asini had a ventral triangular projection and laterally 2 finger-like projections: in S. vulgaris there were numerous bosses on the lateral and ventral aspects of the cone; in S. equinus 2 finger-like processes projected laterocaudally ; and in S. edentatus 2 pairs of papilla-like processes projected laterally on the ventral aspects, and a pair of rounded projections and a pair of hair-like structures adorned the dorsal aspects.(ABSTRACT TRUNCATED AT 250 WORDS)
Diblíková, P; Veselý, M; Sysel, P; Čapek, P
2018-03-01
Properties of a composite material made of a continuous matrix and particles often depend on microscopic details, such as contacts between particles. Focusing on processing raw focused-ion beam scanning electron microscope (FIB-SEM) tomography data, we reconstructed three mixed-matrix membrane samples made of 6FDA-ODA polyimide and silicalite-1 particles. In the first step of image processing, backscattered electron (BSE) and secondary electron (SE) signals were mixed in a ratio that was expected to obtain a segmented 3D image with a realistic volume fraction of silicalite-1. Second, after spatial alignment of the stacked FIB-SEM data, the 3D image was smoothed using adaptive median and anisotropic nonlinear diffusion filters. Third, the image was segmented using the power watershed method coupled with a seeding algorithm based on geodesic reconstruction from the markers. If the resulting volume fraction did not match the target value quantified by chemical analysis of the sample, the BSE and SE signals were mixed in another ratio and the procedure was repeated until the target volume fraction was achieved. Otherwise, the segmented 3D image (replica) was accepted and its microstructure was thoroughly characterized with special attention paid to connectivity of the silicalite phase. In terms of the phase connectivity, Monte Carlo simulations based on the pure-phase permeability values enabled us to calculate the effective permeability tensor, the main diagonal elements of which were compared with the experimental permeability. In line with the hypothesis proposed in our recent paper (Čapek, P. et al. (2014) Comput. Mater. Sci. 89, 142-156), the results confirmed that the existence of particle clusters was a key microstructural feature determining effective permeability. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Dealloying, Microstructure and the Corrosion/Protection of Cast Magnesium Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieradzki, Karl; Aiello, Ashlee; McCue, Ian
The purpose of this project was to develop a greater understanding of micro-galvanic corrosion effects in cast magnesium alloys using both experimental and computational methods. Experimental accomplishments have been made in the following areas of interest: characterization, aqueous free-corrosion, atmospheric corrosion, ionic liquid dissolution, rate kinetics of oxide dissolution, and coating investigation. Commercial alloys (AZ91D, AM60, and AZ31B), binary-phase alloys (αMg-2at.%Al, αMg-5at.%Al, and Mg-8at.%Al), and component phases (Mg, Al, β-Mg, β-1%Zn, MnAl3) were obtained and characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Full immersion in aqueous chloride was used to characterize the corrosionmore » behavior of alloys. Rotating disc electrodes (RDEs) were used to observe accelerated long-term corrosion behavior. Al surface redistribution for freely corroded samples was analyzed using SEM, EDS, and lithium underpotential deposition (Li UPD). Atmospheric corrosion was observed using contact angle evolution, overnight pH monitoring, and surface pH evolution studies. Ionic liquid corrosion characterization was performed using linear sweep voltammetry and potentiostatic dissolution in 150° choline chloride-urea (cc-urea). Two surface coatings were investigated: (1) Li-carbonate and (2) cc-urea. Li-carbonate coatings were characterized using X-ray photoelectron spectroscopy (XPS), SEM, and aqueous free corrosion potential monitoring. Hydrophobic cc-urea coatings were characterized using contact angle measurements and electrochemical impedance spectroscopy. Oxide dissolution rate kinetics were studied using inductively coupled plasma mass spectroscopy (ICP-MS). Computational accomplishments have been made through the development of Kinetic Monte Carlo (KMC) simulations which model time- and composition-dependent effects on the microstructure due to spatial redistribution of alloying elements during corrosion.« less
Method variation in the impact of missing data on response shift detection.
Schwartz, Carolyn E; Sajobi, Tolulope T; Verdam, Mathilde G E; Sebille, Veronique; Lix, Lisa M; Guilleux, Alice; Sprangers, Mirjam A G
2015-03-01
Missing data due to attrition or item non-response can result in biased estimates and loss of power in longitudinal quality-of-life (QOL) research. The impact of missing data on response shift (RS) detection is relatively unknown. This overview article synthesizes the findings of three methods tested in this special section regarding the impact of missing data patterns on RS detection in incomplete longitudinal data. The RS detection methods investigated include: (1) Relative importance analysis to detect reprioritization RS in stroke caregivers; (2) Oort's structural equation modeling (SEM) to detect recalibration, reprioritization, and reconceptualization RS in cancer patients; and (3) Rasch-based item-response theory-based (IRT) models as compared to SEM models to detect recalibration and reprioritization RS in hospitalized chronic disease patients. Each method dealt with missing data differently, either with imputation (1), attrition-based multi-group analysis (2), or probabilistic analysis that is robust to missingness due to the specific objectivity property (3). Relative importance analyses were sensitive to the type and amount of missing data and imputation method, with multiple imputation showing the largest RS effects. The attrition-based multi-group SEM revealed differential effects of both the changes in health-related QOL and the occurrence of response shift by attrition stratum, and enabled a more complete interpretation of findings. The IRT RS algorithm found evidence of small recalibration and reprioritization effects in General Health, whereas SEM mostly evidenced small recalibration effects. These differences may be due to differences between the two methods in handling of missing data. Missing data imputation techniques result in different conclusions about the presence of reprioritization RS using the relative importance method, while the attrition-based SEM approach highlighted different recalibration and reprioritization RS effects by attrition group. The IRT analyses detected more recalibration and reprioritization RS effects than SEM, presumably due to IRT's robustness to missing data. Future research should apply simulation techniques in order to make conclusive statements about the impacts of missing data according to the type and amount of RS.
Romero-Franco, Natalia; Montaño-Munuera, Juan Antonio; Fernández-Domínguez, Juan Carlos; Jiménez-Reyes, Pedro
2017-12-18
New methods are being validated to easily evaluate the knee joint position sense (JPS) due to its role in sports movement and the risk of injury. However, no studies to date have considered the open kinetic chain (OKC) technique, despite the biomechanical differences compared to closed kinetic chain movements. To analyze the validity and reliability of a digital inclinometer to measure the knee JPS in the OKC movement. The validity, inter-tester and intra-tester reliability of a digital inclinometer for measuring knee JPS were evaluated. Sports research laboratory. Eighteen athletes (11 males and 7 females; 28.4 ± 6.6 years; 71.9 ± 14.0 kg; 1.77 ± 0.09 m; 22.8 ± 3.2 kg/m 2 ) voluntary participated in this study. Absolute angular error (AAE), relative angular error (RAE) and variable angular error (VAE) of knee JPS in an OKC. Intraclass correlation coefficient (ICC) and standard error of the mean (SEM) were calculated to determine the validity and reliability of the inclinometer. Data showed excellent validity of the inclinometer to obtain proprioceptive errors compared to the video analysis in JPS tasks (AAE: ICC = 0.981, SEM = 0.08; RAE: ICC = 0.974, SEM = 0.12; VAE: ICC = 0.973, SEM = 0.07). Inter-tester reliability was also excellent for all the proprioceptive errors (AAE: ICC = 0.967, SEM = 0.04; RAE: ICC = 0.974, SEM = 0.03; VAE: ICC = 0.939, SEM = 0.08). Similar results were obtained for intra-tester reliability (AAE: ICC = 0.861, SEM = 0.1; RAE: ICC = 0.894, SEM = 0.1; VAE: ICC = 0.700, SEM = 0.2). The digital inclinometer is a valid and reliable method to assess the knee JPS in OKC. Sport professionals may evaluate the knee JPS to monitor its deterioration during training or improvements throughout the rehabilitation process.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1992-01-01
Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.
Uçar, Yurdanur; Aysan Meriç, İpek; Ekren, Orhun
2018-02-11
To compare the fracture mechanics, microstructure, and elemental composition of lithography-based ceramic manufacturing with pressing and CAD/CAM. Disc-shaped specimens (16 mm diameter, 1.2 mm thick) were used for mechanical testing (n = 10/group). Biaxial flexural strength of three groups (In-Ceram alumina [ICA], lithography-based alumina, ZirkonZahn) were determined using the "piston on 3-ball" technique as suggested in test Standard ISO-6872. Vickers hardness test was performed. Fracture toughness was calculated using fractography. Results were statistically analyzed using Kruskal-Wallis test followed by Dunnett T3 (α = 0.05). Weibull analysis was conducted. Polished and fracture surface characterization was made using scanning electron microscope (SEM). Energy dispersive spectroscopy (EDS) was used for elemental analysis. Biaxial flexural strength of ICA, LCM alumina (LCMA), and ZirkonZahn were 147 ± 43 MPa, 490 ± 44 MPa, and 709 ± 94 MPa, respectively, and were statistically different (P ≤ 0.05). The Vickers hardness number of ICA was 850 ± 41, whereas hardness values for LCMA and ZirkonZahn were 1581 ± 144 and 1249 ± 57, respectively, and were statistically different (P ≤ 0.05). A statistically significant difference was found between fracture toughness of ICA (2 ± 0.4 MPa⋅m 1/2 ), LCMA (6.5 ± 1.5 MPa⋅m 1/2 ), and ZirkonZahn (7.7 ± 1 MPa⋅m 1/2 ) (P ≤ 0.05). Weibull modulus was highest for LCMA (m = 11.43) followed by ZirkonZahn (m = 8.16) and ICA (m = 5.21). Unlike LCMA and ZirkonZahn groups, a homogeneous microstructure was not observed for ICA. EDS results supported the SEM images. Within the limitations of this in vitro study, it can be concluded that LCM seems to be a promising technique for final ceramic object manufacturing in dental applications. Both the manufacturing method and the material used should be improved. © 2018 by the American College of Prosthodontists.
Method for observation of deembedded sections of fish gonad by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Mao, Lian-Ju
2000-09-01
This article reports a method for examining the intracellular structure of fish gonads using a scanning electron microscope(SEM). The specimen preparation procedure is similar to that for transmission electron microscopy wherein samples cut into semi-thin sections are fixed and embedded in plastic. The embedment matrix was removed by solvents. Risen-free specimens could be observed by SEM. The morphology of matured sperms in the gonad was very clear, and the oocyte internal structures appeared in three-dimensional images. Spheroidal nucleoli and yolk vesicles and several bundles of filaments adhered on the nucleoli could be viewed by SEM for the first time.
Weber, Kathryn; Delben, Juliana; Bromage, Timothy G; Duarte, Simone
2014-01-01
The study compared images of mature Streptococcus mutans biofilms captured at increasing magnification to determine which microscopy method is most acceptable for imaging the biofilm topography and the extracellular polymeric substance (EPS). In vitro S. mutans biofilms were imaged using (1) scanning electron microscopy (SEM), which requires a dehydration process; (2) SEM and ruthenium red (SEM-RR), which has been shown to support the EPS of biofilms during the SEM dehydration; and (3) variable pressure scanning electron microscopy (VPSEM), which does not require the intensive dehydration process of SEM. The dehydration process and high chamber vacuum of both SEM techniques devastated the biofilm EPS, removed supporting structures, and caused cracking on the biofilm surface. The VPSEM offered the most comprehensive representation of the S. mutans biofilm morphology. VPSEM provides similar contrast and focus as the SEM, but the procedure is far less time-consuming, and the use of hazardous chemicals associated with SEM dehydration protocol is avoided with the VPSEM. The inaccurate representations of the biofilm EPS in SEM experimentation is a possible source of inaccurate data and impediments in the study of S. mutans biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Zorko, Milena; Jozinović, Barbara; Bele, Marjan; Hodnik, Nejc; Gaberšček, Miran
2014-05-01
A general method for tracking morphological surface changes on a nanometer scale with scanning electron microscopy (SEM) is introduced. We exemplify the usefulness of the method by showing consecutive SEM images of an identical location before and after the electrochemical and thermal treatments of platinum-based nanoparticles deposited on a high surface area carbon. Observations reveal an insight into platinum based catalyst degradation occurring during potential cycling treatment. The presence of chloride clearly increases the rate of degradation. At these conditions the dominant degradation mechanism seems to be the platinum dissolution with some subsequent redeposition on the top of the catalyst film. By contrast, at the temperature of 60°C, under potentiostatic conditions some carbon corrosion and particle aggregation was observed. Temperature treatment simulating the annealing step of the synthesis reveals sintering of small platinum based composite aggregates into uniform spherical particles. The method provides a direct proof of induced surface phenomena occurring on a chosen location without the usual statistical uncertainty in usual, random SEM observations across relatively large surface areas. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ajibade, Peter A.; Ejelonu, Benjamin C.
2013-09-01
Zn(II), Cd(II) and Hg(II) dithiocarbamate complexes have been synthesized and characterized by elemental analysis, thermogravimetric analysis, UV-Vis, FTIR, 1H- and 13C NMR spectroscopy. The complexes were thermolysed at 180 °C and used as single molecule precursors for the synthesis of HDA capped ZnS, CdS and HgS nanoparticles and polymethylmethacrylate (PMMA) nanocomposites. The optical and structural properties of the nanoparticles and nanocomposites were studied by UV-Vis, PL, XRD and SEM. The crystallites sizes of the nanoparticles varied between 3.03 and 23.45 nm. SEM and EDX analyses of the nanocomposites confirmed the presence of the nanoparticles in the polymer matrix.
Ronald E. Coleman
1977-01-01
SEMTAP (Serpentine End Match TApe Program) is an easy and inexpensive method of programing a numerically controlled router for the manufacture of SEM (Serpentine End Matching) joints. The SEMTAP computer program allows the user to issue commands that will accurately direct a numerically controlled router along any SEM path. The user need not be a computer programer to...
Katsen-Globa, Alisa; Puetz, Norbert; Gepp, Michael M; Neubauer, Julia C; Zimmermann, Heiko
2016-11-01
One of the often reported artefacts during cell preparation to scanning electron microscopy (SEM) is the shrinkage of cellular objects, that mostly occurs at a certain time-dependent stage of cell drying. Various methods of drying for SEM, such as critical point drying, freeze-drying, as well as hexamethyldisilazane (HMDS)-drying, were usually used. The latter becomes popular since it is a low cost and fast method. However, the correlation of drying duration and real shrinkage of objects was not investigated yet. In this paper, cell shrinkage at each stage of preparation for SEM was studied. We introduce a shrinkage coefficient using correlative light microscopy (LM) and SEM of the same human mesenchymal stem cells (hMSCs). The influence of HMDS-drying duration on the cell shrinkage is shown: the longer drying duration, the more shrinkage is observed. Furthermore, it was demonstrated that cell shrinkage is inversely proportional to cultivation time: the longer cultivation time, the more cell spreading area and the less cell shrinkage. Our results can be applicable for an exact SEM quantification of cell size and determination of cell spreading area in engineering of artificial cellular environments using biomaterials. SCANNING 38:625-633, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
3D reconstruction of SEM images by use of optical photogrammetry software.
Eulitz, Mona; Reiss, Gebhard
2015-08-01
Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. Copyright © 2015 Elsevier Inc. All rights reserved.
Applications of synchrotron x-ray diffraction topography to fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilello, J.C.
1983-01-01
Fractographs have been taken using a variety of probes each of which produces different types of information. Methods which have been used to examine fracture surfaces include: (a) optical microscopy, particularly interference contrast methods, (b) scanning electron microscopy (SEM), (c) SEM with electron channelling, (d) SEM with selected-area electron channelling, (e) Berg-Barrett (B-B) topography, and now (f) synchrotron x-radiation fractography (SXRF). This review concentrated on the role that x-ray methods can play in such studies. In particular, the ability to nondestructively assess the subsurface microstructure associated with the fracture to depths of the order of 5 to 10 ..mu..m becomesmore » an important attribute for observations of a large class of semi-brittle metals, semiconductors and ceramics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahtrus, Mikk; Šutka, Andris; Institute of Silicate Materials, Riga Technical University, P. Valdena 3/7, Riga LV-1048
2015-02-15
In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. •more » Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.« less
Diagenesis of fossil coral skeletons: Correlation between trace elements, textures, and 234U /238U
NASA Astrophysics Data System (ADS)
Bar-Matthews, M.; Wasserburg, G. J.; Chen, J. H.
1993-01-01
A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographie and trace element analyses on a suite of Pleistocene samples that had previously been studied for 234U, 230Th, and U- 230Th ages ( CHEN et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). The normal texture exhibited by modern corals under OM consists of fine needles of aragonite forming a radial-fibrous pattern around a central dark line (center of calcification). This pattern can also be seen in many fossil corals. In most cases, the central dark line partially disappears during diagenesis, the radialfibrous pattern is obscured, and there is a distinct coarsening of the radial fabric of aragonite to unoriented platy or equant aragonite crystals. SEM images show diagenetic textures ranging from dense structureless images of the coralline matrix, with sharp boundaries at the septa walls, to the development of (1) a patchy distribution of dissolution micropores partially filled with aragonite fibers in the matrix, (2)aragonite needles coming from selvages in the septa walls which radiate into the septa voids. Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles are highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial δ 234U, are generally correlated ( CHEN et al., 1991). As all these diagenetic changes involve the recrystallization and deposition of aragonite, we infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the 234U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U- 230Th dating. The basic problem of identifying a priori unaltered coral skeletons for 230Th dating is not yet resolved.
NASA Astrophysics Data System (ADS)
Naseem, Swaleha; Ali, S. Asad; Khan, Wasi; Khan, Shakeel
2018-05-01
Ca substituted LaFeO3 orthoferrite nanostructure perovskite has been synthesized by gel combustion method using citric acid as a fuel. The structural and optical properties were investigated by various tools. The structural analysis through Rietveld refinement of the XRD data revealed single phase of orthorhombic structure in R-3c space group of the sample without presence of any other impurity phase. Scanning electron microscopy (SEM) image exhibits non-uniform distribution of the nanoparticles in agglomerated form. The purity of the sample and stoichiometric ratio of the elements were established through energy dispersive x-ray spectroscopy (EDS). FTIR spectroscopy measurement predicts the presence of various band relation of the chemical species of Ca with LaFeO3. Optical properties were explored through UV-visible absorption spectroscopy that showed absorption edge at 347 nm and energy band gap was estimated as 3.47eV using Tauc's relation.
NASA Astrophysics Data System (ADS)
Sathiyaraj, Ethiraj; Padmavathy, Krishnaraj; Kumar, Chandran Udhaya; Krishnan, Kannan Gokula; Ramalingan, Chennan
2017-11-01
Bis(N-cyclopropyl-N-4-chlorobenzyldithiocarbamato-S,S‧)cadmium(II) (1) and (2,2‧-bipyridine) bis(N-cyclopropyl-N-4-chlorobenzyldithiocarbamato-S,S‧)cadmium(II) (2) have been synthesized and characterized by FT-IR, 1HNMR and 13C NMR analyses. For the complex 2, single crystal X-ray diffraction analysis and computational studies (optimized geometry, HOMO-LUMO and MEP) have been executed employing DFT/B3LYP method with LANL 2DZ basic set. The optimized bond lengths and bond angles agree well with the experimental results. The complexes 1 and 2 have been used as single source precursors for the synthesis of ethyleneglycol capped CdS1 and CdS2 nanoparticles, respectively. CdS1 and CdS2 nanoparticles have been synthesized by solvothermal method. PXRD, SEM, Elemental colour mapping, EDAX, TEM and UV-Vis spectroscopy have been used to characterize the as-prepared CdS nanoparticles. The X-ray diffraction pattern confirms both their hexagonal structures.
NASA Astrophysics Data System (ADS)
Dejene, F. B.; Onani, M. O.; Koao, L. F.; Wako, A. H.; Motloung, S. V.; Yihunie, M. T.
2016-01-01
The undoped and Mn-doped ZnO(1-x)Sx nano-powders were successfully synthesized by precipitation method without using any capping agent. Its structure, morphology, elemental analysis, optical and luminescence properties were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy (UV) and photoluminescence spectroscopy (PL). A typical SEM image of the un-doped ZnO(1-x)Sx nanoparticles exhibit flake like structures that changes to nearly spherical particles with Mn-doping. The XRD of undoped and Mn doped ZnO(1-x)Sx pattern reveals the formation of a product indexed to the hexagonal wurtzite phase of ZnS. The nanopowders have crystallite sizes estimated from XRD measurements were in the range of 10-20 nm. All the samples showed absorption maximum of ZnO(1-x)Sx at 271 nm and high transmittance in UV and visible region, respectively. The undoped ZnO(1-x)Sx nanoparticles show strong room-temperature photoluminescence with four emission bands centering at 338 nm, 384 nm, 448 nm and 705 nm that may originate to the impurity of ZnO(1-x)Sx, existence of oxide related defects. The calculated bandgap of the nanocrystalline ZnO(1-x)Sx showed a blue-shift with respect to the Mn-doping. The PL spectra of the Mn-doped samples exhibit a strong orange emission at around 594 nm attributed to the 4T1-6A1 transition of the Mn2+ ions.
Crystal growth and characterization of bulk Sb2Te3 topological insulator
NASA Astrophysics Data System (ADS)
Sultana, Rabia; Gurjar, Ganesh; Patnaik, S.; Awana, V. P. S.
2018-04-01
The Sb2Te3 crystals are grown using the conventional self flux method via solid state reaction route, by melting constituent elements (Sb and Te) at high temperature (850 °C), followed by slow cooling (2 °C/h). As grown Sb2Te3 crystals are analysed for various physical properties by x-ray diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) coupled with Energy Dispersive x-ray Spectroscopy (EDAX) and electrical measurements under magnetic field (6 Tesla) down to low temperature (2.5 K). The XRD pattern revealed the growth of synthesized Sb2Te3 sample along (00l) plane, whereas the SEM along with EDAX measurements displayed the layered structure with near stoichiometric composition, without foreign contamination. The Raman scattering studies displayed known ({{{{A}}}1{{g}}}1, {{{{E}}}{{g}}}2 and {{{{A}}}1{{g}}}2) vibrational modes for the studied Sb2Te3. The temperature dependent electrical resistivity measurements illustrated the metallic nature of the as grown Sb2Te3 single crystal. Further, the magneto—transport studies represented linear positive magneto-resistance (MR) reaching up to 80% at 2.5 K under an applied field of 6 Tesla. The weak anti localization (WAL) related low field (±2 Tesla) magneto-conductance at low temperatures (2.5 K and 20 K) has been analysed and discussed using the Hikami—Larkin—Nagaoka (HLN) model. Summarily, the short letter reports an easy and versatile method for crystal growth of bulk Sb2Te3 topological insulator (TI) and its brief physical property characterization.
NASA Astrophysics Data System (ADS)
Parsaee, Zohreh
2017-10-01
Novel asymmetric (N4) Schiff bases (Ln, n = 1-3) and their nanosized cadmium complexes derived of 4,4'-(pentylazanediyl) dibenzaldehyde and aminobenzaldehyde are synthesized by sonochemical method and characterized based on physicochemical analysis including 1H NMR, 13C NMR, SEM, TGA, Mass, FT-IR, UV-Vis spectroscopy, elemental analysis, magnetic moment and molar conductance measurements. According to the analytic results of the NMR, UV-Vis and magnetic moment studies, it is found that the geometrical structures of these complexes [CdII2LnCl4], (L = C45H40N5X, X = CH3, Cl, OH) are square planer. The synthesized complexes were so effective as nanocatalyst on the oxidation of primary and secondary alcohols. The oxidation reactions were carried out in ethyl-methyl-imidazolium ionic liquid in presence of NaOCl. In addition Cd NPs were synthesized through the thermal decomposition of mentioned complexes and characterized by using FT-IR, SEM, TEM, EDX and XRD methods, which indicated close accordance to the standard pattern of CdO nanoparticles and an acceptable size at the nanorange (22-27 nm). Furthermore geometrical optimization of the Cd2LnCl4 calculated using DFT/B3LYP with LanL2DZ/6-311+G (d,p) level. The electronic parameter including HOMO-LUMO orbitals, bond gap, chemical hardness-softness, electronegativity, electrophilicity, NMR chemical shifts and IR frequencies were calculated. The calculated NMR shifts and vibrational frequencies showed excellent agreement with experimental data.
NASA Astrophysics Data System (ADS)
Kusmariya, Brajendra S.; Mishra, A. P.
2017-02-01
We report here four mononuclear Co(II), Ni(II), Cu(II) and Zn(II) coordination compounds of general formula [M(L)2] {L = dcp; M = CoII, CuII & ZnII} and [M(L)(H2O)]·H2O {L = dcp; M = NiII} derived from tridentate 2,4-dichloro-6-{[(3-chloro-2-hydroxy-5-nitrophenyl)imino]methyl}phenol (dcp) ligand. These compounds were synthesized and characterized by elemental analysis, FT-IR, uv-vis, 1H NMR, molar conductance, magnetic moment, thermal, PXRD and SEM-EDX. The Powder X-ray Diffraction patterns and SEM analyses showed the crystalline nature of synthesized compounds. The peak broadening was explained in terms of crystallite size and the lattice strain using Scherrer and Williamson-Hall method. Thermogravimetric analysis was performed to determine the thermal stability of synthesized compounds under nitrogen atmosphere up to 820 K at 10 Kmin-1 heating rate. The kinetic and thermodynamic parameters of thermal decomposition were calculated using Coats-Redfern (C-R), Piloyan-Novikova (P-N) and Horowitz-Metzger (H-M) methods assuming first order degradation. The calculated optical band gap values of complexes were found to be in semiconducting range. To support the experimental findings, and derive some fruitful information viz. frequency calculations, HOMO-LUMO, energy gap (ΔE), molecular electrostatic potential (MEP), spin density, absorption spectra etc.; theoretical calculations by means of DFT and TD-DFT at B3LYP level were incorporated.
Volume determination of irregularly-shaped quasi-spherical nanoparticles.
Attota, Ravi Kiran; Liu, Eileen Cherry
2016-11-01
Nanoparticles (NPs) are widely used in diverse application areas, such as medicine, engineering, and cosmetics. The size (or volume) of NPs is one of the most important parameters for their successful application. It is relatively straightforward to determine the volume of regular NPs such as spheres and cubes from a one-dimensional or two-dimensional measurement. However, due to the three-dimensional nature of NPs, it is challenging to determine the proper physical size of many types of regularly and irregularly-shaped quasi-spherical NPs at high-throughput using a single tool. Here, we present a relatively simple method that determines a better volume estimate of NPs by combining measurements from their top-down projection areas and peak heights using two tools. The proposed method is significantly faster and more economical than the electron tomography method. We demonstrate the improved accuracy of the combined method over scanning electron microscopy (SEM) or atomic force microscopy (AFM) alone by using modeling, simulations, and measurements. This study also exposes the existence of inherent measurement biases for both SEM and AFM, which usually produce larger measured diameters with SEM than with AFM. However, in some cases SEM measured diameters appear to have less error compared to AFM measured diameters, especially for widely used IS-NPs such as of gold, and silver. The method provides a much needed, proper high-throughput volumetric measurement method useful for many applications. Graphical Abstract The combined method for volume determination of irregularly-shaped quasi-spherical nanoparticles.
Seismic tomography of the southern California crust based on spectral-element and adjoint methods
NASA Astrophysics Data System (ADS)
Tape, Carl; Liu, Qinya; Maggi, Alessia; Tromp, Jeroen
2010-01-01
We iteratively improve a 3-D tomographic model of the southern California crust using numerical simulations of seismic wave propagation based on a spectral-element method (SEM) in combination with an adjoint method. The initial 3-D model is provided by the Southern California Earthquake Center. The data set comprises three-component seismic waveforms (i.e. both body and surface waves), filtered over the period range 2-30 s, from 143 local earthquakes recorded by a network of 203 stations. Time windows for measurements are automatically selected by the FLEXWIN algorithm. The misfit function in the tomographic inversion is based on frequency-dependent multitaper traveltime differences. The gradient of the misfit function and related finite-frequency sensitivity kernels for each earthquake are computed using an adjoint technique. The kernels are combined using a source subspace projection method to compute a model update at each iteration of a gradient-based minimization algorithm. The inversion involved 16 iterations, which required 6800 wavefield simulations. The new crustal model, m16, is described in terms of independent shear (VS) and bulk-sound (VB) wave speed variations. It exhibits strong heterogeneity, including local changes of +/-30 per cent with respect to the initial 3-D model. The model reveals several features that relate to geological observations, such as sedimentary basins, exhumed batholiths, and contrasting lithologies across faults. The quality of the new model is validated by quantifying waveform misfits of full-length seismograms from 91 earthquakes that were not used in the tomographic inversion. The new model provides more accurate synthetic seismograms that will benefit seismic hazard assessment.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Detection of Fingerprints Based on Elemental Composition Using Micro-X-Ray Fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, C. G.; Wiltshire, S.; Miller, T. C.
A method was developed to detect fingerprints using a technique known as micro-X-ray fluorescence. The traditional method of detecting fingerprints involves treating the sample with certain powders, liquids, or vapors to add color to the fingerprint so that it can be easily seen and photographed for forensic purposes. This is known as contrast enhancement, and a multitude of chemical processing methods have been developed in the past century to render fingerprints visible. However, fingerprints present on certain substances such as fibrous papers and textiles, wood, leather, plastic, adhesives, and human skin can sometimes be difficult to detect by contrast enhancement.more » Children's fingerprints are also difficult to detect due to the absence of sebum on their skin, and detection of prints left on certain colored backgrounds can sometimes be problematic. Micro-X-ray fluorescence (MXRF) was studied here as a method to detect fingerprints based on chemical elements present in fingerprint residue. For example, salts such as sodium chloride and potassium chloride excreted in sweat are sometimes present in detectable quantities in fingerprints. We demonstrated that MXRF can be used to detect this sodium, potassium, and chlorine from such salts. Furthermore, using MXRF, each of these elements (and many other elements if present) can be detected as a function of location on a surface, so we were able to 'see' a fingerprint because these salts are deposited mainly along the patterns present in a fingerprint (traditionally called friction ridges in forensic science). MXRF is not a panacea for detecting all fingerprints; some prints will not contain enough detectable material to be 'seen'; however, determining an effective means of coloring a fingerprint with traditional contrast enhancement methods can sometimes be an arduous process with limited success. Thus, MXRF offers a possible alternative for detecting fingerprints, and it does not require any additional chemical treatment steps which can be time consuming and permanently alter the sample. Additionally, MXRF is noninvasive, so a fingerprint analyzed by this method is left pristine for examination by other methods (eg. DNA extraction). To the best of the author's knowledge, no studies have been published to date concerning the detection of fingerprints by micro-X-ray fluorescence. Some studies have been published in which other spectroscopic methods were employed to examine the chemical composition of fingerprints (eg. IR, SEM/EDX, and Auger), but very few papers discuss the actual detection and imaging of a complete fingerprint by any spectroscopic method. Thus, this work is unique.« less
Barr, Anna Louise; Knight, Louise; Franҫa-Junior, Ivan; Allen, Elizabeth; Naker, Dipak; Devries, Karen M
2017-02-23
Underreporting of childhood sexual abuse is a major barrier to obtaining reliable prevalence estimates. We tested the sensitivity and specificity of the face-to-face-interview (FTFI) method by comparing the number of disclosures of forced sex against a more confidential mode of data collection, the sealed-envelope method (SEM). We also report on characteristics of individuals associated with non-disclosure in FTFIs. Secondary analysis of data from a cross-sectional survey conducted in 2014, with n = 3843 children attending primary school in Luwero District, Uganda. Sensitivity and specificity were calculated, and mixed effects logistic regression models tested factors associated with disclosure in one or both modes. In the FTFI, 1.1% (n = 42) of children reported ever experiencing forced sex, compared to 7.0% (n = 268) in the SEM. The FTFI method demonstrated low sensitivity (13.1%, 95%CI 9.3-17.7%) and high specificity (99.8%, 95%CI 99.6-99.9%) in detecting cases of forced sex, when compared to the SEM. Boys were less likely than girls to disclose in the FTFI, however there was no difference in prevalence by sex using the SEM (aOR = 0.91, 95%CI 0.7-1.2; P = 0.532). Disclosing experience of other forms of sexual violence was associated with experience of forced sex for both modes of disclosure. The SEM method was superior to FTFIs in identifying cases of forced sex amongst primary school children, particularly for boys. Reporting of other forms of sexual violence in FTFIs may indicate experience of forced sex. Future survey research, and efforts to estimate prevalence of sexual violence, should make use of more confidential disclosure methods to detect childhood sexual abuse.
Wacker, Irene U.; Veith, Lisa; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R.
2018-01-01
Targeting specific cells at ultrastructural resolution within a mixed cell population or a tissue can be achieved by hierarchical imaging using a combination of light and electron microscopy. Samples embedded in resin are sectioned into arrays consisting of ribbons of hundreds of ultrathin sections and deposited on pieces of silicon wafer or conductively coated coverslips. Arrays are imaged at low resolution using a digital consumer like smartphone camera or light microscope (LM) for a rapid large area overview, or a wide field fluorescence microscope (fluorescence light microscopy (FLM)) after labeling with fluorophores. After post-staining with heavy metals, arrays are imaged in a scanning electron microscope (SEM). Selection of targets is possible from 3D reconstructions generated by FLM or from 3D reconstructions made from the SEM image stacks at intermediate resolution if no fluorescent markers are available. For ultrastructural analysis, selected targets are finally recorded in the SEM at high-resolution (a few nanometer image pixels). A ribbon-handling tool that can be retrofitted to any ultramicrotome is demonstrated. It helps with array production and substrate removal from the sectioning knife boat. A software platform that allows automated imaging of arrays in the SEM is discussed. Compared to other methods generating large volume EM data, such as serial block-face SEM (SBF-SEM) or focused ion beam SEM (FIB-SEM), this approach has two major advantages: (1) The resin-embedded sample is conserved, albeit in a sliced-up version. It can be stained in different ways and imaged with different resolutions. (2) As the sections can be post-stained, it is not necessary to use samples strongly block-stained with heavy metals to introduce contrast for SEM imaging or render the tissue blocks conductive. This makes the method applicable to a wide variety of materials and biological questions. Particularly prefixed materials e.g., from biopsy banks and pathology labs, can directly be embedded and reconstructed in 3D. PMID:29630046
Field Emission Auger Electron Spectroscopy with Scanning Auger Microscopy |
0.5 at.% for elements from lithium to uranium. Depth Profiling Removes successive layers by using size (> ~25 nm). Imaging Obtains SEM micrographs with up to 20,000x magnification by using raster scanning with a highly focused electron beam â¥25 nm in diameter. Using the same raster scan, SAM can
Molecules with polymerizable ligands as precursors to porous doped materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubert-Pfalzgraf, L.G.; Pajot, N.; Papiernik, R.
1996-12-31
Titanium and aluminum alkoxide derivatives with polymerizable ligands such as 2-(methacryloyloxy)ethylacetoacetate (HAAEMA), oleic acid and geraniol (HOGE) have been obtained. The various compounds have been characterized by FT-IR and NMR {sup 1}H. Copolymerization with styrene and divinylbenzene affords porous doped organic materials which have been characterized by scanning electron microscopy (SEM), elemental analysis, density measurements.
Characterization of airborne particles in an open pit mining region.
Huertas, José I; Huertas, María E; Solís, Dora A
2012-04-15
We characterized airborne particle samples collected from 15 stations in operation since 2007 in one of the world's largest opencast coal mining regions. Using gravimetric, scanning electron microscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) analysis the samples were characterized in terms of concentration, morphology, particle size distribution (PSD), and elemental composition. All of the total suspended particulate (TSP) samples exhibited a log-normal PSD with a mean of d=5.46 ± 0.32 μm and σ(ln d)=0.61 ± 0.03. Similarly, all particles with an equivalent aerodynamic diameter less than 10 μm (PM(10)) exhibited a log-normal type distribution with a mean of d=3.6 ± 0.38 μm and σ(ln d)=0.55 ± 0.03. XPS analysis indicated that the main elements present in the particles were carbon, oxygen, potassium, and silicon with average mass concentrations of 41.5%, 34.7%, 11.6%, and 5.7% respectively. In SEM micrographs the particles appeared smooth-surfaced and irregular in shape, and tended to agglomerate. The particles were typically clay minerals, including limestone, calcite, quartz, and potassium feldspar. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mehta, Yashwant; Chaudhari, Gajanan P.; Dabhade, Vikram V.
2018-03-01
The corrosion behaviour of high phosphorous steels containing varying amounts of silicon and nitrogen was studied by potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements. The morphology of a steel specimen tested in chloride containing concrete pore solution was studied using scanning electron microscope (SEM) and the elemental distribution at the pitting corrosion area was investigated using electron dispersive spectroscopy (EDS). The results showed that the capacitance increased and resistance declined with immersion time in Ca(OH)2 solution containing 0.1% chloride for plain carbon steel. The opposite was observed in the case of the high phosphorous steels. The potentiodynamic polarization and LPR results complement the EIS findings. Corrosion behaviour could be described with an equivalent circuit having two time constants. The creation, expansion and degradation of the passive layer were discussed with the help of the equivalent circuit elements. The SEM-EDS studies revealed that MnS inclusions at the surface could have a role in the initiation and growth of pits and that phosphorous was present at the pit free surface of the steel.
NASA Astrophysics Data System (ADS)
Ramezani, Amir Hoshang; Habibi, Maryam; Ghoranneviss, Mahmood
2014-08-01
In this research, for the first time, we synthesize magnesium nitride thin films on 304-type stainless steel substrates using a Mather-type (2 kJ) plasma focus (PF) device. The films of magnesium nitride are coated with different number of focus shots (like 15, 25 and 35) at a distance of 8 cm from the anode tip and at 0° angular position with respect to the anode axis. For investigation of the structural properties and surface morphology of magnesium nitride films, we utilized the X-ray diffractometer (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis, respectively. Also, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. Furthermore, Vicker's microhardness is used to study the mechanical properties of the deposited films. The results show that the degree of crystallinity of deposited thin films (from XRD), the average size of particles and surface roughness (from AFM), crystalline growth of structures (from SEM) and the hardness values of the films depend on the number of focus shots. The EDX analysis demonstrates the existence of the elemental composition of magnesium in the deposited samples.
Using digital colour to increase the realistic appearance of SEM micrographs of bloodstains.
Hortolà, Policarp
2010-10-01
Although in the scientific-research literature the micrographs from scanning electron microscopes (SEMs) are usually displayed in greyscale, the potential of colour resources provided by the SEM-coupled image-acquiring systems and, subsidiarily, by image-manipulation free softwares deserves be explored as a tool for colouring SEM micrographs of bloodstains. After acquiring greyscale SEM micrographs of a (dark red to the naked eye) human blood smear on grey chert, they were manually obtained in red tone using both the SEM-coupled image-acquiring system and an image-manipulation free software, as well as they were automatically generated in thermal tone using the SEM-coupled system. Red images obtained by the SEM-coupled system demonstrated lower visual-discrimination capability than the other coloured images, whereas those in red generated by the free software rendered better magnitude of scopic information than the red images generated by the SEM-coupled system. Thermal-tone images, although were further from the real sample colour than the red ones, not only increased their realistic appearance over the greyscale images, but also yielded the best visual-discrimination capability among all the coloured SEM micrographs, and fairly enhanced the relief effect of the SEM micrographs over both the greyscale and the red images. The application of digital colour by means of the facilities provided by an SEM-coupled image-acquiring system or, when required, by an image-manipulation free software provides a user-friendly, quick and inexpensive way of obtaining coloured SEM micrographs of bloodstains, avoiding to do sophisticated, time-consuming colouring procedures. Although this work was focused on bloodstains, well probably other monochromatic or quasi-monochromatic samples are also susceptible of increasing their realistic appearance by colouring them using the simple methods utilized in this study.
Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato
2013-04-01
Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface.
First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument.
Lingham-Soliar, Theagarten; Wesley-Smith, James
2008-10-07
The ultrastructure of dermal fibres of a 200Myr thunniform ichthyosaur, Ichthyosaurus, specifically the 67nm axial repeat D-banding of the fibrils, which characterizes collagen, is presented for the first time by means of scanning electron microscopy (SEM) analysis. The fragment of material investigated is part of previously described fossilized skin comprising an architecture of layers of oppositely oriented fibre bundles. The wider implication, as indicated by the extraordinary quality of preservation, is the robustness of the collagen molecule at the ultrastructural level, which presumably contributed to its survival during the initial processes of decomposition prior to mineralization. Investigation of the elemental composition of the sample by SEM-energy dispersive X-ray spectroscopy indicates that calcite and phosphate played important roles in the rapid mineralization and fine replication of the collagen fibres and fibrils. The exceedingly small sample used in the investigation and high level of information achieved indicate the potential for minimal damage to prized museum specimens; for example, ultrastructural investigations by SEM may be used to help resolve highly contentious questions, for example, 'protofeathers' in the Chinese dinosaurs.
Tawse-Smith, A; Atieh, M A; Tompkins, G; Duncan, W J; Reid, M R; Stirling, C H
2016-08-01
To evaluate in vitro topographical and composition changes by piezoelectric ultrasonic instrumentation with metallic and plastic tips on machined and moderately roughened titanium surfaces. Twenty machined and moderately roughened laser-marked titanium discs were ultrasonically instrumented with metallic and plastic tips. Surface instrumentation was carried out with controlled pressure for 20 and 30 seconds at two power settings. For each time and power setting, instrumentation was repeated four times with one instrumentation per disc quadrant. Surface topography analysis was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface roughness measurements were compared between instrumented and non-instrumented surfaces. Surface element composition and rinsing solutions were evaluated using energy-dispersive spectroscopy (EDS) and trace elemental analysis using inductively coupled plasma mass spectrometry (ICPMS), respectively. SEM photomicrographs and CLSM 3D surface plot images of instrumented machined and moderately roughened surfaces demonstrated severe surface topographical alterations with metallic tips and mild to moderate changes for plastic tip instrumented sites. ICPMS analysis of the rinsing solutions identified titanium and other metal traces with the use of metallic tips, and mainly titanium and carbon when plastic tips were used. Surface EDS analysis showed elemental traces of the ultrasonic tips. Ultrasonic instrumentation with metallic or plastic tips created surface topographical and compositional changes. Different changes in surface topography were noted between the surfaces, as the roughness of the machined surfaces increased while the extent of roughness of the moderately roughened surfaces decreased. The clinical relevance of these changes is yet to be determined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Characterization of Pu-238 heat source granule containment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson Ii, P D; Thronas, D L; Romero, J P
2008-01-01
The Milliwatt Radioisotopic Thermoelectric Generator (RTG) provides power for permissive-action links. These nuclear batteries convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of {sup 238}Pu, in the form of {sup 238}PuO{sub 2} granules. The granules are contained in 3 layers of encapsulation. A thin T-111 liner surrounds the {sup 238}PuO{sub 2} granules and protects the second layer (strength member) from exposure to the fuel granules. The T-111 strength member contains the fuel under impact condition. An outer clad of Hastelloy-C protects the T-111 from oxygen embrittlement. Themore » T-111 strength member is considered the critical component in this {sup 238}PuO{sub 2} containment system. Any compromise in the strength member is something that needs to be characterized. Consequently, the T-111 strength member is characterized upon it's decommissioning through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of photomicrographs. SEM may further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray Spectroscopy (EDS). This paper describes the characterization of the metallurgical condition of decommissioned RTG heat sources.« less
Synthesis and physicochemical characterizations and antimicrobial activity of ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Sharma, Bhumika K.; Patel, Kinjal; Roy, Debesh R.
2018-05-01
Nanoparticles exhibit very interesting and useful physicochemical properties when they interact with substrates and goes through some physicochemical and/or biological processes. ZnO is known to be a highly demanding nanomaterial due to its discreet properties, shapes and sizes. A detail experimental study on the synthesis, characterization and antibacterial activity of ZnO nanoparticles (NPs) is performed. ZnO NPs are synthesized using chemical precipitation method. The understanding of crystal structure, morphology and elemental compositions are explained using Powder X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) respectively. Fourier transform infrared spectroscopy (FTIR) is performed to achieve the information on the presence of various functional groups. The antibacterial activity of these ZnO NPs is investigated in terms of Zone of Inhibition (ZOI) against Escherichia coli (Gram negative) microorganisms.
A combined electrocoagulation-sorption process applied to mixed industrial wastewater.
Linares-Hernández, Ivonne; Barrera-Díaz, Carlos; Roa-Morales, Gabriela; Bilyeu, Bryan; Ureña-Núñez, Fernando
2007-06-01
The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 Am(-2) current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD(5)) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS).
NASA Astrophysics Data System (ADS)
Jiang, Ziyuan; Pan, Jiaqi; Wang, Beibei; Li, Chaorong
2018-04-01
The two dimensional(2D) Z-scheme AgCl/Ag/Ca/TiO3 nano-heterojunction is synthesized via simple preparation of hydrothermal-chemical co-deposition method. The results of SEM, EDS, elemental mapping, XRD, TEM, XPS and Raman shift imply that the AgCl/Ag nanoparticles have deposited on the surfaces of CaTiO3 nanosheets successfully. Compared with the unmodified samples, the photocatalytic activity of the as-prepared 2D AgCl/Ag/CaTiO3 nano-heterojunction exhibits a remarkable enhancement by the hydrogen production. Further, the photocatalytic process has been studied and the mechanism of the photocatalytic hydrogen production enhancement has been provided, which could be ascribed to the Z-scheme heterojunction and 2D lamellar structure of the CaTiO3.
NASA Astrophysics Data System (ADS)
Liu, Qifa; Wang, Wei
2018-01-01
Gallium Nitride (GaN) free-standing planar photonic device at telecommunication wavelength based on GaN-on-silicon platform was presented. The free-standing structure was realized by particular double-side fabrication process, which combining GaN front patterning, Si substrate back releasing and GaN slab etching. The actual device parameters were identified via the physical characterizations employing scanning electron microscope (SEM), atomic force microscope (AFM) and reflectance spectra testing. High coupling efficiency and good light confinement properties of the gratings and rib waveguide at telecommunication wavelength range were verified by finite element method (FEM) simulation. This work illustrates the potential of new GaN photonic structure which will enable new functions for planar photonics in communication and sensing applications, and is favorable for the realization of integrated optical circuit.
3D-profile measurement of advanced semiconductor features by using FIB as reference metrology
NASA Astrophysics Data System (ADS)
Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami
2017-03-01
A novel method of sub-nanometer uncertainty for the 3D-profile measurement and LWR (Line Width Roughness) measurement by using FIB (Focused Ion Beam) processing, and TEM (Transmission Electron Microscope) and CD-SEM (Critical Dimension Scanning Electron Microscope) images measurement is proposed to standardize 3D-profile measurement through reference metrology. In this article, we apply the methodology to line profile measurements and roughness measurement of advanced FinFET (Fin-shaped Field-Effect Transistor) features. The FinFET features are horizontally sliced as a thin specimen by FIB micro sampling system. Horizontally images of the specimens are obtained then by a planar TEM. LWR is calculated from the edges positions on TEM images. Moreover, we already have demonstrated the novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB slope cut and CD-SEM measuring. Using the method, a few micrometers wide on a wafer is coated and cut by 45-degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We applied FIB-to-CDSEM method to a CMOS image sensor feature. The 45-degree slope cut surface is observed using AFM. The surface profile of slope cut surface and line profiles are analyzed for improving the accuracy of FIB-to-CDSEM method.
NASA Astrophysics Data System (ADS)
Pirveysian, Mahtab; Ghiaci, Mehran
2018-01-01
A very simple, one pot method was used for preparation of sulfur functionalized graphene oxide (GO-SOxR) with sodium sulfide and water in reflux condition. The elemental analysis data showed high sulfur content up to 15%. EDS and XPS analysis also proved introduction of sulfur element. To make the sorbent more efficient operationally, the GO-SOxR was coated with a mesoporous shell of TiO2 or SiO2. The prepared sorbents were characterized by SEM, TEM, TGA, XPS, XRD, IR and EDS. GO-SOxR@TiO2 and GO-SOxR@SiO2 composites were tested for removal of Pb(II), Cd(II), Ni(II) and Zn(II) as heavy metal ions from aqueous solution in batch method. Adsorption of the heavy metal ions was studied kinetically, and the adsorption capacities of GO-SOxR, GO-SOxR@TiO2, and GO-SOxR@SiO2 were evaluated using equilibrium adsorption isotherms, and compared to other adsorbents used for removal of these heavy metals. Kinetic studies showed that the experimental data was fitted with pseudo second order model. The adsorption capacity of GO was significantly improved by sulfur functionalization and TiO2 coating.
Tunable microwave absorbing nano-material for X-band applications
NASA Astrophysics Data System (ADS)
Sadiq, Imran; Naseem, Shahzad; Ashiq, Muhammad Naeem; Khan, M. A.; Niaz, Shanawer; Rana, M. U.
2016-03-01
The effect of rare earth elements substitution in Sr1.96RE0.04Co2Fe27.80Mn0.2O46 (RE=Ce, Gd, Nd, La and Sm) X-type hexagonal ferrites prepared by using sol gel autocombustion method was studied. The XRD and FTIR analysis show the single phase of the prepared material. The lattice constants a (Å) and c (Å) varies with the additives. The particle size measured by Scherer formula for all the samples varies in the range of 54-100 nm and confirmed by the TEM analysis. The average grain size measured by SEM analysis lies in the range of 0.672-1.01 μm for all the samples. The Gd-substituted ferrite has higher value of coercivity (526.06 G) among all the samples which could be a good material for longitudinal recording media. The results also indicate that the Gd-substituted sample has maximum reflection loss of -25.2 dB at 11.878 GHz, can exhibit the best microwave absorption properties among all the substituted samples. Furthermore, the minimum value of reflection loss shifts towards the lower and higher frequencies with the substitution of rare earth elements which confirms that the microwave absorption properties can be tuned with the substitution of rare earth elements in pure ferrites. The peak value of attenuation constant at higher frequency agrees well the reflection loss data.
Suzuki, Kazuhiko; Oho, Eisaku
2013-01-01
Quality of a scanning electron microscopy (SEM) image is strongly influenced by noise. This is a fundamental drawback of the SEM instrument. Complex hysteresis smoothing (CHS) has been previously developed for noise removal of SEM images. This noise removal is performed by monitoring and processing properly the amplitude of the SEM signal. As it stands now, CHS may not be so utilized, though it has several advantages for SEM. For example, the resolution of image processed by CHS is basically equal to that of the original image. In order to find wide application of the CHS method in microscopy, the feature of CHS, which has not been so clarified until now is evaluated correctly. As the application of the result obtained by the feature evaluation, cursor width (CW), which is the sole processing parameter of CHS, is determined more properly using standard deviation of noise Nσ. In addition, disadvantage that CHS cannot remove the noise with excessively large amplitude is improved by a certain postprocessing. CHS is successfully applicable to SEM images with various noise amplitudes. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hoskin, HLD; Furie, E.; Collins, W.; Ganey, TM; Schlatterer, DR
2017-05-01
Since Sir John Charnley began his monumental hip arthroplasty work in 1958, clinical researchers have been incrementally improving longevity and functionality of total joint systems, although implant failure occurs on occasion. The purpose of this study is to report the fracture of the humeral tray Morse taper of a reverse total shoulder system (RTSS), which to date has not been reported with metallurgic analysis for any RTSS. There was no reported antecedent fall, motor vehicle collision, or other traumatic event prior to implant fracture in this case. Analysis was performed on the retrieved failed implant by Scanning Electron Microscopy (SEM) and Electron Dispersion Spectroscopy (EDS) in an attempt to determine the failure method, as well as to offer improvements for future implants. At the time of revision surgery all explants were retained from the left shoulder of a 61-year old male who underwent a non-complicated RTSS 4 years prior. The explants, particularly the cracked humeral tray, were processed as required for SEM and EDS. Analysis was performed on the failure sites in order to determine the chemical composition of the different parts of the implant, discover the chemical composition of the filler metal used during the electron beam welding process, and to detect any foreign elements that could suggest corrosion or other evidence of failure etiology. Gross visual inspection of all explants revealed that implant failure was a result of dissociation of the taper from the humeral tray at the weld, leaving the Morse taper embedded in the humeral stem while the tray floated freely in the patient’s shoulder. SEM further confirmed the jagged edges noted grossly at the weld fracture site, both suggesting failure due to torsional forces. EDS detected elevated levels of carbon and oxygen at the fracture site on the taper only and not on the humeral tray. In order to determine the origin of the high levels of C and O, it was considered that in titanium alloys, C and O are used as stabilizers that help raise the temperature at which titanium can be cast. Since the presence of stabilizers reduces ductility and fatigue strength, all interstitial elements are removed after casting. Considering this, the presence of C and O suggests that not all of the interstitials were removed during the manufacturing process, resulting in decreased fatigue strength. Further destructive analytical testing would verify weld quality and failure mode. RTSSs are quite successful in select patients not amenable to traditional shoulder arthroplasty options. This case report highlights how an implant may function well for several years and then suddenly fail without warning. SEM and EDS analysis suggest that residual C and O in the taper lowered the metal implant’s integrity, leading to torsional cracking at the weld junction of the humeral tray and the taper. The elevated levels of C and O measured at fracture sites on both the tray and the taper suggest poor quality filler metal or failure to remove all interstitial elements after casting. In both cases, the results would be decreased fatigue strength and overall toughness, leading to mechanical failure. A manufacturer’s recall of all implants soon followed the reporting of this implant failure; subsequently, the metal materials were changed from Ti6Al4V to both titanium alloy and cobalt-chrome alloy (Co-Cr-Mo). Time will tell if the alterations were sufficient.
Inoue, Tadahisa; Naitoh, Itaru; Okumura, Fumihiro; Ozeki, Takanori; Anbe, Kaiki; Iwasaki, Hiroyasu; Nishie, Hirotada; Mizushima, Takashi; Sano, Hitoshi; Nakazawa, Takahiro; Yoneda, Masashi; Joh, Takashi
2016-11-01
Endoscopic reintervention for stent occlusions following bilateral self-expandable metallic stent (SEMS) placement for malignant hilar biliary obstruction (MHBO) is challenging, and time to recurrent biliary obstruction (RBO) of the revisionary stent remains unclear. We aimed to clarify a suitable reintervention method for stent occlusions following bilateral SEMS placement for MHBO. Between 2002 and 2014, 52 consecutive patients with MHBO who underwent endoscopic reintervention for stent occlusion after bilateral SEMS placement were enrolled at two university hospitals and one tertiary care referral center. We retrospectively evaluated the technical and functional success rates of the reinterventions, and the time to RBO of the revisionary stents. Technical and functional success rates of the reinterventions were 92% (48/52) and 90% (43/48), respectively. Univariate analysis did not determine any significant predictive factors for technical and functional failures. Median time to RBO of the revisionary stents was 68 days. Median time to RBO was significantly longer for revisionary SEMS placement than for plastic stent placement (131 days vs 47 days, respectively; log-rank test, P = 0.005). Revisionary SEMS placement was the only independent factor that was significantly associated with a longer time to RBO of the revisionary stent in the multivariate Cox proportional hazards analysis (hazard ratio 0.37; 95% confidence interval 0.14-0.95; P = 0.039). Revisionary SEMS placement is a suitable endoscopic reintervention method for stent occlusion following bilateral SEMS placement from the perspective of time to RBO of the revisionary stent. © 2016 Japan Gastroenterological Endoscopy Society.
Kitamura, Hiroki; Sawada, Takaya; Shimaoka, Takayuki; Takahashi, Fumitake
2016-01-01
Leaching behaviors of heavy metals contained in municipal solid waste incineration (MSWI) fly ash have been studied well. However, micro-characteristics of MSWI fly ash particles are still uncertain and might be non-negligible to describe their leaching behaviors. Therefore, this study investigated micro-characteristics of MSWI fly ash particles, especially their structural properties and impacts of chelate treatment on surface characteristics. According to SEM observations, raw fly ash particles could be categorized into four types based on their shapes. Because chelate treatment changed the surface of fly ash particles dramatically owing to secondary mineral formations like ettringite, two more types could be categorized for chelate-treated fly ash particles. Acid extraction experiments suggest that fly ash particles, tested in this study, consist of Si-base insoluble core structure, Al/Ca/Si-base semi-soluble matrices inside the body, and KCl/NaCl-base soluble aggregates on the surface. Scanning electron microscope (SEM) observations of the same fly ash particles during twice moistening treatments showed that KCl/NaCl moved under wet condition and concentrated at different places on the particle surface. However, element mobility depended on secondary mineral formations. When insoluble mineral like gypsum was generated and covered the particle surface, it inhibited element transfer under wet condition. Surface characteristics including secondary mineral formation of MSWI fly ash particles are likely non-negligible to describe trace element leaching behaviors.
The in vitro effect of fluoridated milk in a bacterial biofilm--enamel model.
Arnold, Wolfgang H; Forer, Stefan; Heesen, Joerg; Yudovich, Keren; Steinberg, Doron; Gaengler, Peter
2006-07-01
The purpose of this study was to investigate the effect of milk and fluoridated milk on bacterially induced caries-like lesions. Extracted impacted human molars were cut in half and covered with a varnish leaving a 4*4 mm window. The samples were coated with biofilm of S. sobrinus and were further divided into three experimental groups of S. sobrinus, S. sobrinus and milk and S. sobrinus and fluoridated milk. As negative controls served teeth incubated in saline. Of twenty tooth halves serial ground sections were cut through the lesions and investigated with polarization light microscopy (PLM) and scanning electron microscopy (SEM) and EDX element analysis. The PLM photographs were used for 3D reconstruction, volumetric assessment and determination of the extension of the lesion zones. Of eight tooth halves the biofilm on the enamel surface was studied with SEM and EDX element analysis. Volumetric assessment showed a statistically significant difference in the volume of the body of the lesion and the translucent zone between the milk group and fluoridated milk group. Quantitative element analysis demonstrated significant differences between sound enamel and the superficial layer in the fluoridated milk group. The biofilm on the enamel surface showed an increased Ca content in the milk group and fluoridated milk group. Milk as a common nutrient seems to play a complex role in in-vitro biofilm--enamel interactions stimulating bacterial demineralization on one hand, and, as effective fluoride carrier, inhibits caries-like demineralization.
High resolution SEM imaging of gold nanoparticles in cells and tissues.
Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R
2014-12-01
The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high conductivity without application of surface coating and requires less time and a reduced use of toxic chemicals. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Evaluation of bone formation in calcium phosphate scaffolds with μCT-method validation using SEM.
Lewin, S; Barba, A; Persson, C; Franch, J; Ginebra, M-P; Öhman-Mägi, C
2017-10-05
There is a plethora of calcium phosphate (CaP) scaffolds used as synthetic substitutes to bone grafts. The scaffold performance is often evaluated from the quantity of bone formed within or in direct contact with the scaffold. Micro-computed tomography (μCT) allows three-dimensional evaluation of bone formation inside scaffolds. However, the almost identical x-ray attenuation of CaP and bone obtrude the separation of these phases in μCT images. Commonly, segmentation of bone in μCT images is based on gray scale intensity, with manually determined global thresholds. However, image analysis methods, and methods for manual thresholding in particular, lack standardization and may consequently suffer from subjectivity. The aim of the present study was to provide a methodological framework for addressing these issues. Bone formation in two types of CaP scaffold architectures (foamed and robocast), obtained from a larger animal study (a 12 week canine animal model) was evaluated by μCT. In addition, cross-sectional scanning electron microscopy (SEM) images were acquired as references to determine thresholds and to validate the result. μCT datasets were registered to the corresponding SEM reference. Global thresholds were then determined by quantitatively correlating the different area fractions in the μCT image, towards the area fractions in the corresponding SEM image. For comparison, area fractions were also quantified using global thresholds determined manually by two different approaches. In the validation the manually determined thresholds resulted in large average errors in area fraction (up to 17%), whereas for the evaluation using SEM references, the errors were estimated to be less than 3%. Furthermore, it was found that basing the thresholds on one single SEM reference gave lower errors than determining them manually. This study provides an objective, robust and less error prone method to determine global thresholds for the evaluation of bone formation in CaP scaffolds.
NASA Astrophysics Data System (ADS)
Wallow, Thomas I.; Zhang, Chen; Fumar-Pici, Anita; Chen, Jun; Laenens, Bart; Spence, Christopher A.; Rio, David; van Adrichem, Paul; Dillen, Harm; Wang, Jing; Yang, Peng-Cheng; Gillijns, Werner; Jaenen, Patrick; van Roey, Frieda; van de Kerkhove, Jeroen; Babin, Sergey
2017-03-01
In the course of assessing OPC compact modeling capabilities and future requirements, we chose to investigate the interface between CD-SEM metrology methods and OPC modeling in some detail. Two linked observations motivated our study: 1) OPC modeling is, in principle, agnostic of metrology methods and best practice implementation. 2) Metrology teams across the industry use a wide variety of equipment, hardware settings, and image/data analysis methods to generate the large volumes of CD-SEM measurement data that are required for OPC in advanced technology nodes. Initial analyses led to the conclusion that many independent best practice metrology choices based on systematic study as well as accumulated institutional knowledge and experience can be reasonably made. Furthermore, these choices can result in substantial variations in measurement of otherwise identical model calibration and verification patterns. We will describe several experimental 2D test cases (i.e., metal, via/cut layers) that examine how systematic changes in metrology practice impact both the metrology data itself and the resulting full chip compact model behavior. Assessment of specific methodology choices will include: • CD-SEM hardware configurations and settings: these may range from SEM beam conditions (voltage, current, etc.,) to magnification, to frame integration optimizations that balance signal-to-noise vs. resist damage. • Image and measurement optimization: these may include choice of smoothing filters for noise suppression, threshold settings, etc. • Pattern measurement methodologies: these may include sampling strategies, CD- and contour- based approaches, and various strategies to optimize the measurement of complex 2D shapes. In addition, we will present conceptual frameworks and experimental methods that allow practitioners of OPC metrology to assess impacts of metrology best practice choices on model behavior. Finally, we will also assess requirements posed by node scaling on OPC model accuracy, and evaluate potential consequences for CD-SEM metrology capabilities and practices.
Ajibade, Peter A; Ejelonu, Benjamin C
2013-09-01
Zn(II), Cd(II) and Hg(II) dithiocarbamate complexes have been synthesized and characterized by elemental analysis, thermogravimetric analysis, UV-Vis, FTIR, (1)H- and (13)C NMR spectroscopy. The complexes were thermolysed at 180 °C and used as single molecule precursors for the synthesis of HDA capped ZnS, CdS and HgS nanoparticles and polymethylmethacrylate (PMMA) nanocomposites. The optical and structural properties of the nanoparticles and nanocomposites were studied by UV-Vis, PL, XRD and SEM. The crystallites sizes of the nanoparticles varied between 3.03 and 23.45 nm. SEM and EDX analyses of the nanocomposites confirmed the presence of the nanoparticles in the polymer matrix. Copyright © 2013 Elsevier B.V. All rights reserved.
2013-01-01
Background Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. Results Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. Conclusions Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM. PMID:24135233
NASA Astrophysics Data System (ADS)
Ajidahun, E. J.
2015-12-01
The hardpan cap of selected sections of loose Ajali sand in Anambra Basin of Nigeria was investigated for elemental compositions using Energy Dispersive X-Ray Fluorescence mapping (M4-Tornado ED-XRF); while bulk mineralogy was determined by X-Ray Diffraction and Scanning Electron Microscopy (SEM) at the Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany. Elemental maps of Fe, Si, Ti, Al, Cr etc. were used to highlight texture and mineral distribution. The Ajali sands are locally topped by iron rich hardpans. These hardpans consist of rock fragments up to several cm in length in a primary matrix and locally large pores. Besides laminated sandstone fragments, highly altered porphyritic volcanic rocks can be observed. The latter in the SEM appear highly spongeous, and show relics of phenochryts such as biotite, hornblende and pyroxene, corroded magmatic quartz, magnetite, Ilmenite, zircon or voids of former crystals in an almost entirely altered matrix Large pores show several generations of periodic infill of quartz sand / soil mixtures alternating with multiple layers of Fe rich precipitates, locally enriched in Al, P, S, Mn or Sr agglutinating the fines. Volcanic fragments show rims of elevated Cr content, and Cr and V-rich precipitates may separate generations of infill. A number of large open pore channels rimmed by Fe-rich matrix might act as water channels. They are coated by Al, K rich precipitates. Ajali sands can hardly be considered as the source for the agglutination of the hardpan cap. The source of Fe and other elements such as Al, K, Cr, V has to be attributed to the volcanic fragments, mainly to the matrix, but to the altered phenocrysts, too. Toxic elements such as Cr being mobile in the system are in part stabilized as precipitates. EDXRF-micro mapping provides excellent textural, chemical and even mineralogical information to get better insight into the sedimentation and agglutination history of the hardpan cap. Key words: Hardpan Cap, Ajali Sands, Anambra Basin, Agglutination, Volcanic Fragment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Matthews, M.; Wasserburg, G.J.; Chen, J.H.
1993-01-01
A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographic and trace element analyses on a suite of Pleistocene samples that had previously been studied from [sup 234]U, [sup 230]Th, and U-[sup 230]Th ages (Chen et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles aremore » highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial [delta][sup 234]U, are generally correlated (Chen et al., 1991). As all these diagenetic changes involve the recystallization and deposition of aragonite, the authors infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the [sup 234]U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U-[sup 230]Th dating. The basic problem of identifying a priori unaltered coral skeletons for [sup 230]Th dating is not yet resolved. 64 refs., 16 figs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Shang, Haixia; Xie, Huimin; Li, Biao
2003-10-01
Two novel micro/nano moire method, SEM scanning moiré and AFM scanning moire techniques are discussed in this paper. The principle and applications of two scanning moire methods are described in detail. The residual deformation in a polysilicon MEMS cantilever structure with a 5000 lines/mm grating after removing the SiO2 sacrificial layer is accurately measured by SEM scanning moire method. While AFM scanning moire method is used to detect thermal deformation of electronic package components, and formation of nano-moire on a freshly cleaved mica crystal. Experimental results demonstrate the feasibility of these two moire methods, and also show they are effective methods to measure the deformation from micron to nano-scales.
The combination of scanning electron and scanning probe microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapozhnikov, I. D.; Gorbenko, O. M., E-mail: gorolga64@gmail.com; Felshtyn, M. L.
2016-06-17
We suggest the SPM module to combine SEM and SPM methods for studying surfaces. The module is based on the original mechanical moving and scanning system. The examples of studies of the steel surface microstructure in both SEM and SPM modes are presented.
Contact detection for nanomanipulation in a scanning electron microscope.
Ru, Changhai; To, Steve
2012-07-01
Nanomanipulation systems require accurate knowledge of the end-effector position in all three spatial coordinates, XYZ, for reliable manipulation of nanostructures. Although the images acquired by a scanning electron microscope (SEM) provide high resolution XY information, the lack of depth information in the Z-direction makes 3D nanomanipulation time-consuming. Existing approaches for contact detection of end-effectors inside SEM typically utilize fragile touch sensors that are difficult to integrate into a nanomanipulation system. This paper presents a method for determining the contact between an end-effector and a target surface during nanomanipulation inside SEM, purely based on the processing of SEM images. A depth-from-focus method is used in the fast approach of the end-effector to the substrate, followed by fine contact detection. Experimental results demonstrate that the contact detection approach is capable of achieving an accuracy of 21.5 nm at 50,000× magnification while inducing little end-effector damage. Copyright © 2012 Elsevier B.V. All rights reserved.
Bioaccumulation and distribution of selenium in Enterococcus durans.
Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano
2017-03-01
Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials. Copyright © 2016 Elsevier GmbH. All rights reserved.
Fitting direct covariance structures by the MSTRUCT modeling language of the CALIS procedure.
Yung, Yiu-Fai; Browne, Michael W; Zhang, Wei
2015-02-01
This paper demonstrates the usefulness and flexibility of the general structural equation modelling (SEM) approach to fitting direct covariance patterns or structures (as opposed to fitting implied covariance structures from functional relationships among variables). In particular, the MSTRUCT modelling language (or syntax) of the CALIS procedure (SAS/STAT version 9.22 or later: SAS Institute, 2010) is used to illustrate the SEM approach. The MSTRUCT modelling language supports a direct covariance pattern specification of each covariance element. It also supports the input of additional independent and dependent parameters. Model tests, fit statistics, estimates, and their standard errors are then produced under the general SEM framework. By using numerical and computational examples, the following tests of basic covariance patterns are illustrated: sphericity, compound symmetry, and multiple-group covariance patterns. Specification and testing of two complex correlation structures, the circumplex pattern and the composite direct product models with or without composite errors and scales, are also illustrated by the MSTRUCT syntax. It is concluded that the SEM approach offers a general and flexible modelling of direct covariance and correlation patterns. In conjunction with the use of SAS macros, the MSTRUCT syntax provides an easy-to-use interface for specifying and fitting complex covariance and correlation structures, even when the number of variables or parameters becomes large. © 2014 The British Psychological Society.
Miler, Miloš; Gosar, Mateja
2013-12-01
Solid particles in snow deposits, sampled in mining and Pb-processing area of Žerjav, Slovenia, have been investigated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Identified particles were classified as geogenic-anthropogenic, anthropogenic, and secondary weathering products. Geogenic-anthropogenic particles were represented by scarce Zn- and Pb-bearing ore minerals, originating from mine waste deposit. The most important anthropogenic metal-bearing particles in snow were Pb-, Sb- and Sn-bearing oxides and sulphides. The morphology of these particles showed that they formed at temperatures above their melting points. They were most abundant in snow sampled closest to the Pb-processing plant and least abundant in snow taken farthest from the plant, thus indicating that Pb processing was their predominant source between the last snowfall and the time of sampling. SEM/EDS analysis showed that Sb and Sn contents in these anthropogenic phases were higher and more variable than in natural Pb-bearing ore minerals. The most important secondary weathering products were Pb- and Zn-containing Fe-oxy-hydroxides whose elemental composition and morphology indicated that they mostly resulted from oxidation of metal-bearing sulphides emitted from the Pb-processing plant. This study demonstrated the importance of single particle analysis using SEM/EDS for differentiation between various sources of metals in the environment.
Aydın, Elif Burcu; Sezgintürk, Mustafa Kemal
2018-08-01
In this study, we fabricated a sensitive and label-free impedimetric immunosensor based on 6-phosphonohexanoic acid (PHA) modified ITO electrode for detection of interleukin-8 (IL-8) in human serum and saliva. PHA was first employed to cancer biomarker sensing platform. Anti-IL-8 antibody was used as a biorecognition element and the detection principle of this immunosensor was based on monitoring specific interaction between anti-IL-8 antibody and IL-8 antigen. The morphological characterization of each electrode modification step was analyzed by scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) while electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and single frequency impedance (SFI) techniques. Moreover, the antibody immobilization on the electrode surface was proved Fourier-transform infrared spectroscopy (FTIR) and Raman Spectroscopy. This proposed impedimetric immunosensor exhibited good performances with a wide linear in the range from 0.02 pg/mL to 3 pg/mL as well as a relative low detection limit of 6 fg/mL. The impedimetric immunosensor had a good specificity, stability and reproducibility. This study proved that PHA was a suitable interface material to fabricate an electrochemical biosensor. Copyright © 2018 Elsevier Inc. All rights reserved.
Synthesis and characterization of micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers by electrospinning
NASA Astrophysics Data System (ADS)
Wang, Y.; Furlan, R.; Ramos, I.; Santiago-Aviles, J. J.
Micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers were synthesized from commercially available zirconium n-pro-poxide, titanium isopropoxide, and lead 2-ethylhexanoate. Using xylene as a solvent, they were mixed to form a precursor solution with a suitable viscosity for electrospinning. The solution was analyzed using thermo-gravimetric and differential thermal methods. Ultra-fine fibers and mats were electrostatically drawn from the precursor solution. The as-deposited materials were sintered for 2 h at 400, 500, 600, 700 and 800 °C, respectively. Sintered mats or fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Raman micro-spectrometry and scanning-probe microscopy (SPM). The SEM results revealed that the fibers had diameters varying from hundreds of nanometers to 10 μm. Using AES, the elements Pb, Zr, Ti and O, as well as residual C, were detected on the surface of the fibers. Raman and XRD spectra indicated that the precursors began to transform into the intermediate pyrochlore phase at 400 °C, followed by the perovskite Pb(Zr0.52Ti0.48)O3 phase above 600 °C. Scanning-probe microscopy (SPM), operated in the piezo-response imaging mode, revealed spontaneous polarization domains in the fibers, with diameters ranging from 100 to 500 nm.
Evaluation of cytotoxicity and corrosion resistance of orthodontic mini-implants
Alves, Celha Borges Costa; Segurado, Márcio Nunes; Dorta, Miriam Cristina Leandro; Dias, Fátima Ribeiro; Lenza, Maurício Guilherme; Lenza, Marcos Augusto
2016-01-01
ABSTRACT Objective: To evaluate and compare in vitro cytotoxicity and corrosion resistance of mini-implants from three different commercial brands used for orthodontic anchorage. Methods: Six mini-implants (Conexão(tm), Neodent(tm) and SIN(tm)) were separately immersed in artificial saliva (pH 6.76) for 30 and 60 days. The cytotoxicity of the corrosion extracts was assessed in L929 cell cultures using the violet crystal and MTT assays, as well as cell morphology under light microscopy. Metal surface characteristics before and after immersion in artificial saliva were assessed by means of scanning electron microscopy (SEM). The samples underwent atomic absorption spectrophotometry to determine the concentrations of aluminum and vanadium ions, constituent elements of the alloy that present potential toxicity. For statistical analysis, one-way ANOVA/Bonferroni tests were used for comparisons among groups with p < 0.05 considered significant. Statistical analysis was carried out with Graph Pad PRISM software Version 4.0. Results: No changes in cell viability or morphology were observed. Mini-implants SEM images revealed smooth surfaces with no obvious traces of corrosion. The extracts assessed by means of atomic absorption spectrophotometry presented concentrations of aluminum and vanadium ions below 1.0 µg/mL and 0.5 µg/mL, respectively. Conclusion: Orthodontic mini-implants manufactured by Conexão(tm), Neodent(tm) and SIN(tm) present high corrosion resistance and are not cytotoxic. PMID:27901227
NASA Astrophysics Data System (ADS)
Almirall, Jose R.; Trejos, Tatiana; Hobbs, Andria; Furton, Kenneth G.
2003-09-01
The importance of small amounts of glass and paint evidence as a means to associate a crime event to a suspect or a suspect to another individual has been demonstrated in many cases. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. Previous work has demonstrated the utility of elemental analysis by solution ICP-MS of small amounts of glass for the comparison between a fragment found at a crime scene to a possible source of the glass. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The direct solid sample introduction technique of laser ablation (LA) is reported as an alternative to the solution method. Direct solid sampling provides several advantages over solution methods and shows great potential for a number of solid sample analyses in forensic science. The advantages of laser ablation include the simplification of sample preparation, thereby reducing the time and complexity of the analysis, the elimination of handling acid dissolution reagents such as HF and the reduction of sources of interferences in the ionization plasma. Direct sampling also provides for essentially "non-destructive" sampling due to the removal of very small amounts of sample needed for analysis. The discrimination potential of LA-ICP-MS is compared with previously reported solution ICP-MS methods using external calibration with internal standardization and a newly reported solution isotope dilution (ID) method. A total of ninety-one different glass samples were used for the comparison study using the techniques mentioned. One set consisted of forty-five headlamps taken from a variety of automobiles representing a range of twenty years of manufacturing dates. A second set consisted of forty-six automotive glasses (side windows and windshields) representing casework glass from different vehicle manufacturers over several years was also characterized by RI and elemental composition analysis. The solution sample introduction techniques (external calibration and isotope dilution) provide for excellent sensitivity and precision but have the disadvantages of destroying the sample and also involve complex sample preparation. The laser ablation method was simpler, faster and produced comparable discrimination to the EC-ICP-MS and ID-ICP-MS. LA-ICP-MS can provide for an excellent alternative to solution analysis of glass in forensic casework samples. Paints and coatings are frequently encountered as trace evidence samples submitted to forensic science laboratories. A LA-ICP-MS method has been developed to complement the commonly used techniques in forensic laboratories in order to better characterize these samples for forensic purposes. Time-resolved plots of each sample can be compared to associate samples to each other or to discriminate between samples. Additionally, the concentration of lead and the ratios of other elements have been determined in various automotive paints by the reported method. A sample set of eighteen (18) survey automotive paint samples have been analyzed with the developed method in order to determine the utility of LA-ICP-MS and to compare the method to the more commonly used scanning electron microscopy (SEM) method for elemental characterization of paint layers in forensic casework.
Xie, Kongliang; Gao, Aiqin; Zhang, Yongsheng
2013-10-15
Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krakowiak, Konrad J.; Wilson, William; James, Simon
2015-01-15
A novel approach for the chemo-mechanical characterization of cement-based materials is presented, which combines the classical grid indentation technique with elemental mapping by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). It is illustrated through application to an oil-well cement system with siliceous filler. The characteristic X-rays of major elements (silicon, calcium and aluminum) are measured over the indentation region and mapped back on the indentation points. Measured intensities together with indentation hardness and modulus are considered in a clustering analysis within the framework of Finite Mixture Models with Gaussian component density function. The method is able to successfully isolate themore » calcium-silica-hydrate gel at the indentation scale from its mixtures with other products of cement hydration and anhydrous phases; thus providing a convenient means to link mechanical response to the calcium-to-silicon ratio quantified independently via X-ray wavelength dispersive spectroscopy. A discussion of uncertainty quantification of the estimated chemo-mechanical properties and phase volume fractions, as well as the effect of chemical observables on phase assessment is also included.« less
NASA Astrophysics Data System (ADS)
Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi
2018-03-01
A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.
Dong, Mengge; Xue, Xiangxin; Kumar, Ashok; Yang, He; Sayyed, M I; Liu, Shan; Bu, Erjun
2018-02-15
A novel, unconventional, low cost, eco-friendly and effective shielding materials have been made utilizing the hot dip galvanizing slag using the heat waste from itself, thereby saving the natural resources and preventing the environmental pollution. SEM-EDS of shielding materials indicates that the other elements are distributed in Zn element. The mass attenuation properties of shielding materials were measured using a narrow beam geometrical setup at 0.662MeV, 1.17MeV and 1.33MeV. The half value thickness layer, effective atomic number, and electron density were used to analyze the shielding performance of the materials. The EBFs and EABFs for the prepared shielding materials were also studied with incident photon energy for penetration depths upto 40mfp. The shielding effectiveness has been compared with lead, iron, zinc, some standard shielding concretes, different glasses and some alloys. The shielding effectiveness of the prepared samples is almost found comparable to iron, zinc, selected alloys and glasses while better than some standard shielding concretes. In addition, it is also found that the bending strength of all shielding materials is more than 110MPa. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of heat treatment simulating porcelain firing processes on titanium corrosion resistance.
Sokołowski, Grzegorz; Rylska, Dorota; Sokołowski, Jerzy
2016-01-01
Corrosion resistance of titanium used in metal-ceramic restorations in manufacturing is based on the presence of oxide layer on the metal surface. The procedures used during combining metallic material with porcelain may affect the changes in oxide layers structure, and thus anticorrosive properties of metallic material. The aim of the study was an evaluation of potential changes in the structure and selected corrosion properties of titanium after sandblasting and thermal treatment applicable to the processes of ceramics fusion. Milled titanium elements were subjected to a few variants of the processes typical of ceramics fusion and studied in terms of resistance to electrochemical corrosion. The study included the OCP changes over time, measurements of Icorr, Ecorr and Rp as well as potentiodynamic examinations. Surface microstructure and chemical composition were analyzed using SEM and EDS methods. The results obtained allow us to conclude that the processes corresponding to ceramic oxidation and fusion on titanium in the variants used in the study do not cause deterioration of its anticorrosive properties, and partially enhance the resistance. This depends on the quality of oxide layers structure. Titanium elements treated by porcelain firing processes do not lose their corrosion resistance.
Production of zinc oxide nanowires power with precisely defined morphology
NASA Astrophysics Data System (ADS)
Mičová, Júlia; Remeš, Zdeněk; Chan, Yu-Ying
2017-12-01
The interest about zinc oxide is increasing thanks to its unique chemical and physical properties. Our attention has focused on preparation powder of 1D nanostructures of ZnO nanowires with precisely defined morphology include characterization size (length and diameter) and shape controlled in the scanning electron microscopy (SEM). We have compared results of SEM with dynamic light scattering (DLS) technique. We have found out that SEM method gives more accurate results. We have proposed transformation process from ZnO nanowires on substrates to ZnO nanowires powder by ultrasound peeling to colloid followed by lyophilization. This method of the mass production of the ZnO nanowires powder has some advantages: simplicity, cost effective, large-scale and environment friendly.
Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.
Kurth, Thomas; Berger, Jürgen; Wilsch-Bräuninger, Michaela; Kretschmar, Susanne; Cerny, Robert; Schwarz, Heinz; Löfberg, Jan; Piendl, Thomas; Epperlein, Hans H
2010-01-01
In this chapter we provide a set of different protocols for the ultrastructural analysis of amphibian (Xenopus, axolotl) tissues, mostly of embryonic origin. For Xenopus these methods include: (1) embedding gastrulae and tailbud embryos into Spurr's resin for TEM, (2) post-embedding labeling of methacrylate (K4M) and cryosections through adult and embryonic epithelia for correlative LM and TEM, and (3) pre-embedding labeling of embryonic tissues with silver-enhanced nanogold. For the axolotl (Ambystoma mexicanum) we present the following methods: (1) SEM of migrating neural crest (NC) cells; (2) SEM and TEM of extracellular matrix (ECM) material; (3) Cryo-SEM of extracellular matrix (ECM) material after cryoimmobilization; and (4) TEM analysis of hyaluronan using high-pressure freezing and HABP labeling. These methods provide exemplary approaches for a variety of questions in the field of amphibian development and regeneration, and focus on cell biological issues that can only be answered with fine structural imaging methods, such as electron microscopy. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Presper, T.; Kurat, G.; Koeberl, C.; Palme, H.; Maurette, Michel
1993-01-01
Antarctic micrometeorites (MM's) and Arctic cosmic spherules (CS's) have bulk compositions comparable to those of chondritic meteorites. However, abundance of Na, Ca, Mn, Ni, Co, and S are commonly lower in MM's and CS's as compared to chondrites. Our SEM, EMP, and INAA studies suggest that these elemental depletions in unmelted MM's are likely to be due to leaching of soluble components from the MM's in the upper atmosphere and the melt ice water. Depletions in CS's appear to be mainly due to volatilization during melting in the atmosphere or to sampling bias during aggregate formation or parent rock break-up.
Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy
NASA Astrophysics Data System (ADS)
Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola
2016-04-01
In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.
Nickel and cobalt distribution in the laterites of the Lomié region, south-east Cameroon
NASA Astrophysics Data System (ADS)
Yongue-Fouateu, R.; Ghogomu, R. T.; Penaye, J.; Ekodeck, G. E.; Stendal, H.; Colin, F.
2006-05-01
In the Lomié region (south-east Cameroon), strong weathering of serpentinized ultramafic rocks has produced a thick laterite cover with significant nickel and cobalt contents. The highest concentrations of these elements are located in the middle section of the laterite profiles, in the lower clay horizon, and preferentially along the slopes of the interfluves. The investigation of the composition of the laterite ores (by whole-rock analysis) and of the main components, using SEM/microprobe and XRD, reveals the presence of four main enriched facies: a non-differentiated facies, a layered smectitic facies, a quartz-rich facies and a gibbsitic nodular facies. Nickel, with generally low concentrations (less than 2% NiO), is hosted by several secondary mineral phases (goethite, Mn-oxyhydroxides and smectite locally). Cobalt is generally of higher grade (up to 0.9% CoO), and is associated with cryptocrystalline and crystallized Mn-oxyhydroxides. SEM/microprobe observations suggest that nickel and cobalt concentration in secondary minerals is due to repeated remobilization. This has also favored the formation of mineral phases, of which the best crystallized and most richly mineralized are mainly those of the asbolan-lithiophorite group. The SEM studies indicate that these mineral phases show various morphologies related to their chemical composition: poorly crystallized nipple shaped (Fe, Mn, Ni), fine cross-bedded needles (Mn, Ni) and elongated crystals (Mn, Al, Ni, Co) occur in the layered smectitic facies, while platy and needle-like forms (Mn, Al, Ni, Co) characterize the gibbsitic nodular facies. The predominantly cobaltiferous nature of the Lomié laterite ore deposit is the result of remobilizations and transformations of elements that led to the impoverishment of both the Ni-Co contents of the laterite but most importantly of Ni rather than Co.
Ishigaki, Yasuhito; Nakamura, Yuka; Oikawa, Yosaburo; Yano, Yasuhiro; Kuwabata, Susumu; Nakagawa, Hideaki; Tomosugi, Naohisa; Takegami, Tsutomu
2012-01-01
Scanning electron microscopes (SEM), which image sample surfaces by scanning with an electron beam, are widely used for steric observations of resting samples in basic and applied biology. Various conventional methods exist for SEM sample preparation. However, conventional SEM is not a good tool to observe living organisms because of the associated exposure to high vacuum pressure and electron beam radiation. Here we attempted SEM observations of live ticks. During 1.5×10−3 Pa vacuum pressure and electron beam irradiation with accelerated voltages (2–5 kV), many ticks remained alive and moved their legs. After 30-min observation, we removed the ticks from the SEM stage; they could walk actively under atmospheric pressure. When we tested 20 ticks (8 female adults and 12 nymphs), they survived for two days after SEM observation. These results indicate the resistance of ticks against SEM observation. Our second survival test showed that the electron beam, not vacuum conditions, results in tick death. Moreover, we describe the reaction of their legs to electron beam exposure. These findings open the new possibility of SEM observation of living organisms and showed the resistance of living ticks to vacuum condition in SEM. These data also indicate, for the first time, the usefulness of tick as a model system for biology under extreme condition. PMID:22431980
Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba
Valdespino-Castillo, Patricia M.; Hu, Ping; Merino-Ibarra, Martín; López-Gómez, Luz M.; Cerqueda-García, Daniel; González-De Zayas, Roberto; Pi-Puig, Teresa; Lestayo, Julio A.; Holman, Hoi-Ying; Falcón, Luisa I.
2018-01-01
Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (Corg), nitrogen and Corg:Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations. PMID:29666607
Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba.
Valdespino-Castillo, Patricia M; Hu, Ping; Merino-Ibarra, Martín; López-Gómez, Luz M; Cerqueda-García, Daniel; González-De Zayas, Roberto; Pi-Puig, Teresa; Lestayo, Julio A; Holman, Hoi-Ying; Falcón, Luisa I
2018-01-01
Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (C org ), nitrogen and C org :Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations.
Oho, Eisaku; Suzuki, Kazuhiko; Yamazaki, Sadao
2007-01-01
The quality of the image signal obtained from the environmental secondary electron detector (ESED) employed in a variable pressure (VP) SEM can be dramatically improved by using helium gas. The signal-to-noise ratio (SNR) increases gradually in the range of the pressures that can be used in our modified SEM. This method is especially useful in low-voltage VP SEM as well as in a variety of SEM operating conditions, because helium gas can more or less maintain the amount of unscattered primary electrons. In order to measure the SNR precisely, a digital scan generator system for obtaining two images with identical views is employed as a precondition.
NASA Astrophysics Data System (ADS)
Desbois, G.; Urai, J. L.
2009-04-01
Mudrocks and saltrocks form seals for hydrocarbon accumulations, aquitards and chemical barriers. The sealing capacity is controlled either by the rock microstructure or by chemical interactions between minerals and the permeating fluid. A detailed knowledge about the sealing characteristics is of particular interest in Petroleum Sciences. Other fields of interest are the storage of anthropogenic carbon dioxide and radioactive waste in geologic formations. A key factor to the understanding of sealing by mudstones and saltrocks is the study of their porosity. However, Halite and clay are so fluids sensitive that investigation on dried samples required by traditional methods of investigations (metal injection methods [6],[3]; magnetic susceptibility measurement [4]; SEM imaging of broken surfaces [5] and CT scanner computing [7]) are critical for robust interpretation. In one hand, none of these methods is able to directly describe the in-situ porosity at the pore scale and on the other hand, most of these methods require dried samples in which the natural structure of pores could be damaged due to the desiccation, dehydration and dissolution-recrystallisation of the fabric. SEM imaging is certainly the most direct approach to investigate the porosity but it is generally limited by the poor quality of the mechanically prepared surfaces. This problem is solved by the recent development of ion milling tools (FIB: Focussed Ion Beam or BIB: Broad Ion Beam, which allows producing in-situ high quality polished cross-sections suitable for high resolution pores SEM imaging at nano-scale. More over, new and innovative developments of the cryo-SEM approach in the Geosciences allow investigating samples under wet natural conditions. Thus, we are developing the combination of FIB/BIB-cryo-SEM methods ([1],[2]), which combine in one machine the vitrification of the pore fluids by very rapid cooling, the excavation of the sample by ion milling tool and SEM imaging. By these, we are able to stabilize the in-situ fluids in grain boundaries or pores, preserve the natural structures at nano scale, produce high quality polished cross-sections for high resolution SEM imaging and reconstruct accurately the grain boundary and the pore space networks in 3D by serial cross sectioning. Our first investigations on wet halite and wet clay materials produced unprecedented high quality images of fully preserved fluid-filled pore space as appear in nature. We have thus validated the use of the FIB/BIB-cryo-SEM technology for the in-situ investigations of the elusive structures in wet geomaterials paving the way towards a fuller understanding of how pore geometry can affect physical properties of rocks. [1] Desbois G. And Urai J.L. (submitted). In-situ morphology of meso-porosity in Boom clay (Mol site, Belgium) inferred by the innovative FIB-cryo-SEM method. E-earth. [2] Desbois G., Urai J.L., Burkhardt C., Drury M., Hayles M. and Humbel B. (2008). Cryogenic vitrification and 3D serial sectioning using high resolution cryo-FIB-SEM technology for brine-filled grain boundaries in halite: first results. Geofluids, 8: 60-72 [3] Esteban L., Géraud Y. And Bouchez J.L. (2006). Pore network geometry in low permeability argillites from magnetic fabric data and oriented mercury injections. Geophysical Research Letters, vol. 33, L18311, doi : 10.1029/2006GL026908. [4] Esteban L., Géraud Y. And Bouchez J.L. (2007). Pore network connectivity anisotropy in Jurassic argillite specimens from eastern Paris Basin (France). Physics and Chemistry of the Earth, 32(1) :161-169. [5] Hildenbrand A., Krooss B. M. and Urai J. L. (2005). Relationship between pore structure and fluid transport in argillaceous rocks. Solid Mechanics and Its Applications, IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media, 125 : 231-237, doi : 10.1007/1-4020-3865-8_26. [6] Hildenbrand A. and Urai J.L. (2003) Investigation of the morphology of pore space in mudstones—first results. Marine and Petroleum Geology, 20(10):1185-1200. [7] H. Taud H., Martinez-Angeles R., Parrot J.F., Hernandez-Escobedo L. (2005). Porosity estimation method by X-ray computed tomography. Journal of Petroleum Science and Engineering, (47), 3-4, 30: 209-217
Dynamic Multivariate Accelerated Corrosion Test Protocol
2014-10-01
atmospheric, accelerated, AA2024-T3, AA6061-T6, AA7075-T3, 1010 steel, AgCl, rare earth conversion coat, magnesium rich primer, polyurethane , Eyring, Monte...morphology and elemental analysis by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and electrochemical determinations of...in the FT-IR analysis; degradation of the components of the high performance polyurethane coatings exposed in the UV/ozone chamber were more
Processing and Modeling of Porous Copper Using Sintering Dissolution Process
NASA Astrophysics Data System (ADS)
Salih, Mustafa Abualgasim Abdalhakam
The growth of porous metal has produced materials with improved properties as compared to non-metals and solid metals. Porous metal can be classified as either open cell or closed cell. Open cell allows a fluid media to pass through it. Closed cell is made up of adjacent sealed pores with shared cell walls. Metal foams offer higher strength to weight ratios, increased impact energy absorption, and a greater tolerance to high temperatures and adverse environmental conditions when compared to bulk materials. Copper and its alloys are examples of these, well known for high strength and good mechanical, thermal and electrical properties. In the present study, the porous Cu was made by a powder metallurgy process, using three different space holders, sodium chloride, sodium carbonate and potassium carbonate. Several different samples have been produced, using different ratios of volume fraction. The densities of the porous metals have been measured and compared to the theoretical density calculated using an equation developed for these foams. The porous structure was determined with the removal of spacer materials through sintering process. The sintering process of each spacer material depends on the melting point of the spacer material. Processing, characterization, and mechanical properties were completed. These tests include density measurements, compression tests, computed tomography (CT) and scanning electron microscopy (SEM). The captured morphological images are utilized to generate the object-oriented finite element (OOF) analysis for the porous copper. Porous copper was formed with porosities in the range of 40-66% with density ranges from 3 to 5.2 g/cm3. A study of two different methods to measure porosity was completed. OOF (Object Oriented Finite Elements) is a desktop software application for studying the relationship between the microstructure of a material and its overall mechanical, dielectric, or thermal properties using finite element models based on real or simulated micrographs. OOF provides methods for segmenting images, creating meshes and solving of complex geometries using finite element models, and visualizing 2D results.
Yamamoto, S; Han, L; Noiri, Y; Okiji, T
2017-12-01
To evaluate the Ca 2+ -releasing, alkalizing and apatite-like surface precipitate-forming abilities of a prototype tricalcium silicate cement, which was mainly composed of synthetically prepared tricalcium silicate and zirconium oxide radiopacifier. The prototype tricalcium silicate cement, white ProRoot MTA (WMTA) and TheraCal LC (a light-cured resin-modified calcium silicate-filled material) were examined. The chemical compositions were analysed with a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with an image observation function (SEM-EPMA). The pH and Ca 2+ concentrations of water in which the set materials had been immersed were measured, and the latter was assessed with the EDTA titration method. The surface precipitates formed on the materials immersed in phosphate-buffered saline (PBS) were analysed with SEM-EPMA and X-ray diffraction (XRD). Kruskal-Wallis tests followed by Mann-Whitney U-test with Bonferroni correction were used for statistical analysis (α = 0.05). The prototype cement contained Ca, Si and Zr as major elemental constituents, whereas it did not contain some metal elements that were detected in the other materials. The Ca 2+ concentrations and pH of the immersion water samples exhibited the following order: WMTA = prototype cement > TheraCal LC (P < 0.05). All three materials produced Ca- and P-containing surface precipitates after PBS immersion, and the precipitates produced by TheraCal LC displayed lower Ca/P ratios than those formed by the other materials. XRD peaks corresponding to hydroxyapatite were detected in the precipitates produced by the prototype cement and WMTA. The prototype tricalcium silicate cement exhibited similar Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities to WMTA. The Ca 2+ -releasing, alkalizing and apatite-like precipitate-forming abilities of TheraCal LC were lower than those of the other materials. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods.
Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei
2016-09-29
The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.
Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods
Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei
2016-01-01
The keeper and cast dowel–coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt–chromium, CoCr; silver–palladium–gold, PdAu; gold–platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr–keeper complex but not to the AuPt–keeper complex. Only the keeper area of cast CoCr–keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt–keeper complexes had the highest free corrosion potential, followed by the PdAu–keeper complex. We concluded that although the corrosion resistance of the CoCr–keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr– and PdAu–keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt–keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area. PMID:27388806
Spectroscopic Monitoring of the Laser Cleaning Applied to Ancient Marbles from Mediterranean Areas
NASA Astrophysics Data System (ADS)
Lazic, V.; Colao, F.; Fantoni, R.; Fiorani, L.; Palucci, A.; Striber, J.; Santagata, A.; Morone, A.; Spizzicchino, V.
Laser Induced Breakdown Spectroscopy (LIBS) analysis by Nd:YAG laser emitting at 355nm were performed on different clean and dirty surfaces of marble fragments collected from ancient quarries in Greece, Turkey and Italy, in order to determine semi-quantitavely the atomic composition of the bulk material and encrustation. The method here developed for element concentrations retrieval could be applied during laser cleaning process to supply the information about the effective crust composition at different depths and the point where the process should be interrupted. The knowledge of the crust composition along successive layers is also important for determining the restoration procedures. The elements measured in the encrustations, such as Si, Al, Ca, C, Ti, Mn, Mg, Na, Ba, Sr and Cu are also present in the bulk, but at different concentrations whose determination allows for the process monitoring. The only element here observed in the crusts and not detected in the bulk materials is Chromium, whose progressive disappearance from LIBS spectra could be used as another indicator of the laser cleaning effectiveness. On a sample from Turkey also Vanadium was detected in the encrustation. The present LIBS measuring method was validated by SEM-EDX and ICP analyses. The clean marble surface and encrustations were further analysed by Laser Induced Fluorescence (LIF), which could be used as an alternative technique for the on-line control of the cleaning effectiveness. Better discrimination between dirty and clean marble surface was obtained when 266nm excitation was applied instead of 355 nm. Characteristic LIF spectral signatures allows for the discrimination between different type of the natural stones, even under the water.
Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.
Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng
2016-05-01
An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.
Park, Se Woo; Lee, Hyuk; Park, Jun Chul; Shin, Sung Kwan; Lee, Sang Kil; Lee, Yong Chan
2014-03-01
Conventional endoscopy for self-expandable metallic stent (SEMS) placement may be technically limited in long and tortuous strictures. Therefore, we analyzed the feasibility, safety and usefulness of ultrathin endoscopy (UTE)-guided SEMS placement. This study involved 24 patients with upper gastrointestinal obstruction and unsuccessful initial attempts to place SEMS using conventional endoscopy. After completely passing a UTE across the stricture, the UTE was withdrawn, leaving a guidewire placed via the working channel. Through-the-scope SEMS placement was done using a conventional endoscope inserted along the guidewire. The primary endpoints were assessed by technical/clinical success and stent patency duration. Stents were successfully placed at target locations in all but one case with a long tortuous stricture, with 95.8% (23/24) technical success. One week after stent placement, mean gastricoutlet obstruction score improved significantly from baseline (1.74 ± 0.62 and 0.33 ± 0.48, respectively; P < 0.001). Stent migration, restenosis, and fracture occurred in four (17.4%), six (26.1%), and one (4.3%) of 23 stents, respectively. Median stent patency duration was 79 days. Mean stent patency was significantly longer in patients who received palliative chemotherapy than in those who did not (122.9 ± 11.0 and 38.3 ± 4.6, respectively; P < 0.001). UTE guidance SEMS delivery can be a feasible and safe rescue treatment method for malignant upper gastrointestinal obstruction in cases of failed attempts to place SEMS using conventional endoscopy. Our result warrants a further study to define the efficacy of this method in difficult SEMS placement cases. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.
FIB-SEM imaging of carbon nanotubes in mouse lung tissue.
Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun; Wallin, Håkan; Vogel, Ulla; Qvortrup, Klaus; Mølhave, Kristian
2014-06-01
Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.
A wavelet based method for automatic detection of slow eye movements: a pilot study.
Magosso, Elisa; Provini, Federica; Montagna, Pasquale; Ursino, Mauro
2006-11-01
Electro-oculographic (EOG) activity during the wake-sleep transition is characterized by the appearance of slow eye movements (SEM). The present work describes an algorithm for the automatic localisation of SEM events from EOG recordings. The algorithm is based on a wavelet multiresolution analysis of the difference between right and left EOG tracings, and includes three main steps: (i) wavelet decomposition down to 10 detail levels (i.e., 10 scales), using Daubechies order 4 wavelet; (ii) computation of energy in 0.5s time steps at any level of decomposition; (iii) construction of a non-linear discriminant function expressing the relative energy of high-scale details to both high- and low-scale details. The main assumption is that the value of the discriminant function increases above a given threshold during SEM episodes due to energy redistribution toward higher scales. Ten EOG recordings from ten male patients with obstructive sleep apnea syndrome were used. All tracings included a period from pre-sleep wakefulness to stage 2 sleep. Two experts inspected the tracings separately to score SEMs. A reference set of SEM (gold standard) were obtained by joint examination by both experts. Parameters of the discriminant function were assigned on three tracings (design set) to minimize the disagreement between the system classification and classification by the two experts; the algorithm was then tested on the remaining seven tracings (test set). Results show that the agreement between the algorithm and the gold standard was 80.44+/-4.09%, the sensitivity of the algorithm was 67.2+/-7.37% and the selectivity 83.93+/-8.65%. However, most errors were not caused by an inability of the system to detect intervals with SEM activity against NON-SEM intervals, but were due to a different localisation of the beginning and end of some SEM episodes. The proposed method may be a valuable tool for computerized EOG analysis.
Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images
NASA Astrophysics Data System (ADS)
Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei
2017-02-01
Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.
Three-dimensional imaging of adherent cells using FIB/SEM and STEM.
Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul
2014-01-01
In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.
Surface topography characterization using 3D stereoscopic reconstruction of SEM images
NASA Astrophysics Data System (ADS)
Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.
2018-06-01
A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.
Law, Ryan; Prabhu, Anoop; Fujii-Lau, Larissa; Shannon, Carol; Singh, Siddharth
2018-02-01
Covered self-expandable metal stents (SEMS) are utilized for the management of benign and malignant esophageal conditions; however, covered SEMS are prone to migration. Endoscopic suture fixation may mitigate the migration risk of covered esophageal SEMS. Hence, we conducted a systematic review and meta-analysis to evaluate the effectiveness and safety of endoscopic suture fixation for covered esophageal SEMS. Following PRISMA guidelines, we performed a systematic review from 2011 to 2016 to identify studies (case control/case series) reporting the technical success and migration rate of covered esophageal SEMS following endoscopic suture fixation. We searched multiple electronic databases and conference proceedings. We calculated pooled rates (and 95% confidence intervals [CI]) of technical success and stent migration using a random effects model. We identified 14 studies (212 patients) describing covered esophageal SEMS placement with endoscopic suture fixation. When reported, SEMS indications included leak/fistula (n = 75), stricture (n = 65), perforation (n = 10), and achalasia (n = 4). The pooled technical success rate was 96.7% (95% CI 92.3-98.6), without heterogeneity (I 2 = 0%). We identified 29 SEMS migrations at rate of 15.9% (95% CI 11.4-21.6), without heterogeneity (I 2 = 0%). Publication bias was observed, and using the trim-and-fill method, a more conservative estimate for stent migration was 17.0%. Suture-related adverse events were estimated to occur in 3.7% (95% CI 1.6-8.2) of cases. Endoscopic suture fixation of covered esophageal SEMS appears to reduce stent migration when compared to published rates of non-anchored SEMS. However, SEMS migration still occurs in approximately 1 out of 6 cases despite excellent immediate technical success and low risk of suture-related adverse events.
Endoscopic management of occluded metal biliary stents: Metal versus 10F plastic stents
Yoon, Won Jae; Ryu, Ji Kon; Lee, Jung Won; Ahn, Dong-Won; Kim, Yong-Tae; Yoon, Yong Bum; Woo, Sang Myung; Lee, Woo Jin
2010-01-01
AIM: To compare the efficacy of self-expandable metal stents (SEMSs) with 10F plastic stents (PSs) in the endoscopic management of occluded SEMSs. METHODS: We retrospectively reviewed the medical records of 56 patients who underwent SEMS insertion for palliation of unresectable malignant biliary obstruction between 2000 and 2007 and subsequent endoscopic retrograde biliary drainage (ERBD) with SEMS or PS for initial SEMS occlusion between 2000 and 2008. RESULTS: Subsequent ERBD with SEMS was performed in 29 patients and with PS in 27. The median time to stent occlusion after subsequent ERBD was 186 d in the SEMS group and 101 d in the PS group (P = 0.118). Overall median stent patency was 79 d for the SEMS group and 66 d for the PS group (P = 0.379). The mean number of additional biliary drainage procedures after subsequent ERBD in patients that died (n = 50) during the study period was 2.54 ± 4.12 for the SEMS group and 1.85 ± 1.95 for the PS group (P = 0.457). The mean total cost of additional biliary drainage procedures after the occlusion of subsequent SEMS or PS was $410.04 ± 692.60 for the SEMS group and $630.16 ± 671.63 for the PS group (P = 0.260). Tumor ingrowth as the cause of initial SEMS occlusion was the only factor associated with a shorter time to subsequent stent occlusion (101 d for patients with tumor ingrowth vs 268 d for patients without tumor ingrowth, P = 0.008). CONCLUSION: Subsequent ERBD with PSs offered similar patency and number of additional biliary drainage procedures compared to SEMSs in the management of occluded SEMS. PMID:21072899
Mori, Miho; Nagata, Yusuke; Niizeki, Kazuma; Gomi, Mitsuhiro; Sakagami, Yoshikazu
2014-01-01
We have previously conducted a microflora analysis and examined the biofilm-forming activity of bacteria isolated from toilet bowl biofilms. In the present investigation, to reveal the strain involved in the formation of black dirt in toilet bowls, we performed a microflora analysis of the bacteria and fungi isolated from the black dirt of toilet bowls at ten homes. Among samples from different isolation sites and sampling seasons, although a similar tendency was not seen in bacterial microflora, Exophiala sp. was detected in the fungal microflora from all samples of black dirt except for one, and constituted the major presence. By scanning electron microscope (SEM) analysis of the formed black dirt, SEM image at × 1,000 and × 5,000 magnification showed objects like hyphae and many bacteria adhering to them, respectively. Micro fourier transform infrared spectroscopy (micro FT-IR) and SEM with X-ray microanalysis (SEM-XMA) were used to investigate the components of black dirt. IR spectra of micro-FT-IR showed typical absorptions associated with amide compounds and protein, and the elements such as C, N, O, Na, Mg, Al, Si, P, S, K, and Ba were detected with SEM-XMA. These results showed that black dirt had living body ingredients. Furthermore, Exophiala sp. and Cladosporium sp. strains, which were observed at a high frequency, accumulated 2-hydroxyjuglone (2-HJ) and flaviolin as one of the intermediates in the melanin biosynthetic pathway by the addition of a melanin synthesis inhibitor (tricyclazole) at the time of cultivation. These results suggested strongly that the pigment of black dirt in toilet bowls was melanin produced by Exophiala sp. and Cladosporium sp. strains.
NASA Astrophysics Data System (ADS)
Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng
2016-12-01
In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we first propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite-element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML. Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: (1) for an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; (2) unlike the M-PML with high-order damping profile, the M-PML with second-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; (3) in an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with second-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.
Elemental composition analysis of stony meteorites discovered in Phitsanulok, Thailand
NASA Astrophysics Data System (ADS)
Loylip, T.; Wannawichian, S.
2017-09-01
A meteorite is a fragment of pure stone, iron or the mixture of stony-iron. The falling of meteorites into Earth’s surface is part of Earth’s accretion process from dust and rocks in our solar system. When these fragments come close enough to the Earth to be attracted by its gravity, they may fall into the Earth. Following the detection of objects that fall from the sky onto a home in Phitsanulok in June 27, the meteorites were analyzed by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS) instruments. The results from SEM/EDS analysis show that the meteorites are mainly composed of Fe-Ni and Fe-s. The meteorite is Achondrite, a class of meteorite which does not contain Chondrule. The meteorites in this work are thought to be part of a large asteroid.
Microstructural, optical and electrical properties of LaFe0.5Cr0.5O3 perovskite nanostructures
NASA Astrophysics Data System (ADS)
Ali, S. Asad; Naseem, Swaleha; Khan, Wasi; Sharma, A.; Naqvi, A. H.
2016-05-01
Perovskite nanocrystalline powder of LaFe0.5Cr0.5O3 was synthesized by sol-gel combustion route and characterized by x-ray diffractometer (XRD), scanning electron microscopy (SEM) equipped with EDS, UV-visible and LCR meter at room temperature Rietveld refinement of the XRD data confirms that the sample is in single phase-rhombohedral structure with space group R-3C. SEM micrograph shows clear nanostructure of the sample and EDS ensures the presence of all elements in good stoichiometric. The optical absorption indicates the maximum absorption at 315 nm and optical band gap of 2.94 eV was estimated using Tauc's relation. Dielectric constant (ɛ') and loss were found to decrease with increase in frequencies. The dielectric behavior was explained on the basis of Maxwell-Wagner's two layer model.
Enhanced bioactive properties of BiodentineTM modified with bioactive glass nanoparticles
CORRAL NUÑEZ, Camila; COVARRUBIAS, Cristian; FERNANDEZ, Eduardo; de OLIVEIRA, Osmir Batista
2017-01-01
Abstract Objective To prepare nanocomposite cements based on the incorporation of bioactive glass nanoparticles (nBGs) into BiodentineTM (BD, Septodent, Saint-Maur-des-Fosses Cedex, France) and to assess their bioactive properties. Material and Methods nBGs were synthesised by the sol-gel method. BD nanocomposites (nBG/BD) were prepared with 1 and 2% nBGs by weight; unmodified BD and GC Fuji IX (GIC, GC Corporation, Tokyo, Japan) were used as references. The in vitro ability of the materials to induce apatite formation was assessed in SBF by X-ray diffraction (XRD), attenuated total reflectance with Fourier transform infrared spectroscopy (ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. BD and nBG/BD were also applied to dentine discs for seven days; the morphology and elemental composition of the dentine-cement interface were analysed using SEM-EDX. Results One and two percent nBG/BD composites accelerated apatite formation on the disc surface after short-term immersion in SBF. Apatite was detected on the nBG/BD nanocomposites after three days, compared with seven days for unmodified BD. No apatite formation was detected on the GIC surface. nBG/BD formed a wider interfacial area with dentine than BD, showing blockage of dentine tubules and Si incorporation, suggesting intratubular precipitation. Conclusions The incorporation of nBGs into BD improves its in vitro bioactivity, accelerating the formation of a crystalline apatite layer on its surface after immersion in SBF. Compared with unmodified BD, nBG/BD showed a wider interfacial area with greater Si incorporation and intratubular precipitation of deposits when immersed in SBF. PMID:28403358
Adjoint tomography and centroid-moment tensor inversion of the Kanto region, Japan
NASA Astrophysics Data System (ADS)
Miyoshi, T.
2017-12-01
A three-dimensional seismic wave speed model in the Kanto region of Japan was developed using adjoint tomography based on large computing. Starting with a model based on previous travel time tomographic results, we inverted the waveforms obtained at seismic broadband stations from 140 local earthquakes in the Kanto region to obtain the P- and S-wave speeds Vp and Vs. The synthetic displacements were calculated using the spectral element method (SEM; e.g. Komatitsch and Tromp 1999; Peter et al. 2011) in which the Kanto region was parameterized using 16 million grid points. The model parameters Vp and Vs were updated iteratively by Newton's method using the misfit and Hessian kernels until the misfit between the observed and synthetic waveforms was minimized. The proposed model reveals several anomalous areas with extremely low Vs values in comparison with those of the initial model. The synthetic waveforms obtained using the newly proposed model for the selected earthquakes show better fit than the initial model to the observed waveforms in different period ranges within 5-30 s. In the present study, all centroid times of the source solutions were determined using time shifts based on cross correlation to prevent high computing resources before the structural inversion. Additionally, parameters of centroid-moment solutions were fully determined using the SEM assuming the 3D structure (e.g. Liu et al. 2004). As a preliminary result, new solutions were basically same as their initial solutions. This may indicate that the 3D structure is not effective for the source estimation. Acknowledgements: This study was supported by JSPS KAKENHI Grant Number 16K21699.
NASA Astrophysics Data System (ADS)
Miyoshi, Takayuki; Obayashi, Masayuki; Peter, Daniel; Tono, Yoko; Tsuboi, Seiji
2017-12-01
A three-dimensional seismic wave speed model in the Kanto region of Japan was developed using adjoint tomography for application in the effective reproduction of observed waveforms. Starting with a model based on previous travel time tomographic results, we inverted the waveforms obtained at seismic broadband stations from 140 local earthquakes in the Kanto region to obtain the P- and S-wave speeds V p and V s . Additionally, all centroid times of the source solutions were determined before the structural inversion. The synthetic displacements were calculated using the spectral-element method (SEM) in which the Kanto region was parameterized using 16 million grid points. The model parameters V p and V s were updated iteratively by Newton's method using the misfit and Hessian kernels until the misfit between the observed and synthetic waveforms was minimized. Computations of the forward and adjoint simulations were conducted on the K computer in Japan. The optimized SEM code required a total of 6720 simulations using approximately 62,000 node hours to obtain the final model after 16 iterations. The proposed model reveals several anomalous areas with extremely low- V s values in comparison with those of the initial model. These anomalies were found to correspond to geological features, earthquake sources, and volcanic regions with good data coverage and resolution. The synthetic waveforms obtained using the newly proposed model for the selected earthquakes showed better fit than the initial model to the observed waveforms in different period ranges within 5-30 s. This result indicates that the model can accurately predict actual waveforms. [Figure not available: see fulltext.
Characterization of Three Carbon- and Nitrogen-Rich Particles from Comet 81P/WILD
NASA Technical Reports Server (NTRS)
Gallien, J.-P.; Khodja, H.; Herzog, G. F.; Taylor, S.; Koepsell, E.; Daghlian, C. P.; Flynn, G. J.; Sitnitsky, I.; Lanzirotti, A.; Sutton, S. R.;
2007-01-01
Comets may sample the early solar system s complement of volatile-forming elements - including C and N - more fully and reliably than do the terrestrial planets or asteroids. Until recently, all elemental analyses of unambiguously cometary material were carried out remotely. The return of the Stardust mission makes it possible to analyze documented material from P81/Wild 2 in the laboratory Wild 2 particles fragmented when they stopped in the aerogel collectors. We have studied three fragments thought to be rich in C and N by using several techniques: FTIR to characterize organic matter; synchrotron-induced x-ray fluorescence (SXRF) to determine Fe and certain element/Fe ratios; SEM to image sample morphology and to detect semiquantitatively Mg, Al, Si, Ca, and Fe; and nuclear reaction analysis (NRA) to measure C, N, O, and Si.
Structural Equation Modeling: A Framework for Ocular and Other Medical Sciences Research
Christ, Sharon L.; Lee, David J.; Lam, Byron L.; Diane, Zheng D.
2017-01-01
Structural equation modeling (SEM) is a modeling framework that encompasses many types of statistical models and can accommodate a variety of estimation and testing methods. SEM has been used primarily in social sciences but is increasingly used in epidemiology, public health, and the medical sciences. SEM provides many advantages for the analysis of survey and clinical data, including the ability to model latent constructs that may not be directly observable. Another major feature is simultaneous estimation of parameters in systems of equations that may include mediated relationships, correlated dependent variables, and in some instances feedback relationships. SEM allows for the specification of theoretically holistic models because multiple and varied relationships may be estimated together in the same model. SEM has recently expanded by adding generalized linear modeling capabilities that include the simultaneous estimation of parameters of different functional form for outcomes with different distributions in the same model. Therefore, mortality modeling and other relevant health outcomes may be evaluated. Random effects estimation using latent variables has been advanced in the SEM literature and software. In addition, SEM software has increased estimation options. Therefore, modern SEM is quite general and includes model types frequently used by health researchers, including generalized linear modeling, mixed effects linear modeling, and population average modeling. This article does not present any new information. It is meant as an introduction to SEM and its uses in ocular and other health research. PMID:24467557
Iáñez-Rodríguez, Irene; Martín-Lara, María Ángeles; Blázquez, Gabriel; Pérez, Antonio; Calero, Mónica
2017-11-01
This work investigated the possibility of using a greenhouse crop waste as a fuel, since it is an abundant residue in the Mediterranean area of Spain. The residue is mainly composed by biomass with a little quantity of plastic. The physical and chemical characteristics of the biomass were determined by elemental analysis, proximate analysis, FT-IR, FE-SEM and thermogravimetry. Additionally, a torrefaction process was carried out as a pre-treatment to improve the energy properties of the biomass material. The optimal conditions (time and temperature) of torrefaction were found to be 263°C and 15min using the gain and loss method. Further studies were carried out with the sample prepared with the nearest conditions to the optimal in order to determine the effect of the plastic fraction in the characteristics and torrefaction process of the waste studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Non-invasive toluene sensor for early diagnosis of lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Rahul; Srivastava, Sudha, E-mail: sudha.srivastava@jiit.ac.in
Here we present, quantification of volatile organic compounds in human breath for early detection of lung cancer to increase survival probability. Graphene oxide nanosheets synthesized by modified Hummer’s method were employed as a sensing element to detect the presence of toluene in the sample. Optical and morphological characterization of synthesized nanomaterial was performed by UV-Visible spectroscopy and scanning electron microscopy (SEM) respectively. Spectroscopic assay shows a linearly decreasing intensity of GO absorption peak with increasing toluene concentration with a linear range from 0-200 pM. While impedimetric sensor developed on a graphene oxide nanosheetsmodified screen printed electrodes displayed a decreasing electronmore » transfer resistance increasing toluene with much larger linear range of 0-1000 pM. Reported techniques are advantageous as these are simple, sensitive and cost effective, which can easily be extended for primary screening of other VOCs.« less
Microscopy and microanalysis 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.
1996-12-31
The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less
Cano, Rodríguez Claudia Teodora; Amaya-Chávez, Araceli; Roa-Morales, Gabriela; Barrera-Díaz, Carlos Eduardo; Ureña-Núñez, Fernando
2010-01-01
The elimination of organic contaminants in highly complex wastewater was tested using a combination of the techniques: electrocoagulation with aluminum electrodes and phytoremediation with Myriophyllum aquaticum. Under optimal operating conditions at a pH of 8 and a current density of 45.45 A m(-2), the electrochemical method produces partial elimination of contaminants, which was improved using phytoremediation as a polishing technique. The combined treatment reduced chemical oxygen demand (COD) by 91%, color by 97% and turbidity by 98%. Initial and final values of contaminants in wastewaters were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and the elemental composition of the biomass were characterized with using scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The presence of Al in the roots of plants in the system indicates that the aluminum present in the test solution could be absorbed.
Non-destructive determination of thickness of the dielectric layers using EDX
NASA Astrophysics Data System (ADS)
Sokolov, S. A.; Kelm, E. A.; Milovanov, R. A.; Abdullaev, D. A.; Sidorov, L. N.
2016-12-01
In this work a non-destructive method for measuring the thickness of the dielectric layers consisting of silicon dioxide and silicon nitride has been developed using a scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS). Rising in accelerating voltage of electron beam leads to increasing in the depth of generation of the characteristic X-ray. If the ratio of the signal intensity of one of the substrate's elements to the noise equal to 3 suggests that the generation's depth of the characteristic X-ray coincides with the thickness of the overlying film. Dependence of the overlying film's thickness on the accelerating voltage can be plotted. Validation of the results was carried out by using the equation of Anderson-Hassler. The generation's volume of the characteristic X-Ray was simulated by CASINO program. The simulations results are in good agreement with experimental results for small thicknesses.
Theoretical calculations and performance results of a PZT thin film actuator.
Hoffmann, Marcus; Küppers, Hartmut; Schneller, Theodor; Böttger, Ulrich; Schnakenberg, Uwe; Mokwa, Wilfried; Waser, Rainer
2003-10-01
High piezoelectric coupling coefficients of PZT-based material systems can be employed for actuator functions in micro-electro-mechanical systems (MEMS) offering displacements and forces which outperform standard solutions. This paper presents simulation, fabrication, and development results of a stress-compensated, PZT-coated cantilever concept in which a silicon bulk micromachining process is used in combination with a chemical solution deposition (CSD) technique. Due to an analytical approach and a finite element method (FEM) simulation for a tip displacement of 10 microm, the actuator was designed with a cantilever length of 300 microm to 1000 microm. Special attention was given to the Zr/Ti ratio of the PZT thin films to obtain a high piezoelectric coefficient. For first characterizations X-ray diffraction (XRD), scanning electron microscopy (SEM), hysteresis-, current-voltage I(V)- and capacitance-voltage C(V)-measurements were carried out.
Alaghaz, Abdel-Nasser M A; Ammar, Reda A A; Koehler, Gottfried; Wolschann, Karl Peter; El-Gogary, Tarek M
2014-07-15
Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of novel ethane-1,2-diol-dichlorocyclophosph(V)azane of sulfamonomethoxine (L), and its binuclear Er(III) complex. Different tautomers of the ligand were optimized at the ab initio DFT level. Keto-form structure is about 15.8 kcal/mol more stable than the enol form (taking zpe correction into account). Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which show good agreement with measured electronic spectra. The structures of the novel isolated products are proposed based on elemental analyses, IR, UV-VIS, (1)H NMR, (31)P NMR, SEM, XRD spectra, effective magnetic susceptibility measurements and thermogravimetric analysis (TGA). Copyright © 2014 Elsevier B.V. All rights reserved.
Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics
NASA Astrophysics Data System (ADS)
Deng, Jianming; Sun, Xiaojun; Liu, Saisai; Liu, Laijun; Yan, Tianxiang; Fang, Liang; Elouadi, Brahim
2016-04-01
CaCu3Ti4-xYxO12 (0≤x≤0.12) ceramics were fabricated with conventional solid-state reaction method. Phase structure and microstructure of prepared ceramics were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The impedance and modulus tests both suggested the existence of two different relaxation behavior, which were attributed to bulk and grain boundary response. In addition, the conductivity and dielectric permittivity showed a step-like behavior under 405K. Meanwhile, frequency independence of dc conduction became dominant when above 405K. In CCTO ceramic, rare earth element Y3+ ions as an acceptor were used to substitute Ti sites, decreasing the concentration of oxygen vacancy around grain-electrode and grain boundary. The reason to the reduction of dielectric behavior in low frequencies range was associated with the Y doping in CCTO ceramic.
Structural characterization of LiCrxMn2-xO4 via a simple reflux technique
NASA Astrophysics Data System (ADS)
Purwaningsih, Dyah; Roto, Roto; Sutrisno, Hari; Purwanto, Agus
2017-03-01
LiCrxMn2-xO4 (x=0; 0.02; 0.04; 0.06; 0.08, 0.10) have been successfully synthesized via a facile and simple reflux technique. The SEM-EDS data confirm the presence of Cr, Mn and O elements in the products, while the XRD pattern suggests that the materials have well-developed cubic crystals. Direct method was applied to extract structural parameters of LiCrxMn2-xO4 using the Fullprof and Oscail software in WinPlotr package program. Materials were refined in the crystal system, and space group of structures Fd3m phase were then identified. The lattice parameters decrease with the decrease in Cr content. The highest Li-O bond length was found for LiCr0.10Mn1.90O4. It was observed that there is no significant change in particle size as Cr content increased.
A high brightness probe of polymer nanoparticles for biological imaging
NASA Astrophysics Data System (ADS)
Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng
2018-03-01
Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.
Pd-Ni-MWCNT nanocomposite thin films: preparation and structure
NASA Astrophysics Data System (ADS)
Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil
2017-08-01
The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.
Zhang, Tingwei; Li, Wenzhi; An, Shengxin; Huang, Feng; Li, Xinzhe; Liu, Jingrong; Pei, Gang; Liu, Qiying
2018-05-24
In this work, p-hydroxybenzenesulfonic acid-formaldehyde resin acid catalyst (MSPFR), was synthesized by a hydrothermal method, and employed for the furfural production from raw corn stover. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 adsorption-desorption, elemental analysis (EA), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the MSPFR. The effects of reaction time, temperature, solvents and corn stover loading were investigated. The MSPFR presented high catalytic activity for the formation of furfural from corn stover. When the MSPFR/corn stover mass loading ratio was 0.5, a higher furfural yield of 43.4% could be achieved at 190 °C in 100 min with 30.7% 5-hydroxymethylfurfural (HMF) yield. Additionally, quite importantly, the recyclability of the MSPFR for xylose dehydration is good, and for the conversion of corn stover was reasonable. Copyright © 2018 Elsevier Ltd. All rights reserved.
Adsorption and mineralization of REE-lanthanum onto bacterial cell surface.
Cheng, Yangjian; Zhang, Li; Bian, Xiaojing; Zuo, Hongyang; Dong, Hailiang
2017-07-11
A large number of rare earth element mining and application resulted in a series of problems of soil and water pollution. Environmental remediation of these REE-contaminated sites has become a top priority. This paper explores the use of Bacillus licheniformis to adsorb lanthanum and subsequent mineralization process in contaminated water. The maximum adsorption capacity of lanthanum on bacteria was 113.98 mg/g (dry weight) biomass. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated that adsorbed lanthanum on bacterial cell surface occurred in an amorphous form at the initial stage. Scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM/EDS) results indicated that lanthanum adsorption was correlated with phosphate. The amorphous material was converted into scorpion-like monazite (LaPO 4 nanoparticles) in a month. The above results provide a method of using bacterial surface as adsorption and nucleation sites to treat REE-contaminated water.
Synthesis of nanocrystalline CdS thin film by SILAR and their characterization
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.
2015-01-01
Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.
Holmes, C.W.; Buster, N.A.; Sorauf, J.E.; Hudson, J.H.; Kester, C.
2003-01-01
As corals grow, they secrete a calcareous skeleton with the aid of photosynthetic activity of endosymbiotic dinoflagellates. The rate of this secretion varies annually which produces annual bands. Entrapped with the carbonate are trace substances that record the chemistry of the surrounding ocean. Detailing these changes in chemistry requires careful high-resolution sampling. New procedures involving laser ablation inductive couple plasma mass spectroscopy (LA-ICP/MS) provides a unique method that does not involve tedious sample preparation. The La-ICP/MS data for a series of Atlantic corals from Looe Key, U.S. Florida Keys shows an intriguing distribution trace and minor elements whose concentrations are related to reported bleaching events. SEM data from the layers exhibit a change in crystal habit concurrent with the changes in chemistry. These changes reflected the affect of the variable influence of the symbiotic algae on the development of the coral skeleton.
Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties
NASA Astrophysics Data System (ADS)
Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.
2016-05-01
The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.
Study of Sb2S3 thin films deposited by SILAR method
NASA Astrophysics Data System (ADS)
Deshpande, M. P.; Chauhan, Krishna; Patel, Kiran N.; Rajput, Piyush; Bhoi, Hiteshkumar R.; Chaki, S. H.
2018-05-01
In the present work, we deposited Sb2S3 thin films on glass slide by successive ionic layer adsorption and reaction (SILAR) technique with different time cycles. From EDAX, we could observe that the films were non-stoichiometric and contained few elements from glass slide. X-ray diffraction has shown that these films are orthorhombic in structure from where we have calculated the lattice parameter and crystallize size. SEM images shows that SILAR synthesized Sb2S3 thin films are homogenous and well distributed indicating the formation of uniform thin films at lower concentration. The room temperature Raman spectra of Sb2S3 thin films showed sharp peaks at 250 cm‑1 and 300 cm‑1 for all cases. Room temperature photoluminescence emission spectrum shows broad bands over 430–480 nm range with strong blue emission peak centered at same wavelength of 460 nm (2.70 eV) for all cases.
New method of 2-dimensional metrology using mask contouring
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka
2008-10-01
We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.
Tibenská, Kristína Domonkosová; Bodoriková, Silvia; Katina, Stanislav; Kovácsová, Veronika; Kubová, Jana; Takács, Michal
2010-01-01
The aim of the study was to determine the diet of a historical human population. Dental microwear and trace elements were analyzed. Although 38 individuals had been buried in the cemetery, only 13 of them were suitable for the analysis of trace elements and 17 skeletal remains for microwear analysis. Buccal microwear has been studied in a sample of 17 teeth from Gán cemetery. Teeth molds of the buccal surface were obtained and observed at 120x magnification with a scanning electron microscope (SEM). Length and orientation of each striation have been determined with a SigmaScan Pro 5.0 image analysis program. The results of the analysis from Gán were compared with the previous study in a sample of 153 molar teeth from different modern hunter-gatherer, pastorals, and agriculturalist groups, with different diets (Inuit, Fueguians, Bushmen, Australian aborigines, Andaman's, Indians from Vancouver, Veddahs, Tasmanians, Lapps, and Hindus), preserved at museum collections. Buccal dental microwear density and length by orientation showed almost an inclination to hunter-gatherers from tropic and arid climates. The sample for the trace elements analysis consisted of 10 permanent molars and 3 permanent premolars. All analyzed teeth were intact, with fully developed roots, without dental caries, calculus and abrasion. Samples were analyzed using the method of optical emission spectrometry with inductively coupled plasma. Three elements: Ca, Sr, and Zn were chosen as basic diet determinants. Concentrations of these elements and their ratios were used for description of a relative proportion of plant and animal protein in a diet. The values of the Sr and Zn concentrations indicate that a diet of investigated population was rich in plant food. Higher Sr values in women can indicate lower proportion of animal protein in a diet, but significant differences have not been found. Differences between non-adult and adult individuals and between individuals with and without grave furnishings have also not been significant.
NASA Astrophysics Data System (ADS)
Wasilah, S.; Fahmyddin, T.
2018-03-01
The employment of structural equation modeling (SEM) in research has taken an increasing attention in among researchers in built environment. There is a gap to understand the attributes, application, and importance of this approach in data analysis in built environment study. This paper intends to provide fundamental comprehension of SEM method in data analysis, unveiling attributes, employment and significance and bestow cases to assess associations amongst variables and constructs. The study uses some main literature to grasp the essence of SEM regarding with built environment research. The better acknowledgment of this analytical tool may assist the researcher in the built environment to analyze data under complex research questions and to test multivariate models in a single study.
NASA Astrophysics Data System (ADS)
Monteiller, Vadim; Chevrot, Sébastien; Komatitsch, Dimitri; Wang, Yi
2015-08-01
We present a method for high-resolution imaging of lithospheric structures based on full waveform inversion of teleseismic waveforms. We model the propagation of seismic waves using our recently developed direct solution method/spectral-element method hybrid technique, which allows us to simulate the propagation of short-period teleseismic waves through a regional 3-D model. We implement an iterative quasi-Newton method based upon the L-BFGS algorithm, where the gradient of the misfit function is computed using the adjoint-state method. Compared to gradient or conjugate-gradient methods, the L-BFGS algorithm has a much faster convergence rate. We illustrate the potential of this method on a synthetic test case that consists of a crustal model with a crustal discontinuity at 25 km depth and a sharp Moho jump. This model contains short- and long-wavelength heterogeneities along the lateral and vertical directions. The iterative inversion starts from a smooth 1-D model derived from the IASP91 reference Earth model. We invert both radial and vertical component waveforms, starting from long-period signals filtered at 10 s and gradually decreasing the cut-off period down to 1.25 s. This multiscale algorithm quickly converges towards a model that is very close to the true model, in contrast to inversions involving short-period waveforms only, which always get trapped into a local minimum of the cost function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Sudhanshu S.
2016-08-15
The rostrum is an extension of the cuticle of the head of weevils (Coleoptera: Curculionidae) and is often used to bore holes for oviposition (the process of laying eggs) into host plant tissue where larval development occurs. In members of the genus Curculio Linnaeus, 1758, the rostrum is long, slender, and strongly curved, but is nevertheless used to excavate straight bore-holes in the fruit of various host plants, through significant deformation of this structure. In this study, scanning electron microscopy (SEM) was used to examine the rostrum of Curculio longinasus Chittenden, 1927, leading to a microstructural model that describes itsmore » deformation behavior. Specifically, we used the continuous stiffness measurement (CSM) technique in nanoindentation to measure the Young's modulus and hardness of rostrum. The values of Young's modulus and hardness for the endocuticle were measured to be 8.91 ± 0.93 GPa and 558 ± 60 MPa, respectively. These results are critical for generating accurate finite element models of the head's mechanical behavior while it undergoes deformation. - Highlights: •SEM was used to examine the rostrum of Curculio longinasus Chittenden, 1927. •Nanoindentation to measure the Young's modulus and hardness of rostrum. •Results are critical for finite element models of the head's mechanical behavior.« less
Li, Cen; Yang, Hongxia; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao
2016-01-01
Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. PMID:27738409
Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin
2016-01-01
Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30 μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.
NASA Astrophysics Data System (ADS)
Baran, Talat; Menteş, Ayfer
2016-07-01
In this study, a new eco-friendly Schiff base based on O-carboxymethyl chitosan ([OCMCS-7a]) and its copper(II) and palladium(II) complexes were synthesized. Characterizations of [OCMCS-7a] and its metal complexes were conducted using FTIR, 1H NMR, 13C NMR, TG/DTG, XRD, SEM-EDAX, ICP, UV-VIS, GC-MS, elemental analysis, magnetic moment and molar conductivity measurements. The degree of substitution (DS) of [OCMCS-7a] was determined by elemental analysis to be 0.44. It was shown by the solubility test that [OCMCS-7a] was completely soluble in water. Surface images of chitosan, [OCMCS-7a] and its Cu(II) and Pd(II) complexes were investigated using the SEM-EDAX technique. Their thermal behaviors and crystallinities of the synthesized complexes were determined by TG/DTG and X-ray powder diffraction techniques, respectively. The metal contents of the obtained complexes were determined using an ICP-OES instrument. From the analyses, it was noted that the thermal stabilities and crystallinities of [OCMCS-7a] and its complexes decreased compared to chitosan. As a consequence of surface screening, it was also noted that the surface structure of the chitosan was smoother than that of the obtained compounds.
da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli
2007-01-01
This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.
Novel Chemical Process for Producing Chrome Coated Metal
Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien
2018-01-01
This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed. PMID:29303977
Novel Chemical Process for Producing Chrome Coated Metal.
Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C; Phillips, Jonathan
2018-01-05
This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.
The polymorphic weddellite crystals in three species of Cephalocereus (Cactaceae).
Bárcenas-Argüello, María-Luisa; Gutiérrez-Castorena, Ma C-del-Carmen; Terrazas, Teresa
2015-10-01
Mineral inclusions in plant cells are genetically regulated, have an ecological function and are used as taxonomic characters. In Cactaceae, crystals in epidermal and cortical tissues have been reported; however, few studies have conducted chemical and morphological analyses on these crystals, and even fewer have reported non-mineral calcium to determine its systematic value. Cephalocereus apicicephalium, C. totolapensis and C. nizandensis are Cactaceae species endemic to the Isthmus of Tehuantepec, Mexico with abundant epidermal prismatic crystals. In the present study, we characterize the mineral cell inclusions, including their chemical composition and their morphology, for three species of Cephalocereus. Crystals of healthy branches of the three species were isolated and studied. The crystals were identified by X-ray diffraction (XRD), their morphology was described using a petrographic and scanning electron microscope (SEM), and their elemental composition was measured with Energy Dispersive X-ray (EDXAR). The three species synthesized weddellite with different degrees of hydration depending on the species. The optical properties of calcium oxalate crystals were different from the core, which was calcium carbonate. We observed a large diversity of predominantly spherical forms with SEM. EDXAR analysis detected different concentrations of Ca and significant amounts of elements, such as Si, Mg, Na, K, Cl, and Fe, which may be related to the edaphic environment of these cacti. The occurrence of weddellite is novel for the genus according to previous reports. The morphological diversity of the crystals may be related to their elemental composition and may be a source of phylogenetic characters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Application of Standards-Based Quantitative SEM-EDS Analysis to Oxide Minerals
NASA Astrophysics Data System (ADS)
Mengason, M. J.; Ritchie, N. W.; Newbury, D. E.
2016-12-01
SEM and EPMA analysis are powerful tools for documenting and evaluating the relationships between minerals in thin sections and for determining chemical compositions in-situ. The time and costs associated with determining major, minor, and some trace element concentrations in geologic materials can be reduced due to advances in EDS spectrometer performance and the availability of software tools such as NIST DTSA II to perform multiple linear least squares (MLLS) fitting of energy spectra from standards to the spectra from samples recorded under the same analytical conditions. MLLS fitting is able to overcome spectral peak overlaps among the transition-metal elements that commonly occur in oxide minerals, which had previously been seen as too difficult for EDS analysis, allowing for rapid and accurate determination of concentrations. The quantitative use of EDS is demonstrated in the chemical analysis of magnetite (NMNH 114887) and ilmenite (NMNH 96189) from the Smithsonian Natural History Museum Microbeam Standards Collection. Average concentrations from nine total spots over three grains are given in mass % listed as (recommended; measured concentration ± one standard deviation). Spectra were collected for sixty seconds live time at 15 kV and 10 nA over a 12 micrometer wide scan area. Analysis of magnetite yielded Magnesium (0.03; 0.04 ± 0.01), Aluminum (none given; 0.040 ± 0.006), Titanium (0.10; 0.11 ± 0.02), Vanadium (none given; 0.16 ± 0.01), Chromium (0.17; 0.14 ± 0.02), and Iron (70.71, 71.4 ± 0.2). Analysis of ilmenite yielded Magnesium (0.19; 0.183 ± 0.008), Aluminum (none given; 0.04 ± 0.02), Titanium (27.4, 28.1 ± 0.1), Chromium (none given; 0.04 ± 0.01), Manganese (3.69; 3.73 ± 0.03), Iron (36.18; 35.8 ± 0.1), and Niobium (0.64; 0.68 ± 0.03). The analysis of geologic materials by standards-based quantitative EDS can be further illustrated with chemical analyses of oxides from ocean island basalts representing several locations globally to illustrate the suitability of the method to the goal of evaluating trends in major and minor element concentrations and variability among locations. The shorter collection times of EDS, compared to WDS, allow greater sampling of the populations of oxides present as fine-grained quench products in addition to sampling larger inclusions hosted by silicate minerals.
A new kind of end-glued joint for the hardwood industry
Philip A. Araman
1973-01-01
A method has been developed for end- and edge-gluing short pieces of high-value hardwood lumber into long panels, using a curved end joint we call SEM (Serpentine End Matching). Panels containing SEM end joints are aesthetically pleasing and are suited for exposed applications such as in finished furniture.
A Multilevel CFA-MTMM Model for Nested Structurally Different Methods
ERIC Educational Resources Information Center
Koch, Tobias; Schultze, Martin; Burrus, Jeremy; Roberts, Richard D.; Eid, Michael
2015-01-01
The numerous advantages of structural equation modeling (SEM) for the analysis of multitrait-multimethod (MTMM) data are well known. MTMM-SEMs allow researchers to explicitly model the measurement error, to examine the true convergent and discriminant validity of the given measures, and to relate external variables to the latent trait as well as…
Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo
2015-12-01
In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Utilization of environmentally acquired very small particles as a means of association.
Stoney, David A; Bowen, Andrew M; Stoney, Paul L
2015-09-01
Very small particles (VSP) are ubiquitous in our environment and are virtually ignored by forensic science. These particles range in size from an order of magnitude smaller than conventional trace evidence, down to the molecular level. Combinations of VSP provide an extraordinary, largely untapped resource for forensic associations and source attribution. This paper describes an initial effort to exploit VSP for one specific application. An approach was developed and tested for the SEM/EDS analysis of VSP recovered from the surfaces of carpet fibers - one of the most common types of trace evidence examined in crime laboratories. Our goal was to exploit existing computer-assisted SEM/EDS methods to test whether VSP profiles could be useful to associate shed fibers with a source carpet. Particles were harvested by washing and filtration onto polycarbonate filters. An SEM/EDS analysis protocol currently employed for environmental particle analyses was used, resulting in individual particle characterization based on fitting to reference spectra of 28 elements. Target Particle Types were defined based on the most abundant elemental profiles and used to bin the results for each specimen, resulting in a Target Particle Type profile. Within-carpet variability was assessed using Target Particle Type profiles from three different areas on each of nine carpets. Area profiles, defined from sets of ten fibers, were compared to profiles from individual fibers. Between-item variation was explored using a survey of an additional 12 carpets. Hundreds to thousands of VSP were found to routinely occur on individual carpet fibers. Their quantity and character was sufficient to associate fibers with their area of origin. Within-carpet variations showed roughly even distributions for most TPTs and between-carpet variations showed wide ranges in types and quantities of VSP. Environmentally acquired VSP showed clear potential to provide quantitative means to link carpet fibers with their area of origin. This finding is noteworthy, since such particles are acquired post-manufacture and are independent of characteristics determined by manufacture. More generally, VSP are ubiquitous, present on or in virtually any item, and there is the potential for linkages among items of any type based on adhering VSP. By way of example, the present work provides impetus for a fundamental change in the way that forensic trace evidence is conceptualized. Further fundamental research is indicated to better understand the underlying variability, usefulness and limitations of this approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Leal-Junior, Ernesto Cesar Pinto; de Almeida, Patrícia; Tomazoni, Shaiane Silva; de Carvalho, Paulo de Tarso Camillo; Lopes-Martins, Rodrigo Álvaro Brandão; Frigo, Lucio; Joensen, Jon; Johnson, Mark I.; Bjordal, Jan Magnus
2014-01-01
Aim To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy. PMID:24599021
Multi-scale characterization by FIB-SEM/TEM/3DAP.
Ohkubo, T; Sepehri-Amin, H; Sasaki, T T; Hono, K
2014-11-01
In order to improve properties of functional materials, it is important to understand the relation between the structure and the properties since the structure has large effect to the properties. This can be done by using multi-scale microstructure analysis from macro-scale to nano and atomic scale. Scanning electron microscope (SEM) equipped with focused ion beam (FIB), transmission electron microscope (TEM) and 3D atom probe (3DAP) are complementary analysis tools making it possible to know the structure and the chemistry from micron to atomic resolution. SEM gives us overall microstructural and chemical information by various kinds of detectors such as secondary electron, backscattered electron, EDS and EBSD detectors. Also, it is possible to analyze 3D structure and chemistry via FIB serial sectioning. In addition, using TEM we can focus on desired region to get more complementary information from HRTEM/STEM/Lorentz images, SAED/NBD patterns and EDS/EELS to see the detail micro or nano-structure and chemistry. Especially, combination of probe Cs corrector and split EDS detectors with large detector size enable us to analyze the atomic scale elemental distribution. Furthermore, if the specimen has a complicated 3D nanostructure, or we need to analyze light elements such as hydrogen, lithium or boron, 3DAP can be used as the only technique which can visualize and analyze distribution of all constituent atoms of our materials within a few hundreds nm area. Hence, site-specific sample preparation using FIB/SEM is necessary to get desired information from region of interest. Therefore, this complementary analysis combination works very well to understand the detail of materials.In this presentation, we will show the analysis results obtained from some of functional materials by Carl Zeiss CrossBeam 1540EsB FIB/SEM, FEI Tecnai G(2) F30, Titan G2 80-200 TEMs and locally build laser assisted 3DAP. As the one of the example, result of multi-scale characterization for ultra-fine grain Nd-Fe-B permanent magnet will be shown [1]. In order to improve the magnetic properties, especially to increase the coercivity (resistance against magnetization reversal) of the magnet, decreasing the grain size and isolating each grain by non-ferromagnetic grain boundary phase are quite important since the nucleation of magnetic reversal from grain boundary phase can be suppressed and pinning force of magnetic domain wall at the grain boundary phase can be strengthened. Therefore, micro and nano structure and chemistry analysis can shed a light do grain boundary engineering.Figure 1(a,b) shows SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet and the reconstructed 3D tomography of Nd-rich phases obtained by FIB/SEM serial sectioning. This data can provide us information about the distribution of Nd-rich phase and its volume fraction. Moreover, the HRTEM image from the grain boundary phase, the 3DAP maps and the concentration depth profiles are shown in Fig. 1(c,d,e). This magnet shows high coercivity (1517kA/m), and by comparing these results with the microstructures of low coercivity specimen, importance of grain boundary formation was confirmed and it gives us hint to improve the coercivity further. We will show the detail and results from other materials.jmicro;63/suppl_1/i6/DFU046F1F1DFU046F1Fig. 1.(a) SEM BSE images of ultrafine grain Nd-Fe-B sintered magnet. (b) 3D FIB/SEM tomography of Nd-rich phases. (c) HRTEM image from the grain boundary phase. (d) 3DAP maps of Nd, Cu and Al. (e) Concentration depth profiles for Fe, Nd+Pr, B, Co, Cu and Al, determined from the selected box in (d)[1]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Grace, J.B.; Bollen, K.A.
2008-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.
The Interface Between Theory and Data in Structural Equation Models
Grace, James B.; Bollen, Kenneth A.
2006-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite, for representing general concepts. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling general relationships of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially reduced form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influences of suites of variables are often of interest.
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Kaita, R.; Koel, B. E.; Chrobak, C. P.; Wampler, W. R.
2017-10-01
Tokamak plasma facing components (PFCs) have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration. Previous RBS measurements showed indirect evidence for this but the spatial (0.5mm) resolution was insufficient for direct imaging. We will present elemental images at sub-micron resolution of deposition on NSTX-U and DiMES samples that show strong microscopic variations and correlate this with 3D topographical maps of surface irregularities. The elemental imaging is performed with a Scanning Auger Microprobe (SAM) that measures element-specific Auger electrons excited by an SEM electron beam. 3D topographical maps of the samples are performed with a Leica DCM 3D confocal light microscope and compared to the elemental deposition pattern. The initial results appear consistent with erosion at the downstream edges of the surface pores exposed to the incident ion flux, whereas the deeper regions are shadowed and serve as deposition traps. Support was provided through DOE Contract Numbers DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-NA0003525.
Zhang, Nianli; Molenda, James A; Mankoci, Steven; Zhou, Xianfeng; Murphy, William L; Sahai, Nita
2013-10-01
The repair and replacement of damaged or diseased human bone tissue requires a stable interface between the orthopedic implant and living tissue. The ideal material should be both osteoconductive (promote bonding to bone) and osteoinductive (induce osteogenic differentiation of cells and generate new bone). Partially resorbable bioceramic materials with both properties are developed by expensive trial-and-error methods. Structure-reactivity relationships for predicting the osteoinductive properties of ceramics would significantly increase the efficiency of developing materials for bone tissue engineering. Here we propose the novel hypothesis that the crystal structure of a bioceramic controls the release rates, subsequent surface modifications due to precipitation of new phases, and thus, the concentrations of soluble factors, and ultimately, the attachment, viability and osteogenic differentiation of human Mesenchymal Stem Cells (hMSCs). To illustrate our hypothesis, we used two CaSiO 3 polymorphs, pseudo-wollastonite (psw, β-CaSiO 3 ) and wollastonite (wol, α-CaSiO 3 ) as scaffolds for hMSC culture. Polymorphs are materials which have identical chemical composition and stoichiometry, but different crystal structures. We combined the results of detailed surface characterizations, including environmental Scanning Electron Microscopy (SEM) back-scattered imaging, and spot-analysis and 2D elemental mapping by SEM-Energy Dispersive X-ray (SEM-EDX), High Resolution Transmission Electron Microscopy (HRTEM) and surface roughness analysis; culture medium solution analyses; and molecular/genetic assays from cell culture. Our results confirmed the hypothesis that the psw polymorph, which has a strained silicate ring structure, is more osteoinductive than the wol polymorph, which has a more stable, open silicate chain structure. The observations could be attributed to easier dissolution (resorption) of psw compared to wol, which resulted in concentration profiles that were more osteoinductive for the former. Thus, we showed that crystal structure is a fundamental parameter to be considered in the intelligent design of pro-osteogenic, partially resorbable bioceramics.
Panepinto, Julie A; Paul Scott, J; Badaki-Makun, Oluwakemi; Darbari, Deepika S; Chumpitazi, Corrie E; Airewele, Gladstone E; Ellison, Angela M; Smith-Whitley, Kim; Mahajan, Prashant; Sarnaik, Sharada A; Charles Casper, T; Cook, Larry J; Leonard, Julie; Hulbert, Monica L; Powell, Elizabeth C; Liem, Robert I; Hickey, Robert; Krishnamurti, Lakshmanan; Hillery, Cheryl A; Brousseau, David C
2017-06-12
Detecting change in health status over time and ascertaining meaningful changes are critical elements when using health-related quality of life (HRQL) instruments to measure patient-centered outcomes. The PedsQL™ Sickle Cell Disease module, a disease specific HRQL instrument, has previously been shown to be valid and reliable. Our objectives were to determine the longitudinal validity of the PedsQL™ Sickle Cell Disease module and the change in HRQL that is meaningful to patients. An ancillary study was conducted utilizing a multi-center prospective trial design. Children ages 4-21 years with sickle cell disease admitted to the hospital for an acute painful vaso-oclusive crisis were eligible. Children completed HRQL assessments at three time points (in the Emergency Department, one week post-discharge, and at return to baseline (One to three months post-discharge). The primary outcome was change in HRQL score. Both distribution (effect size, standard error of measurement (SEM)) and anchor (global change assessment) based methods were used to determine the longitudinal validity and meaningful change in HRQL. Changes in HRQL meaningful to patients were identified by anchoring the change scores to the patient's perception of global improvement in pain. Moderate effect sizes (0.20-0.80) were determined for all domains except the Communication I and Cognitive Fatigue domains. The value of 1 SEM varied from 3.8-14.6 across all domains. Over 50% of patients improved by at least 1 SEM in Total HRQL score. A HRQL change score of 7-10 in the pain domains represented minimal perceived improvement in HRQL and a HRQL change score of 18 or greater represented moderate to large improvement. The PedsQL™ Sickle Cell Disease Module is responsive to changes in HRQL in patients experiencing acute painful vaso-occlusive crises. The study data establish longitudinal validity and meaningful change parameters for the PedsQL™ Sickle Cell Disease Module. ClinicalTrials.gov (study identifier: NCT01197417 ). Date of registration: 08/30/2010.
Kiani, M A; Sim, K S; Nia, M E; Tso, C P
2015-05-01
A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Chen, Xu; Fan, Jinglian; Lu, Qiong
2018-06-01
TiC nanocrystalline powders were synthesized by in-situ carbothermic reduction of Ti-O-C precursor under vacuum atmosphere. And the Ti-O-C precursor was formed by sol-gel method from titanium butyrate (TBOT) and sucrose. To obtain stable sol, TBOT was directly added into mixed solution which contains water, sucrose, acetic acid (AcOH) and acetylacetone (ACAC). This procedure is more convenient and economical because it avoids the use of alcohol which is used as solvent in most reports of alkoxide hydrolysis sol-gel method. TG-DSC, XRD, FTIR and SEM/TEM were employed to analyze and characterize the product during the entire process. The phase composition and crystalline structure parameters of powders with different C/Ti molar ratio were investigated by Rietveld refinement method, and elemental quantitative analysis of the samples were performed. Furthermore, the optimal parameters of carbothermal reduction were obtained and the grain growth mechanism was demonstrated. The results show that TiC nanocrystalline powders (C/Ti molar ratio is 3.5 in the precursor) were synthesized at 1300 °C for 2 h, which have near standard lattice parameter, well crystallinity and fine average grain size ( 37.4 nm).
Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Kanchana, P.; Sekar, C.
2015-02-01
We report the synthesis of hydroxyapatite (HA) nanoparticles (NPs) by a simple microwave irradiation method and its application as sensing element for the precise determination of folic acid (FA) by electrochemical method. The structure and composition of the HA NPs characterized using XRD, FTIR, Raman and XPS. SEM and EDX studies confirmed the formation of elongated spherical shaped HA NPs with an average particle size of about 34 nm. The HA NPs thin film on glassy carbon electrode (GCE) were deposited by drop casting method. Electrocatalytic behavior of FA in the physiological pH 7.0 was investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. The fabricated HA/GCE exhibited a linear calibration plot over a wide FA concentration ranging from 1.0 × 10-7 to 3.5 × 10-4 M with the detection limit of 75 nM. In addition, the HA NPs modified GCE showed good selectivity toward the determination of FA even in the presence of a 100-fold excess of ascorbic acid (AA) and 1000-fold excess of other common interferents. The fabricated biosensor exhibits good sensitivity and stability, and was successfully applied for the determination of FA in pharmaceutical samples.
NASA Astrophysics Data System (ADS)
Bouhaj, M.; von Estorff, O.; Peiffer, A.
2017-09-01
In the application of Statistical Energy Analysis "SEA" to complex assembled structures, a purely predictive model often exhibits errors. These errors are mainly due to a lack of accurate modelling of the power transmission mechanism described through the Coupling Loss Factors (CLF). Experimental SEA (ESEA) is practically used by the automotive and aerospace industry to verify and update the model or to derive the CLFs for use in an SEA predictive model when analytical estimates cannot be made. This work is particularly motivated by the lack of procedures that allow an estimate to be made of the variance and confidence intervals of the statistical quantities when using the ESEA technique. The aim of this paper is to introduce procedures enabling a statistical description of measured power input, vibration energies and the derived SEA parameters. Particular emphasis is placed on the identification of structural CLFs of complex built-up structures comparing different methods. By adopting a Stochastic Energy Model (SEM), the ensemble average in ESEA is also addressed. For this purpose, expressions are obtained to randomly perturb the energy matrix elements and generate individual samples for the Monte Carlo (MC) technique applied to derive the ensemble averaged CLF. From results of ESEA tests conducted on an aircraft fuselage section, the SEM approach provides a better performance of estimated CLFs compared to classical matrix inversion methods. The expected range of CLF values and the synthesized energy are used as quality criteria of the matrix inversion, allowing to assess critical SEA subsystems, which might require a more refined statistical description of the excitation and the response fields. Moreover, the impact of the variance of the normalized vibration energy on uncertainty of the derived CLFs is outlined.
NASA Astrophysics Data System (ADS)
Kestens, Vikram; Roebben, Gert; Herrmann, Jan; Jämting, Åsa; Coleman, Victoria; Minelli, Caterina; Clifford, Charles; De Temmerman, Pieter-Jan; Mast, Jan; Junjie, Liu; Babick, Frank; Cölfen, Helmut; Emons, Hendrik
2016-06-01
A new certified reference material for quality control of nanoparticle size analysis methods has been developed and produced by the Institute for Reference Materials and Measurements of the European Commission's Joint Research Centre. The material, ERM-FD102, consists of an aqueous suspension of a mixture of silica nanoparticle populations of distinct particle size and origin. The characterisation relied on an interlaboratory comparison study in which 30 laboratories of demonstrated competence participated with a variety of techniques for particle size analysis. After scrutinising the received datasets, certified and indicative values for different method-defined equivalent diameters that are specific for dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), particle tracking analysis (PTA) and asymmetrical-flow field-flow fractionation (AF4) were assigned. The value assignment was a particular challenge because metrological concepts were not always interpreted uniformly across all participating laboratories. This paper presents the main elements and results of the ERM-FD102 characterisation study and discusses in particular the key issues of measurand definition and the estimation of measurement uncertainty.
Youssef, H. F.; Hegazy, W. H.; Abo-almaged, H. H.; El-Bassyouni, G. T.
2015-01-01
The core-shell method is used as a novel synthetic process of micronized Ti-Zeolite Na-A which involves calcination at 700°C of coated Egyptian Kaolin with titanium tetrachloride in acidic medium as the first step. The produced Ti-coated metakaolinite is subjected to microwave irradiation at low temperature of 80°C for 2 h. The prepared micronized Ti-containing Zeolites-A (Ti-Z-A) is characterized by FTIR, XRF, XRD, SEM, and EDS elemental analysis. Ag-exchanged form of Ti-Z-Ag is also prepared and characterized. The Wt% of silver exchanged onto the Ti-Zeolite structure was determined by atomic absorption spectra. The in vitro cytotoxic activity of Ti-Z-Ag against human hepatocellular carcinoma cell line (HePG2), colon cell line carcinoma (HCT116), lung carcinoma cell line (A549), and human Caucasian breast adenocarcinoma (MCF7) is reported. The results were promising and revealed that the exchanged Ag form of micronized Ti-Zeolite-A can be used as novel antitumor drug. PMID:25705142
Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S
2014-07-07
A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.
Yang, Liang; Chen, Mingxiang; Lv, Zhicheng; Wang, Simin; Liu, Xiaogang; Liu, Sheng
2013-07-01
A simple and practical method for preparing phosphor glass is proposed. Phosphor distribution and element analysis are investigated by optical microscope and field emission scanning electron microscope (FE-SEM). The phosphor particles dispersed in the matrix are vividly observed, and their distributions are uniform. Spectrum distribution and color coordinates dependent on the thickness of the screen-printed phosphor layer coupled with a blue light emitting diode (LED) chip are studied. The luminous efficacy of the 75 μm printed phosphor-layer phosphor glass packaged white LED is 81.24 lm/W at 350 mA. This study opens up many possibilities for applications using the phosphor glass on a selected chip in which emission is well absorbed by all phosphors. The screen-printing technique also offers possibilities for the design and engineering of complex phosphor layers on glass substrates. Phosphor screen-printing technology allows the realization of high stability and thermal conductivity for the phosphor layer. This phosphor glass method provides many possibilities for LED packing, including thin-film flip chip and remote phosphor technology.
Preparation of Si-containing oxide coating and biomimetic apatite induction on magnesium alloy
NASA Astrophysics Data System (ADS)
Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong
2016-12-01
Magnesium and its alloys are recently found important in the field of bone repairing for their ideal mechanical performance and excellent biocompatibility. Micro-arc oxidation (MAO) is a simple, controllable and efficient electrochemistry method that can prepare protective ceramic coatings on magnesium alloys. The properties of the MAO coating, such as thickness, microstructure, roughness and composition, can easily be controlled by adjusting the voltage, current density, duration or the electrolyte concentration. In this work, MAO coatings are prepared on ZK61 magnesium alloy at different voltages. The structure characteristics and element distributions of the coating are investigated by XRD, TEM, SEM and EPMA. The MAO samples are immersed in SBF for 7, 14 and 28 days respectively. The corrosion behaviors of the samples in SBF were also investigated by potentiodynamic polarization curves. The corrosion products were characterized by EDS and FT-IR. The MAO coated ZK61 alloy samples showed excellent corrosion resistance and bioactivity. The MAO method demonstrates a great potential in the preparation of degradable and bioactive orthopedic magnesium-based implants.
ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application
NASA Astrophysics Data System (ADS)
Ashok, CH.; Venkateswara Rao, K.
2014-12-01
The nanocomposite rods shows well known properties compared with nano structured materials for various applications like light-emitting diodes, electron field emitters, solar cells, optoelectronics, sensors, transparent conductors and fabrication of nano devices. Present paper investigates the properties of ZnO/TiO2 nanocomposite rods. The bi component of ZnO/TiO2 nanocomposite rods was synthesized by microwave-assisted method which is very simple, rapid and uniform in heating. The frequency of microwaves 2.45 GHz was used and temperature maintained 180 °C. Zinc acetate and titanium isopropoxide precursors were used in the preparation. The obtained ZnO/TiO2 nanocomposite rods were annealed at 500 °C and 600 °C. ZnO/TiO2 nanocomposite rods have been characterized by X-ray Diffraction (XRD) for average crystallite size and phase of the composite material, Particle Size Analyser (PSA) for average particle size, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) for morphology study, Energy Dispersive X-ray Spectrometry (EDX) for elemental analysis, and Thermal Gravimetric and Differential Thermal Analysis (TG-DTA) for thermal property.
NASA Astrophysics Data System (ADS)
Momeni, Mohamad Mohsen; Ghayeb, Yousef
2016-06-01
Gold-modified TiO2-WO3 nanotubes with different amounts of gold were obtained by two methods; photoassisted deposition and one-step electrochemical anodizing method. The morphology, crystallinity and elemental composition were studied by FE-SEM, XRD and EDX. The photoelectrochemical performance was examined under Xe light illumination in 1 M NaOH electrolyte. Characterization of the as-prepared TiO2-WO3 samples indicated that sodium tungstate concentration in anodizing solution significantly influenced the morphology and photoelectrochemical activity of fabricated films. Also, photoelectrochemical characterizations show that the photocatalytic activity of Au/TiO2-WO3 nanotubes was improved as compared with that of bare TiO2-WO3 nanotubes. The experimental results showed that the photocatalytic activities of Au/TiO2-WO3 were significantly affected by the amount of Au nanoparticles. The amount of gold nanoparticles was effectively controlled by time of photoreduction of the chloroauric acid solution. These new photoanodes showed enhanced high photocurrent density with good stability and are a highly promising photoanodes for photocatalytic hydrogen production.
Fabrication and characterization of Gd2O2SO4:Tb3+ phosphors by sol-gel method
NASA Astrophysics Data System (ADS)
Aritman, I.; Yildirim, S.; Kisa, A.; Guleryuz, L. F.; Yurddaskal, M.; Dikici, T.; Celik, E.
2017-02-01
The objective of the innovative approaches of the scintillation materials to be used in the digital portal imaging systems in the radiotherapy applications is to research the GOS material production that has been activated with the rare earth elements (RE), to produce the scintillation detectors that have a rapid imaging process with a lesser radiation and higher image quality from these materials and to apply the radiographic imaging systems. The GOS: Tb3+ showed high emission peak and high x-ray absorption properties which have been determined for application to mammography and dental radiography. In this study, Gd2O2SO4:Tb3+ phosphors were fabricated by the sol-gel method that is a unique technique and not previously applied. Besides, the structural characterization of GOS: Tb3+ has been investigated. The strongest emission peak located at 549 nm under 312 nm UV light excitation was appeared on the GOS: Tb3+ phosphor particles. The characterization processing optimized by using FTIR, DTA-TG, XRD, XPS, SEM and the luminescence spectroscopy.
Numerical modeling of time-lapse monitoring of CO2 sequestration in a layered basalt reservoir
Khatiwada, M.; Van Wijk, K.; Clement, W.P.; Haney, M.
2008-01-01
As part of preparations in plans by The Big Sky Carbon Sequestration Partnership (BSCSP) to inject CO2 in layered basalt, we numerically investigate seismic methods as a noninvasive monitoring technique. Basalt seems to have geochemical advantages as a reservoir for CO2 storage (CO2 mineralizes quite rapidly while exposed to basalt), but poses a considerable challenge in term of seismic monitoring: strong scattering from the layering of the basalt complicates surface seismic imaging. We perform numerical tests using the Spectral Element Method (SEM) to identify possibilities and limitations of seismic monitoring of CO2 sequestration in a basalt reservoir. While surface seismic is unlikely to detect small physical changes in the reservoir due to the injection of CO2, the results from Vertical Seismic Profiling (VSP) simulations are encouraging. As a perturbation, we make a 5%; change in wave velocity, which produces significant changes in VSP images of pre-injection and post-injection conditions. Finally, we perform an analysis using Coda Wave Interferometry (CWI), to quantify these changes in the reservoir properties due to CO2 injection.
Investigation of hidden periodic structures on SEM images of opal-like materials using FFT and IFFT.
Stephant, Nicolas; Rondeau, Benjamin; Gauthier, Jean-Pierre; Cody, Jason A; Fritsch, Emmanuel
2014-01-01
We have developed a method to use fast Fourier transformation (FFT) and inverse fast Fourier transformation (IFFT) to investigate hidden periodic structures on SEM images. We focused on samples of natural, play-of-color opals that diffract visible light and hence are periodically structured. Conventional sample preparation by hydrofluoric acid etch was not used; untreated, freshly broken surfaces were examined at low magnification relative to the expected period of the structural features, and, the SEM was adjusted to get a very high number of pixels in the images. These SEM images were treated by software to calculate autocorrelation, FFT, and IFFT. We present how we adjusted SEM acquisition parameters for best results. We first applied our procedure on an SEM image on which the structure was obvious. Then, we applied the same procedure on a sample that must contain a periodic structure because it diffracts visible light, but on which no structure was visible on the SEM image. In both cases, we obtained clearly periodic patterns that allowed measurements of structural parameters. We also investigated how the irregularly broken surface interfered with the periodic structure to produce additional periodicity. We tested the limits of our methodology with the help of simulated images. © 2014 Wiley Periodicals, Inc.
Rajshekar, Mithun; Julian, Roberta; Williams, Anne-Marie; Tennant, Marc; Forrest, Alex; Walsh, Laurence J; Wilson, Gary; Blizzard, Leigh
2017-09-01
Intra-oral 3D scanning of dentitions has the potential to provide a fast, accurate and non-invasive method of recording dental information. The aim of this study was to assess the reliability of measurements of human dental casts made using a portable intra-oral 3D scanner appropriate for field use. Two examiners each measured 84 tooth and 26 arch features of 50 sets of upper and lower human dental casts using digital hand-held callipers, and secondly using the measuring tool provided with the Zfx IntraScan intraoral 3D scanner applied to the virtual dental casts. The measurements were repeated at least one week later. Reliability and validity were quantified concurrently by calculation of intra-class correlation coefficients (ICC) and standard errors of measurement (SEM). The measurements of the 110 landmark features of human dental casts made using the intra-oral 3D scanner were virtually indistinguishable from measurements of the same features made using conventional hand-held callipers. The difference of means as a percentage of the average of the measurements by each method ranged between 0.030% and 1.134%. The intermethod SEMs ranged between 0.037% and 0.535%, and the inter-method ICCs ranged between 0.904 and 0.999, for both the upper and the lower arches. The inter-rater SEMs were one-half and the intra-method/rater SEMs were one-third of the inter-method values. This study demonstrates that the Zfx IntraScan intra-oral 3D scanner with its virtual on-screen measuring tool is a reliable and valid method for measuring the key features of dental casts. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, F Q; Li, M Q; Peng, S H; Zhang, H M; Liu, M; Qu, X Y
2018-06-09
Objective: To investigate the antibacterial property and biological activity of Ti dental implant with antimicrobial peptide Pac-525 coatings, and to study the effect of peptide Pac-525 coatings on Porphyromonas gingivalis 's antibacterial performance and osteoblast proliferation and adhesion. Methods: After ultrasonic micro arc oxidation, alkali treatment and silane treatment, forty-five pure titanium specimens were exposed to antibacterial peptide Pac-525 in different concentration (0.25, 0.50, 0.75 g/L). The titanium specimens in the control group were only treated with ultrasonic micro arc oxidation, alkali treatment and silane treatment. The morphologies of coatings were observed by scanning electron microscope (SEM), and the element changes were detected by energy spectrum analyzer. Orange acridine-ethidium bromide double staining was used to detect the average percentage of live bacteria and biofilm thickness, after the specimens in each group and Porphyromonas gingivalis were co-cultured for 72 hours. Cell counting Kit-8 method and immunofluorescence staining were used to test the proliferation of osteoblasts, the number and growth morphologies of adherent cells, respectively. Results: SEM and energy spectrum analysis showed that the Pac-525 particles loaded on the surface of the coating, and the C and N elements in the Pac-525 coating group were significantly more than those in the control group. The average percentage of living bacteria in the control group, 0.25, 0.50 and 0.75 g/L antimicrobial peptides were 0.58%, 0.45%, 0.34% and 0.28%, respectively, and the difference between each group was statistically significant ( P< 0.05). The biofilm thickness of Porphyromonas gingivalis in 0.50 and 0.75 g/L antibacterial peptide group were (98.3±1.2) and (94.5±2.5) μm respectively, which were significantly less than those in control group and 0.25 g/L antibacterial peptide group [(117.6±1.5) and (118.0±1.3) μm] ( P< 0.05), respectively. The number of bone cell adhesion and proliferation of all antimicrobial peptides were significantly greater than those in the control group ( P< 0.05), and the cells stretched better. Conclusions: The antibacterial peptide coating of titanium implants could inhibit the formation of bacterial biofilm. It had good antibacterial properties and could promote the adhesion and proliferation of osteoblasts.
Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, L. C. C.; Yahya, N.; Daud, H.
The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMSmore » with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.« less
Synchronized voltage contrast display analysis system
NASA Technical Reports Server (NTRS)
Johnston, M. F.; Shumka, A.; Miller, E.; Evans, K. C. (Inventor)
1982-01-01
An apparatus and method for comparing internal voltage potentials of first and second operating electronic components such as large scale integrated circuits (LSI's) in which voltage differentials are visually identified via an appropriate display means are described. More particularly, in a first embodiment of the invention a first and second scanning electron microscope (SEM) are configured to scan a first and second operating electronic component respectively. The scan pattern of the second SEM is synchronized to that of the first SEM so that both simultaneously scan corresponding portions of the two operating electronic components. Video signals from each SEM corresponding to secondary electron signals generated as a result of a primary electron beam intersecting each operating electronic component in accordance with a predetermined scan pattern are provided to a video mixer and color encoder.
Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity.
Napoletano, Paolo; Piccoli, Flavio; Schettini, Raimondo
2018-01-12
Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.
Lee, Jong Jin; Hyun, Jong Jin; Choe, Jung Wan; Lee, Dong-Won; Kim, Seung Young; Jung, Sung Woo; Jung, Young Kul; Koo, Ja Seol; Yim, Hyung Joon; Lee, Sang Woo
2017-11-01
Endoscopic stenting for combined malignant biliary and duodenal obstruction is technically demanding. However, this procedure can be facilitated when there is guidance from previously inserted stent or PTBD tube. This study aimed to evaluate the feasibility and clinical success rate of endoscopic placement of biliary self-expandable metal stent (SEMS) through duodenal SEMS in patients with combined biliary and duodenal obstruction due to inoperable or metastatic periampullary malignancy. A total of 12 patients with combined malignant biliary and duodenal stricture underwent insertion of biliary SEMS through the mesh of specialized duodenal SEMS from July 2012 to October 2016. Technical and clinical success rate, adverse events and survival after completion of SEMS insertion were evaluated. The duodenal strictures were located in the first portion of the duodenum in four patients (Type I), in the second portion in three patients (Type II), and in the third portion in five patients (Type III). Technical success rate of combined metallic stenting was 91.7%. Insertion of biliary SEMS was guided by previously inserted biliary SEMS in nine patients, plastic stent in one patient, and PTBD in two patients. Clinical success rate was 90.9%. There were no early adverse events after the procedure. Mean survival period after combined metallic stenting was 91.9 days (range: 15-245 days). Endoscopic placement of biliary SEMS through duodenal SEMS is feasible with high success rates and relatively easy when there is guidance. This method can be a good alternative for palliation in patients with combined biliary and duodenal obstruction.
NASA Astrophysics Data System (ADS)
Aimran, Ahmad Nazim; Ahmad, Sabri; Afthanorhan, Asyraf; Awang, Zainudin
2017-05-01
Structural equation modeling (SEM) is the second generation statistical analysis technique developed for analyzing the inter-relationships among multiple variables in a model. Previous studies have shown that there seemed to be at least an implicit agreement about the factors that should drive the choice between covariance-based structural equation modeling (CB-SEM) and partial least square path modeling (PLS-PM). PLS-PM appears to be the preferred method by previous scholars because of its less stringent assumption and the need to avoid the perceived difficulties in CB-SEM. Along with this issue has been the increasing debate among researchers on the use of CB-SEM and PLS-PM in studies. The present study intends to assess the performance of CB-SEM and PLS-PM as a confirmatory study in which the findings will contribute to the body of knowledge of SEM. Maximum likelihood (ML) was chosen as the estimator for CB-SEM and was expected to be more powerful than PLS-PM. Based on the balanced experimental design, the multivariate normal data with specified population parameter and sample sizes were generated using Pro-Active Monte Carlo simulation, and the data were analyzed using AMOS for CB-SEM and SmartPLS for PLS-PM. Comparative Bias Index (CBI), construct relationship, average variance extracted (AVE), composite reliability (CR), and Fornell-Larcker criterion were used to study the consequence of each estimator. The findings conclude that CB-SEM performed notably better than PLS-PM in estimation for large sample size (100 and above), particularly in terms of estimations accuracy and consistency.
Self-expanding metallic stents drainage for acute proximal colon obstruction
Yao, Li-Qin; Zhong, Yun-Shi; Xu, Mei-Dong; Xu, Jian-Min; Zhou, Ping-Hong; Cai, Xian-Li
2011-01-01
AIM: To clarify the usefulness of the self-expanding metallic stents (SEMS) in the management of acute proximal colon obstruction due to colon carcinoma before curative surgery. METHODS: Eighty-one colon (proximal to spleen flex) carcinoma patients (47 males and 34 females, aged 18-94 years, mean = 66.2 years) treated between September 2004 and June 2010 for acute colon obstruction were enrolled to this study, and their clinical and radiological features were reviewed. After a cleaning enema was administered, urgent colonoscopy was performed. Subsequently, endoscopic decompression using SEMS placement was attempted. RESULTS: Endoscopic decompression using SEMS placement was technically successful in 78 (96.3%) of 81 patients. Three patients’ symptoms could not be relieved after SEMS placement and emergent operation was performed 1 d later. The site of obstruction was transverse colon in 18 patients, the hepatic flex in 42, and the ascending colon in 21. Following adequate cleansing of the colon, patients’ abdominal girth was decreased from 88 ± 3 cm before drainage to 72 ± 6 cm 7 d later, and one-stage surgery after 8 ± 1 d (range, 7-10 d) was performed. No anastomotic leakage or postoperative stenosis occurred after operation. CONCLUSION: SEMS placement is effective and safe in the management of acute proximal colon obstruction due to colon carcinoma, and is considered as a bridged method before curative surgery. PMID:21876623
Cho, Jae Hee; Jeon, Tae Joo; Park, Jeong Youp; Kim, Hee Man; Kim, Yoon Jae; Park, Seung Woo; Chung, Jae Bock; Song, Si Young; Bang, Seungmin
2011-02-01
The self-expandable metallic stent (SEMS) has been widely used for unresectable malignant biliary obstruction but eventually becomes occluded by tumor ingrowth/overgrowth and sludge. Therefore, we aimed to determine the therapeutic effectiveness of secondary stents and to find differences according to various combinations of the first and second stents for the management of occluded SEMSs in patients with malignant distal biliary obstruction. Between 1999 and November 2008, 77 patients with malignant biliary obstruction underwent secondary biliary stent placement as "stent-in-stent" at three university hospitals in Korea (40 covered, 26 uncovered, and 11 plastic stents). The membrane of the covered SEMS was regarded as the barrier against tumor ingrowth. We categorized the patients into three groups based on whether the covered SEMS was either the first or the second stent: membrane-SEMS (18 covered-covered; 9 covered-uncovered; 22 uncovered-covered SEMS), bare-SEMS (17 uncovered-uncovered SEMS), and plastic stent (3 covered-plastic; 8 uncovered-plastic). The median patency of second stents was 138, 109, and 88 days (covered, uncovered, and plastic stents). The second covered SEMSs had a significantly longer patency than plastic stents (p=0.047). In a multivariate analysis including membrane-SEMS, bare-SEMS, and plastic stent groups, the bare-SEMS had a worse cumulative stent patency (HR=2.04, CI=1.08-3.86) and survival time (HR=2.37, CI=1.25-4.49) than the membrane-SEMS. Patients with ampulla of Vater cancer had better stent patency (HR=0.27, CI=0.08-0.98) and survival (HR=0.17, CI=0.04-0.77) than those with other pancreatobiliary malignancies. In addition, antitumor treatment prolonged survival time (HR=0.50, CI=0.26-0.99). The placement of additional biliary stents using the "stent-in-stent" method is an effective treatment for an occluded metallic primary stent. In addition, double biliary SEMS placement using at least one covered SEMS (in the primary and/or secondary procedure) might provide longer cumulative stent patency and survival than using uncovered SEMSs in both procedures.
ERIC Educational Resources Information Center
Chan, Wai
2007-01-01
In social science research, an indirect effect occurs when the influence of an antecedent variable on the effect variable is mediated by an intervening variable. To compare indirect effects within a sample or across different samples, structural equation modeling (SEM) can be used if the computer program supports model fitting with nonlinear…
Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM
ERIC Educational Resources Information Center
Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman
2012-01-01
This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…