An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems
NASA Astrophysics Data System (ADS)
Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.
2018-02-01
By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.
Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin
2012-01-01
An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108
Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin
2012-01-01
An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.
NASA Astrophysics Data System (ADS)
Malekan, Mohammad; Barros, Felicio Bruzzi
2016-11-01
Using the locally-enriched strategy to enrich a small/local part of the problem by generalized/extended finite element method (G/XFEM) leads to non-optimal convergence rate and ill-conditioning system of equations due to presence of blending elements. The local enrichment can be chosen from polynomial, singular, branch or numerical types. The so-called stable version of G/XFEM method provides a well-conditioning approach when only singular functions are used in the blending elements. This paper combines numeric enrichment functions obtained from global-local G/XFEM method with the polynomial enrichment along with a well-conditioning approach, stable G/XFEM, in order to show the robustness and effectiveness of the approach. In global-local G/XFEM, the enrichment functions are constructed numerically from the solution of a local problem. Furthermore, several enrichment strategies are adopted along with the global-local enrichment. The results obtained with these enrichments strategies are discussed in detail, considering convergence rate in strain energy, growth rate of condition number, and computational processing. Numerical experiments show that using geometrical enrichment along with stable G/XFEM for global-local strategy improves the convergence rate and the conditioning of the problem. In addition, results shows that using polynomial enrichment for global problem simultaneously with global-local enrichments lead to ill-conditioned system matrices and bad convergence rate.
XFEM-based modeling of successive resections for preoperative image updating
NASA Astrophysics Data System (ADS)
Vigneron, Lara M.; Robe, Pierre A.; Warfield, Simon K.; Verly, Jacques G.
2006-03-01
We present a new method for modeling organ deformations due to successive resections. We use a biomechanical model of the organ, compute its volume-displacement solution based on the eXtended Finite Element Method (XFEM). The key feature of XFEM is that material discontinuities induced by every new resection can be handled without remeshing or mesh adaptation, as would be required by the conventional Finite Element Method (FEM). We focus on the application of preoperative image updating for image-guided surgery. Proof-of-concept demonstrations are shown for synthetic and real data in the context of neurosurgery.
Modeling 3D PCMI using the Extended Finite Element Method with higher order elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, W.; Spencer, Benjamin W.
2017-03-31
This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.
NASA Astrophysics Data System (ADS)
Youn, Dong Joon
This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach combining XFEM and random field is named as eXtended Random Finite Element Method (XRFEM). All the numerical analysis codes in this thesis are written in Fortran 2003, and these codes are applicable as a series of sub-modules within a suite of finite element codes developed by Smith and Griffiths (2004).
General framework for dynamic large deformation contact problems based on phantom-node X-FEM
NASA Astrophysics Data System (ADS)
Broumand, P.; Khoei, A. R.
2018-04-01
This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.
NASA Astrophysics Data System (ADS)
Malekan, Mohammad; Barros, Felício B.
2017-12-01
Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.
NASA Astrophysics Data System (ADS)
Zhang, Ziyu; Jiang, Wen; Dolbow, John E.; Spencer, Benjamin W.
2018-01-01
We present a strategy for the numerical integration of partial elements with the eXtended finite element method (X-FEM). The new strategy is specifically designed for problems with propagating cracks through a bulk material that exhibits inelasticity. Following a standard approach with the X-FEM, as the crack propagates new partial elements are created. We examine quadrature rules that have sufficient accuracy to calculate stiffness matrices regardless of the orientation of the crack with respect to the element. This permits the number of integration points within elements to remain constant as a crack propagates, and for state data to be easily transferred between successive discretizations. In order to maintain weights that are strictly positive, we propose an approach that blends moment-fitted weights with volume-fraction based weights. To demonstrate the efficacy of this simple approach, we present results from numerical tests and examples with both elastic and plastic material response.
NASA Astrophysics Data System (ADS)
Sun, Wei; Guan, Zhidong; Li, Zengshan
2017-12-01
In this paper, the Inter-Fiber Fracture (IFF) criterion of Puck failure theory based on the eXtended Finite Element Method (XFEM) was implemented in ABAQUS code to predict the intra-laminar crack initiation of unidirectional (UD) composite laminate. The transverse crack path in the matrix can be simulated accurately by the presented method. After the crack initiation, the propagation of the crack is simulated by Cohesive Zoom Model (CZM), in which the displacement discontinuities and stress concentration caused by matrix crack is introduced into the finite element (FE) model. Combined with the usage of the enriched element interface, which can be used to simulate the inter-laminar delamination crack, the Low Velocity Impact (LVI) induced damage of UD composite laminate beam with a typical stacking of composite laminates [05/903]S is studied. A complete crack initiation and propagation process was simulated and the numerical results obtained by the XFEM are consistent with the experimental results.
Multiscale Concrete Modeling of Aging Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.
In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Ginermore » et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].« less
Predict the fatigue life of crack based on extended finite element method and SVR
NASA Astrophysics Data System (ADS)
Song, Weizhen; Jiang, Zhansi; Jiang, Hui
2018-05-01
Using extended finite element method (XFEM) and support vector regression (SVR) to predict the fatigue life of plate crack. Firstly, the XFEM is employed to calculate the stress intensity factors (SIFs) with given crack sizes. Then predicetion model can be built based on the function relationship of the SIFs with the fatigue life or crack length. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Because of the accuracy of the forward Euler method only ensured by the small step size, a new prediction method is presented to resolve the issue. The numerical examples were studied to demonstrate the proposed method allow a larger step size and have a high accuracy.
The use of XFEM to assess the influence of intra-cortical porosity on crack propagation.
Rodriguez-Florez, Naiara; Carriero, Alessandra; Shefelbine, Sandra J
2017-03-01
This study aimed at using eXtended finite element method (XFEM) to characterize crack growth through bone's intra-cortical pores. Two techniques were compared using Abaqus: (1) void material properties were assigned to pores; (2) multiple enrichment regions with independent crack-growth possibilities were employed. Both were applied to 2D models of transverse images of mouse bone with differing porous structures. Results revealed that assigning multiple enrichment regions allows for multiple cracks to be initiated progressively, which cannot be captured when the voids are filled. Therefore, filling pores with one enrichment region in the model will not create realistic fracture patterns in Abaqus-XFEM.
Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.
As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.« less
XFEM modeling of hydraulic fracture in porous rocks with natural fractures
NASA Astrophysics Data System (ADS)
Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo
2017-08-01
Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.
Multiple crack detection in 3D using a stable XFEM and global optimization
NASA Astrophysics Data System (ADS)
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.
2018-02-01
A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.
Modeling Unidirectional Composite Laminates Using XFEM
2015-06-30
evaluated. For example, Benvenuti et al.22 applied XFEM concepts to modeling FRP-reinforced concrete and Sosa and Karapurath23 used XFEM to model...shows the translucent final configurations with = 0.5, 1, 5, and 10 ksi, respectively. When fracture occurs, denoted in red, it is located...REFERENCES (Cont’d) 22. E. Benvenuti, O. Vitarelli, A. Tralli, “Delamination of FRP-Reinforced Concrete by Means of an eXtended Finite Element
Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolbow, John; Zhang, Ziyu; Spencer, Benjamin
Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside ofmore » the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.« less
Stabilised finite-element methods for solving the level set equation with mass conservation
NASA Astrophysics Data System (ADS)
Kabirou Touré, Mamadou; Fahsi, Adil; Soulaïmani, Azzeddine
2016-01-01
Finite-element methods are studied for solving moving interface flow problems using the level set approach and a stabilised variational formulation proposed in Touré and Soulaïmani (2012; Touré and Soulaïmani To appear in 2016), coupled with a level set correction method. The level set correction is intended to enhance the mass conservation satisfaction property. The stabilised variational formulation (Touré and Soulaïmani 2012; Touré and Soulaïmani, To appear in 2016) constrains the level set function to remain close to the signed distance function, while the mass conservation is a correction step which enforces the mass balance. The eXtended finite-element method (XFEM) is used to take into account the discontinuities of the properties within an element. XFEM is applied to solve the Navier-Stokes equations for two-phase flows. The numerical methods are numerically evaluated on several test cases such as time-reversed vortex flow, a rigid-body rotation of Zalesak's disc, sloshing flow in a tank, a dam-break over a bed, and a rising bubble subjected to buoyancy. The numerical results show the importance of satisfying global mass conservation to accurately capture the interface position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Byoung Yoon; Leavy, Richard Brian; Niederhaus, John Henry J.
2013-03-01
The finite-element shock hydrodynamics code ALEGRA has recently been upgraded to include an X-FEM implementation in 2D for simulating impact, sliding, and release between materials in the Eulerian frame. For validation testing purposes, the problem of long-rod penetration in semi-infinite targets is considered in this report, at velocities of 500 to 3000 m/s. We describe testing simulations done using ALEGRA with and without the X-FEM capability, in order to verify its adequacy by showing X-FEM recovers the good results found with the standard ALEGRA formulation. The X-FEM results for depth of penetration differ from previously measured experimental data by lessmore » than 2%, and from the standard formulation results by less than 1%. They converge monotonically under mesh refinement at first order. Sensitivities to domain size and rear boundary condition are investigated and shown to be small. Aside from some simulation stability issues, X-FEM is found to produce good results for this classical impact and penetration problem.« less
3D ductile crack propagation within a polycrystalline microstructure using XFEM
NASA Astrophysics Data System (ADS)
Beese, Steffen; Loehnert, Stefan; Wriggers, Peter
2018-02-01
In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.
Fracture behaviors of ceramic tissue scaffolds for load bearing applications
NASA Astrophysics Data System (ADS)
Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing
2016-07-01
Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.
Application of an enriched FEM technique in thermo-mechanical contact problems
NASA Astrophysics Data System (ADS)
Khoei, A. R.; Bahmani, B.
2018-02-01
In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.
Composite Failures: A Comparison of Experimental Test Results and Computational Analysis Using XFEM
2016-09-30
NUWC-NPT Technical Report 12,218 30 September 2016 Composite Failures: A Comparison of Experimental Test Results and Computational Analysis...A Comparison of Experimental Test Results and Computational Analysis Using XFEM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...availability of measurement techniques, experimental testing of composite materials has largely outpaced the computational modeling ability, forcing
NASA Astrophysics Data System (ADS)
Li, Ping; Wang, Weiwei; Zhang, Chenxi; An, Yong; Song, Zhijian
2016-07-01
Intraoperative brain retraction leads to a misalignment between the intraoperative positions of the brain structures and their previous positions, as determined from preoperative images. In vitro swine brain sample uniaxial tests showed that the mechanical response of brain tissue to compression and extension could be described by the hyper-viscoelasticity theory. The brain retraction caused by the mechanical process is a combination of brain tissue compression and extension. In this paper, we first constructed a hyper-viscoelastic framework based on the extended finite element method (XFEM) to simulate intraoperative brain retraction. To explore its effectiveness, we then applied this framework to an in vivo brain retraction simulation. The simulation strictly followed the clinical scenario, in which seven swine were subjected to brain retraction. Our experimental results showed that the hyper-viscoelastic XFEM framework is capable of simulating intraoperative brain retraction and improving the navigation accuracy of an image-guided neurosurgery system (IGNS).
NASA Astrophysics Data System (ADS)
Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob
2017-05-01
In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.
A Floating Node Method for the Modelling of Discontinuities Within a Finite Element
NASA Technical Reports Server (NTRS)
Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.
2013-01-01
This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.
Thermally induced fracture for core-veneered dental ceramic structures.
Zhang, Zhongpu; Guazzato, Massimiliano; Sornsuwan, Tanapon; Scherrer, Susanne S; Rungsiyakull, Chaiy; Li, Wei; Swain, Michael V; Li, Qing
2013-09-01
Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
2016-08-31
crack initiation and SCG mechanisms (initiation and growth versus resistance). 2. Final summary Here, we present a hierarchical form of multiscale...prismatic faults in -Ti: A combined quantum mechanics /molecular mechanics study 2. Nano-indentation and slip transfer (critical in understanding crack...initiation) 3. An extended-finite element framework (XFEM) to study SCG mechanisms 4. Atomistic methods to develop a grain and twin boundaries database
Li, Ping; Wang, Weiwei; Zhang, Chenxi; An, Yong; Song, Zhijian
2016-01-01
Intraoperative brain retraction leads to a misalignment between the intraoperative positions of the brain structures and their previous positions, as determined from preoperative images. In vitro swine brain sample uniaxial tests showed that the mechanical response of brain tissue to compression and extension could be described by the hyper-viscoelasticity theory. The brain retraction caused by the mechanical process is a combination of brain tissue compression and extension. In this paper, we first constructed a hyper-viscoelastic framework based on the extended finite element method (XFEM) to simulate intraoperative brain retraction. To explore its effectiveness, we then applied this framework to an in vivo brain retraction simulation. The simulation strictly followed the clinical scenario, in which seven swine were subjected to brain retraction. Our experimental results showed that the hyper-viscoelastic XFEM framework is capable of simulating intraoperative brain retraction and improving the navigation accuracy of an image-guided neurosurgery system (IGNS). PMID:27387301
Topological design of all-ceramic dental bridges for enhancing fracture resistance.
Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing
2016-06-01
Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas J.
2017-10-19
As maximum device temperatures approach 200 °Celsius, continuous operation, sintered silver materials promise to maintain bonds at these high temperatures without excessive degradation rates. A detailed characterization of the thermal performance and reliability of sintered silver materials and processes has been initiated for the next year. Future steps in crack modeling include efforts to simulate crack propagation directly using the extended finite element method (X-FEM), a numerical technique that uses the partition of unity method for modeling discontinuities such as cracks in a system.
Bouvier, Adeline; Deleaval, Flavien; Doyley, Marvin M; Yazdani, Saami K; Finet, Gérard; Le Floc'h, Simon; Cloutier, Guy; Pettigrew, Roderic I; Ohayon, Jacques
2016-01-01
The peak cap stress (PCS) amplitude is recognized as a biomechanical predictor of vulnerable plaque (VP) rupture. However, quantifying PCS in vivo remains a challenge since the stress depends on the plaque mechanical properties. In response, an iterative material finite element (FE) elasticity reconstruction method using strain measurements has been implemented for the solution of these inverse problems. Although this approach could resolve the mechanical characterization of VPs, it suffers from major limitations since (i) it is not adapted to characterize VPs exhibiting high material discontinuities between inclusions, and (ii) does not permit real time elasticity reconstruction for clinical use. The present theoretical study was therefore designed to develop a direct material-FE algorithm for elasticity reconstruction problems which accounts for material heterogeneities. We originally modified and adapted the extended FE method (Xfem), used mainly in crack analysis, to model material heterogeneities. This new algorithm was successfully applied to six coronary lesions of patients imaged in vivo with intravascular ultrasound. The results demonstrated that the mean relative absolute errors of the reconstructed Young's moduli obtained for the arterial wall, fibrosis, necrotic core, and calcified regions of the VPs decreased from 95.3±15.56%, 98.85±72.42%, 103.29±111.86% and 95.3±10.49%, respectively, to values smaller than 2.6 × 10−8±5.7 × 10−8% (i.e. close to the exact solutions) when including modified-Xfem method into our direct elasticity reconstruction method. PMID:24240392
PWSCC Assessment by Using Extended Finite Element Method
NASA Astrophysics Data System (ADS)
Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk
2015-12-01
The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.
Li, Ping; Wang, Weiwei; Song, Zhijian; An, Yong; Zhang, Chenxi
2014-07-01
Brain retraction causes great distortion that limits the accuracy of an image-guided neurosurgery system that uses preoperative images. Therefore, brain retraction correction is an important intraoperative clinical application. We used a linear elastic biomechanical model, which deforms based on the eXtended Finite Element Method (XFEM) within a framework for brain retraction correction. In particular, a laser range scanner was introduced to obtain a surface point cloud of the exposed surgical field including retractors inserted into the brain. A brain retraction surface tracking algorithm converted these point clouds into boundary conditions applied to XFEM modeling that drive brain deformation. To test the framework, we performed a brain phantom experiment involving the retraction of tissue. Pairs of the modified Hausdorff distance between Canny edges extracted from model-updated images, pre-retraction, and post-retraction CT images were compared to evaluate the morphological alignment of our framework. Furthermore, the measured displacements of beads embedded in the brain phantom and the predicted ones were compared to evaluate numerical performance. The modified Hausdorff distance of 19 pairs of images decreased from 1.10 to 0.76 mm. The forecast error of 23 stainless steel beads in the phantom was between 0 and 1.73 mm (mean 1.19 mm). The correction accuracy varied between 52.8 and 100 % (mean 81.4 %). The results demonstrate that the brain retraction compensation can be incorporated intraoperatively into the model-updating process in image-guided neurosurgery systems.
Specimen-specific modeling of hip fracture pattern and repair.
Ali, Azhar A; Cristofolini, Luca; Schileo, Enrico; Hu, Haixiang; Taddei, Fulvia; Kim, Raymond H; Rullkoetter, Paul J; Laz, Peter J
2014-01-22
Hip fracture remains a major health problem for the elderly. Clinical studies have assessed fracture risk based on bone quality in the aging population and cadaveric testing has quantified bone strength and fracture loads. Prior modeling has primarily focused on quantifying the strain distribution in bone as an indicator of fracture risk. Recent advances in the extended finite element method (XFEM) enable prediction of the initiation and propagation of cracks without requiring a priori knowledge of the crack path. Accordingly, the objectives of this study were to predict femoral fracture in specimen-specific models using the XFEM approach, to perform one-to-one comparisons of predicted and in vitro fracture patterns, and to develop a framework to assess the mechanics and load transfer in the fractured femur when it is repaired with an osteosynthesis implant. Five specimen-specific femur models were developed from in vitro experiments under a simulated stance loading condition. Predicted fracture patterns closely matched the in vitro patterns; however, predictions of fracture load differed by approximately 50% due to sensitivity to local material properties. Specimen-specific intertrochanteric fractures were induced by subjecting the femur models to a sideways fall and repaired with a contemporary implant. Under a post-surgical stance loading, model-predicted load sharing between the implant and bone across the fracture surface varied from 59%:41% to 89%:11%, underscoring the importance of considering anatomic and fracture variability in the evaluation of implants. XFEM modeling shows potential as a macro-level analysis enabling fracture investigations of clinical cohorts, including at-risk groups, and the design of robust implants. © 2013 Published by Elsevier Ltd.
Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply
NASA Technical Reports Server (NTRS)
VanDerMeer, Frans P.; Davila, Carlos G.
2013-01-01
This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks
NASA Technical Reports Server (NTRS)
Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.
2010-01-01
A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.
Immersed Boundary Methods for Optimization of Strongly Coupled Fluid-Structure Systems
NASA Astrophysics Data System (ADS)
Jenkins, Nicholas J.
Conventional methods for design of tightly coupled multidisciplinary systems, such as fluid-structure interaction (FSI) problems, traditionally rely on manual revisions informed by a loosely coupled linearized analysis. These approaches are both inaccurate for a multitude of applications, and they require an intimate understanding of the assumptions and limitations of the procedure in order to soundly optimize the design. Computational optimization, in particular topology optimization, has been shown to yield remarkable results for problems in solid mechanics using density interpolations schemes. In the context of FSI, however, well defined boundaries play a key role in both the design problem and the mechanical model. Density methods neither accurately represent the material boundary, nor provide a suitable platform to apply appropriate interface conditions. This thesis presents a new framework for shape and topology optimization of FSI problems that uses for the design problem the Level Set method (LSM) to describe the geometry evolution in the optimization process. The Extended Finite Element method (XFEM) is combined with a fictitiously deforming fluid domain (stationary arbitrary Lagrangian-Eulerian method) to predict the FSI response. The novelty of the proposed approach lies in the fact that the XFEM explicitly captures the material boundary defined by the level set iso-surface. Moreover, the XFEM provides a means to discretize the governing equations, and weak immersed boundary conditions are applied with Nitsche's Method to couple the fields. The flow is predicted by the incompressible Navier-Stokes equations, and a finite-deformation solid model is developed and tested for both hyperelastic and linear elastic problems. Transient and stationary numerical examples are presented to validate the FSI model and numerical solver approach. Pertaining to the optimization of FSI problems, the parameters of the discretized level set function are defined as explicit functions of the optimization variables, and the parameteric optimization problem is solved by nonlinear programming methods. The gradients of the objective and constrains are computed by the adjoint method for the global monolithic fluid-solid system. Two types of design problems are explored for optimization of the fluid-structure response: 1) the internal structural topology is varied, preserving the fluid-solid interface geometry, and 2) the fluid-solid interface is manipulated directly, which leads to simultaneously configuring both internal structural topology and outer mold shape. The numerical results show that the LSM-XFEM approach is well suited for designing practical applications, while at the same time reducing the requirement on highly refined mesh resolution compared to traditional density methods. However, these results also emphasize the need for a more robust embedded boundary condition framework. Further, the LSM can exhibit greater dependence on initial design seeding, and can impede design convergence. In particular for the strongly coupled FSI analysis developed here, the thinning and eventual removal of structural members can cause jumps in the evolution of the optimization functions.
Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM
NASA Astrophysics Data System (ADS)
Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan
2015-04-01
Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 45, 601-620, (1999)
FRACTURE-RESISTANT MONOLITHIC DENTAL CROWNS
Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian
2016-01-01
Objective To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Methods Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Results Experimental measurements and XFEM predictions were self consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. Significance The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. PMID:26792623
Nitsche Extended Finite Element Methods for Earthquake Simulation
NASA Astrophysics Data System (ADS)
Coon, Ethan T.
Modeling earthquakes and geologically short-time-scale events on fault networks is a difficult problem with important implications for human safety and design. These problems demonstrate a. rich physical behavior, in which distributed loading localizes both spatially and temporally into earthquakes on fault systems. This localization is governed by two aspects: friction and fault geometry. Computationally, these problems provide a stern challenge for modelers --- static and dynamic equations must be solved on domains with discontinuities on complex fault systems, and frictional boundary conditions must be applied on these discontinuities. The most difficult aspect of modeling physics on complicated domains is the mesh. Most numerical methods involve meshing the geometry; nodes are placed on the discontinuities, and edges are chosen to coincide with faults. The resulting mesh is highly unstructured, making the derivation of finite difference discretizations difficult. Therefore, most models use the finite element method. Standard finite element methods place requirements on the mesh for the sake of stability, accuracy, and efficiency. The formation of a mesh which both conforms to fault geometry and satisfies these requirements is an open problem, especially for three dimensional, physically realistic fault. geometries. In addition, if the fault system evolves over the course of a dynamic simulation (i.e. in the case of growing cracks or breaking new faults), the geometry must he re-meshed at each time step. This can be expensive computationally. The fault-conforming approach is undesirable when complicated meshes are required, and impossible to implement when the geometry is evolving. Therefore, meshless and hybrid finite element methods that handle discontinuities without placing them on element boundaries are a desirable and natural way to discretize these problems. Several such methods are being actively developed for use in engineering mechanics involving crack propagation and material failure. While some theory and application of these methods exist, implementations for the simulation of networks of many cracks have not yet been considered. For my thesis, I implement and extend one such method, the eXtended Finite Element Method (XFEM), for use in static and dynamic models of fault networks. Once this machinery is developed, it is applied to open questions regarding the behavior of networks of faults, including questions of distributed deformation in fault systems and ensembles of magnitude, location, and frequency in repeat ruptures. The theory of XFEM is augmented to allow for solution of problems with alternating regimes of static solves for elastic stress conditions and short, dynamic earthquakes on networks of faults. This is accomplished using Nitsche's approach for implementing boundary conditions. Finally, an optimization problem is developed to determine tractions along the fault, enabling the calculation of frictional constraints and the rupture front. This method is verified via a series of static, quasistatic, and dynamic problems. Armed with this technique, we look at several problems regarding geometry within the earthquake cycle in which geometry is crucial. We first look at quasistatic simulations on a community fault model of Southern California, and model slip distribution across that system. We find the distribution of deformation across faults compares reasonably well with slip rates across the region, as constrained by geologic data. We find geometry can provide constraints for friction, and consider the minimization of shear strain across the zone as a function of friction and plate loading direction, and infer bounds on fault strength in the region. Then we consider the repeated rupture problem, modeling the full earthquake cycle over the course of many events on several fault geometries. In this work, we look at distributions of events, studying the effect of geometry on statistical metrics of event ensembles. Finally, this thesis is a proof of concept for the XFEM on earthquake cycle models on fault systems. We identify strengths and weaknesses of the method, and identify places for future improvement. We discuss the feasibility of the method's use in three dimensions, and find the method to be a strong candidate for future crustal deformation simulations.
NASA Astrophysics Data System (ADS)
Handa, Danish; Sekhar Dondapati, Raja; Kumar, Abhinav
2017-08-01
Ductile to brittle transition (DTBT) is extensively observed in materials under cryogenic temperatures, thereby observing brittle failure due to the non-resistance of crack propagation. Owing to its outstanding mechanical and thermal properties, Kevlar 49 composites are widely used in aerospace applications under cryogenic temperatures. Therefore, in this paper, involving the assumption of linear elastic fracture mechanics (LEFM), mechanical characterization of Kevlar 49 composite is done using Extended Finite Element Method (X-FEM) technique in Abaqus/CAE software. Further, the failure of Kevlar 49 composites due to the propagation of crack at room temperature and the cryogenic temperature is investigated. Stress, strain and strain energy density as a function of the width of the Kevlar specimen is predicted, indicates that Kevlar 49 composites are suitable for use under cryogenic temperatures.
Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefert, Christopher; Bochev, Pavel Blagoveston; Kramer, Richard Michael Jack
Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these modelsmore » can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.« less
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grutzik, Scott Joseph; Reedy, Jr., E. D.
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
Grutzik, Scott Joseph; Reedy, Jr., E. D.
2017-08-04
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, James V.; Wellman, Gerald William; Emery, John M.
2011-09-01
Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictionsmore » had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.« less
NASA Astrophysics Data System (ADS)
Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli
2016-06-01
In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.
XFEM with equivalent eigenstrain for matrix-inclusion interfaces
NASA Astrophysics Data System (ADS)
Benvenuti, Elena
2014-05-01
Several engineering applications rely on particulate composite materials, and numerical modelling of the matrix-inclusion interface is therefore a crucial part of the design process. The focus of this work is on an original use of the equivalent eigenstrain concept in the development of a simplified eXtended Finite Element Method. Key points are: the replacement of the matrix-inclusion interface by a coating layer with small but finite thickness, and its simulation as an inclusion with an equivalent eigenstrain. For vanishing thickness, the model is consistent with a spring-like interface model. The problem of a spherical inclusion within a cylinder is solved. The results show that the proposed approach is effective and accurate.
Effect of property gradients on enamel fracture in human molar teeth.
Barani, Amir; Bush, Mark B; Lawn, Brian R
2012-11-01
A model for the fracture of tooth enamel with graded elastic modulus and toughness is constructed using an extended finite element modeling (XFEM) package. The property gradients are taken from literature data on human molars, with maximum in modulus at the outer enamel surface and in toughness at the inner surface. The tooth is modeled as a brittle shell (enamel) and a compliant interior (dentin), with occlusal loading from a hard, flat contact at the cusp. Longitudinal radial (R) and margin (M) cracks are allowed to extend piecewise along the enamel walls under the action of an incrementally increasing applied load. A simple stratagem is deployed in which fictitious temperature profiles generate the requisite property gradients. The resulting XFEM simulations demonstrate that the crack fronts become more segmented as the property gradients become more pronounced, with enhanced propagation at the outer surface and inhibited propagation at the inner. Whereas the growth history of the cracks is profoundly influenced by the gradients, the ultimate critical loads required to attain full fractures are relatively unaffected. Some implications concerning dentistry are considered. Copyright © 2012 Elsevier Ltd. All rights reserved.
Numerical Borehole Breakdown Investigations using XFEM
NASA Astrophysics Data System (ADS)
Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther
2016-04-01
During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum Engineers, Inc. [4] MESCHKE, G.; Leonhart, D. (2015), "A generalized finite element method for hydro-mechanically coupled analysis of hydraulic fracturing problems using space-time variant enrichment functions." Computer Methods in Applied Mechanics and Engineering, 290:438 - 465
Damage properties simulations of self-healing composites.
Chen, Cheng; Ji, Hongwei; Wang, Huaiwen
2013-10-01
Self-healing materials are inspired by biological systems in which damage triggers an autonomic healing response. The damage properties of a self-healing polymer composite were investigated by numerical simulation in this paper. Unit cell models with single-edge centered crack and single-edge off-centered crack were employed to investigate the damage initiation and crack evolution by the extended finite element method (XFEM) modeling. The effect of microcapsule's Young's modulus on composites was investigated. Result indicates the microcapsule's Young's modulus has little effect on the unit cell's carrying capacity. It was found that during the crack propagation process, its direction is attracted toward the microcapsules, which makes it helpful for the microcapsules to be ruptured by the propagating crack fronts resulting in release of the healing agent into the cracks by capillary action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Young Joon; Jorshari, Razzi Movassaghi; Djilali, Ned
2015-03-10
Direct numerical simulations of the flow-nanoparticle interaction in a colloidal suspension are presented using an extended finite element method (XFEM) in which the dynamics of the nanoparticles is solved in a fully-coupled manner with the flow. The method is capable of accurately describing solid-fluid interfaces without the need of boundary-fitted meshes to investigate the dynamics of particles in complex flows. In order to accurately compute the high interparticle shear stresses and pressures while minimizing computing costs, an adaptive meshing technique is incorporated with the fluid-structure interaction algorithm. The particle-particle interaction at the microscopic level is modeled using the Lennard-Jones (LJ)more » potential and the corresponding potential parameters are determined by a scaling procedure. The study is relevant to the preparation of inks used in the fabrication of catalyst layers for fuel cells. In this paper, we are particularly interested in investigating agglomeration of the nanoparticles under external shear flow in a sliding bi-periodic Lees-Edwards frame. The results indicate that the external shear has a crucial impact on the structure formation of colloidal particles in a suspension.« less
A sophisticated simulation for the fracture behavior of concrete material using XFEM
NASA Astrophysics Data System (ADS)
Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili
2017-10-01
The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.
Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch
NASA Astrophysics Data System (ADS)
Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha
2018-06-01
It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.
Fracture-resistant monolithic dental crowns.
Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian
2016-03-01
To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.
Cortical bone fracture analysis using XFEM - case study.
Idkaidek, Ashraf; Jasiuk, Iwona
2017-04-01
We aim to achieve an accurate simulation of human cortical bone fracture using the extended finite element method within a commercial finite element software abaqus. A two-dimensional unit cell model of cortical bone is built based on a microscopy image of the mid-diaphysis of tibia of a 70-year-old human male donor. Each phase of this model, an interstitial bone, a cement line, and an osteon, are considered linear elastic and isotropic with material properties obtained by nanoindentation, taken from literature. The effect of using fracture analysis methods (cohesive segment approach versus linear elastic fracture mechanics approach), finite element type, and boundary conditions (traction, displacement, and mixed) on cortical bone crack initiation and propagation are studied. In this study cohesive segment damage evolution for a traction separation law based on energy and displacement is used. In addition, effects of the increment size and mesh density on analysis results are investigated. We find that both cohesive segment and linear elastic fracture mechanics approaches within the extended finite element method can effectively simulate cortical bone fracture. Mesh density and simulation increment size can influence analysis results when employing either approach, and using finer mesh and/or smaller increment size does not always provide more accurate results. Both approaches provide close but not identical results, and crack propagation speed is found to be slower when using the cohesive segment approach. Also, using reduced integration elements along with the cohesive segment approach decreases crack propagation speed compared with using full integration elements. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Ortega, J. M.
1984-01-01
The research efforts of University of Virginia students under a NASA sponsored program are summarized and the status of the program is reported. The research includes: testing method evaluations for N version programming; a representation scheme for modeling three dimensional objects; fault tolerant protocols for real time local area networks; performance investigation of Cyber network; XFEM implementation; and vectorizing incomplete Cholesky conjugate gradients.
Analysis of thin plates with holes by using exact geometrical representation within XFEM.
Perumal, Logah; Tso, C P; Leng, Lim Thong
2016-05-01
This paper presents analysis of thin plates with holes within the context of XFEM. New integration techniques are developed for exact geometrical representation of the holes. Numerical and exact integration techniques are presented, with some limitations for the exact integration technique. Simulation results show that the proposed techniques help to reduce the solution error, due to the exact geometrical representation of the holes and utilization of appropriate quadrature rules. Discussion on minimum order of integration order needed to achieve good accuracy and convergence for the techniques presented in this work is also included.
NASA Astrophysics Data System (ADS)
Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo
2018-02-01
In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.
Crack propagation in functionally graded strip under thermal shock
NASA Astrophysics Data System (ADS)
Ivanov, I. V.; Sadowski, T.; Pietras, D.
2013-09-01
The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.
3D multiscale crack propagation using the XFEM applied to a gas turbine blade
NASA Astrophysics Data System (ADS)
Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund
2014-01-01
This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.
Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply
NASA Technical Reports Server (NTRS)
Van Der Meer, Frans P.; Davila, Carlos G.
2012-01-01
The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.
A time step criterion for the stable numerical simulation of hydraulic fracturing
NASA Astrophysics Data System (ADS)
Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa
2017-04-01
The process of propagating or widening cracks in rock formations by means of fluid flow, known as hydraulic fracturing, has been gaining attention in the last couple of decades. There is growing interest in its numerical simulation to make predictions. Due to the complexity of the processes taking place, e.g. solid deformation, fluid flow in an open channel, fluid flow in a porous medium and crack propagation, this is a challenging task. Hydraulic fracturing has been numerically simulated for some years now [1] and new methods to take more of its processes into account (increasing accuracy) while modeling in an efficient way (lower computational effort) have been developed in recent years. An example is the use of the Extended Finite Element Method (XFEM), whose application originated within the framework of solid mechanics, but is now seen as an effective method for the simulation of discontinuities with no need for re-meshing [2]. While more focus has been put to the correct coupling of the processes mentioned above, less attention has been paid to the stability of the model. When using a quasi-static approach for the simulation of hydraulic fracturing, choosing an adequate time step is not trivial. This is in particular true if the equations are solved in a staggered way. The difficulty lies within the inconsistency between the static behavior of the solid and the dynamic behavior of the fluid. It has been shown that too small time steps may lead to instabilities early into the simulation time [3]. While the solid reaches a stationary state instantly, the fluid is not able to achieve equilibrium with its new surrounding immediately. This is why a time step criterion has been developed to quantify the instability of the model concerning the time step. The presented results were created with a 2D poroelastic model, using the XFEM for both the solid and the fluid phases. An embedded crack propagates following the energy release rate criteria when the fluid pressure within the crack rises. The fluid flow within the crack and in the porous medium are simulated using the mass balance for water and Darcy's law for flow. The equations for flow and deformation in the rock and that for flow in the fracture are solved in a staggered manner. The two sets of equations are coupled via Lagrange multipliers. We present a time step criterion for the stability of the scheme and illustrate this criterion with test examples of crack propagation. [1] T. Boone and A. Ingraffea. A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Met. 14, 27-47, (1990) [2] T. Mohammadnejad and A. Khoei. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements in Analysis and Design. 73, 77-95, (2013) [3] E.W. Remij, J.J.C. Remmers, J.M. Huyghe, D.M.J. Smeulders. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Engrg. 286, 293-312, (2015)
NASA Astrophysics Data System (ADS)
Villanueva Perez, Carlos Hernan
Computational design optimization provides designers with automated techniques to develop novel and non-intuitive optimal designs. Topology optimization is a design optimization technique that allows for the evolution of a broad variety of geometries in the optimization process. Traditional density-based topology optimization methods often lack a sufficient resolution of the geometry and physical response, which prevents direct use of the optimized design in manufacturing and the accurate modeling of the physical response of boundary conditions. The goal of this thesis is to introduce a unified topology optimization framework that uses the Level Set Method (LSM) to describe the design geometry and the eXtended Finite Element Method (XFEM) to solve the governing equations and measure the performance of the design. The methodology is presented as an alternative to density-based optimization approaches, and is able to accommodate a broad range of engineering design problems. The framework presents state-of-the-art methods for immersed boundary techniques to stabilize the systems of equations and enforce the boundary conditions, and is studied with applications in 2D and 3D linear elastic structures, incompressible flow, and energy and species transport problems to test the robustness and the characteristics of the method. A comparison of the framework against density-based topology optimization approaches is studied with regards to convergence, performance, and the capability to manufacture the designs. Furthermore, the ability to control the shape of the design to operate within manufacturing constraints is developed and studied. The analysis capability of the framework is validated quantitatively through comparison against previous benchmark studies, and qualitatively through its application to topology optimization problems. The design optimization problems converge to intuitive designs and resembled well the results from previous 2D or density-based studies.
NASA Astrophysics Data System (ADS)
Prévost, Jean H.; Sukumar, N.
2016-01-01
Faults are geological entities with thicknesses several orders of magnitude smaller than the grid blocks typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we consider the strong-coupling of solid displacement and fluid pressure in a three-dimensional poro-mechanical (reservoir-geomechanical) model. We introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). For internal fluid flow conduits, the continuous fluid pressure approximation admits a discontinuity in its normal derivative across the fault, whereas for an impermeable fault, the pressure approximation is discontinuous across the fault. Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.
Goal-oriented explicit residual-type error estimates in XFEM
NASA Astrophysics Data System (ADS)
Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin
2013-08-01
A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.
NASA Astrophysics Data System (ADS)
Häberle, K.; Ehlers, W.
2012-04-01
Supercritical CO2 can be injected into deep saline aquifers to reduce the amount of CO2 in the atmosphere and thus, lessen the impact on the global warming. Qualified reservoirs should be in a sufficient depth to guarantee the thermodynamical environment for the supercritical state of CO2. Furthermore, an impermeable cap-rock layer must confine the reservoir layer, in order to collect the CO2 in the desired region. In CO2 storage it is crucial to guarantee the safety of the storage site and to eliminate possibilities of leakage. Therefore, deformation processes of the rock matrix and the cap-rock layer, which might be induced by the high pressure injection of CO2, must be investigated. The increase in stress may also cause crack development in the cap-rock layer. These could either be new developing fractures or the break-up of already existing but cemented cracks or faults. If such cracks occur, CO2 could migrate to shallower regions where the temperature and pressure cannot support the supercritical condition of the CO2 anymore. Thus, it is important to describe the phase transition process between supercritical, liquid and gaseous CO2. This requires a proper understanding of the thermodynamical behaviour of CO2 within the reservoir. The Theory of Porous Media (TPM) provides a useful continuum-mechanical basis to describe real natural systems in a thermodynamically consistent way. Hence, the TPM is applied to model multiphasic flow of CO2 and water and include elasto-plastic solid deformations of the porous matrix. The Peng-Robinson equation is implemented as a cubic equation of state to describe the phase behaviour of CO2 in the liquid, gaseous and supercritical region. However, in the two-phase region the isotherms show a horizontal section and kinks at the boiling and vapour curve. This cannot be represented by a continuously differentiable function such as the Peng-Robinson equation. To circumvent this problem, the Antoine equation provides additional information by defining the saturation pressure for a given temperature. The injection of CO2 will increase the reservoir pressure which then will cause solid deformations. The extended Finite Element Method (XFEM) will be used to account for the discontinuities arising from crack development due to these solid deformations. The XFEM bears the advantage that the finite element mesh must not be adapted to the crack. Instead, to describe the discontinuity of the crack, the field quantities are locally enriched by defining additional degrees of freedom at the intersected finite elements. Herein, special attention has to be paid to the matrix-fracture interaction of the fluid phases. Numerical examples are performed to investigate the injection of CO2 into a saline aquifer. These are computed with the FEM program PANDAS, which allows solutions of strongly coupled multiphasic problems in deformable porous media.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2014-01-01
It is often advantageous to account for the microstructure of the material directly using multiscale modeling. For computational tractability, an idealized repeating unit cell (RUC) is used to capture all of the pertinent features of the microstructure. Typically, the RUC is dimensionless and depends only on the relative volume fractions of the different phases in the material. This works well for non-linear and inelastic behavior exhibiting a positive-definite constitutive response. Although, once the material exhibits strain softening, or localization, a mesh objective failure theories, such as smeared fracture theories, nodal and element enrichment theories (XFEM), cohesive elements or virtual crack closure technique (VCCT), can be utilized at the microscale, but the dimensions of the RUC must then be defined. One major challenge in multiscale progressive damage modeling is relating the characteristic lengths across the scales in order to preserve the energy that is dissipated via localization at the microscale. If there is no effort to relate the size of the macroscale element to the microscale RUC, then the energy that is dissipated will remain mesh dependent at the macroscale, even if it is regularized at the microscale. Here, a technique for mapping characteristic lengths across the scales is proposed. The RUC will be modeled using the generalized method of cells (GMC) micromechanics theory, and local failure in the matrix constituent subcells will be modeled using the crack band theory. The subcell characteristic lengths used in the crack band calculations will be mapped to the macroscale finite element in order to regularize the local energy in a manner consistent with the global length scale. Examples will be provided with and without the regularization, and they will be compared to a baseline case where the size and shape of the element and RUC are coincident (ensuring energy is preserved across the scales).
Crack Extension and Possibility of Debonding in Encapsulation-Based Self-Healing Materials.
Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong
2017-05-27
The breakage of capsules upon crack propagation is crucial for achieving crack healing in encapsulation-based self-healing materials. A mesomechanical model was developed in this study to simulate the process of crack propagation in a matrix and the potential of debonding. The model used the extended finite element method (XFEM) combined with a cohesive zone model (CZM) in a two-dimensional (2D) configuration. The configuration consisted of an infinite matrix with an embedded crack and a capsule nearby, all subjected to a uniaxial remote tensile load. A parametric study was performed to investigate the effect of geometry, elastic parameters and fracture properties on the fracture response of the system. The results indicated that the effect of the capsule wall on the fracture behavior of the matrix is insignificant for t c / R c ≤ 0.05. The matrix strength influenced the ultimate crack length, while the Young's modulus ratio E c / E m only affected the rate of crack propagation. The potential for capsule breakage or debonding was dependent on the comparative strength between capsule and interface (S c /S int ), provided the crack could reach the capsule. The critical value of S c ,cr /S int,cr was obtained using this model for materials design.
Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading
NASA Astrophysics Data System (ADS)
Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.
2015-09-01
Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.
Energy Based Multiscale Modeling with Non-Periodic Boundary Conditions
2013-05-13
below in Figure 8. At each incremental step in the analysis , the user material defined subroutine (UMAT) was utilized to perform the communication...initiation and modeling using XFEM. Appropriate localization schemes will be developed to allow for deformations conducive for crack opening...REFERENCES 1. Talreja R., 2006, “Damage analysis for structural integrity and durability of composite materials ,” Fatigue & Fracture of
Fluid-Structure Interaction in Continuum Models of Bacterial Biofilms
NASA Astrophysics Data System (ADS)
Hicks, Jared A.
Bacterial biofilms are aggregates of cells that adhere to nearly any solid-fluid interface. While many have harmful effects, such as industrial damage and nosocomial infections, certain biofilm species are now generating renewable energy as the fundamental components of Microbial Fuel Cells (MFCs). In an MFC, bacteria consume organic waste and, as they respire, produce free electrons. To do so efficiently, the bacteria must operate at peak metabolic activity, and so require an ample supply of nutrients. But existing MFC systems face several nutrient delivery problems, including clogging and downstream depletion. Ameliorating these problems will require a better understanding of the interplay between structural development and the surrounding fluid flow. In addition to delivering nutrients that affect biofilm growth, the fluid also exerts stresses that cause erosion, detachment, and deformation. These structural changes, in turn, affect the flow and alter the nutrient distribution. To account for this feedback effect, I have developed a continuum model that couples the growth and deformation processes. My model augments an existing growth model with evolution equations derived from Morphoelasticity Theory, by showing that the growth tensor can be directly related to the biofilm velocity potential. This result helps overcome one of the major practical limitations of Morphoelasticity--there is no physical framework for specifying the growth tensor. Through further analysis of the growth tensor, I define the related adjugate and anisotropic growth tensors, which can be more meaningful measures of growth for some models. Under the assumption of small strain, I show that there exists a small correction to the biofilm growth velocity (the accommodation velocity) that represents the effect of the elastic response on the evolution of the biofilm shape. I derive a solvability condition for the accommodation velocity, and show that it leads to a novel evolution equation for stress and strain in the biofilm, which couples the growth and deformation processes. Furthermore, I show that the introduction of a vorticity allows the accommodation velocity to be described by a system of Poisson equations, and that this vorticity arises naturally from Morphoelasticity theory and is related to the velocity solvability condition. I apply the modeling approach to a one-dimensional biofilm, and show that (a) the coupled growth process affects the evolution of the biofilm shape as expected, and (b) a non-coupled approach to biofilm strain introduces an error that grows over time. Numerical analysis of the one-dimensional strain evolution equation leads to several insights that inform the development of numerical methods for the two-dimensional case, including a split-step approach that reduces the fifth-order PDE to an advection equation for strain and a biharmonic equation for stress. Finally, I discuss some useful numerical methods for the simulation of elastic biofilm growth, particularly the discretization of the strain evolution equation(s). My overall approach is to track the evolving biofilm surface using a combination of the level-set method coupled with the eXtended Finite Element Method (XFEM). The major result is a novel mixed-XFEM discretization of the clamped-plate biharmonic equation, which I show to be first-order accurate for the trace of the solution on the interface.
NASA Astrophysics Data System (ADS)
Ghamgosar, M.; Erarslan, N.
2016-03-01
The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tupek, Michael R.
2016-06-30
In recent years there has been a proliferation of modeling techniques for forward predictions of crack propagation in brittle materials, including: phase-field/gradient damage models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques. However, progress on the corresponding inverse problems has been relatively lacking. Taking advantage of key features of existing modeling approaches, we propose a parabolic regularization of Barenblatt cohesive models which borrows extensively from previous phase-field and gradient damage formulations. An efficient explicit time integration strategy for this type of nonlocal fracture model is then proposed and justified. In addition, we present a C++ computational framework for computing in- putmore » parameter sensitivities efficiently for explicit dynamic problems using the adjoint method. This capability allows for solving inverse problems involving crack propagation to answer interesting engineering questions such as: 1) what is the optimal design topology and material placement for a heterogeneous structure to maximize fracture resistance, 2) what loads must have been applied to a structure for it to have failed in an observed way, 3) what are the existing cracks in a structure given various experimental observations, etc. In this work, we focus on the first of these engineering questions and demonstrate a capability to automatically and efficiently compute optimal designs intended to minimize crack propagation in structures.« less
NASA Astrophysics Data System (ADS)
Tesfay, Hayelom D.
Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava, and Alumina) were conducted. Based on the experimental results, analytical models for UVAG and CG (conventional grinding without ultrasonic vibration) processes were developed. As for the numerical study, an extended finite element method (XFEM) based on Virtual Crack Closure Technique (VCCT) in ABAQUS was used to model the formation of edge chippings both for UVAG and CG processes. The experimental results are compared against the numerical FEA and the analytical models. The experimental, theoretical, and computational simulation results revealed that the edge chipping size of bioceramics can be significantly reduced with the assistance of ultrasonic vibration. The investigation procedures and the results obtained in this dissertation would be used as a reference and practical guidance for choosing reasonable process variables as well as designing mathematical (analytical and numerical) models in manufacturing industries and academic institutions when the edge chippings of brittle materials are expected to be controlled.
Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals
NASA Astrophysics Data System (ADS)
Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.
2017-09-01
An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method
NASA Astrophysics Data System (ADS)
Yang, Zailin; Wang, Yao; Hei, Baoping
2013-12-01
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
NASA Technical Reports Server (NTRS)
Tsai, C.; Szabo, B. A.
1973-01-01
An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.
Method and system for processing optical elements using magnetorheological finishing
Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A
2012-09-18
A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.
NASA Technical Reports Server (NTRS)
Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.
2014-01-01
Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.
The Blended Finite Element Method for Multi-fluid Plasma Modeling
2016-07-01
Briefing Charts 3. DATES COVERED (From - To) 07 June 2016 - 01 July 2016 4. TITLE AND SUBTITLE The Blended Finite Element Method for Multi-fluid Plasma...BLENDED FINITE ELEMENT METHOD FOR MULTI-FLUID PLASMA MODELING Éder M. Sousa1, Uri Shumlak2 1ERC INC., IN-SPACE PROPULSION BRANCH (RQRS) AIR FORCE RESEARCH...MULTI-FLUID PLASMA MODEL 2 BLENDED FINITE ELEMENT METHOD Blended Finite Element Method Nodal Continuous Galerkin Modal Discontinuous Galerkin Model
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
Extended depth of field integral imaging using multi-focus fusion
NASA Astrophysics Data System (ADS)
Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua
2018-03-01
In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.
Two-point method uncertainty during control and measurement of cylindrical element diameters
NASA Astrophysics Data System (ADS)
Glukhov, V. I.; Shalay, V. V.; Radev, H.
2018-04-01
The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.
Developments in boundary element methods - 2
NASA Astrophysics Data System (ADS)
Banerjee, P. K.; Shaw, R. P.
This book is a continuation of the effort to demonstrate the power and versatility of boundary element methods which began in Volume 1 of this series. While Volume 1 was designed to introduce the reader to a selected range of problems in engineering for which the method has been shown to be efficient, the present volume has been restricted to time-dependent problems in engineering. Boundary element formulation for melting and solidification problems in considered along with transient flow through porous elastic media, applications of boundary element methods to problems of water waves, and problems of general viscous flow. Attention is given to time-dependent inelastic deformation of metals by boundary element methods, the determination of eigenvalues by boundary element methods, transient stress analysis of tunnels and caverns of arbitrary shape due to traveling waves, an analysis of hydrodynamic loads by boundary element methods, and acoustic emissions from submerged structures.
2016-06-12
Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and
NASA Astrophysics Data System (ADS)
Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza
2016-11-01
Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.
Stress-intensity factors for small surface and corner cracks in plates
NASA Technical Reports Server (NTRS)
Raju, I. S.; Atluri, S. N.; Newman, J. C., Jr.
1988-01-01
Three-dimensional finite-element and finite-alternating methods were used to obtain the stress-intensity factors for small surface and corner cracked plates subjected to remote tension and bending loads. The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The performance of the finite-element alternating method was studied on these crack configurations. A study of the computational effort involved in the finite-element alternating method showed that several crack configurations could be analyzed with a single rectangular mesh idealization, whereas the conventional finite-element method requires a different mesh for each configuration. The stress-intensity factors obtained with the finite-element-alternating method agreed well (within 5 percent) with those calculated from the finite-element method with singularity elements.
ERIC Educational Resources Information Center
Ma, T. S.; Wang, C. Y.
1984-01-01
Presents a literature review on methods used to analyze organic elements. Topic areas include methods for: (1) analyzing carbon, hydrogen, and nitrogen; (2) analyzing oxygen, sulfur, and halogens; (3) analyzing other elements; (4) simultaneously determining several elements; and (5) determing trace elements. (JN)
Domain decomposition methods for nonconforming finite element spaces of Lagrange-type
NASA Technical Reports Server (NTRS)
Cowsar, Lawrence C.
1993-01-01
In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.
The aggregated unfitted finite element method for elliptic problems
NASA Astrophysics Data System (ADS)
Badia, Santiago; Verdugo, Francesc; Martín, Alberto F.
2018-07-01
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
A Summary of the Space-Time Conservation Element and Solution Element (CESE) Method
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.
2015-01-01
The space-time Conservation Element and Solution Element (CESE) method for solving conservation laws is examined for its development motivation and design requirements. The characteristics of the resulting scheme are discussed. The discretization of the Euler equations is presented to show readers how to construct a scheme based on the CESE method. The differences and similarities between the CESE method and other traditional methods are discussed. The strengths and weaknesses of the method are also addressed.
A seismic analysis for masonry constructions: The different schematization methods of masonry walls
NASA Astrophysics Data System (ADS)
Olivito, Renato. S.; Codispoti, Rosamaria; Scuro, Carmelo
2017-11-01
Seismic analysis of masonry structures is usually analyzed through the use of structural calculation software based on equivalent frames method or to macro-elements method. In these approaches, the masonry walls are divided into vertical elements, masonry walls, and horizontal elements, so-called spandrel elements, interconnected by rigid nodes. The aim of this work is to make a critical comparison between different schematization methods of masonry wall underlining the structural importance of the spandrel elements. In order to implement the methods, two different structural calculation software were used and an existing masonry building has been examined.
System and method for image registration of multiple video streams
Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton
2018-02-06
Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.
Devices, systems, and methods for harvesting energy and methods for forming such devices
Kotter, Dale K.; Novack, Steven D.
2012-12-25
Energy harvesting devices include a substrate coupled with a photovoltaic material and a plurality of resonance elements associated with the substrate. The resonance elements are configured to collect energy in at least visible and infrared light spectra. Each resonance element is capacitively coupled with the photovoltaic material, and may be configured to resonate at a bandgap energy of the photovoltaic material. Systems include a photovoltaic material coupled with a feedpoint of a resonance element. Methods for harvesting energy include exposing a resonance element having a resonant electromagnetic radiation having a frequency between approximately 20 THz and approximately 1,000 THz, absorbing at least a portion of the electromagnetic radiation with the resonance element, and resonating the resonance element at a bandgap energy of an underlying photovoltaic material. Methods for forming an energy harvesting device include forming resonance elements on a substrate and capacitively coupling the resonance elements with a photovoltaic material.
Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang
2016-12-01
Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Low temperature chemical processing of graphite-clad nuclear fuels
Pierce, Robert A.
2017-10-17
A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.
Method and apparatus for sensing the natural frequency of a cantilevered body
Duncan, Michael G.
2000-01-01
A method and apparatus for measuring the natural resonant frequency of a spring element by monitoring a phase difference between an output signal from the spring element and an input signal to the spring element and by adjusting frequency of the input signal until a detected phase difference signals that the natural resonant frequency has been reached. The method and apparatus are applied to a micro-cantilevered elements used to measure gas compositions and concentrations. Such elements are provided with coatings that absorb gas to cause deflections and changes in the mass or spring constant of the cantilevered element. These changes correspond to changes in the natural resonant frequency of the cantilevered element which are measured using the method and apparatus described herein.
A Novel Polygonal Finite Element Method: Virtual Node Method
NASA Astrophysics Data System (ADS)
Tang, X. H.; Zheng, C.; Zhang, J. H.
2010-05-01
Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
On modelling three-dimensional piezoelectric smart structures with boundary spectral element method
NASA Astrophysics Data System (ADS)
Zou, Fangxin; Aliabadi, M. H.
2017-05-01
The computational efficiency of the boundary element method in elastodynamic analysis can be significantly improved by employing high-order spectral elements for boundary discretisation. In this work, for the first time, the so-called boundary spectral element method is utilised to formulate the piezoelectric smart structures that are widely used in structural health monitoring (SHM) applications. The resultant boundary spectral element formulation has been validated by the finite element method (FEM) and physical experiments. The new formulation has demonstrated a lower demand on computational resources and a higher numerical stability than commercial FEM packages. Comparing to the conventional boundary element formulation, a significant reduction in computational expenses has been achieved. In summary, the boundary spectral element formulation presented in this paper provides a highly efficient and stable mathematical tool for the development of SHM applications.
Improved accuracy for finite element structural analysis via an integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
The L sub 1 finite element method for pure convection problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1991-01-01
The least squares (L sub 2) finite element method is introduced for 2-D steady state pure convection problems with smooth solutions. It is proven that the L sub 2 method has the same stability estimate as the original equation, i.e., the L sub 2 method has better control of the streamline derivative. Numerical convergence rates are given to show that the L sub 2 method is almost optimal. This L sub 2 method was then used as a framework to develop an iteratively reweighted L sub 2 finite element method to obtain a least absolute residual (L sub 1) solution for problems with discontinuous solutions. This L sub 1 finite element method produces a nonoscillatory, nondiffusive and highly accurate numerical solution that has a sharp discontinuity in one element on both coarse and fine meshes. A robust reweighting strategy was also devised to obtain the L sub 1 solution in a few iterations. A number of examples solved by using triangle and bilinear elements are presented.
Evaluation of the use of a singularity element in finite element analysis of center-cracked plates
NASA Technical Reports Server (NTRS)
Mendelson, A.; Gross, B.; Srawley, J., E.
1972-01-01
Two different methods are applied to the analyses of finite width linear elastic plates with central cracks. Both methods give displacements as a primary part of the solution. One method makes use of Fourier transforms. The second method employs a coarse mesh of triangular second-order finite elements in conjunction with a single singularity element subjected to appropriate additional constraints. The displacements obtained by these two methods are in very good agreement. The results suggest considerable potential for the use of a cracked element for related crack problems, particularly in connection with the extension to nonlinear material behavior.
Spectral/ hp element methods: Recent developments, applications, and perspectives
NASA Astrophysics Data System (ADS)
Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.
2018-02-01
The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Determination of Trace Elements in Uranium by HPLC-ID-ICP-MS: NTNFC Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manard, Benjamin Thomas; Wylie, Ernest Miller II; Xu, Ning
This report covers the FY 16 effort for the HPLC-ID-ICP-MS methodology 1) sub-method validation for the group I&II elements, 2) sub-method stood-up and validation for REE, 3) sub-method development for the transition element, and 4) completion of a comprehensive SOP for three families of elements.
Method and apparatus for displaying information
NASA Technical Reports Server (NTRS)
Huang, Sui (Inventor); Eichler, Gabriel (Inventor); Ingber, Donald E. (Inventor)
2010-01-01
A method for displaying large amounts of information. The method includes the steps of forming a spatial layout of tiles each corresponding to a representative reference element; mapping observed elements onto the spatial layout of tiles of representative reference elements; assigning a respective value to each respective tile of the spatial layout of the representative elements; and displaying an image of the spatial layout of tiles of representative elements. Each tile includes atomic attributes of representative elements. The invention also relates to an apparatus for displaying large amounts of information. The apparatus includes a tiler forming a spatial layout of tiles, each corresponding to a representative reference element; a comparator mapping observed elements onto said spatial layout of tiles of representative reference elements; an assigner assigning a respective value to each respective tile of said spatial layout of representative reference elements; and a display displaying an image of the spatial layout of tiles of representative reference elements.
NASA Astrophysics Data System (ADS)
Astionenko, I. O.; Litvinenko, O. I.; Osipova, N. V.; Tuluchenko, G. Ya.; Khomchenko, A. N.
2016-10-01
Recently the interpolation bases of the hierarchical type have been used for the problem solving of the approximation of multiple arguments functions (such as in the finite-element method). In this work the cognitive graphical method of constructing of the hierarchical form bases on the serendipity finite elements is suggested, which allowed to get the alternative bases on a biquadratic finite element from the serendipity family without internal knots' inclusion. The cognitive-graphic method allowed to improve the known interpolation procedure of Taylor and to get the modified elements with irregular arrangement of knots. The proposed procedures are universal and are spread in the area of finite-elements.
Iterative methods for elliptic finite element equations on general meshes
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.; Choudhury, Shenaz
1986-01-01
Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.
CFD Analysis of the SBXC Glider Airframe
2016-06-01
mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the previous research data...greater than 15 m/s. 14. SUBJECT TERMS finite element method, computational fluid dynamics, Y Plus, mesh element quality, aerodynamic data, fluid...based mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for non-divergence form elliptic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
Method of lightening radiation darkened optical elements
Reich, Frederich R.; Schwankoff, Albert R.
1980-01-01
A method of lightening a radiation-darkened optical element in wich visible optical energy or electromagnetic radiation having a wavelength in the range of from about 2000 to about 20,000 angstroms is directed into the radiation-darkened optical element; the method may be used to lighten radiation-darkened optical element in-situ during the use of the optical element to transmit data by electronically separating the optical energy from the optical output by frequency filtering, data cooling, or interlacing the optic energy between data intervals.
Wave Scattering in Heterogeneous Media using the Finite Element Method
2016-10-21
AFRL-AFOSR-JP-TR-2016-0086 Wave Scattering in Heterogeneous Media using the Finite Element Method Chiruvai Vendhan INDIAN INSTITUTE OF TECHNOLOGY...Scattering in Heterogeneous Media using the Finite Element Method 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-12-1-4026 5c. PROGRAM ELEMENT NUMBER 61102F 6...14. ABSTRACT The primary aim of this study is to develop a finite element model for elastic scattering by axisymmetric bodies submerged in a
Method for recovering catalytic elements from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE
2012-06-26
A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.
An Automated Method for Landmark Identification and Finite-Element Modeling of the Lumbar Spine.
Campbell, Julius Quinn; Petrella, Anthony J
2015-11-01
The purpose of this study was to develop a method for the automated creation of finite-element models of the lumbar spine. Custom scripts were written to extract bone landmarks of lumbar vertebrae and assemble L1-L5 finite-element models. End-plate borders, ligament attachment points, and facet surfaces were identified. Landmarks were identified to maintain mesh correspondence between meshes for later use in statistical shape modeling. 90 lumbar vertebrae were processed creating 18 subject-specific finite-element models. Finite-element model surfaces and ligament attachment points were reproduced within 1e-5 mm of the bone surface, including the critical contact surfaces of the facets. Element quality exceeded specifications in 97% of elements for the 18 models created. The current method is capable of producing subject-specific finite-element models of the lumbar spine with good accuracy, quality, and robustness. The automated methods developed represent advancement in the state of the art of subject-specific lumbar spine modeling to a scale not possible with prior manual and semiautomated methods.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Improved accuracy for finite element structural analysis via a new integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
Application of the control volume mixed finite element method to a triangular discretization
Naff, R.L.
2012-01-01
A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.
An enriched finite element method to fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam
2017-08-01
In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.
Numerical Methods for 2-Dimensional Modeling
1980-12-01
high-order finite element methods, and a multidimensional version of the method of lines, both utilizing an optimized stiff integrator for the time...integration. The finite element methods have proved disappointing, but the method of lines has provided an unexpectedly large gain in speed. Two...diffusion problems with the same number of unknowns (a 21 x 41 grid), solved by second-order finite element methods, took over seven minutes on the Cray-i
1983-03-01
AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for
Development and Application of the p-version of the Finite Element Method.
1985-11-21
this property hierarchic families of finite elements. The h-version of the finite element method has been the subject of inten- sive study since the...early 1950’s and perhaps even earlier. Study of the p-version of the finite element method, on the other hand, began at Washington University in St...Louis in the early 1970’s and led to a more recent study of * .the h-p version. Research in the p-version (formerly called The Constraint Method) has
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.
1996-01-01
The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shi, Yacheng
1997-01-01
A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
Stowe, Ashley; Burger, Arnold
2016-05-10
A method for synthesizing I-III-VI.sub.2 compounds, including: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound under heat, with mixing, and/or via vapor transport. The Group III element is melted at a temperature of between about 200 degrees C. and about 700 degrees C. Preferably, the Group I element consists of a neutron absorber and the group III element consists of In or Ga. The Group VI element and the single phase I-III compound are heated to a temperature of between about 700 degrees C. and about 1000 degrees C. Preferably, the Group VI element consists of S, Se, or Te. Optionally, the method also includes doping with a Group IV element activator.
Method of preforming and assembling superconducting circuit elements
NASA Astrophysics Data System (ADS)
Haertling, Gene H.; Buckley, John D.
1991-03-01
The invention is a method of preforming and pretesting rigid and discrete superconductor circuit elements to optimize the superconductivity development of the preformed circuit element prior to its assembly, and encapsulation on a substrate and final environmental testing of the assembled ceramic superconductive elements.
A boundary element alternating method for two-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Krishnamurthy, T.
1992-01-01
A boundary element alternating method, denoted herein as BEAM, is presented for two dimensional fracture problems. This is an iterative method which alternates between two solutions. An analytical solution for arbitrary polynomial normal and tangential pressure distributions applied to the crack faces of an embedded crack in an infinite plate is used as the fundamental solution in the alternating method. A boundary element method for an uncracked finite plate is the second solution. For problems of edge cracks a technique of utilizing finite elements with BEAM is presented to overcome the inherent singularity in boundary element stress calculation near the boundaries. Several computational aspects that make the algorithm efficient are presented. Finally, the BEAM is applied to a variety of two dimensional crack problems with different configurations and loadings to assess the validity of the method. The method gives accurate stress intensity factors with minimal computing effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ain, Khusnul; Physics Department - Airlangga University, Surabaya – Indonesia, khusnulainunair@yahoo.com; Kurniadi, Deddy
2015-04-16
Back projection reconstruction has been implemented to get the dynamical image in electrical impedance tomography. However the implementation is still limited in method of adjacent data collection and circular object element model. The study aims to develop the methods of back projection as reconstruction method that has the high speed, accuracy, and flexibility, which can be used for various methods of data collection and model of the object element. The proposed method uses the forward problem solution as the operator of filtered and back projection matrix. This is done through a simulation study on several methods of data collection andmore » various models of the object element. The results indicate that the developed method is capable of producing images, fastly and accurately for reconstruction of the various methods of data collection and models of the object element.« less
Hong, Keehoon; Hong, Jisoo; Jung, Jae-Hyun; Park, Jae-Hyeung; Lee, Byoungho
2010-05-24
We propose a new method for rectifying a geometrical distortion in the elemental image set and extracting an accurate lens lattice lines by projective image transformation. The information of distortion in the acquired elemental image set is found by Hough transform algorithm. With this initial information of distortions, the acquired elemental image set is rectified automatically without the prior knowledge on the characteristics of pickup system by stratified image transformation procedure. Computer-generated elemental image sets with distortion on purpose are used for verifying the proposed rectification method. Experimentally-captured elemental image sets are optically reconstructed before and after the rectification by the proposed method. The experimental results support the validity of the proposed method with high accuracy of image rectification and lattice extraction.
Improved finite-element methods for rotorcraft structures
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1991-01-01
An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.
Using Finite Element Method to Estimate the Material Properties of a Bearing Cage
2018-02-01
UNCLASSIFIED UNCLASSIFIED AD-E403 988 Technical Report ARMET-TR-17035 USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL...TITLE AND SUBTITLE USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL PROPERTIES OF A BEARING CAGE 5a. CONTRACT NUMBER 5b. GRANT...specifications of non-metallic bearing cages are typically not supplied by the manufacturer. In order to setup a finite element analysis of a
Multiple methods integration for structural mechanics analysis and design
NASA Technical Reports Server (NTRS)
Housner, J. M.; Aminpour, M. A.
1991-01-01
A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.
Bioforensics: Characterization of biological weapons agents by NanoSIMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, P K; Ghosal, S; Leighton, T J
2007-02-26
The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developedmore » methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.« less
Comparison of Gap Elements and Contact Algorithm for 3D Contact Analysis of Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Tiku, K.; Kumar, A.; Handschuh, R.
1994-01-01
Three dimensional stress analysis of spiral bevel gears in mesh using the finite element method is presented. A finite element model is generated by solving equations that identify tooth surface coordinates. Contact is simulated by the automatic generation of nonpenetration constraints. This method is compared to a finite element contact analysis conducted with gap elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mao; Qiu, Zihua; Liang, Chunlei
In the present study, a new spectral difference (SD) method is developed for viscous flows on meshes with a mixture of triangular and quadrilateral elements. The standard SD method for triangular elements, which employs Lagrangian interpolating functions for fluxes, is not stable when the designed accuracy of spatial discretization is third-order or higher. Unlike the standard SD method, the method examined here uses vector interpolating functions in the Raviart-Thomas (RT) spaces to construct continuous flux functions on reference elements. Studies have been performed for 2D wave equation and Euler equa- tions. Our present results demonstrated that the SDRT method ismore » stable and high-order accurate for a number of test problems by using triangular-, quadrilateral-, and mixed- element meshes.« less
Developments in variational methods for high performance plate and shell elements
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmelo
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational foundations of high-performance elements, with emphasis on plate and shell elements constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parameterized variational principles are studied that provide a common foundation for the FF and ANS methods, as well as for a combination of both. From this unified formulation a variant of the ANS formulation, called the assumed natural deviatoric strain (ANDES) formulation, emerges as an important special case. The first ANDES element, a high-performance 9 degrees of freedom triangular Kirchhoff plate bending element, is briefly described to illustrate the use of the new formulation.
Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.
2011-01-01
Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.
Compositions and methods for the expression of selenoproteins in eukaryotic cells
Gladyshev, Vadim [Lincoln, NE; Novoselov, Sergey [Puschino, RU
2012-09-25
Recombinant nucleic acid constructs for the efficient expression of eukaryotic selenoproteins and related methods for production of recombinant selenoproteins are provided. The nucleic acid constructs comprise novel selenocysteine insertion sequence (SECIS) elements. Certain novel SECIS elements of the invention contain non-canonical quartet sequences. Other novel SECIS elements provided by the invention are chimeric SECIS elements comprising a canonical SECIS element that contains a non-canonical quartet sequence and chimeric SECIS elements comprising a non-canonical SECIS element that contains a canonical quartet sequence. The novel SECIS elements of the invention facilitate the insertion of selenocysteine residues into recombinant polypeptides.
An Error Analysis for the Finite Element Method Applied to Convection Diffusion Problems.
1981-03-01
D TFhG-]NOLOGY k 4b 00 \\" ) ’b Technical Note BN-962 AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONVECTION DIFFUSION PROBLEM by I...Babu~ka and W. G. Szym’czak March 1981 V.. UNVI I Of- ’i -S AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD P. - 0 w APPLIED TO CONVECTION DIFFUSION ...AOAO98 895 MARYLAND UNIVYCOLLEGE PARK INST FOR PHYSICAL SCIENCE--ETC F/G 12/I AN ERROR ANALYIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONV..ETC (U
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1991-01-01
A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
A New Expanded Mixed Element Method for Convection-Dominated Sobolev Equation
Wang, Jinfeng; Li, Hong; Fang, Zhichao
2014-01-01
We propose and analyze a new expanded mixed element method, whose gradient belongs to the simple square integrable space instead of the classical H(div; Ω) space of Chen's expanded mixed element method. We study the new expanded mixed element method for convection-dominated Sobolev equation, prove the existence and uniqueness for finite element solution, and introduce a new expanded mixed projection. We derive the optimal a priori error estimates in L 2-norm for the scalar unknown u and a priori error estimates in (L 2)2-norm for its gradient λ and its flux σ. Moreover, we obtain the optimal a priori error estimates in H 1-norm for the scalar unknown u. Finally, we obtained some numerical results to illustrate efficiency of the new method. PMID:24701153
High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations
NASA Astrophysics Data System (ADS)
Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek
2018-04-01
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.
NASA Technical Reports Server (NTRS)
Chen, Zhangxin; Ewing, Richard E.
1996-01-01
Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.
Applications of FEM and BEM in two-dimensional fracture mechanics problems
NASA Technical Reports Server (NTRS)
Min, J. B.; Steeve, B. E.; Swanson, G. R.
1992-01-01
A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.
Vectorial finite elements for solving the radiative transfer equation
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.
2018-06-01
The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.
Nonconforming mortar element methods: Application to spectral discretizations
NASA Technical Reports Server (NTRS)
Maday, Yvon; Mavriplis, Cathy; Patera, Anthony
1988-01-01
Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzini, Gianmarco
2012-07-13
We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.
Ion-barrier for memristors/ReRAM and methods thereof
Haase, Gad S.
2017-11-28
The present invention relates to memristive devices including a resistance-switching element and a barrier element. In particular examples, the barrier element is a monolayer of a transition metal chalcogenide that sufficiently inhibits diffusion of oxygen atoms or ions out of the switching element. As the location of these atoms and ions determine the state of the device, inhibiting diffusion would provide enhanced state retention and device reliability. Other types of barrier elements, as well as methods for forming such elements, are described herein.
NASA Astrophysics Data System (ADS)
Song, Yeo-Ul; Youn, Sung-Kie; Park, K. C.
2017-10-01
A method for three-dimensional non-matching interface treatment with a virtual gap element is developed. When partitioned structures contain curved interfaces and have different brick meshes, the discretized models have gaps along the interfaces. As these gaps bring unexpected errors, special treatments are required to handle the gaps. In the present work, a virtual gap element is introduced to link the frame and surface domain nodes in the frame work of the mortar method. Since the surface of the hexahedron element is quadrilateral, the gap element is pyramidal. The pyramidal gap element consists of four domain nodes and one frame node. Zero-strain condition in the gap element is utilized for the interpolation of frame nodes in terms of the domain nodes. This approach is taken to satisfy the momentum and energy conservation. The present method is applicable not only to curved interfaces with gaps, but also to flat interfaces in three dimensions. Several numerical examples are given to describe the effectiveness and accuracy of the proposed method.
Establishing the 3-D finite element solid model of femurs in partial by volume rendering.
Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin
2013-01-01
It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Hu, Changqing; Shu, Chi-Wang
1998-01-01
In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.
A simple finite element method for linear hyperbolic problems
Mu, Lin; Ye, Xiu
2017-09-14
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for linear hyperbolic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Semi-automatic sparse preconditioners for high-order finite element methods on non-uniform meshes
NASA Astrophysics Data System (ADS)
Austin, Travis M.; Brezina, Marian; Jamroz, Ben; Jhurani, Chetan; Manteuffel, Thomas A.; Ruge, John
2012-05-01
High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations
Mu, Lin; Wang, Junping; Ye, Xiu
2017-08-17
Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less
Scattering Cross Section of Sound Waves by the Modal Element Method
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1994-01-01
#he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.
Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu
2010-03-01
A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1988-01-01
A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.
Development of quadrilateral spline thin plate elements using the B-net method
NASA Astrophysics Data System (ADS)
Chen, Juan; Li, Chong-Jun
2013-08-01
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previouswork, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B-net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.
Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, corresponding virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method; third, repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements; and, fourth, this orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal p.d.f. In a discrete approximation, the allowed proposals coincide with the differences that are based on a large number of pre-computed sets of virtual least-squares orbital elements. The virtual-observation MCMC method is thus based on the characterization of the relevant volume in the orbital-element phase space. Here we utilize MCMC to map the phase-space domain of acceptable solutions. We can make use of the proposal p.d.f.s from the MCMC ranging and virtual-observation methods. The present phase-space mapping produces, upon convergence, a uniform sampling of the solution space within a pre-defined χ^2-value. The weights of the sampled orbital elements are then computed on the basis of the corresponding χ^2-values. The present method resembles the original ranging method. On one hand, MCMC mapping is insensitive to local extrema in the phase space and efficiently maps the solution space. This is somewhat contrary to the MCMC methods described above. On the other hand, MCMC mapping can suffer from producing a small number of sample elements with small χ^2-values, in resemblance to the original ranging method. We apply the methods to example near-Earth, main-belt, and transneptunian objects, and highlight the utilization of the methods in the data processing and analysis pipeline of the ESA Gaia space mission.
Discovery of rare, diagnostic AluYb8/9 elements in diverse human populations.
Feusier, Julie; Witherspoon, David J; Scott Watkins, W; Goubert, Clément; Sasani, Thomas A; Jorde, Lynn B
2017-01-01
Polymorphic human Alu elements are excellent tools for assessing population structure, and new retrotransposition events can contribute to disease. Next-generation sequencing has greatly increased the potential to discover Alu elements in human populations, and various sequencing and bioinformatics methods have been designed to tackle the problem of detecting these highly repetitive elements. However, current techniques for Alu discovery may miss rare, polymorphic Alu elements. Combining multiple discovery approaches may provide a better profile of the polymorphic Alu mobilome. Alu Yb8/9 elements have been a focus of our recent studies as they are young subfamilies (~2.3 million years old) that contribute ~30% of recent polymorphic Alu retrotransposition events. Here, we update our ME-Scan methods for detecting Alu elements and apply these methods to discover new insertions in a large set of individuals with diverse ancestral backgrounds. We identified 5,288 putative Alu insertion events, including several hundred novel Alu Yb8/9 elements from 213 individuals from 18 diverse human populations. Hundreds of these loci were specific to continental populations, and 23 non-reference population-specific loci were validated by PCR. We provide high-quality sequence information for 68 rare Alu Yb8/9 elements, of which 11 have hallmarks of an active source element. Our subfamily distribution of rare Alu Yb8/9 elements is consistent with previous datasets, and may be representative of rare loci. We also find that while ME-Scan and low-coverage, whole-genome sequencing (WGS) detect different Alu elements in 41 1000 Genomes individuals, the two methods yield similar population structure results. Current in-silico methods for Alu discovery may miss rare, polymorphic Alu elements. Therefore, using multiple techniques can provide a more accurate profile of Alu elements in individuals and populations. We improved our false-negative rate as an indicator of sample quality for future ME-Scan experiments. In conclusion, we demonstrate that ME-Scan is a good supplement for next-generation sequencing methods and is well-suited for population-level analyses.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1993-01-01
A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
Analysis of concrete beams using applied element method
NASA Astrophysics Data System (ADS)
Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen
2018-03-01
The Applied Element Method (AEM) is a displacement based method of structural analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the structure is analysed by dividing it into several elements similar to FEM. But, in AEM, elements are connected by springs instead of nodes as in the case of FEM. In this paper, background to AEM is discussed and necessary equations are derived. For illustrating the application of AEM, it has been used to analyse plain concrete beam of fixed support condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that the number of springs has no much influence on the results. AEM could predict deflection and reactions with reasonable degree of accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, Yoshihiro
Heat-conduction analysis under steady state without heat generation can easily be treated by the boundary element method. However, in the case with heat conduction with heat generation can approximately be solved without a domain integral by an improved multiple-reciprocity boundary element method. The convention multiple-reciprocity boundary element method is not suitable for complicated heat generation. In the improved multiple-reciprocity boundary element method, on the other hand, the domain integral in each step is divided into point, line, and area integrals. In order to solve the problem, the contour lines of heat generation, which approximate the actual heat generation, are used.
Probabilistic finite elements for fatigue and fracture analysis
NASA Astrophysics Data System (ADS)
Belytschko, Ted; Liu, Wing Kam
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Boundary element analysis of post-tensioned slabs
NASA Astrophysics Data System (ADS)
Rashed, Youssef F.
2015-06-01
In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1992-01-01
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Wireless autonomous device data transmission
NASA Technical Reports Server (NTRS)
Sammel, Jr., David W. (Inventor); Mickle, Marlin H. (Inventor); Cain, James T. (Inventor); Mi, Minhong (Inventor)
2013-01-01
A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.
Periodic trim solutions with hp-version finite elements in time
NASA Technical Reports Server (NTRS)
Peters, David A.; Hou, Lin-Jun
1990-01-01
Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M.; Ma, L.Q.
1998-11-01
It is critical to compare existing sample digestion methods for evaluating soil contamination and remediation. USEPA Methods 3050, 3051, 3051a, and 3052 were used to digest standard reference materials and representative Florida surface soils. Fifteen trace metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and Za), and six macro elements (Al, Ca, Fe, K, Mg, and P) were analyzed. Precise analysis was achieved for all elements except for Cd, Mo, Se, and Sb in NIST SRMs 2704 and 2709 by USEPA Methods 3050 and 3051, and for all elements except for As, Mo,more » Sb, and Se in NIST SRM 2711 by USEPA Method 3052. No significant differences were observed for the three NIST SRMs between the microwave-assisted USEPA Methods 3051 and 3051A and the conventional USEPA Method 3050 Methods 3051 and 3051a and the conventional USEPA Method 3050 except for Hg, Sb, and Se. USEPA Method 3051a provided comparable values for NIST SRMs certified using USEPA Method 3050. However, for method correlation coefficients and elemental recoveries in 40 Florida surface soils, USEPA Method 3051a was an overall better alternative for Method 3050 than was Method 3051. Among the four digestion methods, the microwave-assisted USEPA Method 3052 achieved satisfactory recoveries for all elements except As and Mg using NIST SRM 2711. This total-total digestion method provided greater recoveries for 12 elements Ag, Be, Cr, Fe, K, Mn, Mo, Ni, Pb, Sb, Se, and Zn, but lower recoveries for Mg in Florida soils than did the total-recoverable digestion methods.« less
A multilevel correction adaptive finite element method for Kohn-Sham equation
NASA Astrophysics Data System (ADS)
Hu, Guanghui; Xie, Hehu; Xu, Fei
2018-02-01
In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.
[Progression on finite element modeling method in scoliosis].
Fan, Ning; Zang, Lei; Hai, Yong; Du, Peng; Yuan, Shuo
2018-04-25
Scoliosis is a complex spinal three-dimensional malformation with complicated pathogenesis, often associated with complications as thoracic deformity and shoulder imbalance. Because the acquisition of specimen or animal models are difficult, the biomechanical study of scoliosis is limited. In recent years, along with the development of the computer technology, software and image, the technology of establishing a finite element model of human spine is maturing and it has been providing strong support for the research of pathogenesis of scoliosis, the design and application of brace, and the selection of surgical methods. The finite element model method is gradually becoming an important tool in the biomechanical study of scoliosis. Establishing a high quality finite element model is the basis of analysis and future study. However, the finite element modeling process can be complex and modeling methods are greatly varied. Choosing the appropriate modeling method according to research objectives has become researchers' primary task. In this paper, the author reviews the national and international literature in recent years and concludes the finite element modeling methods in scoliosis, including data acquisition, establishment of the geometric model, the material properties, parameters setting, the validity of the finite element model validation and so on. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.
Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method
NASA Technical Reports Server (NTRS)
Smith, James P.
1996-01-01
A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.
A Moving Discontinuous Galerkin Finite Element Method for Flows with Interfaces
2017-12-07
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6040--17-9765 A Moving Discontinuous Galerkin Finite Element Method for Flows with...guidance to revise the method to ensure such properties. Acknowledgements This work was sponsored by the Office of Naval Research through the Naval...18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT A Moving Discontinuous Galerkin Finite Element Method for Flows with Interfaces Andrew Corrigan, Andrew
High-precision solution to the moving load problem using an improved spectral element method
NASA Astrophysics Data System (ADS)
Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li
2018-02-01
In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
2016-06-01
7 Development of Cohesive Finite Element Method (CFEM) Capability ................................7 3D...Cohesive Finite Element Method (CFEM) framework A new scientific framework and technical capability is developed for the computational analyses of...this section should shift from reporting activities to reporting accomplishments. Development of Cohesive Finite Element Method (CFEM) Capability
NASA Technical Reports Server (NTRS)
Zimmerle, D.; Bernhard, R. J.
1985-01-01
An alternative method for performing singular boundary element integrals for applications in linear acoustics is discussed. The method separates the integral of the characteristic solution into a singular and nonsingular part. The singular portion is integrated with a combination of analytic and numerical techniques while the nonsingular portion is integrated with standard Gaussian quadrature. The method may be generalized to many types of subparametric elements. The integrals over elements containing the root node are considered, and the characteristic solution for linear acoustic problems are examined. The method may be generalized to most characteristic solutions.
Atomization methods for forming magnet powders
Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.
2000-01-01
The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.
NASA Astrophysics Data System (ADS)
Sumihara, K.
Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.
Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling
NASA Astrophysics Data System (ADS)
Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo
2017-06-01
Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.
NASA Astrophysics Data System (ADS)
Igumnov, Leonid; Ipatov, Aleksandr; Belov, Aleksandr; Petrov, Andrey
2015-09-01
The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary) and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.
Method for thermal and structural evaluation of shallow intense-beam deposition in matter
NASA Astrophysics Data System (ADS)
Pilan Zanoni, André
2018-05-01
The projected range of high-intensity proton and heavy-ion beams at energies below a few tens of MeV/A in matter can be as short as a few micrometers. For the evaluation of temperature and stresses from a shallow beam energy deposition in matter conventional numerical 3D models require minuscule element sizes for acceptable element aspect ratio as well as extremely short time steps for numerical convergence. In order to simulate energy deposition using a manageable number of elements this article presents a method using layered elements. This method is applied to beam stoppers and accidental intense-beam impact onto UHV sector valves. In those cases the thermal results from the new method are congruent to those from conventional solid-element and adiabatic models.
Vibration band gaps for elastic metamaterial rods using wave finite element method
NASA Astrophysics Data System (ADS)
Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.
2016-10-01
Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are demonstrated and the results present good approximation to the experimental data.
Solar Polar Field Observed by SOHO/MDI and Hinode
NASA Astrophysics Data System (ADS)
Liu, Y.
2009-12-01
Using 1-minute cadence time-series full disk magnetograms taken by SOHO/MDI in 2007 March, and the corresponding Hinode/SOT vector magnetograms, I have studied evolutionary characteristics of magnetic elements in Sun's south polar region in solar minimum. It is found that the lifetime of magnetic elements is 17.0 hours on average with an average lifetime of 21.8 hours for elements with positive field, the dominant polarity in the south pole, and 1.6 hours for elements with negative field. The elements with positive field are dominant in the south pole with a percentage of 76% in element number and 90.5% in magnetic flux. The lifetime and magnetic flux of the elements is found to be highly related. This agrees with some previous studies for the elements in low latitude quiet regions. Using an image cross correlation method, I also measure solar rotation rate at high latitude, up to 85° in latitude, which is ω = 2.914-0.342 × sin2φ-0.482×sin4φ μrad/s sidereal. It agrees with previous studies using spectroscopic and image cross correlation methods, and also agrees with the results from some work using the element tracking method in which the sample of tracked elements is large. The consistency of those results from different data and methods strongly suggests that this rate at high latitude is reliable.
Final Report of the Project "From the finite element method to the virtual element method"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzini, Gianmarco; Gyrya, Vitaliy
The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for themore » numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.« less
A weak Galerkin least-squares finite element method for div-curl systems
NASA Astrophysics Data System (ADS)
Li, Jichun; Ye, Xiu; Zhang, Shangyou
2018-06-01
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.
Advanced stress analysis methods applicable to turbine engine structures
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1985-01-01
Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.
Controlling the stoichiometry and doping of semiconductor materials
Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric
2016-08-16
Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.
EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.
Hadinia, M; Jafari, R; Soleimani, M
2016-06-01
This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.
Mineral inversion for element capture spectroscopy logging based on optimization theory
NASA Astrophysics Data System (ADS)
Zhao, Jianpeng; Chen, Hui; Yin, Lu; Li, Ning
2017-12-01
Understanding the mineralogical composition of a formation is an essential key step in the petrophysical evaluation of petroleum reservoirs. Geochemical logging tools can provide quantitative measurements of a wide range of elements. In this paper, element capture spectroscopy (ECS) was taken as an example and an optimization method was adopted to solve the mineral inversion problem for ECS. This method used the converting relationship between elements and minerals as response equations and took into account the statistical uncertainty of the element measurements and established an optimization function for ECS. Objective function value and reconstructed elemental logs were used to check the robustness and reliability of the inversion method. Finally, the inversion mineral results had a good agreement with x-ray diffraction laboratory data. The accurate conversion of elemental dry weights to mineral dry weights formed the foundation for the subsequent applications based on ECS.
A novel finite element analysis of three-dimensional circular crack
NASA Astrophysics Data System (ADS)
Ping, X. C.; Wang, C. G.; Cheng, L. P.
2018-06-01
A novel singular element containing a part of the circular crack front is established to solve the singular stress fields of circular cracks by using the numerical series eigensolutions of singular stress fields. The element is derived from the Hellinger-Reissner variational principle and can be directly incorporated into existing 3D brick elements. The singular stress fields are determined as the system unknowns appearing as displacement nodal values. The numerical studies are conducted to demonstrate the simplicity of the proposed technique in handling fracture problems of circular cracks. The usage of the novel singular element can avoid mesh refinement near the crack front domain without loss of calculation accuracy and velocity of convergence. Compared with the conventional finite element methods and existing analytical methods, the present method is more suitable for dealing with complicated structures with a large number of elements.
Design of horizontal-axis wind turbine using blade element momentum method
NASA Astrophysics Data System (ADS)
Bobonea, Andreea; Pricop, Mihai Victor
2013-10-01
The study of mathematical models applied to wind turbine design in recent years, principally in electrical energy generation, has become significant due to the increasing use of renewable energy sources with low environmental impact. Thus, this paper shows an alternative mathematical scheme for the wind turbine design, based on the Blade Element Momentum (BEM) Theory. The results from the BEM method are greatly dependent on the precision of the lift and drag coefficients. The basic of BEM method assumes the blade can be analyzed as a number of independent element in spanwise direction. The induced velocity at each element is determined by performing the momentum balance for a control volume containing the blade element. The aerodynamic forces on the element are calculated using the lift and drag coefficient from the empirical two-dimensional wind tunnel test data at the geometric angle of attack (AOA) of the blade element relative to the local flow velocity.
Method and system for downhole clock synchronization
Hall, David R.; Bartholomew, David B.; Johnson, Monte; Moon, Justin; Koehler, Roger O.
2006-11-28
A method and system for use in synchronizing at least two clocks in a downhole network are disclosed. The method comprises determining a total signal latency between a controlling processing element and at least one downhole processing element in a downhole network and sending a synchronizing time over the downhole network to the at least one downhole processing element adjusted for the signal latency. Electronic time stamps may be used to measure latency between processing elements. A system for electrically synchronizing at least two clocks connected to a downhole network comprises a controlling processing element connected to a synchronizing clock in communication over a downhole network with at least one downhole processing element comprising at least one downhole clock. Preferably, the downhole network is integrated into a downhole tool string.
NASA Astrophysics Data System (ADS)
Lushnikov, D. S.; Zherdev, A. Y.; Odinokov, S. B.; Markin, V. V.; Smirnov, A. V.
2017-05-01
Visual security elements used in color holographic stereograms - three-dimensional colored security holograms - and methods their production is describes in this article. These visual security elements include color micro text, color-hidden image, the horizontal and vertical flip - flop effects by change color and image. The article also presents variants of optical systems that allow record the visual security elements as part of the holographic stereograms. The methods for solving of the optical problems arising in the recording visual security elements are presented. Also noted perception features of visual security elements for verification of security holograms by using these elements. The work was partially funded under the Agreement with the RF Ministry of Education and Science № 14.577.21.0197, grant RFMEFI57715X0197.
High order Nyström method for elastodynamic scattering
NASA Astrophysics Data System (ADS)
Chen, Kun; Gurrala, Praveen; Song, Jiming; Roberts, Ron
2016-02-01
Elastic waves in solids find important applications in ultrasonic non-destructive evaluation. The scattering of elastic waves has been treated using many approaches like the finite element method, boundary element method and Kirchhoff approximation. In this work, we propose a novel accurate and efficient high order Nyström method to solve the boundary integral equations for elastodynamic scattering problems. This approach employs high order geometry description for the element, and high order interpolation for fields inside each element. Compared with the boundary element method, this approach makes the choice of the nodes for interpolation based on the Gaussian quadrature, which renders matrix elements for far field interaction free from integration, and also greatly simplifies the process for singularity and near singularity treatment. The proposed approach employs a novel efficient near singularity treatment that makes the solver able to handle extreme geometries like very thin penny-shaped crack. Numerical results are presented to validate the approach. By using the frequency domain response and performing the inverse Fourier transform, we also report the time domain response of flaw scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Samuel M; Barefield, James E; Wiens, Roger C
2008-01-01
The ChemCam instrument on the Mars Science Laboratory (MSL) will include a laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental compositions. The traditional analytical chemistry approach to calibration curves for these data regresses a single diagnostic peak area against concentration for each element. This approach contrasts with a new multivariate method in which elemental concentrations are predicted by step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for each element. The method is tested on LIBS data from igneous and metamorphosed rocks. Between 4 and 13 partial regression coefficients are needed to describemore » each elemental abundance accurately (i.e., with a regression line of R{sup 2} > 0.9995 for the relationship between predicted and measured elemental concentration) for all major and minor elements studied. Validation plots suggest that the method is limited at present by the small data set, and will work best for prediction of concentration when a wide variety of compositions and rock types has been analyzed.« less
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Yoo, Y. S.
1976-01-01
Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.
[Determination of multi-element contents in gypsum by ICP-AES].
Guo, Zhong-bao; Bai, Yong-zhi; Cui, Jin-hua; Mei, Yi-fei; Ma, Zhen-zhu
2014-08-01
The content of multi-element in gypsum was determined by ICP-AES. The sample was pretreated by acid-soluble method or alkali-fusion method. Acid-soluble method is suitable for the determination of CaO, SOs, Al2O3, Fe2O3, MgO, K2O, Na2O, TiO2, P2O5, MnO, SrO and BaO. Alkali-fusion method is suitable for the determination of CaO, SO3, SiO2, Al2O3, Fe2O3, MgO, TiO2, P2O5, MnO, SrO, BaO and B2O3. Different series standard solutions were prepared considering the properties and content of elements and solution matrix. The limit of detection and quantification were confirmed for each element under their best analysis spectral lines. The recoveries of the two pretreatment methods were from 93% to 110%, besides that for TiO2 was 81%-87% as pretreated by acid-soluble method. All RSDs (n=6) of tests were from 0.70%-3.42%. The accuracies of CaO and SO3 with ICP-AES method were less than the chemical analysis method. The determination of CaO and SO3 with ICP-AES method is only suitable for the case of low accuracy requirement. The results showed that the method can be used for the determination of multi-element contents in gypsum, with simple operation, fast analysis and reliable results. Total elements can be analysed with both acid-soluble method and alkali-fusion method.
[Bioinorganic chemical composition of the lens and methods of its investigation].
Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G
2018-01-01
Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.
A comparative study on different methods of automatic mesh generation of human femurs.
Viceconti, M; Bellingeri, L; Cristofolini, L; Toni, A
1998-01-01
The aim of this study was to evaluate comparatively five methods for automating mesh generation (AMG) when used to mesh a human femur. The five AMG methods considered were: mapped mesh, which provides hexahedral elements through a direct mapping of the element onto the geometry; tetra mesh, which generates tetrahedral elements from a solid model of the object geometry; voxel mesh which builds cubic 8-node elements directly from CT images; and hexa mesh that automatically generated hexahedral elements from a surface definition of the femur geometry. The various methods were tested against two reference models: a simplified geometric model and a proximal femur model. The first model was useful to assess the inherent accuracy of the meshes created by the AMG methods, since an analytical solution was available for the elastic problem of the simplified geometric model. The femur model was used to test the AMG methods in a more realistic condition. The femoral geometry was derived from a reference model (the "standardized femur") and the finite element analyses predictions were compared to experimental measurements. All methods were evaluated in terms of human and computer effort needed to carry out the complete analysis, and in terms of accuracy. The comparison demonstrated that each tested method deserves attention and may be the best for specific situations. The mapped AMG method requires a significant human effort but is very accurate and it allows a tight control of the mesh structure. The tetra AMG method requires a solid model of the object to be analysed but is widely available and accurate. The hexa AMG method requires a significant computer effort but can also be used on polygonal models and is very accurate. The voxel AMG method requires a huge number of elements to reach an accuracy comparable to that of the other methods, but it does not require any pre-processing of the CT dataset to extract the geometry and in some cases may be the only viable solution.
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling
NASA Astrophysics Data System (ADS)
Melvin, Thomas
2018-02-01
Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.
Error analysis of finite element method for Poisson–Nernst–Planck equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuzhou; Sun, Pengtao; Zheng, Bin
A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.
Nonlocal and Mixed-Locality Multiscale Finite Element Methods
Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.
2018-03-27
In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less
Nonlocal and Mixed-Locality Multiscale Finite Element Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.
In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less
Experimental validation of boundary element methods for noise prediction
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Oswald, Fred B.
1992-01-01
Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.
Advanced hybrid particulate collector and method of operation
Miller, Stanley J.
1999-01-01
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.
Efficient process for previous metal recovery from cell membrane electrode assemblies
Shore, Lawrence; Matlin, Ramail; Heinz, Robert
2010-05-04
A method is provided for recovering a catalytic element from a fuel cell membrane electrode assembly. The method includes grinding the membrane electrode assembly into a powder, extracting the catalytic element by forming a slurry comprising the powder and an acid leachate adapted to dissolve the catalytic element into a soluble salt, and separating the slurry into a depleted powder and a supernatant containing the catalytic element salt. The depleted powder is washed to remove any catalytic element salt retained within pores in the depleted powder and the catalytic element is purified from the salt.
Advanced hybrid particulate collector and method of operation
Miller, S.J.
1999-08-17
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Rolling Element Bearing Stiffness Matrix Determination (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Parker, R.
2014-01-01
Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding tomore » two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.« less
Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.
Forder, James A
2014-08-01
This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Transforming Mean and Osculating Elements Using Numerical Methods
NASA Technical Reports Server (NTRS)
Ely, Todd A.
2010-01-01
Mean element propagation of perturbed two body orbits has as its mathematical basis averaging theory of nonlinear dynamical systems. Averaged mean elements define the long-term evolution characteristics of an orbit. Using averaging theory, a near identity transformation can be found that transforms the mean elements back to the osculating elements that contain short period terms in addition to the secular and long period mean elements. The ability to perform the conversion is necessary so that orbit design conducted in mean elements can be converted back into osculating results. In the present work, this near identity transformation is found using the Fast Fourier Transform. An efficient method is found that is capable of recovering the osculating elements to first order
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shen, Mo-How
1987-01-01
Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.
Free Mesh Method: fundamental conception, algorithms and accuracy study
YAGAWA, Genki
2011-01-01
The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752
A class of hybrid finite element methods for electromagnetics: A review
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Chatterjee, A.; Gong, J.
1993-01-01
Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.
An adaptive finite element method for the inequality-constrained Reynolds equation
NASA Astrophysics Data System (ADS)
Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha
2018-07-01
We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.
Use of adjoint methods in the probabilistic finite element approach to fracture mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted
1988-01-01
The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Gibson, Richard L.
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less
Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...
2015-04-14
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less
Development and certification of the new SRM 695 trace elements in multi-nutrient fertilizer
MacKey, E.A.; Cronise, M.P.; Fales, C.N.; Greenberg, R.R.; Leigh, S.D.; Long, S.E.; Marlow, A.F.; Murphy, K.E.; Oflaz, R.; Sieber, J.R.; Rearick, M.S.; Wood, L.J.; Yu, L.L.; Wilson, S.A.; Briggs, P.H.; Brown, Z.A.; Budahn, J.; Kane, P.F.; Hall, W.L.
2007-01-01
During the past seven years, several states within the US have enacted regulations that limit the amounts of selected non-nutritive elements in fertilizers. Internationally, several countries, including Japan, China, and Australia, and the European Union also limit the amount of selected elements in fertilizers. The elements of interest include As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Fertilizer manufacturers and state regulatory authorities, faced with meeting and verifying these limits, need to develop analytical methods for determination of the elements of concern and to validate results obtained using these methods. Until now, there were no certified reference materials available with certified mass fraction values for all elements of interest in a blended, multi-nutrient fertilizer matrix. A new standard reference material (SRM) 695 trace elements in multi-nutrient fertilizer, has been developed to help meet these needs. SRM 695 has recently been issued with certified mass fraction values for seventeen elements, reference values for an additional five elements, and information values for two elements. The certificate of analysis includes an addendum listing percentage recovery for eight of these elements, determined using an acid-extraction inductively-coupled plasma optical-emission spectrometry (ICP-OES) method recently developed and tested by members of the Association of American Plant Food Control Officials. ?? Springer-Verlag 2007.
Specialty functions singularity mechanics problems
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1989-01-01
The focus is in the development of more accurate and efficient advanced methods for solution of singular problems encountered in mechanics. At present, finite element methods in conjunction with special functions, boolean sum and blending interpolations are being considered. In dealing with systems which contain a singularity, special finite elements are being formulated to be used in singular regions. Further, special transition elements are being formulated to couple the special element to the mesh that models the rest of the system, and to be used in conjunction with 1-D, 2-D and 3-D elements within the same mesh. Computational simulation with a least squares fit is being utilized to construct special elements, if there is an unknown singularity in the system. A novel approach is taken in formulation of the elements in that: (1) the material properties are modified to include time, temperature, coordinate and stress dependant behavior within the element; (2) material properties vary at nodal points of the elements; (3) a hidden-symbolic computation scheme is developed and utilized in formulating the elements; and (4) special functions and boolean sum are utilized in order to interpolate the field variables and their derivatives along the boundary of the elements. It may be noted that the proposed methods are also applicable to fluids and coupled problems.
Quantification of multiple elements in dried blood spot samples.
Pedersen, Lise; Andersen-Ranberg, Karen; Hollergaard, Mads; Nybo, Mads
2017-08-01
Dried blood spots (DBS) is a unique matrix that offers advantages compared to conventional blood collection making it increasingly popular in large population studies. We here describe development and validation of a method to determine multiple elements in DBS. Elements were extracted from punches and analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The method was evaluated with quality controls with defined element concentration and blood spiked with elements to assess accuracy and imprecision. DBS element concentrations were compared with concentrations in venous blood. Samples with different hematocrit were spotted onto filter paper to assess hematocrit effect. The established method was precise and accurate for measurement of most elements in DBS. There was a significant but relatively weak correlation between measurement of the elements Mg, K, Fe, Cu, Zn, As and Se in DBS and venous whole blood. Hematocrit influenced the DBS element measurement, especially for K, Fe and Zn. Trace elements can be measured with high accuracy and low imprecision in DBS, but contribution of signal from the filter paper influences measurement of some elements present at low concentrations. Simultaneous measurement of K and Fe in DBS extracts may be used to estimate sample hematocrit. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Computing Fiber/Matrix Interfacial Effects In SiC/RBSN
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Hopkins, Dale A.
1996-01-01
Computational study conducted to demonstrate use of boundary-element method in analyzing effects of fiber/matrix interface on elastic and thermal behaviors of representative laminated composite materials. In study, boundary-element method implemented by Boundary Element Solution Technology - Composite Modeling System (BEST-CMS) computer program.
NASA Astrophysics Data System (ADS)
Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2014-11-01
The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.
NASA Technical Reports Server (NTRS)
Coy, J. J.; Chao, C. H. C.
1981-01-01
A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classical Hertzian solution for deflection. The results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.
Methods for identification and verification using vacuum XRF system
NASA Technical Reports Server (NTRS)
Kaiser, Bruce (Inventor); Schramm, Fred (Inventor)
2005-01-01
Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.
Alternative methods to model frictional contact surfaces using NASTRAN
NASA Technical Reports Server (NTRS)
Hoang, Joseph
1992-01-01
Elongated (slotted) holes have been used extensively for the integration of equipment into Spacelab racks. In the past, this type of interface has been modeled assuming that there is not slippage between contact surfaces, or that there is no load transfer in the direction of the slot. Since the contact surfaces are bolted together, the contact friction provides a load path determined by the normal applied force (bolt preload) and the coefficient of friction. Three alternate methods that utilize spring elements, externally applied couples, and stress dependent elements are examined to model the contacted surfaces. Results of these methods are compared with results obtained from methods that use GAP elements and rigid elements.
Advanced stress analysis methods applicable to turbine engine structures
NASA Technical Reports Server (NTRS)
Pian, Theodore H. H.
1991-01-01
The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.
Probabilistic finite elements for fracture mechanics
NASA Technical Reports Server (NTRS)
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
Chromatographic-ICPMS methods for trace element and isotope analysis of water and biogenic calcite
NASA Astrophysics Data System (ADS)
Klinkhammer, G. P.; Haley, B. A.; McManus, J.; Palmer, M. R.
2003-04-01
ICP-MS is a powerful technique because of its sensitivity and speed of analysis. This is especially true for refractory elements that are notoriously difficult using TIMS and less energetic techniques. However, as ICP-MS instruments become more sensitive to elements of interest they also become more sensitive to interference. This becomes a pressing issue when analyzing samples with high total dissolved solids. This paper describes two trace element methods that overcome these problems by using chromatographic techniques to precondition samples prior to analysis by ICP-MS: separation of rare earth elements (REEs) from seawater using HPLC-ICPMS, and flow-through dissolution of foraminiferal calcite. Using HPLC in combination with ICP-MS it is possible to isolate the REEs from matrix, other transition elements, and each other. This method has been developed for small volume samples (5ml) making it possible to analyze sediment pore waters. As another example, subjecting foram shells to flow-through reagent addition followed by time-resolved analysis in the ICP-MS allows for systematic cleaning and dissolution of foram shells. This method provides information about the relationship between dissolution tendency and elemental composition. Flow-through is also amenable to automation thus yielding the high sample throughput required for paleoceanography, and produces a highly resolved elemental matrix that can be statistically analyzed.
NASA Astrophysics Data System (ADS)
Sotokoba, Yasumasa; Okajima, Kenji; Iida, Toshiaki; Tanaka, Tadatsugu
We propose the trenchless box culvert construction method to construct box culverts in small covering soil layers while keeping roads or tracks open. When we use this construction method, it is necessary to clarify deformation and shear failure by excavation of grounds. In order to investigate the soil behavior, model experiments and elasto-plactic finite element analysis were performed. In the model experiments, it was shown that the shear failure was developed from the end of the roof to the toe of the boundary surface. In the finite element analysis, a shear band effect was introduced. Comparing the observed shear bands in model experiments with computed maximum shear strain contours, it was found that the observed direction of the shear band could be simulated reasonably by the finite element analysis. We may say that the finite element method used in this study is useful tool for this construction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less
Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions
NASA Astrophysics Data System (ADS)
Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus
2017-10-01
We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.
A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation
Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei
2013-01-01
We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L 2(Ω))2 space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term w = −Δu and a priori error estimates in (L 2)2-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes. PMID:23864831
A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.
Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei; Liu, Yang
2013-01-01
We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L²(Ω))² space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L² and H¹-norm for both the scalar unknown u and the diffusion term w = -Δu and a priori error estimates in (L²)²-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
A Unified Development of Basis Reduction Methods for Rotor Blade Analysis
NASA Technical Reports Server (NTRS)
Ruzicka, Gene C.; Hodges, Dewey H.; Rutkowski, Michael (Technical Monitor)
2001-01-01
The axial foreshortening effect plays a key role in rotor blade dynamics, but approximating it accurately in reduced basis models has long posed a difficult problem for analysts. Recently, though, several methods have been shown to be effective in obtaining accurate,reduced basis models for rotor blades. These methods are the axial elongation method,the mixed finite element method, and the nonlinear normal mode method. The main objective of this paper is to demonstrate the close relationships among these methods, which are seemingly disparate at first glance. First, the difficulties inherent in obtaining reduced basis models of rotor blades are illustrated by examining the modal reduction accuracy of several blade analysis formulations. It is shown that classical, displacement-based finite elements are ill-suited for rotor blade analysis because they can't accurately represent the axial strain in modal space, and that this problem may be solved by employing the axial force as a variable in the analysis. It is shown that the mixed finite element method is a convenient means for accomplishing this, and the derivation of a mixed finite element for rotor blade analysis is outlined. A shortcoming of the mixed finite element method is that is that it increases the number of variables in the analysis. It is demonstrated that this problem may be rectified by solving for the axial displacements in terms of the axial forces and the bending displacements. Effectively, this procedure constitutes a generalization of the widely used axial elongation method to blades of arbitrary topology. The procedure is developed first for a single element, and then extended to an arbitrary assemblage of elements of arbitrary type. Finally, it is shown that the generalized axial elongation method is essentially an approximate solution for an invariant manifold that can be used as the basis for a nonlinear normal mode.
A particle finite element method for machining simulations
NASA Astrophysics Data System (ADS)
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
Methods and devices for fabricating and assembling printable semiconductor elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
A pedagogical derivation of the matrix element method in particle physics data analysis
NASA Astrophysics Data System (ADS)
Sumowidagdo, Suharyo
2018-03-01
The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.
Methods and devices for fabricating and assembling printable semiconductor elements
Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao
2014-03-04
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
NASA Technical Reports Server (NTRS)
Bateman, W. A.
1984-01-01
Cylindrical tubes joined together, end to end, by method employing adhesive, tapered ends, and spacing wires. Tapered joint between tubular structural elements provides pressure between bonding surfaces during adhesive curing. Spacing wires prevent adhesive from being scraped away when one element inserted in other. Method developed for assembling structural elements made of composite materials.
Completely non-destructive elemental analysis of bulky samples by PGAA
NASA Astrophysics Data System (ADS)
Oura, Y.; Nakahara, H.; Sueki, K.; Sato, W.; Saito, A.; Tomizawa, T.; Nishikawa, T.
1999-01-01
NBAA (neutron beam activation analysis), which is a combination of PGAA and INAA by a single neutron irradiation, using an internal monostandard method is proposed as a very unique and promising method for the elemental analysis of voluminous and invaluable archaeological samples which do not allow even a scrape of the surface. It was applied to chinawares, Sueki ware, and bronze mirrors, and proved to be a very effective method for nondestructive analysis of not only major elements but also some minor elements such as boron that help solve archaeological problems of ears and sites of their production.
Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis
Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar
2000-12-01
Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.
Restoring the missing features of the corrupted speech using linear interpolation methods
NASA Astrophysics Data System (ADS)
Rassem, Taha H.; Makbol, Nasrin M.; Hasan, Ali Muttaleb; Zaki, Siti Syazni Mohd; Girija, P. N.
2017-10-01
One of the main challenges in the Automatic Speech Recognition (ASR) is the noise. The performance of the ASR system reduces significantly if the speech is corrupted by noise. In spectrogram representation of a speech signal, after deleting low Signal to Noise Ratio (SNR) elements, the incomplete spectrogram is obtained. In this case, the speech recognizer should make modifications to the spectrogram in order to restore the missing elements, which is one direction. In another direction, speech recognizer should be able to restore the missing elements due to deleting low SNR elements before performing the recognition. This is can be done using different spectrogram reconstruction methods. In this paper, the geometrical spectrogram reconstruction methods suggested by some researchers are implemented as a toolbox. In these geometrical reconstruction methods, the linear interpolation along time or frequency methods are used to predict the missing elements between adjacent observed elements in the spectrogram. Moreover, a new linear interpolation method using time and frequency together is presented. The CMU Sphinx III software is used in the experiments to test the performance of the linear interpolation reconstruction method. The experiments are done under different conditions such as different lengths of the window and different lengths of utterances. Speech corpus consists of 20 males and 20 females; each one has two different utterances are used in the experiments. As a result, 80% recognition accuracy is achieved with 25% SNR ratio.
A finite element analysis of viscoelastically damped sandwich plates
NASA Astrophysics Data System (ADS)
Ma, B.-A.; He, J.-F.
1992-01-01
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.
Fast Erase Method and Apparatus For Digital Media
NASA Technical Reports Server (NTRS)
Oakely, Ernest C. (Inventor)
2006-01-01
A non-contact fast erase method for erasing information stored on a magnetic or optical media. The magnetic media element includes a magnetic surface affixed to a toroidal conductor and stores information in a magnetic polarization pattern. The fast erase method includes applying an alternating current to a planar inductive element positioned near the toroidal conductor, inducing an alternating current in the toroidal conductor, and heating the magnetic surface to a temperature that exceeds the Curie-point so that information stored on the magnetic media element is permanently erased. The optical disc element stores information in a plurality of locations being defined by pits and lands in a toroidal conductive layer. The fast erase method includes similarly inducing a plurality of currents in the optical media element conductive layer and melting a predetermined portion of the conductive layer so that the information stored on the optical medium is destroyed.
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.
A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reactionmore » wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5« less
Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles
2014-01-07
A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.
A combined finite element-boundary element formulation for solution of axially symmetric bodies
NASA Technical Reports Server (NTRS)
Collins, Jeffrey D.; Volakis, John L.
1991-01-01
A new method is presented for the computation of electromagnetic scattering from axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the method combines the finite element and boundary element techniques. Interior to a fictitious surface enclosing the scattering body, the finite element method is used which results in a sparce submatrix, whereas along the enclosure the Stratton-Chu integral equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder, most of the resulting boundary integrals are convolutional and may therefore be evaluated via the FFT with which the system is iteratively solved. In view of the sparce matrix associated with the interior fields, this reduces the storage requirement of the entire system to O(N) making the method attractive for large scale computations. The details of the corresponding formulation and its numerical implementation are described.
Modules and methods for all photonic computing
Schultz, David R.; Ma, Chao Hung
2001-01-01
A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.
Singularity embedding method in potential flow calculations
NASA Technical Reports Server (NTRS)
Jou, W. H.; Huynh, H.
1982-01-01
The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.
Spectral analysis method for detecting an element
Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Reber, Edward L [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID
2008-02-12
A method for detecting an element is described and which includes the steps of providing a gamma-ray spectrum which has a region of interest which corresponds with a small amount of an element to be detected; providing nonparametric assumptions about a shape of the gamma-ray spectrum in the region of interest, and which would indicate the presence of the element to be detected; and applying a statistical test to the shape of the gamma-ray spectrum based upon the nonparametric assumptions to detect the small amount of the element to be detected.
Lee, Jonathan K.; Froehlich, David C.
1987-01-01
Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan
2017-01-01
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.
Mobile element biology – new possibilities with high-throughput sequencing
Xing, Jinchuan; Witherspoon, David J.; Jorde, Lynn B.
2014-01-01
Mobile elements compose more than half of the human genome, but until recently their large-scale detection was time-consuming and challenging. With the development of new high-throughput sequencing technologies, the complete spectrum of mobile element variation in humans can now be identified and analyzed. Thousands of new mobile element insertions have been discovered, yielding new insights into mobile element biology, evolution, and genomic variation. We review several high-throughput methods, with an emphasis on techniques that specifically target mobile element insertions in humans, and we highlight recent applications of these methods in evolutionary studies and in the analysis of somatic alterations in human cancers. PMID:23312846
C deg continuity elements by Hybrid Stress method. M.S. Thesis, 1982 Final Report
NASA Technical Reports Server (NTRS)
Kang, David Sung-Soo
1991-01-01
An intensive study of the assumed variable distribution necessary for the Assumed Displacement Formulation, the Hellinger-Reissner Formulation, and the Hu-Washizu Formulation is made in a unified manner. With emphasis on physical explanation, a systematic method for the Hybrid Stress element construction is outlined. The numerical examples use four and eight node plane stress elements and eight and twenty node solid elements. Computation cost study indicates that the hybrid stress element derived using recently developed Uncoupled Stress Formulation is comparable in CPU time to the Assumed Displacement element. Overall, main emphasis is placed on providing a broader understanding of the Hybrid Stress Formulation.
Method of modifying a volume mesh using sheet insertion
Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM
2006-08-29
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.
Kondou, Youichi; Manickavelu, Alagu; Komatsu, Kenji; Arifi, Mujiburahman; Kawashima, Mika; Ishii, Takayoshi; Hattori, Tomohiro; Iwata, Hiroyoshi; Tsujimoto, Hisashi; Ban, Tomohiro; Matsui, Minami
2016-01-01
This study was carried out with the aim of developing the methodology to determine elemental composition in wheat and identify the best germplasm for further research. Orphan and genetically diverse Afghan wheat landraces were chosen and EDXRF was used to measure the content of some of the elements to establish elemental composition in grains of 266 landraces using 10 reference lines. Four elements, K, Mg, P, and Fe, were measured by standardizing sample preparation. The results of hierarchical cluster analysis using elemental composition data sets indicated that the Fe content has an opposite pattern to the other elements, especially that of K. By systematic analysis the best wheat germplasms for P content and Fe content were identified. In order to compare the sensitivity of EDXRF, the ICP method was also used and the similar results obtained confirmed the EDXRF methodology. The sampling method for measurement using EDXRF was optimized resulting in high-throughput profiling of elemental composition in wheat grains at low cost. Using this method, we have characterized the Afghan wheat landraces and isolated the best genotypes that have high-elemental content and have the potential to be used in crop improvement. PMID:28163583
Aorta modeling with the element-based zero-stress state and isogeometric discretization
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi
2017-02-01
Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight-tube configurations. Then we show how the method can be used in a 3D computation where the target geometry is coming from medical image of a human aorta.
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
[Standard sample preparation method for quick determination of trace elements in plastic].
Yao, Wen-Qing; Zong, Rui-Long; Zhu, Yong-Fa
2011-08-01
Reference sample was prepared by masterbatch method, containing heavy metals with known concentration of electronic information products (plastic), the repeatability and precision were determined, and reference sample preparation procedures were established. X-Ray fluorescence spectroscopy (XRF) analysis method was used to determine the repeatability and uncertainty in the analysis of the sample of heavy metals and bromine element. The working curve and the metrical methods for the reference sample were carried out. The results showed that the use of the method in the 200-2000 mg x kg(-1) concentration range for Hg, Pb, Cr and Br elements, and in the 20-200 mg x kg(-1) range for Cd elements, exhibited a very good linear relationship, and the repeatability of analysis methods for six times is good. In testing the circuit board ICB288G and ICB288 from the Mitsubishi Heavy Industry Company, results agreed with the recommended values.
Atmosphere purification of radon and radon daughter elements
Stein, L.
1974-01-01
A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)
A new methodology for free wake analysis using curved vortex elements
NASA Technical Reports Server (NTRS)
Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.
1987-01-01
A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
Un-collided-flux preconditioning for the first order transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigley, M.; Koebbe, J.; Drumm, C.
2013-07-01
Two codes were tested for the first order neutron transport equation using finite element methods. The un-collided-flux solution is used as a preconditioner for each of these methods. These codes include a least squares finite element method and a discontinuous finite element method. The performance of each code is shown on problems in one and two dimensions. The un-collided-flux preconditioner shows good speedup on each of the given methods. The un-collided-flux preconditioner has been used on the second-order equation, and here we extend those results to the first order equation. (authors)
Multi-element microelectropolishing method
Lee, Peter J.
1994-01-01
A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.
Least-squares finite element solution of 3D incompressible Navier-Stokes problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.
1992-01-01
Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.
Advances and future directions of research on spectral methods
NASA Technical Reports Server (NTRS)
Patera, A. T.
1986-01-01
Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Energy harvesting devices, systems, and related methods
Kotter, Dale K.
2016-10-18
Energy harvesting devices include a substrate and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to collect energy in the visible and infrared light spectra and to reradiate energy having a wavelength in the range of about 0.8 .mu.m to about 0.9 .mu.m. The resonance elements are arranged in groups of two or more resonance elements. Systems for harvesting electromagnetic radiation include a substrate, a plurality of resonance elements including a conductive material carried by the substrate, and a photovoltaic material coupled to the substrate and to at least one resonance element. The resonance elements are arranged in groups, such as in a dipole, a tripole, or a bowtie configuration. Methods for forming an energy harvesting device include forming groups of two or more discrete resonance elements in a substrate and coupling a photovoltaic material to the groups of discrete resonance elements.
Cooley, Richard L.
1992-01-01
MODFE, a modular finite-element model for simulating steady- or unsteady-state, area1 or axisymmetric flow of ground water in a heterogeneous anisotropic aquifer is documented in a three-part series of reports. In this report, part 2, the finite-element equations are derived by minimizing a functional of the difference between the true and approximate hydraulic head, which produces equations that are equivalent to those obtained by either classical variational or Galerkin techniques. Spatial finite elements are triangular with linear basis functions, and temporal finite elements are one dimensional with linear basis functions. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining units; (3) specified recharge or discharge at points, along lines, or areally; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining units combined with aquifer dewatering, and evapotranspiration. The matrix equations produced by the finite-element method are solved by the direct symmetric-Doolittle method or the iterative modified incomplete-Cholesky conjugate-gradient method. The direct method can be efficient for small- to medium-sized problems (less than about 500 nodes), and the iterative method is generally more efficient for larger-sized problems. Comparison of finite-element solutions with analytical solutions for five example problems demonstrates that the finite-element model can yield accurate solutions to ground-water flow problems.
Improvement Technology Classification and Composition in Multimodel Environments
2008-03-01
ISO 15504, ISO 12207 , and others COBIT, ITIL, SOX, and...Practice Elements CMMI PAs and PLA ISO 15504 and ISO 12207 COBIT EFQM ISO 9001 Improvement Method Elements Change management techniques: IDEAL and Six...others EFQM and others ISO 9001, ISO 61508, ISO 16949, and others Improvement Method Elements Change management techniques: IDEAL, Six Sigma,
Determining e-Portfolio Elements in Learning Process Using Fuzzy Delphi Analysis
ERIC Educational Resources Information Center
Mohamad, Syamsul Nor Azlan; Embi, Mohamad Amin; Nordin, Norazah
2015-01-01
The present article introduces the Fuzzy Delphi method results obtained in the study on determining e-Portfolio elements in learning process for art and design context. This method bases on qualified experts that assure the validity of the collected information. In particular, the confirmation of elements is based on experts' opinion and…
Development of a Certified Reference Material (NMIJ CRM 7203-a) for Elemental Analysis of Tap Water.
Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Miyashita, Shin-Ichi; Kuroiwa, Takayoshi; Ariga, Tomoko; Kudo, Izumi; Koguchi, Masae; Heo, Sung Woo; Suh, Jung Ki; Lee, Kyoung-Seok; Yim, Yong-Hyeon; Lim, Youngran
2017-01-01
A certified reference material (CRM), NMIJ CRM 7203-a, was developed for the elemental analysis of tap water. At least two independent analytical methods were applied to characterize the certified value of each element. The elements certified in the present CRM were as follows: Al, As, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, and Zn. The certified value for each element was given as the (property value ± expanded uncertainty), with a coverage factor of 2 for the expanded uncertainty. The expanded uncertainties were estimated while considering the contribution of the analytical methods, the method-to-method variance, the sample homogeneity, the long-term stability, and the concentrations of the standard solutions for calibration. The concentration of Hg (0.39 μg kg -1 ) was given as the information value, since loss of Hg was observed when the sample was stored at room temperature and exposed to light. The certified values of selected elements were confirmed by a co-analysis carried out independently by the NMIJ (Japan) and the KRISS (Korea).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wight, L.; Zaslawsky, M.
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.
Method For Growth of Crystal Surfaces and Growth of Heteroepitaxial Single Crystal Films Thereon
NASA Technical Reports Server (NTRS)
Powell, J. Anthony (Inventor); Larkin, David J. (Inventor); Neudeck, Philip G. (Inventor); Matus, Lawrence G. (Inventor)
2000-01-01
A method of growing atomically-flat surfaces and high quality low-defect crystal films of semiconductor materials and fabricating improved devices thereon is discussed. The method is also suitable for growing films heteroepitaxially on substrates that are different than the film. The method is particularly suited for growth of elemental semiconductors (such as Si), compounds of Groups III and V elements of the Periodic Table (such as GaN), and compounds and alloys of Group IV elements of the Periodic Table (such as SiC).
An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1
NASA Technical Reports Server (NTRS)
Shivarama, Ravishankar; Fahrenthold, Eric P.
2004-01-01
A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
A weak Galerkin generalized multiscale finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
Acceleration of low order finite element computation with GPUs (Invited)
NASA Astrophysics Data System (ADS)
Knepley, M. G.
2010-12-01
Considerable effort has been focused on the acceleration using GPUs of high order spectral element methods and discontinuous Galerkin finite element methods. However, these methods are not universally applicable, and much of the existing FEM software base employs low order methods. In this talk, we present a formulation of FEM, using the PETSc framework from ANL, which is amenable to GPU acceleration even at very low order. In addition, using the FEniCS system for FEM, we show that the relevant kernels can be automatically generated and optimized using a symbolic manipulation system.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Astrophysics Data System (ADS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Solving the MHD equations by the space time conservation element and solution element method
NASA Astrophysics Data System (ADS)
Zhang, Moujin; John Yu, S.-T.; Henry Lin, S.-C.; Chang, Sin-Chung; Blankson, Isaiah
2006-05-01
We apply the space-time conservation element and solution element (CESE) method to solve the ideal MHD equations with special emphasis on satisfying the divergence free constraint of magnetic field, i.e., ∇ · B = 0. In the setting of the CESE method, four approaches are employed: (i) the original CESE method without any additional treatment, (ii) a simple corrector procedure to update the spatial derivatives of magnetic field B after each time marching step to enforce ∇ · B = 0 at all mesh nodes, (iii) a constraint-transport method by using a special staggered mesh to calculate magnetic field B, and (iv) the projection method by solving a Poisson solver after each time marching step. To demonstrate the capabilities of these methods, two benchmark MHD flows are calculated: (i) a rotated one-dimensional MHD shock tube problem and (ii) a MHD vortex problem. The results show no differences between different approaches and all results compare favorably with previously reported data.
On finite element methods for the Helmholtz equation
NASA Technical Reports Server (NTRS)
Aziz, A. K.; Werschulz, A. G.
1979-01-01
The numerical solution of the Helmholtz equation is considered via finite element methods. A two-stage method which gives the same accuracy in the computed gradient as in the computed solution is discussed. Error estimates for the method using a newly developed proof are given, and the computational considerations which show this method to be computationally superior to previous methods are presented.
Modal ring method for the scattering of sound
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal element method for acoustic scattering can be simplified when the scattering body is rigid. In this simplified method, called the modal ring method, the scattering body is represented by a ring of triangular finite elements forming the outer surface. The acoustic pressure is calculated at the element nodes. The pressure in the infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The two solution forms are coupled by the continuity of pressure and velocity on the body surface. The modal ring method effectively reduces the two-dimensional scattering problem to a one-dimensional problem capable of handling very high frequency scattering. In contrast to the boundary element method or the method of moments, which perform a similar reduction in problem dimension, the model line method has the added advantage of having a highly banded solution matrix requiring considerably less computer storage. The method shows excellent agreement with analytic results for scattering from rigid circular cylinders over a wide frequency range (1 is equal to or less than ka is less than or equal to 100) in the near and far fields.
A Galerkin formulation of the MIB method for three dimensional elliptic interface problems
Xia, Kelin; Wei, Guo-Wei
2014-01-01
We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038
The Overshoot Phenomenon in Geodynamics Codes
NASA Astrophysics Data System (ADS)
Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.
2013-12-01
The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.
NASA Astrophysics Data System (ADS)
Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.
2018-04-01
Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.
HUMAN EYE OPTICS: Determination of positions of optical elements of the human eye
NASA Astrophysics Data System (ADS)
Galetskii, S. O.; Cherezova, T. Yu
2009-02-01
An original method for noninvasive determining the positions of elements of intraocular optics is proposed. The analytic dependence of the measurement error on the optical-scheme parameters and the restriction in distance from the element being measured are determined within the framework of the method proposed. It is shown that the method can be efficiently used for determining the position of elements in the classical Gullstrand eye model and personalised eye models. The positions of six optical surfaces of the Gullstrand eye model and four optical surfaces of the personalised eye model can be determined with an error of less than 0.25 mm.
Membrane assisted solvent extraction for rare earth element recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.
Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.
Finite element methods on supercomputers - The scatter-problem
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.
1985-01-01
Certain problems arise in connection with the use of supercomputers for the implementation of finite-element methods. These problems are related to the desirability of utilizing the power of the supercomputer as fully as possible for the rapid execution of the required computations, taking into account the gain in speed possible with the aid of pipelining operations. For the finite-element method, the time-consuming operations may be divided into three categories. The first two present no problems, while the third type of operation can be a reason for the inefficient performance of finite-element programs. Two possibilities for overcoming certain difficulties are proposed, giving attention to a scatter-process.
NASA Technical Reports Server (NTRS)
Franca, Leopoldo P.; Loula, Abimael F. D.; Hughes, Thomas J. R.; Miranda, Isidoro
1989-01-01
Adding to the classical Hellinger-Reissner formulation, a residual form of the equilibrium equation, a new Galerkin/least-squares finite element method is derived. It fits within the framework of a mixed finite element method and is stable for rather general combinations of stress and velocity interpolations, including equal-order discontinuous stress and continuous velocity interpolations which are unstable within the Galerkin approach. Error estimates are presented based on a generalization of the Babuska-Brezzi theory. Numerical results (not presented herein) have confirmed these estimates as well as the good accuracy and stability of the method.
Application of Finite Element Method in Traffic Injury and Its Prospect in Forensic Science.
Liu, C G; Lu, Y J; Gao, J; Liu, Q
2016-06-01
The finite element method (FEM) is a numerical computation method based on computer technology, and has been gradually applied in the fields of medicine and biomechanics. The finite element analysis can be used to explore the loading process and injury mechanism of human body in traffic injury. FEM is also helpful for the forensic investigation in traffic injury. This paper reviews the development of the finite element models and analysis of brain, cervical spine, chest and abdomen, pelvis, limbs at home and aboard in traffic injury in recent years. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Method of holding optical elements without deformation during their fabrication
Hed, P.P.
1997-04-29
An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element is disclosed. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool. 16 figs.
Method of holding optical elements without deformation during their fabrication
Hed, P. Paul
1997-01-01
An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool.
Method for fabricating a microscale anemometer
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor)
2008-01-01
Method for fabricating a microscale anemometer on a substrate. A sacrificial layer is formed on the substrate, and a metal thin film is patterned to form a sensing element. At least one support for the sensing element is patterned. The sacrificial layer is removed, and the sensing element is lifted away from the substrate by raising the supports, thus creating a clearance between the sensing element and the substrate to allow fluid flow between the sensing element and the substrate. The supports are raised preferably by use of a magnetic field applied to magnetic material patterned on the supports.
2015-09-01
Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations. Michal A. Koperaa,∗, Francis X...mass conservation, as it is an important feature for many atmospheric applications . We believe this is a good metric because, for smooth solutions
Efficient Preconditioning for the p-Version Finite Element Method in Two Dimensions
1989-10-01
paper, we study fast parallel preconditioners for systems of equations arising from the p-version finite element method. The p-version finite element...computations and the solution of a relatively small global auxiliary problem. We study two different methods. In the first (Section 3), the global...20], will be studied in the next section. Problem (3.12) is obviously much more easily solved than the original problem ,nd the procedure is highly
Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-02-01
Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
NASA Astrophysics Data System (ADS)
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
NASA Astrophysics Data System (ADS)
Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo
2017-12-01
A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.
Spectral element method for elastic and acoustic waves in frequency domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min
Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the usemore » of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.« less
Study on Edge Thickening Flow Forming Using the Finite Elements Analysis
NASA Astrophysics Data System (ADS)
Kim, Young Jin; Park, Jin Sung; Cho, Chongdu
2011-08-01
This study is to examine the forming features of flow stress property and the incremental forming method with increasing the thickness of material. Recently, the optimized forming method is widely studied through the finite element analysis to optimize forming process conditions in many different forming fields. The optimal forming method should be adopted to meet geometric requirements as the reduction in volume per unit length of material such as forging, rolling, spinning etc. However conventional studies have not dealt with issue regarding volume per unit length. For the study we use the finite element method and model a gear part of an automotive engine flywheel as the study model, which is a weld assembly of a plate and a gear with respective different thickness. In simulation of the present study, a optimized forming condition for gear machining, considering the thickness of the outer edge of flywheel is studied using the finite elements analysis for the increasing thickness of the forming method. It is concluded from the study that forming method to increase the thickness per unit length for gear machining is reasonable using the finite elements analysis and forming test.
Ultrasonic Method for Deployment Mechanism Bolt Element Preload Verification
NASA Technical Reports Server (NTRS)
Johnson, Eric C.; Kim, Yong M.; Morris, Fred A.; Mitchell, Joel; Pan, Robert B.
2014-01-01
Deployment mechanisms play a pivotal role in mission success. These mechanisms often incorporate bolt elements for which a preload within a specified range is essential for proper operation. A common practice is to torque these bolt elements to a specified value during installation. The resulting preload, however, can vary significantly with applied torque for a number of reasons. The goal of this effort was to investigate ultrasonic methods as an alternative for bolt preload verification in such deployment mechanisms. A family of non-explosive release mechanisms widely used by satellite manufacturers was chosen for the work. A willing contractor permitted measurements on a sampling of bolt elements for these release mechanisms that were installed by a technician following a standard practice. A variation of approximately 50% (+/- 25%) in the resultant preloads was observed. An alternative ultrasonic method to set the preloads was then developed and calibration data was accumulated. The method was demonstrated on bolt elements installed in a fixture instrumented with a calibrated load cell and designed to mimic production practice. The ultrasonic method yielded results within +/- 3% of the load cell reading. The contractor has since adopted the alternative method for its future production. Introduction
Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kipp, C. R.; Bernhard, R. J.
1985-01-01
A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.
NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY
Stengel, F.G.
1963-12-24
A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)
NASA Astrophysics Data System (ADS)
Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio
2018-07-01
This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.
Methods and apparatus for extraction and tracking of objects from multi-dimensional sequence data
NASA Technical Reports Server (NTRS)
Hill, Matthew L. (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Castelli, Vittorio (Inventor); Bergman, Lawrence David (Inventor)
2008-01-01
An object tracking technique is provided which, given: (i) a potentially large data set; (ii) a set of dimensions along which the data has been ordered; and (iii) a set of functions for measuring the similarity between data elements, a set of objects are produced. Each of these objects is defined by a list of data elements. Each of the data elements on this list contains the probability that the data element is part of the object. The method produces these lists via an adaptive, knowledge-based search function which directs the search for high-probability data elements. This serves to reduce the number of data element combinations evaluated while preserving the most flexibility in defining the associations of data elements which comprise an object.
Methods and apparatus for extraction and tracking of objects from multi-dimensional sequence data
NASA Technical Reports Server (NTRS)
Hill, Matthew L. (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Castelli, Vittorio (Inventor); Bergman, Lawrence David (Inventor)
2005-01-01
An object tracking technique is provided which, given: (i) a potentially large data set; (ii) a set of dimensions along which the data has been ordered; and (iii) a set of functions for measuring the similarity between data elements, a set of objects are produced. Each of these objects is defined by a list of data elements. Each of the data elements on this list contains the probability that the data element is part of the object. The method produces these lists via an adaptive, knowledge-based search function which directs the search for high-probability data elements. This serves to reduce the number of data element combinations evaluated while preserving the most flexibility in defining the associations of data elements which comprise an object.
Preparation of high temperature gas-cooled reactor fuel element
Bradley, Ronnie A.; Sease, John D.
1976-01-01
This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.
Method for the removal of elemental mercury from a gas stream
Mendelsohn, Marshall H.; Huang, Hann-Sheng
1999-01-01
A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents.
Method for laser induced isotope enrichment
Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu
2004-09-07
Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.
MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR
Balent, R.
1963-03-12
This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)
Method for the removal of elemental mercury from a gas stream
Mendelsohn, M.H.; Huang, H.S.
1999-05-04
A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents. 7 figs.
NASA Astrophysics Data System (ADS)
Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang
2018-04-01
The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.
NASA Astrophysics Data System (ADS)
Hano, Mitsuo; Hotta, Masashi
A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
1995-01-01
A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.
NASA Astrophysics Data System (ADS)
Ignatyev, A. V.; Ignatyev, V. A.; Onischenko, E. V.
2017-11-01
This article is the continuation of the work made bt the authors on the development of the algorithms that implement the finite element method in the form of a classical mixed method for the analysis of geometrically nonlinear bar systems [1-3]. The paper describes an improved algorithm of the formation of the nonlinear governing equations system for flexible plane frames and bars with large displacements of nodes based on the finite element method in a mixed classical form and the use of the procedure of step-by-step loading. An example of the analysis is given.
Wave propagation modeling in composites reinforced by randomly oriented fibers
NASA Astrophysics Data System (ADS)
Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw
2018-02-01
A new method for prediction of elastic constants in randomly oriented fiber composites is proposed. It is based on mechanics of composites, the rule of mixtures and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Selected elastic properties predicted by the proposed method are compared with values obtained by another theoretical method. The proposed method is applied for simulation of Lamb waves in glass-epoxy composite plate reinforced by randomly oriented fibers. Full wavefield measurements conducted by the scanning laser Doppler vibrometer are in good agreement with simulations performed by using the time domain spectral element method.
NASA Astrophysics Data System (ADS)
Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia
2016-04-01
In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.
Fast Boundary Element Method for acoustics with the Sparse Cardinal Sine Decomposition
NASA Astrophysics Data System (ADS)
Alouges, François; Aussal, Matthieu; Parolin, Emile
2017-07-01
This paper presents the newly proposed method Sparse Cardinal Sine Decomposition that allows fast convolution on unstructured grids. We focus on its use when coupled with finite element techniques to solve acoustic problems with the (compressed) Boundary Element Method. In addition, we also compare the computational performances of two equivalent Matlab® and Python implementations of the method. We show validation test cases in order to assess the precision of the approach. Eventually, the performance of the method is illustrated by the computation of the acoustic target strength of a realistic submarine from the Benchmark Target Strength Simulation international workshop.
[Determination of 27 elements in Maca nationality's medicine by microwave digestion ICP-MS].
Yu, Gui-fang; Zhong, Hai-jie; Hu, Jun-hua; Wang, Jing; Huang, Wen-zhe; Wang, Zhen-zhong; Xiao, Wei
2015-12-01
An analysis method has been established to test 27 elements (Li, Be, B, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Mo, Cd, Sn, Sb, Ba, La, Hg, Pb, Bi) in Maca nationality's medicine with microwave digestion-ICP-MS. Sample solutions were analyzed by ICP-MS after microwave digestion, and the contents of elements were calculated according to their calibration curves, and internal standard method was adopted to reduce matrix effect and other interference effects. The experimental results showed that the linear relations of all the elements were very good; the correlation coefficient (r) was 0.9994-1.0000 (Hg was 0.9982) ; the limits of detection were 0.003-2.662 microg x L(-1); the relative standard deviations for all elements of reproducibility were lower than 5% (except the individual elements); the recovery rate were 78.5%-123.7% with RSD lower than 5% ( except the individual elements). The analytical results of standard material showed acceptable agreement with the certified values. This method was applicable to determinate the contents of multi-elements in Maca which had a high sensitivity, good specificity and good repeatability, and provide basis for the quality control of Maca.
Optimization-based limiters for the spectral element method
NASA Astrophysics Data System (ADS)
Guba, Oksana; Taylor, Mark; St-Cyr, Amik
2014-06-01
We introduce a new family of optimization based limiters for the h-p spectral element method. The native spectral element advection operator is oscillatory, but due to its mimetic properties it is locally conservative and has a monotone property with respect to element averages. We exploit this property to construct locally conservative quasimonotone and sign-preserving limiters. The quasimonotone limiter prevents all overshoots and undershoots at the element level, but is not strictly non-oscillatory. It also maintains quasimonotonicity even with the addition of a dissipation term such as viscosity or hyperviscosity. The limiters are based on a least-squares formulation with equality and inequality constraints and are local to each element. We evaluate the new limiters using a deformational flow test case for advection on the surface of the sphere. We focus on mesh refinement for moderate (p=3) and high order (p=6) elements. As expected, the spectral element method obtains its formal order of accuracy for smooth problems without limiters. For advection of fields with cusps and discontinuities, the high order convergence is lost, but in all cases, p=6 outperforms p=3 for the same degrees of freedom.
Rait, N.
1981-01-01
A modified method is described for a 1-mg sample multi-element semiquantitative spectrographic analysis. This method uses a direct-current arc source, carbon instead of graphite electrodes, and an 80% argon-20% oxygen atmosphere instead of air. Although this is a destructive method, an analysis can be made for 68 elements in all mineral and geochemical samples. Carbon electrodes have been an aid in improving the detection limits of many elements. The carbon has a greater resistance to heat conductance and develops a better tip, facilitating sample volatilization and counter balancing the cooling effect of a flow of the argon-oxygen mixture around the anode. Where such an argon-oxygen atmosphere is used instead of air, the cyanogen band lines are greatly diminished in intensity, and thus more spectral lines of analysis elements are available for use; the spectral background is also lower. The main advantage of using the carbon electrode and the 80% argon-20% oxygen atmosphere is the improved detection limits of 36 out of 68 elements. The detection limits remain the same for 23 elements, and are not as good for only nine elements. ?? 1981.
NASA Technical Reports Server (NTRS)
1984-01-01
Nonlinear structural analysis techniques for engine structures and components are addressed. The finite element method and boundary element method are discussed in terms of stress and structural analyses of shells, plates, and laminates.
NASA Technical Reports Server (NTRS)
Tsiveriotis, K.; Brown, R. A.
1993-01-01
A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.
Investigation into discretization methods of the six-parameter Iwan model
NASA Astrophysics Data System (ADS)
Li, Yikun; Hao, Zhiming; Feng, Jiaquan; Zhang, Dingguo
2017-02-01
Iwan model is widely applied for the purpose of describing nonlinear mechanisms of jointed structures. In this paper, parameter identification procedures of the six-parameter Iwan model based on joint experiments with different preload techniques are performed. Four kinds of discretization methods deduced from stiffness equation of the six-parameter Iwan model are provided, which can be used to discretize the integral-form Iwan model into a sum of finite Jenkins elements. In finite element simulation, the influences of discretization methods and numbers of Jenkins elements on computing accuracy are discussed. Simulation results indicate that a higher accuracy can be obtained with larger numbers of Jenkins elements. It is also shown that compared with other three kinds of discretization methods, the geometric series discretization based on stiffness provides the highest computing accuracy.
Probabilistic finite elements for transient analysis in nonlinear continua
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Carbide and carbonitride surface treatment method for refractory metals
Meyer, G.A.; Schildbach, M.A.
1996-12-03
A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system including a reaction chamber, a source of elemental carbon, a heating subassembly and a source of reaction gases. Alternative methods of providing the elemental carbon and the reaction gases are provided, as well as methods of supporting the metal part, evacuating the chamber with a vacuum subassembly and heating all of the components to the desired temperature. 5 figs.
NASA Astrophysics Data System (ADS)
Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.
2014-05-01
A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Jin, Jian-Ming; Volakis, John L.
1990-01-01
A method for the computation of electromagnetic scattering from arbitrary two-dimensional bodies is presented. The method combines the finite element and boundary element methods leading to a system for solution via the conjugate gradient Fast Fourier Transform (FFT) algorithm. Two forms of boundaries aimed at reducing the storage requirement of the boundary integral are investigated. It is shown that the boundary integral becomes convolutional when a circular enclosure is chosen, resulting in reduced storage requirement when the system is solved via the conjugate gradient FFT method. The same holds for the ogival enclosure, except that some of the boundary integrals are not convolutional and must be carefully treated to maintain O(N) memory requirement. Results for several circular and ogival structures are presented and shown to be in excellent agreement with those obtained by traditional methods.
A Runge-Kutta discontinuous finite element method for high speed flows
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. T.
1991-01-01
A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
Introducing the Boundary Element Method with MATLAB
ERIC Educational Resources Information Center
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
NEUTRONIC REACTOR CHARGING AND DISCHARGING
Zinn, W.H.
1959-07-14
A method and arrangement is presented for removing a fuel element from a neutronic reactor tube through which a liquid coolant is being circulaled. The fuel element is moved into a section of the tube beyond the reactor proper, and then the coolant in the tube between the fuel element and the reactor proper is frozen, so that the fuel element may be removed from the tube without loss of the coolant therein. The method is particularly useful in the case of a liquid metal- cooled reactor.
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
Henager, Jr., Charles H.; Brimhall, John L.
2000-01-01
According to the method of the present invention, joining a first bi-element carbide to a second bi-element carbide, has the steps of: (a) forming a bond agent containing a metal carbide and silicon; (b) placing the bond agent between the first and second bi-element carbides to form a pre-assembly; and (c) pressing and heating the pre-assembly in a non-oxidizing atmosphere to a temperature effective to induce a displacement reaction creating a metal silicon phase bonding the first and second bi-element carbides.
Method of modifying a volume mesh using sheet extraction
Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM
2007-02-20
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.
Mohammadi, Amrollah; Ahmadian, Alireza; Rabbani, Shahram; Fattahi, Ehsan; Shirani, Shapour
2017-12-01
Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster. Copyright © 2016 John Wiley & Sons, Ltd.
Nuclear fuel elements and method of making same
Schweitzer, Donald G.
1992-01-01
A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.
NASA Astrophysics Data System (ADS)
Li, Xiaomin; Guo, Xueli; Guo, Haiyan
2018-06-01
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.
NASA Astrophysics Data System (ADS)
Li, Gangqiang; Zhu, Zheng H.; Ruel, Stephane; Meguid, S. A.
2017-08-01
This paper developed a new multiphysics finite element method for the elastodynamic analysis of space debris deorbit by a bare flexible electrodynamic tether. Orbital motion limited theory and dynamics of flexible electrodynamic tethers are discretized by the finite element method, where the motional electric field is variant along the tether and coupled with tether deflection and motion. Accordingly, the electrical current and potential bias profiles of tether are solved together with the tether dynamics by the nodal position finite element method. The newly proposed multiphysics finite element method is applied to analyze the deorbit dynamics of space debris by electrodynamic tethers with a two-stage energy control strategy to ensure an efficient and stable deorbit process. Numerical simulations are conducted to study the coupled effect between the motional electric field and the tether dynamics. The results reveal that the coupling effect has a significant influence on the tether stability and the deorbit performance. It cannot be ignored when the libration and deflection of the tether are significant.
Multi-element microelectropolishing method
Lee, P.J.
1994-10-11
A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.
ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆
Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk
2014-01-01
In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725
Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method
NASA Technical Reports Server (NTRS)
Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.
1974-01-01
An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.
NASA Astrophysics Data System (ADS)
Lossa, Geoffrey; Deblecker, Olivier; Grève, Zacharie De
2018-05-01
In this work, we highlight the influence of the material uncertainties (magnetic permeability, electric conductivity of a Mn-Zn ferrite core, and electric permittivity of wire insulation) on the RLC parameters of a wound inductor extracted from the finite element method. To that end, the finite element method is embedded in a Monte Carlo simulation. We show that considering mentioned different material properties as real random variables, leads to significant variations in the distributions of the RLC parameters.
Prediction of overall and blade-element performance for axial-flow pump configurations
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Okiishi, T. H.; Miller, M. J.
1973-01-01
A method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial flow pump configurations are described and evaluated. The method uses the blade-element flow model and an iterative numerical solution of the radial equilbrium and continuity conditions. Correlated experimental results are used to generate alternative methods for estimating blade-element turning and loss characteristics. Detailed descriptions of the computer program are included, with example input and typical computed results.
Application of the Boundary Element Method to Fatigue Crack Growth Analysis
1988-09-01
III, and Noetic PROBE in Section IV. Correlation of the boundary element method and modeling techniques employed in this study were shown with the...distribution unlimited I I I Preface! 3 The purpose of this study was to apply the boundary element method (BEM) to two dimensional fracture mechanics...problems, and to use the BEM to analyze the interference effects of holes on cracks through a parametric study of a two hole 3 tension strip. The study
Finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin
1992-01-01
A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.
Element-by-element Solution Procedures for Nonlinear Structural Analysis
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Winget, J. M.; Levit, I.
1984-01-01
Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in nonlinear structural mechanics. Architectural and data base advantages of the present algorithms over traditional direct elimination schemes are noted. Results of calculations suggest considerable potential for the methods described.
Solution of a tridiagonal system of equations on the finite element machine
NASA Technical Reports Server (NTRS)
Bostic, S. W.
1984-01-01
Two parallel algorithms for the solution of tridiagonal systems of equations were implemented on the Finite Element Machine. The Accelerated Parallel Gauss method, an iterative method, and the Buneman algorithm, a direct method, are discussed and execution statistics are presented.
NASA Astrophysics Data System (ADS)
Wang, Changguo; Tan, Huifeng; Du, Xingwen
2009-10-01
This paper extends Le van’s work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a pre-stressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko’s beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the load-carrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.
Method of preparing nitrogen containing semiconductor material
Barber, Greg D.; Kurtz, Sarah R.
2004-09-07
A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.
Kamoun, Choumouss; Payen, Thibaut; Hua-Van, Aurélie; Filée, Jonathan
2013-10-11
Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of short reads data (<300 bp) for which both techniques seem equally limited, profile HMM searches considerably ameliorate the detection of transposase encoding genes (up to +50%) generating low level of false positives compare to BLAST-based methods. Compared to classical BLAST-based methods, the sensitivity of de novo and profile HMM methods developed in this study allow a better and more reliable detection of transposons in prokaryotic genomes and metagenomes. We believed that future studies implying ISs and MITEs identification in genomic data should combine at least one de novo and one library-based method, with optimal results obtained by running the two de novo methods in addition to a library-based search. For metagenomic data, profile HMM search should be favored, a BLAST-based step is only useful to the final annotation into groups and families.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667
Finite element analysis of thrust angle contact ball slewing bearing
NASA Astrophysics Data System (ADS)
Deng, Biao; Guo, Yuan; Zhang, An; Tang, Shengjin
2017-12-01
In view of the large heavy slewing bearing no longer follows the rigid ring hupothesis under the load condition, the entity finite element model of thrust angular contact ball bearing was established by using finite element analysis software ANSYS. The boundary conditions of the model were set according to the actual condition of slewing bearing, the internal stress state of the slewing bearing was obtained by solving and calculation, and the calculated results were compared with the numerical results based on the rigid ring assumption. The results show that more balls are loaded in the result of finite element method, and the maximum contact stresses between the ball and raceway have some reductions. This is because the finite element method considers the ferrule as an elastic body. The ring will produce structure deformation in the radial plane when the heavy load slewing bearings are subjected to external loads. The results of the finite element method are more in line with the actual situation of the slewing bearing in the engineering.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
Probabilistic finite elements for fracture and fatigue analysis
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.
1989-01-01
The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.
Extension method of drillstring component assembly
Drumheller, Douglas S.
2001-01-01
A method of assembling transducer tools for down-hole applications wherein piezoelectric elements in the tools are pre-stressed by mechanically stretching an elastic mandrel about which the piezoelectric elements are positioned and subsequently releasing the mandrel so that it contracts causing the piezoelectric elements to be captured in an interference fit in a recess in the mandrel. The method can be adapted to embodiments where the recess in the mandrel is bound by two regions of the mandrel, itself, or where the recess is defined on one end by a portion of the mandrel and on the other end by a separate anvil member positioned against the piezoelectric elements and then secured to the mandrel.
Method for in-situ restoration of plantinum resistance thermometer calibration
Carroll, Radford M.
1989-01-01
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or strain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's.
Method for in-situ restoration of platinum resistance thermometer calibration
Carroll, R.M.
1987-10-23
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or stain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's. 1 fig.
Rational approach for assumed stress finite elements
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Sumihara, K.
1984-01-01
A new method for the formulation of hybrid elements by the Hellinger-Reissner principle is established by expanding the essential terms of the assumed stresses as complete polynomials in the natural coordinates of the element. The equilibrium conditions are imposed in a variational sense through the internal displacements which are also expanded in the natural co-ordinates. The resulting element possesses all the ideal qualities, i.e. it is invariant, it is less sensitive to geometric distortion, it contains a minimum number of stress parameters and it provides accurate stress calculations. For the formulation of a 4-node plane stress element, a small perturbation method is used to determine the equilibrium constraint equations. The element has been proved to be always rank sufficient.
The determination of elements in herbal teas and medicinal plant formulations and their tisanes.
Pohl, Pawel; Dzimitrowicz, Anna; Jedryczko, Dominika; Szymczycha-Madeja, Anna; Welna, Maja; Jamroz, Piotr
2016-10-25
Elemental analysis of herbal teas and their tisanes is aimed at assessing their quality and safety in reference to specific food safety regulations and evaluating their nutritional value. This survey is dedicated to atomic spectroscopy and mass spectrometry element detection methods and sample preparation procedures used in elemental analysis of herbal teas and medicinal plant formulations. Referring to original works from the last 15 years, particular attention has been paid to tisane preparation, sample matrix decomposition, calibration and quality assurance of results in elemental analysis of herbal teas by different atomic and mass spectrometry methods. In addition, possible sources of elements in herbal teas and medicinal plant formulations have been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, J.C.
The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.
Mechery, Shelly John [Mississippi State, MS; Singh, Jagdish P [Starkville, MS
2007-07-03
A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.
Modeling the mechanics of axonal fiber tracts using the embedded finite element method.
Garimella, Harsha T; Kraft, Reuben H
2017-05-01
A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified using pressure and relative displacement-based (between skull and brain) experimental studies and was employed to analyze a head impact, demonstrating the applicability of this method in studying axonal injury. Following this, a comparison study of different injury criteria was performed. This model was used to determine the influence of impact direction on the extent of the axonal injury. The results suggested that the lateral impact loading is more dangerous compared to loading in the sagittal plane, a finding in agreement with previous studies. Through this analysis, we demonstrated the viability of the embedded element method as an alternative numerical approach for studying axonal injury in patient-specific human head models. Copyright © 2016 John Wiley & Sons, Ltd.
The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory
Bosbach, Wolfram A.
2015-01-01
Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Baumeister, Joseph F.
1994-01-01
An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.
A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S.; Klang, Eric C.
2001-01-01
The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.
On conforming mixed finite element methods for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.
1982-01-01
The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.
Application of the pulsed fast/thermal neutron method for soil elemental analysis
USDA-ARS?s Scientific Manuscript database
Soil science is a research field where physic concepts and experimental methods are widely used, particularly in agro-chemistry and soil elemental analysis. Different methods of analysis are currently available. The evolution of nuclear physics (methodology and instrumentation) combined with the ava...
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
NASA Astrophysics Data System (ADS)
Batailly, Alain; Magnain, Benoît; Chevaugeon, Nicolas
2013-05-01
The numerical simulation of contact problems is still a delicate matter especially when large transformations are involved. In that case, relative large slidings can occur between contact surfaces and the discretization error induced by usual finite elements may not be satisfactory. In particular, usual elements lead to a facetization of the contact surface, meaning an unavoidable discontinuity of the normal vector to this surface. Uncertainty over the precision of the results, irregularity of the displacement of the contact nodes and even numerical oscillations of contact reaction force may result of such discontinuity. Among the existing methods for tackling such issue, one may consider mortar elements (Fischer and Wriggers, Comput Methods Appl Mech Eng 195:5020-5036, 2006; McDevitt and Laursen, Int J Numer Methods Eng 48:1525-1547, 2000; Puso and Laursen, Comput Methods Appl Mech Eng 93:601-629, 2004), smoothing of the contact surfaces with additional geometrical entity (B-splines or NURBS) (Belytschko et al., Int J Numer Methods Eng 55:101-125, 2002; Kikuchi, Penalty/finite element approximations of a class of unilateral contact problems. Penalty method and finite element method, ASME, New York, 1982; Legrand, Modèles de prediction de l'interaction rotor/stator dans un moteur d'avion Thèse de doctorat. PhD thesis, École Centrale de Nantes, Nantes, 2005; Muñoz, Comput Methods Appl Mech Eng 197:979-993, 2008; Wriggers and Krstulovic-Opara, J Appl Math Mech (ZAMM) 80:77-80, 2000) and, the use of isogeometric analysis (Temizer et al., Comput Methods Appl Mech Eng 200:1100-1112, 2011; Hughes et al., Comput Methods Appl Mech Eng 194:4135-4195, 2005; de Lorenzis et al., Int J Numer Meth Eng, in press, 2011). In the present paper, we focus on these last two methods which are combined with a finite element code using the bi-potential method for contact management (Feng et al., Comput Mech 36:375-383, 2005). A comparative study focusing on the pros and cons of each method regarding geometrical precision and numerical stability for contact solution is proposed. The scope of this study is limited to 2D contact problems for which we consider several types of finite elements. Test cases are given in order to illustrate this comparative study.
student, he developed a parallel spectral finite element method for treating the interaction of large mechanics of fluids, structures, and their interaction|Spectral finite-element methods for time-dependent
Binding SNOMED CT terms to archetype elements. Establishing a baseline of results.
Berges, I; Bermudez, J; Illarramendi, A
2015-01-01
This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". The proliferation of archetypes as a means to represent information of Electronic Health Records has raised the need of binding terminological codes - such as SNOMED CT codes - to their elements, in order to identify them univocally. However, the large size of the terminologies makes it difficult to perform this task manually. To establish a baseline of results for the aforementioned problem by using off-the-shelf string comparison-based techniques against which results from more complex techniques could be evaluated. Nine Typed Comparison METHODS were evaluated for binding using a set of 487 archetype elements. Their recall was calculated and Friedman and Nemenyi tests were applied in order to assess whether any of the methods outperformed the others. Using the qGrams method along with the 'Text' information piece of archetype elements outperforms the other methods if a level of confidence of 90% is considered. A recall of 25.26% is obtained if just one SNOMED CT term is retrieved for each archetype element. This recall rises to 50.51% and 75.56% if 10 and 100 elements are retrieved respectively, that being a reduction of more than 99.99% on the SNOMED CT code set. The baseline has been established following the above-mentioned results. Moreover, it has been observed that although string comparison-based methods do not outperform more sophisticated techniques, they still can be an alternative for providing a reduced set of candidate terms for each archetype element from which the ultimate term can be chosen later in the more-than-likely manual supervision task.
Method and apparatus for acoustic plate mode liquid-solid phase transition detection
Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.
1993-01-01
A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.
An orientation soil survey at the Pebble Cu-Au-Mo porphyry deposit, Alaska
Smith, Steven M.; Eppinger, Robert G.; Fey, David L.; Kelley, Karen D.; Giles, S.A.
2009-01-01
Soil samples were collected in 2007 and 2008 along three traverses across the giant Pebble Cu-Au-Mo porphyry deposit. Within each soil pit, four subsamples were collected following recommended protocols for each of ten commonly-used and proprietary leach/digestion techniques. The significance of geochemical patterns generated by these techniques was classified by visual inspection of plots showing individual element concentration by each analytical method along the 2007 traverse. A simple matrix by element versus method, populated with a value based on the significance classification, provides a method for ranking the utility of methods and elements at this deposit. The interpretation of a complex multi-element dataset derived from multiple analytical techniques is challenging. An example of vanadium results from a single leach technique is used to illustrate the several possible interpretations of the data.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compressive strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compressive loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compression strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compression loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttler, D J
The Java Metadata Facility is introduced by Java Specification Request (JSR) 175 [1], and incorporated into the Java language specification [2] in version 1.5 of the language. The specification allows annotations on Java program elements: classes, interfaces, methods, and fields. Annotations give programmers a uniform way to add metadata to program elements that can be used by code checkers, code generators, or other compile-time or runtime components. Annotations are defined by annotation types. These are defined the same way as interfaces, but with the symbol {at} preceding the interface keyword. There are additional restrictions on defining annotation types: (1) Theymore » cannot be generic; (2) They cannot extend other annotation types or interfaces; (3) Methods cannot have any parameters; (4) Methods cannot have type parameters; (5) Methods cannot throw exceptions; and (6) The return type of methods of an annotation type must be a primitive, a String, a Class, an annotation type, or an array, where the type of the array is restricted to one of the four allowed types. See [2] for additional restrictions and syntax. The methods of an annotation type define the elements that may be used to parameterize the annotation in code. Annotation types may have default values for any of its elements. For example, an annotation that specifies a defect report could initialize an element defining the defect outcome submitted. Annotations may also have zero elements. This could be used to indicate serializability for a class (as opposed to the current Serializability interface).« less
Three-dimensional Stress Analysis Using the Boundary Element Method
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Banerjee, P. K.
1984-01-01
The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.
Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swafford, A.M.; Keller, J.M.
1993-03-17
Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences ismore » necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.« less
NASA Astrophysics Data System (ADS)
Bayat, Hamid Reza; Krämer, Julian; Wunderlich, Linus; Wulfinghoff, Stephan; Reese, Stefanie; Wohlmuth, Barbara; Wieners, Christian
2018-03-01
This work presents a systematic study of discontinuous and nonconforming finite element methods for linear elasticity, finite elasticity, and small strain plasticity. In particular, we consider new hybrid methods with additional degrees of freedom on the skeleton of the mesh and allowing for a local elimination of the element-wise degrees of freedom. We show that this process leads to a well-posed approximation scheme. The quality of the new methods with respect to locking and anisotropy is compared with standard and in addition locking-free conforming methods as well as established (non-) symmetric discontinuous Galerkin methods with interior penalty. For several benchmark configurations, we show that all methods converge asymptotically for fine meshes and that in many cases the hybrid methods are more accurate for a fixed size of the discrete system.
A well-posed optimal spectral element approximation for the Stokes problem
NASA Technical Reports Server (NTRS)
Maday, Y.; Patera, A. T.; Ronquist, E. M.
1987-01-01
A method is proposed for the spectral element simulation of incompressible flow. This method constitutes in a well-posed optimal approximation of the steady Stokes problem with no spurious modes in the pressure. The resulting method is analyzed, and numerical results are presented for a model problem.
UXO Discrimination in Cases with Overlapping Signatures
2007-03-07
13. APPENDIX B: HFE -BIEM ..........................................................................................................290 - 7...First principals numerical solutions developed were a Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM) body of revolution (BOR...attacks, namely the Method of Auxiliary Sources (MAS) and the Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM). These work
Large-scale computation of incompressible viscous flow by least-squares finite element method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.
Duodu, Godfred Odame; Goonetilleke, Ashantha; Allen, Charlotte; Ayoko, Godwin A
2015-10-22
Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (-52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Jara-Almonte, J.; Mitchell, L. D.
1988-01-01
The paper covers two distinct parts: theory and application. The goal of this work was the reduction of model size with an increase in eigenvalue/vector accuracy. This method is ideal for the condensation of large truss- or beam-type structures. The theoretical approach involves the conversion of a continuum transfer matrix beam element into an 'Exact' dynamic stiffness element. This formulation is implemented in a finite element environment. This results in the need to solve a transcendental eigenvalue problem. Once the eigenvalue is determined the eigenvectors can be reconstructed with any desired spatial precision. No discretization limitations are imposed on the reconstruction. The results of such a combined finite element and transfer matrix formulation is a much smaller FEM eigenvalue problem. This formulation has the ability to extract higher eigenvalues as easily and as accurately as lower eigenvalues. Moreover, one can extract many more eigenvalues/vectors from the model than the number of degrees of freedom in the FEM formulation. Typically, the number of eigenvalues accurately extractable via the 'Exact' element method are at least 8 times the number of degrees of freedom. In contrast, the FEM usually extracts one accurate (within 5 percent) eigenvalue for each 3-4 degrees of freedom. The 'Exact' element results in a 20-30 improvement in the number of accurately extractable eigenvalues and eigenvectors.
Finite element analysis (FEA) analysis of the preflex beam
NASA Astrophysics Data System (ADS)
Wan, Lijuan; Gao, Qilang
2017-10-01
The development of finite element analysis (FEA) has been relatively mature, and is one of the important means of structural analysis. This method changes the problem that the research of complex structure in the past needs to be done by a large number of experiments. Through the finite element method, the numerical simulation of the structure can be used to achieve a variety of static and dynamic simulation analysis of the mechanical problems, it is also convenient to study the parameters of the structural parameters. Combined with a certain number of experiments to verify the simulation model can be completed in the past all the needs of experimental research. The nonlinear finite element method is used to simulate the flexural behavior of the prestressed composite beams with corrugated steel webs. The finite element analysis is used to understand the mechanical properties of the structure under the action of bending load.
Method and apparatus for staking optical elements
Woods, Robert O.
1988-01-01
A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.
Method and apparatus for staking optical elements
Woods, Robert O.
1988-10-04
A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.
Trace elements study of high purity nanocrystalline silicon carbide (3C-SiC) using k0-INAA method
NASA Astrophysics Data System (ADS)
Huseynov, Elchin; Jazbec, Anze
2017-07-01
Silicon carbide (3C-SiC) nanoparticles have been irradiated by neutron flux (2×1013 n·cm-2·s-1) at TRIGA Mark II type research reactor. After neutron irradiation, the radioisotopes of trace elements in the nanocrystalline 3C-SiC were studied as time functions. The identification of isotopes which significantly increased the activity of the samples as a result of neutron radiation was carried out. Nanocrystalline 3C-SiC are synthesized by standard laser technique and the purity of samples was determined by the k0-based Instrumental Neutron Activation Analysis (k0-INAA) method. Trace elements concentration in the 3C-SiC nanoparticles were determined by the radionuclides of appropriate elements. The trace element isotopes concentration have been calculated in percentage according to k0-INAA method.
A hybridized formulation for the weak Galerkin mixed finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less
A hybridized formulation for the weak Galerkin mixed finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-01-14
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.
1999-01-01
In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.
[Application of finite element method in spinal biomechanics].
Liu, Qiang; Zhang, Jun; Sun, Shu-Chun; Wang, Fei
2017-02-25
The finite element model is one of the most important methods in study of modern spinal biomechanics, according to the needs to simulate the various states of the spine, calculate the stress force and strain distribution of the different groups in the state, and explore its principle of mechanics, mechanism of injury, and treatment effectiveness. In addition, in the study of the pathological state of the spine, the finite element is mainly used in the understanding the mechanism of lesion location, evaluating the effects of different therapeutic tool, assisting and completing the selection and improvement of therapeutic tool, in order to provide a theoretical basis for the rehabilitation of spinal lesions. Finite element method can be more provide the service for the patients suffering from spinal correction, operation and individual implant design. Among the design and performance evaluation of the implant need to pay attention to the individual difference and perfect the evaluation system. At present, how to establish a model which is more close to the real situation has been the focus and difficulty of the study of human body's finite element.Although finite element method can better simulate complex working condition, it is necessary to improve the authenticity of the model and the sharing of the group by using many kinds of methods, such as image science, statistics, kinematics and so on. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.
Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method.
Yan, Xiaoan; Jia, Minping; Zhang, Wan; Zhu, Lin
2018-02-01
Periodic transient impulses are key indicators of rolling element bearing defects. Efficient acquisition of impact impulses concerned with the defects is of much concern to the precise detection of bearing defects. However, transient features of rolling element bearing are generally immersed in stochastic noise and harmonic interference. Therefore, in this paper, a new optimal scale morphology analysis method, named adaptive multiscale combination morphological filter-hat transform (AMCMFH), is proposed for rolling element bearing fault diagnosis, which can both reduce stochastic noise and reserve signal details. In this method, firstly, an adaptive selection strategy based on the feature energy factor (FEF) is introduced to determine the optimal structuring element (SE) scale of multiscale combination morphological filter-hat transform (MCMFH). Subsequently, MCMFH containing the optimal SE scale is applied to obtain the impulse components from the bearing vibration signal. Finally, fault types of bearing are confirmed by extracting the defective frequency from envelope spectrum of the impulse components. The validity of the proposed method is verified through the simulated analysis and bearing vibration data derived from the laboratory bench. Results indicate that the proposed method has a good capability to recognize localized faults appeared on rolling element bearing from vibration signal. The study supplies a novel technique for the detection of faulty bearing. Copyright © 2018. Published by Elsevier Ltd.
Umans, Stephen D.
2008-11-11
Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.
Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne
2005-11-08
A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.
NASA Technical Reports Server (NTRS)
Hua, Chongyu; Volakis, John L.
1990-01-01
AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.
Axisymmetric solid elements by a rational hybrid stress method
NASA Technical Reports Server (NTRS)
Tian, Z.; Pian, T. H. H.
1985-01-01
Four-node axisymmetric solid elements are derived by a new version of hybrid method for which the assumed stresses are expressed in complete polynomials in natural coordinates. The stress equilibrium conditions are introduced through the use of additional displacements as Lagrange multipliers. A rational procedure is to choose the displacement terms such that the resulting strains are also of complete polynomials of the same order. Example problems all indicate that elements obtained by this procedure lead to better results in displacements and stresses than that by other finite elements.
Meyer, Sören; Markova, Mariya; Pohl, Gabriele; Marschall, Talke A; Pivovarova, Olga; Pfeiffer, Andreas F H; Schwerdtle, Tanja
2018-09-01
Multi-element determination in human samples is very challenging. Especially in human intervention studies sample volumes are often limited to a few microliters and due to the high number of samples a high-throughput is indispensable. Here, we present a state-of-the-art ICP-MS/MS-based method for the analysis of essential (trace) elements, namely Mg, Ca, Fe, Cu, Zn, Mo, Se and I, as well as food-relevant toxic elements such as As and Cd. The developed method was validated regarding linearity of the calibration curves, method LODs and LOQs, selectivity and trueness as well as precision. The established reliable method was applied to quantify the element serum concentrations of participants of a human intervention study (LeguAN). The participants received isocaloric diets, either rich in plant protein or in animal protein. While the serum concentrations of Mg and Mo increased in participants receiving the plant protein-based diet (above all legumes), the Se concentration in serum decreased. In contrast, the animal protein-based diet, rich in meat and dairy products, resulted in an increased Se concentration in serum. Copyright © 2018 Elsevier GmbH. All rights reserved.
On the Development of Multi-Step Inverse FEM with Shell Model
NASA Astrophysics Data System (ADS)
Huang, Y.; Du, R.
2005-08-01
The inverse or one-step finite element approach is increasingly used in the sheet metal stamping industry to predict strain distribution and the initial blank shape in the preliminary design stage. Based on the existing theory, there are two types of method: one is based on the principle of virtual work and the other is based on the principle of extreme work. Much research has been conducted to improve the accuracy of simulation results. For example, based on the virtual work principle, Batoz et al. developed a new method using triangular DKT shell elements. In this new method, the bending and unbending effects are considered. Based on the principle of extreme work, Majlessi and et al. proposed the multi-step inverse approach with membrane elements and applied it to an axis-symmetric part. Lee and et al. presented an axis-symmetric shell element model to solve the similar problem. In this paper, a new multi-step inverse method is introduced with no limitation on the workpiece shape. It is a shell element model based on the virtual work principle. The new method is validated by means of comparing to the commercial software system (PAMSTAMP®). The comparison results indicate that the accuracy is good.
A new weak Galerkin finite element method for elliptic interface problems
Mu, Lin; Wang, Junping; Ye, Xiu; ...
2016-08-26
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A new weak Galerkin finite element method for elliptic interface problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A comparative study of an ABC and an artificial absorber for truncating finite element meshes
NASA Technical Reports Server (NTRS)
Oezdemir, T.; Volakis, John L.
1993-01-01
The type of mesh termination used in the context of finite element formulations plays a major role on the efficiency and accuracy of the field solution. The performance of an absorbing boundary condition (ABC) and an artificial absorber (a new concept) for terminating the finite element mesh was evaluated. This analysis is done in connection with the problem of scattering by a finite slot array in a thick ground plane. The two approximate mesh truncation schemes are compared with the exact finite element-boundary integral (FEM-BI) method in terms of accuracy and efficiency. It is demonstrated that both approximate truncation schemes yield reasonably accurate results even when the mesh is extended only 0.3 wavelengths away from the array aperture. However, the artificial absorber termination method leads to a substantially more efficient solution. Moreover, it is shown that the FEM-BI method remains quite competitive with the FEM-artificial absorber method when the FFT is used for computing the matrix-vector products in the iterative solution algorithm. These conclusions are indeed surprising and of major importance in electromagnetic simulations based on the finite element method.
Improving finite element results in modeling heart valve mechanics.
Earl, Emily; Mohammadi, Hadi
2018-06-01
Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto
2018-04-01
Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.
Advanced hybrid particulate collector and method of operation
Miller, Stanley J [Grand Forks, ND
2003-04-08
A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.
Tuning method for microresonators and microresonators made thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael David; Olsson, Roy H.; Greth, Karl Douglas
2015-12-01
A micromechanical resonator is disclosed. The resonator includes a resonant micromechanical element. A film of annealable material can be deposited on a facial surface of the element. The resonance of the element can be tuned by annealing the deposited film. Also disclosed are methods of applying a film on a resonator and annealing the film, thereby tuning one or more resonant properties of the resonator.
Hybrid finite element and Brownian dynamics method for diffusion-controlled reactions.
Bauler, Patricia; Huber, Gary A; McCammon, J Andrew
2012-04-28
Diffusion is often the rate determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. This paper proposes a new hybrid diffusion method that couples the strengths of each of these two methods. The method is derived for a general multidimensional system, and is presented using a basic test case for 1D linear and radially symmetric diffusion systems.
A collocation--Galerkin finite element model of cardiac action potential propagation.
Rogers, J M; McCulloch, A D
1994-08-01
A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.
Ice Detection and Mitigation Device
NASA Technical Reports Server (NTRS)
Gambino, Richard J. (Inventor); Gouldstone, Christopher (Inventor); Gutleber, Jonathan (Inventor); Hubble, David (Inventor); Trelewicz, Jason (Inventor)
2016-01-01
A method for deicing an aerostructure includes driving a sensing current through a heater element coated to an aerostructure, the heater element having a resistance that is temperature dependent. A resistance of the heater element is monitored. It is determined whether there is icing at the heater element using the monitored resistance of the heater element. A melting current is driven through the heater element when it is determined that there is icing at the heater element.
Kotovsky, Jack
2014-02-11
A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Neuman, S. P.
2006-12-01
Furman and Neuman (2003) proposed a Laplace Transform Analytic Element Method (LT-AEM) for transient groundwater flow. LT-AEM applies the traditionally steady-state AEM to the Laplace transformed groundwater flow equation, and back-transforms the resulting solution to the time domain using a Fourier Series numerical inverse Laplace transform method (de Hoog, et.al., 1982). We have extended the method so it can compute hydraulic head and flow velocity distributions due to any two-dimensional combination and arrangement of point, line, circular and elliptical area sinks and sources, nested circular or elliptical regions having different hydraulic properties, and areas of specified head, flux or initial condition. The strengths of all sinks and sources, and the specified head and flux values, can all vary in both space and time in an independent and arbitrary fashion. Initial conditions may vary from one area element to another. A solution is obtained by matching heads and normal fluxes along the boundary of each element. The effect which each element has on the total flow is expressed in terms of generalized Fourier series which converge rapidly (<20 terms) in most cases. As there are more matching points than unknown Fourier terms, the matching is accomplished in Laplace space using least-squares. The method is illustrated by calculating the resulting transient head and flow velocities due to an arrangement of elements in both finite and infinite domains. The 2D LT-AEM elements already developed and implemented are currently being extended to solve the 3D groundwater flow equation.
Design optimization of space structures
NASA Technical Reports Server (NTRS)
Felippa, Carlos
1991-01-01
The topology-shape-size optimization of space structures is investigated through Kikuchi's homogenization method. The method starts from a 'design domain block,' which is a region of space into which the structure is to materialize. This domain is initially filled with a finite element mesh, typically regular. Force and displacement boundary conditions corresponding to applied loads and supports are applied at specific points in the domain. An optimal structure is to be 'carved out' of the design under two conditions: (1) a cost function is to be minimized, and (2) equality or inequality constraints are to be satisfied. The 'carving' process is accomplished by letting microstructure holes develop and grow in elements during the optimization process. These holes have a rectangular shape in two dimensions and a cubical shape in three dimensions, and may also rotate with respect to the reference axes. The properties of the perforated element are obtained through an homogenization procedure. Once a hole reaches the volume of the element, that element effectively disappears. The project has two phases. In the first phase the method was implemented as the combination of two computer programs: a finite element module, and an optimization driver. In the second part, focus is on the application of this technique to planetary structures. The finite element part of the method was programmed for the two-dimensional case using four-node quadrilateral elements to cover the design domain. An element homogenization technique different from that of Kikuchi and coworkers was implemented. The optimization driver is based on an augmented Lagrangian optimizer, with the volume constraint treated as a Courant penalty function. The optimizer has to be especially tuned to this type of optimization because the number of design variables can reach into the thousands. The driver is presently under development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harkness, A. L.
1977-09-01
Nine elements from each batch of fuel elements manufactured for the EBR-II reactor have been analyzed for /sup 235/U content by NDA methods. These values, together with those of the manufacturer, are used to estimate the product variance and the variances of the two measuring methods. These variances are compared with the variances computed from the stipulations of the contract. A method is derived for resolving the several variances into their within-batch and between-batch components. Some of these variance components have also been estimated by independent and more familiar conventional methods for comparison.
2010-03-01
matrix elements. From scattering matrix elements for several different effective potential values and using the Method of Partial Waves[7], the...scattering matrix elements. Through the Method of Par- tial Waves[7], the procedure was repeated for several different effective potentials. The...section calculations. It is important to note that lmax may differ for σel and σi→f . This method may only be used if both σi→f and σel have
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
Natural frequencies of thin rectangular plates clamped on contour using the Finite Element Method
NASA Astrophysics Data System (ADS)
(Barboni Haţiegan, L.; Haţiegan, C.; Gillich, G. R.; Hamat, C. O.; Vasile, O.; Stroia, M. D.
2018-01-01
This paper presents the determining of natural frequencies of plates without and with damages using the finite element method of SolidWorks program. The first thirty natural frequencies obtained for thin rectangular rectangular plates clamped on contour without and with central damages a for different dimensions. The relative variation of natural frequency was determined and the obtained results by the finite element method (FEM) respectively relative variation of natural frequency, were graphically represented according to their vibration natural modes. Finally, the obtained results were compared.
NASA Technical Reports Server (NTRS)
Parks, D. M.
1974-01-01
A finite element technique for determination of elastic crack tip stress intensity factors is presented. The method, based on the energy release rate, requires no special crack tip elements. Further, the solution for only a single crack length is required, and the crack is 'advanced' by moving nodal points rather than by removing nodal tractions at the crack tip and performing a second analysis. The promising straightforward extension of the method to general three-dimensional crack configurations is presented and contrasted with the practical impossibility of conventional energy methods.
Finite element modeling of truss structures with frequency-dependent material damping
NASA Technical Reports Server (NTRS)
Lesieutre, George A.
1991-01-01
A physically motivated modelling technique for structural dynamic analysis that accommodates frequency dependent material damping was developed. Key features of the technique are the introduction of augmenting thermodynamic fields (AFT) to interact with the usual mechanical displacement field, and the treatment of the resulting coupled governing equations using finite element analysis methods. The AFT method is fully compatible with current structural finite element analysis techniques. The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure representative of those contemplated for use in future space systems.
Development and Application of the p-Version of the Finite Element Method.
1987-12-30
element method has been the subject of intensive study since the early 1950’s and perhaps even earlier. Study of the p-version of the finite element...method, on the other hand, began at *Washington University in St. Louis in the early 1970’s and led to a more recent study of the h-p version. Research...infinite strip to a bounded domain. 3.3 A Numerical Argument Principle In order to assure that all roots have indeed been obtained, we have studied the
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Gao, Hai-Feng; Du, Lei; Chen, Hai-Bo; Zhang, Chuanzeng
2016-01-01
An accurate numerical solver is developed in this paper for eigenproblems governed by the Helmholtz equation and formulated through the boundary element method. A contour integral method is used to convert the nonlinear eigenproblem into an ordinary eigenproblem, so that eigenvalues can be extracted accurately by solving a set of standard boundary element systems of equations. In order to accelerate the solution procedure, the parameters affecting the accuracy and efficiency of the method are studied and two contour paths are compared. Moreover, a wideband fast multipole method is implemented with a block IDR (s) solver to reduce the overall solution cost of the boundary element systems of equations with multiple right-hand sides. The Burton-Miller formulation is employed to identify the fictitious eigenfrequencies of the interior acoustic problems with multiply connected domains. The actual effect of the Burton-Miller formulation on tackling the fictitious eigenfrequency problem is investigated and the optimal choice of the coupling parameter as α = i / k is confirmed through exterior sphere examples. Furthermore, the numerical eigenvalues obtained by the developed method are compared with the results obtained by the finite element method to show the accuracy and efficiency of the developed method.
Evaluation of an improved finite-element thermal stress calculation technique
NASA Technical Reports Server (NTRS)
Camarda, C. J.
1982-01-01
A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.
NASA Astrophysics Data System (ADS)
Kraus, Hal G.
1993-02-01
Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.
Analysis of Brick Masonry Wall using Applied Element Method
NASA Astrophysics Data System (ADS)
Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen
2018-03-01
The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.
PROTECTIVELY COVERED ARTICLE AND METHOD OF MANUFACTURE
Plott, R.F.
1958-10-28
A method of casting a protective jacket about a ura nium fuel element that will bond completely to the uranium without the use of stringers or supports that would ordinarily produce gaps in the cast metal coating and bond is presented. Preformed endcaps of alumlnum alloyed with 13% silicon are placed on the ends of the uranium fuel element. These caps will support the fuel element when placed in a mold. The mold is kept at a ing alloy but below that of uranium so the cast metal jacket will fuse with the endcaps forming a complete covering and bond to the fuel element, which would otherwise oxidize at the gaps or discontinuities lefi in the coating by previous casting methods.
NASA Astrophysics Data System (ADS)
Kijko, V. V.; Ofitserov, Evgenii N.
2006-05-01
Thermooptic distortions of the active element of an axially diode-pumped Nd:YVO4 solid-state laser are studied at different methods of its mounting. The study was performed by the Hartmann method. A mathematical model for calculating the optical power of a thermal lens produced in the crystal upon pumping is developed and verified experimentally. It is shown that the optical power of a thermal lens produced upon axial pumping of the convectively cooled active element sealed off in a copper heat sink is half the optical power observed upon convective cooling of the active element without heat sink. The experimental and theoretical results are in good agreement.
INAA Application for Trace Element Determination in Biological Reference Material
NASA Astrophysics Data System (ADS)
Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.
2017-06-01
Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.
Structures, systems and methods for harvesting energy from electromagnetic radiation
Novack, Steven D [Idaho Falls, ID; Kotter, Dale K [Shelley, ID; Pinhero, Patrick J [Columbia, MO
2011-12-06
Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.
Jantzi, Sarah C; Almirall, José R
2014-01-01
Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.
The intervals method: a new approach to analyse finite element outputs using multivariate statistics
De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep
2017-01-01
Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi
In this paper, we propose a method to calculate the equivalent circuit parameters of interior permanent magnet motors including iron loss resistance using the finite element method. First, the finite element analysis considering harmonics and magnetic saturation is carried out to obtain time variations of magnetic fields in the stator and the rotor core. Second, the iron losses of the stator and the rotor are calculated from the results of the finite element analysis with the considerations of harmonic eddy current losses and the minor hysteresis losses of the core. As a result, we obtain the equivalent circuit parameters i.e. the d-q axis inductance and the iron loss resistance as functions of operating condition of the motor. The proposed method is applied to an interior permanent magnet motor to calculate the characteristics based on the equivalent circuit obtained by the proposed method. The calculated results are compared with the experimental results to verify the accuracy.
NASA Astrophysics Data System (ADS)
Pioldi, Fabio; Rizzi, Egidio
2016-08-01
This paper proposes a new output-only element-level system identification and input estimation technique, towards the simultaneous identification of modal parameters, input excitation time history and structural features at the element-level by adopting earthquake-induced structural response signals. The method, named Full Dynamic Compound Inverse Method (FDCIM), releases strong assumptions of earlier element-level techniques, by working with a two-stage iterative algorithm. Jointly, a Statistical Average technique, a modification process and a parameter projection strategy are adopted at each stage to achieve stronger convergence for the identified estimates. The proposed method works in a deterministic way and is completely developed in State-Space form. Further, it does not require continuous- to discrete-time transformations and does not depend on initialization conditions. Synthetic earthquake-induced response signals from different shear-type buildings are generated to validate the implemented procedure, also with noise-corrupted cases. The achieved results provide a necessary condition to demonstrate the effectiveness of the proposed identification method.
A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain
NASA Astrophysics Data System (ADS)
Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.
2018-05-01
The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, T.J.; Mitchell, S.A.; Blacker, T.D.; Murdoch, P.
1998-06-16
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as ``whisker chords.`` This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method. 79 figs.
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, Timothy James; Mitchell, Scott A.; Blacker, Ted D.; Murdoch, Peter
1998-01-01
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as "whisker chords." This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method.
NASA Astrophysics Data System (ADS)
Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.
2017-10-01
We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.
Stiffness Parameter Design of Suspension Element of Under-Chassis-Equipment for A Rail Vehicle
NASA Astrophysics Data System (ADS)
Ma, Menglin; Wang, Chengqiang; Deng, Hai
2017-06-01
According to the frequency configuration requirements of the vibration of railway under-chassis-equipment, the three- dimension stiffness of the suspension elements of under-chassis-equipment is designed based on the static principle and dynamics principle. The design results of the concrete engineering case show that, compared with the design method based on the static principle, the three- dimension stiffness of the suspension elements designed by the dynamic principle design method is more uniform. The frequency and decoupling degree analysis show that the calculation frequency of under-chassis-equipment under the two design methods is basically the same as the predetermined frequency. Compared with the design method based on the static principle, the design method based on the dynamic principle is adopted. The decoupling degree can be kept high, and the coupling vibration of the corresponding vibration mode can be reduced effectively, which can effectively reduce the fatigue damage of the key parts of the hanging element.
Carbide and carbonitride surface treatment method for refractory metals
Meyer, Glenn A.; Schildbach, Marcus A.
1996-01-01
A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system (10) including a reaction chamber (14), a source of elemental carbon (17), a heating subassembly (20) and a source of reaction gases (23). Alternative methods of providing the elemental carbon (17) and the reaction gases (23) are provided, as well as methods of supporting the metal part (12), evacuating the chamber (14) with a vacuum subassembly (18) and heating all of the components to the desired temperature.
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
Method and an apparatus for non-invasively determining the quantity of an element in a body organ
Vartsky, D.; Ellis, K.J.; Cohn, S.H.
1980-06-27
An apparatus and a method for determining in a body organ the amount of an element with the aid of a gaseous gamma ray source, where the element and the source are paired in predetermined pairs, and with the aid of at least one detector selected from the group consisting of Ge(Li) and NaI(Tl). Gamma rays are directed towards the organ, thereby resonantly scattering the gamma rays from nuclei of the element in the organ; the intensity of the gamma rays is detected by the detector; and the amount of the element in the organ is then substantially proportional to the detected intensity of the gamma rays.
A High Order, Locally-Adaptive Method for the Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Chan, Daniel
1998-11-01
I have extended the FOSLS method of Cai, Manteuffel and McCormick (1997) and implemented it within the framework of a spectral element formulation using the Legendre polynomial basis function. The FOSLS method solves the Navier-Stokes equations as a system of coupled first-order equations and provides the ellipticity that is needed for fast iterative matrix solvers like multigrid to operate efficiently. Each element is treated as an object and its properties are self-contained. Only C^0 continuity is imposed across element interfaces; this design allows local grid refinement and coarsening without the burden of having an elaborate data structure, since only information along element boundaries is needed. With the FORTRAN 90 programming environment, I can maintain a high computational efficiency by employing a hybrid parallel processing model. The OpenMP directives provides parallelism in the loop level which is executed in a shared-memory SMP and the MPI protocol allows the distribution of elements to a cluster of SMP's connected via a commodity network. This talk will provide timing results and a comparison with a second order finite difference method.
Dynamic analysis of suspension cable based on vector form intrinsic finite element method
NASA Astrophysics Data System (ADS)
Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun
2017-10-01
A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.
Program Helps Generate Boundary-Element Mathematical Models
NASA Technical Reports Server (NTRS)
Goldberg, R. K.
1995-01-01
Composite Model Generation-Boundary Element Method (COM-GEN-BEM) computer program significantly reduces time and effort needed to construct boundary-element mathematical models of continuous-fiber composite materials at micro-mechanical (constituent) scale. Generates boundary-element models compatible with BEST-CMS boundary-element code for anlaysis of micromechanics of composite material. Written in PATRAN Command Language (PCL).
Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity
NASA Astrophysics Data System (ADS)
Lin, Guang; Liu, Jiangguo; Mu, Lin; Ye, Xiu
2014-11-01
This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors. We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.
High performance computation of radiative transfer equation using the finite element method
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.
2018-05-01
This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Structural Noise and Acoustic Characteristics Improvement of Transport Power Plants
NASA Astrophysics Data System (ADS)
Chaynov, N. D.; Markov, V. A.; Savastenko, A. A.
2018-03-01
Noise reduction generated during the operation of various machines and mechanisms is an urgent task with regard to the power plants and, in particular, to internal combustion engines. Sound emission from the surfaces vibration of body parts is one of the main noise manifestations of the running engine and it is called a structural noise. The vibration defining of the outer surfaces of complex body parts and the calculation of their acoustic characteristics are determined with numerical methods. At the same time, realization of finite and boundary elements methods combination turned out to be very effective. The finite element method is used in calculating the structural elements vibrations, and the boundary elements method is used in the structural noise calculation. The main conditions of the methodology and the results of the structural noise analysis applied to a number of automobile engines are shown.
NASA Technical Reports Server (NTRS)
Chang, S. C.; Wang, X. Y.; Chow, C. Y.; Himansu, A.
1995-01-01
The method of space-time conservation element and solution element is a nontraditional numerical method designed from a physicist's perspective, i.e., its development is based more on physics than numerics. It uses only the simplest approximation techniques and yet is capable of generating nearly perfect solutions for a 2-D shock reflection problem used by Helen Yee and others. In addition to providing an overall view of the new method, we introduce a new concept in the design of implicit schemes, and use it to construct a highly accurate solver for a convection-diffusion equation. It is shown that, in the inviscid case, this new scheme becomes explicit and its amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, its principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
NASA Astrophysics Data System (ADS)
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-10-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
[Determination of heavy metals in four traditional Chinese medicines by ICP-MS].
Wen, Hui-Min; Chen, Xiao-Hui; Dong, Ting-Xia; Zhan, Hua-Qiang; Bi, Kai-Shun
2006-08-01
To establish a ICP-MS method for the determination of heavy metals, including As, Hg, Pb, Cd, in four traditional Chinese medicines. The samples were digested by closed-versel microwave. The four heavy metals were directly analyzed by ICP-MS. Select internal standard element in for the method by which the analyse signal drife is corrected by the signal of another element (internal standard elements) added to both the standard solution and sample. For all of the analyzed heary methals, the correlative coefficient of the calibration curves was over 0.999 2. The recovery rates of the procedure were 97.5%-108.0%, and its RSD was lower than 11.6%. This method was convenient, quick-acquired, accurate and highly sensitive. The method can be used for the quality control of trace elements in traditional Chinese medicines and for the contents determination of traditional Chinese medicines from different habitats and species.
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.
1991-01-01
A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.
NASA Astrophysics Data System (ADS)
Nakashima, Hiroshi; Takatsu, Yuzuru
The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.
Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong
2018-01-01
Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.
The use of Galerkin finite-element methods to solve mass-transport equations
Grove, David B.
1977-01-01
The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)
Moving Particles Through a Finite Element Mesh
Peskin, Adele P.; Hardin, Gary R.
1998-01-01
We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377
Neutron-stimulated gamma ray analysis of soil
USDA-ARS?s Scientific Manuscript database
The chapter will discuss methods to use gamma rays to measure elements in soil. In regard to land management, there is a need to develop a non-destructive, non-contact, in-situ method of determining soil elements distributed in a soil volume or on soil surface. A unique method having all of above ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES METHODS FOR... change scientific elements underlying the dose reconstruction process to maintain methods reasonably... methods reasonably current with scientific progress? Periodically, NIOSH will publish a notice in the...
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
29 CFR Appendix V to Part 1918 - Basic Elements of a First Aid Training Program (Non-mandatory)
Code of Federal Regulations, 2014 CFR
2014-07-01
... teaching first aid, and the recipients of first aid training. General Program Elements A. Teaching Methods... services. C. Methods of Surveying the Scene and the Victim(s) The training program should include... splinting. b. dislocations, especially the methods of joint dislocations of the upper extremity. The...
29 CFR Appendix V to Part 1918 - Basic Elements of a First Aid Training Program (Non-mandatory)
Code of Federal Regulations, 2013 CFR
2013-07-01
... teaching first aid, and the recipients of first aid training. General Program Elements A. Teaching Methods... services. C. Methods of Surveying the Scene and the Victim(s) The training program should include... splinting. b. dislocations, especially the methods of joint dislocations of the upper extremity. The...
NASA Astrophysics Data System (ADS)
Cheng, Yao; Zhou, Ning; Zhang, Weihua; Wang, Zhiwei
2018-07-01
Minimum entropy deconvolution is a widely-used tool in machinery fault diagnosis, because it enhances the impulse component of the signal. The filter coefficients that greatly influence the performance of the minimum entropy deconvolution are calculated by an iterative procedure. This paper proposes an improved deconvolution method for the fault detection of rolling element bearings. The proposed method solves the filter coefficients by the standard particle swarm optimization algorithm, assisted by a generalized spherical coordinate transformation. When optimizing the filters performance for enhancing the impulses in fault diagnosis (namely, faulty rolling element bearings), the proposed method outperformed the classical minimum entropy deconvolution method. The proposed method was validated in simulation and experimental signals from railway bearings. In both simulation and experimental studies, the proposed method delivered better deconvolution performance than the classical minimum entropy deconvolution method, especially in the case of low signal-to-noise ratio.
Comparing the NIOSH Method 5040 to a Diesel Particulate Matter Meter for Elemental Carbon
NASA Astrophysics Data System (ADS)
Ayers, David Matthew
Introduction: The sampling of elemental carbon has been associated with monitoring exposures in the trucking and mining industries. Recently, in the field of engineered nanomaterials, single wall and muti-wall carbon nanotubes (MWCNTs) are being produced in ever increasing quantities. The only approved atmospheric sampling for multi-wall carbon nanotubes in NIOSH Method 5040. These results are accurate but can take up to 30 days for sample results to be received. Objectives: Compare the results of elemental carbon sampling from the NIOSH Method 5040 to a Diesel Particulate Matter (DPM) Meter. Methods: MWCNTs were transferred and weighed between several trays placed on a scale. The NIOSH Method 5040 and DPM sampling train was hung 6 inches above the receiving tray. The transferring and weighing of the MWCNTs created an aerosol containing elemental carbon. Twenty-one total samples using both meters type were collected. Results: The assumptions for a Two-Way ANOVA were violated therefore, Mann-Whitney U Tests and a Kruskal-Wallis Test were performed. The hypotheses for both research questions were rejected. There was a significant difference in the EC concentrations obtained by the NIOSH Method 5040 and the DPM meter. There were also significant differences in elemental carbon level concentrations when sampled using a DPM meter versus a sampling pump based upon the three concentration levels (low, medium and high). Conclusions: The differences in the EC concentrations were statistically significant therefore, the two methods (NIOSH Method 5040 and DPM) are not the same. The NIOSH Method 5040 should continue to be the only authorized method of establishing an EC concentration for MWCNTs until a MWCNT specific method or an instantaneous meter is invented.
A Lagrangian discontinuous Galerkin hydrodynamic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less
A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.
1989-01-01
A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.
Hebaz, Salah-Eddine; Benmeddour, Farouk; Moulin, Emmanuel; Assaad, Jamal
2018-01-01
The development of reliable guided waves inspection systems is conditioned by an accurate knowledge of their dispersive properties. The semi-analytical finite element method has been proven to be very practical for modeling wave propagation in arbitrary cross-section waveguides. However, when it comes to computations on complex geometries to a given accuracy, it still has a major drawback: the high consumption of resources. Recently, discontinuous Galerkin finite element method (DG-FEM) has been found advantageous over the standard finite element method when applied as well in the frequency domain. In this work, a high-order method for the computation of Lamb mode characteristics in plates is proposed. The problem is discretised using a class of DG-FEM, namely, the interior penalty methods family. The analytical validation is performed through the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally graded material plates are analysed and a numerical example is presented. It was found that the obtained results are in good agreement with those found in the literature.
A Lagrangian discontinuous Galerkin hydrodynamic method
Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.
2017-12-11
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less