Wide-field Imaging System and Rapid Direction of Optical Zoom (WOZ)
2010-09-25
commercial software packages: SolidWorks, COMSOL Multiphysics, and ZEMAX optical design. SolidWorks is a computer aided design package, which as a live...interface to COMSOL. COMSOL is a finite element analysis/partial differential equation solver. ZEMAX is an optical design package. Both COMSOL and... ZEMAX have live interfaces to MatLab. Our initial investigations have enabled a model in SolidWorks to be updated in COMSOL, an FEA calculation
Numerical modeling of continuous flow microwave heating: a critical comparison of COMSOL and ANSYS.
Salvi, D; Boldor, Dorin; Ortego, J; Aita, G M; Sabliov, C M
2010-01-01
Numerical models were developed to simulate temperature profiles in Newtonian fluids during continuous flow microwave heating by one way coupling electromagnetism, fluid flow, and heat transport in ANSYS 8.0 and COMSOL Multiphysics v3.4. Comparison of the results from the COMSOL model with the results from a pre-developed and validated ANSYS model ensured accuracy of the COMSOL model. Prediction of power Loss by both models was in close agreement (5-13% variation) and the predicted temperature profiles were similar. COMSOL provided a flexible model setup whereas ANSYS required coupling incompatible elements to transfer load between electromagnetic, fluid flow, and heat transport modules. Overall, both software packages provided the ability to solve multiphysics phenomena accurately.
A finite-element study of a piezoelectric/poroelastic sound package concept
NASA Astrophysics Data System (ADS)
Batifol, C.; Zielinski, T. G.; Ichchou, M. N.; Galland, M.-A.
2007-02-01
This paper presents a complete finite-element description of a hybrid passive/active sound package concept for acoustic insulation. The sandwich created includes a poroelastic core and piezoelectric patches to ensure high panel performance over the medium/high and low frequencies, respectively. All layers are modelled thanks to a Comsol environmentComsol is the new name of the finite element software previously called Femlab.. The piezoelectric/elastic and poroelastic/elastic coupling are fully considered. The study highlights the reliability of the model by comparing results with those obtained from the Ansys finite-element software and with analytical developments. The chosen shape functions and mesh convergence rate for each layer are discussed in terms of dynamic behaviour. Several layer configurations are then tested, with the aim of designing the panel and its hybrid functionality in an optimal manner. The differences in frequency responses are discussed from a physical perspective. Lastly, an initial experimental test shows the concept to be promising.
A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes
NASA Astrophysics Data System (ADS)
Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan
2016-07-01
An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.
NASA Technical Reports Server (NTRS)
Meyer, Marit Elisabeth
2015-01-01
A thermal precipitator (TP) was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Modeling of the thermal precipitator throughout the design process was performed with the COMSOL Multiphysics finite element software package, including the Eulerian flow field and thermal gradients in the fluid. The COMSOL Particle Tracing Module was subsequently used to determine particle deposition. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. The thermal precipitator was built and testing verified the performance of the first iteration of the device. The thermal precipitator was successfully operated and provided quality particle samples for microscopic analysis, which furthered the body of knowledge on smoke particulates. This information is a key element of smoke characterization and will be useful for future spacecraft fire detection research.
NASA Astrophysics Data System (ADS)
Guo, L.; Yin, Y.; Deng, M.; Guo, L.; Yan, J.
2017-12-01
At present, most magnetotelluric (MT) forward modelling and inversion codes are based on finite difference method. But its structured mesh gridding cannot be well adapted for the conditions with arbitrary topography or complex tectonic structures. By contrast, the finite element method is more accurate in calculating complex and irregular 3-D region and has lower requirement of function smoothness. However, the complexity of mesh gridding and limitation of computer capacity has been affecting its application. COMSOL Multiphysics is a cross-platform finite element analysis, solver and multiphysics full-coupling simulation software. It achieves highly accurate numerical simulations with high computational performance and outstanding multi-field bi-directional coupling analysis capability. In addition, its AC/DC and RF module can be used to easily calculate the electromagnetic responses of complex geological structures. Using the adaptive unstructured grid, the calculation is much faster. In order to improve the discretization technique of computing area, we use the combination of Matlab and COMSOL Multiphysics to establish a general procedure for calculating the MT responses for arbitrary resistivity models. The calculated responses include the surface electric and magnetic field components, impedance components, magnetic transfer functions and phase tensors. Then, the reliability of this procedure is certificated by 1-D, 2-D and 3-D and anisotropic forward modeling tests. Finally, we establish the 3-D lithospheric resistivity model for the Proterozoic Wutai-Hengshan Mts. within the North China Craton by fitting the real MT data collected there. The reliability of the model is also verified by induced vectors and phase tensors. Our model shows more details and better resolution, compared with the previously published 3-D model based on the finite difference method. In conclusion, COMSOL Multiphysics package is suitable for modeling the 3-D lithospheric resistivity structures under complex tectonic deformation backgrounds, which could be a good complement to the existing finite-difference inversion algorithms.
Experimental Evaluation of Acoustic Engine Liner Models Developed with COMSOL Multiphysics
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Jones, Michael G.; Bertolucci, Brandon
2017-01-01
Accurate modeling tools are needed to design new engine liners capable of reducing aircraft noise. The purpose of this study is to determine if a commercially-available finite element package, COMSOL Multiphysics, can be used to accurately model a range of different acoustic engine liner designs, and in the process, collect and document a benchmark dataset that can be used in both current and future code evaluation activities. To achieve these goals, a variety of liner samples, ranging from conventional perforate-over-honeycomb to extended-reaction designs, were installed in one wall of the grazing flow impedance tube at the NASA Langley Research Center. The liners were exposed to high sound pressure levels and grazing flow, and the effect of the liner on the sound field in the flow duct was measured. These measurements were then compared with predictions. While this report only includes comparisons for a subset of the configurations, the full database of all measurements and predictions is available in electronic format upon request. The results demonstrate that both conventional perforate-over-honeycomb and extended-reaction liners can be accurately modeled using COMSOL. Therefore, this modeling tool can be used with confidence to supplement the current suite of acoustic propagation codes, and ultimately develop new acoustic engine liners designed to reduce aircraft noise.
Benchmarking of Computational Models for NDE and SHM of Composites
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna
2016-01-01
Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.
Parameters assessment of the inductively-coupled circuit for wireless power transfer
NASA Astrophysics Data System (ADS)
Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.
2017-02-01
In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.
Csete, Mária; Sipos, Áron; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K
2011-11-01
A finite-element method for calculating the illumination-dependence of absorption in three-dimensional nanostructures is presented based on the radio frequency module of the Comsol Multiphysics software package (Comsol AB). This method is capable of numerically determining the optical response and near-field distribution of subwavelength periodic structures as a function of illumination orientations specified by polar angle, φ, and azimuthal angle, γ. The method was applied to determine the illumination-angle-dependent absorptance in cavity-based superconducting-nanowire single-photon detector (SNSPD) designs. Niobium-nitride stripes based on dimensions of conventional SNSPDs and integrated with ~ quarter-wavelength hydrogen-silsesquioxane-filled nano-optical cavity and covered by a thin gold film acting as a reflector were illuminated from below by p-polarized light in this study. The numerical results were compared to results from complementary transfer-matrix-method calculations on composite layers made of analogous film-stacks. This comparison helped to uncover the optical phenomena contributing to the appearance of extrema in the optical response. This paper presents an approach to optimizing the absorptance of different sensing and detecting devices via simultaneous numerical optimization of the polar and azimuthal illumination angles. © 2011 Optical Society of America
I-cored Coil Probe Located Above a Conductive Plate with a Surface Hole
NASA Astrophysics Data System (ADS)
Tytko, Grzegorz; Dziczkowski, Leszek
2018-02-01
This work presents an axially symmetric mathematical model of an I-cored coil placed over a two-layered conductive material with a cylindrical surface hole. The problem was divided into regions for which the magnetic vector potential of a filamentary coil was established applying the truncated region eigenfunction expansion method. Then the final formula was developed to calculate impedance changes for a cylindrical coil with reference to both the air and to a material with no hole. The influence of a surface flaw in the conductive material on the components of coil impedance was examined. Calculations were made in Matlab for a hole with various radii and the results thereof were verified with the finite element method in COMSOL Multiphysics package. Very good consistency was achieved in all cases.
Model Variational Inverse Problems Governed by Partial Differential Equations
2011-03-01
COMSOL Multiphysics [10], deal.II [4], dune [5], the FEniCS project [11, 20] and Sundance, a package from the Trilinos project [17]. These toolkits...Dupont, J. Hoffman, C. Johnson, R. Kirby, M. Larson, A. Logg, and R. Scott, The FEniCS project, tech. rep., 2003. [12] S. C. Eisenstat and H. F
Khalek, Md Abdul; Chakma, Sujan; Paul, Bikash Kumar; Ahmed, Kawsar
2018-08-01
In this research work a perfectly circular lattice Photonic Crystal Fiber (PCF) based surface Plasmon resonance (SPR) based sensor has been proposed. The investigation process has been successfully carried out using finite element method (FEM) based commercial available software package COMSOL Multiphysics version 4.2. The whole investigation module covers the wider optical spectrum ranging from 0.48 µm to 1.10 µm. Using the wavelength interrogation method the proposed model exposed maximum sensitivity of 9000 nm/RIU(Refractive Index Unit) and using the amplitude interrogation method it obtained maximum sensitivity of 318 RIU -1 . Moreover the maximum sensor resolution of 1.11×10 -5 in the sensing ranges between 1.34 and 1.37. Based on the suggested sensor model may provide great impact in biological area such as bio-imaging.
Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime
NASA Astrophysics Data System (ADS)
Islam, Saiful; Islam, Mohammad Rakibul; Faisal, Mohammad; Arefin, Abu Sayeed Muhammad Shamsul; Rahman, Hasan; Sultana, Jakeya; Rana, Sohel
2016-07-01
A porous-core octagonal photonic crystal fiber (PC-OPCF) with ultralow effective material loss (EML), high core power fraction, and ultra flattened dispersion is proposed for terahertz (THz) wave propagation. At an operating frequency of 1 THz and core diameter of 345 μm, simulation results display an extremely low EML of 0.047 cm-1, 49.1% power transmission through core air holes, decreased confinement loss with the increase of frequency, and dispersion variation of 0.15 ps/THz/cm. In addition, the proposed PCF can successfully operate in single-mode condition. All the simulations are performed with finite-element modeling package, COMSOL v4.2. The design can be fabricated using a stacking and drilling method. Thus, the proposed fiber has the potential of being an effective transmission medium of broadband THz waves.
Uth, Nicholas; Mueller, Jens; Smucker, Byran; Yousefi, Azizeh-Mitra
2017-02-21
This study reports the development of biological/synthetic scaffolds for bone tissue engineering (TE) via 3D bioplotting. These scaffolds were composed of poly(L-lactic-co-glycolic acid) (PLGA), type I collagen, and nano-hydroxyapatite (nHA) in an attempt to mimic the extracellular matrix of bone. The solvent used for processing the scaffolds was 1,1,1,3,3,3-hexafluoro-2-propanol. The produced scaffolds were characterized by scanning electron microscopy, microcomputed tomography, thermogravimetric analysis, and unconfined compression test. This study also sought to validate the use of finite-element optimization in COMSOL Multiphysics for scaffold design. Scaffold topology was simplified to three factors: nHA content, strand diameter, and strand spacing. These factors affect the ability of the scaffold to bear mechanical loads and how porous the structure can be. Twenty four scaffolds were constructed according to an I-optimal, split-plot designed experiment (DE) in order to generate experimental models of the factor-response relationships. Within the design region, the DE and COMSOL models agreed in their recommended optimal nHA (30%) and strand diameter (460 μm). However, the two methods disagreed by more than 30% in strand spacing (908 μm for DE; 601 μm for COMSOL). Seven scaffolds were 3D-bioplotted to validate the predictions of DE and COMSOL models (4.5-9.9 MPa measured moduli). The predictions for these scaffolds showed relative agreement for scaffold porosity (mean absolute percentage error of 4% for DE and 13% for COMSOL), but were substantially poorer for scaffold modulus (51% for DE; 21% for COMSOL), partly due to some simplifying assumptions made by the models. Expanding the design region in future experiments (e.g., higher nHA content and strand diameter), developing an efficient solvent evaporation method, and exerting a greater control over layer overlap could allow developing PLGA-nHA-collagen scaffolds to meet the mechanical requirements for bone TE.
Design and Fabrication of Interdigital Nanocapacitors Coated with HfO2
González, Gabriel; Kolosovas-Machuca, Eleazar Samuel; López-Luna, Edgar; Hernández-Arriaga, Heber; González, Francisco Javier
2015-01-01
In this article nickel interdigital capacitors were fabricated on top of silicon substrates. The capacitance of the interdigital capacitor was optimized by coating the electrodes with a 60 nm layer of HfO2. An analytical solution of the capacitance was compared to electromagnetic simulations using COMSOL and with experimental measurements. Results show that modeling interdigital capacitors using Finite Element Method software such as COMSOL is effective in the design and electrical characterization of these transducers. PMID:25602271
Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL
NASA Astrophysics Data System (ADS)
Sapra, Gaurav; Sharma, Preetika
2017-07-01
The design and performance of piezoresistive MEMS-based MWCNT/epoxy composite strain sensor using COMSOL Multiphysics Toolbox has been investigated. The proposed sensor design comprises su-8 based U-shaped cantilever beam with MWCNT/epoxy composite film as an active sensing element. A point load in microscale has been applied at the tip of the cantilever beam to observe its deflection in the proposed design. Analytical simulations have been performed to optimize various design parameters of the proposed sensor, which will be helpful at the time of fabrication.
NASA Astrophysics Data System (ADS)
Yahaya, NZ; Ramli, MR; Razak, NNANA; Abbas, Z.
2018-04-01
The Finite Element Method, FEM has been successfully used to model a simple rectangular microstrip sensor to determine the moisture content of Hevea rubber latex. The FEM simulation of sensor and samples was implemented by using COMSOL Multiphysics software. The simulation includes the calculation of magnitude and phase of reflection coefficient and was compared to analytical method. The results show a good agreement in finding the magnitude and phase of reflection coefficient when compared with analytical results. Field distributions of both the unloaded sensor as well as the sensor loaded with different percentages of moisture content were visualized using FEM in conjunction with COMSOL software. The higher the amount of moisture content in the sample the more the electric loops were observed.
Using COMSOL Software on the Peregrine System | High-Performance Computing
the following command: lmstat.comsol COMSOL can be used by starting the COMSOL GUI that allows one to compute node, the following will bring up the COMSOL interface. module purge module load comsol/5.3 comsol following command comsol batch -inputfile myinputfile.mph -outputfile out.mph Running a Parallel COMSOL Job
Low Frequency Acoustic Intensity Propagation Modeling in Shallow Water Waveguides
2016-06-01
REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of...release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Three popular numerical techniques are employed to...planar interfacial two-fluid transmission and reflection are used to benchmark the commercial software package COMSOL. Canonical Pekeris-type
Wide-field Imaging System and Rapid Direction of Optical Zoom (WOZ)
2010-12-24
The modeling tools are based on interaction between three commercial software packages: SolidWorks, COMSOL Multiphysics, and ZEMAX optical design...deformation resulting from the applied voltages. Finally, the deformed surface can be exported to ZEMAX via MatLab. From ZEMAX , various analyses can...results to extract from ZEMAX to support the optimization remains to be determined. Figure 1 shows the deformation calculated using a model of an
Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB
Munir, Ahsan; Waseem, Hassan; Williams, Maggie R.; Stedtfeld, Robert D.; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A.
2017-01-01
Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131). PMID:28555058
Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB.
Munir, Ahsan; Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A
2017-05-29
Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R² = 0.8131).
193 nm ArF laser ablation and patterning of chitosan thin films
NASA Astrophysics Data System (ADS)
Aesa, A. A.; Walton, C. D.
2018-06-01
This paper reports laser ablation studies on spin-coated biopolymer chitosan films, β-l,4-1inked 2-amino-2-deoxy- d-glucopyranose. Chitosan has been irradiated using an ArF laser emitting at 193 nm. An ablation threshold of F T = 85±8 mJ cm-2 has been determined from etch rate measurements. Laser-ablated chitosan is characterised using white light interferometry, scanning electron microscopy, and thermo-gravimetric analysis. Laser ablation of chitosan is discussed in terms of thermal and photoacoustic mechanisms. Heat transfer is simulated to assist in the understanding of laser-irradiated chitosan using a finite-element method and the software package COMSOL Multi-Physics™. As a demonstrator, a micro-array of square structures in the form of a crossed grating has been fabricated by laser ablation using a mask projection scanning method. The initial investigations show no evidence of thermal damage occurring to the adjacent chitosan when operating at a moderately low laser fluence of 110 mJ cm-2.
NASA Astrophysics Data System (ADS)
Atitoaie, Alexandru; Stancu, Alexandru; Ovari, Tibor-Adrian; Lupu, Nicoleta; Chiriac, Horia
2016-04-01
Magnetic nanowires are potential candidates for substituting, within enhanced cochlear implants, the role played by hair cilia from the inner ear, which are responsible for the transduction of acoustic vibrations into electric signals. The sound waves pressure that is bending the magnetic wires induces stresses that are leading to changes in magnetic properties, such as magnetization and permeability. These changes can be detected by a GMR sensor placed below the nanowire array or, in the case of different designs, by a pick-up coil wrapped around the fixed-end of the wires. For the latter case, we are studying the stress distributions caused by bending deformations using the COMSOL finite element software package. We are also proposing a theoretical method for the evaluation of magnetic permeability variation vs. induced stress dependence. The study is performed on CoFeSiB amorphous micro- and nanowires subjected to mechanical perturbations similar to the ones produced by sound pressure waves.
COMSOL in the Academic Environment at USNA
2009-10-01
figure shows the electric field calculated and the right shows the electron density at one point in time. 3.3 Acoustic Detection of Landmines – 3...industries heavy investment in computer graphics and modeling. Packages such as Maya , Zbrush, Mudbox and others excel at this type of modeling. A...like Sketch-Up, Maya or AutoCAD. An extensive library of pre-built models would include all of the Platonic solids, combinations of Platonic
Photoacoustic design parameter optimization for deep tissue imaging by numerical simulation
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Ha, Seunghan; Kim, Kang
2012-02-01
A new design of light illumination scheme for deep tissue photoacoustic (PA) imaging, a light catcher, is proposed and evaluated by in silico simulation. Finite element (FE)-based numerical simulation model was developed for photoacoustic (PA) imaging in soft tissues. In this in silico simulation using a commercially available FE simulation package (COMSOL MultiphysicsTM, COMSOL Inc., USA), a short-pulsed laser point source (pulse length of 5 ns) was placed in water on the tissue surface. Overall, four sets of simulation models were integrated together to describe the physical principles of PA imaging. Light energy transmission through background tissues from the laser source to the target tissue or contrast agent was described by diffusion equation. The absorption of light energy and its conversion to heat by target tissue or contrast agent was modeled using bio-heat equation. The heat then causes the stress and strain change, and the resulting displacement of the target surface produces acoustic pressure. The created wide-band acoustic pressure will propagate through background tissues to the ultrasound detector, which is governed by acoustic wave equation. Both optical and acoustical parameters in soft tissues such as scattering, absorption, and attenuation are incorporated in tissue models. PA imaging performance with different design parameters of the laser source and energy delivery scheme was investigated. The laser light illumination into the deep tissues can be significantly improved by up to 134.8% increase of fluence rate by introducing a designed compact light catcher with highly reflecting inner surface surrounding the light source. The optimized parameters through this simulation will guide the design of PA system for deep tissue imaging, and help to form the base protocols of experimental evaluations in vitro and in vivo.
NASA Astrophysics Data System (ADS)
Rudmin, Daniel
Ionic polymer-metal composites (IPMCs) are some of the most well-known electro-active polymers. This is due to their large deformation provided a relatively low voltage source. IPMCs have been acknowledged as a potential candidate for biomedical applications such as cardiac catheters and surgical probes; however, there is still no existing mass manufacturing of IPMCs. This study intends to provide a theoretical framework which could be used to design practical purpose IPMCs depending on the end users interest. This study begins by investigating methodologies used to develop quantify the physical actuation of an IPMC in 3-dimensional space. This approach is taken in two separate means; however, both approaches utilize the finite element method. The first approach utilizes the finite element method in order to describe the dynamic response of a segmented IPMC actuator. The first approach manually constructs each element with a local coordinate system. Each system undergoes a rigid body motion along the element and deformation of the element is expressed in the local coordinate frame. The physical phenomenon in this system is simplified by utilizing a lumped RC model in order to simplify the electro-mechanical phenomena in the IPMC dynamics. The second study investigates 3D modeling of a rod shaped IPMC actuator by explicitly coupling electrostatics, transport phenomenon, and solid mechanics. This portion of the research will briefly discuss the mathematical background that more accurately quantifies the physical phenomena. Solving for the 3-dimensional actuation is explicitly carried out again by utilizing the finite element method. The numerical result is conducted in a software package known as COMSOL MULTIPHYSICS. This simulation allows for explicit geometric rendering as well as more explicit quantification of the physical quantities such as concentration, electric field, and deflection. The final study will conduct design optimization on the COMSOL simulation in order to provide conceptual motivation for future designs. Utilizing a multi-physics analysis approach on a three dimensional cylinder and tube type IPMC provides physically accurate results for time dependent end effector displacement given a voltage source. Simulations are conducted with the finite element method and are also validated with empirical evidences. Having an in-depth understanding of the physical coupling provides optimal design parameters that cannot be altered from a standard electro-mechanical coupling. These parameters are altered in order to determine optimal designs for end-effector displacement, maximum force, and improved mobility with limited voltage magnitude. Design alterations are conducted on the electrode patterns in order to provide greater mobility, electrode size for efficient bending, and Nafion diameter for improved force. The results of this study will provide optimal design parameters of the IPMC for different applications.
NASA Astrophysics Data System (ADS)
Ahmad, A. A.; Alsaad, A.; Al-Bataineh, Q. M.; Al-Naafa, M. A.
2018-02-01
In this study, Lithium niobate (LiNbO3) and Aluminum nitride (AlN) nanostructures were designed and investigated using the COMSOL Multiphysics software for pressure sensing applications. The Finite Element Method (FEM) was used for solving the differential equations with various parameters such as size, length, force, etc. The variation of the total maximum displacement as a function of applied force for various NWs lengths and the variation of the voltage as a function of applied force were plotted and discussed. AlN nanowires exhibit a better piezoelectric response than LiNbO3 nanowires do.
RF Wave Simulation Using the MFEM Open Source FEM Package
NASA Astrophysics Data System (ADS)
Stillerman, J.; Shiraiwa, S.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Kolev, T.
2016-10-01
A new plasma wave simulation environment based on the finite element method is presented. MFEM, a scalable open-source FEM library, is used as the basis for this capability. MFEM allows for assembling an FEM matrix of arbitrarily high order in a parallel computing environment. A 3D frequency domain RF physics layer was implemented using a python wrapper for MFEM and a cold collisional plasma model was ported. This physics layer allows for defining the plasma RF wave simulation model without user knowledge of the FEM weak-form formulation. A graphical user interface is built on πScope, a python-based scientific workbench, such that a user can build a model definition file interactively. Benchmark cases have been ported to this new environment, with results being consistent with those obtained using COMSOL multiphysics, GENRAY, and TORIC/TORLH spectral solvers. This work is a first step in bringing to bear the sophisticated computational tool suite that MFEM provides (e.g., adaptive mesh refinement, solver suite, element types) to the linear plasma-wave interaction problem, and within more complicated integrated workflows, such as coupling with core spectral solver, or incorporating additional physics such as an RF sheath potential model or kinetic effects. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.
NASA Astrophysics Data System (ADS)
Liu, Lantian; Li, Zhifang; Li, Hui
2018-01-01
The study of interaction of laser with tumor-embedded gastric tissue is of great theoretical and practical significance for the laser diagnosis and treatment of gastric cancer in medicine. A finite element (FE)-based simulation model has been developed incorporating light propagation and heat transfer in soft tissues using a commercial FE simulation package, COMSOL Multiphysics. In this study, FE model is composed of three parts of 1) homogeneous background soft tissues submerged in water, 2) tumor tissue inclusion, and 3) different wavelengths of short pulsed laser source (450nm, 550nm, 632nm and 800nm). The laser point source is placed right under the tissues submerged in water. This laser source light propagation through the multi-layer tissues using the diffusion equation and bioheat transfer in tissues is simulated using bioheat equation for temperature change. The simulation results show that the penetration depth and light energy distribution mainly depend on the optical parameters of the different wavelengths of the tissue. In the process of biological heat transfer, the temperature of the tissue decreases exponentially with the depth and the deep tissues are almost unaffected. The results are helpful to optimize the laser source in a photoacoustic imaging system and provide some significance for the further study of the early diagnosis of gastric cancer.
Evaluation of HFIR LEU Fuel Using the COMSOL Multiphysics Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Primm, Trent; Ruggles, Arthur; Freels, James D
2009-03-01
A finite element computational approach to simulation of the High Flux Isotope Reactor (HFIR) Core Thermal-Fluid behavior is developed. These models were developed to facilitate design of a low enriched core for the HFIR, which will have different axial and radial flux profiles from the current HEU core and thus will require fuel and poison load optimization. This report outlines a stepwise implementation of this modeling approach using the commercial finite element code, COMSOL, with initial assessment of fuel, poison and clad conduction modeling capability, followed by assessment of mating of the fuel conduction models to a one dimensional fluidmore » model typical of legacy simulation techniques for the HFIR core. The model is then extended to fully couple 2-dimensional conduction in the fuel to a 2-dimensional thermo-fluid model of the coolant for a HFIR core cooling sub-channel with additional assessment of simulation outcomes. Finally, 3-dimensional simulations of a fuel plate and cooling channel are presented.« less
Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer
NASA Astrophysics Data System (ADS)
Yang, G. Y.; Du, J. K.; Huang, B.; Jin, Y. A.; Xu, M. H.
2017-04-01
The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE) is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM). The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.
Saad, Akram; Cho, Yonghyun; Ahmed, Farid; Jun, Martin Byung-Guk
2016-01-01
A 3D finite element model constructed to predict the intensity-dependent refractive index profile induced by femtosecond laser radiation is presented. A fiber core irradiated by a pulsed laser is modeled as a cylinder subject to predefined boundary conditions using COMSOL5.2 Multiphysics commercial package. The numerically obtained refractive index change is used to numerically design and experimentally fabricate long-period fiber grating (LPFG) in pure silica core single-mode fiber employing identical laser conditions. To reduce the high computational requirements, the beam envelope method approach is utilized in the aforementioned numerical models. The number of periods, grating length, and grating period considered in this work are numerically quantified. The numerically obtained spectral growth of the modeled LPFG seems to be consistent with the transmission of the experimentally fabricated LPFG single mode fiber. The sensing capabilities of the modeled LPFG are tested by varying the refractive index of the surrounding medium. The numerically obtained spectrum corresponding to the varied refractive index shows good agreement with the experimental findings. PMID:28774060
Saad, Akram; Cho, Yonghyun; Ahmed, Farid; Jun, Martin Byung-Guk
2016-11-21
A 3D finite element model constructed to predict the intensity-dependent refractive index profile induced by femtosecond laser radiation is presented. A fiber core irradiated by a pulsed laser is modeled as a cylinder subject to predefined boundary conditions using COMSOL5.2 Multiphysics commercial package. The numerically obtained refractive index change is used to numerically design and experimentally fabricate long-period fiber grating (LPFG) in pure silica core single-mode fiber employing identical laser conditions. To reduce the high computational requirements, the beam envelope method approach is utilized in the aforementioned numerical models. The number of periods, grating length, and grating period considered in this work are numerically quantified. The numerically obtained spectral growth of the modeled LPFG seems to be consistent with the transmission of the experimentally fabricated LPFG single mode fiber. The sensing capabilities of the modeled LPFG are tested by varying the refractive index of the surrounding medium. The numerically obtained spectrum corresponding to the varied refractive index shows good agreement with the experimental findings.
Imaging cerebral haemorrhage with magnetic induction tomography: numerical modelling.
Zolgharni, M; Ledger, P D; Armitage, D W; Holder, D S; Griffiths, H
2009-06-01
Magnetic induction tomography (MIT) is a new electromagnetic imaging modality which has the potential to image changes in the electrical conductivity of the brain due to different pathologies. In this study the feasibility of detecting haemorrhagic cerebral stroke with a 16-channel MIT system operating at 10 MHz was investigated. The finite-element method combined with a realistic, multi-layer, head model comprising 12 different tissues, was used for the simulations in the commercial FE package, Comsol Multiphysics. The eddy-current problem was solved and the MIT signals computed for strokes of different volumes occurring at different locations in the brain. The results revealed that a large, peripheral stroke (volume 49 cm(3)) produced phase changes that would be detectable with our currently achievable instrumentation phase noise level (17 m degrees ) in 70 (27%) of the 256 exciter/sensor channel combinations. However, reconstructed images showed that a lower noise level than this, of 1 m degrees , was necessary to obtain good visualization of the strokes. The simulated MIT measurements were compared with those from an independent transmission-line-matrix model in order to give confidence in the results.
Simulating the dynamics of complex plasmas.
Schwabe, M; Graves, D B
2013-08-01
Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.
NASA Astrophysics Data System (ADS)
Nardi, Albert; Idiart, Andrés; Trinchero, Paolo; de Vries, Luis Manuel; Molinero, Jorge
2014-08-01
This paper presents the development, verification and application of an efficient interface, denoted as iCP, which couples two standalone simulation programs: the general purpose Finite Element framework COMSOL Multiphysics® and the geochemical simulator PHREEQC. The main goal of the interface is to maximize the synergies between the aforementioned codes, providing a numerical platform that can efficiently simulate a wide number of multiphysics problems coupled with geochemistry. iCP is written in Java and uses the IPhreeqc C++ dynamic library and the COMSOL Java-API. Given the large computational requirements of the aforementioned coupled models, special emphasis has been placed on numerical robustness and efficiency. To this end, the geochemical reactions are solved in parallel by balancing the computational load over multiple threads. First, a benchmark exercise is used to test the reliability of iCP regarding flow and reactive transport. Then, a large scale thermo-hydro-chemical (THC) problem is solved to show the code capabilities. The results of the verification exercise are successfully compared with those obtained using PHREEQC and the application case demonstrates the scalability of a large scale model, at least up to 32 threads.
A Thermal Precipitator for Fire Characterization Research
NASA Technical Reports Server (NTRS)
Meyer, Marit; Bryg, Vicky
2008-01-01
Characterization of the smoke from pyrolysis of common spacecraft materials provides insight for the design of future smoke detectors and post-fire clean-up equipment on the International Space Station. A thermal precipitator was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Initial modeling for the thermal precipitator design was performed with the finite element software COMSOL Multiphysics, and includes the flow field and heat transfer in the device. The COMSOL Particle Tracing Module was used to determine particle deposition on SEM stubs which include TEM grids. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. Microscopy results from fire characterization research using the thermal precipitator are presented.
NASA Astrophysics Data System (ADS)
Jia; Lu
2016-01-01
The considerable electric-induced shape change, together with the attributes of lightweight, high efficiency, and inexpensive cost, makes dielectric elastomer, a promising soft active material for the realization of actuators in broad applications. Although, a number of prototype devices have been demonstrated in the past few years, the further development of this technology necessitates adequate analytical and numerical tools. Especially, previous theoretical studies always neglect the influence of surrounding medium. Due to the large deformation and nonlinear equations of states involved in dielectric elastomer, finite element method (FEM) is anticipated; however, the few available formulations employ homemade codes, which are inconvenient to implement. The aim of this work is to present a numerical approach with the commercial FEM package COMSOL to investigate the nonlinear response of dielectric elastomer under electric stimulation. The influence of surrounding free space on the electric field is analyzed and the corresponding electric force is taken into account through an electric surface traction on the circumstances edge. By employing Maxwell stress tensor as actuation pressure, the mechanical and electric governing equations for dielectric elastomer are coupled, and then solved simultaneously with the Gent model of stain energy to derive the electric induced large deformation as well as the electromechanical instability. The finite element implementation presented here may provide a powerful computational tool to help design and optimize the engineering applications of dielectric elastomer.
Briggs, Scott; McKelvie, Jennifer; Sleep, Brent; Krol, Magdalena
2017-12-01
The use of a deep geological repository (DGR) for the long-term disposal of used nuclear fuel is an approach currently being investigated by several agencies worldwide, including Canada's Nuclear Waste Management Organization (NWMO). Within the DGR, used nuclear fuel will be placed in copper-coated steel containers and surrounded by a bentonite clay buffer. While copper is generally thermodynamically stable, corrosion can occur due to the presence of sulphide under anaerobic conditions. As such, understanding transport of sulphide through the engineered barrier system to the used fuel container is an important consideration in DGR design. In this study, a three-dimensional (3D) model of sulphide transport in a DGR was developed. The numerical model is implemented using COMSOL Multiphysics, a commercial finite element software package. Previous sulphide transport models of the NWMO repository used a simplified one-dimensional system. This work illustrates the importance of 3D modelling to capture non-uniform effects, as results showed locations of maximum sulphide flux are 1.7 times higher than the average flux to the used fuel container. Copyright © 2017. Published by Elsevier B.V.
Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A
2018-03-01
Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bird, M. B.; Butler, S. L.; Hawkes, C. D.; Kotzer, T.
2014-12-01
The use of numerical simulations to model physical processes occurring within subvolumes of rock samples that have been characterized using advanced 3D imaging techniques is becoming increasingly common. Not only do these simulations allow for the determination of macroscopic properties like hydraulic permeability and electrical formation factor, but they also allow the user to visualize processes taking place at the pore scale and they allow for multiple different processes to be simulated on the same geometry. Most efforts to date have used specialized research software for the purpose of simulations. In this contribution, we outline the steps taken to use commercial software Avizo to transform a 3D synchrotron X-ray-derived tomographic image of a rock core sample to an STL (STereoLithography) file which can be imported into the commercial multiphysics modeling package COMSOL. We demonstrate that the use of COMSOL to perform fluid and electrical current flow simulations through the pore spaces. The permeability and electrical formation factor of the sample are calculated and compared with laboratory-derived values and benchmark calculations. Although the simulation domains that we were able to model on a desk top computer were significantly smaller than representative elementary volumes, and we were able to establish Kozeny-Carman and Archie's Law trends on which laboratory measurements and previous benchmark solutions fall. The rock core samples include a Fountainebleau sandstone used for benchmarking and a marly dolostone sampled from a well in the Weyburn oil field of southeastern Saskatchewan, Canada. Such carbonates are known to have complicated pore structures compared with sandstones, yet we are able to calculate reasonable macroscopic properties. We discuss the computing resources required.
Design and analysis of magneto rheological fluid brake for an all terrain vehicle
NASA Astrophysics Data System (ADS)
George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.
2018-02-01
This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.
Extracting Damping Ratio from Dynamic Data and Numerical Solutions
NASA Technical Reports Server (NTRS)
Casiano, M. J.
2016-01-01
There are many ways to extract damping parameters from data or models. This Technical Memorandum provides a quick reference for some of the more common approaches used in dynamics analysis. Described are six methods of extracting damping from data: the half-power method, logarithmic decrement (decay rate) method, an autocorrelation/power spectral density fitting method, a frequency response fitting method, a random decrement fitting method, and a newly developed half-quadratic gain method. Additionally, state-space models and finite element method modeling tools, such as COMSOL Multiphysics (COMSOL), provide a theoretical damping via complex frequency. Each method has its advantages which are briefly noted. There are also likely many other advanced techniques in extracting damping within the operational modal analysis discipline, where an input excitation is unknown; however, these approaches discussed here are objective, direct, and can be implemented in a consistent manner.
Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.
2013-01-01
This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.
Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R.
This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken intomore » account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.« less
Valentin, Francisco I.; Artoun, Narbeh; Anderson, Ryan; ...
2016-12-01
Very High Temperature Reactors (VHTRs) are one of the Generation IV gas-cooled reactor models proposed for implementation in next generation nuclear power plants. A high temperature/pressure test facility for forced and natural circulation experiments has been constructed. This test facility consists of a single flow channel in a 2.7 m (9’) long graphite column equipped with four 2.3kW heaters. Extensive 3D numerical modeling provides a detailed analysis of the thermal-hydraulic behavior under steady-state, transient, and accident scenarios. In addition, forced/mixed convection experiments with air, nitrogen and helium were conducted for inlet Reynolds numbers from 500 to 70,000. Our numerical resultsmore » were validated with forced convection data displaying maximum percentage errors under 15%, using commercial finite element package, COMSOL Multiphysics. Based on this agreement, important information can be extracted from the model, with regards to the modified radial velocity and property gas profiles. Our work also examines flow laminarization for a full range of Reynolds numbers including laminar, transition and turbulent flow under forced convection and its impact on heat transfer under various scenarios to examine the thermal-hydraulic phenomena that could occur during both normal operation and accident conditions.« less
End-to-end workflow for finite element analysis of tumor treating fields in glioblastomas
NASA Astrophysics Data System (ADS)
Timmons, Joshua J.; Lok, Edwin; San, Pyay; Bui, Kevin; Wong, Eric T.
2017-11-01
Tumor Treating Fields (TTFields) therapy is an approved modality of treatment for glioblastoma. Patient anatomy-based finite element analysis (FEA) has the potential to reveal not only how these fields affect tumor control but also how to improve efficacy. While the automated tools for segmentation speed up the generation of FEA models, multi-step manual corrections are required, including removal of disconnected voxels, incorporation of unsegmented structures and the addition of 36 electrodes plus gel layers matching the TTFields transducers. Existing approaches are also not scalable for the high throughput analysis of large patient volumes. A semi-automated workflow was developed to prepare FEA models for TTFields mapping in the human brain. Magnetic resonance imaging (MRI) pre-processing, segmentation, electrode and gel placement, and post-processing were all automated. The material properties of each tissue were applied to their corresponding mask in silico using COMSOL Multiphysics (COMSOL, Burlington, MA, USA). The fidelity of the segmentations with and without post-processing was compared against the full semi-automated segmentation workflow approach using Dice coefficient analysis. The average relative differences for the electric fields generated by COMSOL were calculated in addition to observed differences in electric field-volume histograms. Furthermore, the mesh file formats in MPHTXT and NASTRAN were also compared using the differences in the electric field-volume histogram. The Dice coefficient was less for auto-segmentation without versus auto-segmentation with post-processing, indicating convergence on a manually corrected model. An existent but marginal relative difference of electric field maps from models with manual correction versus those without was identified, and a clear advantage of using the NASTRAN mesh file format was found. The software and workflow outlined in this article may be used to accelerate the investigation of TTFields in glioblastoma patients by facilitating the creation of FEA models derived from patient MRI datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penjweini, R; Zhu, T
Purpose: The pleural volumes will deform during surgery portion of the pleural photodynamic therapy (PDT) of lung cancer when the pleural cavity is opened. This impact the delivered dose when using highly conformal treatment techniques. In this study, a finite element-based (FEM) deformable image registration is used to quantify the anatomical variation between the contours for the pleural cavities obtained in the operating room and those determined from pre-surgery computed tomography (CT) scans. Methods: An infrared camera-based navigation system (NDI) is used during PDT to track the anatomical changes and contour the lung and chest cavity. A series of CTsmore » of the lungs, in the same patient, are also acquired before the surgery. The structure contour of lung and the CTs are processed and contoured in Matlab and MeshLab. Then, the contours are imported into COMSOL Multiphysics 5.0, where the FEM-based deformable image registration is obtained using the deformed mesh - moving mesh (ALE) model. The NDI acquired lung contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Results: The reconstructed three-dimensional contours from both NDI and CT can be converted to COMSOL so that a three-dimensional ALE model can be developed. The contours can be registered using COMSOL ALE moving mesh model, which takes into account the deformation along x, y and z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting 3D deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. Conclusion: Deformable image registration can fuse images acquired by different modalities. It provides insights into the development of phenomenon and variation in normal anatomical structures over time. The initial assessments of three-dimensional registration show good agreement.« less
Case studies on optimization problems in MATLAB and COMSOL multiphysics by means of the livelink
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
LiveLink for COMSOL is a tool that integrates COMSOL Multiphysics with MATLAB to extend one's modeling with scripting programming in the MATLAB environment. It allows user to utilize the full power of MATLAB and its toolboxes in preprocessing, model manipulation, and post processing. At first, the head script launches COMSOL with MATLAB and defines initial value of all parameters, refers to the objective function J described in the objective function and creates and runs the defined optimization task. Once the task is launches, the COMSOL model is being called in the iteration loop (from MATLAB environment by use of API interface), changing defined optimization parameters so that the objective function is minimized, using fmincon function to find a local or global minimum of constrained linear or nonlinear multivariable function. Once the minimum is found, it returns exit flag, terminates optimization and returns the optimized values of the parameters. The cooperation with MATLAB via LiveLink enhances a powerful computational environment with complex multiphysics simulations. The paper will introduce using of the LiveLink for COMSOL for chosen case studies in the field of technical cybernetics and bioengineering.
Geophysical Investigations at Hidden Dam, Raymond, California Flow Simulations
Minsley, Burke J.; Ikard, Scott
2010-01-01
Numerical flow modeling and analysis of observation-well data at Hidden Dam are carried out to supplement recent geophysical field investigations at the site (Minsley and others, 2010). This work also is complementary to earlier seepage-related studies at Hidden Dam documented by Cedergren (1980a, b). Known seepage areas on the northwest right abutment area of the downstream side of the dam was documented by Cedergren (1980a, b). Subsequent to the 1980 seepage study, a drainage blanket with a sub-drain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren (1980a, b) suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain in the downstream portion of the dam. The current modeling study is aimed at quantifying how variability in dam and foundation hydrologic properties influences seepage as a function of reservoir stage. Flow modeling is implemented using the COMSOL Multiphysics software package, which solves the partially saturated flow equations in a two-dimensional (2D) cross-section of Hidden Dam that also incorporates true downstream topography. Use of the COMSOL software package provides a more quantitative approach than the flow net analysis by Cedergren (1980a, b), and allows for rapid evaluation of the influence of various parameters such as reservoir level, dam structure and geometry, and hydrogeologic properties of the dam and foundation materials. Historical observation-well data are used to help validate the flow simulations by comparing observed and predicted water levels for a range of reservoir elevations. The flow models are guided by, and discussed in the context of, the geophysical work (Minsley and others, 2010) where appropriate.
NASA Astrophysics Data System (ADS)
Sowmiya, C.; Thittai, Arun K.
2017-03-01
Photoacoustic imaging is a molecular cum functional imaging modality based on differential optical absorption of the incident laser pulse by the endogeneous tissue chromophores. Several numerical simulations and finite element models have been developed in the past to describe and study Photoacoustic (PA) signal generation principles and study the effect of variation in PA parameters. Most of these simulation work concentrate on analyzing extracted 1D PA signals and each of them mostly describe only few of the building blocks of a Photoacoustic Tomography (PAT) imaging system. Papers describing simulation of the entire PAT system in one simulation platform, along with reconstruction is seemingly rare. This study attempts to describe how a commercially available Finite Element software (COMSOL(R)), can serve as a single platform for simulating PAT that couples the electromagnetic, thermodynamic and acoustic pressure physics involved in PA phenomena. Further, an array of detector elements placed at the boundary in the FE model can provide acoustic pressure data that can be exported to Matlab(R) to perform tomographic image reconstruction. The performance of two most commonly used image reconstruction techniques; namely, Filtered Backprojection (FBP) and Synthetic Aperture (SA) beamforming are compared. Results obtained showed that the lateral resolution obtained using FBP vs. SA largely depends on the aperture parameters. FBP reconstruction was able to provide a slightly better lateral resolution for smaller aperture while SA worked better for larger aperture. This interesting effect is currently being investigated further. Computationally FBP was faster, but it had artifacts along the spherical shell on which the data is projected.
Effects of large vessel on temperature distribution based on photothermal coupling interaction model
NASA Astrophysics Data System (ADS)
Li, Zhifang; Zhang, Xiyang; Li, Zuoran; Li, Hui
2016-10-01
This paper is based on the finite element analysis method for studying effects of large blood vessel on temperature based on photothermal coupling interaction model, and it couples the physical field of optical transmission with the physical field of heat transfer in biological tissue by using COMSOL Multiphysics 4.4 software. The results demonstrate the cooling effect of large blood vessel, which can be potential application for the treatment of liver tumors.
Combined Excitatory and Inhibitory Coupling in a 1-D Array of Belousov-Zhabotinsky Droplets
2014-01-01
with numerical chemical models of the BZ reaction in which components that participate in the excitatory (bromine dioxide and bromous acid) and...verify the transport through the fluorinated oil of chlorine dioxide and several weak acids, including malonic acid. 1. Introduction Recent studies1...finite element model (COMSOLs) of the reaction - diffusion equation in 1-D, 2-D and 3-D, where each drop is modeled as a point, disk or sphere
Automated Installation Verification of COMSOL via LiveLink for MATLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowell, Michael W
Verifying that a local software installation performs as the developer intends is a potentially time-consuming but necessary step for nuclear safety-related codes. Automating this process not only saves time, but can increase reliability and scope of verification compared to ‘hand’ comparisons. While COMSOL does not include automatic installation verification as many commercial codes do, it does provide tools such as LiveLink™ for MATLAB® and the COMSOL API for use with Java® through which the user can automate the process. Here we present a successful automated verification example of a local COMSOL 5.0 installation for nuclear safety-related calculations at the Oakmore » Ridge National Laboratory’s High Flux Isotope Reactor (HFIR).« less
Investigation of charge dissipation in jet fuel in a dielectric fuel tank
NASA Astrophysics Data System (ADS)
Kitanin, E. L.; Kravtsov, P. A.; Trofimov, V. A.; Kitanina, E. E.; Bondarenko, D. A.
2017-09-01
The electrostatic charge dissipation process in jet fuel in a polypropylene tank was investigated experimentally. Groundable metallic terminals were installed in the tank walls to accelerate the dissipation process. Several sensors and an electrometer with a current measuring range from 10-11 to 10-3 A were specifically designed to study the dissipation rates. It was demonstrated that thanks to the sensors and the electrometer one can obtain reliable measurements of the dissipation rate and look at how it is influenced by the number and locations of the terminals. Conductivity of jet fuel and effective conductivity of the tank walls were investigated in addition. The experimental data agree well with the numerical simulation results obtained using COMSOL software package.
Influence of gag and RRE Sequences on HIV-1 RNA Packaging Signal Structure and Function.
Kharytonchyk, Siarhei; Brown, Joshua D; Stilger, Krista; Yasin, Saif; Iyer, Aishwarya S; Collins, John; Summers, Michael F; Telesnitsky, Alice
2018-07-06
The packaging signal (Ψ) and Rev-responsive element (RRE) enable unspliced HIV-1 RNAs' export from the nucleus and packaging into virions. For some retroviruses, engrafting Ψ onto a heterologous RNA is sufficient to direct encapsidation. In contrast, HIV-1 RNA packaging requires 5' leader Ψ elements plus poorly defined additional features. We previously defined minimal 5' leader sequences competitive with intact Ψ for HIV-1 packaging, and here examined the potential roles of additional downstream elements. The findings confirmed that together, HIV-1 5' leader Ψ sequences plus a nuclear export element are sufficient to specify packaging. However, RNAs trafficked using a heterologous export element did not compete well with RNAs using HIV-1's RRE. Furthermore, some RNA additions to well-packaged minimal vectors rendered them packaging-defective. These defects were rescued by extending gag sequences in their native context. To understand these packaging defects' causes, in vitro dimerization properties of RNAs containing minimal packaging elements were compared to RNAs with sequence extensions that were or were not compatible with packaging. In vitro dimerization was found to correlate with packaging phenotypes, suggesting that HIV-1 evolved to prevent 5' leader residues' base pairing with downstream residues and misfolding of the packaging signal. Our findings explain why gag sequences have been implicated in packaging and show that RRE's packaging contributions appear more specific than nuclear export alone. Paired with recent work showing that sequences upstream of Ψ can dictate RNA folds, the current work explains how genetic context of minimal packaging elements contributes to HIV-1 RNA fate determination. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characterization of Acoustic Droplet Vaporization Using MRI
NASA Astrophysics Data System (ADS)
Li, David; Allen, Steven; Hernandez-Garcia, Luis; Bull, Joseph
2013-11-01
Acoustic droplet vaporization (ADV) is the selective vaporization of liquid droplets to form larger gas bubbles. The ADV process is currently being researched for biomedical applications such as gas embolotherapy, drug delivery, and phase-change contrast agents. In this study an albumin encapsulated dodecafluoropentane (DDFP, CAS: 678-26-2) microdroplet suspension was vaporized using a single element focused (f/2, D = 19 mm) 3.5 MHz transducer (Panametrics A321S, Olympus, Waltham, MA). The resulting DDFP bubble clouds were imaged using both bright field microscopy and MRI (Varian 7T, Agilent Technologies Inc., Santa Clara, CA). Field distortions due to DDFP bubble generation were characterized against the bright field images as a function of acoustic power and bubble cloud size. Experimentally a direct correlation between bubble cloud dimensions generated and field distortions seen in the MRI was observed. Additionally, MR velocimetry was used to measure the flow field resulting from ADV. The field distortions due to the bubbles were further characterized by modeling Maxwell's equations using COMSOL (COMSOL Inc., Burlington, MA). The ability to characterize ADV with alternative imaging modalities may prove useful in further development of ADV based biomedical therapies.
NASA Astrophysics Data System (ADS)
Arshad; Nekahi, A.; McMeekin, S. G.; Farzaneh, M.
2016-09-01
Electrical field distribution along the insulator surface is considered one of the important parameters for the performance evaluation of outdoor insulators. In this paper numerical simulations were carried out to investigate the electric field and potential distribution along silicone rubber insulators under various polluted and dry band conditions. Simulations were performed using commercially available simulation package Comsol Multiphysics based on the finite element method. Various pollution severity levels were simulated by changing the conductivity of pollution layer. Dry bands of 2 cm width were inserted at the high voltage end, ground end, middle part, shed, sheath, and at the junction of shed and sheath to investigate the effect of dry band location and width on electric field and potential distribution. Partial pollution conditions were simulated by applying pollution layer on the top and bottom surface respectively. It was observed from the simulation results that electric field intensity was higher at the metal electrode ends and at the junction of dry bands. Simulation results showed that potential distribution is nonlinear in the case of clean and partially polluted insulator and linear for uniform pollution layer. Dry band formation effect both potential and electric field distribution. Power dissipated along the insulator surface and the resultant heat generation was also studied. The results of this study could be useful in the selection of polymeric insulators for contaminated environments.
NASA Astrophysics Data System (ADS)
Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro
2015-09-01
Numerical analysis of three dimensional optical electro-magnetic field in a circular-truncated conical optical fiber covered by asymmetric MIM structure has been performed by a commercial finite element method package, COMSOL Multiphysics coupled with Wave Optics Module. The outermost thick metallic layer has twin nano-hole, and the waveguiding twin-hole could draw surface plasmon polaritions (SPPs) excited in the MIM structure to the surface. Finally the guided two SPPs could unite each other and may create a single bright spot. The systematic simulation is continuing, and the results will give us valuable counsel for control of surface plasmon polaritons (SPPs) appearing around the MIM structure and twin nano-hole. (1) Optimal design of the 3D FEM model for 8-core Xeon server and rational approach for the FEM analysis, (2) behavior of SPPs affected by wavelength and polarization of light travel through fiber, (3) change in excitation condition of SPPs caused by shape of the MIM structure and twin-hole, (4) effectiveness of additional nanostructures that are aimed at focusing control of two SPPs come out from the corners of twin-hole, (5) scanning ability of the MIM/twin-hole probe at nanostructured sample surface (i.e. amount of forward and backward scattering of SPPs) will be presented and discussed. Several FIBed prototypes and their characteristic of light emission will also reported.
NASA Astrophysics Data System (ADS)
Rytka, C.; Lungershausen, J.; Kristiansen, P. M.; Neyer, A.
2016-06-01
Flow simulations can cut down both costs and time for the development of injection moulded polymer parts with functional surfaces used in life science and optical applications. We simulated the polymer melt flow into 3D micro- and nanostructures with Moldflow and Comsol and compared the results to real iso- and variothermal injection moulding trials below, at and above the transition temperature of the polymer. By adjusting the heat transfer coefficient and the transition temperature in the simulation it was possible to achieve good correlation with experimental findings at different processing conditions (mould temperature, injection velocity) for two polymers, namely polymethylmethacrylate and amorphous polyamide. The macroscopic model can be scaled down in volume and number of elements to save computational time for microstructure simulation and to enable first and foremost the nanostructure simulation, as long as local boundary conditions such as flow front speed are transferred correctly. The heat transfer boundary condition used in Moldflow was further evaluated in Comsol. Results showed that the heat transfer coefficient needs to be increased compared to macroscopic moulding in order to represent interfacial polymer/mould effects correctly. The transition temperature is most important in the packing phase for variothermal injection moulding.
NASA Astrophysics Data System (ADS)
Yang, Wenxiu; Liu, Yanbo; Zhang, Ligai; Cao, Hong; Wang, Yang; Yao, Jinbo
2016-06-01
Needleless electrospinning technology is considered as a better avenue to produce nanofibrous materials at large scale, and electric field intensity and its distribution play an important role in controlling nanofiber diameter and quality of the nanofibrous web during electrospinning. In the current study, a novel needleless electrospinning method was proposed based on Von Koch curves of Fractal configuration, simulation and analysis on electric field intensity and distribution in the new electrospinning process were performed with Finite element analysis software, Comsol Multiphysics 4.4, based on linear and nonlinear Von Koch fractal curves (hereafter called fractal models). The result of simulation and analysis indicated that Second level fractal structure is the optimal linear electrospinning spinneret in terms of field intensity and uniformity. Further simulation and analysis showed that the circular type of Fractal spinneret has better field intensity and distribution compared to spiral type of Fractal spinneret in the nonlinear Fractal electrospinning technology. The electrospinning apparatus with the optimal Von Koch fractal spinneret was set up to verify the theoretical analysis results from Comsol simulation, achieving more uniform electric field distribution and lower energy cost, compared to the current needle and needleless electrospinning technologies.
2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freels, James D; Bodey, Isaac T; Lowe, Kirk T
2010-09-01
The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Fluxmore » Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.« less
Ring-Sheared Drop (RSD): Microgravity Module for Containerless Flow Studies
NASA Astrophysics Data System (ADS)
Gulati, Shreyash; Raghunandan, Aditya; Rasheed, Fayaz; McBride, Samantha A.; Hirsa, Amir H.
2017-02-01
Microgravity is potentially a powerful tool for investigating processes that are sensitive to the presence of solid walls, since fluid containment can be achieved by surface tension. One such process is the transformation of protein in solution into amyloid fibrils; these are protein aggregates associated with neurodegenerative diseases such as Alzheimer's and Parkinson's. In addition to solid walls, experiments with gravity are also subject to influences from sedimentation of aggregates and buoyancy-driven convection. The ring-sheared drop (RSD) module is a flow apparatus currently under development to study formation of amyloid fibrils aboard the International Space Station (ISS). A 25 mm diameter drop of protein solution will be contained by surface tension and constrained by a pair of sharp-edged tubes, forming two contact rings. Shear can be imparted by rotating one ring with the other ring kept stationary. Here we report on parabolic flights conducted to test the growth and pinning of 10 mm diameter drops of water in under 10 s of microgravity. Finite element method (FEM) based fluid dynamics computations using a commercial package (COMSOL) assisted in the design of the parabolic flight experiments. Prior to the parabolic flights, the code was validated against experiments in the lab (1 g), on the growth of sessile and pendant droplets. The simulations show good agreement with the experiments. This modeling capability will enable the development of the RSD at the 25 mm scale for the ISS.
NASA Technical Reports Server (NTRS)
Kilbane, J.; Polzin, K. A.
2014-01-01
An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.
NASA Astrophysics Data System (ADS)
Penjweini, Rozhin; Kim, Michele M.; Dimofte, Andrea; Finlay, Jarod C.; Zhu, Timothy C.
2016-03-01
When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera-based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery.
Pre-release plastic packaging of MEMS and IMEMS devices
Peterson, Kenneth A.; Conley, William R.
2002-01-01
A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.
Jenke, Dennis R; Stults, Cheryl L M; Paskiet, Diane M; Ball, Douglas J; Nagao, Lee M
Elemental impurities in drug products can arise from a number of different sources and via a number of different means, including the active pharmaceutical ingredient, excipients, the vehicle, and leaching of elemental entities that are present in the drug product's manufacturing or packaging systems. Thus, knowledge about the presence, level, and likelihood of leaching of elemental entities in manufacturing and packaging systems is relevant to understanding how these systems contribute to a drug product's total elemental impurity burden. To that end, a joint team from the Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) has conducted a review of the available literature on elemental entities in pharmaceutically relevant polymers and the presence of these elemental entities in material extracts and/or drug products. This review article contains the information compiled from the available body of literature and considers two questions: (1) What elemental entities are present in the relevant polymers and materials and at what levels are they present? (2) To what extent are these elemental entities leached from these materials under conditions relevant to the manufacturing and storage/distribution of solution drug products? Conclusions drawn from the compiled data are as follows: (1) Elemental entities are present in the materials used to construct packaging and manufacturing systems as these materials either contain these elemental entities as additives or are exposed to elemental entities during their production. (2) Unless the elemental entities are parts of the materials themselves (for example, SiO 2 in glass) or intentionally added to the materials (for example, metal stearates in polymers), their incidental amounts in the materials are generally low. (3) When elemental entities are present in materials and systems, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, while sources of certain elemental impurities may be ubiquitous in the natural environment, they are not ubiquitous in materials used in pharmaceutical packaging and manufacturing systems and when they are present, they are not extensively leached under relevant conditions. The information summarized here can be utilized to aid the elemental impurity risk assessment process by providing the identities of commonly reported elements and data to support probability estimates of those becoming elemental impurities in the drug product. Furthermore, recommendations are made related to establishing elements of potential product impact for individual materials. Extraneous impurities in drug products provide no therapeutic benefit and thus should be known and controlled. Elemental impurities can arise from a number of sources and by a number of means, including the leaching of elemental entities from drug product packaging and manufacturing systems. To understand the extent to which materials used in packaging systems contain elemental entities and the extent to which those entities leach into drug products to become elemental impurities, the Extractables and Leachables Safety Information Exchange (ELSIE) and International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) Consortia have jointly performed a literature review on this subject. Using the compiled information, it was concluded that while packaging materials may contain elemental entities, unless those entities are intentional parts of the materials, the amounts of those elemental entities are generally low. Furthermore, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, risk assessment of sources of elemental impurities in drug products that may be related to materials used in pharmaceutical packaging and manufacturing systems can utilize the information and recommendations presented here. © PDA, Inc. 2015.
NASA Astrophysics Data System (ADS)
Hu, Tao; Panhao, Tang; Xiao, Jiahua
2015-03-01
Radio-frequency ablation (RFA) is a minimally invasive surgical procedure to thermally ablate the targeted diseased tissue. There have been many finite-element method (FEM) studies of cardiac and hepatic RFA, but hardly find any FEM study on endometrial ablation for abnormal uterine bleeding. In this paper, a FEM model was generated to analyze the temperature distribution of bipolar RF global endometrial ablation with three pairs of bipolar electrodes placed at the perimeter of the uterine cavity. COMSOL was utilized to calculate the RF electric fields and temperature fields by numerically solving the bioheat equation in the triangle uterine cavity range. The 55°C isothermal surfaces show the shape of the ablation dimensions (depth and width), which reasonably matched the experimental results.
NASA Astrophysics Data System (ADS)
Kezurer, Noa; Farah, Nairouz; Mandel, Yossi
2016-08-01
Hemorrhagic shock accounts for 30-40 percent of trauma mortality, as bleeding may sometimes be hard to control. Application of short electrical pulses on blood vessels was recently shown to elicit robust vasoconstriction and reduction of blood loss following vascular injury. In this study we present a novel approach for vasoconstriction based on endovascular application of electrical pulses for situations where access to the vessel is limited. In addition to ease of access, we hypothesize that this novel approach will result in a localized and efficient vasoconstriction. Using computer modeling (COMSOL Multiphysics, Electric Currents Module), we studied the effect of endovascular pulsed electrical treatment on abdominal aorta of pigs, and compared the efficiency of different electrodes configurations on the electric field amplitude, homogeneity and locality when applied on a blood vessel wall. Results reveal that the optimal configuration is the endovascular approach where four electrodes are used, spaced 13 mm apart. Furthermore, computer based temperature investigations (bio-heat model, COMSOL Multiphysics) show that the maximum expected temperature rise is of 1.2 degrees; highlighting the safety of the four endovascular electrodes configuration. These results can aid in planning the application of endovascular pulsed electrical treatment as an efficient and safe vasoconstriction approach.
NASA Astrophysics Data System (ADS)
Gamboa, Bryan M.; Malladi, Madhuri; Vadlamani, Ramya; Guo, Ruyan; Bhalla, Amar
2016-09-01
PZT are also well known for their applications in Micro Electrical Mechanical Systems (MEMS). It is necessary to study the piezoelectric coefficients of the materials accurately in order to design a sensor as an example, which defines their strain dependent applications. Systematic study of the electro mechanic displacement measurement was conducted and compared using a white light fiber optic sensor, a heterodyne laser Doppler vibrometer, and a homodyne laser interferometry setup. Frequency dependent measurement is conducted to evaluate displacement values well below and near the piezoelectric resonances. UHF-120 ultra-high frequency Vibrometer is used to measure the longitudinal piezoelectric displacement or x33 and the MTI 2000 FotonicTM Sensor is used to measure the transverse piezoelectric displacement or x11 over 100Hz to 2MHz. A Multiphysics Finite Element Analysis method, COMSOL, is also adopted in the study to generate a three dimensional electromechanical coupled model based on experimentally determined strains x33 and x11 as a function of frequency of the electric field applied. The full family of piezoelectric coefficients of the poled electronic ceramic PZT, d33, d31, and d15, can be then derived, upon satisfactory simulation of the COMSOL. This is achieved without the usual need of preparation of piezoelectric resonators of fundamental longitudinal, transversal, and shear modes respectively.
ORNL diagnostic and modeling development for LAPD ICRF experiments
NASA Astrophysics Data System (ADS)
Isler, R. C.; Caughman, J. B. O.; Lau, C.; Martin, E. H.; Perkins, R. J.; Compernolle, B. Van; Vincena, S.; Tripathi, S. K. P.; Gekelman, W.
2017-10-01
PPPL, UCLA, and ORNL scientists have recently collaborated on a three week ICRF campaign at the upgraded LAPD device to study near field-plasma interactions associated with a single strap antenna driven at 2.38 MHz with 100 kW of RF power. This poster highlights ORNL involvement through implementation of the following diagnostics: an optical emission probe to measure neutral density, a retarding field energy analyzer to measure fast ions, phase locked imaging to measure line integrated RF-driven optical emission fluctuations, and an RF compensated triple Langmuir probe to measure density and temperature. To interpret the results of the experimental campaign a 3D cold plasma finite element model with realistic antenna and vacuum vessel geometry was developed in COMSOL. A summary of these results will be discussed. Highlights include a proof of principle localized and spatially resolved measurement of the neutral density, a strong increase in RF-driven optical emission fluctuations directly in front of the RF antenna strap, a shift in fast ion energies near the plasma edge, and qualitative agreement between the COMSOL cold plasma model with the various diagnostics. Funded by the DOE OFES (DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-07ER54918) and the Univ. of California (12-LR-237124).
Kezurer, Noa; Farah, Nairouz; Mandel, Yossi
2016-01-01
Hemorrhagic shock accounts for 30–40 percent of trauma mortality, as bleeding may sometimes be hard to control. Application of short electrical pulses on blood vessels was recently shown to elicit robust vasoconstriction and reduction of blood loss following vascular injury. In this study we present a novel approach for vasoconstriction based on endovascular application of electrical pulses for situations where access to the vessel is limited. In addition to ease of access, we hypothesize that this novel approach will result in a localized and efficient vasoconstriction. Using computer modeling (COMSOL Multiphysics, Electric Currents Module), we studied the effect of endovascular pulsed electrical treatment on abdominal aorta of pigs, and compared the efficiency of different electrodes configurations on the electric field amplitude, homogeneity and locality when applied on a blood vessel wall. Results reveal that the optimal configuration is the endovascular approach where four electrodes are used, spaced 13 mm apart. Furthermore, computer based temperature investigations (bio-heat model, COMSOL Multiphysics) show that the maximum expected temperature rise is of 1.2 degrees; highlighting the safety of the four endovascular electrodes configuration. These results can aid in planning the application of endovascular pulsed electrical treatment as an efficient and safe vasoconstriction approach. PMID:27534438
NASA Astrophysics Data System (ADS)
Ryan, A. J.; Christensen, P. R.
2016-12-01
Laboratory measurements have been necessary to interpret thermal data of planetary surfaces for decades. We present a novel radiometric laboratory method to determine temperature-dependent thermal conductivity of complex regolith simulants under high vacuum and across a wide range of temperatures. Here, we present our laboratory method, strategy, and initial results. This method relies on radiometric temperature measurements instead of contact measurements, eliminating the need to disturb the sample with thermal probes. We intend to determine the conductivity of grains that are up to 2 cm in diameter and to parameterize the effects of angularity, sorting, layering, composition, and cementation. These results will support the efforts of the OSIRIS-REx team in selecting a site on asteroid Bennu that is safe and meets grain size requirements for sampling. Our system consists of a cryostat vacuum chamber with an internal liquid nitrogen dewar. A granular sample is contained in a cylindrical cup that is 4 cm in diameter and 1 to 6 cm deep. The surface of the sample is exposed to vacuum and is surrounded by a black liquid nitrogen cold shroud. Once the system has equilibrated at 80 K, the base of the sample cup is rapidly heated to 450 K. An infrared camera observes the sample from above to monitor its temperature change over time. We have built a time-dependent finite element model of the experiment in COMSOL Multiphysics. Boundary temperature conditions and all known material properties (including surface emissivities) are included to replicate the experiment as closely as possible. The Optimization module in COMSOL is specifically designed for parameter estimation. Sample thermal conductivity is assumed to be a quadratic or cubic polynomial function of temperature. We thus use gradient-based optimization methods in COMSOL to vary the polynomial coefficients in an effort to reduce the least squares error between the measured and modeled sample surface temperature.
Numerical simulation of electron beam welding with beam oscillations
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Permyakov, G. L.
2017-02-01
This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.
Differential maneuvering simulator data reduction and analysis software
NASA Technical Reports Server (NTRS)
Beasley, G. P.; Sigman, R. S.
1972-01-01
A multielement data reduction and analysis software package has been developed for use with the Langley differential maneuvering simulator (DMS). This package, which has several independent elements, was developed to support all phases of DMS aircraft simulation studies with a variety of both graphical and tabular information. The overall software package is considered unique because of the number, diversity, and sophistication of the element programs available for use in a single study. The purpose of this paper is to discuss the overall DMS data reduction and analysis package by reviewing the development of the various elements of the software, showing typical results that can be obtained, and discussing how each element can be used.
Hermetic Packages For Millimeter-Wave Circuits
NASA Technical Reports Server (NTRS)
Herman, Martin I.; Lee, Karen A.; Lowry, Lynn E.; Carpenter, Alain; Wamhof, Paul
1994-01-01
Advanced hermetic packages developed to house electronic circuits operating at frequencies from 1 to 100 gigahertz and beyond. Signals coupled into and out of packages electromagnetically. Provides circuit packages small, lightweight, rugged, and inexpensive in mass production. Packages embedded in planar microstrip and coplanar waveguide circuits, in waveguide-to-planar and planar-to-waveguide circuitry, in waveguide-to-waveguide circuitry, between radiating (antenna) elements, and between planar transmission lines and radiating elements. Other applications in automotive, communication, radar, remote sensing, and biomedical electronic systems foreseen.
Modeling of biaxial gimbal-less MEMS scanning mirrors
NASA Astrophysics Data System (ADS)
von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang
2016-03-01
One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n < 10000) state space representation of the mirror dynamics with actuation voltages as system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.
NASA Astrophysics Data System (ADS)
Lawrie, S. R.; Faircloth, D. C.; Smith, J. D.; Sarmento, T. M.; Whitehead, M. O.; Wood, T.; Perkins, M.; Macgregor, J.; Abel, R.
2018-05-01
A vessel for extraction and source plasma analyses is being used for Penning H- ion source development at the Rutherford Appleton Laboratory. A new set of optical elements including an einzel lens has been installed, which transports over 80 mA of H- beam successfully. Simultaneously, a 2X scaled Penning source has been developed to reduce cathode power density. The 2X source is now delivering a 65 mA H- ion beam at 10% duty factor, meeting its design criteria. The long-term viability of the einzel lens and 2X source is now being evaluated, so new diagnostic devices have been installed. A pair of electrostatic deflector plates is used to correct beam misalignment and perform fast chopping, with a voltage rise time of 24 ns. A suite of four quartz crystal microbalances has shown that the cesium flux in the vacuum vessel is only increased by a factor of two, despite the absence of a dedicated cold trap. Finally, an infrared camera has demonstrated good agreement with thermal simulations but has indicated unexpected heating due to beam loss on the downstream electrode. These types of diagnostics are suitable for monitoring all operational ion sources. In addition to experimental campaigns and new diagnostic tools, the high-performance VSim and COMSOL software packages are being used for plasma simulations of two novel ion thrusters for space propulsion applications. In parallel, a VSim framework has been established to include arbitrary temperature and cesium fields to allow the modeling of surface physics in H- ion sources.
Experimental determination and modelling of the swelling speed of a hydrogel polymer
NASA Astrophysics Data System (ADS)
Lenk, Sándor; Majoros, Tamás; Beleznai, Szabolcs; Ujhelyi, Ferenc; Péczeli, Imre; Karda, Zsolt; Barócsi, Attila
2018-03-01
When a hydrophilic intraocular lens material is immersed, its volume and mass start increase due to the diffusion of water (or isotonic saline solution) reaching a quasi-equilibrium in a time scale of several hours. Here, we present a combination of atomic force and confocal microscopy to measure the axial swelling speed of such polymers in distilled water. The measurements are used for the experimental verification of a simplistic finite element model developed for engineering applications in COMSOL environment. The model is calibrated with the temporal change of the sample mass. The swelling velocity is found to be inversely proportional to the square root of time.
SBML Level 3 package: Hierarchical Model Composition, Version 1 Release 3
Smith, Lucian P.; Hucka, Michael; Hoops, Stefan; Finney, Andrew; Ginkel, Martin; Myers, Chris J.; Moraru, Ion; Liebermeister, Wolfram
2017-01-01
Summary Constructing a model in a hierarchical fashion is a natural approach to managing model complexity, and offers additional opportunities such as the potential to re-use model components. The SBML Level 3 Version 1 Core specification does not directly provide a mechanism for defining hierarchical models, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The SBML Hierarchical Model Composition package for SBML Level 3 adds the necessary features to SBML to support hierarchical modeling. The package enables a modeler to include submodels within an enclosing SBML model, delete unneeded or redundant elements of that submodel, replace elements of that submodel with element of the containing model, and replace elements of the containing model with elements of the submodel. In addition, the package defines an optional “port” construct, allowing a model to be defined with suggested interfaces between hierarchical components; modelers can chose to use these interfaces, but they are not required to do so and can still interact directly with model elements if they so chose. Finally, the SBML Hierarchical Model Composition package is defined in such a way that a hierarchical model can be “flattened” to an equivalent, non-hierarchical version that uses only plain SBML constructs, thus enabling software tools that do not yet support hierarchy to nevertheless work with SBML hierarchical models. PMID:26528566
FE analysis of SMA-based bio-inspired bone-joint system
NASA Astrophysics Data System (ADS)
Yang, S.; Seelecke, S.
2009-10-01
This paper presents the finite element (FE) analysis of a bio-inspired bone-joint system. Motivated by the BATMAV project, which aims at the development of a micro-air-vehicle platform that implements bat-like flapping flight capabilities, we study the actuation of a typical elbow joint, using shape memory alloy (SMA) in a dual manner. Micro-scale martensitic SMA wires are used as 'metal muscles' to actuate a system of humerus, elbow joint and radius, in concert with austenitic wires, which operate as flexible joints due to their superelastic character. For the FE analysis, the humerus and radius are modeled as standard elastic beams, while the elbow joint and muscle wires use the Achenbach-Muller-Seelecke SMA model as beams and cable elements, respectively. The particular focus of the paper is on the implementation of the above SMA model in COMSOL.
Renteria Marquez, I A; Bolborici, V
2017-05-01
This manuscript presents a method to model in detail the piezoelectric traveling wave rotary ultrasonic motor (PTRUSM) stator response under the action of DC and AC voltages. The stator is modeled with a discrete two dimensional system of equations using the finite volume method (FVM). In order to obtain accurate results, a model of the stator bridge is included into the stator model. The model of the stator under the action of DC voltage is presented first, and the results of the model are compared versus a similar model using the commercial finite element software COMSOL Multiphysics. One can observe that there is a difference of less than 5% between the displacements of the stator using the proposed model and the one with COMSOL Multiphysics. After that, the model of the stator under the action of AC voltages is presented. The time domain analysis shows the generation of the traveling wave in the stator surface. One can use this model to accurately calculate the stator surface velocities, elliptical motion of the stator surface and the amplitude and shape of the stator traveling wave. A system of equations discretized with the finite volume method can easily be transformed into electrical circuits, because of that, FVM may be a better choice to develop a model-based control strategy for the PTRUSM. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficient biosensing through 1D silver nanostructured devices using plasmonic effect.
Afsheen, Sumera; Munir, Musarat; Isa Khan, Muhammad; Iqbal, Tahir; Abrar, M; Tahir, Muhammad Bilal; Rehman, Jalil Ur; Nadeem, Khalid; Ijaz, Mohsin; Nabi, Ghulam
2018-06-22
The current work explores the excitation of surface plasmon polarities on one dimensional (1D) silver nano grating device simulated on glass substrate, which can sense a very small change in refractive index of an analyte adjacent to it. The most recent modeling technique finite element analysis (FEA) is applied in this work by using COMSOL RF module. The models of 1D grating device of different slit widths with fixed periodicity and film thickness are simulated. The data is collected and then used to study higher refractive index unit per nanometer (RIU/nm) as well as effect of slits width on RIU. Numbers of investigations are done by the simulated data, like a dip in the transmission spectra of p-polarized light. This dip is due to SPP resonance with the variation of slit width. Furthermore, the most fascinating part of the research is COMSOL modeling that provides an opportunity to look into factors affecting higher RIU/nm while visualizing the cross-sectional view of the grating device and strong electric field enhancement at the surface of the metallic device. When the slit width is almost equal to half of the periodicity of the grating device, SPP resonance increases and it is maximum for the slit width equal to 2/3rd of the periodicity because the coupling efficiency is maximum. © 2018 IOP Publishing Ltd.
Preliminary Multiphysics Analyses of HFIR LEU Fuel Conversion using COMSOL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freels, James D; Bodey, Isaac T; Arimilli, Rao V
The research documented herein was performed by several individuals across multiple organizations. We have previously acknowledged our funding for the project, but another common thread among the authors of this document, and hence the research performed, is the analysis tool COMSOL. The research has been divided into categories to allow the COMSOL analysis to be performed independently to the extent possible. As will be seen herein, the research has progressed to the point where it is expected that next year (2011) a large fraction of the research will require collaboration of our efforts as we progress almost exclusively into three-dimensionalmore » (3D) analysis. To the extent possible, we have tried to segregate the development effort into two-dimensional (2D) analysis in order to arrive at techniques and methodology that can be extended to 3D models in a timely manner. The Research Reactors Division (RRD) of ORNL has contracted with the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE) to perform a significant fraction of this research. This group has been chosen due to their expertise and long-term commitment in using COMSOL and also because the participating students are able to work onsite on a part-time basis due to the close proximity of UTK with the ORNL campus. The UTK research has been governed by a statement of work (SOW) which clearly defines the specific tasks reported herein on the perspective areas of research. Ph.D. student Isaac T. Bodey has focused on heat transfer, fluid flow, modeling, and meshing issues and has been aided by his major professor Dr. Rao V. Arimilli and is the primary contributor to Section 2 of this report. Ph.D student Franklin G. Curtis has been focusing exclusively on fluid-structure interaction (FSI) due to the mechanical forces acting on the plate caused by the flow and has also been aided by his major professor Dr. Kivanc Ekici and is the primary contributor to Section 4 of this report. The HFIR LEU conversion project has also obtained the services of Dr. Prashant K. Jain of the Reactor & Nuclear Systems Division (RNSD) of ORNL. Prashant has quickly adapted to the COMSOL tools and has been focusing on thermal-structure interaction (TSI) issues and development of alternative 3D model approaches that could yield faster-running solutions. Prashant is the primary contributor to Section 5 of the report. And finally, while incorporating findings from all members of the COMSOL team (i.e., the team) and contributing as the senior COMSOL leader and advocate, Dr. James D. Freels has focused on the 3D model development, cluster deployment, and has contributed primarily to Section 3 and overall integration of this report. The team has migrated to the current release of COMSOL at version 4.1 for all the work described in this report, except where stated otherwise. Just as in the performance of the research, each of the respective sections has been originally authored by the respective authors. Therefore, the reader will observe a contrast in writing style throughout this document.« less
Fabrication and magnetic control of bacteria-inspired robotic microswimmers
NASA Astrophysics Data System (ADS)
Cheang, U. Kei; Roy, Dheeraj; Lee, Jun Hee; Kim, Min Jun
2010-11-01
A biomimetic, microscale system using the mechanics of swimming bacteria has been fabricated and controlled in a low Reynolds number fluidic environment. The microswimmer consists of a polystyrene microbead conjugated to a magnetic nanoparticle via a flagellar filament using avidin-biotin linkages. The flagellar filaments were isolated from the bacterium, Salmonella typhimurium. Propulsion energy was supplied by an external rotating magnetic field designed in an approximate Helmholtz configuration. Further, the finite element analysis software, COMSOL MULTIPHYSICS, was used to develop a simulation of the robotic devices within the magnetic controller. The robotic microswimmers exhibited flagellar propulsion in two-dimensional magnetic fields, which demonstrate controllability of the biomimetically designed devices for future biomedical applications.
Hermansen, Peter; MacKay, Scott; Wishart, David; Jie Chen
2016-08-01
Microfabricated interdigitated electrode chips have been designed for use in a unique gold-nanoparticle based biosensor system. The use of these electrodes will allow for simple, accurate, inexpensive, and portable biosensing, with potential applications in diagnostics, medical research, and environmental testing. To determine the optimal design for these electrodes, finite element analysis simulations were carried out using COMSOL Multiphysics software. The results of these simulations determined some of the optimal design parameters for microfabricating interdigitated electrodes as well as predicting the effects of different electrode materials. Finally, based on the results of these simulations two different kinds of interdigitated electrode chips were made using photolithography.
Reconfigurable origami sonic barriers with tunable bandgaps for traffic noise mitigation
NASA Astrophysics Data System (ADS)
Thota, M.; Wang, K. W.
2017-10-01
An origami sonic barrier composed of cylindrical inclusions attached onto an origami sheet is proposed. The idea allows for tunable sound blocking properties for application in attenuating complex traffic noise spectra. Folding of the underlying origami sheet transforms the periodicity of the inclusions between different Bravais lattices, viz. between a square and a hexagonal lattice, and such significant lattice re-configuration leads to drastic tuning of dispersion characteristics. The wave tuning capabilities are corroborated via performing theoretical and numerical investigations using a plane wave expansion method and an acoustic simulation package of COMSOL, while experiments are performed on a one-seventh scaled-down model of origami sonic barrier to demonstrate the lattice re-configuration between different Bravais lattices and the associated bandgap adaptability. Good sound blocking performance in the frequency range of traffic noise spectra combined with less efforts, required for actuating one-degree of freedom folding mechanism, makes the origami sonic barrier a potential candidate for mitigating complex traffic noise.
Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror
NASA Astrophysics Data System (ADS)
Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu
2017-02-01
Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.
Simulation and optimization of silicon-on-sapphire pressure sensor
NASA Astrophysics Data System (ADS)
Kulesh, N. A.; Kudyukov, E. V.; Balymov, K. G.; Beloyshov, A. A.
2017-09-01
In this paper, finite element analysis software COMSOL Multiphysics was used to simulate the performance of silicon-on-sapphire piezoresistive pressure sensor, aiming to elaborate a flexible model suitable for further optimization and customization of the currently produced pressure sensors. The base model was built around the cylindrical pressure cell made of titanium alloy having a circular diaphragm with monocrystalline sapphire layer attached. The monocrystalline piezoresistive elements were placed on top of the double-layer diaphragm and electrically connected to form the Wheatstone bridge. Verification of the model and parametric study included three main areas: geometrical parameters of the cell, position of the elements on the diaphragm, and operation at elevated temperature. Optimization of the cell geometry included variation of bossed titanium diaphragm parameters as well as rounding-off radiuses near the edges of the diaphragm. Influence of the temperature was considered separately for thermal expansion of the mechanical components and for the changes of electrical and piezoresistive properties of the piezoresistive elements. In conclusion, the simulation results were compared to the experimental data obtained for three different constructions of the commercial pressure sensors produced by SPA of Automatics named after Academician N.A. Semikhatov.
NASA Astrophysics Data System (ADS)
Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan
2016-09-01
In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.
cis-Acting elements important for retroviral RNA packaging specificity.
Beasley, Benjamin E; Hu, Wei-Shau
2002-05-01
Spleen necrosis virus (SNV) proteins can package RNA from distantly related murine leukemia virus (MLV), whereas MLV proteins cannot package SNV RNA efficiently. We used this nonreciprocal recognition to investigate regions of packaging signals that influence viral RNA encapsidation specificity. Although the MLV and SNV packaging signals (Psi and E, respectively) do not contain significant sequence homology, they both contain a pair of hairpins. This hairpin pair was previously proposed to be the core element in MLV Psi. In the present study, MLV-based vectors were generated to contain chimeric SNV/MLV packaging signals in which the hairpins were replaced with the heterologous counterpart. The interactions between these chimeras and MLV or SNV proteins were examined by virus replication and RNA analyses. SNV proteins recognized all of the chimeras, indicating that these chimeras were functional. We found that replacing the hairpin pair did not drastically alter the ability of MLV proteins to package these chimeras. These results indicate that, despite the important role of the hairpin pair in RNA packaging, it is not the major motif responsible for the ability of MLV proteins to discriminate between the MLV and SNV packaging signals. To determine the role of sequences flanking the hairpins in RNA packaging specificity, vectors with swapped flanking regions were generated and evaluated. SNV proteins packaged all of these chimeras efficiently. In contrast, MLV proteins strongly favored chimeras with the MLV 5'-flanking regions. These data indicated that MLV Gag recognizes multiple elements in the viral packaging signal, including the hairpin structure and flanking regions.
Simulation of Magnetic Field Assisted Finishing (MFAF) Process Utilizing Smart MR Polishing Tool
NASA Astrophysics Data System (ADS)
Barman, Anwesa; Das, Manas
2017-02-01
Magnetic field assisted finishing process is an advanced finishing process. This process is capable of producing nanometer level surface finish. In this process magnetic field is applied to control the finishing forces using magnetorheological polishing medium. In the current study, permanent magnet is used to provide the required magnetic field in the finishing zone. The working gap between the workpiece and the magnet is filled with MR fluid which is used as the polishing brush to remove surface undulations from the top surface of the workpiece. In this paper, the distribution of magnetic flux density on the workpiece surface and behaviour of MR polishing medium during finishing are analyzed using commercial finite element packages (Ansys Maxwell® and Comsol®). The role of magnetic force in the indentation of abrasive particles on the workpiece surface is studied. A two-dimensional simulation study of the steady, laminar, and incompressible MR fluid flow behaviour during finishing process is carried out. The material removal and surface roughness modelling of the finishing process are also presented. The indentation force by a single active abrasive particle on the workpiece surface is modelled during simulation. The velocity profile of MR fluid with and without application of magnetic field is plotted. It shows non-Newtonian property without application of magnetic field. After that the total material displacement due to one abrasive particle is plotted. The simulated roughness profile is in a good agreement with the experimental results. The conducted study will help in understanding the fluid behavior and the mechanism of finishing during finishing process. Also, the modelling and simulation of the process will help in achieving better finishing performance.
Simulations for the Development of Thermoelectric Measurements
NASA Astrophysics Data System (ADS)
Zabrocki, Knud; Ziolkowski, Pawel; Dasgupta, Titas; de Boor, Johannes; Müller, Eckhard
2013-07-01
In thermoelectricity, continuum theoretical equations are usually used for the calculation of the characteristics and performance of thermoelectric elements, modules or devices as a function of external parameters (material, geometry, temperatures, current, flow, load, etc.). An increasing number of commercial software packages aimed at applications, such as COMSOL and ANSYS, contain vkernels using direct thermoelectric coupling. Application of these numerical tools also allows analysis of physical measurement conditions and can lead to specifically adapted methods for developing special test equipment required for the determination of TE material and module properties. System-theoretical and simulation-based considerations of favorable geometries are taken into account to create draft sketches in the development of such measurement systems. Particular consideration is given to the development of transient measurement methods, which have great advantages compared with the conventional static methods in terms of the measurement duration required. In this paper the benefits of using numerical tools in designing measurement facilities are shown using two examples. The first is the determination of geometric correction factors in four-point probe measurement of electrical conductivity, whereas the second example is focused on the so-called combined thermoelectric measurement (CTEM) system, where all thermoelectric material properties (Seebeck coefficient, electrical and thermal conductivity, and Harman measurement of zT) are measured in a combined way. Here, we want to highlight especially the measurement of thermal conductivity in a transient mode. Factors influencing the measurement results such as coupling to the environment due to radiation, heat losses via the mounting of the probe head, as well as contact resistance between the sample and sample holder are illustrated, analyzed, and discussed. By employing the results of the simulations, we have developed an improved sample head that allows for measurements over a larger temperature interval with enhanced accuracy.
Studies on the electrical transport properties of carbon nanotube composites
NASA Astrophysics Data System (ADS)
Tarlton, Taylor Warren
This work presents a probabilistic approach to model the electrical transport properties of carbon nanotube composite materials. A pseudo-random generation method is presented with the ability to generate 3-D samples with a variety of different configurations. Periodic boundary conditions are employed in the directions perpendicular to transport to minimize edge effects. Simulations produce values for drift velocity, carrier mobility, and conductivity in samples that account for geometrical features resembling those found in the lab. All results show an excellent agreement to the well-known power law characteristic of percolation processes, which is used to compare across simulations. The effect of sample morphology, like nanotube waviness and aspect ratio, and agglomeration on charge transport within CNT composites is evaluated within this model. This study determines the optimum simulation box-sizes that lead to minimize size-effects without rendering the simulation unaffordable. In addition, physical parameters within the model are characterized, involving various density functional theory calculations within Atomistix Toolkit. Finite element calculations have been performed to solve Maxwell's Equations for static fields in the COMSOL Multiphysics software package in order to better understand the behavior of the electric field within the composite material to further improve the model within this work. The types of composites studied within this work are often studied for use in electromagnetic shielding, electrostatic reduction, or even monitoring structural changes due to compression, stretching, or damage through their effect on the conductivity. However, experimental works have shown that based on various processing techniques the electrical properties of specific composites can vary widely. Therefore, the goal of this work has been to form a model with the ability to accurately predict the conductive properties as a function physical characteristics of the composite material in order to aid in the design of these composites.
Influence of different materials on the thermal behavior of a CDIP-8 ceramic package
NASA Astrophysics Data System (ADS)
Weide, Kirsten; Keck, Christian
1999-08-01
The temperature distribution inside a package is determined by the heat transfer from the package to the ambient, depending on the heat conductivities of the different used materials. With the help of finite element simulations the thermal behavior of the package can be characterized. In precise simulations convection and radiation effects have to be taken into account. In this paper the influence of different materials like the ceramic, the pin and die attach material and adhesive material between the chip and the die attach on the thermal resistance of the ceramic package will be investigated. A finite element model of the ceramic package including a voltage regulator on the chip was created. The simulations were carried out with the finite element program ANSYS. An easy way to take the radiation effect into account, which normally is difficult to handle in the simulation, will be shown. The results of the simulations are verified by infrared measurements. A comparison of the thermal resistance between the best case and worst case for different package materials was done. The thermal conductivity of the ceramic material shows the strongest influence on the thermal resistance.
7 CFR 3052.320 - Report submission.
Code of Federal Regulations, 2010 CFR
2010-01-01
... audit shall be completed and the data collection form and reporting package shall be submitted within... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...
7 CFR 3052.320 - Report submission.
Code of Federal Regulations, 2011 CFR
2011-01-01
... audit shall be completed and the data collection form and reporting package shall be submitted within... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...
7 CFR 3052.320 - Report submission.
Code of Federal Regulations, 2013 CFR
2013-01-01
... audit shall be completed and the data collection form and reporting package shall be submitted within... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...
7 CFR 3052.320 - Report submission.
Code of Federal Regulations, 2012 CFR
2012-01-01
... audit shall be completed and the data collection form and reporting package shall be submitted within... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...
7 CFR 3052.320 - Report submission.
Code of Federal Regulations, 2014 CFR
2014-01-01
... audit shall be completed and the data collection form and reporting package shall be submitted within... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...
Packaging and Embedded Electronics for the Next Generation
NASA Technical Reports Server (NTRS)
Sampson, Michael J.
2010-01-01
This viewgraph presentation describes examples of electronic packaging that protects an electronic element from handling, contamination, shock, vibration and light penetration. The use of Hermetic and non-hermetic packaging is also discussed. The topics include: 1) What is Electronic Packaging? 2) Why Package Electronic Parts? 3) Evolution of Packaging; 4) General Packaging Discussion; 5) Advanced non-hermetic packages; 6) Discussion of Hermeticity; 7) The Class Y Concept and Possible Extensions; 8) Embedded Technologies; and 9) NEPP Activities.
NASA Astrophysics Data System (ADS)
Maruo, Shoji; Sugiyama, Kenji; Daicho, Yuya; Monri, Kensaku
2014-03-01
A three-dimensional (3-D) molding process using a master polymer mold produced by microstereolithography has been developed for the production of piezoelectric ceramic elements. In this method, ceramic slurry is injected into a 3-D polymer mold via a centrifugal casting process. The polymer master mold is thermally decomposed so that complex 3-D piezoelectric ceramic elements can be produced. As an example of 3-D piezoelectric ceramic elements, we produced a spiral piezoelectric element that can convert multidirectional loads into a voltage. It was confirmed that a prototype of the spiral piezoelectric element could generate a voltage by applying a load in both parallel and lateral directions in relation to the helical axis. The power output of 123 pW was obtained by applying the maximum load of 2.8N at 2 Hz along the helical axis. In addition, to improve the performance of power generation, we utilized a two-step sintering process to obtain dense piezoelectric elements. As a result, we obtained a sintering body with relative density of 92.8%. Piezoelectric constant d31 of the sintered body attained to -40.0 pC/N. Furthermore we analyzed the open-circuit voltage of the spiral piezoelectric element using COMSOL multiphysics. As a result, it was found that use of patterned electrodes according to the surface potential distribution of the spiral piezoelectric element had a potential to provide high output voltage that was 20 times larger than that of uniform electrodes.
Healthy choice?: Exploring how children evaluate the healthfulness of packaged foods.
Elliott, Charlene; Brierley, Meaghan
2012-11-06
Today's supermarket contains hundreds of packaged foods specifically targeted at children. Yet research has shown that children are confused by the various visual messages found on packaged food products. This study explores children's nutrition knowledge with regard to packaged food products, to uncover strengths and difficulties they have in evaluating the healthfulness of these foods. Focus groups were conducted with children (grades 1-6). Particular attention was paid to the ways children made use of what they know about nutrition when faced with the visual elements and appeals presented on food packaging. Children relied heavily on packages' written and visual aspects--including colour, images, spokes-characters, front-of-package claims--to assess the healthfulness of a food product. These elements interfere with children's ability to make healthy choices when it comes to packaged foods. Choosing healthy packaged foods is challenging for children due to competing sets of knowledge: one pertains to their understanding of visual, associational cues; the other, to translating their understanding of nutrition to packaged foods. Canada's Food Guide, along with the curriculum taught to Canadian children at schools, does not appear to provide children with the tools necessary to navigate a food environment dominated by packaged foods.
29 CFR 99.320 - Report submission.
Code of Federal Regulations, 2014 CFR
2014-07-01
... completed and the data collection form and reporting package shall be submitted within the earlier of 30... the data elements prescribed by OMB. (c) Reporting package. The reporting package shall include the... data collection form described in paragraph (b) of this section and one copy of the reporting package...
29 CFR 99.320 - Report submission.
Code of Federal Regulations, 2010 CFR
2010-07-01
... completed and the data collection form and reporting package shall be submitted within the earlier of 30... the data elements prescribed by OMB. (c) Reporting package. The reporting package shall include the... data collection form described in paragraph (b) of this section and one copy of the reporting package...
NASA Astrophysics Data System (ADS)
Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic
2014-03-01
The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.
Tsoulos, T. V.; Han, L.; Weir, J.; ...
2017-02-22
A combined experimental and computational study was carried out to design a semi-empirical method to determine the volume, surface area, and extinction coefficients of gold nanostars. The values obtained were confirmed by reconstructing the nanostar 3D topography through high-tilt TEM tomography and introducing the finite elements in COMSOL Multiphysics through which we have also calculated the morphology-dependent extinction coefficient. We have, for the first time, modeled the heat losses of a real, experimentally synthesized nanostar, and found the plasmon resonances to be in excellent agreement with those obtained experimentally. Furthermore, we believe that our approach could substantially improve the applicabilitymore » of this remarkable nanomaterial.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoulos, T. V.; Han, L.; Weir, J.
A combined experimental and computational study was carried out to design a semi-empirical method to determine the volume, surface area, and extinction coefficients of gold nanostars. The values obtained were confirmed by reconstructing the nanostar 3D topography through high-tilt TEM tomography and introducing the finite elements in COMSOL Multiphysics through which we have also calculated the morphology-dependent extinction coefficient. We have, for the first time, modeled the heat losses of a real, experimentally synthesized nanostar, and found the plasmon resonances to be in excellent agreement with those obtained experimentally. Furthermore, we believe that our approach could substantially improve the applicabilitymore » of this remarkable nanomaterial.« less
NASA Astrophysics Data System (ADS)
Galatà, A.; Sattin, M.; Manzolaro, M.; Martini, D.; Facco, A.; Tinschert, K.; Spaedtke, P.; Lang, R.; Kulevoy, T.
2014-02-01
The ECR ion sources are able to produce a wide variety of highly charged metallic ion beams thanks to the development of different techniques (ovens, sputtering, direct insertion, metal ions from volatile compounds (MIVOC)). In the case of the ovens, the sticking of the hot vapors on the surface of the plasma chamber leads to high material consumption rates. For elements like Ca, a tantalum liner inserted inside the chamber can be used to limit this phenomenon. The modeling of temperature distribution inside the chamber with and without the liner was carried out with COMSOL-multiphysics code. Results of simulation and the comparison with experiments performed at INFN-Legnaro National Laboratories with Ca beams are discussed.
Using Microwaves to Heat Lunar Soil
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.
2011-01-01
This slide presentation reviews the use of microwaves to heat lunar soil in order to obtain water. There appears to be large amounts of water in the lunar poles, in Martian areas in lower latitudes and some of the Moons of Jupiter. The presence of water in the south lunar polar region was demonstrated by the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. Microwaves can be used to extract water from lunar soil without excavation. Using microwaves on a lunar soil simulant at least 95% of the water from the regolith permafrost simulant was extracted (2 minutes). The process is modeled using COMSOL Multiphysics Finite Element analysis microwave physics module and demonstrated usingan experiment of an microwave apparatus on a rover.
Deciphering the role of the Gag-Pol ribosomal frameshift signal in HIV-1 RNA genome packaging.
Nikolaitchik, Olga A; Hu, Wei-Shau
2014-04-01
A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5' untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5' end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1 regulates its genome packaging and generate infectious viruses necessary for transmission to new hosts.
Deciphering the Role of the Gag-Pol Ribosomal Frameshift Signal in HIV-1 RNA Genome Packaging
Nikolaitchik, Olga A.
2014-01-01
ABSTRACT A key step of retroviral replication is packaging of the viral RNA genome during virus assembly. Specific packaging is mediated by interactions between the viral protein Gag and elements in the viral RNA genome. In HIV-1, similar to most retroviruses, the packaging signal is located within the 5′ untranslated region and extends into the gag-coding region. A recent study reported that a region including the Gag-Pol ribosomal frameshift signal plays an important role in HIV-1 RNA packaging; deletions or mutations that affect the RNA structure of this signal lead to drastic decreases (10- to 50-fold) in viral RNA packaging and virus titer. We examined here the role of the ribosomal frameshift signal in HIV-1 RNA packaging by studying the RNA packaging and virus titer in the context of proviruses. Three mutants with altered ribosomal frameshift signal, either through direct deletion of the signal, mutation of the 6U slippery sequence, or alterations of the secondary structure were examined. We found that RNAs from all three mutants were packaged efficiently, and they generate titers similar to that of a virus containing the wild-type ribosomal frameshift signal. We conclude that although the ribosomal frameshift signal plays an important role in regulating the replication cycle, this RNA element is not directly involved in regulating RNA encapsidation. IMPORTANCE To generate infectious viruses, HIV-1 must package viral RNA genome during virus assembly. The specific HIV-1 genome packaging is mediated by interactions between the structural protein Gag and elements near the 5′ end of the viral RNA known as packaging signal. In this study, we examined whether the Gag-Pol ribosomal frameshift signal is important for HIV-1 RNA packaging as recently reported. Our results demonstrated that when Gag/Gag-Pol is supplied in trans, none of the tested ribosomal frameshift signal mutants has defects in RNA packaging or virus titer. These studies provide important information on how HIV-1 regulates its genome packaging and generate infectious viruses necessary for transmission to new hosts. PMID:24453371
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
The user options available for running the MHOST finite element analysis package is described. MHOST is a solid and structural analysis program based on the mixed finite element technology, and is specifically designed for 3-D inelastic analysis. A family of 2- and 3-D continuum elements along with beam and shell structural elements can be utilized, many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. The outline of solution algorithms is discussed along with the data input and output, analysis options including the user subroutines and the definition of the finite elements implemented in the program package.
Integrated three-dimensional module heat exchanger for power electronics cooling
Bennion, Kevin; Lustbader, Jason
2013-09-24
Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.
Modeling of the thermal comfort in vehicles using COMSOL multiphysics
NASA Astrophysics Data System (ADS)
Gavrila, Camelia; Vartires, Andreea
2016-12-01
The environmental quality in vehicles is a very important aspect of building design and evaluation of the influence of the thermal comfort inside the car for ensuring a safe trip. The aim of this paper is to modeling and simulating the thermal comfort inside the vehicles, using COMSOL Multiphysics program, for different ventilation grilles. The objective will be the implementing innovative air diffusion grilles in a prototype vehicle. The idea behind this goal is to introduce air diffusers with a special geometry allowing improving mixing between the hot or the cold conditioned air introduced in the cockpit and the ambient.
Design and performance of a cryogenic iris aperture mechanism
NASA Astrophysics Data System (ADS)
de Jonge, C.; Laauwen, W. M.; de Vries, E. A.; Smit, H. P.; Detrain, A.; Eggens, M. J.; Ferrari, L.; Dieleman, P.
2014-07-01
A cryogenic iris mechanism is under development as part of the ground calibration source for the SAFARI instrument. The iris mechanism is a variable aperture used as an optical shutter to fine-tune and modulate the absolute power output of the calibration source. It has 4 stainless steel blades that create a near-circular aperture in every position. The operating temperature is 4.5 Kelvin to provide a negligible background to the SAFARI detectors, and `hot spots' above 9K should be prevented. Cryogenic testing proved that the iris works at 4K. It can be used in a broad range of cryogenic optical instruments where optical throughput needs to be controlled. Challenges in the design include the low cooling power available (5mW) and low friction at cryogenic temperatures. The actuator is an `arc-type' rotary voice-coil motor. The use of flexural pivots creates a mono-stable mechanism with a resonance frequency at 26Hz. Accurate and fast position control with disturbance rejection is managed by a PID servo loop using a hall-sensor as input. At 4 Kelvin, the frequency is limited to 4Hz to avoid excess dissipation and heating. In this paper, the design and performance of the iris are discussed. The design was optimized using a thermal, magnetic and mechanical model made with COMSOL Finite Element Analysis software. The dynamical and state-space modeling of the mechanism and the concept of the electrical control are presented. The performance of the iris show good agreement to the analytical and COMSOL modeling.
Wrap-Attack Pack: Product Packaging Exercise
ERIC Educational Resources Information Center
Lee, Seung Hwan; Hoffman, K. Douglas
2016-01-01
Although many marketing courses discuss traditional concepts pertaining to product strategy, concepts specifically relating to packaging are often glossed over. This exercise, "Wrap-Attack Pack," teaches students about the utilitarian and hedonic design elements of packaging. More specifically, the primary objective is to creatively…
Suarez, V; Hernández Wong, J; Nogal, U; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E
2014-01-01
It is reported the study of the heat transfer through a homogeneous and isotropic solid exited by square periodic light beam on its front surface. For this, we use the Infrared Photothermal Radiometry in order to obtain the evolution of the temperature difference on the rear surface of three samples, silicon, copper and wood, as a function of the exposure time. Also, we solved the heat transport equation for this problem with the boundary conditions congruent with the physical situation, by means of numerical simulation based in finite element analysis. Our results show a good agreement between the experimental and numerical simulated results, which demonstrate the utility of this methodology for the study of the thermal response of solids. Copyright © 2013 Elsevier Ltd. All rights reserved.
38 CFR 41.320 - Report submission.
Code of Federal Regulations, 2013 CFR
2013-07-01
... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...) General. The audit shall be completed and the data collection form described in paragraph (b) of this...
38 CFR 41.320 - Report submission.
Code of Federal Regulations, 2011 CFR
2011-07-01
... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...) General. The audit shall be completed and the data collection form described in paragraph (b) of this...
38 CFR 41.320 - Report submission.
Code of Federal Regulations, 2012 CFR
2012-07-01
... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...) General. The audit shall be completed and the data collection form described in paragraph (b) of this...
38 CFR 41.320 - Report submission.
Code of Federal Regulations, 2010 CFR
2010-07-01
... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...) General. The audit shall be completed and the data collection form described in paragraph (b) of this...
38 CFR 41.320 - Report submission.
Code of Federal Regulations, 2014 CFR
2014-07-01
... is limited to the data elements prescribed by OMB. (c) Reporting package. The reporting package shall... not submitted the required data collection forms and reporting packages. (i) Clearinghouse address...) General. The audit shall be completed and the data collection form described in paragraph (b) of this...
1983-06-01
1D-A132 95 DEVELOPMENT OF A GIFTS (GRAPHICS ORIENTED INTERACTIVE i/i FINITE-ELEMENT TIME..(U) NAVAL POSTGRADUATE SCHOOL I MONTEREY CA T R PICKLES JUN...183 THESIS " DEVELOPMENT OF A GIFTS PLOTTING PACKAGE COMPATIBLE WITH EITHER PLOT10 OR IBM/DSM GRAPHICS by Thomas R. Pickles June 1983 Thesis Advisor: G...TYPEAFtWEPORT & PERIOD COVERED Development of GIFTS Plotting Package Bi ’s Thesis; Compatible with either PLOTl0 or June 1983 IBM/DSM Graphics 6. PERFORMING ORO
Lee, Joseph G L; Averett, Paige E; Blanchflower, Tiffany; Landi, Nunzio; Gregory, Kyle R
2017-10-17
Cigarette packaging matters to consumer behavior. However, it is less clear which changes to packaging design would be salient for adult smokers. Such information is critically important to regulators in the United States who are charged with reviewing new tobacco products for their impact on population health. In this qualitative study, U.S. adult smokers ( n = 33) participated in six telephone-based focus groups in March 2017. Separate groups were comprised of lesbian, gay, and bisexual (LGB) participants; participants with less than four years of post-secondary education; a mix of LGB and straight participants; and, the general population. All groups were purposely selected for diversity. Open thematic coding identified salient design elements used on cigarette packaging. Smokers articulated design elements' use, meaning, and links with consumer behaviors. Three themes were identified: (1) the power of color, (2) supporting color with other design elements (e.g., logos/images, typography, the pack itself), and (3) the combined product brand experience of multiple design elements. Participants linked design elements to product characteristics and to consumer behavior (e.g., purchase). As the Food and Drug Administration is charged with regulating tobacco products, these findings suggest the importance of considering the cigarette pack part of the characteristics of a product.
49 CFR 173.411 - Industrial packages.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Each Type IP-1 package must meet the general design requirements prescribed in § 173.410. (2) Each Type IP-2 package must meet the general design requirements prescribed in § 173.410 and when subjected to...), “Requirements for the Design, Construction, Inspection and Testing of Portable Tanks and Multiple-Element Gas...
Joint Communications Support Element: The Voice Heard Round the World
2013-01-01
Initial Entry Package ( IEP ), Early Entry Package (EEP), and Joint Mobil- ity Package provide secure and nonsecure voice, video, and data to small mobile...teams operating worldwide. The IEP and EEP can be rapidly scaled to meet force surge require- ments from small dismounted teams up to an advance
Comparative analysis of 2D and 3D model of a PEMFC in COMSOL
NASA Astrophysics Data System (ADS)
Lakshmi, R. Bakiya; Harikrishnan, N. P.; Juliet, A. Vimala
2017-10-01
In this article, 2D and 3D model of a PEMFC has been simulated in order to study their performance when subjected to similar operating conditions. The comparison reveals interesting phenomena of performance enhancement of the fuel cell. Design of fuel cell channel and stationary studies were done in COMSOL. Variations in current density and electrolyte potential from simulation results were observed when operated at a temperature of 120 °C. The electrolyte potential was found to have increased from 1 to 2.5 V and the surface pressure due to fluid flow was found to have increased from 3 to 9.58 Pa.
NASA Astrophysics Data System (ADS)
He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong
2018-05-01
A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.
NASA Astrophysics Data System (ADS)
Huebner, Torsten; Martens, Ulrike; Walowski, Jakob; Münzenberg, Markus; Thomas, Andy; Reiss, Günter; Kuschel, Timo
2018-06-01
In general, it is difficult to access the thermal conductivity of thin insulating films experimentally by electrical means. Here, we present a new approach utilizing the tunnel magneto-Seebeck effect (TMS) in combination with finite-element modeling (FEM). We detect the laser-induced TMS and the absolute thermovoltage of laser-heated magnetic tunnel junctions with 2.6 nm thin barriers of MgAl2O4 (MAO) and MgO, respectively. A second measurement of the absolute thermovoltage after a dielectric breakdown of the barrier grants insight into the remaining thermovoltage of the stack. Thus, the pure TMS without any parasitic Nernst contributions from the leads can be identified. In combination with FEM via COMSOL, we are able to extract values for the thermal conductivity of MAO (0.7 W (K · m)‑1) and MgO (5.8 W (K · m)‑1), which are in very good agreement with theoretical predictions. Our method provides a new promising way to extract the experimentally challenging parameter of the thermal conductivity of thin insulating films.
Mechanism for and method of biasing magnetic sensor
Kautz, David R.
2007-12-04
A magnetic sensor package having a biasing mechanism involving a coil-generated, resistor-controlled magnetic field for providing a desired biasing effect. In a preferred illustrated embodiment, the package broadly comprises a substrate; a magnetic sensor element; a biasing mechanism, including a coil and a first resistance element; an amplification mechanism; a filter capacitor element; and an encapsulant. The sensor is positioned within the coil. A current applied to the coil produces a biasing magnetic field. The biasing magnetic field is controlled by selecting a resistance value for the first resistance element which achieves the desired biasing effect. The first resistance element preferably includes a plurality of selectable resistors, the selection of one or more of which sets the resistance value.
Using Simulation to Analyze Acoustic Environments
NASA Technical Reports Server (NTRS)
Wood, Eric J.
2016-01-01
One of the main projects that was worked on this semester was creating an acoustic model for the Advanced Space Suit in Comsol Multiphysics. The geometry tools built into the software were used to create an accurate model of the helmet and upper torso of the suit. After running the simulation, plots of the sound pressure level within the suit were produced, as seen below in Figure 1. These plots show significant nulls which should be avoided when placing microphones inside the suit. In the future, this model can be easily adapted to changes in the suit design to determine optimal microphone placements and other acoustic properties. Another major project was creating an acoustic diverter that will potentially be used to route audio into the Space Station's Node 1. The concept of the project was to create geometry to divert sound from a neighboring module, the US Lab, into Node 1. By doing this, no new audio equipment would need to be installed in Node 1. After creating an initial design for the diverter, analysis was performed in Comsol in order to determine how changes in geometry would affect acoustic performance, as shown in Figure 2. These results were used to produce a physical prototype diverter on a 3D printer. With the physical prototype, testing was conducted in an anechoic chamber to determine the true effectiveness of the design, as seen in Figure 3. The results from this testing have been compared to the Comsol simulation results to analyze how closely the Comsol results are to real-world performance. While the Comsol results do not seem to closely resemble the real world performance, this testing has provided valuable insight into how much trust can be placed in the results of Comsol simulations. A final project that was worked on during this tour was the Audio Interface Unit (AIU) design for the Orion program. The AIU is a small device that will be used for as an audio communication device both during launch and on-orbit. The unit will have functions including push-to-talk buttons and volume control. With this project, an existing design was modified based on prior feedback that had been received. With the modified design, I created a 3D printed prototype, shown in Figure 4, which was then used in suited evaluations performed by crew members. The feedback received from those evaluations will be utilized to help create the best possible Orion AIU. As a whole, a number of different interesting engineering projects were worked on over the course of this semester. For many of these projects, acoustic simulations provided valuable insight into how different environments would respond to sound. While work is still underway to verify the results of these simulations, the results are fascinating because of the interesting ways that sound waves interact with the environment. Going forward, it will be interesting to see how closely these results can be matched by real-world test data.
Packaging of MEMS/MOEMS and nanodevices: reliability, testing, and characterization aspects
NASA Astrophysics Data System (ADS)
Tekin, Tolga; Ngo, Ha-Duong; Wittler, Olaf; Bouhlal, Bouchaib; Lang, Klaus-Dieter
2011-02-01
The last decade witnessed an explosive growth in research and development efforts devoted to MEMS devices and packaging. The successfully developed MEMS devices are, for example inkjet, pressure sensors, silicon microphones, accelerometers, gyroscopes, MOEMS, micro fuel cells and emerging MEMS. For the next decade, MEMS/MOEMS and nanodevice based products will penetrate into IT, telecommunications, automotive, defense, life sciences, medical and implantable applications. Forecasts say the MEMS market to be $14 billion by 2012. The packaging cost of MEMS/MOEMS products in general is about 70 percent. Unlike today's electronics IC packaging, their packaging are custom-built and difficult due to the moving structural elements. In order for the moving elements of a MEMS device to move effectively in a well-controlled atmosphere, hermetic sealing of the MEMS device in a cap is necessary. For some MEMS devices, such as resonators and gyroscopes, vacuum packaging is required. Usually, the cap is processed at the wafer level, and thus MEMS packaging is truly a wafer level packaging. In terms of MEMS/MOEMS and nanodevice packaging, there are still many critical issues need to be addressed due to the increasing integration density supported by 3D heterogeneous integration of multi-physic components/layers consisting of photonics, electronics, rf, plasmonics, and wireless. The infrastructure of MEMS/MOEMS and nanodevices and their packaging is not well established yet. Generic packaging platform technologies are not available. Some of critical issues have been studied intensively in the last years. In this paper we will discuss about processes, reliability, testing and characterization of MEMS/MOEMS and nanodevice packaging.
Toward the greening of nuclear energy: A content analysis of nuclear energy frames from 1991 to 2008
NASA Astrophysics Data System (ADS)
Miller, Sonya R.
Framing theory has emerged as one of the predominant theories employed in mass communications research in the 21st century. Frames are identified as interpretive packages for content where some issue attributes are highlighted over other attributes. While framing effects studies appear plentiful, longitudinal studies assessing trends in dominant framing packages and story elements for an issue appear to be less understood. Through content analysis, this study examines dominant frame packages, story elements, headline tone, story tone, stereotypes, and source attribution for nuclear energy from 1991-2008 in the New York Times, USA Today, the Wall Street Journal, and the Washington Post. Unlike many content analysis studies, this study compares intercoder reliability among three indices---percentage agreement, proportional reduction of loss and Scott's Pi. The newspapers represented in this study possess a commonality in the types of dominant frames packages employed. Significant dominant frame packages among the four newspapers include human/health, proliferation, procedural, and marketplace. While the procedural frame package was more likely to appear prior to the 1997 Kyoto Protocol, the proliferation frame packaged was more likely to appear after the Kyoto Protol. Over time, the sustainable frame package demonstrated increased significance. This study is part of the growing literature regarding the function of frames over time.
49 CFR 173.340 - Tear gas devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... transportation. Not more than 50 tear gas devices and 50 functioning elements must be packed in one box, and the... fiber box with suitable padding. Not more than 30 inner packagings must be packed in one outer box, and... similar devices must be packaged in one of the following packagings conforming to the requirements of part...
49 CFR 173.340 - Tear gas devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... transportation. Not more than 50 tear gas devices and 50 functioning elements must be packed in one box, and the... fiber box with suitable padding. Not more than 30 inner packagings must be packed in one outer box, and... similar devices must be packaged in one of the following packagings conforming to the requirements of part...
Design and Development of a Package for a Diluted Waveguide Electro-Absorption Modulator
2008-11-01
the coupling efficiency. A design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for...results, a design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for fiber placement and...fixation. The laser welding techniques were customized in order to meet the needs of the EAM package design. Keywords: Electroabsorption
Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink(Registered TradeMark) (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.
Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.
Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.
Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A
2012-07-01
The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. Copyright © 2012 Elsevier Ltd. All rights reserved.
Optical and thermal simulation for wide acceptance angle CPV module
NASA Astrophysics Data System (ADS)
Ahmad, Nawwar; Ota, Yasuyuki; Araki, Kenji; Lee, Kan-Hua; Yamaguchi, Masafumi; Nishioka, Kensuke
2017-09-01
Concentrator photovoltaic (CPV) technology has the potential to decrease the cost of systems in the near future by using less expensive optical elements in the system which replace the receiving surface aperture and concentrate the sunlight onto small solar cells. One of the main concerns of CPV is the need for high precision tracking system and the relation to the acceptance angle. In this paper, we proposed a CPV module with concentration ratio larger than 100 times and wide acceptance angle. An optical simulation for the module with S-TIM2 glass as a lens material was conducted to estimate the optical performance of the module. Thermal and electrical simulation was also conducted using COMSOL Multiphysics and SPICE respectively to evaluate the working temperature and electrical characteristics of the multijunction solar cell under concentration conditions.
Sabio, E; Zamora, F; González-García, C M; Ledesma, B; Álvarez-Murillo, A; Román, S
2016-12-01
In this work, the adsorption kinetics of p-nitrophenol (PNP) onto several commercial activated carbons (ACs) with different textural and geometrical characteristics was studied. For this aim, a homogeneous diffusion solid model (HDSM) was used, which does take the adsorbent shape into account. The HDSM was solved by means of the finite element method (FEM) using the commercial software COMSOL. The different kinetic patterns observed in the experiments carried out can be described by the developed model, which shows that the sharp drop of adsorption rate observed in some samples is caused by the formation of a concentration wave. The model allows one to visualize the changes in concentration taking place in both liquid and solid phases, which enables us to link the kinetic behaviour with the main features of the carbon samples.
NASA Astrophysics Data System (ADS)
Duval, Rodolphe; Fauchard, Cyrille; Antoine, Raphael
2014-05-01
We study the influence of the topography of a levee on the electric and magnetic signals obtained with the Radio-Magnetotelluric method (RMT) and the Slingram method, respectively. For the RMT method, field measurements have been modelled with a finite element commercial software (AC/DC and Radio-Frequency modules of Comsol Multiphysics). A levee situated in Orléans (France) along the Loire river has been considered in order to design a model taking into account the skin depth and the incident wavelength. The effect of the incident electromagnetic field direction has been assessed with two different incident wave directions: BBC 5 from Salford (UK) and France-Inter from Allouis (France). The simulations highlight the tri-dimensional effects of the topography in the apparent resistivity, observed on the crest of the levee, depending on the incident field direction and topography. For the Slingram method, the magnetic field has been simulated using the AC/DC module of Comsol. The ratio of the primary magnetic field on the secondary one, received in a loop is determined above a straight levee. The study aims to show the various responses obtained in function of both vertical and horizontal coil configurations. We show that the signal also depends on the topography and the right configuration of the coils alignment with respect to the levee stretch direction. In this study, a buried gas pipe is also characterized by the two methods. Numerical modelling of 3D electromagnetic effects on geophysical signals helps to interpret the field measurements and offers to the stakeholder an optimized methodology for geophysical surveys on levees.
NASA Astrophysics Data System (ADS)
Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.
2017-12-01
In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.
NASA Astrophysics Data System (ADS)
Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.
2017-08-01
This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.
75 FR 56922 - Implementation of the Intelligent Mail Package Barcode
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... the USPS Intelligent Mail strategy. Packages that currently bear barcodes designed to provide delivery... symbology of the barcode; however the elements within the barcode and layout will change. There are several...
Variational Trajectory Optimization Tool Set: Technical description and user's manual
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Queen, Eric M.; Cavanaugh, Michael D.; Wetzel, Todd A.; Moerder, Daniel D.
1993-01-01
The algorithms that comprise the Variational Trajectory Optimization Tool Set (VTOTS) package are briefly described. The VTOTS is a software package for solving nonlinear constrained optimal control problems from a wide range of engineering and scientific disciplines. The VTOTS package was specifically designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of analytical functions, the user needs only to define the problem in terms of symbolic variables. This version of the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions. The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain finite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package, may be run independently or jointly. The finite-element algorithm generates approximate solutions, whereas the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some examples with results, and a brief description of the individual subroutines are included.
A geometry package for generation of input data for a three-dimensional potential-flow program
NASA Technical Reports Server (NTRS)
Halsey, N. D.; Hess, J. L.
1978-01-01
The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.
Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices
NASA Astrophysics Data System (ADS)
Uehara, Masato; Yashiro, Wataru; Momose, Atsushi
2013-10-01
It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.
WE-DE-201-12: Thermal and Dosimetric Properties of a Ferrite-Based Thermo-Brachytherapy Seed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrell, G; Shvydka, D; Parsai, E I
Purpose: The novel thermo-brachytherapy (TB) seed provides a simple means of adding hyperthermia to LDR prostate permanent implant brachytherapy. The high blood perfusion rate (BPR) within the prostate motivates the use of the ferrite and conductive outer layer design for the seed cores. We describe the results of computational analyses of the thermal properties of this ferrite-based TB seed in modelled patient-specific anatomy, as well as studies of the interseed and scatter (ISA) effect. Methods: The anatomies (including the thermophysical properties of the main tissue types) and seed distributions of 6 prostate patients who had been treated with LDR brachytherapymore » seeds were modelled in the finite element analysis software COMSOL, using ferrite-based TB and additional hyperthermia-only (HT-only) seeds. The resulting temperature distributions were compared to those computed for patient-specific seed distributions, but in uniform anatomy with a constant blood perfusion rate. The ISA effect was quantified in the Monte Carlo software package MCNP5. Results: Compared with temperature distributions calculated in modelled uniform tissue, temperature distributions in the patient-specific anatomy were higher and more heterogeneous. Moreover, the maximum temperature to the rectal wall was typically ∼1 °C greater for patient-specific anatomy than for uniform anatomy. The ISA effect of the TB and HT-only seeds caused a reduction in D90 similar to that found for previously-investigated NiCu-based seeds, but of a slightly smaller magnitude. Conclusion: The differences between temperature distributions computed for uniform and patient-specific anatomy for ferrite-based seeds are significant enough that heterogeneous anatomy should be considered. Both types of modelling indicate that ferrite-based seeds provide sufficiently high and uniform hyperthermia to the prostate, without excessively heating surrounding tissues. The ISA effect of these seeds is slightly less than that for the previously-presented NiCu-based seeds.« less
NASA Astrophysics Data System (ADS)
Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.
2013-01-01
Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, A.A.; McCarthy, P.G.; Edl, J.W.
1975-05-01
Elemental tritium is shipped at low pressure in a stainless steel container (LP-50) surrounded by an aluminum vessel and Celotex insulation at least 4 in. thick in a steel drum. Each package contains a large quantity (greater than a Type A quantity) of nonfissile material, as defined in AECM 0529. This report provides the details of the safety analysis performed for this type container.
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1980-01-01
A general purpose squeeze-film damper interactive force element was developed, coded into a software package (module) and debugged. This software package was applied to nonliner dynamic analyses of some simple rotor systems. Results for pressure distributions show that the long bearing (end sealed) is a stronger bearing as compared to the short bearing as expected. Results of the nonlinear dynamic analysis, using a four degree of freedom simulation model, showed that the orbit of the rotating shaft increases nonlinearity to fill the bearing clearance as the unbalanced weight increases.
49 CFR 173.340 - Tear gas devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... functioning elements must be packed in one box, and the gross weight of the outer box may not exceed 35 kg (77... inner packagings must be packed in one outer box, and the gross weight of the outer box may not exceed... similar devices must be packaged in one of the following packagings conforming to the requirements of part...
49 CFR 173.340 - Tear gas devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... functioning elements must be packed in one box, and the gross weight of the outer box may not exceed 35 kg (77... inner packagings must be packed in one outer box, and the gross weight of the outer box may not exceed... similar devices must be packaged in one of the following packagings conforming to the requirements of part...
The Systems Biology Markup Language (SBML) Level 3 Package: Layout, Version 1 Core.
Gauges, Ralph; Rost, Ursula; Sahle, Sven; Wengler, Katja; Bergmann, Frank T
2015-06-01
Many software tools provide facilities for depicting reaction network diagrams in a visual form. Two aspects of such a visual diagram can be distinguished: the layout (i.e.: the positioning and connections) of the elements in the diagram, and the graphical form of the elements (for example, the glyphs used for symbols, the properties of the lines connecting them, and so on). For software tools that also read and write models in SBML (Systems Biology Markup Language) format, a common need is to store the network diagram together with the SBML representation of the model. This in turn raises the question of how to encode the layout and the rendering of these diagrams. The SBML Level 3 Version 1 Core specification does not provide a mechanism for explicitly encoding diagrams, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The Layout package for SBML Level 3 adds the necessary features to SBML so that diagram layouts can be encoded in SBML files, and a companion package called SBML Rendering specifies how the graphical rendering of elements can be encoded. The SBML Layout package is based on the principle that reaction network diagrams should be described as representations of entities such as species and reactions (with direct links to the underlying SBML elements), and not as arbitrary drawings or graphs; for this reason, existing languages for the description of vector drawings (such as SVG) or general graphs (such as GraphML) cannot be used.
The Systems Biology Markup Language (SBML) Level 3 Package: Layout, Version 1 Core.
Gauges, Ralph; Rost, Ursula; Sahle, Sven; Wengler, Katja; Bergmann, Frank Thomas
2015-09-04
Many software tools provide facilities for depicting reaction network diagrams in a visual form. Two aspects of such a visual diagram can be distinguished: the layout (i.e.: the positioning and connections) of the elements in the diagram, and the graphical form of the elements (for example, the glyphs used for symbols, the properties of the lines connecting them, and so on). For software tools that also read and write models in SBML (Systems Biology Markup Language) format, a common need is to store the network diagram together with the SBML representation of the model. This in turn raises the question of how to encode the layout and the rendering of these diagrams. The SBML Level 3 Version 1 Core specification does not provide a mechanism for explicitly encoding diagrams, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The Layout package for SBML Level 3 adds the necessary features to SBML so that diagram layouts can be encoded in SBML files, and a companion package called SBML Rendering specifies how the graphical rendering of elements can be encoded. The SBML Layout package is based on the principle that reaction network diagrams should be described as representations of entities such as species and reactions (with direct links to the underlying SBML elements), and not as arbitrary drawings or graphs; for this reason, existing languages for the description of vector drawings (such as SVG) or general graphs (such as GraphML) cannot be used.
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.
This work is a compilation of theory, finite element modeling and experimental research related to the use of microwave plasma enhanced chemical vapor deposition (MPECVD) of diborane to create metal-boride surface coatings on CoCrMo and WC-Co, including the subsequent growth of nanostructured diamond (NSD). Motivation for this research stems from the need for wear resistant coatings on industrial materials, which require improved wear resistance and product lifetime to remain competitive and satisfy growing demand. Nanostructured diamond coatings are a promising solution to material wear but cannot be directly applied to cobalt containing substrates due to graphite nucleation. Unfortunately, conventional pre-treatment methods, such as acid etching, render the substrate too brittle. Thus, the use of boron in a MPECVD process is explored to create robust interlayers which inhibit carbon-cobalt interaction. Furthermore, modeling of the MPECVD process, through the COMSOL MultiphysicsRTM platform, is performed to provide insight into plasma-surface interactions using the simulation of a real-world apparatus. Experimental investigation of MPECVD boriding and NSD deposition was conducted at surface temperatures from 700 to 1100 °C. Several well-adhered metal-boride surface layers were formed: consisting of CoB, CrB, WCoB, CoB and/or W2CoB2. Many of the interlayers were shown to be effective diffusion barriers against elemental cobalt for improving nucleation and adhesion of NSD coatings; diamond on W2CoB2 was well adhered. However, predominantly WCoB and CoB phase interlayers suffered from diamond film delamination. Metal-boride and NSD surfaces were evaluated using glancing-angle x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), cross-sectional scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), micro-Raman spectroscopy, nanoindentation, scratch testing and epoxy pull testing. COMSOL MultiphysicsRTM was used to construct a representation of the MPECVD chamber. Relevant material properties, boundary conditions and adjustable parameters were applied to match the actual experimental set-up. Despite approximations, simulations for the surface temperature and surface accumulation matched well with experimental data. The combination of data from CoCrMo, WC-Co and modeling of the MPECVD process confirms that the use of boron to create metal-boride interlayers is applicable for subsequent nanostructured diamond coatings and that the surface temperature and deposition thickness can be predicted using finite element modeling.
COMSOL-Based Modeling and Simulation of SnO2/rGO Gas Sensor for Detection of NO2.
Yaghouti Niyat, Farshad; Shahrokh Abadi, M H
2018-02-01
Despite SIESTA and COMSOL being increasingly used for the simulation of the sensing mechanism in the gas sensors, there are no modeling and simulation reports in literature for detection of NO 2 based rGO/SnO 2 sensors. In the present study, we model, simulate, and characterize an NO 2 based rGO/SnO 2 gas sensor using COMSOL by solving the Poisson's equations under associated boundary conditions of mass, heat and electrical transitions. To perform the simulation, we use an exposure model for presenting the required NO 2 , a heat transfer model to obtain a reaction temperature, and an electrical model to characterize the sensor's response in the presence of the gas. We characterize the sensor's response in the presence of different concentrations of NO 2 at different working temperatures and compare the results with the experimental data, reported by Zhang et al. The results from the simulated sensor show a good agreement with the real sensor with some inconsistencies due to differences between the practical conditions in the real chamber and applied conditions to the analytical equations. The results also show that the method can be used to define and predict the behavior of the rGO-based gas sensors before undergoing the fabrication process.
Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2015-01-01
Combustion instability modeling of Solid Rocket Motors (SRM) remains a topic of active research. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process, acoustics, and steady-state gas dynamics. Recent advances in defining the energy transport of disturbances within steady flow-fields have been applied by combustion stability modelers to improve the analysis framework [1, 2, 3]. Employing this more accurate global energy balance requires a higher fidelity model of the SRM flow-field and acoustic mode shapes. The current industry standard analysis tool utilizes a one dimensional analysis of the time dependent fluid dynamics along with a quasi-three dimensional propellant grain regression model to determine the SRM ballistics. The code then couples with another application that calculates the eigenvalues of the one dimensional homogenous wave equation. The mean flow parameters and acoustic normal modes are coupled to evaluate the stability theory developed and popularized by Culick [4, 5]. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The current study employs the COMSOL multiphysics finite element framework to model the steady flow-field parameters and acoustic normal modes of a generic SRM. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluates the gas flow inside of a SRM using St. Robert's law to model the solid propellant burn rate, no slip boundary conditions, and the hybrid outflow condition. Results from the HMNF model are verified by comparing the pertinent ballistics parameters with the industry standard code outputs (i.e. pressure drop, thrust, ect.). These results are then used by the coefficient form of the mathematics module to determine the complex eigenvalues of the Acoustic Velocity Potential Equation (AVPE). The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. The results of the steady-state CFD and AVPE analyses are used to calculate the linear acoustic growth rate as is defined by Flandro and Jacob [2, 3]. In order to verify the process implemented within COMSOL we first employ the Culick theory and compare the results with the industry standard. After the process is verified, the Flandro/Jacob energy balance theory is employed and results displayed.
Pegg, Elise C; Gill, Harinderjit S
2016-09-06
A new software tool to assign the material properties of bone to an ABAQUS finite element mesh was created and compared with Bonemat, a similar tool originally designed to work with Ansys finite element models. Our software tool (py_bonemat_abaqus) was written in Python, which is the chosen scripting language for ABAQUS. The purpose of this study was to compare the software packages in terms of the material assignment calculation and processing speed. Three element types were compared (linear hexahedral (C3D8), linear tetrahedral (C3D4) and quadratic tetrahedral elements (C3D10)), both individually and as part of a mesh. Comparisons were made using a CT scan of a hemi-pelvis as a test case. A small difference, of -0.05kPa on average, was found between Bonemat version 3.1 (the current version) and our Python package. Errors were found in the previous release of Bonemat (version 3.0 downloaded from www.biomedtown.org) during calculation of the quadratic tetrahedron Jacobian, and conversion of the apparent density to modulus when integrating over the Young׳s modulus field. These issues caused up to 2GPa error in the modulus assignment. For these reasons, we recommend users upgrade to the most recent release of Bonemat. Processing speeds were assessed for the three different element types. Our Python package took significantly longer (110s on average) to perform the calculations compared with the Bonemat software (10s). Nevertheless, the workflow advantages of the package and added functionality makes 'py_bonemat_abaqus' a useful tool for ABAQUS users. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quartz/fused silica chip carriers
NASA Technical Reports Server (NTRS)
1992-01-01
The primary objective of this research and development effort was to develop monolithic microwave integrated circuit (MMIC) packaging which will operate efficiently at millimeter-wave frequencies. The packages incorporated fused silica as the substrate material which was selected due to its favorable electrical properties and potential performance improvement over more conventional materials for Ka-band operation. The first step towards meeting this objective is to develop a package that meets standard mechanical and thermal requirements using fused silica and to be compatible with semiconductor devices operating up to at least 44 GHz. The second step is to modify the package design and add multilayer and multicavity capacity to allow for application specific integrated circuits (ASIC's) to control multiple phase shifters. The final step is to adapt the package design to a phased array module with integral radiating elements. The first task was a continuation of the SBIR Phase 1 work. Phase 1 identified fused silica as a viable substrate material by demonstrating various plating, machining, and adhesion properties. In Phase 2 Task 1, a package was designed and fabricated to validate these findings. Task 2 was to take the next step in packaging and fabricate a multilayer, multichip module (MCM). This package is the predecessor to the phased array module and demonstrates the ability to via fill, circuit print, laminate, and to form vertical interconnects. The final task was to build a phased array module. The radiating elements were to be incorporated into the package instead of connecting to it with wire or ribbon bonds.
NASA Technical Reports Server (NTRS)
Dillon, Christina
2013-01-01
The goal of this project was to design, model, build, and test a flat panel speaker and frame for a spherical dome structure being made into a simulator. The simulator will be a test bed for evaluating an immersive environment for human interfaces. This project focused on the loud speakers and a sound diffuser for the dome. The rest of the team worked on an Ambisonics 3D sound system, video projection system, and multi-direction treadmill to create the most realistic scene possible. The main programs utilized in this project, were Pro-E and COMSOL. Pro-E was used for creating detailed figures for the fabrication of a frame that held a flat panel loud speaker. The loud speaker was made from a thin sheet of Plexiglas and 4 acoustic exciters. COMSOL, a multiphysics finite analysis simulator, was used to model and evaluate all stages of the loud speaker, frame, and sound diffuser. Acoustical testing measurements were utilized to create polar plots from the working prototype which were then compared to the COMSOL simulations to select the optimal design for the dome. The final goal of the project was to install the flat panel loud speaker design in addition to a sound diffuser on to the wall of the dome. After running tests in COMSOL on various speaker configurations, including a warped Plexiglas version, the optimal speaker design included a flat piece of Plexiglas with a rounded frame to match the curvature of the dome. Eight of these loud speakers will be mounted into an inch and a half of high performance acoustic insulation, or Thinsulate, that will cover the inside of the dome. The following technical paper discusses these projects and explains the engineering processes used, knowledge gained, and the projected future goals of this project
Using Microwaves for Extracting Water from the Moon
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William; Hepburn, Frank
2009-01-01
This disk contains 2 videos that accompanies the talk. Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles. The 1st video shows the results of the COMSOL models. The second video shows brief views of the lunar surface.
Using Microwaves for Extracting Water from the Moon
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William; Hepburn, Frank
2009-01-01
This disk contains a video that accompanies the talk. Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles. The video shows the partial results of the COMSOL modeling.
Blanchflower, Tiffany; Landi, Nunzio; Gregory, Kyle R.
2017-01-01
Cigarette packaging matters to consumer behavior. However, it is less clear which changes to packaging design would be salient for adult smokers. Such information is critically important to regulators in the United States who are charged with reviewing new tobacco products for their impact on population health. In this qualitative study, U.S. adult smokers (n = 33) participated in six telephone-based focus groups in March 2017. Separate groups were comprised of lesbian, gay, and bisexual (LGB) participants; participants with less than four years of post-secondary education; a mix of LGB and straight participants; and, the general population. All groups were purposely selected for diversity. Open thematic coding identified salient design elements used on cigarette packaging. Smokers articulated design elements’ use, meaning, and links with consumer behaviors. Three themes were identified: (1) the power of color, (2) supporting color with other design elements (e.g., logos/images, typography, the pack itself), and (3) the combined product brand experience of multiple design elements. Participants linked design elements to product characteristics and to consumer behavior (e.g., purchase). As the Food and Drug Administration is charged with regulating tobacco products, these findings suggest the importance of considering the cigarette pack part of the characteristics of a product. PMID:29039769
NASA Astrophysics Data System (ADS)
Koz, Mustafa; Kandlikar, Satish G.
2013-12-01
Oxygen transport resistance at the air flow channel and gas diffusion layer (GDL) interface is needed in modelling the performance of a proton exchange membrane fuel cell (PEMFC). This resistance is expressed through the non-dimensional Sherwood number (Sh). The effect of the presence of a droplet on Sh is studied numerically in an isolated air flow channel using a commercially available package, COMSOL Multiphysics®. A droplet is represented as a solid obstruction placed on the GDL-channel interface and centred along the channel width. The effect of a single droplet is first studied for a range of superficial mean air velocities and droplet sizes. Secondly, the effect of droplet spacing on Sh is studied through simulations of two consecutive droplets. Lastly, multiple droplets in a row are studied as a more representative case of a PEMFC air flow channel. The results show that the droplets significantly increase Sh above the fully developed value in the wake region. This enhancement increases with the number of droplets, droplet size, and superficial mean air velocity. Moreover, the analogy between mass and heat transfer is investigated by comparing Sh to the equivalent Nusselt number.
Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M
2015-05-01
Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.
Propagation of radio frequency waves through density fluctuations
NASA Astrophysics Data System (ADS)
Valvis, S. I.; Papagiannis, P.; Papadopoulos, A.; Hizanidis, K.; Glytsis, E.; Bairaktaris, F.; Zisis, A.; Tigelis, I.; Ram, A. K.
2017-10-01
On their way to the core of a tokamak plasma, radio frequency (RF) waves, excited in the vacuum region, have to propagate through a variety of density fluctuations in the edge region. These fluctuations include coherent structures, like blobs that can be field aligned or not, as well as turbulent and filamentary structures. We have been studying the effect of fluctuations on RF propagation using both theoretical (analytical) and computational models. The theoretical results are being compared with those obtained by two different numerical codes ``a Finite Difference Frequency Domain code and the commercial COMSOL package. For plasmas with arbitrary distribution of coherent and turbulent fluctuations, we have formulated an effective dielectric permittivity of the edge plasma. This permittivity tensor is then used in numerical simulations to study the effect of multi-scale turbulence on RF waves. We not only consider plane waves but also Gaussian beams in the electron cyclotron and lower hybrid range of frequencies. The analytical theory and results from simulations on the propagation of RF waves will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium and by DoE Grant DE-FG02-91ER-54109.
Safety analysis report for packaging (onsite) multicanister overpack cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, W.S.
1997-07-14
This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
NASA Astrophysics Data System (ADS)
Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-11-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Lang, Günter; Schröder, Henning
2011-01-01
The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.
Experience in Using a Finite Element Stress and Vibration Package on a Minicomputer,
1982-01-01
as the Gra’phics Oricntat.ed Interactive Finite Element Time Sharing Pacl’age ( GIFTS ). This packge has been running on a PDP11/60 minicomputer...Unlike many other FEM packages, GIFTS consists of a collecticon E of fully compatible special purpose programns operating on a se. ef files on disk known...matrix is initiated by running the appropriate ptrojrF:’. from the GIFTS library. The following if, a list of the major (IFtS library programs with a
NASA Astrophysics Data System (ADS)
Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin
2018-02-01
In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.
NASA Astrophysics Data System (ADS)
Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric
2018-01-01
Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar, E-mail: skparashar@rtu.ac.in
In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d{sub 15} has much higher value than coupling coefficients d{sub 31} and d{sub 33}, hence in the present work the micro cantilever beam actuated by d{sub 15} effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done.more » The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.« less
NASA Astrophysics Data System (ADS)
Li, Chen; Yin, Xiaokang; Li, Zhen; Li, Wei; Chen, Guoming
2018-04-01
Capacitive imaging (CI) technique is a novel electromagnetic NDE technique. The Quasi-static electromagnetic field from the carefully designed electrode pair will vary when the electrical properties of the sample change, leading to the possibility of imaging. It is observed that for a given specimen, the targeted features appear as different variations in capacitive images under different experimental conditions. In some cases, even opposite variations occur, which brings confusion to indication interpretation. It is thus thought interesting to embark on investigations into the cause and effects of the negative variation phenomenon. In this work, the positive and negative variations were first explained from the measurement sensitivity distribution perspective. This was then followed by a detailed analysis using finite element models in COMSOL. A parametric experimental study on a glass fiber composite plate with artificial defects was then carried out to investigate how the experimental conditions affect the variation.
Structural and mechanical characterization of hybrid metallic-inorganic nanosprings
NASA Astrophysics Data System (ADS)
Habtoun, Sabrina; Houmadi, Said; Reig, Benjamin; Pouget, Emilie; Dedovets, Dmytro; Delville, Marie-Hélène; Oda, Reiko; Cristiano, Fuccio; Bergaud, Christian
2017-10-01
Silica nanosprings (NS) are fabricated by a sol-gel deposition of silica precursors onto a template made of self-assembled organic chiral nanostructures. They are deposited and assembled on microstructured silicon substrates, and then metallized and clamped in a single lithography-free step using a focused ion beam (FIB). The resulting suspended hybrid metallic/inorganic NS are then characterized with high-resolution transmission electron microscopy (HRTEM) and scanning TEM/energy-dispersive X-ray spectroscopy (STEM/EDX), showing the atomic structure of the metallic layer. Three-point bending tests are also carried out using an atomic force microscope (AFM) and supported by finite element method (FEM) simulation with COMSOL Multiphysics allowing the characterization of the mechanical behavior and the estimation of the stiffness of the resulting NS. The information obtained on the structural and mechanical properties of the NS is discussed for future nano-electro-mechanical system (NEMS) applications.
Liao, Guan-Bo; Chen, Yin-Quan; Bareil, Paul B; Sheng, Yunlong; Chiou, Arthur; Chang, Ming-Shien
2014-10-01
We calculated the three-dimensional optical stress distribution and the resulting deformation on a biconcave human red blood cell (RBC) in a pair of parallel optical trap. We assumed a Gaussian intensity distribution with a spherical wavefront for each trapping beam and calculated the optical stress from the momentum transfer associated with the reflection and refraction of the incident photons at each interface. The RBC was modelled as a biconcave thin elastic membrane with uniform elasticity and a uniform thickness of 0.25 μm. The resulting cell deformation was determined from the optical stress distribution by finite element software, Comsol Structure Mechanics Module, with Young's modulus (E) as a fitting parameter in order to fit the theoretical results for cell elongation to our experimental data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunomagnetic separation for MEMS-based biosensor of waterborne pathogens detection
NASA Astrophysics Data System (ADS)
Guo, Jianjiang; Zhang, Rongbiao
2017-07-01
Rapid isolation and detection of special pathogens present in environmental drinking water is critical for water quality monitoring. Numerical analysis and experimental investigations on immunomagnetic capture and isolation of waterborne pathogens with magnetic nanoparticles (MNPs) in microfluidic channel are performed. A finite-element COMSOL-based model is established to demonstrate the novel method of on-chip capturing pathogens using MNPs together with periodic pulse magnetic field. Simulation results determine the optimum magnetic pole current and switching frequency for magnetic separation. With the magnetic isolation experiment platform built up, as a pathogen example of Escherichia coli O157:H7, the performance of the method is experimentally verified. Both numerical and experimental results are found to agree reasonably well. Results of these investigations show that the capture efficiency of the immunomagnetic separation method is more than 92%, which could be encouraging for the design and optimization of MEMS-based biosensor of waterborne pathogen detection.
Actuators of 3-element unimorph deformable mirror
NASA Astrophysics Data System (ADS)
Fu, Tianyang; Ning, Yu; Du, Shaojun
2016-10-01
Kinds of wavefront aberrations exist among optical systems because of atmosphere disturbance, device displacement and a variety of thermal effects, which disturb the information of transmitting beam and restrain its energy. Deformable mirror(DM) is designed to adjust these wavefront aberrations. Bimorph DM becomes more popular and more applicable among adaptive optical(AO) systems with advantages in simple structure, low cost and flexible design compared to traditional discrete driving DM. The defocus aberration accounted for a large proportion of all wavefront aberrations, with a simpler surface and larger amplitude than others, so it is very useful to correct the defocus aberration effectively for beam controlling and aberration adjusting of AO system. In this study, we desired on correcting the 3rd and 10th Zernike modes, analyze the characteristic of the 3rd and 10th defocus aberration surface distribution, design 3-element actuators unimorph DM model study on its structure and deformation principle theoretically, design finite element models of different electrode configuration with different ring diameters, analyze and compare effects of different electrode configuration and different fixing mode to DM deformation capacity through COMSOL finite element software, compare fitting efficiency of DM models to the 3rd and 10th Zernike modes. We choose the inhomogeneous electrode distribution model with better result, get the influence function of every electrode and the voltage-PV relationship of the model. This unimorph DM is suitable for the AO system with a mainly defocus aberration.
40 CFR 80.614 - What are the alternative defense requirements in lieu of § 80.613(a)(1)(vi)?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the additive package has been added, together with supporting data which includes one of the following... a MVNRLM diesel fuel additive package into MVNRLM diesel fuel subject to the 15 ppm sulfur standards... alternative to the defense element under § 80.613(a)(1)(vi): (a)(1) The blender of the additive package has a...
40 CFR 80.614 - What are the alternative defense requirements in lieu of § 80.613(a)(1)(vi)?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the additive package has been added, together with supporting data which includes one of the following... a MVNRLM diesel fuel additive package into MVNRLM diesel fuel subject to the 15 ppm sulfur standards... alternative to the defense element under § 80.613(a)(1)(vi): (a)(1) The blender of the additive package has a...
40 CFR 80.614 - What are the alternative defense requirements in lieu of § 80.613(a)(1)(vi)?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the additive package has been added, together with supporting data which includes one of the following... a MVNRLM diesel fuel additive package into MVNRLM diesel fuel subject to the 15 ppm sulfur standards... alternative to the defense element under § 80.613(a)(1)(vi): (a)(1) The blender of the additive package has a...
40 CFR 80.614 - What are the alternative defense requirements in lieu of § 80.613(a)(1)(vi)?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the additive package has been added, together with supporting data which includes one of the following... a MVNRLM diesel fuel additive package into MVNRLM diesel fuel subject to the 15 ppm sulfur standards... alternative to the defense element under § 80.613(a)(1)(vi): (a)(1) The blender of the additive package has a...
40 CFR 80.614 - What are the alternative defense requirements in lieu of § 80.613(a)(1)(vi)?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the additive package has been added, together with supporting data which includes one of the following... a MVNRLM diesel fuel additive package into MVNRLM diesel fuel subject to the 15 ppm sulfur standards... alternative to the defense element under § 80.613(a)(1)(vi): (a)(1) The blender of the additive package has a...
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
NASA Technical Reports Server (NTRS)
Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.
2013-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.
Qualification and Reliability for MEMS and IC Packages
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2004-01-01
Advanced IC electronic packages are moving toward miniaturization from two key different approaches, front and back-end processes, each with their own challenges. Successful use of more of the back-end process front-end, e.g. microelectromechanical systems (MEMS) Wafer Level Package (WLP), enable reducing size and cost. Use of direct flip chip die is the most efficient approach if and when the issues of know good die and board/assembly are resolved. Wafer level package solve the issue of known good die by enabling package test, but it has its own limitation, e.g., the I/O limitation, additional cost, and reliability. From the back-end approach, system-in-a-package (SIAP/SIP) development is a response to an increasing demand for package and die integration of different functions into one unit to reduce size and cost and improve functionality. MEMS add another challenging dimension to electronic packaging since they include moving mechanical elements. Conventional qualification and reliability need to be modified and expanded in most cases in order to detect new unknown failures. This paper will review four standards that already released or being developed that specifically address the issues on qualification and reliability of assembled packages. Exposures to thermal cycles, monotonic bend test, mechanical shock and drop are covered in these specifications. Finally, mechanical and thermal cycle qualification data generated for MEMS accelerometer will be presented. The MEMS was an element of an inertial measurement unit (IMU) qualified for NASA Mars Exploration Rovers (MERs), Spirit and Opportunity that successfully is currently roaring the Martian surface
A new package in MODFLOW to simulate unconfined groundwater flow in sloping aquifers.
Wang, Quanrong; Zhan, Hongbin; Tang, Zhonghua
2014-01-01
The nonhorizontal-model-layer (NHML) grid system is more accurate than the horizontal-model-layer grid system to describe groundwater flow in an unconfined sloping aquifer on the basis of MODFLOW-2000. However, the finite-difference scheme of NHML was based on the Dupuit-Forchheimer assumption that the streamlines were horizontal, which was acceptable for slope less than 0.10. In this study, we presented a new finite-difference scheme of NHML based on the Boussinesq assumption and developed a new package SLOPE which was incorporated into MODFLOW-2000 to become the MODFLOW-SP model. The accuracy of MODFLOW-SP was tested against solution of Mac Cormack (1969). The differences between the solutions of MODFLOW-2000 and MODFLOW-SP were nearly negligible when the slope was less than 0.27, and they were noticeable during the transient flow stage and vanished in steady state when the slope increased above 0.27. We established a model considering the vertical flow using COMSOL Multiphysics to test the robustness of constrains used in MODFLOW-SP. The results showed that streamlines quickly became parallel with the aquifer base except in the narrow regions near the boundaries when the initial flow was not parallel to the aquifer base. MODFLOW-SP can be used to predict the hydraulic head of an unconfined aquifer along the profile perpendicular to the aquifer base when the slope was smaller than 0.50. The errors associated with constrains used in MODFLOW-SP were small but noticeable when the slope increased to 0.75, and became significant for the slope of 1.0. © 2013, National Ground Water Association.
Scheffels, Janne; Lund, Ingeborg
2017-01-01
Objectives Snus use has increased among youth in Norway in recent years and is now more prevalent than smoking. Concurrently, a range of new products and package designs have been introduced to the market. The aim of this study was to explore how youth perceive snus branding and package design, and the role, if any, of snus packaging on perceptions of appeal and harm of snus among youth. Participants Adolescent tobacco users and non-users (N=35) ages 15–17 years. Design We conducted interviews among 6 focus groups (each with 4–7 participants). Participants were shown snus packages with a variety of designs and with different product qualities (flavour additives, slim, regular, white and brown sachets) and group discussions focused on how they perceived packages and products. The focus group discussions were semistructured using a standard guide, and analysed thematically. Results The participants in the focus groups narrated distinct images of snus brands and associated user identities. Package design elements such as shapes, colours, images and fonts were described as guiding these perceptions. Packaging elements and flavour additives were associated with perceptions of product harm. The appeal of flavoured snus products and new types of snus sachets seemed to blend in with these processes, reinforcing positive attitudes and contributing to the creation of particular identities for products and their users. Conclusions The findings indicate that packaging is vital to consumer's identification with, and differentiation between, snus brands. In view of this, snus branding and packaging can be seen as fulfilling a similar promotional role as advertising messages: generating preferences and appeal. PMID:28373248
Scheffels, Janne; Lund, Ingeborg
2017-04-03
Snus use has increased among youth in Norway in recent years and is now more prevalent than smoking. Concurrently, a range of new products and package designs have been introduced to the market. The aim of this study was to explore how youth perceive snus branding and package design, and the role, if any, of snus packaging on perceptions of appeal and harm of snus among youth. Adolescent tobacco users and non-users (N=35) ages 15-17 years. We conducted interviews among 6 focus groups (each with 4-7 participants). Participants were shown snus packages with a variety of designs and with different product qualities (flavour additives, slim, regular, white and brown sachets) and group discussions focused on how they perceived packages and products. The focus group discussions were semistructured using a standard guide, and analysed thematically. The participants in the focus groups narrated distinct images of snus brands and associated user identities. Package design elements such as shapes, colours, images and fonts were described as guiding these perceptions. Packaging elements and flavour additives were associated with perceptions of product harm. The appeal of flavoured snus products and new types of snus sachets seemed to blend in with these processes, reinforcing positive attitudes and contributing to the creation of particular identities for products and their users. The findings indicate that packaging is vital to consumer's identification with, and differentiation between, snus brands. In view of this, snus branding and packaging can be seen as fulfilling a similar promotional role as advertising messages: generating preferences and appeal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
A qualitative study of children's snack food packaging perceptions and preferences.
Letona, Paola; Chacon, Violeta; Roberto, Christina; Barnoya, Joaquin
2014-12-15
Food marketing is pervasive in high- and low/middle-income countries and is recognized as a significant risk factor for childhood obesity. Although food packaging is one of the most important marketing tools to persuade consumers at the point-of-sale, scant research has examined how it influences children's perceptions. This study was conducted in Guatemala and aimed to understand which snack foods are the most frequently purchased by children and how aspects of food packaging influence their product perceptions. Six activity-based focus groups were conducted in two elementary public schools with thirty-seven children (Grades 1 through 6, age range 7-12 years old). During each focus group, children participated in three activities: 1) list their most frequently purchased food products; 2) select the picture of their favorite product, the packaging they liked best, and the product they thought was the healthiest from eight choices; and 3) draw the package of a new snack. Children reported purchasing salty snacks most frequently. Most children chose their favorite product based on taste perceptions, which can be influenced by food packaging. Visual elements influenced children's selection of favorite packaging (i.e., characters, colors) and healthiest product (i.e., images), and persuaded some children to incorrectly think certain foods contained healthy ingredients. When children generated their own drawings of a new product, the most frequently included packaging elements in the drawings were product name, price, product image and characters, suggesting those aspects of the food packaging were most significant to them. Policies regulating package content and design are required to discourage consumption of unhealthy snacks. This might be another public health strategy that can aid to halt the obesity epidemic.
Gherghe, Cristina; Lombo, Tania; Leonard, Christopher W.; Datta, Siddhartha A. K.; Bess, Julian W.; Gorelick, Robert J.; Rein, Alan; Weeks, Kevin M.
2010-01-01
All retroviral genomic RNAs contain a cis-acting packaging signal by which dimeric genomes are selectively packaged into nascent virions. However, it is not understood how Gag (the viral structural protein) interacts with these signals to package the genome with high selectivity. We probed the structure of murine leukemia virus RNA inside virus particles using SHAPE, a high-throughput RNA structure analysis technology. These experiments showed that NC (the nucleic acid binding domain derived from Gag) binds within the virus to the sequence UCUG-UR-UCUG. Recombinant Gag and NC proteins bound to this same RNA sequence in dimeric RNA in vitro; in all cases, interactions were strongest with the first U and final G in each UCUG element. The RNA structural context is critical: High-affinity binding requires base-paired regions flanking this motif, and two UCUG-UR-UCUG motifs are specifically exposed in the viral RNA dimer. Mutating the guanosine residues in these two motifs—only four nucleotides per genomic RNA—reduced packaging 100-fold, comparable to the level of nonspecific packaging. These results thus explain the selective packaging of dimeric RNA. This paradigm has implications for RNA recognition in general, illustrating how local context and RNA structure can create information-rich recognition signals from simple single-stranded sequence elements in large RNAs. PMID:20974908
A finite element model of rigid body structures actuated by dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Simone, F.; Linnebach, P.; Rizzello, G.; Seelecke, S.
2018-06-01
This paper presents on finite element (FE) modeling and simulation of dielectric elastomer actuators (DEAs) coupled with articulated structures. DEAs have proven to represent an effective transduction technology for the realization of large deformation, low-power consuming, and fast mechatronic actuators. However, the complex dynamic behavior of the material, characterized by nonlinearities and rate-dependent phenomena, makes it difficult to accurately model and design DEA systems. The problem is further complicated in case the DEA is used to activate articulated structures, which increase both system complexity and implementation effort of numerical simulation models. In this paper, we present a model based tool which allows to effectively implement and simulate complex articulated systems actuated by DEAs. A first prototype of a compact switch actuated by DEA membranes is chosen as reference study to introduce the methodology. The commercially available FE software COMSOL is used for implementing and coupling a physics-based dynamic model of the DEA with the external structure, i.e., the switch. The model is then experimentally calibrated and validated in both quasi-static and dynamic loading conditions. Finally, preliminary results on how to use the simulation tool to optimize the design are presented.
Parametric investigation of scalable tactile sensors
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.
Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels
NASA Astrophysics Data System (ADS)
Mathias, Adam Dustin
The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.
NASA Astrophysics Data System (ADS)
Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi
2018-03-01
A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.
NASA Astrophysics Data System (ADS)
Hakoda, Christopher; Rose, Joseph; Shokouhi, Parisa; Lissenden, Clifford
2018-04-01
Dispersion curves are essential to any guided-wave-related project. The Semi-Analytical Finite Element (SAFE) method has become the conventional way to compute dispersion curves for homogeneous waveguides. However, only recently has a general SAFE formulation for commercial and open-source software become available, meaning that until now SAFE analyses have been variable and more time consuming than desirable. Likewise, the Floquet boundary conditions enable analysis of waveguides with periodicity and have been an integral part of the development of metamaterials. In fact, we have found the use of Floquet boundary conditions to be an extremely powerful tool for homogeneous waveguides, too. The nuances of using periodic boundary conditions for homogeneous waveguides that do not exhibit periodicity are discussed. Comparisons between this method and SAFE are made for selected homogeneous waveguide applications. The COMSOL Multiphysics software is used for the results shown, but any standard finite element software that can implement Floquet periodicity (user-defined or built-in) should suffice. Finally, we identify a number of complex waveguides for which dispersion curves can be found with relative ease by using the periodicity inherent to the Floquet boundary conditions.
NASA Technical Reports Server (NTRS)
Jones, M. G.; Watson, W. R.; Nark, D. M.; Schiller, N. H.
2017-01-01
Three perforate-over-honeycomb liner configurations, one uniform and two with spanwise variable impedance, are evaluated based on tests conducted in the NASA Grazing Flow Impedance Tube (GFIT) with a plane-wave source. Although the GFIT is only 2" wide, spanwise impedance variability clearly affects the measured acoustic pressure field, such that three-dimensional (3D) propagation codes are required to properly predict this acoustic pressure field. Three 3D propagation codes (CHE3D, COMSOL, and CDL) are used to predict the sound pressure level and phase at eighty-seven microphones flush-mounted in the GFIT (distributed along all four walls). The CHE3D and COMSOL codes compare favorably with the measured data, regardless of whether an exit acoustic pressure or anechoic boundary condition is employed. Except for those frequencies where the attenuation is large, the CDL code also provides acceptable estimates of the measured acoustic pressure profile. The CHE3D and COMSOL predictions diverge slightly from the measured data for frequencies away from resonance, where the attenuation is noticeably reduced, particularly when an exit acoustic pressure boundary condition is used. For these conditions, the CDL code actually provides slightly more favorable comparison with the measured data. Overall, the comparisons of predicted and measured data suggest that any of these codes can be used to understand data trends associated with spanwise variable-impedance liners.
Wakefield, M A; Germain, D; Durkin, S J
2008-01-01
Background: Cigarette packaging is a key marketing strategy for promoting brand image. Plain packaging has been proposed to limit brand image, but tobacco companies would resist removal of branding design elements. Method: A 3 (brand types) × 4 (degree of plain packaging) between-subject experimental design was used, using an internet online method, to expose 813 adult Australian smokers to one randomly selected cigarette pack, after which respondents completed ratings of the pack. Results: Compared with current cigarette packs with full branding, cigarette packs that displayed progressively fewer branding design elements were perceived increasingly unfavourably in terms of smokers’ appraisals of the packs, the smokers who might smoke such packs, and the inferred experience of smoking a cigarette from these packs. For example, cardboard brown packs with the number of enclosed cigarettes displayed on the front of the pack and featuring only the brand name in small standard font at the bottom of the pack face were rated as significantly less attractive and popular than original branded packs. Smokers of these plain packs were rated as significantly less trendy/stylish, less sociable/outgoing and less mature than smokers of the original pack. Compared with original packs, smokers inferred that cigarettes from these plain packs would be less rich in tobacco, less satisfying and of lower quality tobacco. Conclusion: Plain packaging policies that remove most brand design elements are likely to be most successful in removing cigarette brand image associations. PMID:18827035
Wakefield, M A; Germain, D; Durkin, S J
2008-12-01
Cigarette packaging is a key marketing strategy for promoting brand image. Plain packaging has been proposed to limit brand image, but tobacco companies would resist removal of branding design elements. A 3 (brand types) x 4 (degree of plain packaging) between-subject experimental design was used, using an internet online method, to expose 813 adult Australian smokers to one randomly selected cigarette pack, after which respondents completed ratings of the pack. Compared with current cigarette packs with full branding, cigarette packs that displayed progressively fewer branding design elements were perceived increasingly unfavourably in terms of smokers' appraisals of the packs, the smokers who might smoke such packs, and the inferred experience of smoking a cigarette from these packs. For example, cardboard brown packs with the number of enclosed cigarettes displayed on the front of the pack and featuring only the brand name in small standard font at the bottom of the pack face were rated as significantly less attractive and popular than original branded packs. Smokers of these plain packs were rated as significantly less trendy/stylish, less sociable/outgoing and less mature than smokers of the original pack. Compared with original packs, smokers inferred that cigarettes from these plain packs would be less rich in tobacco, less satisfying and of lower quality tobacco. Plain packaging policies that remove most brand design elements are likely to be most successful in removing cigarette brand image associations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuxuan; Bilheux, Jean -Christophe
ImagingReso is an open-source Python library that simulates the neutron resonance signal for neutron imaging measurements. By defining the sample information such as density, thickness in the neutron path, and isotopic ratios of the elemental composition of the material, this package plots the expected resonance peaks for a selected neutron energy range. Various sample types such as layers of single elements (Ag, Co, etc. in solid form), chemical compounds (UO 3, Gd 2O 3, etc.), or even multiple layers of both types can be plotted with this package. As a result, major plotting features include display of the transmission/attenuation inmore » wavelength, energy, and time scale, and show/hide elemental and isotopic contributions in the total resonance signal.« less
Contamination in food from packaging material.
Lau, O W; Wong, S K
2000-06-16
Packaging has become an indispensible element in the food manufacturing process, and different types of additives, such as antioxidants, stabilizers, lubricants, anti-static and anti-blocking agents, have also been developed to improve the performance of polymeric packaging materials. Recently the packaging has been found to represent a source of contamination itself through the migration of substances from the packaging into food. Various analytical methods have been developed to analyze the migrants in the foodstuff, and migration evaluation procedures based on theoretical prediction of migration from plastic food contact material were also introduced recently. In this paper, the regulatory control, analytical methodology, factors affecting the migration and migration evaluation are reviewed.
WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL
The Wellhead Analytic Element Model (WhAEM) demonstrates a new technique for the definition of time-of-travel capture zones in relatively simple geohydrologic settings. he WhAEM package includes an analytic element model that uses superposition of (many) analytic solutions to gen...
2014-01-01
Background Research demonstrates that tobacco packaging elements (including health warning labels, descriptive characteristics, and corporate branding) are associated with knowledge of health risks and product appeal with cigarettes. Yet, little research has assessed this with smokeless tobacco (SLT) packaging. This study evaluates the association between three SLT packaging elements with knowledge of health risks and perceptions of novelty and appeal. Additionally, we assess how effects of these messages may differ across age groups, including youth (14-17 years), young adults (18-25 years), and older adults (26-65 years). Methods 1000 participants were administered a web-based survey in 2010 and shown three sets of SLT packs in random order, varied by descriptor (flavor descriptor vs. none), warning label format (graphic vs. text), and corporate branding (branded vs. plain packaging). Participants rated the packs compared with “no difference” on appeal, novelty, and risk perceptions associated with product use. Chi-square tests were used to test for significant differences in pack selections. Multinomial regression was employed to evaluate the association between effects of packaging elements and participant age. Results More respondents selected the pack with the graphic warning label as the pack to make them consider the health risks associated with SLT use, attract their attention, and be least attractive to a smoker. The product with the text warning label was the product someone their age would want to be seen using and would appeal to peers. The SLT pack with the flavor descriptor was not associated with health risks associated with product use. The pack with corporate branding was selected as more appealing, to attract attention, and one they would want to be seen using; the plain pack was less attractive to smokers. Youth and young adults were more likely to indicate that pack elements affected their perceptions of appeal and risk associated with SLT products. Conclusion These results suggest that SLT pack characteristics have a measurable effect on perceptions of health risk and product appeal. Future research should assess these findings in the context of harm reduction. Specifically, research is needed to determine whether pack elements on SLT products can effectively convey risk and harm. PMID:24433301
Adkison, Sarah E; Bansal-Travers, Maansi; Smith, Danielle M; O'Connor, Richard J; Hyland, Andrew J
2014-01-17
Research demonstrates that tobacco packaging elements (including health warning labels, descriptive characteristics, and corporate branding) are associated with knowledge of health risks and product appeal with cigarettes. Yet, little research has assessed this with smokeless tobacco (SLT) packaging. This study evaluates the association between three SLT packaging elements with knowledge of health risks and perceptions of novelty and appeal. Additionally, we assess how effects of these messages may differ across age groups, including youth (14-17 years), young adults (18-25 years), and older adults (26-65 years). 1000 participants were administered a web-based survey in 2010 and shown three sets of SLT packs in random order, varied by descriptor (flavor descriptor vs. none), warning label format (graphic vs. text), and corporate branding (branded vs. plain packaging). Participants rated the packs compared with "no difference" on appeal, novelty, and risk perceptions associated with product use. Chi-square tests were used to test for significant differences in pack selections. Multinomial regression was employed to evaluate the association between effects of packaging elements and participant age. More respondents selected the pack with the graphic warning label as the pack to make them consider the health risks associated with SLT use, attract their attention, and be least attractive to a smoker. The product with the text warning label was the product someone their age would want to be seen using and would appeal to peers. The SLT pack with the flavor descriptor was not associated with health risks associated with product use. The pack with corporate branding was selected as more appealing, to attract attention, and one they would want to be seen using; the plain pack was less attractive to smokers. Youth and young adults were more likely to indicate that pack elements affected their perceptions of appeal and risk associated with SLT products. These results suggest that SLT pack characteristics have a measurable effect on perceptions of health risk and product appeal. Future research should assess these findings in the context of harm reduction. Specifically, research is needed to determine whether pack elements on SLT products can effectively convey risk and harm.
Modelling in conventional electroporation for model cell with organelles using COMSOL Multiphysics
NASA Astrophysics Data System (ADS)
Sulaeman, M. Y.; Widita, R.
2016-03-01
Conventional electroporation is a formation of pores in the membrane cell due to the external electric field applied to the cell. The purpose of creating pores in the cell using conventional electroporation are to increase the effectiveness of chemotherapy (electrochemotherapy) and to kill cancer tissue using irreversible electroporation. Modeling of electroporation phenomenon on a model cell had been done by using software COMSOL Multiphysics 4.3b with the applied external electric field with intensity at 1.1 kV/cm to find transmembrane voltage and pore density. It can be concluded from the results of potential distribution and transmembrane voltage, it show that pores formation only occurs in the membrane cells and it could not penetrate into inside the model cell so there is not pores formation in its organells.
QEDMOD: Fortran program for calculating the model Lamb-shift operator
NASA Astrophysics Data System (ADS)
Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.
2018-02-01
We present Fortran package QEDMOD for computing the model QED operator hQED that can be used to account for the Lamb shift in accurate atomic-structure calculations. The package routines calculate the matrix elements of hQED with the user-specified one-electron wave functions. The operator can be used to calculate Lamb shift in many-electron atomic systems with a typical accuracy of few percent, either by evaluating the matrix element of hQED with the many-electron wave function, or by adding hQED to the Dirac-Coulomb-Breit Hamiltonian.
Ge, Changfeng; Cheng, Yujie; Shen, Yan
2013-01-01
This study demonstrated an attempt to predict temperatures of a perishable product such as vaccine inside an insulated packaging container during transport through finite element analysis (FEA) modeling. In order to use the standard FEA software for simulation, an equivalent heat conduction coefficient is proposed and calculated to describe the heat transfer of the air trapped inside the insulated packaging container. The three-dimensional, insulated packaging container is regarded as a combination of six panels, and the heat flow at each side panel is a one-dimension diffusion process. The transit-thermal analysis was applied to simulate the heat transition process from ambient environment to inside the container. Field measurements were carried out to collect the temperature during transport, and the collected data were compared to the FEA simulation results. Insulated packaging containers are used to transport temperature-sensitive products such as vaccine and other pharmaceutical products. The container is usually made of an extruded polystyrene foam filled with gel packs. World Health Organization guidelines recommend that all vaccines except oral polio vaccine be distributed in an environment where the temperature ranges between +2 to +8 °C. The primary areas of concern in designing the packaging for vaccine are how much of the foam thickness and gel packs should be used in order to keep the temperature in a desired range, and how to prevent the vaccine from exposure to freezing temperatures. This study uses numerical simulation to predict temperature change within an insulated packaging container in vaccine cold chain. It is our hope that this simulation will provide the vaccine industries with an alternative engineering tool to validate vaccine packaging and project thermal equilibrium within the insulated packaging container.
ERIC Educational Resources Information Center
Theil, Elvira
1997-01-01
Evaluates the first stage of "Lernpunkt Deutsch," a new three-stage German course designed for upper elementary and early secondary school. Describes the publisher's package of materials and the appropriateness of the course, utility of the different package elements, format of the materials, and assesses whether the course provides pedagogically…
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.
2009-01-01
This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
NASA Astrophysics Data System (ADS)
Landazuri, Andrea C.
This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (<2 m/s) and at night showed a strong correlation for 1 mum particles between the groups: Sc-Be-Mg, Cr-Al, Cu-Mn, Cd-Pb-Be, Cd-Cr, Cu-Pb, Pb-Cd, As-Cd-Pb. The As-Cd-Pb correlates strongly in almost all ranges of particle sizes. When restricted low wind speeds were imposed more groups of elements are evident and this may be justified with the fact that at lower speeds particles are more likely to settle. When linking these results with CFD simulations and Pb-isotope results it is concluded that the source of elements found in association with Pb in the fine fraction come from the ore that is subsequently processed in the smelter site, whereas the source of elements associated to Pb in the coarse fraction is of different origin. CFD simulation results will not only provide realistic and quantifiable information in terms of potential deleterious effects, but also that the application of CFD represents an important contribution to actual dispersion modeling studies; therefore, Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the manual grids, and requires the least computational effort. CFD simulations were approached using the k-epsilon model, with the aid of computer aided engineering software: ANSYSRTM and COMSOL MULTIPHYSICS RTM. The success of aerosol transport simulations depends on a good simulation of the turbulent flow. A lot of attention was placed on investigating and choosing the best models in terms of convergence, independence and computational effort. This dissertation also includes preliminary studies of transient discrete phase, eulerian and species transport modeling, importance of saltation of particles, information on CFD methods, and strategies for future directions that should be taken.
Torrent, C; Gabus, C; Darlix, J L
1994-02-01
Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.
Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys
NASA Astrophysics Data System (ADS)
Neira Arce, Alderson
To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective heating and cooling steps. The second method consisted of the solution of a prescribed domain, where each powder layer is discretized by an individual 3D element and the heat source is represented by a 1D element displaced by a temperature-coupling extrapolation routine. Two validation strategies were presented here; the first was used to confirm the accuracy of the proposed model strategy by setting up a controlled experiment; the second was used to validate the post-processing data obtained by the simulation by comparison with in-situ measured EBSM process temperature. Finally, a post-process part evaluation on surface finishing and part porosity was discussed including an assessment of the use of non-destructive inspection techniques such as 3D profilometry by axial chromatism for surface roughness, partial section analysis by serial block-face scanning electron microscopy (SBFSEM) and micro computed tomography (CT-Scan) for pore and inclusion detection.
2011-01-01
Background The process of HIV-1 genomic RNA (gRNA) encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ). Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site) from the 5' untranslated region (UTR). Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV) vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ). Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons); however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into HIV-1 viral particles, our findings define a functional HIV-1 packaging system as comprising the 5' UTR cis elements, Gag, and the Rev/RRE system, in which the Rev/RRE system is required to make the RNA amenable to the ensuing interaction between Gag and the canonical packaging signal for subsequent encapsidation. PMID:21702950
Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.
ERIC Educational Resources Information Center
Williams, G. J.
These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…
A Characteristics Approach to the Evaluation of Economics Software Packages.
ERIC Educational Resources Information Center
Lumsden, Keith; Scott, Alex
1988-01-01
Utilizes Bloom's Taxonomy to identify elements of teacher and student interest. Depicts the way in which these interests are developed into characteristics for use in analytically evaluating software. Illustrates the use of this evaluating technique by appraising the much used software package "Running the British Economy." (KO)
Propensity Score Analysis in R: A Software Review
ERIC Educational Resources Information Center
Keller, Bryan; Tipton, Elizabeth
2016-01-01
In this article, we review four software packages for implementing propensity score analysis in R: "Matching, MatchIt, PSAgraphics," and "twang." After briefly discussing essential elements for propensity score analysis, we apply each package to a data set from the Early Childhood Longitudinal Study in order to estimate the…
ImagingReso: A Tool for Neutron Resonance Imaging
Zhang, Yuxuan; Bilheux, Jean -Christophe
2017-11-01
ImagingReso is an open-source Python library that simulates the neutron resonance signal for neutron imaging measurements. By defining the sample information such as density, thickness in the neutron path, and isotopic ratios of the elemental composition of the material, this package plots the expected resonance peaks for a selected neutron energy range. Various sample types such as layers of single elements (Ag, Co, etc. in solid form), chemical compounds (UO 3, Gd 2O 3, etc.), or even multiple layers of both types can be plotted with this package. As a result, major plotting features include display of the transmission/attenuation inmore » wavelength, energy, and time scale, and show/hide elemental and isotopic contributions in the total resonance signal.« less
NASA Astrophysics Data System (ADS)
Pang, Guofeng
The objective of this work has been to design and develop a micromolding technique useful for batch fabrication to microfabricate 3D ceramic structures for device purposes using a sol gel composite processing technique and deep photolithography (UV LIGA). These structures may be the elements of ultrasound transducers, the structures associated with electronic packaging, or microstructures for microfluidic applications. To demonstrate the technique, the project has focused on the design and fabrication of annular and linear arrays for high frequency (>20 MHz) ultrasound imaging applications, particularly where an electronically steered imaging modality is employed. Other typical micromolded structures have been demonstrated to show the potential for micromolding. The transferability of the technique for industrial purposes is proposed. Using a sol gel composite process, the critical components in this technique are mold making, mold filling, material-processing, demolding, top electrode and essential material characterization. Two types of molds have been created using UV LIGA and/or electroplating. A purely organic mold made of Su-8 epoxy based photo-resist has shown tremendous performance for micromolding. The transducer packaging process has also been designed and evaluated at the laboratory level. A Su-8 micro bridge and bond pad has been used for wire bonding purposes. A 5-element annular array transducer has been fabricated by this technique and fully packaged. The micromolded piezoceramic structures have been characterized. The pulse echo performance of each element and the focusing performance of 5 elements of a packaged transducer array have been evaluated using a coaxial cable and a cable delay system.
NASA Astrophysics Data System (ADS)
Wang, W.; Liu, J.
2016-12-01
Forward modelling is the general way to obtain responses of geoelectrical structures. Field investigators might find it useful for planning surveys and choosing optimal electrode configurations with respect to their targets. During the past few decades much effort has been put into the development of numerical forward codes, such as integral equation method, finite difference method and finite element method. Nowadays, most researchers prefer the finite element method (FEM) for its flexible meshing scheme, which can handle models with complex geometry. Resistivity Modelling with commercial sofewares such as ANSYS and COMSOL is convenient, but like working with a black box. Modifying the existed codes or developing new codes is somehow a long period. We present a new way to obtain resistivity forward modelling codes quickly, which is based on the commercial sofeware FEPG (Finite element Program Generator). Just with several demanding scripts, FEPG could generate FORTRAN program framework which can easily be altered to adjust our targets. By supposing the electric potential is quadratic in each element of a two-layer model, we obtain quite accurate results with errors less than 1%, while more than 5% errors could appear by linear FE codes. The anisotropic half-space model is supposed to concern vertical distributed fractures. The measured apparent resistivities along the fractures are bigger than results from its orthogonal direction, which are opposite of the true resistivities. Interpretation could be misunderstood if this anisotropic paradox is ignored. The technique we used can obtain scientific codes in a short time. The generated powerful FORTRAN codes could reach accurate results by higher-order assumption and can handle anisotropy to make better interpretations. The method we used could be expand easily to other domain where FE codes are needed.
Plasmonics analysis of nanostructures for bioapplications
NASA Astrophysics Data System (ADS)
Xie, Qian
Plasmonics, the science and technology of the plasmons, is a rapidly growing field with substantial broader impact in numerous different fields, especially for bio-applications such as bio-sensing, bio-photonics and photothermal therapy. Resonance effects associated with plasmatic behavior i.e. surface Plasmon resonance (SPR) and localize surface Plasmon resonance (LSPR), are of particular interest because of their strong sensitivity to the local environment. In this thesis, plasmonic resonance effects are discussed from the basic theory to applications, especially the application in photothermal therapy, and grating bio-sensing. This thesis focuses on modeling different metallic nanostructures, i.e. nanospheres, nanorods, core-shell nanoparticles, nanotori and hexagonal closed packed nanosphere structures, to determine their LSPR wavelengths for use in various applications. Experiments regarding photothermal therapy using gold nanorods are described and a comparison is presented with results obtained from simulations. Lastly, experiments of grating-based plasmon-enhanced bio-sensing are also discussed. In chapter one, the physics of plasmonics is reviewed, including surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). In the section on surface plasmon resonance, the physics behind the phenomenon is discussed, and also, the detection methods and applications in bio-sensing are described. In the section on localized surface plasmon resonance (LSPR), the phenomenon is described with respect to sub wavelength metallic nanoparticles. In chapter two, specific plasmonic-based bio-applications are discussed including plasmonic and magneto-plasmonic enhanced photothermal therapy and grating-based SPR bio-sening. In chapter three, which is the most important part in the thesis, optical modeling of different gold nanostructures is presented. The modeling tools used in this thesis are Comsol and custom developed Matlab programs. In Comsol, the geometries of different metallic nanostructures are drawn and simulated using finite element-based computational electromagnetics. The power absorption of the nanostructures is plotted as a function of wavelength to identify the LSPR wavelength, i.e. the wavelength of peak absorption. In Matlab, Mie scattering theory is programmed in terms of semi-analytical mathematical equations, which predict the power absorption for specific plasmonic geometries, i.e. nanospheres, nanorods and core-shell particles. These predictions, which are much faster than the Comsol analysis, are validated using corresponding numerical simulations. In chapter four, experiments involving novel magneto-plasmonic Nano platforms are described, and experimental data is presented to illustrate the use of the modeling in analyzing these particles. Simulations are performed to determine the influence on the laser absorption of magnetic nanospheres in proximity to metallic nanorods. These results are compared with experimental data. In the last chapter, experiments using a grating-based SPR sensor are described, and modeling results are also presented. In summary, this thesis discusses the physics of plasmonics, electromagnetic analysis for predicting the absorption spectra of metallic nanoparticles and bio-applications that utilize these effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, D.
Pesticide packaging plays an important role in a broader area that can be called {open_quotes}Delivery Systems.{close_quotes} Delivery Systems can include all of the physical elements that enable a technical active ingredient or combination of ingredients to move from the manufacturing plant through the channels of distribution to the pesticide applicator, who generally further dilutes the product for use on a registered target pest or crop site. This article describes developments relating to three goals in pesticide packaging. Those goals are: reduction in the number of empty containers through the use of reusable containers, formulation modifications, and other container minimization approaches;more » recyling of empty containers for their material or energy value; and disposal of empty containers in accordance with environmentally sound and cost effective practices.« less
AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications
NASA Astrophysics Data System (ADS)
Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.
2017-12-01
This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.
Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan
2012-11-01
Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.
A fast hidden line algorithm with contour option. M.S. Thesis
NASA Technical Reports Server (NTRS)
Thue, R. E.
1984-01-01
The JonesD algorithm was modified to allow the processing of N-sided elements and implemented in conjunction with a 3-D contour generation algorithm. The total hidden line and contour subsystem is implemented in the MOVIE.BYU Display package, and is compared to the subsystems already existing in the MOVIE.BYU package. The comparison reveals that the modified JonesD hidden line and contour subsystem yields substantial processing time savings, when processing moderate sized models comprised of 1000 elements or less. There are, however, some limitations to the modified JonesD subsystem.
NASA Astrophysics Data System (ADS)
Shen, Boyang; Li, Chao; Geng, Jianzhao; Zhang, Xiuchang; Gawith, James; Ma, Jun; Liu, Yingzhen; Grilli, Francesco; Coombs, T. A.
2018-07-01
This paper presents a comprehensive alternating current (AC) loss study of a circular high temperature superconductor (HTS) coated conductor coil. The AC losses from a circular double pancake coil were measured using the electrical method. A 2D axisymmetric H -formulation model using the FEM package in COMSOL Multiphysics has been established to match the circular geometry of the coil used in the experiment. Three scenarios have been analysed: Scenario 1 with AC transport current and DC magnetic field (experiment and simulation); Scenario 2 with DC transport current and AC magnetic field (simulation); and Scenario 3 with AC transport current and AC magnetic field (simulation and experimental data support). The angular dependence analysis on the coil under a magnetic field with different orientation angle θ has been carried out for all three scenarios. For Scenario 3, the effect of the relative phase difference Δφ between the AC current and the AC field on the total AC loss of the coil has been investigated. In summary, a current/field/angle/phase dependent AC loss ( I , B , θ, Δφ) study of a circular HTS coil has been carried out. The obtained results provide useful indications for the future design and research of HTS AC systems.
Silicon Carbide Integrated Circuit Chip
2015-02-17
A multilevel interconnect silicon carbide integrated circuit chip with co-fired ceramic package and circuit board recently developed at the NASA GRC Smart Sensors and Electronics Systems Branch for high temperature applications. High temperature silicon carbide electronics and compatible packaging technologies are elements of instrumentation for aerospace engine control and long term inner-solar planet explorations.
Application of GA package in functional packaging
NASA Astrophysics Data System (ADS)
Belousova, D. A.; Noskova, E. E.; Kapulin, D. V.
2018-05-01
The approach to application program for the task of configuration of the elements of the commutation circuit for design of the radio-electronic equipment on the basis of the genetic algorithm is offered. The efficiency of the used approach for commutation circuits with different characteristics for computer-aided design on radio-electronic manufacturing is shown. The prototype of the computer-aided design subsystem on the basis of a package GA for R with a set of the general functions for optimization of multivariate models is programmed.
Torrent, C; Gabus, C; Darlix, J L
1994-01-01
Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer. Images PMID:8289369
NASA Astrophysics Data System (ADS)
Shutova, M. N.; Skibin, G. M.; Evtushenko, S. I.
2017-11-01
The paper is devoted to the problem of definition of availability index of deforming building construction in atypical cases. The authors revealed a real applicability of the finite-elements analyses package, such as ANSYS, for engineering testing calculations of building constructions and determination of the sites of increased stresses. It was determined that stresses increased up to 7.75 times in the sites with mechanical defects (for steel crane girder); also, the authors revealed the convergence of the calculation results between the finite element method and a usual decision using the strength of materials (in the limits 2-14% for steel truss frame). The equivalent stresses don’t exceed the maximum permissible tension for this type of steel. The building constructions have a limited availability index.
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
Validation of thermal effects of LED package by using Elmer finite element simulation method
NASA Astrophysics Data System (ADS)
Leng, Lai Siang; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Taniselass, Steven; Bin Ab Aziz, Muhamad Hafiz; Vairavan, Rajendaran; Kirtsaeng, Supap
2017-02-01
The overall performance of the Light-emitting diode, LED package is critically affected by the heat attribution. In this study, open source software - Elmer FEM has been utilized to study the thermal analysis of the LED package. In order to perform a complete simulation study, both Salome software and ParaView software were introduced as Pre and Postprocessor. The thermal effect of the LED package was evaluated by this software. The result has been validated with commercially licensed software based on previous work. The percentage difference from both simulation results is less than 5% which is tolerable and comparable.
High-performance packaging for monolithic microwave and millimeter-wave integrated circuits
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Li, K.; Shih, Y. C.
1992-01-01
Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.
Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogle, Brandon; Kelly, James; Haslam, Jeffrey
The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finitemore » Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.« less
The fluid mechanics of scleral buckling surgery for the repair of retinal detachment.
Foster, William Joseph; Dowla, Nadia; Joshi, Saurabh Y; Nikolaou, Michael
2010-01-01
Scleral buckling is a common surgical technique used to treat retinal detachments that involves suturing a radial or circumferential silicone element on the sclera. Although this procedure has been performed since the 1960s, and there is a reasonable experimental model of retinal detachment, there is still debate as to how this surgery facilitates the re-attachment of the retina. Finite element calculations using the COMSOL Multiphysics system are utilized to explain the influence of the scleral buckle on the flow of sub-retinal fluid in a physical model of retinal detachment. We found that, by coupling fluid mechanics with structural mechanics, laminar fluid flow and the Bernoulli effect are necessary for a physically consistent explanation of retinal reattachment. Improved fluid outflow and retinal reattachment are found with low fluid viscosity and rapid eye movements. A simulation of saccadic eye movements was more effective in removing sub-retinal fluid than slower, reading speed, eye movements in removing subretinal fluid. The results of our simulations allow us to explain the physical principles behind scleral buckling surgery and provide insight that can be utilized clinically. In particular, we find that rapid eye movements facilitate more rapid retinal reattachment. This is contradictory to the conventional wisdom of attempting to minimize eye movements.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ahmed, Saad; Masters, Sarah; Ounaies, Zoubeida; Frecker, Mary
2017-10-01
The incorporation of smart materials such as electroactive polymers and magnetoactive elastomers in origami structures can result in active folding using external electric and magnetic stimuli, showing promise in many origami-inspired engineering applications. In this study, 3D finite element analysis (FEA) models are developed using COMSOL Multiphysics software for three configurations that incorporate a combination of active and passive material layers, namely: (1) a single-notch unimorph folding configuration actuated using only external electric field, (2) a double-notch unimorph folding configuration actuated using only external electric field, and (3) a bifold configuration which is actuated using multi-field (electric and magnetic) stimuli. The objectives of the study are to verify the effectiveness of the FEA models to simulate folding behavior and to investigate the influence of geometric parameters on folding quality. Equivalent mechanical pressure and surface stress are used as external loads in the FEA to simulate electric and magnetic fields, respectively. Compared quantitatively with experimental data, FEA captured the folding performance of electric actuation well for notched configurations and magnetic actuation for a bifold structure, but underestimated electric actuation for the bifold structure. By investigating the impact of geometric parameters and locations to place smart materials, FEA can be used in design, avoiding trial-and-error iterations of experiments.
A finite element method based microwave heat transfer modeling of frozen multi-component foods
NASA Astrophysics Data System (ADS)
Pitchai, Krishnamoorthy
Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a frozen pizza. The root mean square error values of transient temperature profiles of five locations ranged from 5.0 °C to 12.6 °C. A methodology was developed to incorporate electromagnetic frequency spectrum in the coupled electromagnetic and heat transfer model. Implementing the electromagnetic frequency spectrum in the simulation improved the accuracy of temperature field pattern and transient temperature profile as compared to mono-chromatic frequency of 2.45 GHz. The bulk moisture diffusion coefficient of cooked pasta was calculated as a function of temperature at a constant water activity using desorption isotherms.
Virtual Design of a 4-Bed Molecular Sieve for Exploration
NASA Technical Reports Server (NTRS)
Giesy, Timothy J.; Coker, Robert F.; O'Connor, Brian F.; Knox, James C.
2017-01-01
Simulations of six new 4-Bed Molecular Sieve configurations have been performed using a COMSOL (COMSOL Multiphysics - commercial software) model. The preliminary results show that reductions in desiccant bed size and sorbent bed size when compared to the International Space Station configuration are feasible while still yielding a process that handles at least 4.0 kilograms a day CO2. The results also show that changes to the CO2 sorbent are likewise feasible. Decreasing the bed sizes was found to have very little negative effect on the adsorption process; breakthrough of CO2 in the sorbent bed was observed for two of the configurations, but a small degree of CO2 breakthrough is acceptable, and water breakthrough in the desiccant beds was not observed. Both configurations for which CO2 breakthrough was observed still yield relatively high CO2 efficiency, and future investigations will focus on bed size in order to find the optimum configuration.
Modelling ac ripple currents in HTS coated conductors
NASA Astrophysics Data System (ADS)
Xu, Zhihan; Grilli, Francesco
2015-10-01
Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrell, G; Shvydka, D; Chen, C
Purpose: The superiority of a properly-administered combination of radiation therapy and hyperthermia over radiation alone in treatment of human cancers has been demonstrated in multiple studies examining radiobiology, local control, and survival. Unfortunately, hyperthermia is not yet a common modality in oncology practice, due in part to the technical difficulty of heating a deep-seated target volume to sufficient temperature. To address this problem, our group has invented a thermobrachytherapy (TB) seed based on a commonly-used low dose-rate permanent brachytherapy seed for implant in solid tumors. Instead of the tungsten radiographic marker of the standard seed, the TB seed contains onemore » of a self-regulating ferromagnetic alloy. Placement of a patient implanted with such seeds in an oscillating magnetic field generates heat via induction of eddy currents. We present the results of studies of the capability of clinically-realistic TB seed arrangements to adequately heat defined target volumes. Methods: Seed distributions for several past LDR prostate permanent implant brachytherapy patients were reproduced in the finite element analysis software package COMSOL Multiphysics 4.4, with the difference that TB seeds were modelled, rather than the radiation-only seeds actually used for their treatments. The implant geometries were mainly of the modified peripheral loading type; a range of prostatic volumes and blood perfusion rates likely to be seen in a clinical setting were examined. Results: According to the simulations, when distributed to optimize radiation dose, TB seeds also produce sufficient heat to provide thermal coverage of the target given proper selection of the magnetic field strength. However, the thermal distributions may be improved by additional use of hyperthermia-only seeds. Conclusion: A dual-modality seed intended as an alternative to and using the same implantation apparatus and technique as the standard LDR permanent implant seed has been successfully evaluated for its ability to provide sufficient hyperthermia in clinically-realistic implants. This work was partially supported by the National Institutes of Health (NIH) STTR Grant No. R41 CA153631-01A1.« less
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.
2015-01-01
Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100 μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200 μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194 μm, with 2×2 binning during the acquisition giving an effective pixel size of 388 μm. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors. PMID:26158095
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J
2015-04-01
Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of [Formula: see text]. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a [Formula: see text] array of [Formula: see text] pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent [Formula: see text]-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of [Formula: see text], with [Formula: see text] binning during the acquisition giving an effective pixel size of [Formula: see text]. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors.
Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels
NASA Astrophysics Data System (ADS)
Fedotov, E. S.; Khramtsov, I. V.; Kustov, O. Yu.
2016-10-01
Numerical simulation of the acoustic processes in an impedance tube at high levels of acoustic pressure is a way to solve a problem of noise suppressing by liners. These studies used liner specimen that is one cylindrical Helmholtz resonator. The evaluation of the real and imaginary parts of the liner acoustic impedance and sound absorption coefficient was performed for sound pressure levels of 130, 140 and 150 dB. The numerical simulation used experimental data having been obtained on the impedance tube with normal incidence waves. At the first stage of the numerical simulation it was used the linearized Navier-Stokes equations, which describe well the imaginary part of the liner impedance whatever the sound pressure level. These equations were solved by finite element method in COMSOL Multiphysics program in axisymmetric formulation. At the second stage, the complete Navier-Stokes equations were solved by direct numerical simulation in ANSYS CFX in axisymmetric formulation. As the result, the acceptable agreement between numerical simulation and experiment was obtained.
Singular boundary method for wave propagation analysis in periodic structures
NASA Astrophysics Data System (ADS)
Fu, Zhuojia; Chen, Wen; Wen, Pihua; Zhang, Chuanzeng
2018-07-01
A strong-form boundary collocation method, the singular boundary method (SBM), is developed in this paper for the wave propagation analysis at low and moderate wavenumbers in periodic structures. The SBM is of several advantages including mathematically simple, easy-to-program, meshless with the application of the concept of origin intensity factors in order to eliminate the singularity of the fundamental solutions and avoid the numerical evaluation of the singular integrals in the boundary element method. Due to the periodic behaviors of the structures, the SBM coefficient matrix can be represented as a block Toeplitz matrix. By employing three different fast Toeplitz-matrix solvers, the computational time and storage requirements are significantly reduced in the proposed SBM analysis. To demonstrate the effectiveness of the proposed SBM formulation for wave propagation analysis in periodic structures, several benchmark examples are presented and discussed The proposed SBM results are compared with the analytical solutions, the reference results and the COMSOL software.
NASA Astrophysics Data System (ADS)
Paramasivan, K.; Das, Sandip; Marimuthu, Sundar; Misra, Dipten
2018-06-01
The aim of this experimental study is to identify and characterize the response related to the effects of process parameters in terms of bending angle for micro-bending of AISI 304 sheet using a low power Nd:YVO4 laser source. Numerical simulation is also carried out through a coupled thermo-mechanical formulation with finite element method using COMSOL MULTIPHYSICS. The developed numerical simulation indicates that bending is caused by temperature gradient mechanism in the present investigation involving laser micro-bending. The results of experiment indicate that bending angle increases with laser power, number of irradiations, and decreases with increase in scanning speed. Moreover, average bending angle increases with number of laser passes and edge effect, defined in terms of relative variation of bending angle (RBAV), decreases monotonically with the number of laser scans. The substrate is damaged over a width of about 80 μm due to the high temperatures experienced during laser forming at a low scanning speed.
Band Gap Optimization Design of Photonic Crystals Material
NASA Astrophysics Data System (ADS)
Yu, Y.; Yu, B.; Gao, X.
2017-12-01
The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.
[Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].
Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong
2015-04-01
Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.
The Effect of SiC Polytypes on the Heat Distribution Efficiency of a Phase Change Memory.
NASA Astrophysics Data System (ADS)
Aziz, M. S.; Mohammed, Z.; Alip, R. I.
2018-03-01
The amorphous to crystalline transition of germanium-antimony-tellurium (GST) using three types of silicon carbide’s structure as a heating element was investigated. Simulation was done using COMSOL Multiphysic 5.0 software with separate heater structure. Silicon carbide (SiC) has three types of structure; 3C-SiC, 4H-SiC and 6H-SiC. These structures have a different thermal conductivity. The temperature of GST and phase transition of GST can be obtained from the simulation. The temperature of GST when using 3C-SiC, 4H-SiC and 6H-SiC are 467K, 466K and 460K, respectively. The phase transition of GST from amorphous to crystalline state for three type of SiC’s structure can be determined in this simulation. Based on the result, the thermal conductivity of SiC can affecting the temperature of GST and changed of phase change memory (PCM).
Measurement and simulation of thermoelectric efficiency for single leg
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Yamamoto, Atsushi; Ohta, Michihiro; Nishiate, Hirotaka
2015-04-01
Thermoelectric efficiency measurements were carried out on n-type bismuth telluride legs with the hot-side temperature at 100 and 150 °C. The electric power and heat flow were measured individually. Water coolant was utilized to maintain the cold-side temperature and to measure heat flow out of the cold side. Leg length and vacuum pressure were studied in terms of temperature difference across the leg, open-circuit voltage, internal resistance, and heat flow. Finite-element simulation on thermoelectric generation was performed in COMSOL Multiphysics, by inputting two-side temperatures and thermoelectric material properties. The open-circuit voltage and resistance were in good agreement between the measurement and simulation. Much larger heat flows were found in measurements, since they were comprised of conductive, convective, and radiative contributions. Parasitic heat flow was measured in the absence of bismuth telluride leg, and the conductive heat flow was then available. Finally, the maximum thermoelectric efficiency was derived in accordance with the electric power and the conductive heat flow.
ERIC Educational Resources Information Center
Hamlin, Larry
This document contains the competency test package for three sections of a general mechanical repair course: minor automotive maintenance, small engine mechanics, and welding. Following a list of the common essential elements for trade and industrial education, competency tests for the three sections are provided. Each test includes unit name,…
NASA Technical Reports Server (NTRS)
1979-01-01
User power, duration, and orbit requirements, which were the prime factors influencing power extension package (PEP) design, are discussed. A representative configuration of the PEP concept is presented and the major elements of the system are described as well as the PEP-to-Orbiter and remote manipulator interface provisions.
2008-02-01
combined thermal g effect and initial current field. The model is implemented using Abaqus user element subroutine and verified against the experimental...Finite Element Formulation The proposed model is implemented with ABAQUS general purpose finite element program using thermal -displacement analysis...option. ABAQUS and other commercially available finite element codes do not have the capability to solve general electromigration problem directly. Thermal
Light emitting diode package element with internal meniscus for bubble free lens placement
Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen
2010-09-28
A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.
Investigation of the Finite Element Software Packages at KSC
NASA Technical Reports Server (NTRS)
Lu, Chu-Ho
1991-01-01
The useful and powerful features of NASTRAN and three real world problems for the testing of the capabilities of different NASTRAN versions are discussed. The test problems involve direct transient analysis, nonlinear analysis, and static analysis. The experiences in using graphics software packages are also discussed. It was found that MSC/XL can be more useful if it can be improved to generate picture files of the analysis results and to extend its capabilities to support finite element codes other than MSC/NASTRAN. It was found that the current version of SDRC/I-DEAS (version VI) may have bugs in the module 'Data Loader'.
Simulation and Experimental Study of Bipolar Plate on the Performance PEM Fuel cell
NASA Astrophysics Data System (ADS)
Chinnasa, Pornchai; Khamsuk, Pattama; Seechalee, Sarunya; Swatsitang, Ekaphan
2017-09-01
This research is a simulated and experimental study on effects of bipolar electrodes of a PEM fuel cell on its power conversion efficiency. The PEM fuel cell structure consists of bipolar electrodes, proton exchange membrane with catalysts, flow channels of gases. This research used fuel cell of 49 cm2 in active area as a research sample and the Comsol 4.4 was employed to simulate flow channels which are serpentine pattern for anode and parallel pattern for cathode. The parameters used were calculated effects of such parameters using Comsol 4.4. After the calculation has been completed, the prototype of the PEM fuel cell were fabricated using graphite plate as electrodes which had the channel height of 0.20 cm, proton exchange membrane using carbon-platinum catalyst. Finally, further it was found that the effect of temperature on the power conversion efficiency is not severely. And for anode, the concentration of hydrogen gas was reduced 64 wt% due to the reaction whereas in parallel channel of cathode the oxygen concentration was reduced by only 6 wt% from 23 wt% at the entrance to 17 wt% at the end. The maximum power output of the prototype operated under such condition was 0.28 W/cm2 calculated from maximum power output voltage (Vmp) of 0.70 V and maximum power output current density of 0.42 A/cm2 which was in good agreement with that simulated using Comsol 4.4 which revealed the power output of 0.29 W/cm2.
RNA secondary structures of the bacteriophage phi6 packaging regions.
Pirttimaa, M J; Bamford, D H
2000-06-01
Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.
Modular electronics packaging system
NASA Technical Reports Server (NTRS)
Hunter, Don J. (Inventor)
2001-01-01
A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.
Solernou, Albert; Hanson, Benjamin S; Richardson, Robin A; Welch, Robert; Read, Daniel J; Harlen, Oliver G; Harris, Sarah A
2018-03-01
Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.
Simulating ground water-lake interactions: Approaches and insights
Hunt, R.J.; Haitjema, H.M.; Krohelski, J.T.; Feinstein, D.T.
2003-01-01
Approaches for modeling lake-ground water interactions have evolved significantly from early simulations that used fixed lake stages specified as constant head to sophisticated LAK packages for MODFLOW. Although model input can be complex, the LAK package capabilities and output are superior to methods that rely on a fixed lake stage and compare well to other simple methods where lake stage can be calculated. Regardless of the approach, guidelines presented here for model grid size, location of three-dimensional flow, and extent of vertical capture can facilitate the construction of appropriately detailed models that simulate important lake-ground water interactions without adding unnecessary complexity. In addition to MODFLOW approaches, lake simulation has been formulated in terms of analytic elements. The analytic element lake package had acceptable agreement with a published LAK1 problem, even though there were differences in the total lake conductance and number of layers used in the two models. The grid size used in the original LAK1 problem, however, violated a grid size guideline presented in this paper. Grid sensitivity analyses demonstrated that an appreciable discrepancy in the distribution of stream and lake flux was related to the large grid size used in the original LAK1 problem. This artifact is expected regardless of MODFLOW LAK package used. When the grid size was reduced, a finite-difference formulation approached the analytic element results. These insights and guidelines can help ensure that the proper lake simulation tool is being selected and applied.
Protection of microelectronic devices during packaging
Peterson, Kenneth A.; Conley, William R.
2002-01-01
The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.
Temporary coatings for protection of microelectronic devices during packaging
Peterson, Kenneth A.; Conley, William R.
2005-01-18
The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, temporary protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.
DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROTECTION
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...
Robust hard-solder packaging of conduction cooled laser diode bars
NASA Astrophysics Data System (ADS)
Schleuning, David; Griffin, Mike; James, Phillip; McNulty, John; Mendoza, Dan; Morales, John; Nabors, David; Peters, Mike; Zhou, Hailong; Reed, Murray
2007-02-01
We present the reliability of high-power laser diodes utilizing hard solder (AuSn) on a conduction-cooled package (HCCP). We present results of 50 W hard-pulse operation at 8xx nm and demonstrate a reliability of MTTF > 27 khrs (90% CL), which is an order of magnitude improvement over traditional packaging. We also present results at 9xx nm with a reliability of MTTF >17 khrs (90% CL) at 75 W. We discuss finite element analysis (FEA) modeling and time dependent temperature measurements combined with experimental life-test data to quantify true hard-pulse operation. We also discuss FEA and measured stress profiles across laser bars comparing soft and hard solder packaging.
NASA Astrophysics Data System (ADS)
Myagkiy, Andrey; Golfier, Fabrice; Truche, Laurent; Cathelineau, Michel
2017-04-01
This research proposes a subsurface reactive geochemical transport modelling of the development of a nickel laterite profile in New Caledonia over the past few million years. Such a regolith formation from ultramafic bedrock was not yet modelled and gives new profound insights into the Ni vertical mobility, its retention processes in a soil profile and relative enrichment, that are still poorly studied. The downward progression of the lateritization front is allowed by the leaching of the soluble elements (Si, Mg and Ni) through drainage system, represented by porous column of peridotite. Particular emphasis is placed on the detailed understanding of Ni redistribution as a function of time and depth triggered by Ni-bearing silicate precipitation (i.e. garnierite) and by sorption or recrystallization process with goethite. Current work consists of the following models: i) 1-D calculations that are done at 25oC with the code PHREEQC associated with the llnl thermodynamic database and ii) 2-D model that handles coupled thermo-hydro-chemical processes and is calculated on the interface Comsol-Phreeqc (iCP, Nardi et al., 2014). The impact of i) fluid flow in fractures and ii) recharge rate along with iii) hydraulic and iv) geothermal gradients are considered here. While the first model gives profound insights into the vertical mobility of metals upon the formation of laterite (Myagkiy et al, submitted), the latter one additionally allows to describe heterogeneities of mineralizing distributions due to the influence of preferential pathways (fractures), convective flows and lateral transfers. Our long-term 1-D simulations (10 Ma) clearly demonstrate that the Ni enrichment and thickening of iron-rich zone are governed by the vertical progression of the pH front. At the same time 2-D modelling shows reactivation of Ni from oxide zone and it subsequent redistribution and concentration in saprolite. Such a model appears to be of importance in attempt of explanation Ni mineralization processes, revealing the main keys to understanding the trace elements mobility in ultramafic environment. Myagkiy A, Truche L, Cathelineau M, Golfier F. "Revealing the conditions of Ni mineralization in laterite profile of New Caledonia: insights from reactive geochemical transport modelling" Preprint submitted to Chemical Geology (September 28, 2016). Nardi A, Idiart A, Trinchero P, de Vries LM, and Molinero J. "Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry."Computers & Geosciences 69 (2014): 10-21.
Political Analysis through the Prince System. Learning Packages in the Policy Sciences, PS-23.
ERIC Educational Resources Information Center
Coplin, William D.; O'Leary, Michael K.
This package introduces college students to the elements of the Prince System, a widely used system for making political forecasts and developing political strategies. Designed to be completed in two to three weeks, the two exercises enable students to (1) identify political issues that the Prince System can help them understand, (2) determine the…
Effects of dissuasive packaging on young adult smokers.
Hoek, Janet; Wong, Christiane; Gendall, Philip; Louviere, Jordan; Cong, Karen
2011-05-01
Tobacco industry documents illustrate how packaging promotes smoking experimentation and reinforces existing smokers' behaviour. Plain packaging reduces the perceived attractiveness of smoking and creates an opportunity to introduce larger pictorial warnings that could promote cessation-linked behaviours. However, little is known about the effects such a combined policy measure would have on smokers' behaviour. A 3 (warning size) *4 (branding level) plus control (completely plain pack) best-worst experiment was conducted via face-to-face interviews with 292 young adult smokers from a New Zealand provincial city. The Juster Scale was also used to estimate cessation-linked behaviours among participants. Of the 13 options tested, respondents were significantly less likely to choose those featuring fewer branding elements or larger health warnings. Options that featured more branding elements were still preferred even when they also featured a 50% health warning, but were significantly less likely to be chosen when they featured a 75% warning. Comparison of a control pack representing the status quo (branded with 30% front of pack warning) and a plain pack (with a 75% warning) revealed the latter would be significantly more likely to elicit cessation-related behaviours. Plain packs that feature large graphic health warnings are significantly more likely to promote cessation among young adult smokers than fully or partially branded packs. The findings support the introduction of plain packaging and suggest use of unbranded package space to feature larger health warnings would further promote cessation.
Effect on moisture permeability of typewriting on unit dose package surfaces.
Rackson, J T; Zellhofer, M J; Birmingham, P H
1984-10-01
The effects of typewriting on labels of two unit dose packages with respect to moisture permeability were examined. Using an electric typewriter, a standard label format was imprinted on two different types of class A unit dose packages: (1) a heat-sealed paper-backed foil and cellofilm strip pouch, and (2) a copolyester and polyethylene multiple-cup blister with a heat-sealed paper-backed foil and cellofilm cover. The labels were typed at various typing-element impact settings. The official USP test for water permeation was then performed on typed packages and untyped control packages. The original untyped packages were confirmed to be USP class A quality. The packages for which successively harder impact settings were used showed a corresponding increase in moisture permeability. This resulted in a lowering of USP package ratings from class A to class B and D, some of which would be unsuitable for use in any unit dose system under current FDA repackaging standards. Typing directly onto the label of a unit dose package before it is sealed will most likely damage the package and possibly make it unfit for use. Pharmacists who must type labels for the unit dose packages studied should use the lowest possible typewriter impact setting and test for damage using the USP moisture-permeation test.
DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROJECTION - PROJECT SUMMARY
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...
Design and development of conformal antenna composite structure
NASA Astrophysics Data System (ADS)
Xie, Zonghong; Zhao, Wei; Zhang, Peng; Li, Xiang
2017-09-01
In the manufacturing process of the common smart skin antenna, the adhesive covered on the radiating elements of the antenna led to severe deviation of the resonant frequency, which degraded the electromagnetic performance of the antenna. In this paper, a new component called package cover was adopted to prevent the adhesive from covering on the radiating elements of the microstrip antenna array. The package cover and the microstrip antenna array were bonded together as packaged antenna which was then embedded into the composite sandwich structure to develop a new structure called conformal antenna composite structure (CACS). The geometric parameters of the microstrip antenna array and the CACS were optimized by the commercial software CST microwave studio. According to the optimal results, the microstrip antenna array and the CACS were manufactured and tested. The experimental and numerical results of electromagnetic performance showed that the resonant frequency of the CACS was close to that of the microstrip antenna array (with error less than 1%) and the CACS had a higher gain (about 2 dB) than the microstrip antenna array. The package system would increase the electromagnetic radiating energy at the design frequency nearly 66%. The numerical model generated by CST microwave studio in this study could successfully predict the electromagnetic performance of the microstrip antenna array and the CACS with relatively good accuracy. The mechanical analysis results showed that the CACS had better flexural property than the composite sandwich structure without the embedment of packaged antenna. The comparison of the electromagnetic performance for the CACS and the MECSSA showed that the package system was useful and effective.
Method of forming a package for MEMS-based fuel cell
Morse, Jeffrey D; Jankowski, Alan F
2013-05-21
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Method of forming a package for mems-based fuel cell
Morse, Jeffrey D.; Jankowski, Alan F.
2004-11-23
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Examples of finite element mesh generation using SDRC IDEAS
NASA Technical Reports Server (NTRS)
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
[Youth health care: much prevention for little money].
Verloove-Vanhorick, S P; Verkerk, P H; van Leerdam, F J M; Reijneveld, S A; Hirasing, R A
2003-05-10
As part of government policy, the 'Youth healthcare' prevention programme is offered free of charge to all children aged 0 to 19 years who are resident in the Netherlands. It consists of a programme of primary prevention (including vaccinations, information and advice) and secondary prevention (screening, surveillance, early diagnosis) and individual prevention and care. Many elements from the programme package have been shown to have a favourable cost-effectiveness relationship, in terms of health benefits and financially. Other elements have a social priority. The present government expenditure for the total youth healthcare package is about 380 million euros per year, that is 1900 euros per child. In terms of conditions prevented or years of life gained, this is cheaper than accepted prevention programmes for adults. The present approach can only be maintained and strengthened, if the expenditure is increased so that new programme elements can be investigated and--if found effective--implemented.
Zhao, Xuefeng; Liu, Yi; Zhang, Wei; Wang, Cong; Kassab, Ghassan S.
2011-01-01
Recently, a novel linearized constitutive model with a new strain measure that absorbs the material nonlinearity was validated for arteries. In this study, the linearized arterial stress-strain relationship is implemented into a finite element method package ANSYS, via the user subroutine USERMAT. The reference configuration is chosen to be the closed cylindrical tube (no-load state) rather than the open sector (zero-stress state). The residual strain is taken into account by analytic calculation and the incompressibility condition is enforced with Lagrange penalty method. Axisymmetric finite element analyses are conducted to demonstrate potential applications of this approach in a complex boundary value problem where angioplasty balloon interacts with the vessel wall. The model predictions of transmural circumferential and compressive radial stress distributions were also validated against an exponential-type Fung model, and the mean error was found to be within 6%. PMID:21689665
NASA Technical Reports Server (NTRS)
Hegab, Hisham E.
2002-01-01
The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.
NASA Technical Reports Server (NTRS)
Hegab, Hisham E.
2001-01-01
The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.
WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL (EPA/600/SR-94/210)
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a groundwater flo...
Adeeb A. Rahman; Thomas J. Urbanik; Mustafa Mahamid
2003-01-01
Collapse of fiberboard packaging boxes, in the shipping industry, due to rise in humidity conditions is common and very costly. A 3D FE nonlinear model is developed to predict the moisture flow throughout a corrugated packaging fiberboard sandwich structure. The model predicts how the moisture diffusion will permeate through the layers of a fiberboard (medium and...
Evaluation of the Field Test of Project Information Packages: Volume III--Resource Cost Analysis.
ERIC Educational Resources Information Center
Al-Salam, Nabeel; And Others
The third of three volumes evaluating the first year field test of the Project Information Packages (PIPs) provides a cost analysis study as a key element in the total evaluation. The resource approach to cost analysis is explained and the specific resource methodology used in the main cost analysis of the 19 PIP field-test projects detailed. The…
Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging
NASA Technical Reports Server (NTRS)
Xu, Jennifer C.; Hunter, Gary W.; Chen, Liangyu; Biagi-Labiosa, Azlin M.; Ward, Benjamin J.; Lukco, Dorothy; Gonzalez, Jose M., III; Lampard, Peter S.; Artale, Michael A.; Hampton, Christopher L.
2011-01-01
This paper describes efforts towards the transition of existing high temperature hydrogen and hydrocarbon Schottky diode sensor elements to packaged sensor structures that can be integrated into a testing system. Sensor modifications and the technical challenges involved are discussed. Testing of the sensors at 500 C or above is also presented along with plans for future development.
NASA Astrophysics Data System (ADS)
Cook, S. J.
2009-05-01
Aquarius is a Windows application that models fluid flow and heat transport under conditions in which fluid buoyancy can significantly impact patterns and magnitudes of fluid flow. The package is designed as a visualization tool through which users can examine flow systems in environments, both low temperature aquifers and regions with elevated PT regimes such as deep sedimentary basins, hydrothermal systems, and contact thermal aureoles. The package includes 4 components: (1) A finite-element mesh generator/assembler capable of representing complex geologic structures. Left-hand, right-hand and alternating linear triangles can be mixed within the mesh. Planer horizontal, planer vertical and cylindrical vertical coordinate sections are supported. (2) A menu-selectable system for setting properties and boundary/initial conditions. The design retains mathematical terminology for all input parameters such as scalars (e.g., porosity), tensors (e.g., permeability), and boundary/initial conditions (e.g., fixed potential). This makes the package an effective instructional aide by linking model requirements with the underlying mathematical concepts of partial differential equations and the solution logic of boundary/initial value problems. (3) Solution algorithms for steady-state and time-transient fluid flow/heat transport problems. For all models, the nonlinear global matrix equations are solved sequentially using over-relaxation techniques. Matrix storage design allows for large (e.g., 20000) element models to run efficiently on a typical PC. (4) A plotting system that supports contouring nodal data (e.g., head), vector plots for flux data (e.g., specific discharge), and colour gradient plots for elemental data (e.g., porosity), water properties (e.g., density), and performance measures (e.g., Peclet numbers). Display graphics can be printed or saved in standard graphic formats (e.g., jpeg). This package was developed from procedural codes in C written originally to model the hydrothermal flow system responsible for contact metamorphism of Utah's Alta Stock (Cook et al., AJS 1997). These codes were reprogrammed in Microsoft C# to take advantage of object oriented design and the capabilities of Microsoft's .NET framework. The package is available at no cost by e-mail request from the author.
Solernou, Albert
2018-01-01
Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package. PMID:29570700
Examining the conspicuousness and prominence of two required warnings on OTC pain relievers
Bix, Laura; Bello, Nora M.; Auras, Rafael; Ranger, Jon; Lapinski, Maria K.
2009-01-01
The labeling of over-the-counter (OTC) drugs is critical to their safe and effective use, and certain warnings are meant to be read at the point of purchase (POP). Examples include (i) warnings that alert consumers to the fact that the package is not child-resistant and (ii) warnings that alert consumers to potential product tampering. U.S. law mandates these warnings be “conspicuous” and “prominent” so that it is likely that consumers will read them before leaving the store. Our objective was to quantify the relative prominence and conspicuousness of these warnings. Sixty-one participants reviewed the packages of 5 commercially available analgesics to evaluate the prominence and conspicuousness of these warnings. Evaluated data included (i) the time spent examining the warnings compared with other areas of the label (using a bright pupil eye tracker), (ii) the ability to recall information from the OTCs viewed, and (iii) the legibility of the warnings relative to other elements of the labels (as measured by ASTM D7298-06). Eye-tracking data indicated that warnings were viewed by fewer participants and for less time than other elements of the packages. Recall and legibility data also indicated that the warning statements compared unfavorably with other elements of the labels tested. Evidence presented in this study suggests that 2 required warnings on 5 different OTCs are not prominent or conspicuous when compared with other elements of tested labels. PMID:19332798
The GRIDView Visualization Package
NASA Astrophysics Data System (ADS)
Kent, B. R.
2011-07-01
Large three-dimensional data cubes, catalogs, and spectral line archives are increasingly important elements of the data discovery process in astronomy. Visualization of large data volumes is of vital importance for the success of large spectral line surveys. Examples of data reduction utilizing the GRIDView software package are shown. The package allows users to manipulate data cubes, extract spectral profiles, and measure line properties. The package and included graphical user interfaces (GUIs) are designed with pipeline infrastructure in mind. The software has been used with great success analyzing spectral line and continuum data sets obtained from large radio survey collaborations. The tools are also important for multi-wavelength cross-correlation studies and incorporate Virtual Observatory client applications for overlaying database information in real time as cubes are examined by users.
COMSOL based Simulation on the Effect of Electric Field changes due to Lightning on Ground
NASA Astrophysics Data System (ADS)
Premlet, B.; Joby, N. E.; Sabu, S.
2017-12-01
The phenomenon of lightning is accompanied by localised changes in atmospheric electric fields. In cloud-to-ground strike locations, changes in atmospheric electric fields can even be observed at the ground a few minutes prior to a strike. A lot of research has been done already on the electrostatic changes prior to lightning in the region above ground. Through this work, we investigate into the effects of lightning electric fields on/under ground with the aid of simulations done in COMSOL Multiphysics. Horizontal and vertical profiles of voltage gradient, electric field, polarisation etc. are investigated. Simulation experiments were conducted using a general model of lightning electric fields formed using data recorded by the Electric Field Mills(EFMs) from three diverse parts of the world- Kennedy Space Centre (KSC),Florida (Using GHRC datasets),Sonnblick Observatory, Austria and National Centre for Earth Science Studies Trivandrum (NCESS),India. COMSOL models of the global electric circuit were developed using Sandstone as the base model for ground. Similar works in literature have only dealt with lightning electric fields above the ground. This work is the first step towards a high-level simulation on the effects of atmospheric electric field on/below ground. The results of this simulation work can aid lightning forecasting and preparedness by opening new doors for voltage based prediction methods at ground. It is also a tool to understand phenomena such as fulgurites, corona effect etc. It also helps in the design of buried cables and improved grounding systems. This work can also be a first step towards understanding localised potential variations at the ground during lightning.
Khajepour, Abolhasan; Rahmani, Faezeh
2017-01-01
In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Using Microwaves for Extracting Water from the Moon
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.
2009-01-01
Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles.
An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
The three dimensional quasi-analytical sensitivity analysis and the ancillary driver programs are developed needed to carry out the studies and perform comparisons. The code is essentially contained in one unified package which includes the following: (1) a three dimensional transonic wing analysis program (ZEBRA); (2) a quasi-analytical portion which determines the matrix elements in the quasi-analytical equations; (3) a method for computing the sensitivity coefficients from the resulting quasi-analytical equations; (4) a package to determine for comparison purposes sensitivity coefficients via the finite difference approach; and (5) a graphics package.
Plain packaging policy: Preventing industry innovations.
Al-Hamdani, Mohammed
2017-04-20
The pack is a marketing tool for the tobacco industry - its shape, colour, fonts, descriptors and logos attract and mislead smokers. Health warnings on cigarette packs serve as a knowledge reminder for smokers to quit smoking. Plain packaging eliminates brand imagery elements from cigarette packs and has many benefits, including the reduction of intention to smoke and the denormalization of smoking behaviour. The tobacco industry has devised pack and product marketing innovations that thwart the effectiveness of health warnings. Plain packaging policy needs to address these innovations by restricting their use and preventing them from undermining health warnings.
Propagation of coherent light pulses with PHASE
NASA Astrophysics Data System (ADS)
Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.
2014-09-01
The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.
NASA Astrophysics Data System (ADS)
Kit Wong, Ching; Wu, Patrick
2017-04-01
Wu (2004) developed a transformation scheme to model viscoelatic deformation due to glacial loading by commercial finite element package - ABAQUS. Benchmark tests confirmed that this method works extremely well on incompressible earth model. Bangtsson & Lund (2008),however, showed that the transformation scheme would lead to incorrect results if compressible material parameters are used. Their study implies that Wu's method of stress transformation is inadequate to model the load induced deformation of a compressible earth under the framework of ABAQUS. In light of this, numerical experiments are carried out to find if there exist other methods that serve this purpose. All the tested methods are not satisfying as the results failed to converge through iterations, except at the elastic limit. Those tested methods will be outlined and the results will be presented. Possible reasons of failure will also be discussed. Bängtsson, E., & Lund, B. (2008). A comparison between two solution techniques to solve the equations of glacially induced deformation of an elastic Earth. International journal for numerical methods in engineering, 75(4), 479-502. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408.
NASA Astrophysics Data System (ADS)
Kololuoma, Terho K.; Tuomikoski, Markus; Makela, Tapio; Heilmann, Jali; Haring, Tomi; Kallioinen, Jani; Hagberg, Juha; Kettunen, Ilkka; Kopola, Harri K.
2004-06-01
Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like packages and printed matter can be used to increase their information content. These functionalities make also possible the realization of new type of entertaining, impressive or guiding effects on the product packages and printed matter. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Additionally, the price of the components for low-end products has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid materials - inks - have made it possible to fabricate functional electrical, optical and optoelectrical components by conventional roll-to-roll techniques such as gravure printing, embossing, digital printing, offset, and screen printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated, optics, electronics and optoelectronics. With few examples, we also demonstrate the printing and hot-embossing capabilities of table scale printing machines and VTT Electronic's 'PICO' roll-to-roll pilot production facility.
Chen, Lung-Tai; Chang, Jin-Sheng; Hsu, Chung-Yi; Cheng, Wood-Hi
2009-01-01
A novel plastic packaging of a piezoresistive pressure sensor using a patterned ultra-thick photoresist is experimentally and theoretically investigated. Two pressure sensor packages of the sacrifice-replacement and dam-ring type were used in this study. The characteristics of the packaged pressure sensors were investigated by using a finite-element (FE) model and experimental measurements. The results show that the thermal signal drift of the packaged pressure sensor with a small sensing-channel opening or with a thin silicon membrane for the dam-ring approach had a high packaging induced thermal stress, leading to a high temperature coefficient of span (TCO) response of −0.19% span/°C. The results also show that the thermal signal drift of the packaged pressure sensors with a large sensing-channel opening for sacrifice-replacement approach significantly reduced packaging induced thermal stress, and hence a low TCO response of −0.065% span/°C. However, the packaged pressure sensors of both the sacrifice-replacement and dam-ring type still met the specification −0.2% span/°C of the unpackaged pressure sensor. In addition, the size of proposed packages was 4 × 4 × 1.5 mm3 which was about seven times less than the commercialized packages. With the same packaging requirement, the proposed packaging approaches may provide an adequate solution for use in other open-cavity sensors, such as gas sensors, image sensors, and humidity sensors. PMID:22454580
Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony
2016-09-01
This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
CFD-Modeling of the Multistage Gasifier Capacity of 30 KW
NASA Astrophysics Data System (ADS)
Levin, A. A.; Kozlov, A. N.; Svishchev, D. A.; Donskoy, I. G.
2017-11-01
Single-stage fuel gasification processes have been developed and widely studied in Russia and abroad throughout the 20th century. They are fundamental to the creation and design of modern gas generator equipment. Many studies have shown that single-stage gasification process, have already reached the limit of perfection, which was a significant improvement in their performance becomes impossible and unprofitable. The most fully meet modern technical requirements of multistage gasification technology. In the first step of the process, is organized allothermic biomass pyrolysis using heat of exhaust gas and generating power plant. At this stage, the yield of volatile products (gas and tar) of fuel. In the second step, the layer of fuel is, the tar is decomposed by the action of hot air and steam, steam-gas mixture is formed further reacts with the charcoal in the third process stage. The paper presents a model developed by the authors of the multi-stage gasifier for wood chips. The model is made with the use of CFD-modeling software package (COMSOL Multiphisics). To describe the kinetics of wood pyrolysis and gasification of charcoal studies were carried out using a set of simultaneous thermal analysis. For this complex developed original methods of interpretation of measurements, including methods of technical analysis of fuels and determine the parameters of the detailed kinetics and mechanism of pyrolysis.
Constructing COMSOL Models of a Bacteriological Fuel Cell
NASA Technical Reports Server (NTRS)
Coker, Robert; Mansell, James
2012-01-01
We show very initial work on a specific bioelectrochemical system (BES), a bacteriologically driven 'fuel cell' (BFS), that is intended to process waste products, such as CO2 and brine. (1) Processing is the priority, not power generation (2) Really a Microbial Electrolysis Cell (MEC)
NASA Technical Reports Server (NTRS)
Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.
2008-01-01
The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.
Application of COMSOL to Acoustic Imaging
2010-10-01
Marquardt (LM) (2 epochs), followed by Broyden, Fletcher, Goldfarb, and Shannon (BFGS) (2 epochs) followed by scaled conjugate gradient ( SCG )(100...Use Matlab’s excellent Neural Network Toolbox Optimization techniques considered: ScaledCon jugate Gradient (“ SCG ”) - fast OneStep
Food product design: emerging evidence for food policy.
Al-Hamdani, Mohammed; Smith, Steven
2017-03-01
The research on the impact of specific brand elements such as food descriptors and package colors is underexplored. We tested whether a "light" color and a "low-calorie" descriptor on food packages gain favorable consumer perception ratings as compared with regular packages. Our online experiment recruited 406 adults in a 3 (product type: Chips versus Juice versus Yoghurt) × 2 (descriptor type: regular versus low-calorie) × 2 (color type: regular versus light) mixed design. Dependent variables were sensory (evaluations of the product's nutritional value and quality), product-based (evaluations of the product's physical appeal), and consumer-based (evaluations of the potential consumers of the product) scales. "Low-calorie" descriptors were found to increase sensory ratings as compared with regular descriptors and light-colored packages received higher product-based ratings as compared with their regular-colored counterparts. Food package color and descriptors present a promising venue for understanding preventative measures against obesity.[Formula: see text].
Humidity Data for 9975 Shipping Packages with Softwood Fiberboard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
The 9975 surveillance program is developing a technical basis to support extending the storage period of 9975 packages in K-Area Complex beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Direct measurements of humidity and fiberboard moisture content have been made on two test packages with softwood fiberboard and varying internal heat levels from 0 up to 19W. Comparable measurements withmore » cane fiberboard have been reported previously. With an internal heat load, a temperature gradient in the fiberboard assembly leads to varying relative humidity in the air around the fiberboard. However, the absolute humidity tends to remain approximately constant throughout the package, especially at lower heat loads.« less
Transducer Analysis and ATILA++ Model Development
2016-10-10
the ATILA finite element software package. This will greatly enhance the state-of-the-art in transducer performance prediction and provide a tool...refereed publication. 15 IMPACT/APPLICATIONS This work is helping to enable the expansion of the functionality of the A TILA ++ finite element ...Sb. GRANT NUMBER N00014-13-1-0196 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Richard J. Meyer, Jr. 20675 Douglas C. Markley Se
TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages
Bontempi, Gianluca; Ceccarelli, Michele; Noushmehr, Houtan
2016-01-01
Biotechnological advances in sequencing have led to an explosion of publicly available data via large international consortia such as The Cancer Genome Atlas (TCGA), The Encyclopedia of DNA Elements (ENCODE), and The NIH Roadmap Epigenomics Mapping Consortium (Roadmap). These projects have provided unprecedented opportunities to interrogate the epigenome of cultured cancer cell lines as well as normal and tumor tissues with high genomic resolution. The Bioconductor project offers more than 1,000 open-source software and statistical packages to analyze high-throughput genomic data. However, most packages are designed for specific data types (e.g. expression, epigenetics, genomics) and there is no one comprehensive tool that provides a complete integrative analysis of the resources and data provided by all three public projects. A need to create an integration of these different analyses was recently proposed. In this workflow, we provide a series of biologically focused integrative analyses of different molecular data. We describe how to download, process and prepare TCGA data and by harnessing several key Bioconductor packages, we describe how to extract biologically meaningful genomic and epigenomic data. Using Roadmap and ENCODE data, we provide a work plan to identify biologically relevant functional epigenomic elements associated with cancer. To illustrate our workflow, we analyzed two types of brain tumors: low-grade glioma (LGG) versus high-grade glioma (glioblastoma multiform or GBM). This workflow introduces the following Bioconductor packages: AnnotationHub, ChIPSeeker, ComplexHeatmap, pathview, ELMER, GAIA, MINET, RTCGAToolbox, TCGAbiolinks. PMID:28232861
TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages.
Silva, Tiago C; Colaprico, Antonio; Olsen, Catharina; D'Angelo, Fulvio; Bontempi, Gianluca; Ceccarelli, Michele; Noushmehr, Houtan
2016-01-01
Biotechnological advances in sequencing have led to an explosion of publicly available data via large international consortia such as The Cancer Genome Atlas (TCGA), The Encyclopedia of DNA Elements (ENCODE), and The NIH Roadmap Epigenomics Mapping Consortium (Roadmap). These projects have provided unprecedented opportunities to interrogate the epigenome of cultured cancer cell lines as well as normal and tumor tissues with high genomic resolution. The Bioconductor project offers more than 1,000 open-source software and statistical packages to analyze high-throughput genomic data. However, most packages are designed for specific data types (e.g. expression, epigenetics, genomics) and there is no one comprehensive tool that provides a complete integrative analysis of the resources and data provided by all three public projects. A need to create an integration of these different analyses was recently proposed. In this workflow, we provide a series of biologically focused integrative analyses of different molecular data. We describe how to download, process and prepare TCGA data and by harnessing several key Bioconductor packages, we describe how to extract biologically meaningful genomic and epigenomic data. Using Roadmap and ENCODE data, we provide a work plan to identify biologically relevant functional epigenomic elements associated with cancer. To illustrate our workflow, we analyzed two types of brain tumors: low-grade glioma (LGG) versus high-grade glioma (glioblastoma multiform or GBM). This workflow introduces the following Bioconductor packages: AnnotationHub, ChIPSeeker, ComplexHeatmap, pathview, ELMER, GAIA, MINET, RTCGAToolbox, TCGAbiolinks.
Numerical Modeling of Gas Turbine Combustor Utilizing One-Dimensional Acoustics
NASA Astrophysics Data System (ADS)
Caley, Thomas M.
This study focuses on the numerical modeling of a gas turbine combustor set-up with known regions of thermoacoustic instability. The proposed model takes the form of a hybrid thermoacoustic network, with lumped elements representing boundary conditions and the flame, and 3-dimensional geometry volumes representing the geometry. The model is analyzed using a commercial 3-D finite element method (FEM) software, COMSOL Multiphysics. A great deal of literature is available covering thermoacoustic modeling, but much of it utilizes more computationally expensive techniques such as Large-Eddy Simulations, or relies on analytical modeling that is limited to specific test cases or proprietary software. The present study models the 3-D geometry of a high-pressure combustion chamber accurately, and uses the lumped elements of a thermoacoustic network to represent parts of the combustor system that can be experimentally tested under stable conditions, ensuring that the recorded acoustic responses can be attributed to that element alone. The numerical model has been tested against the experimental model with and without an experimentally-determined impedance boundary condition. Eigenfrequency studies are used to compare the frequency and growth rates (and from that, the thermoacoustic stability) of resonant modes in the combustor. The flame in the combustor is modeled with a flame transfer function that was determined from experimental testing using frequency forcing. The effect of flow rate on the impedance boundary condition is also examined experimentally and numerically to qualify the practice of modeling an orifice plate as an acoustically-closed boundary. Using the experimental flame transfer function and boundary conditions in the numerical model produced results that closely matched previous experimental tests in frequency, but not in stability characteristics. The lightweight nature of the numerical model means additional lumped elements can be easily added when experimental data is available, creating a more accurate model without noticeably increasing the complexity or computational time.
NASA Astrophysics Data System (ADS)
Tabassum, Shafia; Murtaza, Ahmar; Ali, Hasan; Uddin, Zia Mohy; Zehra, Syedah Sadaf
2017-10-01
For rapid osseointegration of dental implant fixtures, various surface treatments including plasma spraying, hydroxyapatite coating, acid-etching, and surface grooving are used. However undesirable effects such as chemical modifications, loss of mechanical properties, prolonged processing times and post production treatment steps are often associated with these techniques. The osseointegration rate of the dental implants can be promoted by increasing the surface area of the dental implant, thus increasing the bone cells - implant material contact and allow bone tissues to grow rapidly. Additive Manufacturing (AM) techniques can be used to fabricate dental implant fixtures with desirable surface area in a single step manufacturing process. AM allows the use of Computer Aided Designing (CAD) for customised rapid prototyping of components with precise control over geometry. In this study, the dental implant fixture that replaces the tooth root was designed on commercially available software COMSOL. Nickel - titanium alloy was selected as build materials for dental implant. The geometry of the dental fixture was varied by changing the interspacing distance (thread pitch) and number of threads to increase the total surface area. Three different microstructures were introduced on the surface of dental implant. The designed models were used to examine the effect of changing geometries on the total surface area. Finite Element Analysis (FEA) was performed to investigate the effect of changing geometries on the mechanical properties of the dental implant fixtures using stress analysis.
Simulating root-induced rhizosphere deformation and its effect on water flow
NASA Astrophysics Data System (ADS)
Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.
2011-12-01
Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.
NASA Astrophysics Data System (ADS)
Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.
2015-03-01
The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.
Zhang, J Y; Xu, W J; Carlier, J; Ji, X M; Nongaillard, B; Queste, S; Huang, Y P
2012-01-01
High-frequency ultrasonic transducer arrays are essential for high resolution imaging in clinical analysis and Non-Destructive Evaluation (NDE). However, the fabrication of conventional backing-layer structure, which requires a pitch (distance between the centers of two adjacent elements) of half wavelength in medium, is really a great challenge. Here we present an alternative buffer-layer structure with a silicon lens for volumetric imaging. The requirement for the size of the pitch is less critical for this structure, making it possible to fabricate high-frequency (100MHz) ultrasonic linear array transducers. Using silicon substrate also makes it possible to integrate the arrays with IC (Integrated Circuit). To compare with the conventional backing-layer structure, a finite element tool, COMSOL, is employed to investigate the performances of acoustic beam focusing, the influence of pitch size for the buffer-layer configuration, and to calculate the electrical properties of the arrays, including crosstalk effect and electrical impedance. For a 100MHz 10-element array of buffer-layer structure, the ultrasound beam in azimuth plane in water could be electronically focused to obtain a spatial resolution (a half-amplitude width) of 86μm at the focal depth. When decreasing from half wavelength in silicon (42μm) to half wavelength in water (7.5μm), the pitch sizes weakly affect the focal resolution. The lateral spatial resolution is increased by 4.65% when the pitch size decreases from 42μm to 7.5μm. The crosstalk between adjacent elements at the central frequency is, respectively, -95dB, -39.4dB, and -60.5dB for the 10-element buffer, 49-element buffer and 49-element backing arrays. Additionally, the electrical impedance magnitudes for each structure are, respectively, 4kΩ, 26.4kΩ, and 24.2kΩ, which is consistent with calculation results using Krimholtz, Leedom, and Matthaei (KLM) model. These results show that the buffer-layer configuration is a promising alternative for the fabrication of high-frequency ultrasonic linear arrays dedicated to volumetric imaging. Copyright © 2011 Elsevier B.V. All rights reserved.
Advanced Simulation in Undergraduate Pilot Training: Automatic Instructional System
1975-10-01
an addressable reel-to--reel audio tape recorder, a random access audio memory drum , and an interactive software package which permits the user to...audio memory drum , and an interactive software package which permits the user to develop preptogtahmed exercises. Figure 2 illustrates overall...Data Recprding System consists of two elements; an overlay program which performs the real-time sampling of specified variables and stores data to disc
Smyth, Redmond P; Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe; von Kleist, Max; Marquet, Roland
2018-05-18
Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.
Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe
2018-01-01
Abstract Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5′ region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5′ PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production. PMID:29514260
The Structure and Function of the Rous Sarcoma virus RNA Stability Element
Withers, Johanna B.; Beemon, Karen L.
2013-01-01
For simple retroviruses, such as the Rous sarcoma virus (RSV), post-transcriptional control elements regulate viral RNA splicing, export, stability, and packaging into virions. These RNA sequences interact with cellular host proteins to regulate and facilitate productive viral infections. One such element, known as the RSV stability element (RSE), is required for maintaining stability of the full-length unspliced RNA. This viral RNA serves as the mRNA for the Gag and Pol proteins and also as the genome packaged in progeny virions. When the RSE is deleted from the viral RNA, the unspliced RNA becomes unstable and is degraded in a Upf1-dependent manner. Current evidence suggests that the RSE inhibits recognition of the viral gag termination codon by the nonsense-mediated mRNA decay (NMD) pathway. We believe that the RSE acts as an insulator to NMD, thereby preventing at least one of the required functional steps that target an mRNA for degradation. Here, we discuss the history of the RSE and the current model of how the RSE is interacting with cellular NMD factors. PMID:21769913
Cigarette package design: opportunities for disease prevention.
Difranza, J R; Clark, D M; Pollay, R W
2002-06-15
To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers.
Cigarette package design: opportunities for disease prevention
DiFranza, JR; Clark, DM; Pollay, RW
2003-01-01
Objective To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. Methods A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Data Synthesis Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. Conclusion The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers. PMID:19570250
Cigarette package design: opportunities for disease prevention
DiFranza, JR; Clark, DM; Pollay, RW
2003-01-01
Objective To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. Methods A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Data Synthesis Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. Conclusion The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers.
Youssef, Ahmed M; Kamel, S; El-Samahy, M A
2013-10-15
With the increasing sustainability trend with packaging materials, paper and polymer nanocomposites represent a novel class of packaging materials. This study evaluates the potential achievement of alternative sustainable materials as antibacterial packaging application. Paper sheet from rice straw coated with 5 or 10% polystyrene (PS) nanocomposites using titanium dioxide nanoparticles (TiO2-NPs) doped or undoped with sliver nanoparticles (Ag-NPs) were prepared. The morphology of the uncoated and coated paper sheets was studied by SEM. The treated paper sheets were analyzed for their elemental composition using EDAX. The Barrier, air permeability, cob test, as well as mechanical properties and tensile strength were also evaluated. The inhibitory effect of modified paper sheets against Pseudomonas, Staphylococcus aureus, Candida, and Staphylococcus were investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fathi, K.; Galer, S.; Kirkby, K. J.; Palmans, H.; Nisbet, A.
2017-11-01
The high uncertainty in the Relative Biological Effectiveness (RBE) values of particle therapy beam, which are used in combination with the quantity absorbed dose in radiotherapy, together with the increase in the number of particle therapy centres worldwide necessitate a better understating of the biological effect of such modalities. The present novel study is part of performance testing and development of a micro-calorimeter based on Superconducting QUantum Interference Devices (SQUIDs). Unlike other microdosimetric detectors that are used for investigating the energy distribution, this detector provides a direct measurement of energy deposition at the micrometre scale, that can be used to improve our understanding of biological effects in particle therapy application, radiation protection and environmental dosimetry. Temperature rises of less than 1μK are detectable and when combined with the low specific heat capacity of the absorber at cryogenic temperature, extremely high energy deposition sensitivity of approximately 0.4 eV can be achieved. The detector consists of 3 layers: tissue equivalent (TE) absorber, superconducting (SC) absorber and silicon substrate. Ideally all energy would be absorbed in the TE absorber and heat rise in the superconducting layer would arise due to heat conduction from the TE layer. However, in practice direct particle absorption occurs in all 3 layers and must be corrected for. To investigate the thermal behaviour within the detector, and quantify any possible correction, particle tracks were simulated employing Geant4 (v9.6) Monte Carlo simulations. The track information was then passed to the COMSOL Multiphysics (Finite Element Method) software. The 3D heat transfer within each layer was then evaluated in a time-dependent model. For a statistically reliable outcome, the simulations had to be repeated for a large number of particles. An automated system has been developed that couples Geant4 Monte Carlo output to COMSOL for determining the expected distribution of proton tracks and their thermal contribution within the detector. The correction factor for a 3.8 MeV proton pencil beam was determined and applied to the expected spectra. The corrected microdosimetric spectra was shown to have a good agreement with the ideal spectra.
BUCKY instruction manual, version 3.3
NASA Technical Reports Server (NTRS)
Smith, James P.
1994-01-01
The computer program BUCKY is a p-version finite element package for the solution of structural problems. The current version of BUCKY solves the 2-D plane stress, 3-D plane stress plasticity, 3-D axisymmetric, Mindlin and Kirchoff plate bending, and buckling problems. The p-version of the finite element method is a highly accurate version of the traditional finite element method. Example cases are presented to show the accuracy and application of BUCKY.
Implications of Tobacco Industry Research on Packaging Colors for Designing Health Warning Labels.
Lempert, Lauren K; Glantz, Stanton A
2016-09-01
Health warning labels (HWLs) are an important way to educate the public about the dangers of tobacco products. Tobacco companies conducted research to understand how pack colors affect consumers' perceptions of the products and make packages and their labeling more visually prominent. We analyzed previously secret tobacco industry documents concerning the tobacco industry's internal research on how cigarette package colors and design influence the visual prominence of packages and consumers' perceptions of the harmfulness of the products. The companies found that black is visually prominent, placing dark pack elements on a contrasting light background makes them stand out more, and black text on a white background is more prominent than white text on a black background. Yellow most quickly and effectively seizes and holds consumers' attention and signals warning or danger, while white connotes health and safety. Using black text on a bright contrasting background color, particularly yellow, attracts consumers' attention to the message. Tobacco industry research on pack color choices that make pack elements more prominent, attract and keep consumers' attention, and convey danger instead of health should guide governments in specifying requirements for HWLs. These factors suggest that HWLs printed on a yellow background with black lettering and borders would most effectively seize and keep consumers' attention and signal the danger of cigarettes and other tobacco products. Tobacco companies' internal research on improving the prominence of pack elements suggests that HWLs using black lettering on a contrasting yellow background would most effectively seize and hold consumers' attention and signal the danger of cigarettes and other tobacco products. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery
NASA Technical Reports Server (NTRS)
Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
Parametric study of guided waves dispersion curves for composite plates
NASA Astrophysics Data System (ADS)
Predoi, Mihai Valentin; Petre, Cristian Cǎtǎlin; Kettani, Mounsif Ech Cherif El; Leduc, Damien
2018-02-01
Nondestructive testing of composite panels benefit from the relatively long range propagation of guided waves in sandwich structures. The guided waves are sensitive to delamination, air bubbles inclusions and cracks and can thus bring information about hidden defects in the composite panel. The preliminary data in all such inspections is represented by the dispersion curves, representing the dependency of the phase/group velocity on the frequency for the propagating modes. In fact, all modes are more or less attenuated, so it is even more important to compute the dispersion curves, which provide also the modal attenuation as function of frequency. Another important aspect is the sensitivity of the dispersion curves on each of the elastic constant of the composite, which are orthotropic in most cases. All these aspects are investigated in the present work, based on our specially developed finite element numerical model implemented in Comsol, which has several advantages over existing methods. The dispersion curves and modal displacements are computed for an example of composite plate. Comparison with literature data validates the accuracy of our results.
Laser Heating of the Core-Shell Nanowires
NASA Astrophysics Data System (ADS)
Astefanoaei, Iordana; Dumitru, Ioan; Stancu, Alexandru
2016-12-01
The induced thermal stress in a heating process is an important parameter to be known and controlled in the magnetization process of core-shell nanowires. This paper analyses the stress produced by a laser heating source placed at one end of a core-shell type structure. The thermal field was computed with the non-Fourier heat transport equation using a finite element method (FEM) implemented in Comsol Multiphysics. The internal stresses are essentially due to thermal gradients and different expansion characteristics of core and shell materials. The stress values were computed using the thermo elastic formalism and are depending on the laser beam parameters (spot size, power etc.) and system characteristics (dimensions, thermal characteristics). Stresses in the GPa range were estimated and consequently we find that the magnetic state of the system can be influenced significantly. A shell material as the glass which is a good thermal insulator induces in the magnetic core, the smaller stresses and consequently the smaller magnetoelastic energy. These results lead to a better understanding of the switching process in the magnetic materials.
NASA Astrophysics Data System (ADS)
Le-Duc, Thang; Ho-Huu, Vinh; Nguyen-Thoi, Trung; Nguyen-Quoc, Hung
2016-12-01
In recent years, various types of magnetorheological brakes (MRBs) have been proposed and optimized by different optimization algorithms that are integrated in commercial software such as ANSYS and Comsol Multiphysics. However, many of these optimization algorithms often possess some noteworthy shortcomings such as the trap of solutions at local extremes, or the limited number of design variables or the difficulty of dealing with discrete design variables. Thus, to overcome these limitations and develop an efficient computation tool for optimal design of the MRBs, an optimization procedure that combines differential evolution (DE), a gradient-free global optimization method with finite element analysis (FEA) is proposed in this paper. The proposed approach is then applied to the optimal design of MRBs with different configurations including conventional MRBs and MRBs with coils placed on the side housings. Moreover, to approach a real-life design, some necessary design variables of MRBs are considered as discrete variables in the optimization process. The obtained optimal design results are compared with those of available optimal designs in the literature. The results reveal that the proposed method outperforms some traditional approaches.
NASA Astrophysics Data System (ADS)
Gordon, R.; Zorkova, V.; Min, M.; Rätsep, I.
2010-04-01
We describe here an imaging system that uses bioimpedance spectroscopy with multi-electrode array to indicate the state of muscle flap regions under the array. The system is able to differentiate between different health states in the tissue and give early information about the location and size of ischemic sub-regions. The array will be 4*8 electrodes with the spacing of 5mm between the electrodes (the number of electrodes and the spacing may vary). The electrodes are minimally invasive short stainless steel needles, that penetrate 0.3 mm into the tissue with the goal of achieving a wet electric contact. We combine 32 configurations of 4-electrode multi-frequency impedance measurements to derive a health-state map for the transplanted flap. The imaging method is tested on a model consisting of 2 tissues and FEM software (Finite Element Method -COMSOL Multiphysics based) is used to conduct the measurements virtually. Dedicated multichannel bioimpedance measurement equipment has already been developed and tested, that cover the frequency range from 100 Hz to 1 MHz.
NASA Astrophysics Data System (ADS)
Xie, Ruijie; Li, Zhiquan; Li, Xin; Gu, Erdan; Niu, Liyong; Sha, Xiaopeng
2018-07-01
In this paper, a new type of light-emitting diodes (LEDs) structure is designed to enhance the light emission efficiency of GaN-based LEDs. The structure mainly includes Ag grating, ITO layer and p-GaN grating. The principle of stimulating the localized surface plasmon to improve the luminous characteristics of the LED by using this structure is discussed. Based on the COMSOL software, the finite element method is used to simulate the LED structure. The normalized radiated powers, the normalized absorbed powers under different wavelength and geometric parameters, and the distribution of the electric field with the particular geometric parameters are obtained. The simulation results show that with a local ITO thickness of 32 nm, an etching depth of 29 nm, a grating period of 510 nm and a duty ratio of 0.5, the emission intensity of the designed GaN-based LED structure has increased by nearly 55 times than the ordinary LED providing a reliable foundation for the development of high-performance GaN-based LEDs.
Two-dimensional arbitrarily shaped acoustic cloaks composed of homogeneous parts
NASA Astrophysics Data System (ADS)
Li, Qi; Vipperman, Jeffrey S.
2017-10-01
Acoustic cloaking is an important application of acoustic metamaterials. Although the topic has received much attention, there are a number of areas where contributions are needed. In this paper, a design method for producing acoustic cloaks with arbitrary shapes that are composed of homogeneous parts is presented. The cloak is divided into sections, each of which, in turn, is further divided into two parts, followed by the application of transformation acoustics to derive the required properties for cloaking. With the proposed mapping relations, the properties of each part of the cloak are anisotropic but homogeneous, which can be realized using two alternating layers of homogeneous and isotropic materials. A hexagonal and an irregular cloak are presented as design examples. The full wave simulations using COMSOL Multiphysics finite element software show that the cloaks function well at reducing reflections and shadows. The variation of the cloak properties is investigated as a function of three important geometric parameters used in the transformations. A balance can be found between cloaking performance and materials properties that are physically realizable.
Full wave simulations of helicon wave losses in the scrape-off-layer of the DIII-D tokamak
NASA Astrophysics Data System (ADS)
Lau, Cornwall; Jaeger, Fred; Berry, Lee; Bertelli, Nicola; Pinsker, Robert
2017-10-01
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D. Previous modeling using the hot plasma, full wave code AORSA, has shown good agreement with the ray tracing code GENRAY for helicon wave propagation and absorption in the core plasma. AORSA, and a new, reduced finite-element-model show discrepancies between ray tracing and full wave occur in the scrape-off-layer (SOL), especially at high densities. The reduced model is much faster than AORSA, and reproduces most of the important features of the AORSA model. The reduced model also allows for larger parametric scans and for the easy use of arbitrary tokamak geometry. Results of the full wave codes, AORSA and COMSOL, will be shown for helicon wave losses in the SOL are shown for a large range of parameters, such as SOL density profiles, n||, radial and vertical locations of the antenna, and different tokamak vessel geometries. This work was supported by DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FC02-04ER54698.
Finite element analysis of displacement actuator based on giant magnetostrictive thin film
NASA Astrophysics Data System (ADS)
Yu, Shaopeng; Wang, Bowen; Zhang, Changgeng; Cui, Baozhi
2018-05-01
With the rapid development of science and technology, mechanical and electrical equipment become more and more miniature. In order to achieve precise control in less than 1cm3, the giant magnetostrictive thin film has become a research hotspot. The micro displacement actuator with planar and arc film is designed by the dynamic coupling model based on J-A model and magneto-mechanical effect method which is proposed in this paper. The different structure and thickness of films are analyzed by COMSOL Multiphysics software when the current flows through driving coil. After comparing the simulation results with the test ones, it can be seen that the coupling model is accurate and the structure is reliable. At the same time, MATLAB is used to fit the current density-displacement curve and higher order equation is obtained, and then the feasibility of design can be verified. The actuator with arc structure had advantages of small volume, fast response, high precision, easy integration, etc., which has a broad application prospect in the field of vibration control, micro positioning, robot and so on.
Measurement strategy for rectangular electrical capacitance tomography sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi
2014-04-11
To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration.more » The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation.« less
Study of the magnets used for a mobile isocenter carbon ion gantry.
Moreno, Jhonnatan Osorio; Pullia, Marco G; Priano, Cristiana; Lante, Valeria; Necchi, Monica M; Savazzi, Simone
2013-07-01
A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10(-4); it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator.
Study of the magnets used for a mobile isocenter carbon ion gantry
Moreno, Jhonnatan Osorio; Pullia, Marco G.; Priano, Cristiana; Lante, Valeria; Necchi, Monica M.; Savazzi, Simone
2013-01-01
A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10–4; it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator. PMID:23824120
On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism.
Miniewicz, A; Quintard, C; Orlikowska, H; Bartkiewicz, S
2017-07-19
Gas bubbles can be trapped and then manipulated with laser light. In this report, we propose the detailed optical trapping mechanism of gas bubbles confined inside a thin light-absorbing liquid layer between two glass plates. The necessary condition of bubble trapping in this case is the direct absorption of light by the solution containing a dye. Due to heat release, fluid whirls propelled by the surface Marangoni effect at the liquid/gas interface emerge and extend to large distances. We report the experimental microscopic observation of the origin of whirls at an initially flat liquid/air interface as well as at the curved interface of a liquid/gas bubble and support this finding with advanced numerical simulations using the finite element method within the COMSOL Multiphysics platform. The simulation results were in good agreement with the observations, which allowed us to propose a simple physical model for this particular trapping mechanism, to establish the origin of forces attracting bubbles toward a laser beam and to predict other phenomena related to this effect.
Automating Nuclear-Safety-Related SQA Procedures with Custom Applications
Freels, James D.
2016-01-01
Nuclear safety-related procedures are rigorous for good reason. Small design mistakes can quickly turn into unwanted failures. Researchers at Oak Ridge National Laboratory worked with COMSOL to define a simulation app that automates the software quality assurance (SQA) verification process and provides results in less than 24 hours.
2018-03-01
of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for...mannose binding both experimentally and in molecular dynamics simulation ............................................................ 6 Fig. 3 COMSOL...Research Laboratory (ARL) strengths (e.g., molecular biology/synthetic biology, biomolecular recognition, materials characterization and polymer science
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor)
1988-01-01
A set of addressable test structures, each of which uses addressing schemes to access individual elements of the structure in a matrix, is used to test the quality of a wafer before integrated circuits produced thereon are diced, packaged and subjected to final testing. The electrical characteristic of each element is checked and compared to the electrical characteristic of all other like elements in the matrix. The effectiveness of the addressable test matrix is in readily analyzing the electrical characteristics of the test elements and in providing diagnostic information.
NASA Technical Reports Server (NTRS)
Thompson, David S.; Soni, Bharat K.
2000-01-01
An integrated software package, ICEG2D, was developed to automate computational fluid dynamics (CFD) simulations for single-element airfoils with ice accretion. ICEG2D is designed to automatically perform three primary functions: (1) generating a grid-ready, surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generating a high-quality grid using the generated surface point distribution, and (3) generating the input and restart files needed to run the general purpose CFD solver NPARC. ICEG2D can be executed in batch mode using a script file or in an interactive mode by entering directives from a command line. This report summarizes activities completed in the first year of a three-year research and development program to address issues related to CFD simulations for aircraft components with ice accretion. Specifically, this document describes the technology employed in the software, the installation procedure, and a description of the operation of the software package. Validation of the geometry and grid generation modules of ICEG2D is also discussed.
Extreme temperature packaging: challenges and opportunities
NASA Astrophysics Data System (ADS)
Johnson, R. Wayne
2016-05-01
Consumer electronics account for the majority of electronics manufactured today. Given the temperature limits of humans, consumer electronics are typically rated for operation from -40°C to +85°C. Military applications extend the range to -65°C to +125°C while underhood automotive electronics may see +150°C. With the proliferation of the Internet of Things (IoT), the goal of instrumenting (sensing, computation, transmission) to improve safety and performance in high temperature environments such as geothermal wells, nuclear reactors, combustion chambers, industrial processes, etc. requires sensors, electronics and packaging compatible with these environments. Advances in wide bandgap semiconductors (SiC and GaN) allow the fabrication of high temperature compatible sensors and electronics. Integration and packaging of these devices is required for implementation into actual applications. The basic elements of packaging are die attach, electrical interconnection and the package or housing. Consumer electronics typically use conductive adhesives or low melting point solders for die attach, wire bonds or low melting solder for electrical interconnection and epoxy for the package. These materials melt or decompose in high temperature environments. This paper examines materials and processes for high temperature packaging including liquid transient phase and sintered nanoparticle die attach, high melting point wires for wire bonding and metal and ceramic packages. The limitations of currently available solutions will also be discussed.
Possibilities of Land Administration Domain Model (ladm) Implementation in Nigeria
NASA Astrophysics Data System (ADS)
Babalola, S. O.; Rahman, A. Abdul; Choon, L. T.; Van Oosterom, P. J. M.
2015-10-01
LADM covers essential information associated components of land administration and management including those over water and elements above and below the surface of the earth. LADM standard provides an abstract conceptual model with three packages and one sub-package. LADM defined terminology for a land administration system that allows a shared explanation of different formal customary or informal tenures. The standard provides the basis for national and regional profiles and enables the combination of land management information from different sources in a coherent manner. Given this, this paper started with the description of land and land administration in Nigeria. The pre-colonial, colonial and post-colonial era with organization structure was discussed. This discussion is important to present an understanding of the background of any improvement needed for the LADM implementation in Nigeria. The LADM, ISO 19152 and the packages of LADM was discussed, and the comparison of the different aspects of each package and classes were made with Nigerian land administration and the cadastral system. In the comparison made, it was discovered that the concept is similar to LADM packages in Nigerian land administration. Although, the terminology may not be the same in all cases. Having studied conceptualization and the application of LADM, as a model that has essential information associated with components of the land administration. Including those on the land, over water as well as elements above and below the surface of the earth and discovered that the standard is suitable for the country. The model can, therefore, be adopted into Nigerian land administration system by mapping in some of the concepts of LADM.
Liu, Yang; Zhai, Chengkai; Sun, Guiju; Zhang, Hong; Jiang, Mingxia; Zhang, Haifeng; Guo, Junling; Lan, Xi
2014-05-01
To observe and compare the effects of grain-bean package, dietary fiber (DF) extracted from grain-bean package, and DF from grain corn on the blood lipids and fatty acid synthase (FAS) activity in high-fat, high-cholesterol feeding induced dyslipidemia rats, and observe its effects on regulation of sterol regulatory element protein-1c (SREBP-1c) mRNA expression in rat liver. Consolidation 50 SD rats of clean grade feeding adaptation for one week, randomly assigned into normal control group, hyperlipidemia model group, grain-bean package group, grain-bean package DF group and grain corn group. Feed with corresponding diets for 8 weeks, and measure the total cholesterol (TC), triglyceridaemia (TG), high density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), FAS, SREBP-1c mRNA of all groups. Compared with control group, TC, TG, FBG levels of hyperlipidemia model group were significantly increased (P < 0.05). Compared with model group, TC, TG, FBG levels of grain-bean package group, grain-bean package DF group were significantly decreased, HDL-C levels significantly increased, and activity of FAS, regulation of SREBP-1c were significantly decreased (P < 0.05). The Grain-bean package dietary fiber can improve blood lipids levels of dyslipidemia rats, and decrease FAS activity and SREBP-1c mRNA expression.
Fiberboard humidity data for 9975 shipping packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
2015-07-31
The 9975 surveillance program is identifying a technical basis to support extending the storage period of 9975 packages in KAC beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis.Two efforts have been undertaken to better understand the levels and behavior of moisture within the fiberboard assemblies of the 9975 shipping package. In the first effort, an initial survey of humidity andmore » temperature in the upper air space of 26 packages stored in KAC was made. The data collected within this first effort help to illustrate how the upper air space humidity varies with the local ambient temperature and package heat load. In the second effort, direct measurements of two test packages are providing a correlation between humidity and fiberboard moisture levels within the package, and variations in moisture throughout the fiberboard assembly. This effort has examined packages with cane fiberboard and internal heat levels of 5 and 10W to date. Additional testing is expected to include 15 and 19W heat levels, and then repeat the same four heat levels with softwood fiberboard assemblies. This report documents the data collected to date within these two efforts.« less
Fiberboard Humidity Data for 9975 Shipping Packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W.
The 9975 surveillance program is identifying a technical basis to support extending the storage period of 9975 packages in KAC beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Two efforts have been undertaken to better understand the levels and behavior of moisture within the fiberboard assemblies of the 9975 shipping package. In the first effort, an initial survey of humiditymore » and temperature in the upper air space of 26 packages stored in KAC was made. The data collected within this first effort help to illustrate how the upper air space humidity varies with the local ambient temperature and package heat load. In the second effort, direct measurements of two test packages are providing a correlation between humidity and fiberboard moisture levels within the package, and variations in moisture throughout the fiberboard assembly. This effort has examined packages with cane fiberboard and internal heat levels of 5 and 10W to date. Additional testing is expected to include 15 and 19W heat levels, and then repeat the same four heat levels with softwood fiberboard assemblies. This report documents the data collected to date within these two efforts« less
Fiberboard humidity data for 9975 shipping packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
The 9975 surveillance program is identifying a technical basis to support extending the storage period of 9975 packages in KAC beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis.Two efforts have been undertaken to better understand the levels and behavior of moisture within the fiberboard assemblies of the 9975 shipping package. In the first effort, an initial survey of humidity andmore » temperature in the upper air space of 26 packages stored in KAC was made. The data collected within this first effort help to illustrate how the upper air space humidity varies with the local ambient temperature and package heat load. In the second effort, direct measurements of two test packages are providing a correlation between humidity and fiberboard moisture levels within the package, and variations in moisture throughout the fiberboard assembly. This effort has examined packages with cane fiberboard and internal heat levels of 5 and 10W to date. Additional testing is expected to include 15 and 19W heat levels, and then repeat the same four heat levels with softwood fiberboard assemblies. This report documents the data collected to date within these two efforts.« less
Dissection of specific binding of HIV-1 Gag to the 'packaging signal' in viral RNA.
Comas-Garcia, Mauricio; Datta, Siddhartha Ak; Baker, Laura; Varma, Rajat; Gudla, Prabhakar R; Rein, Alan
2017-07-20
Selective packaging of HIV-1 genomic RNA (gRNA) requires the presence of a cis -acting RNA element called the 'packaging signal' (Ψ). However, the mechanism by which Ψ promotes selective packaging of the gRNA is not well understood. We used fluorescence correlation spectroscopy and quenching data to monitor the binding of recombinant HIV-1 Gag protein to Cy5-tagged 190-base RNAs. At physiological ionic strength, Gag binds with very similar, nanomolar affinities to both Ψ-containing and control RNAs. We challenged these interactions by adding excess competing tRNA; introducing mutations in Gag; or raising the ionic strength. These modifications all revealed high specificity for Ψ. This specificity is evidently obscured in physiological salt by non-specific, predominantly electrostatic interactions. This nonspecific activity was attenuated by mutations in the MA, CA, and NC domains, including CA mutations disrupting Gag-Gag interaction. We propose that gRNA is selectively packaged because binding to Ψ nucleates virion assembly with particular efficiency.
A reduction package for cross-dispersed echelle spectrograph data in IDL
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.; Neff, James E.
1992-12-01
We have written in IDL a data reduction package that performs reduction and extraction of cross-dispersed echelle spectrograph data. The present package includes a complete set of tools for extracting data from any number of spectral orders with arbitrary tilt and curvature. Essential elements include debiasing and flatfielding of the raw CCD image, removal of scattered light background, either nonoptimal or optimal extraction of data, and wavelength calibration and continuum normalization of the extracted orders. A growing set of support routines permits examination of the frame being processed to provide continuing checks on the statistical properties of the data and on the accuracy of the extraction. We will display some sample reductions and discuss the algorithms used. The inherent simplicity and user-friendliness of the IDL interface make this package a useful tool for spectroscopists. We will provide an email distribution list for those interested in receiving the package, and further documentation will be distributed at the meeting.
[Effects of packaging forms on the stability of vitamin B1 and vitamin C in TPN admixtures].
Hashimoto, Daisuke; Iwahara, Ryosei; Sato, Hideki
2010-12-01
In order to reduce a microbial contamination and needle stick injuries that are associated with a mixing procedure in home parentera nutrition(HPN), nutrition(TPN)solution bags pre-mixed with trace elements may be provided in a form of outer packaging. On the other hand, a packaging form used to enclose the TPN bag after admixture may significantly affect the stability of vitamins. With a focus on possible decrease in vitamin B1 and C content, we investigated the effects of the packaging form. As a result, the TPN bag, which is packed in a light-resistant outer wrap of oxygen-barrier film with an oxygen absorbent under reduced pressure, suppressed a decrease in vitamin content most. However, the decrease in vitamin C content was observed when there was a long time-lag between a preparation and a packaging. We thought it was desirable to pack the TPN bag promptly after the preparation.
Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics
NASA Technical Reports Server (NTRS)
Fischbach, S. R.
2015-01-01
Combustion instability modeling of Solid Rocket Motors (SRM) remains a topic of active research. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process, acoustics, and steady-state gas dynamics. Recent advances in defining the energy transport of disturbances within steady flow-fields have been applied by combustion stability modelers to improve the analysis framework. Employing this more accurate global energy balance requires a higher fidelity model of the SRM flow-field and acoustic mode shapes. The current industry standard analysis tool utilizes a one dimensional analysis of the time dependent fluid dynamics along with a quasi-three dimensional propellant grain regression model to determine the SRM ballistics. The code then couples with another application that calculates the eigenvalues of the one dimensional homogenous wave equation. The mean flow parameters and acoustic normal modes are coupled to evaluate the stability theory developed and popularized by Culick. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The current study employs the COMSOL Multiphysics finite element framework to model the steady flow-field parameters and acoustic normal modes of a generic SRM. This work builds upon previous efforts to verify the use of the acoustic velocity potential equation (AVPE) laid out by Campos. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, del squared psi - (lambda/c) squared psi - M x [M x del((del)(psi))] - 2((lambda)(M)/c + M x del(M) x (del)(psi) - 2(lambda)(psi)[M x del(1/c)] = 0. with M as the Mach vector, c as the speed of sound, and ? as the complex eigenvalue. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluates the gas flow inside of a SRM using St. Robert's law to model the solid propellant burn rate, slip boundary conditions, and the supersonic outflow condition. Results from the HMNF model are verified by comparing the pertinent ballistics parameters with the industry standard code outputs (i.e. pressure drop, axial velocity, exit velocity). These results are then used by the coefficient form of the mathematics module to determine the complex eigenvalues of the AVPE. The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. The one way coupled analysis is perform four times utilizing geometries determined through traditional SRM modeling procedures. The results of the steady-state CFD and AVPE analyses are used to calculate the linear acoustic growth rate as is defined by Flandro and Jacob. In order to verify the process implemented within COMSOL we first employ the Culick theory and compare the results with the industry standard. After the process is verified, the Flandro/Jacob energy balance theory is employed and results displayed.
Resistance heating releases structural adhesive
NASA Technical Reports Server (NTRS)
Glemser, N. N.
1967-01-01
Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.
Geotourism products industry element: A community approach
NASA Astrophysics Data System (ADS)
Basi Arjana, I. W.; Ernawati, N. M.; Astawa, I. K.
2018-01-01
The ability of a tourism area to provide products that could satisfy the needs and desires of tourists is the key to success in developing tourism. Geotourists are a niche market that has specific needs. This study aims to identify the needs of geotourists, which is undertaken by evaluating the perceptions of geotourists with respect to 6 elements which are the industrial aspects of community-based tourism products, using a qualitative approach. In-depth interview technique is used as data collection method. These products are as follows: there are five major categories of geotourism commercial elements, which include: travel services, accommodation, transportation, food and beverage, souvenir and packaging. The research results show that there are various products which are the output of the industry elements desired by tourists in Batur representing the needs of different market segments and accommodating the sustainability of nature. These needs are arised and inspired by local culture. The necessity to offer an assortment of products packages is indicated to provide plentiful options for tourists, to lengthen tourist’s stay, and also to introduce various product components available in Batur. The research output could be used and contribute in providing a reference in developing geotourism products.
Wafer-scale micro-optics fabrication
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard
2012-07-01
Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.
Program Package for the Analysis of High Resolution High Signal-To-Noise Stellar Spectra
NASA Astrophysics Data System (ADS)
Piskunov, N.; Ryabchikova, T.; Pakhomov, Yu.; Sitnova, T.; Alekseeva, S.; Mashonkina, L.; Nordlander, T.
2017-06-01
The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE calculations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.
Novel technique for tracking manpower and work packages: a useful tool for the team and management
NASA Astrophysics Data System (ADS)
Gill, R.; Gracia, G.; Lupton, R. H.; O'Mullane, W.
2014-08-01
In these times of austerity it is becoming more and more important to justify the need for manpower to management. Additionally, with the fast pace of today's projects the need for tools that facilitate teams to not only plan, but also track their work, are essential. The practice of planning work packages and the associated manpower has been about for a while but little is done to really cross-check that planning against reality. In this paper these elements are brought together through a number of tools that make up the end to end process of planning, tracking and reporting of work package progress and manpower usage.
Numerical modeling of the fetal blood flow in the placental circulatory system
NASA Astrophysics Data System (ADS)
Shannon, Alexander; Gallucci, Sergio; Mirbod, Parisa
2015-11-01
The placenta is a unique organ of exchange between the growing fetus and the mother. It incorporates almost all functions of the adult body, acting as the fetal lung, digestive and immune systems, to mention a few. The exchange of oxygen and nutrients takes place at the surface of the villous tree. Using an idealized geometry of the fetal villous trees in the mouse placenta, in this study we performed 3D computational analysis of the unsteady fetal blood flow, gas, and nutrient transport over the chorionic plate. The fetal blood was treated as an incompressible Newtonian fluid, and the oxygen and nutrient were treated as a passive scalar dissolved in blood plasma. The flow was laminar, and a commercial CFD code (COMSOL Multiphysics) has been used for the simulation. COMSOL has been selected because it is multi-physics FEM software that allows for the seamless coupling of different physics represented by partial differential equations. The results clearly illustrate that the specific branching pattern and the in-plane curvature of the fetal villous trees affect the delivery of blood, gas and nutrient transport to the whole placenta.
NASA Astrophysics Data System (ADS)
Cocean, A.; Cocean, I.; Cazacu, M. M.; Bulai, G.; Iacomi, F.; Gurlui, S.
2018-06-01
The self-cleaning of the atmosphere under humidity conditions is observed due to the change in emission intensity when chemical traces are investigated with DARLIOES - the advanced LIDAR based on space- and time-resolved RAMAN and breakdown spectroscopy in conditions of consistent humidity of atmosphere. The determination was performed during the night, in the wintertime under conditions of high humidity and snowfall, in urban area of Iasi. The change in chemical composition of the atmosphere detected was assumed to different chemical reactions involving presence of the water. Water dissociation that was registered during spectral measurements is explained by a simulation of the interaction between artificial light and snowflakes - virtually designed in a spherical geometry - in a wet air environment, using COMSOL Multiphysics software. The aim of the study is to explain the decrease or elimination of some of the toxic trace chemical compounds in the process of self-cleaning in other conditions than the sun light interaction for further finding application for air cleaning under artificial conditions.
NASA Astrophysics Data System (ADS)
Sharma, Trivendra Kumar; Parashar, Sandeep Kumar
2018-05-01
In the present age functionally graded piezoelectric materials (FGPM) are increasingly being used as actuators and sensors. In spite of the fact that the piezoelectric coupling coefficient for shear d15 has much higher value in comparison to d31 or d33, it is far less utilized for the applications due to complex nature of the shear induced vibrations. In this work three dimensional free vibration analysis of functionally graded piezoelectric material annular plates with free-free boundary conditions is presented. The annular FGPM plate is polarized along the radial direction while the electric field is applied along the thickness direction inducing flexural vibrations of the plate due to d15 effect of functionally graded piezoelectric materials. The material properties are assumed to have a power law variation along the thickness. COMSOL Multiphysics is used to obtain the natural frequencies and modeshapes. Detailed numerical study is performed to ascertain the effect of variation in power law index and various geometrical parameters. The results presented shall be helpful in optimizing the existing applications and developing the new ones utilizing the FGPM annular plates.
Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy
NASA Astrophysics Data System (ADS)
Karimi, S.; Marsh, B. D.; Hilpert, M.
2017-12-01
A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the terrains with relatively high background heat flux or for vanes located in relatively deep layers, the RAD-EGS can produce economic geothermal energy for more than 40 years. Moreover, these simulations show that the geothermal vane design with the injection well at the bottom and production well at the top of the vane greatly contributes to the longevity of the system.
Bertrand, Jane T; Njeuhmeli, Emmanuel; Forsythe, Steven; Mattison, Sarah K; Mahler, Hally; Hankins, Catherine A
2011-01-01
This paper proposes an approach to estimating the costs of demand creation for voluntary medical male circumcision (VMMC) scale-up in 13 countries of eastern and southern Africa. It addresses two key questions: (1) what are the elements of a standardized package for demand creation? And (2) what challenges exist and must be taken into account in estimating the costs of demand creation? We conducted a key informant study on VMMC demand creation using purposive sampling to recruit seven people who provide technical assistance to government programs and manage budgets for VMMC demand creation. Key informants provided their views on the important elements of VMMC demand creation and the most effective funding allocations across different types of communication approaches (e.g., mass media, small media, outreach/mobilization). The key finding was the wide range of views, suggesting that a standard package of core demand creation elements would not be universally applicable. This underscored the importance of tailoring demand creation strategies and estimates to specific country contexts before estimating costs. The key informant interviews, supplemented by the researchers' field experience, identified these issues to be addressed in future costing exercises: variations in the cost of VMMC demand creation activities by country and program, decisions about the quality and comprehensiveness of programming, and lack of data on critical elements needed to "trigger the decision" among eligible men. Based on this study's findings, we propose a seven-step methodological approach to estimate the cost of VMMC scale-up in a priority country, based on our key assumptions. However, further work is needed to better understand core components of a demand creation package and how to cost them. Notwithstanding the methodological challenges, estimating the cost of demand creation remains an essential element in deriving estimates of the total costs for VMMC scale-up in eastern and southern Africa.
Bertrand, Jane T.; Njeuhmeli, Emmanuel; Forsythe, Steven; Mattison, Sarah K.; Mahler, Hally; Hankins, Catherine A.
2011-01-01
Background This paper proposes an approach to estimating the costs of demand creation for voluntary medical male circumcision (VMMC) scale-up in 13 countries of eastern and southern Africa. It addresses two key questions: (1) what are the elements of a standardized package for demand creation? And (2) what challenges exist and must be taken into account in estimating the costs of demand creation? Methods and Findings We conducted a key informant study on VMMC demand creation using purposive sampling to recruit seven people who provide technical assistance to government programs and manage budgets for VMMC demand creation. Key informants provided their views on the important elements of VMMC demand creation and the most effective funding allocations across different types of communication approaches (e.g., mass media, small media, outreach/mobilization). The key finding was the wide range of views, suggesting that a standard package of core demand creation elements would not be universally applicable. This underscored the importance of tailoring demand creation strategies and estimates to specific country contexts before estimating costs. The key informant interviews, supplemented by the researchers' field experience, identified these issues to be addressed in future costing exercises: variations in the cost of VMMC demand creation activities by country and program, decisions about the quality and comprehensiveness of programming, and lack of data on critical elements needed to “trigger the decision” among eligible men. Conclusions Based on this study's findings, we propose a seven-step methodological approach to estimate the cost of VMMC scale-up in a priority country, based on our key assumptions. However, further work is needed to better understand core components of a demand creation package and how to cost them. Notwithstanding the methodological challenges, estimating the cost of demand creation remains an essential element in deriving estimates of the total costs for VMMC scale-up in eastern and southern Africa. PMID:22140450
NASA Astrophysics Data System (ADS)
Korayem, A. H.; Abdi, M.; Korayem, M. H.
2018-06-01
The surface topography in nanoscale is one of the most important applications of AFM. The analysis of piezoelectric microcantilevers vibration behavior is essential to improve the AFM performance. To this end, one of the appropriate methods to simulate the dynamic behavior of microcantilever (MC) is a numerical solution with FEM in the 3D modeling using COMSOL software. The present study aims to simulate different geometries of the four-layered AFM piezoelectric MCs in 2D and 3D modeling in a liquid medium using COMSOL software. The 3D simulation was done in a spherical container using FSI domain in COMSOL. In 2D modeling by applying Hamilton's Principle based on Euler-Bernoulli Beam theory, the governing motion equation was derived and discretized with FEM. In this mode, the hydrodynamic force was assumed with a string of spheres. The effect of this force along with the squeezed-film force was considered on MC equations. The effect of fluid density and viscosity on the MC vibrations that immersed in different glycerin solutions was investigated in 2D and 3D modes and the results were compared with the experimental results. The frequencies and time responses of MC close to the surface were obtained considering tip-sample forces. The surface topography of MCs different geometries were compared in the liquid medium and the comparison was done in both tapping and non-contact mode. Various types of surface roughness were considered in the topography for MC different geometries. Also, the effect of geometric dimensions on the surface topography was investigated. In liquid medium, MC is installed at an oblique position to avoid damaging the MC due to the squeezed-film force in the vicinity of MC surface. Finally, the effect of MC's angle on surface topography and time response of the system was investigated.
Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devoto, D.
2014-11-01
The thermal performance and reliability of sintered-silver is being evaluated for power electronics packaging applications. This will be experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates that will be subsequently subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. The experiment is outlined, and the modeling approach is discussed.
Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.
Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah
2009-01-01
Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.
TMAP: Tübingen NLTE Model-Atmosphere Package
NASA Astrophysics Data System (ADS)
Werner, Klaus; Dreizler, Stefan; Rauch, Thomas
2012-12-01
The Tübingen NLTE Model-Atmosphere Package (TMAP) is a tool to calculate stellar atmospheres in spherical or plane-parallel geometry in hydrostatic and radiative equilibrium allowing departures from local thermodynamic equilibrium (LTE) for the population of atomic levels. It is based on the Accelerated Lambda Iteration (ALI) method and is able to account for line blanketing by metals. All elements from hydrogen to nickel may be included in the calculation with model atoms which are tailored for the aims of the user.
Zuccarello, Daniel J; Murphy, Michael P; Meyer, Richard F; Winslow, Paul A
2009-01-01
A comprehensive digestive approach for determining the extractable and leachable metals in pharmaceutical products by inductively-coupled plasma is investigated. This study examines several acid digestion strategies for packaging materials, containers, and formulated products for complete trace metals analysis. Packaging materials, a food product, and a simulated drug product are evaluated for leachable metals by stressing the materials under accelerated stability conditions. Trace metal profiles of 64 elements for these materials are reported.
Kvit, Anton A; Devine, Erin E; Jiang, Jack J; Vamos, Andrew C; Tao, Chao
2015-05-01
Vocal fold tissue is biphasic and consists of a solid extracellular matrix skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and to estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency, and material parameters were chosen based on those reported in the literature. Postprocessing included liquid velocity, pore pressure, and von Mises stress calculations as well as the frequency-stress and amplitude-stress relationships. Resulting time-averaged velocity vectors during vibration indicated liquid movement toward the midline of the fold, as well as upward movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just after vibration. A linear relationship was found between the amplitude and pore pressure, whereas a nonlinear relationship was found between the frequency and pore pressure. Although this study had certain computational simplifications, it is the first biphasic finite element model to use a realistic geometry and demonstrate the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline; however, the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Kvit, Anton A.; Devine, Erin E.; Vamos, Andrew C.; Tao, Chao; Jiang, Jack J.
2015-01-01
OBJECTIVE Vocal fold tissue is biphasic and consists of a solid extracellular matric skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. METHODS A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct-load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency and material parameters were chosen based on those reported in the literature. Post-processing included liquid velocity, pore pressure and von Mises stress calculations, as well as the frequency-stress and amplitude-stress relationships. RESULTS Resulting time-averaged velocity vectors during vibration indicated liquid movement towards the midline of the fold, as upwards movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just following vibration. A linear relationship was found between the amplitude and pore pressure, while a nonlinear relationship was found between the frequency and pore pressure. CONCLUSIONS While this study had certain computational simplifications, it is the first biphasic finite element model to employ a realistic geometry and demonstrated the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline, however the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. PMID:25619469
Software package for modeling spin-orbit motion in storage rings
NASA Astrophysics Data System (ADS)
Zyuzin, D. V.
2015-12-01
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.
On the release of cppxfel for processing X-ray free-electron laser images.
Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K; Stuart, David Ian
2016-06-01
As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Here cppxfel , a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set. Cppxfel is released with the hope that the unique and useful elements of this package can be repurposed for existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.
Packaging Technology for SiC High Temperature Circuits Operable up to 500 Degrees Centigrade
NASA Technical Reports Server (NTRS)
Chen, Lian-Yu
2002-01-01
New high temperature low power 8-pin packages have been fabricated using commercial fabrication service. These packages are made of aluminum nitride and 96 percent alumina with Au metallization. The new design of these packages provides the chips inside with EM shielding. Wirebond geometry control has been achieved for precise mechanical tests. Au wirebond samples with 45 degree heel-angle have been tested using wireloop test module. The geometry control improves the consistency of measurement of the wireloop breaking point.Also reported on is a parametric study of the thermomechanical reliability of a Au thick-film based SiC die-attach assembly using nonlinear finite element analysis (FEA) was conducted to optimize the die-attach thermo-mechanical performance for operation at temperatures from room temperature to 500 degrees Centigrade. This parametric study centered on material selection, structure design and process control.
On the release of cppxfel for processing X-ray free-electron laser images
Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K.; ...
2016-05-11
As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Herecppxfel, a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set.Cppxfelis released with the hope that the unique and useful elements of this package can be repurposed formore » existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.« less
Integrated microsystems packaging approach with LCP
NASA Astrophysics Data System (ADS)
Jaynes, Paul; Shacklette, Lawrence W.
2006-05-01
Within the government communication market there is an increasing push to further miniaturize systems with the use of chip-scale packages, flip-chip bonding, and other advances over traditional packaging techniques. Harris' approach to miniaturization includes these traditional packaging advances, but goes beyond this level of miniaturization by combining the functional and structural elements of a system, thus creating a Multi-Functional Structural Circuit (MFSC). An emerging high-frequency, near hermetic, thermoplastic electronic substrate material, Liquid Crystal Polymer (LCP), is the material that will enable the combination of the electronic circuit and the physical structure of the system. The first embodiment of this vision for Harris is the development of a battlefield acoustic sensor module. This paper will introduce LCP and its advantages for MFSC, present an example of the work that Harris has performed, and speak to LCP MFSCs' potential benefits to miniature communications modules and sensor platforms.
MHOST version 4.2. Volume 1: Users' manual
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
This manual describes the user options available for running the MHOST finite element analysis package. MHOST is a solid and structural analysis program based on mixed finite element technology, and is specifically designed for three-dimensional inelastic analysis. A family of two- and three-dimensional continuum elements along with beam and shell structural elements can be utilized. Many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. An overview of the algorithms, a general description of the input data formats, and a discussion of input data for selecting solution algorithms are given.
Jenke, Dennis; Castner, James; Egert, Thomas; Feinberg, Tom; Hendricker, Alan; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Shaw, Arthur; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank
2013-01-01
Polymeric and elastomeric materials are commonly encountered in medical devices and packaging systems used to manufacture, store, deliver, and/or administer drug products. Characterizing extractables from such materials is a necessary step in establishing their suitability for use in these applications. In this study, five individual materials representative of polymers and elastomers commonly used in packaging systems and devices were extracted under conditions and with solvents that are relevant to parenteral and ophthalmic drug products (PODPs). Extraction methods included elevated temperature sealed vessel extraction, sonication, refluxing, and Soxhlet extraction. Extraction solvents included a low-pH (pH = 2.5) salt mixture, a high-pH (pH = 9.5) phosphate buffer, a 1/1 isopropanol/water mixture, isopropanol, and hexane. The resulting extracts were chemically characterized via spectroscopic and chromatographic means to establish the metal/trace element and organic extractables profiles. Additionally, the test articles themselves were tested for volatile organic substances. The results of this testing established the extractables profiles of the test articles, which are reported herein. Trends in the extractables, and their estimated concentrations, as a function of the extraction and testing methodologies are considered in the context of the use of the test article in medical applications and with respect to establishing best demonstrated practices for extractables profiling of materials used in PODP-related packaging systems and devices. Plastic and rubber materials are commonly encountered in medical devices and packaging/delivery systems for drug products. Characterizing the extractables from these materials is an important part of determining that they are suitable for use. In this study, five materials representative of plastics and rubbers used in packaging and medical devices were extracted by several means, and the extracts were analytically characterized to establish each material's profile of extracted organic compounds and trace element/metals. This information was utilized to make generalizations about the appropriateness of the test methods and the appropriate use of the test materials.
Celmer, M; Opieliński, K J; Dopierała, M
2018-02-01
One of the reasons of distortions in ultrasonic imaging are crosstalk effects. They can be divided into groups according to the way of their formation. One of them is constituted by mechanical crosstalk, which is propagated by a construction of a multi-element array of piezoelectric transducers. When an individual transducer is excited, mechanical vibrations are transferred to adjacent construction components, thereby stimulating neighboring transducers to an undesired operation. In order to explore ways of the propagation of such vibrations, the authors developed the FEM model of the array of piezoelectric transducers designed for calculations in COMSOL Multiphysics software. Simulations of activating individual transducers and calculated electrical voltages appearing on transducers unstimulated intentionally, were performed in the time domain in order to assess the propagation velocity of different vibration modes through the construction elements. On this basis, conclusions were drawn in terms of the participation of various construction parts of the array of piezoelectric transducers in the process of creating the mechanical crosstalk. The elaborated FEM model allowed also to examine the ways aimed at reducing the transmission of mechanical crosstalk vibrations through the components of the array. Studies showed that correct cuts in the fasteners and the front layer improve the reduction of the mechanical crosstalk effect. The model can become a helpful tool in the process of design and modifications of manufactured ultrasonic arrays particularly in terms of mechanical crosstalk reduction. Copyright © 2017 Elsevier B.V. All rights reserved.
Extending fullwave core ICRF simulation to SOL and antenna regions using FEM solver
NASA Astrophysics Data System (ADS)
Shiraiwa, S.; Wright, J. C.
2016-10-01
A full wave simulation approach to solve a driven RF waves problem including hot core, SOL plasmas and possibly antenna is presented. This approach allows for exploiting advantages of two different way of representing wave field, namely treating spatially dispersive hot conductivity in a spectral solver and handling complicated geometry in SOL/antenna region using an unstructured mesh. Here, we compute a mode set in each region with the RF electric field excitation on the connecting boundary between core and edge regions. A mode corresponding to antenna excitation is also computed. By requiring the continuity of tangential RF electric and magnetic fields, the solution is obtained as unique superposition of these modes. In this work, TORIC core spectral solver is modified to allow for mode excitation, and the edge region of diverted Alcator C-Mod plasma is modeled using COMSOL FEM package. The reconstructed RF field is similar in the core region to TORIC stand-alone simulation. However, it contains higher poloidal modes near the edge and captures a wave bounced and propagating in the poloidal direction near the vacuum-plasma boundary. These features could play an important role when the single power pass absorption is modest. This new capability will enable antenna coupling calculations with a realistic load plasma, including collisional damping in realistic SOL plasma and other loss mechanisms such as RF sheath rectification. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.
Hammond, David
2012-01-01
The Family Smoking Prevention and Tobacco Control Act (the "Act"), enacted in June 2009, gave the U.S. Food and Drug Administration authority to regulate tobacco products. The current paper reviews the provisions for packaging and labeling, including the existing evidence and research priorities. Narrative review using electronic literature search of published and unpublished sources in 3 primary areas: health warnings, constituent labeling, and prohibitions on the promotional elements of packaging. The Act requires 9 pictorial health warnings covering half of cigarette packages and 4 text warnings covering 30% of smokeless tobacco packages. The Act also prohibits potentially misleading information on packaging, including the terms "light" and "mild," and provides a mandate to require disclosure of chemical constituents on packages. Many of the specific regulatory provisions are based on the extent to which they promote "greater public understanding of the risks of tobacco." As a result, research on consumer perceptions has the potential to shape the design and renewal of health warnings and to determine what, if any, information on product constituents should appear on packages. Research on consumer perceptions of existing and novel tobacco products will also be critical to help identify potentially misleading information that should be restricted under the Act. Packaging and labeling regulations required under the Act will bring the United States in line with international standards. There is an immediate need for research to evaluate these measures to guide future regulatory action.
Meernik, Clare; Ranney, Leah M; Lazard, Allison J; Kim, KyungSu; Queen, Tara L; Avishai, Aya; Boynton, Marcella H; Sheeran, Paschal J; Goldstein, Adam O
2018-01-01
Product packaging has long been used by the tobacco industry to target consumers and manipulate product perceptions. This study examines the extent to which cigarillo packaging influences perceptions of product flavor, taste, smell, and appeal. A web-based experiment was conducted among young adults. Participants viewed three randomly selected cigarillo packs, varying on pack flavor descriptor, color, type, branding, and warning-totaling 180 pack images. Mixed-effects models were used to estimate the effect of pack elements on product perceptions. A total of 2,664 current, ever, and never little cigar and cigarillo users participated. Cigarillo packs with a flavor descriptor were perceived as having a more favorable taste (β = 0.21, p < .001) and smell (β = 0.14, p < .001) compared to packs with no flavor descriptor. Compared to packs with no color, pink and purple packs were more likely to be perceived as containing a flavor (β = 0.11, p < .001), and were rated more favorably on taste (β = 0.17, p < .001), smell (β = 0.15, p < .001), and appeal (β = 0.16, p < .001). While warnings on packs decreased favorable perceptions of product taste (pictorial: β = -0.07, p = .03) and smell (text-only: β = -0.08, p = .01; pictorial: β = -0.09, p = .007), warnings did not moderate the effects of flavor descriptor or color. To our knowledge, this study provides the first quantitative evidence that cigarillo packaging alters consumers' cognitive responses, and warnings on packs do not suffice to overcome the effects of product packaging. The findings support efforts at federal, state, and local levels to prohibit flavor descriptors and their associated product flavoring in non-cigarette products such as cigarillos, along with new data that supports restrictions on flavor cues and colors.
Like Cereals and Soap: The Marketing of Paperbacks.
ERIC Educational Resources Information Center
McCrackin, Mark
1982-01-01
Describes the five major elements in the marketing programs created by mass-market paperback book publishers to attract consumers to their products: market research, product development, packaging, promotion, and sales and distribution. (JL)
Nanoscale Transport Optimization
2008-12-04
could be argued that the advantage of using ABAQUS for this modeling construct has more to do with its ability to impose a user-defined subroutine that...finite element analysis. This is accomplished by employing a user defined subroutine for fluid properties at the interface within the finite element...package ABAQUS . Model Components: As noted above the governing equation for the material system is given as, ( ) ( ) 4484476444 8444 76
SQA of finite element method (FEM) codes used for analyses of pit storage/transport packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russel, E.
1997-11-01
This report contains viewgraphs on the software quality assurance of finite element method codes used for analyses of pit storage and transport projects. This methodology utilizes the ISO 9000-3: Guideline for application of 9001 to the development, supply, and maintenance of software, for establishing well-defined software engineering processes to consistently maintain high quality management approaches.
Industrial packaging and assembly infrastructure for MOEMS
NASA Astrophysics Data System (ADS)
van Heeren, Henne
2004-01-01
In a mature industry all elements of the supply chain are available and are more or less in balance. Mainstream technologies are defined and well supported by a chain of specialist companies. Those specialist companies, offering services ranging from consultancy to manufacturing subcontracting, are an essential element in the industrialization. There specialization and dedication to one or a few elements in the technology increases professionalism and efficiency. The MOEMS industry however, is still in its infancy. After the birth and growth of many companies aiming at development of products, the appearance of companies aiming at the production of components and systems, we see know the first companies concentrating on the delivering of services to this industry. We can divide them in the like : * Design and Engineering companies * Foundries * Assembly and Packaging providers * Design and simulation software providers For manufacturing suppliers and customers the lack of industry standards and mainstream technologies is a serious drawback. Insight in availability and trends in technology is important to make the right choices in the field of industrialization and production. This awareness was the reason to perform a detailed study to the companies supplying commercial services in this field. This article focuses on one important part of this study: packaging and assembly. This tends to remain a bottleneck at the end of the design cycle, often delaying and sometimes preventing industrialization and commercialization. For nearly all MEMS/MST products literally everything comes together in the packaging and assembly. This is the area of full integration: electrical, mechanical, optical fluidic, magnetic etc. functionalities come together. The problems associated with the concentration of functionalities forms a big headache for the designer. Conflicting demands, of which functionality versus economics is only one, and technical hurdles have to overcome. Besides that, packaging and assembly is from nature application specific and solutions found are not always transferable from one product to another. But designers can often benefit from experience from other and general available technologies. A number of companies offer packaging and assembly services for MEMS/MST and this report give typical examples of those commercial services. The companies range from small start-ups, offering very specialized services, to large semiconductor packaging companies, having production lines for microsystem based products. Selecting the proper packaging method may tip the scales towards a product success or towards a product failure, while it nearly always present s a substantial part of the cost of the product. This is therefore is not a marginal concern, but a crucial part of the product design. The presentation will also address mayor trends and technologies. Finally, the article provides sufficient levels of classification and categorisation for various aspects for the technologies, in specific, and the industry, in general, to provide particularly useful insights into the activities and the developments in this market. With over 50 companies studied and assessed, it provides an up to date account of the state of this business and its future potential.
Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel
NASA Technical Reports Server (NTRS)
Hunter, Don J.; Halpert, Gerald
1999-01-01
As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.
PyXRF: Python-based X-ray fluorescence analysis package
NASA Astrophysics Data System (ADS)
Li, Li; Yan, Hanfei; Xu, Wei; Yu, Dantong; Heroux, Annie; Lee, Wah-Keat; Campbell, Stuart I.; Chu, Yong S.
2017-09-01
We developed a python-based fluorescence analysis package (PyXRF) at the National Synchrotron Light Source II (NSLS-II) for the X-ray fluorescence-microscopy beamlines, including Hard X-ray Nanoprobe (HXN), and Submicron Resolution X-ray Spectroscopy (SRX). This package contains a high-level fitting engine, a comprehensive commandline/ GUI design, rigorous physics calculations, and a visualization interface. PyXRF offers a method of automatically finding elements, so that users do not need to spend extra time selecting elements manually. Moreover, PyXRF provides a convenient and interactive way of adjusting fitting parameters with physical constraints. This will help us perform quantitative analysis, and find an appropriate initial guess for fitting. Furthermore, we also create an advanced mode for expert users to construct their own fitting strategies with a full control of each fitting parameter. PyXRF runs single-pixel fitting at a fast speed, which opens up the possibilities of viewing the results of fitting in real time during experiments. A convenient I/O interface was designed to obtain data directly from NSLS-II's experimental database. PyXRF is under open-source development and designed to be an integral part of NSLS-II's scientific computation library.
ERIC Educational Resources Information Center
Lozano-Parada, Jaime H.; Burnham, Helen; Martinez, Fiderman Machuca
2018-01-01
A classical nonlinear system, the "Brusselator", was used to illustrate the modeling and simulation of oscillating chemical systems using stability analysis techniques with modern software tools such as Comsol Multiphysics, Matlab, and Excel. A systematic approach is proposed in order to establish a regime of parametric conditions that…
ERIC Educational Resources Information Center
Singha, Kamini; Loheide, Steven P., II
2011-01-01
Visualising subsurface processes in hydrogeology and building intuition for how these processes are controlled by changes in forcing is hard for many undergraduate students. While numerical modelling is one way to help undergraduate students explore outcomes of multiple scenarios, many codes are not user-friendly with respect to defining domains,…
ERIC Educational Resources Information Center
Mendez, Sergio; AungYong, Lisa
2014-01-01
To help students make the connection between the concepts of heat conduction and convection to real-world phenomenon, we developed a combined experimental and computational module that can be incorporated into lecture or lab courses. The experimental system we present requires materials and apparatus that are readily accessible, and the procedure…
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Chun, Donghoon; Yook, Jong-Gwan; Katehi, Linda P. B.
2001-01-01
Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior three-dimensional-finite element method (3-D-FEM) electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually Increases coupling between the lines: however, if the top of the via posts are connected by a metal strip, coupling is reduced. In this paper, experimental verification of the 3-D-FEM simulations is demonstrated for commercially fabricated low temperature cofired ceramic (LTCC) packages. In addition, measured attenuation of microstrip lines surrounded by the shielding structures is presented and shows that shielding structures do not change the attenuation characteristics of the line.
Final Report - Subcontract B623760
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bank, R.
2017-11-17
During my visit to LLNL during July 17{27, 2017, I worked on linear system solvers. The two level hierarchical solver that initiated our study was developed to solve linear systems arising from hp adaptive finite element calculations, and is implemented in the PLTMG software package, version 12. This preconditioner typically requires 3-20% of the space used by the stiffness matrix for higher order elements. It has multigrid like convergence rates for a wide variety of PDEs (self-adjoint positive de nite elliptic equations, convection dominated convection-diffusion equations, and highly indefinite Helmholtz equations, among others). The convergence rate is not independent ofmore » the polynomial degree p as p ! 1, but but remains strong for p 9, which is the highest polynomial degree allowed in PLTMG, due to limitations of the numerical quadrature rules implemented in the software package. A more complete description of the method and some numerical experiments illustrating its effectiveness appear in. Like traditional geometric multilevel methods, this scheme relies on knowledge of the underlying finite element space in order to construct the smoother and the coarse grid correction.« less
Microstrip Antenna Arrays on Multilayer LCP Substrates
NASA Technical Reports Server (NTRS)
Thompson, Dane; Bairavasubramanian, Ramanan; Wang, Guoan; Kingsley, Nickolas D.; Papapolymerou, Ioannis; Tenteris, Emmanouil M.; DeJean, Gerald; Li, RonglLin
2007-01-01
A research and development effort now underway is directed toward satisfying requirements for a new type of relatively inexpensive, lightweight, microwave antenna array and associated circuitry packaged in a thin, flexible sheet that can readily be mounted on a curved or flat rigid or semi-rigid surface. A representative package of this type consists of microwave antenna circuitry embedded in and/or on a multilayer liquid- crystal polymer (LCP) substrate. The circuitry typically includes an array of printed metal microstrip patch antenna elements and their feedlines on one or more of the LCP layer(s). The circuitry can also include such components as electrostatically actuated microelectromechanical systems (MEMS) switches for connecting and disconnecting antenna elements and feedlines. In addition, the circuitry can include switchable phase shifters described below. LCPs were chosen over other flexible substrate materials because they have properties that are especially attractive for high-performance microwave applications. These properties include low permittivity, low loss tangent, low water-absorption coefficient, and low cost. By means of heat treatments, their coefficients of thermal expansion can be tailored to make them more amenable to integration into packages that include other materials. The nature of the flexibility of LCPs is such that large LCP sheets containing antenna arrays can be rolled up, then later easily unrolled and deployed. Figure 1 depicts a prototype three- LCP-layer package containing two four-element, dual-polarization microstrip-patch arrays: one for a frequency of 14 GHz, the other for a frequency of 35 GHz. The 35-GHz patches are embedded on top surface of the middle [15-mil (approx.0.13-mm)-thick] LCP layer; the 14- GHz patches are placed on the top surface of the upper [9-mil (approx. 0.23-mm)-thick] LCP layer. The particular choice of LCP layer thicknesses was made on the basis of extensive analysis of the effects of the thicknesses on cross-polarization levels, bandwidth, and efficiency at each frequency.
NASA Technical Reports Server (NTRS)
Walston, W. H., Jr.
1986-01-01
The comparative computational efficiencies of the finite element (FEM), boundary element (BEM), and hybrid boundary element-finite element (HVFEM) analysis techniques are evaluated for representative bounded domain interior and unbounded domain exterior problems in elastostatics. Computational efficiency is carefully defined in this study as the computer time required to attain a specified level of solution accuracy. The study found the FEM superior to the BEM for the interior problem, while the reverse was true for the exterior problem. The hybrid analysis technique was found to be comparable or superior to both the FEM and BEM for both the interior and exterior problems.
The role of a detailed aqueous phase source release model in the LANL area G performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E.L.; Shuman, R.; Hollis, D.K.
1995-12-31
A preliminary draft of the Performance Assessment for the Los Alamos National Laboratory (LANL) low-level radioactive waste disposal facility at Area G is currently being completed as required by Department of Energy orders. A detailed review of the inventory data base records and the existing models for source release led to the development of a new modeling capability to describe the liquid phase transport from the waste package volumes. Nuclide quantities are sorted down to four waste package release categories for modeling: rapid release, soil, concrete/sludge, and corrosion. Geochemistry for the waste packages was evaluated in terms of the equilibriummore » coefficients, Kds, and elemental solubility limits, Csl, interpolated from the literature. Percolation calculations for the base case closure cover show a highly skewed distribution with an average of 4 mm/yr percolation from the disposal unit bottom. The waste release model is based on a compartment representation of the package efflux, and depends on package size, percolation rate or Darcy flux, retardation coefficient, and moisture content.« less
Telescoping Solar Array Concept for Achieving High Packaging Efficiency
NASA Technical Reports Server (NTRS)
Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff
2015-01-01
Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, Jeffery L.; Adams, Karen; Maxted, Maxcine
2013-07-01
The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow formore » efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose of packagings on a project-by-project basis. This initiative provides significant savings in packaging costs and acceleration of project schedules. In addition to certified packaging, the PSMC would be well suited for select designs of 7A Type A packaging and Industrial Packaging. (authors)« less
Interactive Finite Elements for General Engine Dynamics Analysis
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1984-01-01
General nonlinear finite element codes were adapted for the purpose of analyzing the dynamics of gas turbine engines. In particular, this adaptation required the development of a squeeze-film damper element software package and its implantation into a representative current generation code. The ADINA code was selected because of prior use of it and familiarity with its internal structure and logic. This objective was met and the results indicate that such use of general purpose codes is viable alternative to specialized codes for general dynamics analysis of engines.
The control data "GIRAFFE" system for interactive graphic finite element analysis
NASA Technical Reports Server (NTRS)
Park, S.; Brandon, D. M., Jr.
1975-01-01
The Graphical Interface for Finite Elements (GIRAFFE) general purpose interactive graphics application package was described. This system may be used as a pre/post processor for structural analysis computer programs. It facilitates the operations of creating, editing, or reviewing all the structural input/output data on a graphics terminal in a time-sharing mode of operation. An application program for a simple three-dimensional plate problem was illustrated.
On modelling three-dimensional piezoelectric smart structures with boundary spectral element method
NASA Astrophysics Data System (ADS)
Zou, Fangxin; Aliabadi, M. H.
2017-05-01
The computational efficiency of the boundary element method in elastodynamic analysis can be significantly improved by employing high-order spectral elements for boundary discretisation. In this work, for the first time, the so-called boundary spectral element method is utilised to formulate the piezoelectric smart structures that are widely used in structural health monitoring (SHM) applications. The resultant boundary spectral element formulation has been validated by the finite element method (FEM) and physical experiments. The new formulation has demonstrated a lower demand on computational resources and a higher numerical stability than commercial FEM packages. Comparing to the conventional boundary element formulation, a significant reduction in computational expenses has been achieved. In summary, the boundary spectral element formulation presented in this paper provides a highly efficient and stable mathematical tool for the development of SHM applications.
Jenke, Dennis; Rivera, Christine; Mortensen, Tammy; Amin, Parul; Chacko, Molly; Tran, Thang; Chum, James
2013-01-01
Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions and the levels of 32 metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The extracting solvents included aqueous mixtures at low and high pH and an organic solvent mixture (40/60 ethanol water). The sealed vessel extractions were performed by placing an appropriate portion of the test articles and an appropriate volume of extracting solution in inert extraction vessels and exposing the extraction units (and associated extraction blanks) to defined conditions of temperature and duration. The levels of extracted target elements were measured by inductively coupled plasma atomic emission spectroscopy. The overall reporting threshold for most of the targeted elements was 0.05 μg/mL, which corresponds to 0.5 μg/g for the most commonly utilized extraction stoichiometry (1 g of material per 10 mL of extracting solvent). The targeted elements could be classified into four major groups depending on the frequency with which they were present in the over 250 extractions reported in this study. Thirteen elements (Ag, As, Be, Cd, Co, Ge, Li, Mo, Ni, Sn, Ti, V, and Zr) were not extracted in reportable quantities from any of the test articles under any of the extraction conditions. Eight additional elements (Bi, Cr, Cu, Mn, Pb, Sb, Se, and Sr) were rarely extracted from the test articles at reportable levels, and three other elements (Ba, Fe, and P) were infrequently extracted from the test articles at reportable levels. The remaining eight elements (Al, B, Ca, Mg, Na, S, Si, and Zn) were more frequently present in the extracts in reportable quantities. These general trends in accumulation behavior were compared to compiled lists of elements of concern as impurities in pharmaceutical products. Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions, and the levels of thirty-two metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The targeted elements could be classified into four major groups depending on the frequency with which they were present in the extractions reported in this study: those elements that were not extracted in reportable quantities from any of the test articles under any of the extraction conditions, those elements that were rarely extracted from the test articles at reportable levels, those elements that were infrequently extracted from the test articles at reportable levels, and those elements that were more frequently present in the extracts in reportable quantities.
2012-01-01
Introduction: The Family Smoking Prevention and Tobacco Control Act (the “Act”), enacted in June 2009, gave the U.S. Food and Drug Administration authority to regulate tobacco products. The current paper reviews the provisions for packaging and labeling, including the existing evidence and research priorities. Methods: Narrative review using electronic literature search of published and unpublished sources in 3 primary areas: health warnings, constituent labeling, and prohibitions on the promotional elements of packaging. Results: The Act requires 9 pictorial health warnings covering half of cigarette packages and 4 text warnings covering 30% of smokeless tobacco packages. The Act also prohibits potentially misleading information on packaging, including the terms “light” and “mild,” and provides a mandate to require disclosure of chemical constituents on packages. Many of the specific regulatory provisions are based on the extent to which they promote “greater public understanding of the risks of tobacco.” As a result, research on consumer perceptions has the potential to shape the design and renewal of health warnings and to determine what, if any, information on product constituents should appear on packages. Research on consumer perceptions of existing and novel tobacco products will also be critical to help identify potentially misleading information that should be restricted under the Act. Conclusion: Packaging and labeling regulations required under the Act will bring the United States in line with international standards. There is an immediate need for research to evaluate these measures to guide future regulatory action. PMID:22039072
Evaluation of the prototype dual-axis wall attitude measurement sensor
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
1994-01-01
A prototype dual-axis electrolytic tilt sensor package for angular position measurements was built and evaluated in a laboratory environment. The objective was to investigate the use of this package for making wind tunnel wall attitude measurements for the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC). The instrumentation may replace an existing, more costly, and less rugged servo accelerometer package (angle-of-attack package) currently in use. The dual-axis electrolytic tilt sensor package contains two commercial electrolytic tilt sensors thermally insulated with NTF foam, all housed within a stainless steel package. The package is actively heated and maintained at 160 F using foil heating elements. The laboratory evaluation consisted of a series of tests to characterize the linearity, repeatability, cross-axis interaction, lead wire effect, step response, thermal time constant, and rectification errors. Tests revealed that the total RMS errors for the x-axis sensor is 0.084 degree, and 0.182 degree for the y-axis sensor. The RMS errors are greater than the 0.01 degree specification required for NTF wall attitude measurements. It is therefore not a viable replacement for the angle-of-attack package in the NTF application. However, with some physical modifications, it can be used as an inexpensive 5-degree range dual-axis inclinometer with overall accuracy approaching 0.01 degree under less harsh environments. Also, the data obtained from the tests can be valuable for wind tunnel applications of most types of electrolytic tilt sensors.
A systems approach to solder joint fatigue in spacecraft electronic packaging
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1991-01-01
Differential expansion induced fatigue resulting from temperature cycling is a leading cause of solder joint failures in spacecraft. Achieving high reliability flight hardware requires that each element of the fatigue issue be addressed carefully. This includes defining the complete thermal-cycle environment to be experienced by the hardware, developing electronic packaging concepts that are consistent with the defined environments, and validating the completed designs with a thorough qualification and acceptance test program. This paper describes a useful systems approach to solder fatigue based principally on the fundamental log-strain versus log-cycles-to-failure behavior of fatigue. This fundamental behavior has been useful to integrate diverse ground test and flight operational thermal-cycle environments into a unified electronics design approach. Each element of the approach reflects both the mechanism physics that control solder fatigue, as well as the practical realities of the hardware build, test, delivery, and application cycle.
Cleanup Verification Package for the 118-F-1 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. J. Farris and H. M. Sulloway
2008-01-10
This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.
Q-factor control of multilayer micromembrane using PZT composite material
NASA Astrophysics Data System (ADS)
Čekas, Elingas; Janušas, Giedrius; Palevicius, Arvydas; Janušas, Tomas; Ciganas, Justas
2018-02-01
Cantilever and membrane based sensors, which are capable of providing accurate detection of target analytes have been always an important research topic of medical diagnostics, food testing, and environmental monitoring fields. Here, the mechanical detection is achieved by micro- and nano-scale cantilevers for stress sensing and mass sensing, or micro- and nano-scale plates or membranes. High sensitivity is a major issue for the active element and it could be achieved via increased Q-factor. The ability to control the Q factor expands the range of application of the device and allows to achieve more accurate results. The aim of this paper is to investigate the mechanical and electrical properties, as well as, the ability to control the Q factor of the membrane with PZT nanocomposite. This multilayered membrane was formatted using the n-type <100> silicon substrate by implementing the Low Pressure Chemical Vapor Deposition (LPCVD), photolithography by using photomask with defined dimensions, deep etching, and e-beam evaporation techniques. Dynamic and electrical characteristics of the membrane were numerically investigated using COMSOL Multiphysics software. The use of the multilayered membrane can range from simple monitoring of particles concentration in a closed environment to inspecting glucose levels in human fluids (blood, tears, sweat, etc.).
Fluid flow in porous media using image-based modelling to parametrize Richards' equation.
Cooper, L J; Daly, K R; Hallett, P D; Naveed, M; Koebernick, N; Bengough, A G; George, T S; Roose, T
2017-11-01
The parameters in Richards' equation are usually calculated from experimentally measured values of the soil-water characteristic curve and saturated hydraulic conductivity. The complex pore structures that often occur in porous media complicate such parametrization due to hysteresis between wetting and drying and the effects of tortuosity. Rather than estimate the parameters in Richards' equation from these indirect measurements, image-based modelling is used to investigate the relationship between the pore structure and the parameters. A three-dimensional, X-ray computed tomography image stack of a soil sample with voxel resolution of 6 μm has been used to create a computational mesh. The Cahn-Hilliard-Stokes equations for two-fluid flow, in this case water and air, were applied to this mesh and solved using the finite-element method in COMSOL Multiphysics. The upscaled parameters in Richards' equation are then obtained via homogenization. The effect on the soil-water retention curve due to three different contact angles, 0°, 20° and 60°, was also investigated. The results show that the pore structure affects the properties of the flow on the large scale, and different contact angles can change the parameters for Richards' equation.
NASA Astrophysics Data System (ADS)
Zhong, Hua; Li, Chuanjun; Ren, Zhongming; Rettenmayr, Markus; Zhong, Yunbo; Yu, Jianbo; Wang, Jiang
2016-04-01
The Al-4.5 wt%Cu alloy has been directionally solidified under a high static magnetic field up to 6 T. A novel α-Al dendrite morphology was presented when the <001> primary trunk aligned to the magnetic field and temperature gradient. It is observed that tertiary dendrites grew asymmetrically on secondary arms in the plane perpendicular to the primary trunk, and a pinwheel-like pattern formed. A numerical simulation was performed using finite-element code COMSOL software to investigate the thermoelectric magnetic convection (TEMC) induced by the external magnetic field. The results show that the velocity of the TEMC increases with the increasing of the magnetic field and reaches a maximum value near 6 T. Meanwhile, the magnitude of the TEMC on two sides of the secondary arm becomes unequal. Comparison of the experimental and numerical results reveals that the development of the pinwheel-like appearance is in accordance with the flow pattern of the TEMC. It is implies that the modification of the tertiary dendrite could be attributed to the TEMC generated on dendrite scale. This work also provides direct experimental evidence that a high magnetic field (>1 T) induces fluid flow in mushy zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Grace; Brown, Judith Alice; Bishop, Joseph E.
The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities ofmore » interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.« less
NASA Astrophysics Data System (ADS)
Huo, Mandy; Meaker, Kacey; Chong, Su-Ann; Crommie, Michael
2014-03-01
Graphene is one atomic layer of graphite. It is stronger than steel yet very elastic. Although graphene is a semiconductor with no band gap, we can introduce a gap using various methods in order to make it useful in next-generation electronics. One way to do this is to strain graphene. While we can easily strain graphene uniaxially, this type of strain does not produce appreciable band gaps until relatively high strain percentages close to the fracture point of graphene. However, with a special strain geometry we can produce band gaps well before reaching the breaking point of graphene. This has been done experimentally, but not in a controlled manner. From previous research, strain percentages around 10 percent produce appreciable band gaps. Increasing the strain will increase the size of these gaps, but graphene breaks at around 20 percent strain. We propose to control the amount by which we strain graphene by placing it on a special polymer which expands when light is shone on it. In this project we use COMSOL, a finite element analysis software, to estimate the strain resulting in graphene due to stretching it with a given polymer geometry to find the shapes which will produce the specified strain.
Band gaps in grid structure with periodic local resonator subsystems
NASA Astrophysics Data System (ADS)
Zhou, Xiaoqin; Wang, Jun; Wang, Rongqi; Lin, Jieqiong
2017-09-01
The grid structure is widely used in architectural and mechanical field for its high strength and saving material. This paper will present a study on an acoustic metamaterial beam (AMB) based on the normal square grid structure with local resonators owning both flexible band gaps and high static stiffness, which have high application potential in vibration control. Firstly, the AMB with variable cross-section frame is analytically modeled by the beam-spring-mass model that is provided by using the extended Hamilton’s principle and Bloch’s theorem. The above model is used for computing the dispersion relation of the designed AMB in terms of the design parameters, and the influences of relevant parameters on band gaps are discussed. Then a two-dimensional finite element model of the AMB is built and analyzed in COMSOL Multiphysics, both the dispersion properties of unit cell and the wave attenuation in a finite AMB have fine agreement with the derived model. The effects of design parameters of the two-dimensional model in band gaps are further examined, and the obtained results can well verify the analytical model. Finally, the wave attenuation performances in three-dimensional AMBs with equal and unequal thickness are presented and discussed.
A comprehensive computational model of sound transmission through the porcine lung
Dai, Zoujun; Peng, Ying; Henry, Brian M.; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.
2014-01-01
A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This “subject-specific” model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415
A comprehensive computational model of sound transmission through the porcine lung.
Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J
2014-09-01
A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.
Apparent negative mass in QCM sensors due to punctual rigid loading
NASA Astrophysics Data System (ADS)
Castro, P.; Resa, P.; Elvira, L.
2012-12-01
Quartz Crystal Microbalances (QCM) are highly sensitive piezoelectric sensors able to detect very small loads attached to them. These devices are widely employed in many applications including process control and industrial and environmental monitoring. Mass loading is usually related to frequency shift by the well-known Sauerbrey's equation, valid for thin rigid homogeneous films. However, a significant deviation from this equation can occur when the mass is not uniformly distributed over the surface. Whereas the effects of a thin film on a QCM have been thoroughly studied, there are relatively few results on punctual loads, even though particles are usually deposited randomly and non-uniformly on the resonator surface. In this work, we have studied the effect of punctual rigid loading on the resonant frequency shift of a QCM sensor, both experimentally and using finite element method (FEM). The FEM numerical analysis was done using COMSOL software, 3D modeling a linear elastic piezoelectric solid and introducing the properties of an AT-cut quartz crystal. It is shown that a punctual rigid mass deposition on the surface of a QCM sensor can lead to positive shifts of resonance frequency, contrary to Sauerbrey's equation.
Chen, Tao; He, Yuting; Du, Jinqiang
2018-06-01
This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.
NASA Astrophysics Data System (ADS)
Bischoff, S. H.; Flesch, L. M.
2016-12-01
Differential flow in the lower crust of Tibet has been invoked to explain features in the region, including uniform plateau elevation, crustal thickness/topographic gradients, and uplift without observed shortening. Here, we use 3-D finite element modeling to test impacts of assumed lower crustal viscosities on deformation patterns in the India-Eurasia collision zone. We simulate instantaneous lithospheric deformation with Stokes flow using COMSOL Multiphysics (www.comsol.com). Our model geometry ranges eastward from the Pamir to Sichuan, northward from the southern tip of India to the Tien Shan, and vertically downward from the Earth's surface to 100 km below sea level. We divide model geometry into four domains: Indian lithosphere, Eurasian upper crust, lower crust, and upper mantle. Seismic and magnetotelluric study results guide inclusion of subducted Indian and Burma slabs along with our targeted weak lower crust. Within the larger Eurasian lower crust domain, weak lower crust is restricted to a zone bounded clockwise by the Himalayan Frontal Thrust, Karakorum, Altyn-Tagh, Kunlun, Longmen Shan, and onset of lower elevations along the plateau's southeastern margin. From top to bottom, vertical bounds of the zone are constrained by a constant 20 km below sea level and the shallower of either the top of the Indian slab or Moho. Strength is approximated via 3-D maps of effective viscosity constrained by the vertically-averaged lithospheric estimates of Flesch et al. [2001]. We forward model lower crust effective viscosities on the order of 1018 to 1022 Pa•s and inspect resulting horizontal and vertical deformation patterns. Results suggest that effective viscosities of less than 1020 Pa•s are required for both appreciable differential mass flux through lower crustal flow as well as decoupled lower crustal flow from the upper crust or mantle. Movement of the lower crust is partitioned within weaker fault zones. Effective viscosities of 1020 Pa•s or less produce pronounced patterns of surface subsidence in Qiangtang and uplift in eastern Lhasa and Longmen Shan inconsistent with observations. Solutions show lower crust strength impacts surface stress style with weaker strengths leading to regions of dominant extension separated by compression in the east central Tibetan Plateau.
Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation
Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu
2015-01-01
In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...
Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing
NASA Astrophysics Data System (ADS)
Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.
2014-12-01
In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.
NASA Astrophysics Data System (ADS)
Kminek, Gerhard; Vago, Jorge; Gianfiglio, Giacinto; Haldemann, Albert; Elfving, Anders; Pinel, Jacques; McCoy, Don
The ExoMars mission will deploy two science elements on the Martian surface: a rover and a small, fixed package. The fixed Humboldt science package, will measure planetary geophysics parameters important for understanding Mars's evolution and habitability, identify possible surface hazards to future human missions, and study the environment. The Rover Pasteur science package will search for signs of past and present life on Mars, and characterise the water and geochemical environment with depth by collecting and analysing subsurface samples down to 2 meters. The very powerful combination of surface mobility and subsurface access to locations where organic molecules may be well-preserved is unique to this mission. ExoMars is currently in Phase B prior to PDR. This presentation will provide an update on the project status, including instrument and technology developments.
NASA Astrophysics Data System (ADS)
Zhu, Lianqing; Yang, Runtao; Zhang, Yumin; Dong, Mingli; Lou, Xiaoping
2018-04-01
In this paper, a metallic-packaging fiber Bragg grating temperature sensor characterized by a strain insensitive design is demonstrated. The sensor is fabricated by the one-step ultrasonic welding technique using type-II fiber Bragg grating combined with an aluminum alloy substrate. Finite element analysis is used to perform theoretical evaluation. The result of the experiment illustrates that the metallic-packaging temperature sensor is insensitive to longitudinal strain. The sensor's temperature sensitivity is 36 pm/°C over the range of 50-110 °C, with the correlation coefficient (R2) being 0.999. The sensor's temporal response is 40 s at a sudden temperature change from 21 °C to 100 °C. The proposed sensor can be applied on reliable and precise temperature measurement.
Integrated Avionics System (IAS)
NASA Technical Reports Server (NTRS)
Hunter, D. J.
2001-01-01
As spacecraft designs converge toward miniaturization and with the volumetric and mass constraints placed on avionics, programs will continue to advance the 'state of the art' in spacecraft systems development with new challenges to reduce power, mass, and volume. Although new technologies have improved packaging densities, a total system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and scalability to accommodate multiple missions. With these challenges in mind, a novel packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. This paper will describe the fundamental elements of the Integrated Avionics System (IAS), Horizontally Mounted Cube (HMC) hardware design, system and environmental test results. Additional information is contained in the original extended abstract.
Software package for modeling spin–orbit motion in storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de
2015-12-15
A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less
Promoter classifier: software package for promoter database analysis.
Gershenzon, Naum I; Ioshikhes, Ilya P
2005-01-01
Promoter Classifier is a package of seven stand-alone Windows-based C++ programs allowing the following basic manipulations with a set of promoter sequences: (i) calculation of positional distributions of nucleotides averaged over all promoters of the dataset; (ii) calculation of the averaged occurrence frequencies of the transcription factor binding sites and their combinations; (iii) division of the dataset into subsets of sequences containing or lacking certain promoter elements or combinations; (iv) extraction of the promoter subsets containing or lacking CpG islands around the transcription start site; and (v) calculation of spatial distributions of the promoter DNA stacking energy and bending stiffness. All programs have a user-friendly interface and provide the results in a convenient graphical form. The Promoter Classifier package is an effective tool for various basic manipulations with eukaryotic promoter sequences that usually are necessary for analysis of large promoter datasets. The program Promoter Divider is described in more detail as a representative component of the package.
Space Station Freedom power supply commonality via modular design
NASA Technical Reports Server (NTRS)
Krauthamer, S.; Gangal, M. D.; Das, R.
1990-01-01
At mature operations, Space Station Freedom will need more than 2000 power supplies to feed housekeeping and user loads. Advanced technology power supplies from 20 to 250 W have been hybridized for terrestrial, aerospace, and industry applications in compact, efficient, reliable, lightweight packages compatible with electromagnetic interference requirements. The use of these hybridized packages as modules, either singly or in parallel, to satisfy the wide range of user power supply needs for all elements of the station is proposed. Proposed characteristics for the power supplies include common mechanical packaging, digital control, self-protection, high efficiency at full and partial loads, synchronization capability to reduce electromagnetic interference, redundancy, and soft-start capability. The inherent reliability is improved compared with conventional discrete component power supplies because the hybrid circuits use high-reliability components such as ceramic capacitors. Reliability is further improved over conventional supplies because the hybrid packages, which may be treated as a single part, reduce the parts count in the power supply.
An easy packaging hybrid optical element in grating based WDM application
NASA Astrophysics Data System (ADS)
Lan, Hsiao-Chin; Cheng, Chao-Chia; Wang, Chih-Ming; Chang, Jenq-Yang
2005-08-01
We developed a new optical element which integrates an off-axis diffractive grating and an on-axis refractive lens surface in a prism. With this optical element, the alignment tolerance can be improved by manufacturing technology of the grating based WDM device and is practicable for mass production. An 100-GHz 16-channel DWDM device which includes this optical element has been designed. Ray tracing and beam propagation method (BPM) simulations showed good performance on the insertion loss of 2.91+/-0.53dB and the adjacent cross talk of 58.02dB. The tolerance discussion for this DWDM device shows that this optical element could be practically achieved by either injection molding or the hot embossing method.
3-D Analysis of Flanged Joints Through Various Preload Methods Using ANSYS
NASA Astrophysics Data System (ADS)
Murugan, Jeyaraj Paul; Kurian, Thomas; Jayaprakash, Janardhan; Sreedharapanickar, Somanath
2015-10-01
Flanged joints are being employed in aerospace solid rocket motor hardware for the integration of various systems or subsystems. Hence, the design of flanged joints is very important in ensuring the integrity of motor while functioning. As these joints are subjected to higher loads due to internal pressure acting inside the motor chamber, an appropriate preload is required to be applied in this joint before subjecting it to the external load. Preload, also known as clamp load, is applied on the fastener and helps to hold the mating flanges together. Generally preload is simulated as a thermal load and the exact preload is obtained through number of iterations. Infact, more iterations are required when considering the material nonlinearity of the bolt. This way of simulation will take more computational time for generating the required preload. Now a days most commercial software packages use pretension elements for simulating the preload. This element does not require iterations for inducing the preload and it can be solved with single iteration. This approach takes less computational time and thus one can study the characteristics of the joint easily by varying the preload. When the structure contains more number of joints with different sizes of fasteners, pretension elements can be used compared to thermal load approach for simulating each size of fastener. This paper covers the details of analyses carried out simulating the preload through various options viz., preload through thermal, initial state command and pretension element etc. using ANSYS finite element package.
Hybridization of active and passive elements for planar photonic components and interconnects
NASA Astrophysics Data System (ADS)
Pearson, M.; Bidnyk, S.; Balakrishnan, A.
2007-02-01
The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...
2016-06-30
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Assessing the effect of adding interactive modeling to the geoscience curriculum
NASA Astrophysics Data System (ADS)
Castillo, A.; Marshall, J.; Cardenas, M.
2013-12-01
Technology and computer models enhance the learning experience when appropriately utilized. Moreover, learning is significantly improved when effective visualization is combined with models of processes allowing for inquiry-based problem solving. Still, hands-on experiences in real scenarios result in better contextualization of related problems compared to virtual laboratories. Therefore, the role of scientific visualization, technology, and computer modeling is to enhance, not displace, the learning experience by supplementing real-world problem solving and experiences, although in some circumstances, they can adequately serve to take the place of reality. The key to improving scientific education is to embrace an inquiry-based approach that favorably uses technology. This study will attempt to evaluate the effect of adding interactive modeling to the geological sciences curriculum. An assessment tool, designed to assess student understanding of physical hydrology, was used to evaluate a curriculum intervention based on student learning with a data- and modeling-driven approach using COMSOL Multiphysics software. This intervention was implemented in an upper division and graduate physical hydrology course in fall 2012. Students enrolled in the course in fall 2011 served as the control group. Interactive modeling was added to the curriculum in fall 2012 to replace the analogous mathematical modeling done by hand in fall 2011. Pre- and post-test results were used to assess and report its effectiveness. Student interviews were also used to probe student reactions to both the experimental and control curricula. The pre- and post-tests asked students to describe the significant processes in the hydrological cycle and describe the laws governing these processes. Their ability to apply their knowledge in a real-world problem was also assessed. Since the pre- and post-test data failed to meet the assumption of normality, a non-parametric Kruskal-Wallis test was run to determine if there were differences in pre- and post-test scores among the 2011 and 2012 groups. Results reveal significant differences in pretest and posttest scores among the 2011 and 2012 groups. Interview data revealed that students experience both affordances and barriers to using geoscience learning tools. Important affordances included COMSOL's modeling capabilities, the visualizations it offers, as well as the opportunity to use the software in the course. Barriers included lack of COMSOL experience, difficulty with COMSOL instructions, and lack of instruction with the software. Results from this study revealed that a well-designed pre- and post-assessment can be used to infer whether a given instructional intervention has caused a change in understanding in a given group of students, but the results are not necessarily generalizable. However, the student interviews, which were used to probe student reactions to both the experimental and control curricula, revealed that students experience both affordances and barriers to geoscience learning tools. This result has limitations including the number of participants, all from one institution, but the assessment tool was useful to assess the effect of adding interactive modeling to the geoscience curriculum. Supported by NSF CAREER grant (EAR-0955750).
NASA Astrophysics Data System (ADS)
Salgaonkar, Vasant A.; Prakash, Punit; Rieke, Viola; Ozhinsky, Eugene; Plata, Juan; Kurhanewicz, John; Hsu, I.-C. Joe; Diederich, Chris J.
2017-03-01
Here, operational modifications to a commercial MR-guided ultrasound phased array designed for prostate ablation (part of ExAblate 2100, InSightec Ltd) are presented for the delivery of protracted mild (40 - 45°C) hyperthermia to large contiguous target volumes in the prostate. This high-intensity focused ultrasound phased array is already in clinical trials for prostate ablation, and can be potentially fast-tracked for clinical hyperthermia treatments. As a part of this preliminary feasibility study, patient-specific numerical simulations were performed using Pennes bioheat model and acoustic field calculations were conducted using the rectangular radiator method for the ExAblate prostate array (2.3 MHz, 2.3×4.0 cm2, ˜1000 channels). Thermal solutions were computed using 3D finite element methods (FEM) implemented using Comsol Multiphysics (Comsol Inc). The patient-specific geometries were created through manual segmentation of anatomical structures from representative patient MRIs and 3D rendering (Mimics 15.01, Materialise) and generation of finite element meshes (3-Matic 7.01, Materialise). Array beamforming was employed and acoustic fields were synthesized (Matlab 2010a, MathWorks) to deliver protracted continuous wave hyperthermia to focal prostate cancer targets identified in the patient-specific models. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Sonication strategies explored during modeling were implemented on the ExAblate prostate array and preliminary experiments were conducted in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). Therapeutic temperatures (40 - 45 °C) could be established conformably in focal cancer volumes in a single prostate quadrant using focused heating patterns and hemi-gland heating was possible using diffused heating patterns (iso-phase or diverging). T>41 °C was calculated in 13-23 cm3 volumes for sonications with planar or diverging beam patterns at 0.9-1.2 W/cm2, in 1.5-4 cm3 volumes for simultaneous multi-point focus beam patterns at 2 - 3.4 W/cm2, and in ˜6.0 cm3 for curvilinear (cylindrical) beam patterns at 0.75 W/cm2. Patient-specific models also revealed that treatable volume sizes may be limited from pubic bone heating, especially if the pubic bone is within 15 mm from the prostate. Parametric studies also showed therapeutic heating was possible within power constraints of the phased array for a range of perfusion values (0.5 - 8 kg/m3/s), rectal cooling (22 - 35 °C) and sonication duty cycles (80% - 90%). Focused (simultaneous 4-point, cylindrical) and diffused (iso-phase, cylindrically diverging) phasing patterns investigated during modeling were successfully implemented on the ExAblate prostate array produced 4-12 °C temperature rises during protracted heating of phantom experiments (˜0.86 W/cm2, 15 min).
Age and choice in health insurance: evidence from a discrete choice experiment.
Becker, Karolin; Zweifel, Peter
2008-01-01
A uniform package of benefits and uniform cost sharing are elements of regulation inherent in most social health insurance systems. Both elements risk burdening the population with a welfare loss if preferences for risk and insurance attributes differ. This suggests the introduction of more choice in social health insurance packages may be advantageous; however, it is widely believed that this would not benefit the elderly.A representative telephone survey of 1000 people aged >24 years living in the German- and French-speaking parts of Switzerland was conducted. Participants were asked to compare the status quo (i.e. their current insurance contract) with ten hypothetical alternatives. In addition, participants were asked questions concerning utilization of healthcare services; overall satisfaction with the healthcare system, insurer and insurance policy; and a general preference for new elements in the insurance package. Socioeconomic variables surveyed were age, sex, total household income, education (seven categories ranging from primary school to university degree), place of residence, occupation, and marital status. To examine the relationship between age and willingness to pay (WTP) for additional options in Swiss social health insurance.A representative telephone survey of 1000 people aged >24 years living in the German- and French-speaking parts of Switzerland was conducted. Participants were asked to compare the status quo (i.e. their current insurance contract) with ten hypothetical alternatives. In addition, participants were asked questions concerning utilization of healthcare services; overall satisfaction with the healthcare system, insurer and insurance policy; and a general preference for new elements in the insurance package. Socioeconomic variables surveyed were age, sex, total household income, education (seven categories ranging from primary school to university degree), place of residence, occupation, and marital status. A discrete choice experiment was developed using six attributes (deductibles, co-payment, access to alternative medicines, medication choice, access to innovation, and monthly premium) that are currently in debate within the context of Swiss health insurance. These attributes have been shown to be important in the choice of insurance contract. Using statistical design optimization procedures, the number of choice sets was reduced to 27 and randomly split into three groups. One choice was included twice to test for consistency. Two random effects probit models were developed: a simple model where marginal utilities and WTP values were not allowed to vary according to socioeconomic characteristics, and a more complex model where the values were permitted to depend on socioeconomic variables.A representative telephone survey of 1000 people aged >24 years living in the German- and French-speaking parts of Switzerland was conducted. Participants were asked to compare the status quo (i.e. their current insurance contract) with ten hypothetical alternatives. In addition, participants were asked questions concerning utilization of healthcare services; overall satisfaction with the healthcare system, insurer and insurance policy; and a general preference for new elements in the insurance package. Socioeconomic variables surveyed were age, sex, total household income, education (seven categories ranging from primary school to university degree), place of residence, occupation, and marital status. All chosen elements proved relevant for choice in the simple model. Accounting for socioeconomic characteristics in the comprehensive model reveals preference heterogeneity for contract attributes, but also for the propensity to consider deviating from the status quo and choosing an alternative health insurance contract. The findings suggest that while the elderly do exhibit a stronger status quo bias than younger age groups, they require less rather than more specific compensation for selected cutbacks, indicating a potential for contracts that induce self-rationing in return for lower premiums.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package in compliance with 10 CFR Part 71 external radiation level limits regulations. The neutron and photon sources were calculated using both ORIGEN-S and RASTA. The response from a unit source in each neutron and photon group was calculated using MCNP5 with eachmore » unshielded and shielded container configuration. Effects of self-shielding on both neutron and photon response were evaluated by including either plutonium oxide or iron in the source region for the case with no shielded container. For the cases of actinides mixed with light elements, beryllium is the bounding light element. The added beryllium (10 to 90 percent of the actinide mass) in the cases studied represents between 9 and 47 percent concentration of the total mixture mass. For beryllium concentrations larger than 50 percent, the increase in the neutron source term and dose rate tend to increase at a much lower rate than at concentrations lower than 50%. The intimately mixed actinide-beryllium form used in these models is very conservative and thus the limits presented in this report are practical bounds on the mass that can be safely shipped. The calculated dose rate from one gram of each isotope was then used to determin the maximum amount of a single isotope that could be shipped in the Model 9977 Package (or packagings having the same or larger external dimensions as well as similar structural materials) and have the external radiation level within the regulatory dose limits at the surface of the package. The estimates of the mass limits presented would also serve as conservative limits for both the Models 9975 and 9978 packages. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. It should be noted that the SGQ masses presented in this report represent limits that would comply with the external radiation limits under 10CFR Part 71. They do not necessarily bound lower limits that may be required to comply with other factors such as heat load of the package.« less
Pyrotechnic device provides one-shot heat source
NASA Technical Reports Server (NTRS)
Haller, H. C.; Lalli, V. R.
1968-01-01
Pyrotechnic heater provides a one-shot heat source capable of creating a predetermined temperature around sealed packages. It is composed of a blend of an active chemical element and another compound which reacts exothermically when ignited and produces fixed quantities of heat.
Putting the Information back into Yearbook Graphics.
ERIC Educational Resources Information Center
Konkle, Bruce E.
1998-01-01
Outlines three steps to strengthen the use of information graphics ("infographics") in yearbooks. Discusses researching infographics, creativity in designing them, and their production. Offers several samples. Notes the five basic elements of an infographic package, and lists sources on them. (SR)
Effect of girder spacing on bridge deck response.
DOT National Transportation Integrated Search
2000-12-01
The purpose of this investigation was to evaluate the use of the commercial finite element code ABAQUS for analysis of reinforced concrete bridge decks and to employ this analysis package to determine the effect of girder spacing on deck response. A ...
NASA Technical Reports Server (NTRS)
Dubowsky, Steven
1989-01-01
An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required.
Flexible Foam Protection Materials for Portable Life Support System Packaging Study
NASA Technical Reports Server (NTRS)
Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.
2009-01-01
This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
Vector-matrix-quaternion, array and arithmetic packages: All HAL/S functions implemented in Ada
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.; Kwong, David D.
1986-01-01
The HAL/S avionics programmers have enjoyed a variety of tools built into a language tailored to their special requirements. Ada is designed for a broader group of applications. Rather than providing built-in tools, Ada provides the elements with which users can build their own. Standard avionic packages remain to be developed. These must enable programmers to code in Ada as they have coded in HAL/S. The packages under development at JPL will provide all of the vector-matrix, array, and arithmetic functions described in the HAL/S manuals. In addition, the linear algebra package will provide all of the quaternion functions used in Shuttle steering and Galileo attitude control. Furthermore, using Ada's extensibility, many quaternion functions are being implemented as infix operations; equivalent capabilities were never implemented in HAL/S because doing so would entail modifying the compiler and expanding the language. With these packages, many HAL/S expressions will compile and execute in Ada, unchanged. Others can be converted simply by replacing the implicit HAL/S multiply operator with the Ada *. Errors will be trapped and identified. Input/output will be convenient and readable.
Chip-scale thermal management of high-brightness LED packages
NASA Astrophysics Data System (ADS)
Arik, Mehmet; Weaver, Stanton
2004-10-01
The efficiency and reliability of the solid-state lighting devices strongly depend on successful thermal management. Light emitting diodes, LEDs, are a strong candidate for the next generation, general illumination applications. LEDs are making great strides in terms of lumen performance and reliability, however the barrier to widespread use in general illumination still remains the cost or $/Lumen. LED packaging designers are pushing the LED performance to its limits. This is resulting in increased drive currents, and thus the need for lower thermal resistance packaging designs. As the power density continues to rise, the integrity of the package electrical and thermal interconnect becomes extremely important. Experimental results with high brightness LED packages show that chip attachment defects can cause significant thermal gradients across the LED chips leading to premature failures. A numerical study was also carried out with parametric models to understand the chip active layer temperature profile variation due to the bump defects. Finite element techniques were utilized to evaluate the effects of localized hot spots at the chip active layer. The importance of "zero defects" in one of the more popular interconnect schemes; the "epi down" soldered flip chip configuration is investigated and demonstrated.
NASA Technical Reports Server (NTRS)
Gomez, C. F.; Mireles, O. R.; Stewart, E.
2016-01-01
The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.
NASA Astrophysics Data System (ADS)
Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali
2014-05-01
In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to formation damage in ATES systems. We would like to present preliminary results of the structural reservoir model and the hydraulic-thermal-chemical coupling for the demonstration site. Literature: Wissmeier, L. and Barry, D.A., 2011. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two- and three-dimensional domains. Environmental Modelling & Software 26, 210-218.
Ranney, Leah M.; Lazard, Allison J.; Kim, KyungSu; Queen, Tara L.; Avishai, Aya; Boynton, Marcella H.; Sheeran, Paschal J.; Goldstein, Adam O.
2018-01-01
Introduction Product packaging has long been used by the tobacco industry to target consumers and manipulate product perceptions. This study examines the extent to which cigarillo packaging influences perceptions of product flavor, taste, smell, and appeal. Methods A web-based experiment was conducted among young adults. Participants viewed three randomly selected cigarillo packs, varying on pack flavor descriptor, color, type, branding, and warning—totaling 180 pack images. Mixed-effects models were used to estimate the effect of pack elements on product perceptions. Results A total of 2,664 current, ever, and never little cigar and cigarillo users participated. Cigarillo packs with a flavor descriptor were perceived as having a more favorable taste (β = 0.21, p < .001) and smell (β = 0.14, p < .001) compared to packs with no flavor descriptor. Compared to packs with no color, pink and purple packs were more likely to be perceived as containing a flavor (β = 0.11, p < .001), and were rated more favorably on taste (β = 0.17, p < .001), smell (β = 0.15, p < .001), and appeal (β = 0.16, p < .001). While warnings on packs decreased favorable perceptions of product taste (pictorial: β = -0.07, p = .03) and smell (text-only: β = -0.08, p = .01; pictorial: β = -0.09, p = .007), warnings did not moderate the effects of flavor descriptor or color. Conclusions To our knowledge, this study provides the first quantitative evidence that cigarillo packaging alters consumers’ cognitive responses, and warnings on packs do not suffice to overcome the effects of product packaging. The findings support efforts at federal, state, and local levels to prohibit flavor descriptors and their associated product flavoring in non-cigarette products such as cigarillos, along with new data that supports restrictions on flavor cues and colors. PMID:29672604
2005-09-01
thermal expansion of these truss elements. One side of the structure is fully clamped, while the other is free to displace. As in prior assessments [6...levels, by using the finite element package ABAQUS . To simulate the complete system, the core and the Kagome face members are modeled using linear...code ABAQUS . To simulate the complete actuation system, the core and Kagome members are modeled using linear Timoshenko-type beams, while the solid
Algorithms and software for solving finite element equations on serial and parallel architectures
NASA Technical Reports Server (NTRS)
George, Alan
1989-01-01
Over the past 15 years numerous new techniques have been developed for solving systems of equations and eigenvalue problems arising in finite element computations. A package called SPARSPAK has been developed by the author and his co-workers which exploits these new methods. The broad objective of this research project is to incorporate some of this software in the Computational Structural Mechanics (CSM) testbed, and to extend the techniques for use on multiprocessor architectures.
From core to coax: extending core RF modelling to include SOL, Antenna, and PFC
NASA Astrophysics Data System (ADS)
Shiraiwa, Syun'ichi
2017-10-01
A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL), and core propagation. Traditionally, core RF wave propagation and antenna coupling has been calculated separately both using rather simplified SOL plasmas. The new approach, instead, allows capturing wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss, as well as investigating far and near field impurity generation from RF sheaths and a breakdown issue from antenna electric fields. Our approach combines the field solutions obtained from a core spectral code with a hot plasma dielectric and an edge FEM code using a cold plasma approximation via surface admittance-like matrix. Our approach was verified using the TORIC core ICRF spectral code and the commercial COMSOL FEM package, and was extended to 3D torus using open-source scalable MFEM library. The simulation result revealed that as the core wave damping gets weaker, the wave absorption in edge could become non-negligible. Three dimensional capabilities with non axisymmetric edge are being applied to study the antenna characteristic difference between the field aligned and toroidally aligned antennas on Alcator C-Mod, as well as the surface wave excitation on NSTX-U. Work supported by the U.S. DoE, OFES, using User Facility Alcator C-Mod, DE-FC02-99ER54512 and Contract No. DE-FC02-01ER54648.
Efficient finite element simulation of slot spirals, slot radomes and microwave structures
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.
1995-01-01
This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.
Materials for high-density electronic packaging and interconnection
NASA Technical Reports Server (NTRS)
1990-01-01
Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.
Bird impact analysis package for turbine engine fan blades
NASA Technical Reports Server (NTRS)
Hirschbein, M. S.
1982-01-01
A computer program has been developed to analyze the gross structural response of turbine engine fan blades subjected to bird strikes. The program couples a NASTRAN finite element model and modal analysis of a fan blade with a multi-mode bird impact analysis computer program. The impact analysis uses the NASTRAN blade model and a fluid jet model of the bird to interactively calculate blade loading during a bird strike event. The analysis package is computationaly efficient, easy to use and provides a comprehensive history of the gross structual blade response. Example cases are presented for a representative fan blade.
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.
1988-01-01
The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.
One-dimensional swarm algorithm packaging
NASA Astrophysics Data System (ADS)
Lebedev, Boris K.; Lebedev, Oleg B.; Lebedeva, Ekaterina O.
2018-05-01
The paper considers an algorithm for solving the problem of onedimensional packaging based on the adaptive behavior model of an ant colony. The key role in the development of the ant algorithm is the choice of representation (interpretation) of the solution. The structure of the solution search graph, the procedure for finding solutions on the graph, the methods of deposition and evaporation of pheromone are described. Unlike the canonical paradigm of an ant algorithm, an ant on the solution search graph generates sets of elements distributed across blocks. Experimental studies were conducted on IBM PC. Compared with the existing algorithms, the results are improved.
Out of the lab and into the fab: Nano-alignment as an enabler for Silicon Photonics' next chapter
NASA Astrophysics Data System (ADS)
Jordan, Scott
2017-06-01
The rapid advent of Silicon Photonics presents many challenges for test and packaging. Here we concisely review SiP device attributes that differ significantly from classical photonic configurations, with a view to the future beyond current, connectivity-oriented silicon photonics developments, looking to such endeavors as all-optical computing and quantum computing. The necessity for nano-precision alignment of optical elements in test and packaging operations quickly emerges as the unfilled need. We review the industrial test and packaging solutions developed back in the 1997-2001 photonics boom to address the needs of that era's devices, and map their gaps with the new SiP device classes. Finally we review the new state-of-the-art of recent advances in the field that address these gaps.
NASA Astrophysics Data System (ADS)
Liu, Weiping; Lee, Ning-Cheng
2007-07-01
The impact reliability of solder joints in electronic packages is critical to the lifetime of electronic products, especially those portable devices using area array packages such as ball-grid array (BGA) and chip-scale packages (CSP). Currently, SnAgCu (SAC) solders are most widely used for lead-free applications. However, BGA and CSP solder joints using SAC alloys are fragile and prone to premature interfacial failure, especially under shock loading. To further enhance impact reliability, a family of SAC alloys doped with a small amount of additives such as Mn, Ce, Ti, Bi, and Y was developed. The effects of doping elements on drop test performance, creep resistance, and microstructure of the solder joints were investigated, and the solder joints made with the modified alloys exhibited significantly higher impact reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa
2016-05-01
The Contingency Contractor Optimization Tool - Prototype (CCOT-P) requires several third-party software packages. These are documented below for each of the CCOT-P elements: client, web server, database server, solver, web application and polling application.
Lumped element filters for electronic warfare systems
NASA Astrophysics Data System (ADS)
Morgan, D.; Ragland, R.
1986-02-01
Increasing demands which future generations of electronic warfare (EW) systems are to satisfy include a reduction in the size of the equipment. The present paper is concerned with lumped element filters which can make a significant contribution to the downsizing of advanced EW systems. Lumped element filter design makes it possible to obtain very small package sizes by utilizing classical low frequency inductive and capacitive components which are small compared to the size of a wavelength. Cost-effective, temperature-stable devices can be obtained on the basis of new design techniques. Attention is given to aspects of design flexibility, an interdigital filter equivalent circuit diagram, conditions for which the use of lumped element filters can be recommended, construction techniques, a design example, and questions regarding the application of lumped element filters to EW processing systems.
NASA Astrophysics Data System (ADS)
Niño, Alfonso; Muñoz-Caro, Camelia; Reyes, Sebastián
2015-11-01
The last decade witnessed a great development of the structural and dynamic study of complex systems described as a network of elements. Therefore, systems can be described as a set of, possibly, heterogeneous entities or agents (the network nodes) interacting in, possibly, different ways (defining the network edges). In this context, it is of practical interest to model and handle not only static and homogeneous networks but also dynamic, heterogeneous ones. Depending on the size and type of the problem, these networks may require different computational approaches involving sequential, parallel or distributed systems with or without the use of disk-based data structures. In this work, we develop an Application Programming Interface (APINetworks) for the modeling and treatment of general networks in arbitrary computational environments. To minimize dependency between components, we decouple the network structure from its function using different packages for grouping sets of related tasks. The structural package, the one in charge of building and handling the network structure, is the core element of the system. In this work, we focus in this API structural component. We apply an object-oriented approach that makes use of inheritance and polymorphism. In this way, we can model static and dynamic networks with heterogeneous elements in the nodes and heterogeneous interactions in the edges. In addition, this approach permits a unified treatment of different computational environments. Tests performed on a C++11 version of the structural package show that, on current standard computers, the system can handle, in main memory, directed and undirected linear networks formed by tens of millions of nodes and edges. Our results compare favorably to those of existing tools.
Basso, Frédéric; Bouillé, Julien; Le Goff, Kévin; Robert-Demontrond, Philippe; Oullier, Olivier
2016-01-01
Food imitating products are chemical consumer items used frequently in the household for cleaning and personal hygiene (e.g., bleach, soap, and shampoo), which resemble food products. Their containers replicate elements of food package design such as possessing a shape close in style to drinking product containers or bearing labels that depict colorful fruits. In marketing, these incongruent forms are designed to increase the appeal of functional products, leading to chemical consumer product embellishment. However, due to the resulting visual ambiguity, food imitating products may expose consumers to the risk of being poisoned from ingestion. Thus, from a public health perspective, food imitating products are considered dangerous chemical products that should not be sold, and may merit being recalled for the safety of consumers. To help policymakers address the hazardous presence of food imitating products, the purpose of this article is to identify the specific design features that generate most ambiguity for the consumer, and therefore increase the likelihood of confusion with foodstuffs. Among the visual elements of food packaging, the two most important features (shape and label) are manipulated in a series of three lab studies combining six Implicit Association Tests (IATs) and two explicit measures on products' drinkability and safety. IATs were administered to assess consumers' implicit association of liquid products with tastiness in a within-subject design in which the participants (N = 122) were presented with two kinds of food imitating products with a drink shape or drink label compared with drinks (experiential products with congruent form) and classic chemical products (hygiene products) (functional products with congruent form). Results show that chemical consumer products with incongruent drink shapes (but not drink labels) as an element of food package design are both implicitly associated with tastiness and explicitly judged as safe and drinkable. These results require confirmation in other studies involving different shapes and labels. Notwithstanding, due to the misleading effect of this ambiguity, public health authorities are thus well advised to focus their market surveillance on chemical products emulating a food or drink shape. PMID:27065919
ORIGEN2 calculations supporting TRIGA irradiated fuel data package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.A.
ORIGEN2 calculations were performed for TRIGA spent fuel elements from the Hanford Neutron Radiography Facility. The calculations support storage and disposal and results include mass, activity,and decay heat. Comparisons with underwater dose-rate measurements were used to confirm and adjust the calculations.
Collis-Romberg Mathematical Problem Solving Profiles.
ERIC Educational Resources Information Center
Collis, K. F.; Romberg, T. A.
Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…
Biomimetric sentinel reef structures for optical sensing and communications
NASA Astrophysics Data System (ADS)
Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor
2017-05-01
Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.
Lagrangian continuum dynamics in ALEGRA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Michael K. W.; Love, Edward
Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.
Temperature-package power correlations for open-mode geologic disposal concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest.
2013-02-01
Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in amore » repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.« less
REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.
2013-08-18
U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States wasmore » the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.« less
Wide-Field Imaging System and Rapid Direction of Optical Zoom (WOZ)
2011-03-25
COMSOL Multiphysics, and ZEMAX optical design. The multiphysics design tool is nearing completion. We have demonstrated the ability to create a model in...and mechanical modeling to calculate the deformation resulting from the applied voltages. Finally, the deformed surface can be exported to ZEMAX via...MatLab. From ZEMAX , various analyses can be conducted to determine important parameters such as focal point, aberrations, and wavefront distortion
CO2 valorization by means of Dielectric Barrier Discharge
NASA Astrophysics Data System (ADS)
Machrafi, H.; Cavadias, S.; Amouroux, J.
2011-01-01
As atmospheric pollution is causing several environmental problems it is incumbent to reduce the impact of pollution on the environment. One particular problem is the production of CO2 by many transport and industrial applications. Instead of stocking CO2 and instead of being a product, it can be used as a source. The case considered is the CO2 reformation of methane producing hydrogen and CO. It is an endothermic reaction, for which the activation barrier needs to be surpassed. This can be done efficiently by the method of Dielectric Barrier Discharge. The process relies on the collision of electrons, which are accelerated under an electrical field that is created in the discharge area. This leads to the formation of reactive species, which facilitate the abovementioned reaction. This study is performed using a Matlab program with the Reaction Engineering module in COMSOL (with an incorporated kinetic mechanism) in order to model the discharge phase. Then COMSOL (continuity and Navier-Stokes equations) is used to model the flow in the post-discharge phase. The results showed that both a 2D and 3D model can be used to model the chemical-plasma process. These methods need strongly reduced kinetic mechanism, which in some cases can cause loss of precision.
View of MISSE-8 taken during a session of EVA
2011-07-12
ISS028-E-016111 (12 July 2011) --- This close-up image, recorded during a July 12 spacewalk, shows the Materials on International Space Station Experiment - 8 (MISSE-8). The experiment package is a test bed for materials and computing elements attached to the outside of the orbiting complex. These materials and computing elements are being evaluated for the effects of atomic oxygen, ultraviolet, direct sunlight, radiation, and extremes of heat and cold. This experiment allows the development and testing of new materials and computing elements that can better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials and computing elements when they are exposed to the space environment, with applications in the design of future spacecraft.
Tubiana, Luca; Polles, Guido; Orlandini, Enzo; Micheletti, Cristian
2018-06-07
The KymoKnot software package and web server identifies and locates physical knots or proper knots in a series of polymer conformations. It is mainly intended as an analysis tool for trajectories of linear or circular polymers, but it can be used on single instances too, e.g. protein structures in PDB format. A key element of the software package is the so-called minimally interfering chain closure algorithm that is used to detect physical knots in open chains and to locate the knotted region in both open and closed chains. The web server offers a user-friendly graphical interface that identifies the knot type and highlights the knotted region on each frame of the trajectory, which the user can visualize interactively from various viewpoints. The dynamical evolution of the knotted region along the chain contour is presented as a kymograph. All data can be downloaded in text format. The KymoKnot package is licensed under the BSD 3-Clause licence. The server is publicly available at http://kymoknot.sissa.it/kymoknot/interactive.php .
QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices
NASA Astrophysics Data System (ADS)
Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas
2017-12-01
QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.
Binary-mask generation for diffractive optical elements using microcomputers.
O'Shea, D C; Beletic, J W; Poutous, M
1993-05-10
A new technique for generation of binary masks for the fabrication of diffractive optical elements is investigated. This technique, which uses commercially available desktop-publishing hardware and software in conjunction with a standard photoreduction camera, is much faster and less expensive thanhe conventional methods. The short turnaround time and low cost should give researchers a much greater degree of flexibility in the field of binary optics and enable wider application of diffractive-optics technology. Techniques for generating optical elements by using standard software packages that produce PostScript output are described. An evaluation of the dimensional fidelity of the mask reproduction from design to its realization in photoresist is presented.
Antenna structure with distributed strip
Rodenbeck, Christopher T.
2008-10-21
An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.
Antenna structure with distributed strip
Rodenbeck, Christopher T [Albuquerque, NM
2008-03-18
An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.
Quantifying the Hydrodynamic Performance of an Explosively-Driven Two-Shock Source
NASA Astrophysics Data System (ADS)
Furlanetto, Michael; Bauer, Amy; King, Robert; Buttler, William; Olson, Russell; Hagelberg, Carl
2015-06-01
An explosively-driven experimental package capable of generating a tunable two-shock drive would enable a host of experiments in shock physics. To make the best use of such a platform, though, its symmetry, reproducibility, and performance must be characterized thoroughly. We report on a series of experiments on a particular two-shock design that used shock reverberation between the sample and a heavy anvil to produce a second shock. Drive package diameters were varied between 50 and 76 mm in order to investigate release wave propagation. We used proton radiography to characterize the detonation and reverberation fronts within the high explosive elements of the packages, as well as surface velocimetry to measure the resulting shock structure in the sample under study. By fielding more than twenty channels of velocimetry per shot, we were able to quantify the symmetry and reproducibility of the drive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The peso has continued to fall versus the dollar despite recent attempts by concerned parties to stop the descent. International elements look towards one of Mexico`s fundamental strengths, oil. The US Congress did not fully support President Clinton`s $40-billion foreign aid package for Mexico. Clinton has since abandoned the package and instead organized a $50-billion package including $20-billion from the US by Presidential order, $17.8-billion from the IMF, $10-billion from the Bank for International Settlements, and $2-billion form Latin American countries. The notable factor in the loan from the US is use of Mexican oil exports revenue as collateral. Thismore » is a first for Mexico, a country that constitutionally protects its oil from outside control. The strength of the Mexican economy is closely linked to oil as Pemex comprises roughly 6% of the GDP and is the largest source of exports as well as foreign currency.« less
Lareau, Caleb A; Aryee, Martin J; Berger, Bonnie
2018-02-15
The 3D architecture of DNA within the nucleus is a key determinant of interactions between genes, regulatory elements, and transcriptional machinery. As a result, differences in DNA looping structure are associated with variation in gene expression and cell state. To systematically assess changes in DNA looping architecture between samples, we introduce diffloop, an R/Bioconductor package that provides a suite of functions for the quality control, statistical testing, annotation, and visualization of DNA loops. We demonstrate this functionality by detecting differences between ENCODE ChIA-PET samples and relate looping to variability in epigenetic state. Diffloop is implemented as an R/Bioconductor package available at https://bioconductor.org/packages/release/bioc/html/diffloop.html. aryee.martin@mgh.harvard.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Haag, A L; Lin, J H; Levin, H L
2000-08-01
Long terminal repeat (LTR)-containing retrotransposons and retroviruses are close relatives that possess similar mechanisms of reverse transcription. The particles of retroviruses package two copies of viral mRNA that both function as templates for the reverse transcription of the element. We studied the LTR-retrotransposon Tf1 of Schizosaccharomyces pombe to test whether multiple copies of transposon mRNA participate in the production of cDNA. Using the unique self-priming property of Tf1, we obtained evidence that multiple copies of Tf1 mRNA were packaged into virus-like particles. By coexpressing two distinct versions of Tf1, we found that the bulk of reverse transcription that was initiated on one mRNA template was subsequently transferred to others. In addition, the first 11 nucleotides of one mRNA were able to prime, in trans, the reverse transcription of another mRNA.
MEMS Direct Chip Attach Packaging Methodologies and Apparatuses for Harsh Environments
NASA Technical Reports Server (NTRS)
Okojie, Robert S. (Inventor)
2009-01-01
Methods of bulk manufacturing high temperature sensor subassembly packages are disclosed and claimed. Sensors are sandwiched between a top cover and a bottom cover so as to enable the peripheries of the top covers, sensors and bottom covers to be sealed and bound securely together are disclosed and claimed. Sensors are placed on the bottom covers leaving the periphery of the bottom cover exposed. Likewise, top covers are placed on the sensors leaving the periphery of the sensor exposed. Individual sensor sub-assemblies are inserted into final packaging elements which are also disclosed and claimed. Methods of directly attaching wires or pins to contact pads on the sensors are disclosed and claimed. Sensors, such as pressure sensors and accelerometers, and headers made out of silicon carbide and aluminum nitride are disclosed and claimed. Reference cavities are formed in some embodiments disclosed and claimed herein where top covers are not employed.
MEMS Direct Chip Attach Packaging Methodologies and Apparatuses for Harsh Environments
NASA Technical Reports Server (NTRS)
Okojie, Robert S. (Inventor)
2005-01-01
Methods of bulk manufacturing high temperature sensor sub-assembly packages are disclosed and claimed. Sensors are sandwiched between a top cover and a bottom cover so as to enable the peripheries of the top covers, sensors and bottom covers to be sealed and bound securely together are disclosed and claimed. Sensors are placed on the bottom covers leaving the periphery of the bottom cover exposed. Likewise, top covers are placed on the sensors leaving the periphery of the sensor exposed. Individual sensor sub- assemblies are inserted into final packaging elements which are also disclosed and claimed. Methods of directly attach- ing wires or pins to contact pads on the sensors are disclosed and claimed. Sensors, such as pressure sensors and accelerometers, and headers made out of silicon carbide and aluminum nitride are disclosed and claimed. Reference cavities are formed in some embodiments disclosed and claimed herein where top covers are not employed.
Development of an Environmental Monitoring Package for the International Space Station
NASA Technical Reports Server (NTRS)
Carruth, Ralph M., Jr.; Clifton, Kenneth S.; Vanhooser, Michael T.
1999-01-01
The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments and provide data and power from ISS. From the beginning of the space station program it has been recognized that external experiments will require knowledge of the external environment because it can affect the science being performed and may impact lifetime and operations of the experiments. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP) was started. This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.
An Environment Monitoring Package for the International Space Station
NASA Technical Reports Server (NTRS)
Carruth, M. Ralph; Clifton, Kenneth S.
1998-01-01
The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments, provide data and supply power from ISS. From the beginning of the space station program it has been recognized that experiments will require knowledge of the external local environment which can affect the science being performed and may impact lifetime and operations of the experiment hardware. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP). This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.
NASA Technical Reports Server (NTRS)
Niederer, P. G.; Mihora, D. J.
1972-01-01
The current design and hardware components of the patented 14 sqm Stokes flow parachute are described. The Stokes-flow parachute is a canopy of open mesh material, which is kept deployed by braces. Because of the light weight of its mesh material, and the high drag on its mesh elements when they operate in the Stokes-flow flight regime, this parachute has an extremely low ballistic coefficient. It provides a stable aerodynamic platform superior to conventional nonporous billowed parachutes, is exceptionally packable, and is easily contained within the canister of the Sidewinder Arcas or the RDT and E rockets. Thus, it offers the potential for gathering more meteorological data, especially at high altitudes, than conventional billowed parachutes. Methods for packaging the parachute are also recommended. These methods include schemes for folding the canopy and for automatically releasing the pressurizing fluid as the packaged parachute unfolds.
Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.
2013-03-21
Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation ofmore » hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.« less
Functional requirements of the yellow fever virus capsid protein.
Patkar, Chinmay G; Jones, Christopher T; Chang, Yu-hsuan; Warrier, Ranjit; Kuhn, Richard J
2007-06-01
Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.
34 CFR 675.44 - Program description.
Code of Federal Regulations, 2010 CFR
2010-07-01
... provide flexibility in strengthening the self-help-through-work element in financial aid packaging..., DEPARTMENT OF EDUCATION FEDERAL WORK-STUDY PROGRAMS Work-Colleges Program § 675.44 Program description. (a) An institution that satisfies the definition of “work-college” in § 675.41(a) and wishes to...
Recorded Music and Graphic Design.
ERIC Educational Resources Information Center
Osterer, Irv
1998-01-01
Reviews the history of art as an element of music-recording packaging. Describes a project in which students design a jacket for either cassette or CD using a combination of computerized and traditional rendering techniques. Reports that students have been inspired to look into careers in graphic design. (DSK)
AMModels: An R package for storing models, data, and metadata to facilitate adaptive management
Katz, Jonathan E.
2018-01-01
Agencies are increasingly called upon to implement their natural resource management programs within an adaptive management (AM) framework. This article provides the background and motivation for the R package, AMModels. AMModels was developed under R version 3.2.2. The overall goal of AMModels is simple: To codify knowledge in the form of models and to store it, along with models generated from numerous analyses and datasets that may come our way, so that it can be used or recalled in the future. AMModels facilitates this process by storing all models and datasets in a single object that can be saved to an .RData file and routinely augmented to track changes in knowledge through time. Through this process, AMModels allows the capture, development, sharing, and use of knowledge that may help organizations achieve their mission. While AMModels was designed to facilitate adaptive management, its utility is far more general. Many R packages exist for creating and summarizing models, but to our knowledge, AMModels is the only package dedicated not to the mechanics of analysis but to organizing analysis inputs, analysis outputs, and preserving descriptive metadata. We anticipate that this package will assist users hoping to preserve the key elements of an analysis so they may be more confidently revisited at a later date. PMID:29489825
AMModels: An R package for storing models, data, and metadata to facilitate adaptive management.
Donovan, Therese M; Katz, Jonathan E
2018-01-01
Agencies are increasingly called upon to implement their natural resource management programs within an adaptive management (AM) framework. This article provides the background and motivation for the R package, AMModels. AMModels was developed under R version 3.2.2. The overall goal of AMModels is simple: To codify knowledge in the form of models and to store it, along with models generated from numerous analyses and datasets that may come our way, so that it can be used or recalled in the future. AMModels facilitates this process by storing all models and datasets in a single object that can be saved to an .RData file and routinely augmented to track changes in knowledge through time. Through this process, AMModels allows the capture, development, sharing, and use of knowledge that may help organizations achieve their mission. While AMModels was designed to facilitate adaptive management, its utility is far more general. Many R packages exist for creating and summarizing models, but to our knowledge, AMModels is the only package dedicated not to the mechanics of analysis but to organizing analysis inputs, analysis outputs, and preserving descriptive metadata. We anticipate that this package will assist users hoping to preserve the key elements of an analysis so they may be more confidently revisited at a later date.
Assembly and testing of microparticle and microcapsule smart tattoo materials
NASA Astrophysics Data System (ADS)
McShane, Michael J.
2007-01-01
Microscale biochemical sensors are attractive for in vitro diagnostics and disease management, as well as medical and biological research applications. Fluorescent sensors, coupling specific glucose-binding proteins with fluorescent readout methods, have been developed for this purpose. Our work has focused on the development of assembly and packaging systems for producing micro- and nanoscale sensing components that can be used as implants, intracellular reporters, or as elements in larger systems. Both hybrid organic/inorganic particles and hollow microshells have been developed to physically couple the sensing materials together in biocompatible, semipermeable packages. Fabrication details and sensor characterization are used to demonstrate the potential of these sensor concepts.
NASA Astrophysics Data System (ADS)
Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong
2018-04-01
A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.
NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien
2015-07-01
NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.
NASA Astrophysics Data System (ADS)
Li, Jian; Wang, Yan; Yang, Zhuoqing; Ding, Guifu; Zhao, Xiaolin; Wang, Hong
2018-03-01
The MEMS inertial switch is widely used in various industries owing to its advantage of small size, high integration, low power consumption and low costs, especially in the timing of Internet of things, such as toys, handheld devices, accessories and vibration testing. This paper provided a novel inertial switch with a reinforcing rib structure and electrostatic power assist. The designed inertial switch can reduce the complexity of the post-processing circuit and broaden its application prospect. The continuous electrostatic force can extend the contact time of the designed inertia switch before the leakage of electricity ends. The moving electrode with a reinforcing rib structure can effectively restrain the bending of the lower surface of moving electrode caused by residual stress. The array-type fixed electrode can ensure stable contact between the electrodes when the device is sensitive to external shocks. The dynamic displacement-time curve can be simulated by the COMSOL finite element simulation software. The laminated plating process is used to produce the designed inertial switch and the drop hammer acceleration monitoring system is used to test the fabricated device. The results indicate that, compared with the traditional design, the bouncing phenomenon can be prevented and extend the contact time to 336μs.
NASA Astrophysics Data System (ADS)
Ghanbari Mardasi, Amir; Ghanbari, Mahmood; Salmani Tehrani, Mehdi
2014-09-01
Although recently Minimal Invasive Robotic Surgery (MIRS) has been more addressed because of its wide range of benefits, however there are still some limitations in this regard. In order to address the shortcomings of MIRS systems, various types of tactile sensors with different sensing principles have been presented in the last few years. In the present paper a MEMS-based optical sensor, which has been recently proposed by researchers, is investigated using numerical simulation. By this type of sensors real time quantification of both dynamic and statics contact forces between the tissue and surgical instrument would be possible. The presented sensor has one moving part and works based on the intensity modulation principle of optical fibers. It is electrically-passive, MRI-compatible and it is possible to be fabricated using available standard micro fabrication techniques. The behavior of the sensor has been simulated using COMSOL MULTIPHYSICS 3.5 software. Stress analysis is conducted on the sensor to assess the deflection of the moving part of the sensor due to applied force. The optical simulation is then conducted to estimate the power loss due to the moving part deflection. Using FEM modeling, the relation between force and deflection is derived which is necessary for the calibration of the sensor.
Finite Element Analysis of Three Methods for Microwave Heating of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Ethridge, Edwin; Kaukler, William
2012-01-01
In-Situ Resource Utilization will be Ground Breaking technology for sustained exploration of space. Volatiles are present in planetary regolith, but water by far has the most potential for effective utilization. The presence of water at the lunar poles and Mars opens the possibility of using the hydrogen for propellant on missions beyond Earth orbit. Likewise, the oxygen could be used for in-space propulsion for lunar ascent/descent and for space tugs from low lunar orbit to low Earth orbit. Water is also an effective radiation shielding material as well as a valuable expendable (water and oxygen) required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating regolith effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within, much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on regolith dielectric properties. New methods for delivery of microwaves into lunar and planetary surfaces is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. Recent results are discussed.
NASA Astrophysics Data System (ADS)
Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga
2017-03-01
Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.
Thermal design of spacecraft solar arrays using a polyimide foam
NASA Astrophysics Data System (ADS)
Bianco, N.; Iasiello, M.; Naso, V.
2015-11-01
The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.
Simulations of Micropumps Based on Tilted Flexible Fibers
NASA Astrophysics Data System (ADS)
Hancock, Matthew; Elabbasi, Nagi; Demirel, Melik
2015-11-01
Pumping liquids at low Reynolds numbers is challenging because of the principle of reversibility. We report here a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla valves, check valves). We demonstrate proof-of-concept with 2D and 3D fluid-structure interaction (FSI) simulations in COMSOL Multiphysics®of micropumps consisting of a source for oscillatory fluidic motion, e.g. a piston, and a channel lined with tilted flexible rods or sheets to provide rectification. When flow is against the rod tilt direction, the rods bend backward, narrowing the channel and increasing flow resistance; when flow is in the direction of rod tilt, the rods bend forward, widening the channel and decreasing flow resistance. The 2D and 3D simulations involve moving meshes whose quality is maintained by prescribing the mesh displacement on guide surfaces positioned on either side of each flexible structure. The prescribed displacement depends on structure bending and maintains mesh quality even for large deformations. Simulations demonstrate effective pumping even at Reynolds numbers as low as 0.001. Because rod rigidity may be specified independently of Reynolds number, in principle, rod rigidity may be reduced to enable pumping at arbitrarily low Reynolds numbers.
Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials
NASA Astrophysics Data System (ADS)
Qureshi, Awais; Li, Bing; Tan, K. T.
2016-06-01
In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.
High-birefringence photonic crystal fiber structures based on the binary morse-thue fractal sequence
NASA Astrophysics Data System (ADS)
Al-Muraeb, Ahmed; Abdel-Aty-Zohdy, Hoda
2016-09-01
A novel index-guiding Silica glass-core hexagonal High-Birefringence Photonic Crystal Fiber (HB-PCF) is proposed, with five rings of standard cladding air circular holes arranged in four formations inspired by the Binary Morse-Thue fractal Sequence (BMTS). The form birefringence, confinement loss, chromatic dispersion, effective mode area, and effective normalized frequency are evaluated for the four PCFs operating within (1.8 - 2 μm) eye-safe wavelength range. Modeling and analysis of the four PCF formations are performed deploying full-vector analysis in Finite Element Method (FEM) using COMSOL Multiphysics. Respecting fabrication and in light of commercial availability in designing the proposed PCF structures, a high birefringence of up to (6.549 × 10-3 at 2 μm) is achieved with dispersionfree single-mode operation. Confinement loss as low as (3.2 × 10-5 - 6.5 × 10-4 dB/m for 1.8 - 2 μm range) is achieved as well. Comparison against previously reported PCF structures reveals the desirably higher birefringence of our BMTS HB-PCF. The proposed PCFs are of vital use in various optical systems (e.g.: multi-wavelength fiber ring laser systems, and tunable lasers), catering for applications such as: optical sensing, LIDAR systems, material processing, optical signal processing, and optical communication.
NASA Astrophysics Data System (ADS)
Devi, Jutika; Saikia, Rashmi; Datta, Pranayee
2016-10-01
The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.
Numerical Analysis of a Paraffin/Metal Foam Composite for Thermal Storage
NASA Astrophysics Data System (ADS)
Di Giorgio, P.; Iasiello, M.; Viglione, A.; Mameli, M.; Filippeschi, S.; Di Marco, P.; Andreozzi, A.; Bianco, N.
2017-01-01
In the last decade, the use of Phase Change Materials (PCMs) as passive thermal energy storage has been widely studied both analytically and experimentally. Among the PCMs, paraffins show many advantages, such as having a high latent heat, a low vapour pressure, being chemically inert, stable and non-toxic. But, their thermal conductivity is very low with a high volume change during the melting process. An efficient way to increase their poor thermal conductivity is to couple them with open cells metallic foams. This paper deals with a theoretical analysis of paraffin melting process inside an aluminum foam. A mathematical model is developed by using the volume-averaged governing equations for the porous domain, made up by the PCM embedded into the metal foam. Non-Darcian and buoyancy effects are considered in the momentum equation, while the energy equations are modelled with the Local Thermal Non-Equilibrium (LTNE) approach. The PCM liquefaction is treated with the apparent heat capacity method and the governing equations are solved with a finite-element scheme by COMSOL Multiphysics®. A new method to calculate the coupling coefficients needed for the thermal model has been developed and the results obtained have been validated comparing them to experimental data in literature.
Traduccion automatica mediante el ordenador (Automatic Translation Using a Computer).
ERIC Educational Resources Information Center
Bueno, Julian L.
This report on machine translation contains a brief history of the field; a description of the processes involved; a discussion of systems currently in use, including three software packages on the market (Teaching Assistant, Translate, and Globalink); reflections on implications for teaching; observations of results obtained when elements of…
Risk Management for Weapon Systems Acquisition: A Decision Support System
1985-02-28
includes the program evaluation and review technique (PERT) for network analysis, the PMRM for quantifying risk , an optimization package for generating...Despite the inclusion of uncertainty in time, PERT can at best be considered as a tool for quantifying risk with regard to the time element only. Moreover
40 CFR 51.353 - Network type and program evaluation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 51.351 or 51.352 of this subpart. For decentralized programs other than those meeting the design... presumptively equivalent to a centralized, test-only system including comparable test elements. States may allow...-serve gasoline, pre-packaged oil, or other, non-automotive, convenience store items. At the State's...
40 CFR 51.353 - Network type and program evaluation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 51.351 or 51.352 of this subpart. For decentralized programs other than those meeting the design... presumptively equivalent to a centralized, test-only system including comparable test elements. States may allow...-serve gasoline, pre-packaged oil, or other, non-automotive, convenience store items. At the State's...