Sample records for element profile measurements

  1. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  2. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  3. Depth Profiles of Mg, Si, and Zn Implants in GaN by Trace Element Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ravi Prasad, G. V.; Pelicon, P.; Mitchell, L. J.; McDaniel, F. D.

    2003-08-01

    GaN is one of the most promising electronic materials for applications requiring high-power, high frequencies, or high-temperatures as well as opto-electronics in the blue to ultraviolet spectral region. We have recently measured depth profiles of Mg, Si, and Zn implants in GaN substrates by the TEAMS particle counting method for both matrix and trace elements, using a gas ionization chamber. Trace Element Accelerator Mass Spectrometry (TEAMS) is a combination of Secondary Ion Mass Spectrometry (SIMS) and Accelerator Mass Spectrometry (AMS) to measure trace elements at ppb levels. Negative ions from a SIMS like source are injected into a tandem accelerator. Molecular interferences inherent with the SIMS method are eliminated in the TEAMS method. Negative ion currents are extremely low with GaN as neither gallium nor nitrogen readily forms negative ions making the depth profile measurements more difficult. The energies of the measured ions are in the range of 4-8 MeV. A careful selection of mass/charge ratios of the detected ions combined with energy-loss behavior of the ions in the ionization chamber eliminated molecular interferences.

  4. Elemental depth profiling in transparent conducting oxide thin film by X-ray reflectivity and grazing incidence X-ray fluorescence combined analysis

    NASA Astrophysics Data System (ADS)

    Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; Streli, C.; Nolot, E.

    2017-09-01

    The optical and electrical properties of transparent conducting oxide (TCO) thin films are strongly linked with the structural and chemical properties such as elemental depth profile. In R&D environments, the development of non-destructive characterization techniques to probe the composition over the depth of deposited films is thus necessary. The combination of Grazing-Incidence X-ray Fluorescence (GIXRF) and X-ray reflectometry (XRR) is emerging as a fab-compatible solution for the measurement of thickness, density and elemental profile in complex stacks. Based on the same formalism, both techniques can be implemented on the same experimental set-up and the analysis can be combined in a single software in order to refine the sample model. While XRR is sensitive to the electronic density profile, GIXRF is sensitive to the atomic density (i. e. the elemental depth profile). The combination of both techniques allows to get simultaneous information about structural properties (thickness and roughness) as well as the chemical properties. In this study, we performed a XRR-GIXRF combined analysis on indium-free TCO thin films (Ga doped ZnO compound) in order to correlate the optical properties of the films with the elemental distribution of Ga dopant over the thickness. The variation of optical properties due to annealing process were probed by spectroscopic ellipsometry measurements. We studied the evolution of atomic profiles before and after annealing process. We show that the blue shift of the band gap in the optical absorption edge is linked to a homogenization of the atomic profiles of Ga and Zn over the layer after the annealing. This work demonstrates that the combination of the techniques gives insight into the material composition and makes the XRR-GIXRF combined analysis a promising technique for elemental depth profiling.

  5. Measurement of the complex transmittance of large optical elements with Ptychographical Iterative Engine.

    PubMed

    Wang, Hai-Yan; Liu, Cheng; Veetil, Suhas P; Pan, Xing-Chen; Zhu, Jian-Qiang

    2014-01-27

    Wavefront control is a significant parameter in inertial confinement fusion (ICF). The complex transmittance of large optical elements which are often used in ICF is obtained by computing the phase difference of the illuminating and transmitting fields using Ptychographical Iterative Engine (PIE). This can accurately and effectively measure the transmittance of large optical elements with irregular surface profiles, which are otherwise not measurable using commonly used interferometric techniques due to a lack of standard reference plate. Experiments are done with a Continue Phase Plate (CPP) to illustrate the feasibility of this method.

  6. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  7. Chinese children with autism: A multiple chemical elements profile in erythrocytes.

    PubMed

    Wu, Jing; Liu, Duo-Jian; Shou, Xiao-Jing; Zhang, Ji-Shui; Meng, Fan-Chao; Liu, Ya-Qiong; Han, Song-Ping; Zhang, Rong; Jia, Jin-Zhu; Wang, Jing-Yu; Han, Ji-Sheng

    2018-06-01

    Several lines of evidence suggested that abnormal levels of certain chemical elements may contribute to the development of autism spectrum disorders (ASD). The present work aimed to investigate the multiple chemical elements profile in the erythrocytes of autistic versus typically developing children (TDC) of China. Analyses were carried out to explore the possible association between levels of elements and the risk as well as the severity of ASD. Erythrocyte levels of 11 elements (32%) among 34 detected elements in autistic group were significantly different from those in the TDC group. To our knowledge, this is the first study which compared the levels of rare earth elements in erythrocytes between children with or without ASD. Five elements including Pb, Na, Ca, Sb, and La are associated with the Childhood Autism Rating Scale (CARS) total score. Also, a series of tendencies were found in this research which was believed to affect auditory response, taste, smell, and touch, as well as fear or nervousness. It can be concluded that Chinese autistic children suffer from multi-chemical element imbalances which involves a complex combination of genetic and environmental factors. The results showed a significant correlation between abnormal levels of several chemical elements and the severity of the autistic syndrome. It is suggested that abnormal levels of some chemical elements may contribute to the development of autism spectrum disorders (ASD). In this work, the impact of element imbalances on the risk and severity of ASD was investigated, focusing on the analysis of abnormal levels of the multi-chemical elements profile in erythrocytes compared with typically developing children. Furthermore, the results showed a significant correlation between abnormal levels of several chemical elements and the severity of the autistic syndrome. Autism Res 2018, 11: 834-845. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. © 2018 International Society

  8. Profiling elements in Puerh tea from Yunnan province, China.

    PubMed

    Zhang, Jianyang; Ma, Guicen; Chen, Liyan; Liu, Ting; Liu, Xin; Lu, Chengyin

    2017-09-01

    Puerh tea, as the most representative Chinese dark tea, has attracted global interest in recent years. Profiling the levels of metal elements in Puerh tea is very important since its presence is related to human health. In this study, 41 elements in 98 Puerh tea samples from Yunnan province, China including Puerh raw tea and Puerh ripe tea were evaluated by microwave digestion combined with inductively coupled plasma mass spectrometry . The content of toxic elements, essential elements and rare earth elements of Puerh tea from different regions was discussed in detail. The concentrations of Ba, Cr, As, Pb, Bi, Fe, Zn, V, Mn, Be, Ag and Tl showed significant differences (p < 0.05) by ANOVA analysis. Principal component analysis and linear discriminant analysis were used to describe the relationship of Puerh tea from different regions. This study provided a comprehensive database for Puerh tea quality control and intake risk assessment.

  9. Direct method for imaging elemental distribution profiles with long-period x-ray standing waves

    NASA Astrophysics Data System (ADS)

    Kohli, Vaibhav; Bedzyk, Michael J.; Fenter, Paul

    2010-02-01

    A model-independent Fourier-inversion method for imaging elemental profiles from multilayer and total-external reflection x-ray standing wave (XSW) data is developed for the purpose of understanding the assembly of atoms, ions, and molecules at well-defined interfaces in complex environments. The direct-method formalism is derived for the case of a long-period XSW generated by low-angle specular reflection in an attenuating overlayer medium. It is validated through comparison with simulated and experimental data to directly obtain an elemental distribution contained within the overlayer. We demonstrate this formalism by extracting the one-dimensional profile of Ti normal to the surface for a TiO2/Si/Mo trilayer deposited on a Si substrate using the TiKα fluorescence yield measured in air and under an aqueous electrolyte. The model-independent results demonstrate reduced coherent fractions for the in situ results associated with an incoherency of the x-ray beam (which are attributed to fluorescence excitation by diffusely or incoherently scattered x-rays). The uniqueness and limitations of the approach are discussed.

  10. Electrosurgical vessel sealing tissue temperature: experimental measurement and finite element modeling.

    PubMed

    Chen, Roland K; Chastagner, Matthew W; Dodde, Robert E; Shih, Albert J

    2013-02-01

    The temporal and spatial tissue temperature profile in electrosurgical vessel sealing was experimentally measured and modeled using finite element modeling (FEM). Vessel sealing procedures are often performed near the neurovascular bundle and may cause collateral neural thermal damage. Therefore, the heat generated during electrosurgical vessel sealing is of concern among surgeons. Tissue temperature in an in vivo porcine femoral artery sealed using a bipolar electrosurgical device was studied. Three FEM techniques were incorporated to model the tissue evaporation, water loss, and fusion by manipulating the specific heat, electrical conductivity, and electrical contact resistance, respectively. These three techniques enable the FEM to accurately predict the vessel sealing tissue temperature profile. The averaged discrepancy between the experimentally measured temperature and the FEM predicted temperature at three thermistor locations is less than 7%. The maximum error is 23.9%. Effects of the three FEM techniques are also quantified.

  11. Profiling Fast Healthcare Interoperability Resources (FHIR) of Family Health History based on the Clinical Element Models.

    PubMed

    Lee, Jaehoon; Hulse, Nathan C; Wood, Grant M; Oniki, Thomas A; Huff, Stanley M

    2016-01-01

    In this study we developed a Fast Healthcare Interoperability Resources (FHIR) profile to support exchanging a full pedigree based family health history (FHH) information across multiple systems and applications used by clinicians, patients, and researchers. We used previously developed clinical element models (CEMs) that are capable of representing the FHH information, and derived essential data elements including attributes, constraints, and value sets. We analyzed gaps between the FHH CEM elements and existing FHIR resources. Based on the analysis, we developed a profile that consists of 1) FHIR resources for essential FHH data elements, 2) extensions for additional elements that were not covered by the resources, and 3) a structured definition to integrate patient and family member information in a FHIR message. We implemented the profile using an open-source based FHIR framework and validated it using patient-entered FHH data that was captured through a locally developed FHH tool.

  12. Nanometric edge profile measurement of cutting tools on a diamond turning machine

    NASA Astrophysics Data System (ADS)

    Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei

    2008-10-01

    Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.

  13. A new method for measuring the rotational accuracy of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  14. Development of a probe for inner profile measurement and flaw detection

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Wakayama, Toshitaka; Kamakura, Yoshihisa

    2011-08-01

    It is one of the important necessities to precisely measure the inner diameter and/or the inner profile of pipes, tubes and other objects similar in shape. Especially in mechanical engineering field, there are many requests from automobile industry because the inner surface of engine blocks and other die casts are strongly required to be inspected and measured by non-contact methods (not by the naked eyes inspection using a borescope). If the inner diameter is large enough like water pipes or drain pipes, complicated and large equipment may be applicable. However, small pipes with a diameter ranging from 10mm to 100mm are difficult to be inspected by such a large instrument as is used for sewers inspection. And we have proposed an instrument which has no moving elements such as a rotating mirror or a prism for scanning a beam. Our measurement method is based on optical sectioning using triangulation. This optically sectioned profile of an inner wall of pipe-like objects is analyzed to produce numerical data of inner diameter or profile. Here, we report recent development of the principle and applications of the optical instrument with a simple and compact configuration. In addition to profile measurement, we found flaws and defects on the inner wall were also detected by using the similar principle. Up to now, we have developed probes with the diameter of 8mm to 25mm for small size objects and another probe (80 mm in diameter) for such a larger container with the dimensional size of 600mm.

  15. Co-occurrence profiles of trace elements in potable water systems: a case study.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Charisiadis, Pantelis; Costa, Costas N

    2014-11-01

    Potable water samples (N = 74) from 19 zip code locations in a region of Greece were profiled for 13 trace elements composition using inductively coupled plasma mass spectrometry. The primary objective was to monitor the drinking water quality, while the primary focus was to find novel associations in trace elements occurrence that may further shed light on common links in their occurrence and fate in the pipe scales and corrosion products observed in urban drinking water distribution systems. Except for arsenic at two locations and in six samples, rest of the analyzed elements was below maximum contaminant levels, for which regulatory values are available. Further, we attempted to hierarchically cluster trace elements based on their covariances resulting in two groups; one with arsenic, antimony, zinc, cadmium, and copper and the second with the rest of the elements. The grouping trends were partially explained by elements' similar chemical activities in water, underscoring their potential for co-accumulation and co-mobilization phenomena from pipe scales into finished water. Profiling patterns of trace elements in finished water could be indicative of their load on pipe scales and corrosion products, with a corresponding risk of episodic contaminant release. Speculation was made on the role of disinfectants and disinfection byproducts in mobilizing chemically similar trace elements of human health interest from pipe scales to tap water. It is warranted that further studies may eventually prove useful to water regulators from incorporating the acquired knowledge in the drinking water safety plans.

  16. Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea

    PubMed Central

    Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere

    2016-01-01

    This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi, Meriandra dianthera, Lepidium sativum, Brassica nigra, and Nigella sativa. These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different (P < 0.05). PMID:27795982

  17. Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea.

    PubMed

    Sium, Mussie; Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere

    This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi , Meriandra dianthera , Lepidium sativum , Brassica nigra, and Nigella sativa . These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different ( P < 0.05).

  18. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  19. Measurement of whole tire profile

    NASA Astrophysics Data System (ADS)

    Yang, Yongyue; Jiao, Wenguang

    2010-08-01

    In this paper, a precision measuring device is developed for obtaining characteristic curve of tire profile and its geometric parameters. It consists of a laser displacement measurement unit, a closed-loop precision two-dimensional coordinate table, a step motor control system and a fast data acquisition and analysis system. Based on the laser trigonometry, a data map of tire profile and coordinate values of all points can be obtained through corresponding data transformation. This device has a compact structure, a convenient control, a simple hardware circuit design and a high measurement precision. Experimental results indicate that measurement precision can meet the customer accuracy requirement of +/-0.02 mm.

  20. Upper Ocean Profiles Measurements with ASIP

    NASA Astrophysics Data System (ADS)

    Ward, B.; Callaghan, A. H.; Fristedt, T.; Vialard, J.; Cuypers, Y.; Weller, R. A.; Grosch, C. E.

    2009-04-01

    This presentation describes results from the Air-Sea Interaction Profiler (ASIP), an autonomous profiling instrument for upper ocean measurements. The measurements from ASIP are well suited to enhancing research on air-sea interfacial and near surface processes. Autonomous profiling is accomplished with a thruster, which submerges ASIP to a programmed depth. Once this depth is reached the positively buoyant instrument will ascend to the surface acquiring data. ASIP can profile from a maximum depth of 100 m to the surface, allowing both mixed layer and near-surface measurements to be conducted. The sensor payload on ASIP include microstructure sensors (two shear probes and a thermistor); a slow response accurate thermometer; a pair of conductivity sensors; pressure for a record of depth; PAR for measurements of light absorption in the water column. Other non-environmental sensors are acceleration, rate, and heading for determination of vehicle motion. Power is provided with rechargable lithium-ion batteries, supplying 1000 Whr, allowing approximately 300 profiles. ASIP also contains an iridium/GPS system, which allows realtime reporting of its position. ASIP was deployed extensively during the Cirene Indian Ocean campaign and our results focus on the data from the temperature, salinity, light, and shear sensors.

  1. High-resolution humidity profiles retrieved from wind profiler radar measurements

    NASA Astrophysics Data System (ADS)

    Saïd, Frédérique; Campistron, Bernard; Di Girolamo, Paolo

    2018-03-01

    The retrieval of humidity profiles from wind profiler radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity profile is the necessity to combine measurements from the wind profiler and additional measurements (such as observations from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity profile from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity profile never exceeds 0.25 g kg-1. The second objective is to explore the capability of the algorithm to retrieve the humidity vertical profiles for an operational purpose by comparing the results with observations from a Raman lidar.

  2. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  3. Measuring Surface Bulk Elemental Composition on Venus

    NASA Technical Reports Server (NTRS)

    Schweitzer, Jeffrey S.; Parsons, Ann M.; Grau, Jim; Lawrence, David J.; McCclanahan, Timothy P.; Miles, Jeffrey; Peplowski, Patrick; Perkins, Luke; Starr, Richard

    2017-01-01

    The extreme surface environment (462 C, 93 bars pressure) of Venus makes subsurface measurements of its bulk elemental composition extremely challenging. Instruments landed on the surface of Venus must be enclosed in a pressure vessel. The high surface temperatures also require a thermal control system to keep the instrumentation temperatures within their operational range for as long as possible. Since Venus surface probes can currently operate for only a few hours, it is crucial that the lander instrumentation be able to make statistically significant measurements in a short time. An instrument is described that can achieve such a measurement over a volume of thousands of cubic centimeters of material by using high energy penetrating neutron and gamma radiation. The instrument consists of a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS). The PNG emits isotropic pulses of 14.1 MeV neutrons that penetrate the pressure vessel walls, the dense atmosphere and the surface rock. The neutrons induce nuclear reactions in the rock to produce gamma rays with energies specific to the element and nuclear process involved. Thus the energies of the detected gamma rays identify the elements present and their intensities provide the abundance of each element. The GRS spectra are analyzed to determine the Venus elemental composition from the spectral signature of individual major, minor, and trace radioactive elements. As a test of such an instrument, a Schlumberger Litho Scanner oil well logging tool was used in a series of experiments at NASA's Goddard Space Flight Center. The Litho Scanner tool was mounted above large (1.8 m x 1.8 m x.9 m) granite and basalt monuments and made a series of one-hour elemental composition measurements in a planar geometry more similar to a planetary lander measurement. Initial analysis of the results shows good agreement with target elemental assays

  4. Determination of rare earth elements concentration at different depth profile of Precambrian pegmatites using instrumental neutron activation analysis.

    PubMed

    Sadiq Aliyu, Abubakar; Musa, Yahaya; Liman, M S; Abba, Habu T; Chaanda, Mohammed S; Ngene, Nnamani C; Garba, N N

    2018-01-01

    The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods.

    PubMed

    Kamoun, Choumouss; Payen, Thibaut; Hua-Van, Aurélie; Filée, Jonathan

    2013-10-11

    Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of

  6. Elemental profiling of Noah's Ark shell (Arca noae, Linnaeus, 1758) by plasma optical spectrometry and chemometric tools.

    PubMed

    Kobelja, Kristina; Nemet, Ivan; Župan, Ivan; Čulin, Jelena; Rončević, Sanda

    2016-12-01

    Determination of metal content in biominerals provides essential information with respect to relations between biomineralization processes and environmental status. Mussels are species that have a great potential as bio-marker species and therefore, they are in the focus of numerous biomineralization and ecological studies. In this study, elemental profile of mussel shell of Noah's Ark (Arca noe, Linnaeus, 1758), which inhabit eastern Adriatic Sea was obtained by determination of seventeen elements content using inductively coupled plasma optical emission spectrometry (ICP-OES). Shell samples were collected from marine protected area and from marine shipping route in eastern Adriatic Sea. The accuracy of applied analytical procedure based on microwave decomposition of shell samples was tested by use of reference materials of limestone and by matrix-matched standards. By aid of chemometric methods, the elemental profile along with variability of elements content of shell was obtained. The impact of different environment on elements content was established by use of multivariate statistical PCA method. Discernment between two groups of samples was manifested. Among results of main, minor and trace elements content, the last one which denoted to Cd, Co, Cu, Pb, and Mn was expressed as principal distinctive feature of shell samples collected from different sampling sites. Elemental profiling of mussel shell Noah's Ark provides novel insight in species status as well as in environmental status on the observed locations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Trace elements in lake sediments measured by the PIXE technique

    NASA Astrophysics Data System (ADS)

    Gatti, Luciana V.; Mozeto, Antônio A.; Artaxo, Paulo

    1999-04-01

    Lakes are ecosystems where there is a great potential of metal accumulation in sediments due to their depositional characteristics. Total concentration of trace elements was measured on a 50 cm long sediment core from the Infernão Lake, that is an oxbow lake of the Moji-Guaçu River basin, in the state of São Paulo, Brazil. Dating of the core shows up to 180 yrs old sediment layers. The use of the PIXE technique for elemental analysis avoids the traditional acid digestion procedure common in other techniques. The multielemental characteristic of PIXE allows a simultaneous determination of about 20 elements in the sediment samples, such as, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Ba, and Pb. Average values for the elemental composition were found to be similar to the bulk crustal composition. The lake flooding pattern strongly influences the time series of the elemental profiles. Factor analysis of the elemental variability shows five factors. Two of the factors represent the mineralogical matrix, and others represent the organic component, a factor with lead, and another loaded with chromium. The mineralogical component consists of elements such as, Fe, Al, V, Ti, Mn, Ni, K, Zr, Sr, Cu and Zn. The variability of Si is explained by two distinct factors, because it is influenced by two different sources, aluminum-silicates and quartz, and the effect of inundation are different for each other. The organic matter is strongly associated with calcium, and also bounded with S, Zn, Cu and P. Lead and chromium appears as separated factors, although it is not clear the evidences for their anthropogenic origin. The techniques developed for sample preparation and PIXE analysis was proven as advantageous and provided very good reproducibility and accuracy.

  8. Edge profiles in K shell photoabsorption spectra of gaseous hydrides of 3p elements and homologues

    NASA Astrophysics Data System (ADS)

    Hauko, R.; Gomilšek, J. Padežnik; Kodre, A.; Arčon, I.; Aquilanti, G.

    2017-10-01

    Photoabsorption spectra of gaseous hydrides of 3p elements (PH3, H2S, HCl) are measured in the energy region of photoexcitations pertaining to K edge. The analysis of the edge profile is extended to hydrides of 4p series (GeH4, AsH3, H2Se, HBr) from an earlier experiment, and to published spectra of 2p hydrides (CH4, NH3, H2O, HF) and noble gases Ar, Kr and Ne and SiH4. The edge profiles are modelled with a linear combination of lorentzian components, describing excitations to individual bound states and to continuum. Transition energies and probabilities are also calculated in the non-relativistic molecular model of the ORCA code, in good agreement with the experiment. Edge profiles in the heavier homologues are closely similar, the symmetry of the molecule governs the transitions to the lowest unoccupied orbitals. In 2p series the effect of the strong nuclear potential prevails. Transitions to higher, atomic-like levels remain very much the same as in free atoms.

  9. Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    McDaniel, F. D.; Datar, S. A.; Nigam, M.; Ravi Prasad, G. V.

    2002-05-01

    Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10B, 14C, 36Cl, 129I, etc. to their stable counterparts at levels as low as 10 -16. Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge xSi 1- x/Si is difficult with SIMS because of molecular interferences from 74GeH, 29Si 30Si 16O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2, GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.

  10. Finite element design procedure for correcting the coining die profiles

    NASA Astrophysics Data System (ADS)

    Alexandrino, Paulo; Leitão, Paulo J.; Alves, Luis M.; Martins, Paulo A. F.

    2018-05-01

    This paper presents a new finite element based design procedure for correcting the coining die profiles in order to optimize the distribution of pressure and the alignment of the resultant vertical force at the end of the die stroke. The procedure avoids time consuming and costly try-outs, does not interfere with the creative process of the sculptors and extends the service life of the coining dies by significantly decreasing the applied pressure and bending moments. The numerical simulations were carried out in a computer program based on the finite element flow formulation that is currently being developed by the authors in collaboration with the Portuguese Mint. A new experimental procedure based on the stack compression test is also proposed for determining the stress-strain curve of the materials directly from the coin blanks.

  11. Source Attribution of Cyanides Using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics.

    PubMed

    Mirjankar, Nikhil S; Fraga, Carlos G; Carman, April J; Moran, James J

    2016-02-02

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock

  12. Measuring Surface Bulk Elemental Composition on Venus

    NASA Astrophysics Data System (ADS)

    Schweitzer, Jeffrey S.; Parsons, Ann M.; Grau, Jim; Lawrence, David J.; McClanahan, Timothy P.; Miles, Jeffrey; Peplowski, Patrick; Perkins, Luke; Starr, Richard

    Bulk elemental composition measurements of the subsurface of Venus are challenging because of the extreme surface environment (462 ˚C, 93 bars pressure). Instruments provided by landed probes on the surface of Venus must therefore be enclosed in a pressure vessel. The high surface temperatures require a thermal control system that keeps the instrumentation and electronics within their operating temperature range for as long as possible. Currently, Venus surface probes can operate for only a few hours. It is therefore crucial that the lander instrumentation be able to make statistically significant measurements in a short time. An instrument is described that can achieve such a measurement over a volume of thousands of cubic centimeters of material by using high energy penetrating neutron and gamma radiation. The instrument consists of a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS). The PNG emits isotropic pulses of 14.1 MeV neutrons that penetrate the pressure vessel walls, the dense atmosphere and the surface rock. The neutrons induce nuclear reactions in the rock to produce gamma rays with energies specific to the element and nuclear process involved. Thus the energies of the detected gamma rays identify the elements present and their intensities provide the abundance of each element. The GRS spectra are analyzed to determine the Venus elemental composition from the spectral signature of individual major, minor, and trace radioactive elements. As a test of such an instrument, a Schlumberger Litho Scanner1 oil well logging tool was used in a series of experiments at NASA's Goddard Space Flight Center. The Litho Scanner tool was mounted above large (1.8 m x 1.8 m x .9 m) granite and basalt monuments and made a series of one-hour elemental composition measurements in a planar geometry more similar to a planetary lander measurement. Initial analysis of the results shows good agreement with target elemental assays.

  13. Sensitivity of equilibrium profile reconstruction to motional Stark effect measurements

    NASA Astrophysics Data System (ADS)

    Batha, S. H.; Levinton, F. M.; Hirshman, S. P.; Bell, M. G.; Wieland, R. M.

    1996-09-01

    The magnetic-field pitch-angle profile, gamma p(R) identical to tan-1(Bpol/Btor), is measured on TFTR using a motional Stark effect (MSE) polarimeter. Measured pitch angle profiles, along with kinetic profiles and external magnetic measurements, are used to compute a self-consistent equilibrium using the free-boundary variational moments equilibrium code VMEC. Uncertainties in the q profile due to uncertainties in gamma P(R), magnetic measurements and kinetic measurements are found to be small. Subsequent uncertainties in the VMEC-calculated current density and shear profiles are also small

  14. Element-resolved Kikuchi pattern measurements of non-centrosymmetric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au

    2017-01-15

    Angle-resolved electron Rutherford backscattering (ERBS) measurements using an electrostatic electron energy analyser can provide unique access to element-resolved crystallographic information. We present Kikuchi pattern measurements of the non-centrosymmetric crystal GaP, separately resolving the contributions of electrons backscattered from Ga and P. In comparison to element-integrated measurements like in the method of electron backscatter diffraction (EBSD), the effect of the absence of a proper 4-fold rotation axis in the point group of GaP can be sensed with a much higher visibility via the element-resolved Ga to P intensity ratio. These element-resolved measurements make it possible to experimentally attribute the previously observedmore » point-group dependent effect in element-integrated EBSD measurements to the larger contribution of electrons scattered from Ga compared to P. - Highlights: •Element specific Kikuchi patterns are presented for GaP. •Absence of a proper four-fold rotation axis is demonstrated. •Ga and P intensity variations after 90 degree rotation have opposite phase. •The asymmetry in the total intensity distribution resembles that of Ga.« less

  15. Diagnostic developments for velocity and temperature measurements in uni-element rocket environments

    NASA Astrophysics Data System (ADS)

    Philippart, Kenneth D.

    1995-08-01

    Velocity and temperature measurements were taken within a uni-element rocket combustion chamber for hydrogen-oxygen propellants using laser Doppler velocimetry, thermocouples, and a thermocouple-based temperature rake developed for this effort. Velocity and turbulence profiles were obtained for firings with a gaseous oxygen (GO2)/gaseous hydrogen (GH2) coaxial shear injector at axial locations of 1.6 mm (0.063 in.), 6.4 mm (0.25 in.), 12.7 mm (0.5 in.), 25.4 mm (1 in.) and 50.8 mm (2 in.). Aluminum oxide particles of various sizes seeded the flow in an attempt to explain the discrepancies. While cold-flow simulations were promising, hot-fire results for the various particles were virtually identical and still lower than earlier data. The hot-firings were self-consistent and question the reproducibility of the previous data. Velocity measurements were made closer to the injector than the preceding work. Asymmetries were noted in all profiles. The shear layer displayed high turbulence levels. The central flow near the injector resembled turbulent pipe flow. Recirculation zones existed at the chamber walls and became smaller as the flow evolved downstream. The combusting flow region expanded with increasing axial distance. A thermocouple-instrumented coaxial injector was fired with GO2/GH2 propellants. The injector exit plane boundary conditions were determined. The feasibility of a thermocouple-based temperature rake was established. Tests at three axial positions for air/GM2 firings revealed asymmetric profiles. Temperatures increased with increasing axial distance.

  16. Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-Waveform Ground-Based Lidar

    NASA Technical Reports Server (NTRS)

    Zhao, Feng; Strahler, Alan H.; Crystal L. Schaaf; Yao, Tian; Yang, Xiaoyuan; Wang, Zhuosen; Schull, Mitchell A.; Roman, Miguel O.; Woodcock, Curtis E.; Olofsson, Pontus; hide

    2012-01-01

    The Echidna Validation Instrument (EVI), a ground-based, near-infrared (1064 nm) scanning lidar, provides gap fraction measurements, element clumping index measurements, effective leaf area index (LAIe) and leaf area index (LAI) measurements that are statistically similar to those from hemispherical photos. In this research, a new method integrating the range dimension is presented for retrieving element clumping index using a unique series of images of gap probability (Pgap) with range from EVI. From these images, we identified connected gap components and found the approximate physical, rather than angular, size of connected gap component. We conducted trials at 30 plots within six conifer stands of varying height and stocking densities in the Sierra National Forest, CA, in August 2008. The element clumping index measurements retrieved from EVI Pgap image series for the hinge angle region are highly consistent (R2=0.866) with those of hemispherical photos. Furthermore, the information contained in connected gap component size profiles does account for the difference between our method and gap-size distribution theory based method, suggesting a new perspective to measure element clumping index with EVI Pgap image series and also a potential advantage of three dimensional Lidar data for element clumping index retrieval. Therefore further exploration is required for better characterization of clumped condition from EVI Pgap image series.

  17. Doping profile measurement on textured silicon surface

    NASA Astrophysics Data System (ADS)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  18. Preschool Children's Performance on Profiling Elements of Prosody in Speech-Communication (PEPS-C)

    ERIC Educational Resources Information Center

    Gibbon, Fiona E.; Smyth, Heather

    2013-01-01

    Profiling Elements of Prosody in Speech-Communication (PEPS-C) has not been used widely to assess prosodic abilities of preschool children. This study was therefore aimed at investigating typically developing 4-year-olds' performance on PEPS-C. PEPS-C was presented to 30 typically developing 4-year-olds recruited in southern Ireland. Children were…

  19. PROSPECT improves cis-acting regulatory element prediction by integrating expression profile data with consensus pattern searches

    PubMed Central

    Fujibuchi, Wataru; Anderson, John S. J.; Landsman, David

    2001-01-01

    Consensus pattern and matrix-based searches designed to predict cis-acting transcriptional regulatory sequences have historically been subject to large numbers of false positives. We sought to decrease false positives by incorporating expression profile data into a consensus pattern-based search method. We have systematically analyzed the expression phenotypes of over 6000 yeast genes, across 121 expression profile experiments, and correlated them with the distribution of 14 known regulatory elements over sequences upstream of the genes. Our method is based on a metric we term probabilistic element assessment (PEA), which is a ranking of potential sites based on sequence similarity in the upstream regions of genes with similar expression phenotypes. For eight of the 14 known elements that we examined, our method had a much higher selectivity than a naïve consensus pattern search. Based on our analysis, we have developed a web-based tool called PROSPECT, which allows consensus pattern-based searching of gene clusters obtained from microarray data. PMID:11574681

  20. Elemental profiles reflect plant adaptations to the environment

    USDA-ARS?s Scientific Manuscript database

    Elemental concentrations in plants are determined by interactions with the soil. Soil is one of the key environmental influences (along with water, light, gas and other organisms) of plant success and drivers of speciation and adaptation. Environmental conditions influence common measures of adaptat...

  1. Nutrient Intake Is Associated with Longevity Characterization by Metabolites and Element Profiles of Healthy Centenarians

    PubMed Central

    Cai, Da; Zhao, Shancang; Li, Danlei; Chang, Fang; Tian, Xiangxu; Huang, Guohong; Zhu, Zhenjun; Liu, Dong; Dou, Xiaowei; Li, Shubo; Zhao, Mouming; Li, Quanyang

    2016-01-01

    The relationships between diet and metabolites as well as element profiles in healthy centenarians are important but remain inconclusive. Therefore, to test the interesting hypothesis that there would be distinctive features of metabolites and element profiles in healthy centenarians, and that these would be associated with nutrient intake; the short chain fatty acids (SCFAs), total bile acids and ammonia in feces, phenol, p-cresol, uric acid, urea, creatinine and ammonia in urine, and element profiles in fingernails were determined in 90 healthy elderly people, including centenarians from Bama county (China)—a famous longevous region—and elderly people aged 80–99 from the longevous region and a non-longevous region. The partial least squares-discriminant analysis was used for pattern recognition. As a result, the centenarians showed a distinct metabolic pattern. Seven characteristic components closely related to the centenarians were identified, including acetic acid, total SCFA, Mn, Co, propionic acid, butyric acid and valeric acid. Their concentrations were significantly higher in the centenarians group (p < 0.05). Additionally, the dietary fiber intake was positively associated with butyric acid contents in feces (r = 0.896, p < 0.01), and negatively associated with phenol in urine (r = −0.326, p < 0.01). The results suggest that the specific metabolic pattern of centenarians may have an important and positive influence on the formation of the longevity phenomenon. Elevated dietary fiber intake should be a path toward health and longevity. PMID:27657115

  2. Measurement of stratospheric HOCl - Concentration profiles, including diurnal variation

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Johnson, D. G.; Traub, W. A.

    1989-01-01

    Determinations have been made of concentration profiles of HOCl in the earth's stratosphere, including the diurnal variation. Measurements of the rotational Q2 branch at 99.5/cm and of five RR(J3) transitions between 143 and 159/cm were made using far-infrared thermal emission spectroscopy. The spectra were obtained during a balloon flight of the FIRS 2 far-infrared Fourier-transform spectrometer and telescope from Palestine, Texas on May 12-13, 1988. From these measurements, altitude profiles of HOCl from 23 to 42 km are obtained. Daytime and nighttime average profiles of HOCl, as well as measurements on a 30-min time scale through the sunset transition at a single (35 km) altitude are presented. The measured profiles are lower than the current predictions from several modeling groups by a factor of approximately 0.6.

  3. Measurement of Elements in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.

    1985-01-01

    Balloon-borne winch system; stratospheric free radicals; stratospheric sounding; copper vapor lasers; ozone measurement; NO2 analysis; chlorine chemistry; trace elements; and ClO observations are discussed.

  4. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  5. Subsurface In Situ Elemental Composition Measurements with PING

    NASA Technical Reports Server (NTRS)

    Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard

    2013-01-01

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  6. Overall elemental dry deposition velocities measured around Lake Michigan

    NASA Astrophysics Data System (ADS)

    Yi, Seung-Muk; Shahin, Usama; Sivadechathep, Jakkris; Sofuoglu, Sait C.; Holsen, Thomas M.

    Overall dry deposition velocities of several elements were determined by dividing measured fluxes by measured airborne concentrations in different particle size ranges. The dry deposition measurements were made with a smooth surrogate surface on an automated dry deposition sampler (Eagle II) and the ambient particle concentrations were measured with a dichotomous sampler. These long-term measurements were made in Chicago, IL, South Haven, MI, and Sleeping Bear Dunes, MI, from December 1993 through October 1995 as part of the Lake Michigan Mass Balance Study. In general, the dry deposition fluxes of elements were highly correlated with coarse particle concentrations, slightly less well correlated with total particle concentrations, and least well correlated with fine particle concentrations. The calculated overall dry deposition velocities obtained using coarse particle concentrations varied from approximately 12 cm s -1 for Mg in Chicago to 0.2 cm s -1 for some primarily anthropogenic metals at the more remote sites. The velocities calculated using total particle concentrations were slightly lower. The crustal elements (Mg, Al, and Mn) had higher deposition velocities than anthropogenic elements (V, Cr, Cu, Zn, Mo, Ba and Pb). For crustal elements, overall dry deposition velocities were higher in Chicago than at the other sites.

  7. Extending the Measurement Range of AN Optical Surface Profiler.

    NASA Astrophysics Data System (ADS)

    Cochran, Eugene Rowland, III

    This dissertation investigates a method for extending the measurement range of an optical surface profiling instrument. The instrument examined in these experiments is a computer -controlled phase-modulated interference microscope. Because of its ability to measure surfaces with a high degree of vertical resolution as well as excellent lateral resolution, this instrument is one of the most favorable candidates for determining the microtopography of optical surfaces. However, the data acquired by the instrument are restricted to a finite lateral and vertical range. To overcome this restriction, the feasibility of a new testing technique is explored. By overlapping a series of collinear profiles the limited field of view of this instrument can be increased and profiles that contain longer surface wavelengths can be examined. This dissertation also presents a method to augment both the vertical and horizontal dynamic range of the surface profiler by combining multiple subapertures and two-wavelength techniques. The theory, algorithms, error sources, and limitations encountered when concatenating a number of profiles are presented. In particular, the effects of accumulated piston and tilt errors on a measurement are explored. Some practical considerations for implementation and integration into an existing system are presented. Experimental findings and results of Monte Carlo simulations are also studied to explain the effects of random noise, lateral position errors, and defocus across the CCD array on measurement results. These results indicate the extent to which the field of view of the profiler may be augmented. A review of current methods of measuring surface topography is included, to provide for a more coherent text, along with a summary of pertinent measurement parameters for surface characterization. This work concludes with recommendations for future work that would make subaperture -testing techniques more reliable for measuring the microsurface structure

  8. Field measurements of temperature profile for floatovoltaic dryer in the tropics

    NASA Astrophysics Data System (ADS)

    Osman, F. A.; Ya'acob, M. E.; Iskandar, A. Noor

    2017-09-01

    Most of the equator region in a tropical climate zone experiences hot and humid weather but sometimes heavy rain and thunderstorms which occur stochastically in monsoon season. Sunlight which is the energy source can be harvested approximately 8 hours (on average basis) daily throughout the year which leads to the promotion of Solar PV technologies. This works projects the field performance for a new Floatovoltaic Dryer prototype with flexible PV roofing structures covering the top of the dryer system. The field measurements are collected on the lake of Engineering Faculty, UPM supported with 4-parameter weather station. Temperature profile with RH measurements inside the Floatovoltaic Dryer compartments as compared to direct-sun drying mechanism are the main contributions of this work and it projects more than 12 W of convection heat energy could be harvested by using the clean system. The field measurements imply various points of thermocouple and humidity sensor throughout the experiment. Temperature and humidity will be the main elements recorded to analyze the differences under monocrystalline PV panel as compared to natural drying.

  9. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.

  10. Energy response corrections for profile measurements using a combination of different detector types.

    PubMed

    Wegener, Sonja; Sauer, Otto A

    2018-02-01

    Different detector properties will heavily affect the results of off-axis measurements outside of radiation fields, where a different energy spectrum is encountered. While a diode detector would show a high spatial resolution, it contains high atomic number elements, which lead to perturbations and energy-dependent response. An ionization chamber, on the other hand, has a much smaller energy dependence, but shows dose averaging over its larger active volume. We suggest a way to obtain spatial energy response corrections of a detector independent of its volume effect for profiles of arbitrary fields by using a combination of two detectors. Measurements were performed at an Elekta Versa HD accelerator equipped with an Agility MLC. Dose profiles of fields between 10 × 4 cm² and 0.6 × 0.6 cm² were recorded several times, first with different small-field detectors (unshielded diode 60012 and stereotactic field detector SFD, microDiamond, EDGE, and PinPoint 31006) and then with a larger volume ionization chamber Semiflex 31010 for different photon beam qualities of 6, 10, and 18 MV. Correction factors for the small-field detectors were obtained from the readings of the respective detector and the ionization chamber using a convolution method. Selected profiles were also recorded on film to enable a comparison. After applying the correction factors to the profiles measured with different detectors, agreement between the detectors and with profiles measured on EBT3 film was improved considerably. Differences in the full width half maximum obtained with the detectors and the film typically decreased by a factor of two. Off-axis correction factors outside of a 10 × 1 cm² field ranged from about 1.3 for the EDGE diode about 10 mm from the field edge to 0.7 for the PinPoint 31006 25 mm from the field edge. The microDiamond required corrections comparable in size to the Si-diodes and even exceeded the values in the tail region of the field. The SFD was found

  11. Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the

  12. Design and fabrication of continuous-profile diffractive micro-optical elements as a beam splitter.

    PubMed

    Feng, Di; Yan, Yingbai; Jin, Guofan; Fan, Shoushan

    2004-10-10

    An optimization algorithm that combines a rigorous electromagnetic computation model with an effective iterative method is utilized to design diffractive micro-optical elements that exhibit fast convergence and better design quality. The design example is a two-dimensional 1-to-2 beam splitter that can symmetrically generate two focal lines separated by 80 microm at the observation plane with a small angle separation of +/- 16 degrees. Experimental results are presented for an element with continuous profiles fabricated into a monocrystalline silicon substrate that has a width of 160 microm and a focal length of 140 microm at a free-space wavelength of 10.6 microm.

  13. Microscopic image processing systems for measuring nonuniform film thickness profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.H.; Plawsky, J.L.; DasGupta, S.

    1994-01-01

    In very thin liquid films. transport processes are controlled by the temperature and the interfacial intermolecular force field which is a function of the film thickness profile and interfacial properties. The film thickness profile and interfacial properties can be measured most efficiently using a microscopic image processing system. IPS, to record the intensity pattern of the reflected light from the film. There are two types of IPS: an image analyzing interferometer (IAI) and/or an image scanning ellipsometer (ISE). The ISE is a novel technique to measure the two dimensional thickness profile of a nonuniform, thin film, from 1 nm upmore » to several {mu}m, in a steady state as well as in a transient state. It is a full field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. Using the ISE, the transient thickness profile of a draining thin liquid film was measured and modeled. The interfacial conditions were determined in situ by measuring the Hamaker constant. The ISE and IAI systems are compared.« less

  14. Two-point method uncertainty during control and measurement of cylindrical element diameters

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Shalay, V. V.; Radev, H.

    2018-04-01

    The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.

  15. Complete Subsurface Elemental Composition Measurements With PING

    NASA Technical Reports Server (NTRS)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  16. Nuclear microscopy of sperm cell elemental structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bench, G.S.; Balhorn, R.; Friz, A.M.

    1994-09-28

    Theories suggest there is a link between protamine concentrations in individual sperm and male fertility. Previously, biochemical analyses have used pooled samples containing millions of sperm to determine protamine concentrations. These methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. Nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the amount of phosphorus and sulfur, the total DNA and protamine content in individual sperm from fertile bull and mouse semen have been determined. These values agree with results obtained from other biochemical analyses.more » Nuclear microscopy shows promise for measuring elemental profiles in the chromatin of individual sperm. The technique may be able to resolve theories regarding the importance of protamines to male fertility and identify biochemical defects responsible for certain types of male infertility.« less

  17. Retrieving vertical ozone profiles from measurements of global spectral irradiance

    NASA Astrophysics Data System (ADS)

    Bernhard, Germar; Petropavlovskikh, Irina; Mayer, Bernhard

    2017-12-01

    A new method is presented to determine vertical ozone profiles from measurements of spectral global (direct Sun plus upper hemisphere) irradiance in the ultraviolet. The method is similar to the widely used Umkehr technique, which inverts measurements of zenith sky radiance. The procedure was applied to measurements of a high-resolution spectroradiometer installed near the centre of the Greenland ice sheet. Retrieved profiles were validated with balloon-sonde observations and ozone profiles from the space-borne Microwave Limb Sounder (MLS). Depending on altitude, the bias between retrieval results presented in this paper and MLS observations ranges between -5 and +3 %. The magnitude of this bias is comparable, if not smaller, to values reported in the literature for the standard Dobson Umkehr method. Total ozone columns (TOCs) calculated from the retrieved profiles agree to within 0.7±2.0 % (±1σ) with TOCs measured by the Ozone Monitoring Instrument on board the Aura satellite. The new method is called the Global-Umkehr method.

  18. Precision measurement of transition matrix elements via light shift cancellation.

    PubMed

    Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S

    2012-12-14

    We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information.

  19. Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Kalvoda, Jiří; Nováková, Hana; Škoda, Radek; Kanický, Viktor

    2011-01-01

    LA-ICP-MS and solution based ICP-MS in combination with electron microprobe are presented as a method for the determination of the elemental spatial distribution in fish scales which represent an example of a heterogeneous layered bone structure. Two different LA-ICP-MS techniques were tested on recent common carp ( Cyprinus carpio) scales: A line scan through the whole fish scale perpendicular to the growth rings. The ablation crater of 55 μm width and 50 μm depth allowed analysis of the elemental distribution in the external layer. Suitable ablation conditions providing a deeper ablation crater gave average values from the external HAP layer and the collagen basal plate. Depth profiling using spot analysis was tested in fish scales for the first time. Spot analysis allows information to be obtained about the depth profile of the elements at the selected position on the sample. The combination of all mentioned laser ablation techniques provides complete information about the elemental distribution in the fish scale samples. The results were compared with the solution based ICP-MS and EMP analyses. The fact that the results of depth profiling are in a good agreement both with EMP and PIXE results and, with the assumed ways of incorporation of the studied elements in the HAP structure, suggests a very good potential for this method.

  20. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  1. Atmospheric profiles from active space-based radio measurements

    NASA Technical Reports Server (NTRS)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  2. Direct measurements of safety factor profiles with motional Stark effect for KSTAR tokamak discharges with internal transport barriers

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.

    2017-06-01

    The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.

  3. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    PubMed

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. Copyright © 2016. Published by Elsevier B.V.

  4. FBX aqueous chemical dosimeter for measurement of virtual wedge profiles.

    PubMed

    Semwal, Manoj K; Bansal, Anil K; Thakur, Pradeep K; Vidyasagar, Pandit B

    2008-10-24

    We investigated the ferrous sulfate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of virtual (dynamic) wedge profiles on a linear accelerator. The layout for irradiation of the FBX-filled tubes mimicked a conventional linear detector array geometry. A comparison of the resulting measurements with film-measured profiles showed that, in the main beam region, the difference between the FBX system and the film system was within +/-2% and that, in the penumbra region, the difference varied from +/-1 mm to +/-2.5 mm in terms of positional equivalence, depending on the size of the dosimeter tubes. We thus believe that the energy-independent FBX dosimetry system can measure virtual wedge profiles with reasonable accuracy at reasonable cost. However, efficiency improvement is required before this dosimetry system can be accepted into routine practice.

  5. Novel approach for quantitatively estimating element retention and material balances in soil profiles of recharge basins used for wastewater reclamation.

    PubMed

    Eshel, Gil; Lin, Chunye; Banin, Amos

    2015-01-01

    We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Decoupling pipeline influences in soil resistivity measurements with finite element techniques

    NASA Astrophysics Data System (ADS)

    Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.

    2018-03-01

    Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.

  7. Measuring vertical oxygen profiles in the hyporheic zone using planar optodes

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2012-04-01

    On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.

  8. Temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles.

  9. Study on profile measurement of extruding tire tread by laser

    NASA Astrophysics Data System (ADS)

    Wang, LiangCai; Zhang, Wanping; Zhu, Weihu

    1996-10-01

    This paper presents a new 2D measuring system-profile measurement of extruding tire tread by laser. It includes the thickness measurement of extruding tire tread by laser and the width measurement of extruding tire tread using Moire Fringe. The system has been applied to process line of extruding tire tread. Two measuring results have been obtained. One is a standard profile picture of extruding tire tread including seven measuring values. Another one is a series of thickness and width values. When the scanning speed < 100mm/sec and total width < 800mm. The measuring errors of width < +/- 0.5mm. While the thickness range is < 40mm. The measuring errors of thickness < +/- 0.1mm.

  10. Single kernel ionomic profiles are highly heritable indicators of genetic and environmental influences on elemental accumulation in maize grain (Zea mays)

    USDA-ARS?s Scientific Manuscript database

    The ionome, or elemental profile, of a maize kernel represents at least two distinct ideas. First, the collection of elements within the kernel are food, feed and feedstocks for people, animals and industrial processes. Second, the ionome of the kernel represents a developmental end point that can s...

  11. Full area covered 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler

    NASA Astrophysics Data System (ADS)

    Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu

    2017-06-01

    A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

  12. Full area covered 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler.

    PubMed

    Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu

    2017-06-01

    A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

  13. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, David M.

    1982-01-01

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.

  14. Flow prediction over a transport multi-element high-lift system and comparison with flight measurements

    NASA Technical Reports Server (NTRS)

    Vijgen, P. M. H. W.; Hardin, J. D.; Yip, L. P.

    1992-01-01

    Accurate prediction of surface-pressure distributions, merging boundary-layers, and separated-flow regions over multi-element high-lift airfoils is required to design advanced high-lift systems for efficient subsonic transport aircraft. The availability of detailed measurements of pressure distributions and both averaged and time-dependent boundary-layer flow parameters at flight Reynolds numbers is critical to evaluate computational methods and to model the turbulence structure for closure of the flow equations. Several detailed wind-tunnel measurements at subscale Reynolds numbers were conducted to obtain detailed flow information including the Reynolds-stress component. As part of a subsonic-transport high-lift research program, flight experiments are conducted using the NASA-Langley B737-100 research aircraft to obtain detailed flow characteristics for support of computational and wind-tunnel efforts. Planned flight measurements include pressure distributions at several spanwise locations, boundary-layer transition and separation locations, surface skin friction, as well as boundary-layer profiles and Reynolds stresses in adverse pressure-gradient flow.

  15. Analysis of wind profile measurements from an instrumented aircraft

    NASA Technical Reports Server (NTRS)

    Paige, Terry S.; Murphy, Patrick J.

    1990-01-01

    The results of an experimental program to determine the capability of measuring wind profiles on support of STS operations with an instrumented aircraft are discussed. These results are a compilation of the flight experiments and the statistical data comparing the quality of the aircraft measurements with quasi-simultaneous and quasi-spatial overlapping Jimsphere measurements. An instrumented aircraft was chosen as a potential alternative to the Jimsphere/radar system for expediting the wind profile calculation by virtue of the ability of an aircraft to traverse the altitudes of interest in roughly 10 minutes. The two aircraft which participated in the study were F-104 and ER-2.

  16. Measuring Elemental Abundances in Impulsive Heating Events with EIS

    NASA Astrophysics Data System (ADS)

    Warren, Harry; Doschek, George A.; Young, Peter

    2015-04-01

    It is well established that elemental abundances vary in the solar atmosphere and that this variation is organized by first ionization potential (FIP). Previous studies have indicated that in the solar corona low FIP elements, such as Fe, Si, and Mg, are enriched relative to high FIP elements, such as H, He, C, N, and O. In this paper we report on measurements of plasma composition made during transient heating events observed at transition region temperatures with the Extreme Ultraviolet Imaging Spectrometer (EIS) on Hinode. During these events the intensities of O IV, V, and VI emission lines are enhanced relative to emission lines from Mg V, VI, and VII and indicate a composition close to that of the photosphere. Differential emission measure calculations show a broad distribution of temperatures in these events. Long-lived coronal structures, in contrast, show an enrichment of low FIP elements and relatively narrow temperature distributions. We conjecture that plasma composition is an important signature of the coronal heating process, with impulsive heating leading to the evaporation of unfractionated material from the lower layers of the solar atmosphere and higher frequency heating leading to the accumulation of low-FIP elements in the corona.

  17. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  18. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J. H., E-mail: jhleel@nfri.re.kr; Ko, W. H.; Department of Nuclear Fusion and Plasma Science, University of Science and Technology

    2014-11-15

    In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS systemmore » is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.« less

  19. Element abundance measurements in gas-rich galaxies at z~5

    NASA Astrophysics Data System (ADS)

    Poudel, Suraj; Kulkarni, Varsha; Morrison, Sean; Peroux, Celine; Som, Debopam; Rahmani, Hadi; Quiret, Samuel

    2018-01-01

    Element abundances in high-redshift galaxies offer key constraints on models of the chemical evolution of galaxies. The chemical composition of galaxies at z>~5 are especially important since they constrain the star formation history in the first ~1 Gyr after the Big Bang and the initial mass function of early stars. Observations of damped Lyman-alpha (DLA) absorbers in quasar spectra enable robust measurements of the element abundances in distant gas-rich galaxies. In particular, abundances of volatile elements such as S, O and refractory elements such as Si, Fe allow determination of the dust-corrected metallicity and the depletion strength in the absorbing galaxies. Unfortunately measurements for volatile (nearly undepleted) elements are very sparse for DLAs at z > 4.5. We present abundance measurements of O, C, Si and Fe for three gas-rich galaxies at z~5 using observations from the Very Large Telescope (VLT) X-shooter spectrograph and the Keck Echellette Spectrograph and Imager. Our study has doubled the existing sample of measurements of undepleted elements at z > 4.5. After combining our measurements with those from the literature, we find that the cosmological mean metallicity of z ˜ 5 absorbers is consistent with the prediction based on z < 4.5 DLAs within < 0.5 σ. Thus, we find no significant evidence of a sudden drop in metallicity at z > 4.7 as reported by prior studies. Some of the absorbers show evidence of depletion of elements on dust grains, e.g. low [Si/O] or [Fe/O]. These absorbers along with other z~5 absorbers from the literature show some peculiarities in the relative abundances, e.g. low [C/O] in several absorbers and high [Si/O] in one absorber. We also find that the metallicity vs. velocity dispersion relation of z~5 absorbers may be different from that of lower-redshift absorbers.We acknowledge support from NASA grant NNX14AG74G and NASA/STScI support for HST programs GO-12536, 13801 to the Univ. of South Carolina.

  20. Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.

  1. Measurement of the first ionization potential of lawrencium, element 103.

    PubMed

    Sato, T K; Asai, M; Borschevsky, A; Stora, T; Sato, N; Kaneya, Y; Tsukada, K; Düllmann, Ch E; Eberhardt, K; Eliav, E; Ichikawa, S; Kaldor, U; Kratz, J V; Miyashita, S; Nagame, Y; Ooe, K; Osa, A; Renisch, D; Runke, J; Schädel, M; Thörle-Pospiech, P; Toyoshima, A; Trautmann, N

    2015-04-09

    The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is 4.96(+0.08)(-0.07) electronvolts. The IP1 of Lr was measured with (256)Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.

  2. Preliminary Study to Test the Feasibility of Sex Identification of Human (Homo sapiens) Bones Based on Differences in Elemental Profiles Determined by Handheld X-ray Fluorescence.

    PubMed

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Mahakkanukrauh, Pasuk

    2016-09-01

    Sex assignment of human remains is a crucial step in forensic anthropological studies. The aim of this study was to examine elemental differences between male and female bones using X-ray fluorescence (XRF) and determine if elemental profiling could be used for sex discrimination. Cranium, humerus, and os coxae of 60 skeletons (30 male, 30 female) from the Chiang Mai University Skeletal Collection were scanned by XRF and differences in elemental profiles between male and female bones determined using discriminant analysis. In the cranium, three elements (S, Ca, Pb) were significantly higher in males and five elements (Si, Mn, Fe, Zn, Ag) plus light elements (atomic number lower than 12) were higher in females. In humerus and os coxae, nine elements were significantly higher in male and one element was higher in female samples. The accuracy rate for sex estimation was 60, 63, and 61 % for cranium, humerus, and os coxae, respectively, and 67 % when data for all three bones were combined. We conclude that there are sex differences in bone elemental profiles; however, the accuracy of XRF analyses for discriminating between male and female samples was low compared to standard morphometric and molecular methods. XRF could be used on small samples that cannot be sexed by traditional morphological methods, but more work is needed to increase the power of this technique for gender assignment.

  3. Diffusive exchange of trace elements between alkaline melts: Implications for element fractionation and timescale estimations during magma mixing

    NASA Astrophysics Data System (ADS)

    González-Garcia, Diego; Petrelli, Maurizio; Behrens, Harald; Vetere, Francesco; Fischer, Lennart A.; Morgavi, Daniele; Perugini, Diego

    2018-07-01

    The diffusive exchange of 30 trace elements (Cs, Rb, Ba, Sr, Co, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ta, V, Cr, Pb, Th, U, Zr, Hf, Sn and Nb) during the interaction of natural mafic and silicic alkaline melts was experimentally studied at conditions relevant to shallow magmatic systems. In detail, a set of 12 diffusion couple experiments have been performed between natural shoshonitic and rhyolitic melts from the Vulcano Island (Aeolian archipelago, Italy) at a temperature of 1200 °C, pressures from 50 to 500 MPa, and water contents ranging from nominally dry to ca. 2 wt.%. Concentration-distance profiles, measured by Laser Ablation ICP-MS, highlight different behaviours, and trace elements were divided into two groups: (1) elements with normal diffusion profiles (13 elements, mainly low field strength and transition elements), and (2) elements showing uphill diffusion (17 elements including Y, Zr, Nb, Pb and rare earth elements, except Eu). For the elements showing normal diffusion profiles, chemical diffusion coefficients were estimated using a concentration-dependent evaluation method, and values are given at four intermediate compositions (SiO2 equal to 58, 62, 66 and 70 wt.%, respectively). A general coupling of diffusion coefficients to silica diffusivity is observed, and variations in systematics are observed between mafic and silicic compositions. Results show that water plays a decisive role on diffusive rates in the studied conditions, producing an enhancement between 0.4 and 0.7 log units per 1 wt.% of added H2O. Particularly notable is the behaviour of the trivalent-only REEs (La to Nd and Gd to Lu), with strong uphill diffusion minima, diminishing from light to heavy REEs. Modelling of REE profiles by a modified effective binary diffusion model indicates that activity gradients induced by the SiO2 concentration contrast are responsible for their development, inducing a transient partitioning of REEs towards the shoshonitic melt

  4. Eddy current measurement of tube element spacing

    DOEpatents

    Latham, Wayne Meredith; Hancock, Jimmy Wade; Grut, Jayne Marie

    1998-01-01

    A method of electromagnetically measuring the distance between adjacent tube elements in a heat exchanger. A cylindrical, high magnetic permeability ferrite slug is placed in the tube adjacent the spacing to be measured. A bobbin or annular coil type probe operated in the absolute mode is inserted into a second tube adjacent the spacing to be measured. From prior calibrations on the response of the eddy current coil, the signals from the coil, when sensing the presence of the ferrite slug, are used to determine the spacing between the tubes.

  5. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.

    PubMed

    Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

    2014-02-18

    Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from

  6. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.

    PubMed

    Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly

    2018-01-01

    Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.

  7. Analysis of Near Simultaneous Jimsphere and AMPS High Resolution Wind Profiles

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2003-01-01

    The high-resolution wind profile of the Automated Meteorological Profiling System (HRAMPS) is the proposed replacement for the Jimsphere measurement system used to support NASA Shuttle launches from the Eastern Test Range (ETR). Samples of twenty-six ETR near simultaneous Jimsphere and HRAMPS wind profiles were obtained for Shuttle program HRAMPS certification studies. Shuttle systems engineering certification is to ensure that spacecraft and launch vehicle systems performance and safety evaluations for each launch (derived from flight simulations with Jimsphere wind profile data bases) retain their validity when HRAMPS profiles are used on day-of-launch (DOL) in trajectory and loads simulations to support the commit-to-launch decision. This paper describes a statistical analysis of the near simultaneous profiles. In principle the differences between a Jimsphere profile and an HRAMPS profile should be attributed to tracking technology (radar versus GPS tracking of a Jimsphere flight element) and the method for derivation of wind vectors from the raw tracking data. In reality, it is not technically feasible to track the same Jimsphere balloon with the two systems. The aluminized Mylar surface of the standard Jimsphere flight element facilitates radar tracking, but it interferes with HRAMPS during simultaneous tracking. Suspending a radar reflector from an HRAMPS flight element (Jimsphere without aluminized coating) does not produce satisfactory Jimsphere profiles because of intermittent radar returns. Thus, differences between the Jimsphere and HRAMPS profiles are also attributed to differences in the trajectories of separate flight elements. Because of small sample size and a test period limited to one winter season, test measurements during extreme high winds aloft could not have been expected and did not occur. It is during the highest winds that the largest differences between Jimsphere and HRAMPS would occur because the distance between flight elements would be

  8. Experimental determination of the effect of detector size on profile measurements in narrow photon beams.

    PubMed

    Pappas, E; Maris, T G; Papadakis, A; Zacharopoulou, F; Damilakis, J; Papanikolaou, N; Gourtsoyiannis, N

    2006-10-01

    The aim of this work is to investigate experimentally the detector size effect on narrow beam profile measurements. Polymer gel and magnetic resonance imaging dosimetry was used for this purpose. Profile measurements (Pm(s)) of a 5 mm diameter 6 MV stereotactic beam were performed using polymer gels. Eight measurements of the profile of this narrow beam were performed using correspondingly eight different detector sizes. This was achieved using high spatial resolution (0.25 mm) two-dimensional measurements and eight different signal integration volumes A X A X slice thickness, simulating detectors of different size. "A" ranged from 0.25 to 7.5 mm, representing the detector size. The gel-derived profiles exhibited increased penumbra width with increasing detector size, for sizes >0.5 mm. By extrapolating the gel-derived profiles to zero detector size, the true profile (Pt) of the studied beam was derived. The same polymer gel data were also used to simulate a small-volume ion chamber profile measurement of the same beam, in terms of volume averaging. The comparison between these results and actual corresponding small-volume chamber profile measurements performed in this study, reveal that the penumbra broadening caused by both volume averaging and electron transport alterations (present in actual ion chamber profile measurements) is a lot more intense than that resulted by volume averaging effects alone (present in gel-derived profiles simulating ion chamber profile measurements). Therefore, not only the detector size, but also its composition and tissue equivalency is proved to be an important factor for correct narrow beam profile measurements. Additionally, the convolution kernels related to each detector size and to the air ion chamber were calculated using the corresponding profile measurements (Pm(s)), the gel-derived true profile (Pt), and convolution theory. The response kernels of any desired detector can be derived, allowing the elimination of the errors

  9. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less

  10. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  11. Elemental Redistribution at the Onset of Soil Genesis from Basalt as Measured in a Soil Lysimeter System

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Umanzor, M.; Alves Meira Neto, A.; Sengupta, A.; Amistadi, M. K.; Root, R.; Troch, P.; Chorover, J.

    2017-12-01

    Elemental translocation, resulting in enrichment or depletion relative to parent rock, is a consequence of mineral dissolution and precipitation reactions of soil genesis. Accurate measurement of translocation in natural systems is complicated by factors such as parent material heterogeneity and dust deposition. In the present work, a fully controlled and monitored 10° sloping soil lysimeter with known homogeneous initial conditions, was utilized to investigate initial stages of soil genesis from 1 m3 of crushed basalt. Throughout the two-year experiment, periodic irrigation coupled with sensor measurements enabled monitoring of changes in internal moisture states. A total 15-meter water influx resulted in distinct efflux patterns, wetting and drying cycles, as well as high volume water storage. Biological changes, such as algal and grass emergence, were visible on the soil surface, and microbial colonization throughout the profile was measured in a companion study, suggesting that biogeochemical hotspots may have formed. Forensic excavation and sampling of 324 voxels captured the final state heterogeneity of the lysimeter with respect to length and depth. Total elemental concentrations and a five-step sequential extraction (SE) scheme quantified elemental redistributions into operationally-defined pools including exchangeable, poorly-crystalline (hydr)oxides, and crystalline (hydr)oxides. Data were correlated to water flux and storage that was determined from sensor and tracer data over the two years of rock-water interaction; then used to map 2D cross-sections and identify geochemical hotspots. Total and SE Fe concentrations were used to establish a governing mass balance equation, and sub mass balance equations with unique partitioning coefficients of Fe were developed for each SE pool, respectively. The results help to explain elemental (e.g., Fe) lability and redistribution due to physical and geochemical weathering during the initial stages of soil genesis.

  12. Noncontact Measurement of Doping Profile for Bare Silicon

    NASA Astrophysics Data System (ADS)

    Kohno, Motohiro; Matsubara, Hideaki; Okada, Hiroshi; Hirae, Sadao; Sakai, Takamasa

    1998-10-01

    In this study, we evaluate the doping concentrations of bare silicon wafers by noncontact capacitance voltage (C V) measurements. The metal-air-insulator-semiconductor (MAIS) method enables the measurement of C V characteristics of silicon wafers without oxidation and electrode preparation. This method has the advantage that a doping profile close to the wafer surface can be obtained. In our experiment, epitaxial silicon wafers were used to compare the MAIS method with the conventional MIS method. The experimental results obtained from the two methods showed good agreement. Then, doping profiles of boron-doped Czochralski (CZ) wafers were measured by the MAIS method. The result indicated a significant reduction of the doping concentration near the wafer surface. This observation is attributed to the well-known deactivation of boron with atomic hydrogen which permeated the silicon bulk during the polishing process. This deactivation was recovered by annealing in air at 180°C for 120 min.

  13. Creating diversified response profiles from a single quenchometric sensor element by using phase-resolved luminescence.

    PubMed

    Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V

    2015-01-05

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).

  14. Measuring perception of elements in outdoor environments

    Treesearch

    George H. Moeller; Robert MacLachlan; Douglas A. Morrison

    1974-01-01

    The meanings of 10 concepts that describe elements of natural outdoor environments were measured with the semantic differential technique. Each concept was evaluated on three factors of meaning - evaluation, potency, and activity. Sixty recreationists were surveyed from each of three user groups - campers, picnickers, and wilderness hikers. Similarities and differences...

  15. A measurement system for vertical seawater profiles close to the air-sea interface

    NASA Astrophysics Data System (ADS)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  16. Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Xiao, Perry; Imhof, R. E.

    2013-09-01

    Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.

  17. Profiles of non-essential trace elements in ewe and goat milk and their yoghurt, Torba yoghurt and whey.

    PubMed

    Sanal, Hasan; Güler, Zehra; Park, Young W

    2011-01-01

    The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.

  18. Determining the near-surface current profile from measurements of the wave dispersion relation

    NASA Astrophysics Data System (ADS)

    Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen

    2017-11-01

    The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.

  19. Automated system for measuring temperature profiles inside ITS-90 fixed-point cells

    NASA Astrophysics Data System (ADS)

    Hiti, Miha; Bojkovski, Jovan; Batagelj, Valentin; Drnovsek, Janko

    2005-11-01

    The defining fixed points of the International Temperature Scale of 1990 (ITS-90) are temperature reference points for temperature calibration. The measured temperature inside the fixed-point cell depends on thermometer immersion, since measurements are made below the surface of the fixed-point material and the additional effect of the hydrostatic pressure has to be taken into account. Also, the heat flux along the thermometer stem can affect the measured temperature. The paper presents a system that enables accurate and reproducible immersion profile measurements for evaluation of measurement sensitivity and adequacy of thermometer immersion. It makes immersion profile measurements possible, where a great number of repetitions and long measurement periods are required, and reduces the workload on the user for performing such measurements. The system is flexible and portable and was developed for application to existing equipment in the laboratory. Results of immersion profile measurements in a triple point of water fixed-point cell are presented.

  20. Optical bi-sensorial measurement system for production control of extruded profiles

    NASA Astrophysics Data System (ADS)

    Weckenmann, A.; Bernstein, J.

    2008-09-01

    Extruded profiles are semi-finished products (made out of steel, brass, aluminum, synthetics...) which are appointed for wide applications in manufacturing of technical products. As yet used optical sensors in process control working to the shading technology detect the object's shadow orthographically to the axis of illumination. As a consequence they record it unattached by the profiles coat in measurement range at any point of the measured profile with high precision. As a matter of fact, concave zones cannot be captured. Alternatively the measurement of concave zones can be arranged by light-section systems. These do not comply with the required accuracy, are comparatively slow and moreover affected by dislocations of the section of the profile. A measurement system including a light-section and a shading system combines the advantages of both optical systems. It is to serve with a reliable conception for the assembly of a bi-sensorial measurement system consisting of both systems as well as suitable methods of analysis for the in-line inspection of concave profiles. As a result it contains conclusions concerning requirements of the light source, the arrangement of this source and the cameras, obtainable precision and sampling rate as well as the essential synchronization of both systems. After designing an appropriate prototype, the selected light-section system and the shading system will be synchronized and aligned. Therefore, the metered geometrical data will be merged for the evaluation of form deviation. So, developed and adapted software supports and contains proposals to the uncertainty after successful tests. The system and a calibration method will be proved in production where robustness will be a most critical despite of heat, dust and vibrations. The target uncertainty of less than 0.1 mm at every section of the profiles coat has to be met.

  1. Long-term pavement performance program manual for profile measurements and processing

    DOT National Transportation Integrated Search

    2008-11-01

    This manual describes operational procedures for measuring longitudinal pavement profiles for the Long-Term Pavement Performance (LTPP) Program using the International Cybernetics Corporation (ICC) road profiler, Face Company Dipstick, and the rod an...

  2. 3D-profile measurement of advanced semiconductor features by using FIB as reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami

    2017-03-01

    A novel method of sub-nanometer uncertainty for the 3D-profile measurement and LWR (Line Width Roughness) measurement by using FIB (Focused Ion Beam) processing, and TEM (Transmission Electron Microscope) and CD-SEM (Critical Dimension Scanning Electron Microscope) images measurement is proposed to standardize 3D-profile measurement through reference metrology. In this article, we apply the methodology to line profile measurements and roughness measurement of advanced FinFET (Fin-shaped Field-Effect Transistor) features. The FinFET features are horizontally sliced as a thin specimen by FIB micro sampling system. Horizontally images of the specimens are obtained then by a planar TEM. LWR is calculated from the edges positions on TEM images. Moreover, we already have demonstrated the novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB slope cut and CD-SEM measuring. Using the method, a few micrometers wide on a wafer is coated and cut by 45-degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We applied FIB-to-CDSEM method to a CMOS image sensor feature. The 45-degree slope cut surface is observed using AFM. The surface profile of slope cut surface and line profiles are analyzed for improving the accuracy of FIB-to-CDSEM method.

  3. Evolution of Elemental Composition and Morphology in Fusion Reactor's First Wall

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    2007-11-01

    Forcing of a multi-element alloy by a gradient field can modify the spatial profile of its elemental composition. The gradient field may be in the imposed temperature or the flux of impinging particles. In a fusion device, both scenarios apply. The consequences must be well understood because they change the thermal transport properties as well as the strength, corrosion and wear characteristics of the first wall materials. Given the large number of directions material evolution can take, new robust methods of near-surface composition analyses are needed. This paper presents a new measurement methodology and requisite instrumentation, which can provide measures of local elemental composition and transport properties simultaneously by time-resolved spectroscopy of laser-produced plasma (LPP) plume emissions from the specimen surfaces. The studies to date show that the composition profiles can be modified thermally in a reproducible manner; disparate thermal transport of constituent atoms can incur modifications of near-surface composition profiles.[Y.W. Kim, Int. J. Thermophysics 28, 732 (2007)] Also, disparate fluxes of fuel particles, fusion products and impurities force the first walls in myriad ways. Repetitive application of the LPP analysis can resolve the near-surface composition profile as well as transport properties over several microns with depth resolutions to 20 nm. Work supported in part by NSF-DMR.

  4. Measurement of bow tie profiles in CT scanners using a real-time dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Bruce R., E-mail: whitingbrucer@gmail.com; Evans, Joshua D.; Williamson, Jeffrey F.

    2014-10-15

    Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as themore » x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement

  5. Advances in atmospheric temperature profile measurements using high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2018-04-01

    This paper reports the atmospheric temperature profile measurements using a University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) and describes improvements in the instrument performance. HSRL discriminates between Mie and Rayleigh backscattering [1]. Thermal motion of molecules broadens the spectrum of the transmitted laser light due to Doppler effect. The HSRL exploits this property to allow the absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different line widths are used to resolve temperature sensitive changes in Rayleigh backscattering for atmospheric temperature profile measurements.

  6. Depth profile measurement with lenslet images of the plenoptic camera

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Wang, Zhaomin; Zhang, Wei; Zhao, Hongying; Qu, Weijuan; Zhao, Haimeng; Asundi, Anand; Yan, Lei

    2018-03-01

    An approach for carrying out depth profile measurement of an object with the plenoptic camera is proposed. A single plenoptic image consists of multiple lenslet images. To begin with, these images are processed directly with a refocusing technique to obtain the depth map, which does not need to align and decode the plenoptic image. Then, a linear depth calibration is applied based on the optical structure of the plenoptic camera for depth profile reconstruction. One significant improvement of the proposed method concerns the resolution of the depth map. Unlike the traditional method, our resolution is not limited by the number of microlenses inside the camera, and the depth map can be globally optimized. We validated the method with experiments on depth map reconstruction, depth calibration, and depth profile measurement, with the results indicating that the proposed approach is both efficient and accurate.

  7. Measurements of Reynolds stress profiles in unstratified tidal flow

    USGS Publications Warehouse

    Stacey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    In this paper we present a method for measuring profiles of turbulence quantities using a broadband acoustic doppler current profiler (ADCP). The method follows previous work on the continental shelf and extends the analysis to develop estimates of the errors associated with the estimation methods. ADCP data was collected in an unstratified channel and the results of the analysis are compared to theory. This comparison shows that the method provides an estimate of the Reynolds stresses, which is unbiased by Doppler noise, and an estimate of the turbulent kinetic energy (TKE) which is biased by an amount proportional to the Doppler noise. The noise in each of these quantities as well as the bias in the TKE match well with the theoretical values produced by the error analysis. The quantification of profiles of Reynolds stresses simultaneous with the measurement of mean velocity profiles allows for extensive analysis of the turbulence of the flow. In this paper, we examine the relation between the turbulence and the mean flow through the calculation of u*, the friction velocity, and Cd, the coefficient of drag. Finally, we calculate quantities of particular interest in turbulence modeling and analysis, the characteristic lengthscales, including a lengthscale which represents the stream-wise scale of the eddies which dominate the Reynolds stresses. Copyright 1999 by the American Geophysical Union.

  8. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T.; Arnold, T.

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface withmore » a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.« less

  9. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  10. Analysis of actinic flux profiles measured from an ozonesonde balloon

    NASA Astrophysics Data System (ADS)

    Wang, P.; Allaart, M.; Knap, W. H.; Stammes, P.

    2015-04-01

    A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling-Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.

  11. Improving the surface metrology accuracy of optical profilers by using multiple measurements

    NASA Astrophysics Data System (ADS)

    Xu, Xudong; Huang, Qiushi; Shen, Zhengxiang; Wang, Zhanshan

    2016-10-01

    The performance of high-resolution optical systems is affected by small angle scattering at the mid-spatial-frequency irregularities of the optical surface. Characterizing these irregularities is, therefore, important. However, surface measurements obtained with optical profilers are influenced by additive white noise, as indicated by the heavy-tail effect observable on their power spectral density (PSD). A multiple-measurement method is used to reduce the effects of white noise by averaging individual measurements. The intensity of white noise is determined using a model based on the theoretical PSD of fractal surface measurements with additive white noise. The intensity of white noise decreases as the number of times of multiple measurements increases. Using multiple measurements also increases the highest observed spatial frequency; this increase is derived and calculated. Additionally, the accuracy obtained using multiple measurements is carefully studied, with the analysis of both the residual reference error after calibration, and the random errors appearing in the range of measured spatial frequencies. The resulting insights on the effects of white noise in optical profiler measurements and the methods to mitigate them may prove invaluable to improve the quality of surface metrology with optical profilers.

  12. Comparison of raindrop size distributions measured by radar wind profiler and by airplane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, R.R.; Ethier, S.A.; Baumgardner, D.

    1993-04-01

    Wind profilers are radars that operate in the VHF and UHF bands and are designed for detecting the weak echoes reflected by the optically clear atmosphere. An unexpected application of wind profilers has been the revival of an old method of estimating drop size distributions in rain from the Doppler spectrum of the received signal. Originally attempted with radars operating at microwave frequencies, the method showed early promise but was seriously limited in application because of the crucial sensitivity of the estimated drop sizes to the vertical air velocity, a quantity generally unknown and, at that time, unmeasurable. Profilers havemore » solved this problem through their ability to measure, under appropriate conditions, both air motions and drop motions. This paper compares the drop sizes measured by a UHF profiler at two altitudes in a shower with those measured simultaneously by an instrumented airplane. The agreement is satisfactory, lending support to this new application of wind profilers. 20 refs., 5 figs.« less

  13. Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.

    PubMed

    Forder, James A

    2014-08-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  14. Beam profile measurements for target designators

    NASA Astrophysics Data System (ADS)

    Frank, J. D.

    1985-02-01

    An American aerospace company has conducted a number of investigations with the aim to improve on the tedious slow manual methods of measuring pulsed lasers for rangefinders, giving particular attention to beam divergence which is studied by varying aperture sizes and positions in the laser beam path. Three instruments have been developed to make the involved work easier to perform. One of these, the Automatic Laser Instrumentation and Measurement System (ALIMS), consists of an optical bench, a digital computer, and three bays of associated electronic instruments. ALIMS uses the aperture method to measure laser beam alignment and divergence. The Laser Intensity Profile System (LIPS) consists of a covered optical bench and a two bay electronic equipment and control console. The Automatic Laser Test Set (ALTS) utilizes a 50 x 50 silicon photodiode array to characterize military laser systems automatically. Details regarding the conducted determinations are discussed.

  15. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.

    PubMed

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2016-05-01

    Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641;

  16. A new measurement method of profile tolerance for the LAMOST focal plane

    NASA Astrophysics Data System (ADS)

    Zhou, Zengxiang; Jin, Yi; Zhai, Chao; Xing, Xiaozheng

    2008-07-01

    There were a few methods taken in the profile tolerance measurement of the LAMOST Focal Plane Plate. One of the methods was to use CMM (Coordinate Measurement Machine) to measure the points on the small Focal Plane Plate and calculate the points whether or not in the tolerance zone. In this process there are some small shortcomings. The measuring point positions on the Focal Plane Plate are not the actual installation location of the optical fiber positioning system. In order to eliminate these principle errors, a measuring mandrel is inserted into the unit-holes, and the precision for the mandrel with the hole is controlled in the high level. Then measure the center of the precise target ball which is placed on the measuring mandrel by CMM. At last, fit a sphere surface with the measuring center points of the target ball and analyze the profile tolerance of the Focal Plane Plate. This process will be more in line with the actual installation location of the optical fiber positioning system. When use this method to judge the profile tolerance can provide the reference date for maintaining the ultra error unit-holes on the Focal Plane Plate. But when insert the measuring mandrel into the unit hole, there are manufacturing errors in the measuring mandrel, target ball and assembly errors. All these errors will bring the influence in the measurement. In the paper, an impact evaluation assesses the intermediate process with all these errors through experiments. And the experiment results show that there are little influence when use the target ball and the measuring mandrel in the measurement of the profile tolerance. Instead, there are more advantages than many past use of measuring methods.

  17. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  18. Retrieval of profile information from airborne multiaxis UV-visible skylight absorption measurements.

    PubMed

    Bruns, Marco; Buehler, Stefan A; Burrows, John P; Heue, Klaus-Peter; Platt, Ulrich; Pundt, Irene; Richter, Andreas; Rozanov, Alexej; Wagner, Thomas; Wang, Ping

    2004-08-01

    A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform. This novel instrument, the airborne multiaxis differential optical absorption spectrometer (AMAXDOAS), has been flown for the first time. In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO2. Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOSs), and for two different flight altitudes. The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the upper troposphere and lower stratosphere region.

  19. Retrieval of vertical aerosol- and trace gas profiles in the Antarctic troposphere using helicopter-borne MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Zielcke, Johannes; Buxmann, Joelle; Frieß, Udo; Platt, Ulrich

    2014-05-01

    During springtime in polar regions when the sunlight returns, bromine monoxide (BrO) is released from sea ice into the atmosphere from saline surfaces due to an autocatalytic reaction mechanism. BrO affects the oxidative properties of the troposphere and can lead to a virtually complete depletion of surface ozone within a few days or even hours. Furthermore, the oxidation of gaseous elemental mercury by BrO renders this toxic compound soluble and leads to a deposition and thus entry of mercury into the vulnerable biosphere. However, the exact nature of the bromine radical sources in polar regions, as well as the details of the mechanisms leading to bromine explosions and also the interactions between dynamics and chemistry are not yet completely understood. For a better understanding of these processes, an accurate determination of the spatio-temporal distribution of BrO is crucial. We present first measurements of BrO and aerosols performed onboard a helicopter using a compact Multi AXial Differential Absorption Spectroscopy (MAX-DOAS) instrument during a cruise of the German research vessel Polarstern in the Antarctic Weddell Sea between August and October 2013. Numerous flights were performed in the boundary layer as well as in the free troposphere up to 2300m. Due to its versatility, allowing measurements at multiple altitudes with small elevation angles and thus high air mass factors, a helicopter as a platform for MAX-DOAS measurements offers a considerably improved information content throughout the lower troposphere compared to MAX-DOAS measurements from the ground. Using our HEIPRO (HEIdelberg Profile) retrieval algorithm based on optimal estimation, vertical profiles of aerosols and trace gases can be retrieved with an unprecedented vertical resolution and a better sensitivity for higher altitudes. Furthermore, these measurements allow for a thorough characterization of the dynamical and chemical processes bromine radicals are involved in. We will present

  20. Lidar method of measurement of atmospheric extinction and ozone profiles

    NASA Technical Reports Server (NTRS)

    Cooney, J. A.

    1986-01-01

    A description of a method of measurement of atmospheric extinction and of ozone profiles by use of the backscatter signal from a monostatic lidar is given. The central feature of the procedure involves a measurement of the ratio of the Raman backscatter returns of both the oxygen and nitrogen atmospheric content. Because the ratio of the number density of both species is known to high accuracy, the measurement itself becomes a measure of the ratio of two transmissions to altitude along with a ratio of the two system constants. The calibration measurement for determining the value of the ratio of the two system constants or electro-optical conversion constants is accomplished by a lidar measurement of identical atmospheric targets while at the same time interchanging the two optical filters in the two optical channels of the receiver. More details of the procedure are discussed. Factoring this calibrated value into the measured O2/N2 profile ratio provides a measured value of the ratio of the two transmissions. Or equivalently, it provides a measurement of the difference of the two extinction coefficients at the O2 and N2 Raman wavelengths as a function of the height.

  1. Refractive-index profiling of embedded microstructures in optical materials

    NASA Astrophysics Data System (ADS)

    Dave, Digant P.; Milner, Thomas E.

    2002-04-01

    We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

  2. Vertical profile of elemental concentrations in aerosol particles in the Bermuda area during GCE/CASE/WATOX

    NASA Astrophysics Data System (ADS)

    Ennis, G.; Sievering, H.

    1990-06-01

    During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.

  3. Validation of the "Security Needs Assessment Profile" for measuring the profiles of security needs of Chinese forensic psychiatric inpatients.

    PubMed

    Siu, B W M; Au-Yeung, C C Y; Chan, A W L; Chan, L S Y; Yuen, K K; Leung, H W; Yan, C K; Ng, K K; Lai, A C H; Davies, S; Collins, M

    Mapping forensic psychiatric services with the security needs of patients is a salient step in service planning, audit and review. A valid and reliable instrument for measuring the security needs of Chinese forensic psychiatric inpatients was not yet available. This study aimed to develop and validate the Chinese version of the Security Needs Assessment Profile for measuring the profiles of security needs of Chinese forensic psychiatric inpatients. The Security Needs Assessment Profile by Davis was translated into Chinese. Its face validity, content validity, construct validity and internal consistency reliability were assessed by measuring the security needs of 98 Chinese forensic psychiatric inpatients. Principal factor analysis for construct validity provided a six-factor security needs model explaining 68.7% of the variance. Based on the Cronbach's alpha coefficient, the internal consistency reliability was rated as acceptable for procedural security (0.73), and fair for both physical security (0.62) and relational security (0.58). A significant sex difference (p=0.002) in total security score was found. The Chinese version of the Security Needs Assessment Profile is a valid and reliable instrument for assessing the security needs of Chinese forensic psychiatric inpatients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent

    PubMed Central

    Borell, Esther M.; Fine, Maoz; Shaked, Yeala

    2014-01-01

    Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments—the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone’s tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A

  5. Intercomparison between ozone profiles measured above Spitsbergen by lidar and sonde techniques

    NASA Technical Reports Server (NTRS)

    Fabian, Rolf; Vondergathen, Peter; Ehlers, J.; Krueger, Bernd C.; Neuber, Roland; Beyerle, Georg

    1994-01-01

    This paper compares coincident ozone profile measurements by electrochemical sondes and lidar performed at Ny-Alesund/Spitsbergen. A detailed height dependent statistical analysis of the differences between these complementary methods was performed for the overlapping altitude region (13-35 km). The data set comprises ozone profile measurements conducted between Jan. 1989 and Jan. 1991. Differences of up to 25 percent were found above 30 km altitude.

  6. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  7. Constraints on Galactic Cosmic-Ray Origins from Elemental Composition Measurements

    NASA Astrophysics Data System (ADS)

    Binns, W. R.; Christian, E. R.; Cummings, A. C.; Denolfo, G. A.; Israel, M. H.; Lave, K. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.; Wiedenbeck, M. E.

    2017-01-01

    We present measurements of the abundances of ultra-heavy (Z>29) cosmic rays made by the CRIS instrument on NASA's Advanced Composition Explorer satellite. The data set corresponds to 6413 days of data collection between December 4, 1997 and May 31, 2016. The charge resolution that we obtain is excellent, exhibiting essentially complete separation of adjacent charges in the Z>28 range. We detected 196 events over the charge range of Z =30-40. Our measured abundances show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to a mix of massive star outflow and SN ejecta with normal ISM, rather than pure ISM. Additionally, the refractory and volatile elements have similar slopes and refractory elements are preferentially accelerated by a factor of 4. The measured abundances support a model in which 20% of cosmic ray source material is from massive star outflow and ejecta and 80% is from normal ISM. Our abundances show generally good agreement with the TIGER and SuperTIGER results. This research is supported by NASA under Grant # NNX13AH66G.

  8. The Prediction of Transducer Element Performance from In-Air Measurements.

    DTIC Science & Technology

    1982-01-19

    33 13. Predicted and Measured Transducer Impedance . . . 35 14. Principle of Operation of Fotonic Sensor . . . . 40 15. Experimental Set-up for...inferred from tests of the assembled element, and cannot account for assembly problems such as misalignment and improper glue joints. Thus, the...the results neither predict nor account for the element variability found in actual practice. Our purpose, then, is to derive the lumped-parameter

  9. [Measurement of the status of trace elements in cattle using liver biopsy samples].

    PubMed

    Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M

    2007-02-01

    Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.

  10. Element Distribution in Silicon Refining: Thermodynamic Model and Industrial Measurements

    NASA Astrophysics Data System (ADS)

    Næss, Mari K.; Kero, Ida; Tranell, Gabriella; Tang, Kai; Tveit, Halvard

    2014-11-01

    To establish an overview of impurity elemental distribution among silicon, slag, and gas/fume in the refining process of metallurgical grade silicon (MG-Si), an industrial measurement campaign was performed at the Elkem Salten MG-Si plant in Norway. Samples of in- and outgoing mass streams, i.e., tapped Si, flux and cooling materials, refined Si, slag, and fume, were analyzed by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), with respect to 62 elements. The elemental distributions were calculated and the experimental data compared with equilibrium estimations based on commercial and proprietary, published databases and carried out using the ChemSheet software. The results are discussed in terms of boiling temperatures, vapor pressures, redox potentials, and activities of the elements. These model calculations indicate a need for expanded databases with more and reliable thermodynamic data for trace elements in general and fume constituents in particular.

  11. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-resolution RBS/ERDA.

    PubMed

    Nakajima, Kaoru; Zolboo, Enkhbayar; Ohashi, Tomohiro; Lísal, Martin; Kimura, Kenji

    2016-01-01

    In order to reveal the surface structures of large molecular ionic liquids (ILs), the near-surface elemental depth distributions of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C n C 1 Im][Tf 2 N], n = 2, 6, 10) were studied using high-resolution Rutherford backscattering spectroscopy (HRBS) in combination with high-resolution elastic recoil detection analysis (HR-ERDA). The elemental depth profiles of all constituent elements, including hydrogen, were derived from HR-ERDA/HRBS measurements, so that the profiles would reproduce both HR-ERDA and HRBS spectra simultaneously. The derived elemental depth profiles agree with state-of-the-art molecular dynamics simulations, indicating the feasibility of this method. A controversy concerning the preferential orientation of [C 2 C 1 Im] at the surface has been resolved by this new combination analysis; namely, the [C 2 C 1 Im] cation has a preferential orientation with the ethyl chain pointing towards the vacuum in the topmost molecular layer.

  12. Infrasound-array-element frequency response: in-situ measurement and modeling

    NASA Astrophysics Data System (ADS)

    Gabrielson, T.

    2011-12-01

    Most array elements at the infrasound stations of the International Monitoring System use some variant of a multiple-inlet pipe system for wind-noise suppression. These pipe systems have a significant impact on the overall frequency response of the element. The spatial distribution of acoustic inlets introduces a response dependence that is a function of frequency and of vertical and horizontal arrival angle; the system of inlets, pipes, and summing junctions further shapes that response as the signal is ducted to the transducer. In-situ measurements, using a co-located reference microphone, can determine the overall frequency response and diagnose problems with the system. As of July 2011, the in-situ frequency responses for 25 individual elements at 6 operational stations (I10, I53, I55, I56, I57, and I99) have been measured. In support of these measurements, a fully thermo-viscous model for the acoustics of these multiple-inlet pipe systems has been developed. In addition to measurements at operational stations, comparative analyses have been done on experimental systems: a multiple-inlet radial-pipe system with varying inlet hole size; a one-quarter scale model of a 70-meter rosette system; and vertical directionality of a small rosette system using aircraft flyovers. [Funded by the US Army Space and Missile Defense Command

  13. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  14. Terahertz beam propagation measured through three-dimensional amplitude profile determination

    NASA Astrophysics Data System (ADS)

    Reiten, Matthew T.; Harmon, Stacee A.; Cheville, Richard Alan

    2003-10-01

    To determine the spatio-temporal field distribution of freely propagating terahertz bandwidth pulses, we measure the time-resolved electric field in two spatial dimensions with high resolution. The measured, phase-coherent electric-field distributions are compared with an analytic model in which the radiation from a dipole antenna near a dielectric interface is coupled to free space through a spherical lens. The field external to the lens is limited by reflection at the lens-air dielectric interface, which is minimized at Brewster's angle, leading to an annular field pattern. Field measurements compare favorably with theory. Propagation of terahertz beams is determined both by assuming a TEM0,0 Gaussian profile as well as expanding the beam into a superposition of Laguerre-Gauss modes. The Laguerre-Gauss model more accurately describes the beam profile for free-space propagation and after propagating through a simple optical system. The accuracy of both models for predicting far-field beam patterns depend upon accurately measuring complex field amplitudes of terahertz beams.

  15. The measurement of radiation dose profiles for electron-beam computed tomography using film dosimetry.

    PubMed

    Zink, F E; McCollough, C H

    1994-08-01

    The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.

  16. Return glider radiosonde to measure temperature, humidity and radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kraeuchi, Andreas; Philipona, Rolf

    2015-04-01

    Very promising radiation profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a mechanism that allows to release the radiosonde at a preset altitude, and an autopilot allowing to fly the radiosonde back to the launch site and to land it savely with a parachute at a preset location. The return glider radiosonde technique as well as new measurement possibilities will be shown. First measurements show temperature, humidity and radiation profiles through the atmosphere up to 30 hPa (24 km) during different atmospheric conditions. Radiation profiles during different daytimes show possibilities with respect to temporal resolution of vertical radiation profiles trough the atmosphere.

  17. Plasma Profile Measurements for Laser Fusion Research with the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2015-11-01

    The grid image refractometer of the Nike laser facility (Nike-GIR) has demonstrated the capability of simultaneously measuring electron density (ne) and temperature (Te) profiles of coronal plasma. For laser plasma instability (LPI) research, the first Nike-GIR experiment successfully measured the plasma profiles in density regions up to ne ~ 4 ×1021 cm-3 (22% of the critical density for 248 nm light of Nike) using an ultraviolet probe laser (λp = 263 nm). The probe laser has been recently replaced with a shorter wavelength laser (λp = 213 nm, a 5th harmonic of the Nd:YAG laser) to diagnose a higher density region. The Nike-GIR system is being further extended to measure plasma profiles in the on-going experiment using 135°-separated Nike beam arrays for the cross-beam energy transfer (CBET) studies. We present an overview of the extended Nike-GIR arrangements and a new numerical algorithm to extract self-consistant plasma profiles with the measured quantities. Work supported by DoE/NNSA.

  18. Thermal Profile of the Lunar Interior Constrained by Revised Estimates of Concentrations of Heat Producing Elements

    NASA Astrophysics Data System (ADS)

    Fuqua-Haviland, H.; Panovska, S.; Mallik, A.; Bremner, P. M.; McDonough, W. F.

    2017-12-01

    Constraining the heat producing element (HPE) concentrations of the Moon is important for understanding the thermal state of the interior. The lunar HPE budget is debated to be suprachondritic [1] to chondritic [2]. The Moon is differentiated, thus, each reservoir has a distinct HPE signature complicating this effort. The thermal profile of the lunar interior has been constructed using HPE concentrations of an ordinary chondrite (U = 0.0068 ppm; Th = 0.025 ppm; K = 17 ppm) which yields a conservative low estimate [2, 3, 4]. A later study estimated the bulk lunar mantle HPE concentrations (U = 0.039 ppm; Th = 0.15 ppm; K = 212 ppm) based on measurements of Apollo pyroclastic glasses [5] assuming that these glasses represent the least fractionated, near-primary lunar mantle melts, hence, are the best proxies for capturing mantle composition. In this study, we independently validate the revised estimate by using HPE concentrations [5] to construct a conductive lunar thermal profile, or selenotherm. We compare our conductive profile to the range of valid temperatures. We demonstrate the HPE concentrations reported by [5], when used in a simple 1D spherical thermal conduction equation, yield an impossibly hot mantle with temperatures in excess of 4,000 K (Fig 1). This confirms their revised estimate is not representative of the bulk lunar mantle, and perhaps only representative of a locally enriched mantle domain. We believe that their Low-Ti avg. source estimate (Th = 0.055 ppm, Th/U=4; K/U=1700), with the least KREEP assimilation is the closest representation of the bulk lunar mantle, producing 3E-12 W/kg of heat. This estimate is close to that of the Earth (5E-12 W/kg), indicating that the bulk Earth and lunar mantles are similar in their HPE constituents. We have used the lunar mantle heat production, in conjunction with HPE estimates of the Fe-Ti-rich cumulates (high Ti-source estimate from [5]) and measurements of crustal ferroan anorthite [6], to capture the

  19. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  20. Raman and CT scan mapping of chalcogenide glass diffusion generated gradient index profiles

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Berg, R. H.; Deegan, J.; Benson, R.; Salvaggio, P. S.; Gross, N.; Weinstein, B. A.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2016-05-01

    Metrology of a gradient index (GRIN) material is non-trivial, especially in the realm of infrared and large refractive index. Traditional methods rely on index matching fluids which are not available for indexes as high as those found in the chalcogenide glasses (2.4-3.2). By diffusing chalcogenide glasses of similar composition one can blend the properties in a continuous way. In an effort to measure this we will present data from both x-ray computed tomography scans (CT scans) and Raman mapping scans of the diffusion profiles. Proof of concept measurements on undiffused bonded sheets of chalcogenide glasses were presented previously. The profiles measured will be of axially stacked sheets of chalcogenide glasses diffused to create a linear GRIN profile and nested tubes of chalcogenide glasses diffused to create a radial parabolic GRIN profile. We will show that the x-ray absorption in the CT scan and the intensity of select Raman peaks spatially measured through the material are indicators of the concentration of the diffusion ions and correlate to the spatial change in refractive index. We will also present finite element modeling (FEM) results and compare them to post precision glass molded (PGM) elements that have undergone CT and Raman mapping.

  1. Elemental atmospheric pollution assessment via moss-based measurements in Portland, Oregon

    Treesearch

    Demetrios Gatziolis; Sarah Jovan; Geoffrey Donovan; Michael Amacher; Vicente Monleon

    2016-01-01

    Mosses accumulate pollutants from the atmosphere and can serve as an inexpensive screening tool for mapping air quality and guiding the placement of monitoring instruments. We measured 22 elements using 346 moss samples collected across Portland, Oregon, in December 2013. Our objectives were to develop citywide maps showing concentrations of each element in moss and...

  2. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  3. Field tests of a down-hole TDR profiling water content measurement system

    USDA-ARS?s Scientific Manuscript database

    Accurate soil profile water content monitoring at multiple depths has previously been possible only using the neutron probe (NP), but with great effort and at unsatisfactory intervals. Despite the existence of several capacitance systems for profile water content measurements, accuracy and spatial r...

  4. 128 slice computed tomography dose profile measurement using thermoluminescent dosimeter

    NASA Astrophysics Data System (ADS)

    Salehhon, N.; Hashim, S.; Karim, M. K. A.; Ang, W. C.; Musa, Y.; Bahruddin, N. A.

    2017-05-01

    The increasing use of computed tomography (CT) in clinical practice marks the needs to understand the dose descriptor and dose profile. The purposes of the current study were to determine the CT dose index free-in-air (CTDIair) in 128 slice CT scanner and to evaluate the single scan dose profile (SSDP). Thermoluminescent dosimeters (TLD-100) were used to measure the dose profile of the scanner. There were three sets of CT protocols where the tube potential (kV) setting was manipulated for each protocol while the rest of parameters were kept constant. These protocols were based from routine CT abdominal examinations for male adult abdomen. It was found that the increase of kV settings made the values of CTDIair increased as well. When the kV setting was changed from 80 kV to 120 kV and from 120 kV to 140 kV, the CTDIair values were increased as much as 147.9% and 53.9% respectively. The highest kV setting (140 kV) led to the highest CTDIair value (13.585 mGy). The p-value of less than 0.05 indicated that the results were statistically different. The SSDP showed that when the kV settings were varied, the peak sharpness and height of Gaussian function profiles were affected. The full width at half maximum (FWHM) of dose profiles for all protocols were coincided with the nominal beam width set for the measurements. The findings of the study revealed much information on the characterization and performance of 128 slice CT scanner.

  5. Noncontact vibration measurements using magnetoresistive sensing elements

    NASA Astrophysics Data System (ADS)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  6. Measurements of Raman crystallinity profiles in thin-film microcrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Choong, G.; Vallat-Sauvain, E.; Multone, X.; Fesquet, L.; Kroll, U.; Meier, J.

    2013-06-01

    Wedge-polished thin film microcrystalline silicon solar cells are prepared and used for micro-Raman measurements. Thereby, the variations of the Raman crystallinity with depth are accessed easily. Depth resolution limits of the measurement set-up are established and calculations evidencing the role of optical limits are presented. Due to this new technique, Raman crystallinity profiles of two microcrystalline silicon cells give first hints for the optimization of the profile leading to improved electrical performance of such devices.

  7. Automated acoustic intensity measurements and the effect of gear tooth profile on noise

    NASA Technical Reports Server (NTRS)

    Atherton, William J.; Pintz, Adam; Lewicki, David G.

    1987-01-01

    Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.

  8. Trace element measurement for assessment of dog food safety.

    PubMed

    De Nadai Fernandes, Elisabete A; Elias, Camila; Bacchi, Márcio Arruda; Bode, Peter

    2018-01-01

    The quality of dog diets depends on adequate ingredients capable of providing optimal nutrition and free of contaminants, for promoting long-term health. Trace elements in 95 samples of dry food for dog puppies (n = 32) and adults (n = 63) of various brands were measured using instrumental neutron activation analysis (INAA). The mass fractions of most elements were within the permissible limits for dogs. Aluminum, antimony, and uranium presented fairly high levels in some samples, which may imply health risks. Aluminum mass fractions ranged from <21 to 11,900 mg/kg, in same brand, super-premium dog food. Antimony mass fractions ranged up to 5.14 mg/kg, with the highest values measured in six samples of dog food from the same producer. The mass fractions of uranium was found up to 4 mg/kg in commercial brands from five different producers.

  9. An optically stimulated luminescence system to measure dose profiles in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Yukihara, E. G.; Ruan, C.; Gasparian, P. B. R.; Clouse, W. J.; Kalavagunta, C.; Ahmad, S.

    2009-10-01

    This paper describes an LED-based optically stimulated luminescence (OSL) system for dose profile measurements using OSL detector strips and investigates its performance in x-ray computed tomography (CT) dosimetry. To compensate for the energy response of the Al2O3:C OSL detectors, which have an effective atomic number of 11.28, field-specific energy correction factors were determined using two methods: (a) comparing the OSL profiles with ionization chamber point measurements (0.3 cm3 ionization chamber) and (b) comparing the OSL profiles integrated over a 100 mm length with 100 mm long pencil ionization chamber measurements. These correction factors were obtained for the CT body and head phantoms, central and peripheral positions and three x-ray tube potential differences (100 kVp, 120 kVp and 140 kVp). The OSL dose profiles corrected by the energy dependence agreed with the ionization chamber point measurements over the entire length of the phantom (300 mm). For 120 kVp x-ray tube potential difference, the CTDI100 values calculated using the OSL dose profiles corrected for the energy dependence and those obtained from an independent measurement with a 100 mm long pencil ionization chamber also agreed within ±5%.

  10. Traceability of Opuntia ficus-indica L. Miller by ICP-MS multi-element profile and chemometric approach.

    PubMed

    Mottese, Antonio Francesco; Naccari, Clara; Vadalà, Rossella; Bua, Giuseppe Daniel; Bartolomeo, Giovanni; Rando, Rossana; Cicero, Nicola; Dugo, Giacomo

    2018-01-01

    Opuntia ficus-indica L. Miller fruits, particularly 'Ficodindia dell'Etna' of Biancavilla (POD), 'Fico d'india tradizionale di Roccapalumba' with protected brand and samples from an experimental field in Pezzolo (Sicily) were analyzed by inductively coupled plasma mass spectrometry in order to determine the multi-element profile. A multivariate chemometric approach, specifically principal component analysis (PCA), was applied to individuate how mineral elements may represent a marker of geographic origin, which would be useful for traceability. PCA has allowed us to verify that the geographical origin of prickly pear fruits is significantly influenced by trace element content, and the results found in Biancavilla PDO samples were linked to the geological composition of this volcanic areas. It was observed that two principal components accounted for 72.03% of the total variance in the data and, in more detail, PC1 explains 45.51% and PC2 26.52%, respectively. This study demonstrated that PCA is an integrated tool for the traceability of food products and, at the same time, a useful method of authentication of typical local fruits such as prickly pear. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstrationmore » of particle beam profile diagnostics using fiber optic laser pulse transmission line.« less

  12. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code

    NASA Astrophysics Data System (ADS)

    Román, R.; Benavent-Oltra, J. A.; Casquero-Vera, J. A.; Lopatin, A.; Cazorla, A.; Lyamani, H.; Denjean, C.; Fuertes, D.; Pérez-Ramírez, D.; Torres, B.; Toledano, C.; Dubovik, O.; Cachorro, V. E.; de Frutos, A. M.; Olmo, F. J.; Alados-Arboledas, L.

    2018-05-01

    In this paper we present an approach for the profiling of aerosol microphysical and optical properties combining ceilometer and sun/sky photometer measurements in the GRASP code (General Retrieval of Aerosol and Surface Properties). For this objective, GRASP is used with sun/sky photometer measurements of aerosol optical depth (AOD) and sky radiances, both at four wavelengths and obtained from AErosol RObotic NETwork (AERONET), and ceilometer measurements of range corrected signal (RCS) at 1064 nm. A sensitivity study with synthetic data evidences the capability of the method to retrieve aerosol properties such as size distribution and profiles of volume concentration (VC), especially for coarse particles. Aerosol properties obtained by the mentioned method are compared with airborne in-situ measurements acquired during two flights over Granada (Spain) within the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) 2013 campaign. The retrieved aerosol VC profiles agree well with the airborne measurements, showing a mean bias error (MBE) and a mean absolute bias error (MABE) of 0.3 μm3/cm3 (12%) and 5.8 μm3/cm3 (25%), respectively. The differences between retrieved VC and airborne in-situ measurements are within the uncertainty of GRASP retrievals. In addition, the retrieved VC at 2500 m a.s.l. is shown and compared with in-situ measurements obtained during summer 2016 at a high-atitude mountain station in the framework of the SLOPE I campaign (Sierra Nevada Lidar AerOsol Profiling Experiment). VC from GRASP presents high correlation (r = 0.91) with the in-situ measurements, but overestimates them, MBE and MABE being equal to 23% and 43%.

  13. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data

    PubMed Central

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2015-01-01

    Background: Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Methods: Quantitative structure–activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro–in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Conclusion: Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Citation: Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and

  14. Atmospheric NO2 profiles measured with lidar during the CINDI-2 campaign

    NASA Astrophysics Data System (ADS)

    Berkhout, A. J. C.; Gast, L. F. L.; van der Hoff, G. R.; Swart, D. P. J.; Hoed, M.; Allaart, M.

    2018-04-01

    From 12 to 28 September 2016, the CINDI-2 NO2 intercomparison campaign took place at the Cabauw research site in the Netherlands. Aimed principally at MAX-DOAS instruments, other techniques participated as well. The RIVM mobile lidar measured atmospheric NO2 profiles on six campaign days. Results show the development of NO2 concentrations during the day, as well as layered structures in the profiles. These were compared with profiles from other instruments.

  15. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when themore » bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.« less

  16. Finite element simulation of crack depth measurements in concrete using diffuse ultrasound

    NASA Astrophysics Data System (ADS)

    Seher, Matthias; Kim, Jin-Yeon; Jacobs, Laurence J.

    2012-05-01

    This research simulates the measurements of crack depth in concrete using diffuse ultrasound. The finite element method is employed to simulate the ultrasonic diffusion process around cracks with different geometrical shapes, with the goal of gaining physical insight into the data obtained from experimental measurements. The commercial finite element software Ansys is used to implement the two-dimensional concrete model. The model is validated with an analytical solution and experimental results. It is found from the simulation results that preliminary knowledge of the crack geometry is required to interpret the energy evolution curves from measurements and to correctly determine the crack depth.

  17. TCP Throughput Profiles Using Measurements over Dedicated Connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Liu, Qiang; Sen, Satyabrata

    Wide-area data transfers in high-performance computing infrastructures are increasingly being carried over dynamically provisioned dedicated network connections that provide high capacities with no competing traffic. We present extensive TCP throughput measurements and time traces over a suite of physical and emulated 10 Gbps connections with 0-366 ms round-trip times (RTTs). Contrary to the general expectation, they show significant statistical and temporal variations, in addition to the overall dependencies on the congestion control mechanism, buffer size, and the number of parallel streams. We analyze several throughput profiles that have highly desirable concave regions wherein the throughput decreases slowly with RTTs, inmore » stark contrast to the convex profiles predicted by various TCP analytical models. We present a generic throughput model that abstracts the ramp-up and sustainment phases of TCP flows, which provides insights into qualitative trends observed in measurements across TCP variants: (i) slow-start followed by well-sustained throughput leads to concave regions; (ii) large buffers and multiple parallel streams expand the concave regions in addition to improving the throughput; and (iii) stable throughput dynamics, indicated by a smoother Poincare map and smaller Lyapunov exponents, lead to wider concave regions. These measurements and analytical results together enable us to select a TCP variant and its parameters for a given connection to achieve high throughput with statistical guarantees.« less

  18. Evaluation of elemental profiling methods, including laser-induced breakdown spectroscopy (LIBS), for the differentiation of Cannabis plant material grown in different nutrient solutions.

    PubMed

    El-Deftar, Moteaa M; Robertson, James; Foster, Simon; Lennard, Chris

    2015-06-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging atomic emission based solid sampling technique that has many potential forensic applications. In this study, the analytical performance of LIBS, as well as that of inductively coupled plasma mass spectrometry (ICP-MS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray microfluorescence (μXRF), was evaluated for the ability to conduct elemental analyses on Cannabis plant material, with a specific investigation of the possible links between hydroponic nutrients and elemental profiles from associated plant material. No such study has been previously published in the literature. Good correlation among the four techniques was observed when the concentrations or peak areas of the elements of interest were monitored. For Cannabis samples collected at the same growth time, the elemental profiles could be related to the use of particular commercial nutrients. In addition, the study demonstrated that ICP-MS, LA-ICP-MS and LIBS are suitable techniques for the comparison of Cannabis samples from different sources, with high discriminating powers being achieved. On the other hand, μXRF method was not suitable for the discrimination of Cannabis samples originating from different growth nutrients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Nanoscale measurement of trace element distributions in Spartina alterniflora root tissue during dormancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Qian, Yu; Cochran, J. Kirk

    Here, this article reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 μm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis,more » outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.« less

  20. Nanoscale measurement of trace element distributions in Spartina alterniflora root tissue during dormancy

    DOE PAGES

    Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...

    2017-01-18

    Here, this article reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 μm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis,more » outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.« less

  1. A method for retrieving vertical ozone profiles from limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua

    2011-10-01

    A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.

  2. ACCURATE: Greenhouse Gas Profiles Retrieval from Combined IR-Laser and Microwave Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Proschek, Veronika; Kirchengast, Gottfried; Schweitzer, Susanne; Fritzer, Johannes

    2010-05-01

    The new climate satellite concept ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the already better studied LEO-LEO microwave occultation (LMO) technique. Resulting occultation events are evenly distributed around the world, have high vertical resolution and accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 μm for ACCURATE). These signals are absorbed by various trace species in the Earth's atmosphere. Profiles of the concentration of the absorbing species can be derived from signal transmission measurements. Accurately known temperature, pressure and humidity profiles derived from simultaneously measured LMO signals are essential pre-information for the retrieval of the trace species profiles. These LMO signals lie in the microwave band region from 17-23 GHz and, optionally, 178-195 GHz. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (GHG) (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O), with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction, and scintillation strength. We introduce the methodology to retrieve GHG profiles from quasi-realistic forward-simulated intensities of LIO signals and thermodynamic profiles retrieved in a preceding step from LMO signals. Key of the retrieval methodology is the differencing of two LIO transmission signals, one being GHG sensitive on a target

  3. Doping profile measurements in silicon using terahertz time domain spectroscopy (THz-TDS) via electrochemical anodic oxidation

    NASA Astrophysics Data System (ADS)

    Tulsyan, Gaurav

    Doping profiles are engineered to manipulate device properties and to determine electrical performances of microelectronic devices frequently. To support engineering studies afterward, essential information is usually required from physically characterized doping profiles. Secondary Ion Mass Spectrometry (SIMS), Spreading Resistance Profiling (SRP) and Electrochemical Capacitance Voltage (ECV) profiling are standard techniques for now to map profile. SIMS yields a chemical doping profile via ion sputtering process and owns a better resolution, whereas ECV and SRP produce an electrical doping profile detecting free carriers in microelectronic devices. The major difference between electrical and chemical doping profiles is at heavily doped regions greater than 1020 atoms/cm3. At the profile region over the solubility limit, inactive dopants induce a flat plateau and detected by electrical measurements only. Destructive techniques are usually designed as stand-alone systems to study impurities. For an in-situ process control purpose, non-contact methods, such as ellipsometry and non-contact capacitance voltage (CV) techniques are current under development. In this theses work, terahertz time domain spectroscopy (THz-TDS) is utilized to achieve electrical doping profile in both destructive and non-contact manners. In recent years the Terahertz group at Rochester Institute Technology developed several techniques that use terahertz pulses to non-destructively map doping profiles. In this thesis, we study a destructive but potentially higher resolution version of the terahertz based approach to map the profile of activated dopants and augment the non-destructive approaches already developed. The basic idea of the profile mapping approach developed in this MS thesis is to anodize, and thus oxidize to silicon dioxide, thin layers (down to below 10 nm) of the wafer with the doping profile to be mapped. Since the dopants atoms and any free carriers in the silicon oxide thin

  4. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  5. A COMPARISON OF STELLAR ELEMENTAL ABUNDANCE TECHNIQUES AND MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited amore » number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.« less

  6. Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis

    DTIC Science & Technology

    2016-09-01

    UNCLASSIFIED UNCLASSIFIED Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis...significant effect on the collapse strength and must be accurately represented in finite element analysis to obtain accurate results. Often it is necessary...to interpolate measurements from a relatively coarse grid to a refined finite element model and methods that have wide general acceptance are

  7. Quick measurement of crystal truncation rod profiles in simultaneous multi-wavelength dispersive mode

    NASA Astrophysics Data System (ADS)

    Matsushita, T.; Takahashi, T.; Shirasawa, T.; Arakawa, E.; Toyokawa, H.; Tajiri, H.

    2011-11-01

    To conduct time-resolved measurements in the wide momentum transfer (q = 4π sinθ/λ, θ: the glancing angle of the x-ray beam, λ: x-ray wavelength) range of interest, we developed a method that can simultaneously measure the whole profile of x-ray diffraction and crystal truncation rod scattering of interest with no need of rotation of the specimen, detector, and monochromator crystal during the measurement. With a curved crystal polychromator (Si 111 diffraction), a horizontally convergent x-ray beam having a one-to-one correlation between wavelength (energy: 16.24-23.0 keV) and direction is produced. The convergent x-ray beam components of different wavelengths are incident on the specimen in a geometry where θ is the same for all the x-ray components and are diffracted within corresponding vertical scattering planes by a specimen ([GaAs(12ML)/AlAs(8 ML)]50 on GaAs(001) substrate) placed at the focal point. Although θ is the same for all the directions, q continuously varies because λ changes as a function of direction. The normalized horizontal intensity distribution across the beam, as measured using a two-dimensional pixel array detector downstream of the specimen, represents the reflectivity curve profile both near to and far from the Bragg point. As for the crystal truncation rod scattering around the 002 reflection, the diffraction profile from the Bragg peak down to reflectivity of 1.0 × 10-9 was measured with a sufficient data collection time (1000-2000 s). With data collection times of 100, 10, 1.0, and 0.1 s, profiles down to a reflectivity of ˜6 × 10-9, ˜2 × 10-8, ˜8 × 10-8, and ˜8 × 10-7 were measured, respectively. To demonstrate the time-resolving capability of the system, reflectivity curves were measured with time resolutions of 1.0 s while rotating the specimen. We have also measured the diffraction profile around the 113 reflection in the non-specular reflection geometry.

  8. Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team

    2017-10-01

    A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.

  9. BOREAS RSS-17 Dielectric Constant Profile Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. Moire measuring technology for three-dimensional profile of the object

    NASA Astrophysics Data System (ADS)

    Fu, Yanjun; Yang, Kuntao

    2006-02-01

    An optical system is designed to get projection of the transmission grating, the deformed grating is obtained on surface of the object. The image of the deformed grating is given by the lens, the reference grating is put on the place of the image, and then the moire fringe is obtained. The amplify principle of the moire fringe is used to measure the profile of the object. The optical principle of the projection is analyzed. And the relation between the phase and the height of object is deduced. From the different point of geometry optics and the physics opticsl, the optical system is analyzed, the factors that influence the image equality and the measuring result are obtained. So the betterment of improving the measuring precision is brought forward, and in the later information processing, because of the diffuse reflection, the image equality is not very well. In order to get a good image, the digital filter is used to filter the noise and smooth the image firstly. Then in order to improve the measure precision, the subdivision technology is applied. The Fourier transform profilometry and phase shifting technology is used in the calculation. A detail analyses is done both in time field and frequency field. And the method of improving the measuring precision is put forward. A good digital filter algorithm is brought forward in the Fourier transform profilometry. In the phase shifting technology, the detail formula of three-step and four-step is given. At last the phase that is relational with the high information of the object is get, but the phase is disconnected phase, after the unwrapping algorithm,the disconnected phase is changed to be the continuous phase. Taking use of the relation between the phase and height, the height is obtained. Then the three-dimensional profile of the measured object can be reconstructed. The system is very convenient for non-contact measure of profile of some objects.

  11. Stratospheric H2O and HNO3 profiles derived from solar occultation measurements

    NASA Technical Reports Server (NTRS)

    Fischer, H.; Fergg, F.; Rabus, D.; Burkert, P.

    1985-01-01

    Compact two-channel radiometers for solar occultation experiments have been constructed in order to measure stratospheric trace gases. The instruments can be used as filter- or correlation-type radiometers, depending on the trace gas under investigation. Within the LIMS correlative measurement program, balloon flights were performed with a payload of up to four of these two-channel radiometers. From the filter-type measurements, profiles of the trace gases H2O and HNO3 are inferred for the height region between the tropopause and the balloon float level. The data evaluation also includes a comprehensive analysis of the error sources and their effect on the accuracy of the trace gas profiles. The derived H2O and HNO3 profiles are assessed against the observations of other authors and are discussed in the light of the trace gas distributions calcualted from photochemical models.

  12. Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.

    2013-12-01

    Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth Observing System Aura satellite and are providing ozone concentration profile measurements. MLS observes limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a vertical resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone profiles with an improved spatial coverage and vertical resolution from space missions. For evaluating the quality of retrieved profiles, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on vertical resolution of tropospheric ozone profiles from the MLS/AIRS/OMI joint

  13. High-Speed Boundary-Layer Transition Induced by an Isolated Roughness Element

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Owens, Lewis R.; King, Rudolph A.

    2010-01-01

    Progress on an experimental effort to quantify the instability mechanisms associated with roughness-induced transition in a high-speed boundary layer is reported in this paper. To simulate the low-disturbance environment encountered during high-altitude flight, the experimental study was performed in the NASA-Langley Mach 3.5 Supersonic Low-Disturbance Tunnel. A flat plate trip sizing study was performed first to identify the roughness height required to force transition. That study, which included transition onset measurements under both quiet and noisy freestream conditions, confirmed the sensitivity of roughness-induced transition to freestream disturbance levels. Surveys of the laminar boundary layer on a 7deg half-angle sharp-tipped cone were performed via hot-wire anemometry and pitot-pressure measurements. The measured mean mass-flux and Mach-number profiles agreed very well with computed mean-flow profiles. Finally, surveys of the boundary layer developing downstream of an isolated roughness element on the cone were performed. The measurements revealed an instability in the far wake of the roughness element that grows exponentially and has peak frequencies in the 150 to 250 kHz range.

  14. Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Program Climate Research Facility measurements

    NASA Astrophysics Data System (ADS)

    Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.; Turner, David D.; Ferrare, Richard A.; Clayton, Marian F.; Andrews, Elisabeth; Ogren, John A.; Johnson, Roy R.; Russell, Philip B.; Gore, Warren J.; Dominguez, Roseanne

    2009-11-01

    The accuracy with which vertical profiles of aerosol extinction σep(λ) can be measured using routine Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) measurements and was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e., σep(λ) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman lidar, micropulse lidar (MPL), and in situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth τp(λ), from which the profiles of σep(λ) are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sun photometer (AATS-14); these data were used as benchmark in this evaluation. The ACRF IAP σep(550 nm) were lower by 11% (during AIOP) and higher by 1% (during ALIVE) when compared to AATS-14. The ACRF MPL σep(523 nm) measurements were higher by 24% (AIOP) and 19-21% (ALIVE) compared to AATS-14, but the correlation improved significantly during ALIVE. In the AIOP, a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman lidar σep(355 nm) measurements were larger by 54% (AIOP) and by 6% (ALIVE) compared to AATS-14. The large bias in the Raman lidar measurements during AIOP stemmed from a gradual loss of Raman lidar sensitivity starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data processing algorithm led to the significant improvement and very small bias in ALIVE. Finally, we find that during ALIVE the Raman lidar water vapor densities ρw are 8% larger when compared to AATS-14, whereas in situ measured ρw aboard two different aircraft are smaller than the

  15. Composite measures for profiling hospitals on bariatric surgery performance

    PubMed Central

    Dimick, Justin B.; Birkmeyer, Nancy J.; Finks, Jonathan F.; Share, David A.; English, Wayne J.; Carlin, Arthur M.; Birkmeyer, John D.

    2014-01-01

    Objective We sought to develop a novel composite measure for profiling hospital performance with bariatric surgery. Design, Setting, and Patients Using clinical registry data from the Michigan Bariatric Surgery Collaborative (MBSC), we studied all patients undergoing bariatric surgery from 2008 to 2010. For gastric bypass surgery, we used empirical Bayes techniques to create a composite measure by combining several measures, including serious complications, reoperations, and readmissions; hospital and surgeon volume; and outcomes with other, related procedures. Hospitals were ranked based on 2008-09 and placed in one of 3 groups: 3-star (top third), 2-star (middle third), and 1-star (bottom third). We assessed how well these ratings predicted outcomes in the next year (2010), compared to other widely used measures. Main Outcome Measures Risk-adjusted serious complications. Results Composite measures explained a larger proportion of hospital-level variation in serious complication rates with gastric bypass than other measures. For example, the composite measure explained 89% of the variation compared to only 28% for risk-adjusted complication rates alone. Composite measures also appeared better at predicting future performance compared to individual measures. When ranked on the composite measure, 1-star hospitals (bottom 20%), had 2-fold higher serious complication rates (4.6% vs. 2.4%; OR 2.0; 95% CI, 1.1 to 3.5) compared to 3-star (top 20%) hospitals. Differences in serious complications rates between 1-star and 3-star hospitals were much smaller when hospitals were ranked using serious complications (4.0% vs. 2.7%; OR 1.6; 95% CI, 0.8-2.9) and hospital volume (3.3% vs. 3.2%; OR 0.85; 95% CI, 0.4 to 1.7) Conclusions Composite measures are much better at explaining hospital-level variation in serious complications and predicting future performance than other approaches. In this preliminary study, it appears that such composite measures may be better than existing

  16. A 2.5D finite element and boundary element model for the ground vibration from trains in tunnels and validation using measurement data

    NASA Astrophysics Data System (ADS)

    Jin, Qiyun; Thompson, David J.; Lurcock, Daniel E. J.; Toward, Martin G. R.; Ntotsios, Evangelos

    2018-05-01

    A numerical model is presented for the ground-borne vibration produced by trains running in tunnels. The model makes use of the assumption that the geometry and material properties are invariant in the axial direction. It is based on the so-called two-and-a-half dimensional (2.5D) coupled Finite Element and Boundary Element methodology, in which a two-dimensional cross-section is discretised into finite elements and boundary elements and the third dimension is represented by a Fourier transform over wavenumbers. The model is applied to a particular case of a metro line built with a cast-iron tunnel lining. An equivalent continuous model of the tunnel is developed to allow it to be readily implemented in the 2.5D framework. The tunnel structure and the track are modelled using solid and beam finite elements while the ground is modelled using boundary elements. The 2.5D track-tunnel-ground model is coupled with a train consisting of several vehicles, which are represented by multi-body models. The response caused by the passage of a train is calculated as the sum of the dynamic component, excited by the combined rail and wheel roughness, and the quasi-static component, induced by the constant moving axle loads. Field measurements have been carried out to provide experimental validation of the model. These include measurements of the vibration of the rail, the tunnel invert and the tunnel wall. In addition, simultaneous measurements were made on the ground surface above the tunnel. Rail roughness and track characterisation measurements were also made. The prediction results are compared with measured vibration obtained during train passages, with good agreement.

  17. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, Richard L.

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF)more » has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.« less

  18. Elevation Measurement Profile of Mars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The elevation measurements were collected by the Mars Orbiter Laser Altimeter (MOLA) aboard Global Surveyor during the spring and summer of 1998, as the spacecraft orbited Mars in an interim elliptical orbit. MOLA sends laser pulses toward the planet and measures the precise amount of time before the reflected signals are received back at the instrument. From this data, scientists can infer surface and cloud heights.

    During its mapping of the north polar cap, the MOLA instrument also made the first direct measurement of cloud heights on the red planet. Reflections from the atmosphere were obtained at altitudes from just above the surface to more than nine miles (approximately 15 kilometers) on about 80 percent of the laser profiles. Most clouds were observed at high latitudes, at the boundary of the ice cap and surrounding terrain.

    Clouds observed over the polar cap are likely composed of carbon dioxide that condenses out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamic structure probably caused by winds interacting with surface topography, much as occurs on Earth when winds collide with mountains to produce turbulence.

    The principal investigator for MOLA is Dr. David E. Smith of Goddard. The MOLA instrument was designed and built by the Laser Remote Sensing Branch of Laboratory for Terrestrial Physics at Goddard. The Mars Global Surveyor Mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for the NASA Office of Space Science.

  19. Real-time MSE measurements for current profile control on KSTAR.

    PubMed

    De Bock, M F M; Aussems, D; Huijgen, R; Scheffer, M; Chung, J

    2012-10-01

    To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.

  20. Comparison of slope and height profiles for flat synchrotron x-ray mirrors measured with a long trace profiler and a Fizeau interferometer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.; Assoufid, L.; Macrander, A.

    2007-01-01

    Long trace profilers (LTPS) have been used at many synchrotron radiation laboratories worldwide for over a decade to measure surface slope profiles of long grazing incidence x-ray mirrors. Phase measuring interferometers (PMIs) of the Fizeau type, on the other hand, are being used by most mirror manufacturers to accomplish the same task. However, large mirrors whose dimensions exceed the aperture of the Fizeau interferometer require measurements to be carried out at grazing incidence, and aspheric optics require the use of a null lens. While an LTP provides a direct measurement of ID slope profiles, PMIs measure area height profiles frommore » which the slope can be obtained by a differentiation algorithm. Measurements of the two types of instruments have been found by us to be in good agreement, but to our knowledge there is no published work directly comparing the two instruments. This paper documents that comparison. We measured two different nominally flat mirrors with both the LTP in operation at the Advanced Photon Source (a type-II LTP) and a Fizeau-type PMI interferometer (Wyko model 6000). One mirror was 500 mm long and made of Zerodur, and the other mirror was 350 mm long and made of silicon. Slope error results with these instruments agree within nearly 100% (3.11 {+-} 0.15 {micro}rad for the LTP, and 3.11 {+-} 0.02 {micro}rad for the Fizeau PMI interferometer) for the medium quality Zerodur mirror with 3 {micro}rad rms nominal slope error. A significant difference was observed with the much higher quality silicon mirror. For the Si mirror, slope error data is 0.39 {+-} 0.08 {micro}rad from LTP measurements but it is 0.35 {+-} 0.01 {micro}rad from PMI interferometer measurements. The standard deviations show that the Fizeau PMI interferometer has much better measurement repeatability.« less

  1. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong

    2017-12-01

    Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.

  2. Conditioning a segmented stem profile model for two diameter measurements

    Treesearch

    Raymond L. Czaplewski; Joe P. Mcclure

    1988-01-01

    The stem profile model of Max and Burkhart (1976) is conditioned for dbh and a second upper stem measurement. This model was applied to a loblolly pine data set using diameter outside bark at 5.3m (i.e., height of 17.3 foot Girard form class) as the second upper stem measurement, and then compared to the original, unconditioned model. Variance of residuals was reduced...

  3. Wall-wake velocity profile for compressible non-adiabatic flows

    NASA Technical Reports Server (NTRS)

    Sun, C. C.; Childs, M. E.

    1975-01-01

    A form of the wall-wake profile, which is applicable to flows with heat transfer, and for which a variation in y = O at y = delta, was suggested. The modified profile, which takes into account the effect of turbulent Prandtl number, was found to provide a good representation of experimental data for a wide range numbers and heat transfer. The Cf values which are determined by a least squares fit of the profile to the data agree well with values which were measured by the floating element technique. In addition, the values of delta determined by the fit correspond more closely to the outer edge of the viscous flow region than those obtained with earlier versions of the wall-wake profile.

  4. Assessing the Suitability of Historical PM(2.5) Element Measurements for Trend Analysis.

    PubMed

    Hyslop, Nicole P; Trzepla, Krystyna; White, Warren H

    2015-08-04

    The IMPROVE (Interagency Monitoring of Protected Visual Environments) network has characterized fine particulate matter composition at locations throughout the United States since 1988. A main objective of the network is to evaluate long-term trends in aerosol concentrations. Measurements inevitably advance over time, but changes in measurement technique have the potential to confound the interpretation of long-term trends. Problems of interpretation typically arise from changing biases, and changes in bias can be difficult to identify without comparison data that are consistent throughout the measurement series, which rarely exist. We created a consistent measurement series for exactly this purpose by reanalyzing the 15-year archives (1995-2009) of aerosol samples from three sites - Great Smoky Mountains National Park, Mount Rainier National Park, and Point Reyes National Seashore-as single batches using consistent analytical methods. In most cases, trend estimates based on the original and reanalysis measurements are statistically different for elements that were not measured above the detection limit consistently over the years (e.g., Na, Cl, Si, Ti, V, Mn). The original trends are more reliable for elements consistently measured above the detection limit. All but one of the 23 site-element series with detection rates >80% had statistically indistinguishable original and reanalysis trends (overlapping 95% confidence intervals).

  5. Estimation of Mineral and Trace Element Profile in Bubaline Milk Affected with Subclinical Mastitis.

    PubMed

    Singh, Mahavir; Yadav, Poonam; Sharma, Anshu; Garg, V K; Mittal, Dinesh

    2017-04-01

    The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.

  6. Comparison of ozone profiles obtained with NIES DIAL and SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Nakane, Hideaki; Sasano, Yasuhiro; Hayashida-Amano, Sachiko; Sugimoto, Nobuo; Matsui, Ichiro; Minato, Atsushi; Mccormick, M. P.

    1993-01-01

    Ozone profiles obtained with the Differential Absorption Lidar (DIAL) system at the National Institute for Environmental Studies (NIES) (Tsukuba, Japan) were compared with data provided by the satellite sensor SAGE II. The SAGE II data were selected based on criteria of spatial and temporal differences between the DIAL and the SAGE II measurements: five degrees in latitude and 15 degrees in longitude, within a latitudinal band from 31 deg to 41 deg N, and within one, three and five days after or before the DIAL measurements. Results show very good agreement for the individual and the zonal-mean profiles. The average mean difference between the DIAL and the SAGE II measurements over the altitudes 15-50 km was about 10 percent.

  7. On-line hydrogen-isotope measurements of organic samples using elemental chromium: An extension for high temperature elemental-analyzer techniques

    USGS Publications Warehouse

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A.J.; Brand, Willi A.; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ2H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ2H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while

  8. A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements

    EPA Science Inventory

    In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...

  9. Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.

    2014-12-01

    Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the

  10. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  11. Influence of ion chamber response on in-air profile measurements in megavoltage photon beams.

    PubMed

    Tonkopi, E; McEwen, M R; Walters, B R B; Kawrakow, I

    2005-09-01

    This article presents an investigation of the influence of the ion chamber response, including buildup caps, on the measurement of in-air off-axis ratio (OAR) profiles in megavoltage photon beams using Monte Carlo simulations with the EGSnrc system. Two new techniques for the calculation of OAR profiles are presented. Results of the Monte Carlo simulations are compared to measurements performed in 6, 10 and 25 MV photon beams produced by an Elekta Precise linac and shown to agree within the experimental and simulation uncertainties. Comparisons with calculated in-air kerma profiles demonstrate that using a plastic mini phantom gives more accurate air-kerma measurements than using high-Z material buildup caps and that the variation of chamber response with distance from the central axis must be taken into account.

  12. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  13. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  14. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  15. MEASURING NEUTRON STAR RADII VIA PULSE PROFILE MODELING WITH NICER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özel, Feryal; Psaltis, Dimitrios; Bauböck, Michi

    2016-11-20

    The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station . Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgroundsmore » need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.« less

  16. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  17. Anatomy, histology and elemental profile of long bones and ribs of the Asian elephant (Elephas maximus).

    PubMed

    Nganvongpanit, Korakot; Siengdee, Puntita; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Angkawanish, Taweepoke; Thitaram, Chatchote

    2017-09-01

    This study evaluated the morphology and elemental composition of Asian elephant (Elephas maximus) bones (humerus, radius, ulna, femur, tibia, fibula and rib). Computerized tomography was used to image the intraosseous structure, compact bones were processed using histological techniques, and elemental profiling of compact bone was conducted using X-ray fluorescence. There was no clear evidence of an open marrow cavity in any of the bones; rather, dense trabecular bone was found in the bone interior. Compact bone contained double osteons in the radius, tibia and fibula. The osteon structure was comparatively large and similar in all bones, although the lacuna area was greater (P < 0.05) in the femur and ulna. Another finding was that nutrient foramina were clearly present in the humerus, ulna, femur, tibia and rib. Twenty elements were identified in elephant compact bone. Of these, ten differed significantly across the seven bones: Ca, Ti, V, Mn, Fe, Zr, Ag, Cd, Sn and Sb. Of particular interest was the finding of a significantly larger proportion of Fe in the humerus, radius, fibula and ribs, all bones without an open medullary cavity, which is traditionally associated with bone marrow for blood cell production. In conclusion, elephant bones present special characteristics, some of which may be important to hematopoiesis and bone strength for supporting a heavy body weight.

  18. The Premature Ejaculation Profile: validation of self-reported outcome measures for research and practice.

    PubMed

    Patrick, Donald L; Giuliano, François; Ho, Kai Fai; Gagnon, Dennis D; McNulty, Pauline; Rothman, Margaret

    2009-02-01

    To evaluate the reliability and validity of the Premature Ejaculation Profile (PEP), a self-reported outcome instrument for evaluating domains of PE and its treatment, comprised of four single-item measures, a profile, and an index score. Data were from men participating in observational studies in the USA (PE, 207 men; non-PE, 1380) and Europe (PE, 201; non-PE, 914) and from men with PE (1238) participating in a phase III randomized, placebo-controlled clinical trial of dapoxetine. The PEP contains four measures: perceived control over ejaculation, personal distress related to ejaculation, satisfaction with sexual intercourse, and interpersonal difficulty related to ejaculation, each assessed on five-point response scales. Test-retest reliability, known-groups validity, and ability to detect a patient-reported global impression of change (PGI) in condition were evaluated for the individual PEP measures and a PEP index score (the mean of all four measures). Profile analysis was conducted using multivariate analysis of variance. All PEP measures showed acceptable reliability (intraclass correlation coefficients ranged from 0.66 to 0.83) and mean scores for all measures differed significantly between PE and non-PE groups (P < 0.001). Men who reported a reduction in PE with treatment in the phase III trial had significantly greater scores on each of the four measures. The PEP profiles of men with and without PE differed significantly (P < 0.001) in both observational studies; higher levels of PGI were associated with higher PEP profiles (P < 0.001). The PEP index score also showed acceptable reliability and was significantly different between the PE and non-PE groups (P < 0.001). Men who reported an improvement in PE with treatment in the phase III trial had significantly greater PEP index scores. In the phase III trial, nausea was the most common adverse event with dapoxetine. The PEP provides a reliable, valid, and interpretable measure for use in monitoring

  19. Compact, low profile antennas for MSAT and mini-M and Std-M land mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Strickland, P. C.

    1995-01-01

    CAL Corporation has developed a new class of low profile radiating elements for use in planar phased array antennas. These new elements have been used in the design of a low cost, compact, low profile antenna unit for MSAT and INMARSAT Mini-M land mobile satellite communications. The antenna unit which measures roughly 32 cm in diameter by 5 cm deep incorporates a compact LNA and diplexer unit as well as a complete, low cost, beam steering system. CAL has also developed a low profile antenna unit for INMARSAT-M land mobile satellite communications. A number of these units, which utilize a microstrip patch array design, were put into service in 1994.

  20. Forensic discrimination of copper wire using trace element concentrations.

    PubMed

    Dettman, Joshua R; Cassabaum, Alyssa A; Saunders, Christopher P; Snyder, Deanna L; Buscaglia, JoAnn

    2014-08-19

    Copper may be recovered as evidence in high-profile cases such as thefts and improvised explosive device incidents; comparison of copper samples from the crime scene and those associated with the subject of an investigation can provide probative associative evidence and investigative support. A solution-based inductively coupled plasma mass spectrometry method for measuring trace element concentrations in high-purity copper was developed using standard reference materials. The method was evaluated for its ability to use trace element profiles to statistically discriminate between copper samples considering the precision of the measurement and manufacturing processes. The discriminating power was estimated by comparing samples chosen on the basis of the copper refining and production process to represent the within-source (samples expected to be similar) and between-source (samples expected to be different) variability using multivariate parametric- and empirical-based data simulation models with bootstrap resampling. If the false exclusion rate is set to 5%, >90% of the copper samples can be correctly determined to originate from different sources using a parametric-based model and >87% with an empirical-based approach. These results demonstrate the potential utility of the developed method for the comparison of copper samples encountered as forensic evidence.

  1. Aura CO and Ozone profiles retrieved from combined TES and MLS measurements

    NASA Astrophysics Data System (ADS)

    Luo, M.; Read, W. G.; Wagner, P. A.; Schwartz, M.; Kulawik, S. S.; Herman, R. L.

    2017-12-01

    The NASA Aura Carbon Monoxide (CO) profile jointly retrieved from the co-located TES nadir and MLS limb satellite measurements has been released to the public and applied in studies of the complex chemical-transport processes related to pollutants emitted from the fires in the tropical region. Recently, the joint Aura Ozone profile retrievals are also being produced. Compared to the two standalone retrievals by the instrument teams, these Aura joint retrievals improve the profile resolution and sensitive ranges in the upper troposphere and lower stratosphere. The new version Aura CO data (mainly using the recent TES and MLS algorithm updates) is being generated and validated. We will present the comparisons of the Aura CO and the preliminary Ozone data to the in-situ measurements, e.g., data collected from the HIPPO and the MOZAIC campaigns, and the Ozone sonde observations. The characteristics of the Aura CO and O3 retrievals will also be described.

  2. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  3. Improvement of graphite crystal analyzer for light elements on X-ray fluorescence holography measurement

    NASA Astrophysics Data System (ADS)

    Happo, Naohisa; Hada, Takuma; Kubota, Atsushi; Ebisu, Yoshihiro; Hosokawa, Shinya; Kimura, Koji; Tajiri, Hiroo; Matsushita, Tomohiro; Hayashi, Kouichi

    2018-05-01

    Using a graphite crystal analyzer, focused monochromatic fluorescent X-rays can be obtained on an X-ray fluorescence holography (XFH) measurement. To measure the holograms of elements lighter than Ti, we improved a cylindrical-type crystal analyzer and constructed a small C-shaped analyzer. Using the constructed C-shaped analyzer, a Ca Kα hologram of a fluorite single crystal was obtained, from which we reconstructed a clear atomic image. The XFH measurements for the K, Ca, and Sc elements become possible using the presently constructed analyzer.

  4. Methods of both destructive and non-destructive metrology of GRIN optical elements

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Deegan, J.; Benson, R.; Berger, A. J.; Linden, J. J.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2015-05-01

    Gradient index (GRIN) optics have been an up-and-coming tool in the world of optics. By combining an index gradient with a surface curvature the number of optical components for a lens system can often be greatly reduced. Their use in the realm of infra-red is only becoming realized as new efforts are being developed to create materials that are suitable and mutually compatible for these optical components. The materials being pursued are the chalcogenide based glasses. Small changes in elemental concentrations in these glasses can have significant effects on physical and optical properties. The commonality between these glasses and their widely different optical properties make them prime candidates for GRIN applications. Traditional methods of metrology are complicated by the combination of the GRIN and the curvature of the element. We will present preliminary data on both destructive and non-destructive means of measuring the GRIN profile. Non-destructive methods may require inference of index through material properties, by careful measurement of the individual materials going into the GRIN optic, followed by, mapping measurements of the GRIN surface. Methods to be pursued are micro Raman mapping and CT scanning. By knowing the properties of the layers and accurately mapping the interfaces between the layers we should be able to back out the index profile of the GRIN optic and then confirm the profile by destructive means.

  5. Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.

    2013-01-01

    The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.

  6. Fatigue assessment of an existing steel bridge by finite element modelling and field measurements

    NASA Astrophysics Data System (ADS)

    Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.

    2017-05-01

    The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.

  7. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binns, W. R.; Bose, R. G.; Braun, D. L.

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible andmore » to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.« less

  8. THE SuperTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Brandt, T. J.; Daniels, W. M.; DowKonnt, P. F.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Israel, M. H.; hide

    2014-01-01

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from Ne-10 to Zr-40 with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z < or = 60 and measures the energy spectra of the more abundant elements for Z < or = 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million cu m balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 x 10(exp 6) cosmic-ray nuclei with Z > or = 10, including approx.1300 with Z > 29 and approx.60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  9. Origin discrimination of defatted pork via trace elements profiling, stable isotope ratios analysis, and multivariate statistical techniques.

    PubMed

    Park, Yu Min; Lee, Cheong Mi; Hong, Joon Ho; Jamila, Nargis; Khan, Naeem; Jung, Jong-Hyun; Jung, Young-Chul; Kim, Kyong Su

    2018-09-01

    This study verified the origin of 346 defatted Korean and non-Korean pork samples via trace elements profiling, and C and N stable isotope ratios analysis. The analyzed elements were 6 Li, 7 Li, 10 B, 11 B, 51 V , 50 Cr, 52 Cr, 53 Cr, 55 Mn, 58 Ni, 60 Ni, 59 Co, 63 Cu, 65 Cu, 64 Zn, 66 Zn, 69 Ga, 71 Ga, 75 As, 82 Se, 84 Sr, 86 Sr, 87 Sr, 88 Sr, 85 Rb, 94 Mo, 95 Mo, 97 Mo, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 113 Cd, 112 Cd, 114 Cd, 116 Cd, 133 Cs, 206 Pb, 207 Pb, and 208 Pb. Content (mg/kg) of 51 V (0.012), 50 Cr (0.882), 75 As (0.017), 85 Rb (57.7), and 87 Sr (46.3) were high in Korean pork samples whereas 6 Li, 7 Li, 59 Co, 55 Mn, 58 Ni, 84 Sr, 86 Sr, 88 Sr, 111 Cd, and 133 Cs were found higher in non-Korean samples. The results of discriminant analysis showed that the trace elements content and stable isotope ratios were significant for the discrimination of geographical origins with a perfect discrimination rate of 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS.

    PubMed

    Godshaw, Joshua; Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E

    2017-09-25

    Wine elemental composition varies by cultivar, geographic origin, viticultural and enological practices, and is often used for authenticity validation. Elemental analysis of wine by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is challenging due to the potential for non-spectral interferences and plasma instability arising from organic matrix components. Sample preparation mitigates these interferences, however, conflicting recommendations of best practices in ICP-MS analysis of wine have been reported. This study compared direct dilution, microwave-assisted acid digestion, and two filtration sample pretreatments, acidification prior to filtration and filtration followed by acidification, in elemental profiling of one white and three red table wines by ICP-MS. Of 43 monitored isotopes, 37 varied by sample preparation method, with significantly higher results of 17 isotopes in the microwave-digested samples. Both filtration treatments resulted in lower results for 11 isotopes compared to the other methods. Finally, isotope dilution determination of copper based on natural abundances and the 63 Cu: 65 Cu instrument response ratio agreed with external calibration and confirmed a significant sample preparation effect. Overall, microwave digestion did not compare favorably, and direct dilution was found to provide the best compromise between ease of use and result accuracy and precision, although all preparation strategies were able to differentiate the wines.

  11. Stable Isotope Ratio and Elemental Profile Combined with Support Vector Machine for Provenance Discrimination of Oolong Tea (Wuyi-Rock Tea)

    PubMed Central

    Lou, Yun-xiao; Fu, Xian-shu; Yu, Xiao-ping; Zhang, Ya-fen

    2017-01-01

    This paper focused on an effective method to discriminate the geographical origin of Wuyi-Rock tea by the stable isotope ratio (SIR) and metallic element profiling (MEP) combined with support vector machine (SVM) analysis. Wuyi-Rock tea (n = 99) collected from nine producing areas and non-Wuyi-Rock tea (n = 33) from eleven nonproducing areas were analysed for SIR and MEP by established methods. The SVM model based on coupled data produced the best prediction accuracy (0.9773). This prediction shows that instrumental methods combined with a classification model can provide an effective and stable tool for provenance discrimination. Moreover, every feature variable in stable isotope and metallic element data was ranked by its contribution to the model. The results show that δ2H, δ18O, Cs, Cu, Ca, and Rb contents are significant indications for provenance discrimination and not all of the metallic elements improve the prediction accuracy of the SVM model. PMID:28473941

  12. Measurement of trace elements in tree rings using the PIXE method

    NASA Astrophysics Data System (ADS)

    Aoki, Toru; Katayama, Yukio; Kagawa, Akira; Koh, Susumu; Yoshida, Kohji

    1998-03-01

    Standard materials were prepared in order to calculate element concentrations in tree samples using the particle induced X-ray emission (PIXE) method. Five standard solutions (1) Ti, Fe, Cu, As, Rb, Sr; (2) Ca, V, Co, Zn, As, Rb; (3) Ti, Mn, Ni, As, Sr; (4) K, Mn, Co, As, Rb, Sr; and (5) Ca, Mn, Cu, As, Rb, Sr, were added to filter papers. The dried filter papers were used as standard samples. Pellets of Pepperbush leaves (National Institute for Environmental Studies (NIES)) and Peach leaves (National Institute of Standards and Technology (NIST)) were used as references. The peak counts of Ca, Mn, Cu, Zn, Rb, and Sr in samples taken from a kaki ( Diospros kaki Thunb.) were measured and the concentrations (ppm) of the elements were calculated using the yield curve obtained from the standard filter papers. The concentrations of Mn, Zn, Rb, and Ca were compared with the data obtained from a separate INAA analysis. Concentrations of Mn, Zn, and Ca obtained by both methods were almost the same, but the concentrations of Rb differed slightly. The amounts of trace elements in samples taken from a sugi ( Cryptomeria japonica D. Don) were also measured.

  13. Neuropsychological profile in adult schizophrenia measured with the CMINDS.

    PubMed

    van Erp, Theo G M; Preda, Adrian; Turner, Jessica A; Callahan, Shawn; Calhoun, Vince D; Bustillo, Juan R; Lim, Kelvin O; Mueller, Bryon; Brown, Gregory G; Vaidya, Jatin G; McEwen, Sarah; Belger, Aysenil; Voyvodic, James; Mathalon, Daniel H; Nguyen, Dana; Ford, Judith M; Potkin, Steven G

    2015-12-30

    Schizophrenia neurocognitive domain profiles are predominantly based on paper-and-pencil batteries. This study presents the first schizophrenia domain profile based on the Computerized Multiphasic Interactive Neurocognitive System (CMINDS(®)). Neurocognitive domain z-scores were computed from computerized neuropsychological tests, similar to those in the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB), administered to 175 patients with schizophrenia and 169 demographically similar healthy volunteers. The schizophrenia domain profile order by effect size was Speed of Processing (d=-1.14), Attention/Vigilance (d=-1.04), Working Memory (d=-1.03), Verbal Learning (d=-1.02), Visual Learning (d=-0.91), and Reasoning/Problem Solving (d=-0.67). There were no significant group by sex interactions, but overall women, compared to men, showed advantages on Attention/Vigilance, Verbal Learning, and Visual Learning compared to Reasoning/Problem Solving on which men showed an advantage over women. The CMINDS can readily be employed in the assessment of cognitive deficits in neuropsychiatric disorders; particularly in large-scale studies that may benefit most from electronic data capture. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. An impact of moss sample cleaning on uncertainty of analytical measurement and pattern profiles of rare earth elements.

    PubMed

    Dołęgowska, Sabina; Gałuszka, Agnieszka; Migaszewski, Zdzisław M

    2017-12-01

    The main source of rare earth elements (REE) in mosses is atmospheric deposition of particles. Sample treatment operations including shaking, rinsing or washing, which are made in a standard way on moss samples prior to chemical analysis, may lead to removing particles adsorbed onto their tissues. This in turn causes differences in REE concentrations in treated and untreated samples. For the present study, 27 combined moss samples were collected within three wooded areas and prepared for REE determinations by ICP-MS using both manual cleaning by shaking and triple rinsing with deionized water. Higher concentrations of REE were found in manually cleaned samples. The comparison of REE signatures and shale-normalized REE concentration patterns showed that the treatment procedure did not lead to fractionation of REE. All the samples were enriched in medium rare earth elements, and the δMREE factor remained practically unchanged after rinsing. Positive anomalies of Nd, Sm, Eu, Gd, Er and Yb were observed in both, manually cleaned and rinsed samples. For all the elements examined, analytical uncertainty was below 3.0% whereas sample preparation uncertainty computed with ANOVA, RANOVA, modified RANOVA and range statistics methods varied from 3.5 to 29.7%. In most cases the lowest s rprep values were obtained with the modified RANOVA method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spacecraft measurements of the elemental and isotopic composition of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1980-01-01

    Within the past few years, instruments flown on satellites and space probes have made significant progress in measuring the elemental and isotopic composition of energetic heavy nuclei accelerated in solar flares. These new observations are discussed, focusing on: (1) the energy dependence of the elemental composition at energies not greater than 1 MeV/nucleon; (2) flare to flare variations in the composition; and (3) comparisons of the average solar particle abundances (Z not less than 2 and not greater than 28) with other measures of the solar composition, including photospheric, coronal, and solar wind observations. These comparisons have led to the suggestion that solar flares sample the composition of the corona. Isotopic measurements of heavy solar flare nuclei have recently added a new dimension to these studies. In particular, the isotopic composition of solar flare neon has been found to be significantly different from that measured in the solar wind, but consistent with the meteoritic component neon-A.

  16. Total reflection X-ray Fluorescence determination of interfering elements rubidium and uranium by profile fitting

    NASA Astrophysics Data System (ADS)

    Dhara, Sangita; Khooha, Ajay; Singh, Ajit Kumar; Tiwari, M. K.; Misra, N. L.

    2018-06-01

    Systematic studies to assess the analytical parameters obtained in the total reflection X-ray fluorescence (TXRF) determinations of interfering elements Rb and U using profile fitting are reported in the present manuscript. The X-ray lines Rb Kα and U Lα having serious spectral interference (ΔE = 218 eV), have been used as analytical lines. The intensities of these X-ray lines have been assessed using profile fitting. In order to compare the analytical results of Rb determinations in presence of U, with and without U excitation, synchrotron radiation was tuned to energy just above and below the U Labs edge. This approach shall excite both Rb Kα and U Lα simultaneously and Rb Kα selectively. Finally, the samples were also analyzed with a laboratory based TXRF spectrometer. The analytical results obtained in all these conditions were comparable. The authenticity of the results was assessed by analyzing U with respect to Rb in Rb2U(SO4)3, a standard reference material for U. The average precision obtained for TXRF determinations was below 3% (RSD, n = 3, 1σ) and the percent deviation of TXRF values from the expected values calculated on the basis of sample preparation was within 3%.

  17. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Adamek, J.; Allan, S.; Dudson, B. D.; Elmore, S.; Fishpool, G.; Harrison, J.; Kirk, A.; Komm, M.

    2015-02-01

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate of the radial electric field is extracted which is shown to be of the order ˜1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the ER measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak.

  18. Computations of Disturbance Amplification Behind Isolated Roughness Elements and Comparison with Measurements

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Li, Fei; Bynum, Michael; Kegerise, Michael; King, Rudolph

    2015-01-01

    Computations are performed to study laminar-turbulent transition due to isolated roughness elements in boundary layers at Mach 3.5 and 5.95, with an emphasis on flow configurations for which experimental measurements from low disturbance wind tunnels are available. The Mach 3.5 case corresponds to a roughness element with right-triangle planform with hypotenuse that is inclined at 45 degrees with respect to the oncoming stream, presenting an obstacle with spanwise asymmetry. The Mach 5.95 case corresponds to a circular roughness element along the nozzle wall of the Purdue BAMQT wind tunnel facility. In both cases, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The linear amplification characteristics of the wake flow are examined towards the eventual goal of developing linear growth correlations for the onset of transition.

  19. A handheld optical device for skin profile measurement

    NASA Astrophysics Data System (ADS)

    Sun, Jiuai; Liu, Xiaojin

    2018-04-01

    This paper describes a portable optical scanning device designed for skin surface measurement on both colour and 3D geometry through a relative easy and cost effective multiple light source photometric stereo method. The validation of colour recovered had been verified through its application on skin lesion segmentation in our early work. This paper focuses on the reconstructed topographic data which are subject to further evaluation and advancement. The evaluation work takes the skin in vitro as an application scenario and compares the experimental result to that obtained by using a commercial product. The experiments show that this handheld device can measure the skin profile significantly closer to that of the ground truth and have the additional function of skin colour recovery.

  20. SU-E-T-645: Qualification of a 2D Ionization Chamber Array for Beam Steering and Profile Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, S; Balter, P; Rose, M

    2015-06-15

    Purpose: Establish a procedure for beam steering and profile measurement using a 2D ionization chamber array and show equivalence to a water scanning system. Methods: Multiple photon beams (30×30cm{sup 2} field) and electron beams (25×25cm{sup 2} cone) were steered in the radial and transverse directions using Sun Nuclear’s IC PROFILER (ICP). Solid water was added during steering to ensure measurements were beyond the buildup region. With steering complete, servos were zeroed and enabled. Photon profiles were collected in a 30×30cm{sup 2} field at dmax and 2.9 cm depth for flattened and FFF beams respectively. Electron profiles were collected with amore » 25×25cm{sup 2} cone and effective depth (solid water + 0.9 cm intrinsic buildup) as follows: 0.9 cm (6e), 1.9 cm (9e), 2.9 cm (12e, 16e, 20e). Profiles of the same energy, field size and depth were measured in water with Sun Nuclear’s 3D SCANNER (3DS). Profiles were re-measured using the ICP after the in-water scans. Profiles measured using the ICP and 3DS were compared by (a) examining the differences in Varian’s “Point Difference Symmetry” metric, (b) visual inspection of the overlaid profile shapes and (c) calculation of point-by-point differences. Results: Comparing ICP measurements before and after water scanning showed very good agreement indicating good stability of the linac and measurement system. Comparing ICP Measurements to water phantom measurements using Varian’s symmetry metric showed agreement within 0.5% for all beams. The average magnitude of the agreement was within 0.2%. Comparing ICP Measurements to water phantom measurements using point-by-point difference showed agreement within 0.5% inside of 80% area of the field width. Conclusion: Profile agreement to within 0.5% was observed between ICP and 3DS after steering multiple energies with the ICP. This indicates that the ICP may be used for steering electron beams, and both flattened and FFF photon beams. Song Gao: Sun

  1. Characterization of magnetic field profiles at RFX-mod by Faraday rotation measurements

    NASA Astrophysics Data System (ADS)

    Auriemma, Fulvio; Brombin, Matteo; Canton, Alessandra; Giudicotti, Leonardo; Innocente, Paolo; Zilli, Enrico

    2009-11-01

    A multichannel far-infrared (FIR, λ=118.8 μm) polarimeter has been recently upgraded and re-installed on RFX-mod to measure the Faraday rotation angle along five vertical chords. Polarimetric data, associated with electron density profile, allow the reconstruction of the poloidal magnetic field profile. In this work the setup of the diagnostic is presented and the first Faraday rotation measurements are analyzed. The measurements have been performed at plasma current above 1.2 MA and electron density between 2 and 6x10^19 m-3. The actual S/N ratio is slightly lower than the expected one, due to electromagnetic coupling of the detectors with the saddle coils close to the polarimeter position. Due to this limit, only average information in the flat-top phase of the discharge could be so far obtained. The experimental data have been compared with the result of the μ&p equilibrium model [1], showing a good agreement between experiment and model, whereas the main differences are in the external region of the plasma. A different parameterization of the μ=μ0 J.B/B^2 profile has been proposed to enhance the agreement between model and experiment. [0pt] [1] Ortolani and Snack, World Scientific (1993) Singapore

  2. Trace elements in feed, manure, and manured soils.

    PubMed

    Sheppard, S C; Sanipelli, B

    2012-01-01

    Modern animal feeds often include nutritional mineral supplements, especially elements such as Cu, P, Se, and Zn. Other sources of trace elements also occur in livestock systems, such as pharmaceutical use of As and Zn to control gut flora, Bi in dairy for mastitis control, and Cu as hoof dips. Additionally, potential exists for inadvertent inclusion of trace elements in feeds or manures. There is concern about long-term accumulation of trace elements in manured soil that may even exceed guideline "safe" concentrations. This project measured ∼60 elements in 124 manure samples from broiler, layer, turkey, swine grower, swine nursery, sow, dairy, and beef operations. The corresponding feeds were also analyzed. In general, concentrations in manure were two- to fivefold higher than those in feed: the manure/feed concentration ratios were relatively consistent for all the animal-essential elements and were numerically similar for many of the non-nutrient elements. To confirm the potential for accumulation in soil, total trace element concentrations were measured in the profiles of 10 manured and 10 adjacent unmanured soils. Concentrations of several elements were found to be elevated in the manured soils, with Zn (and P) the most common. One soil from a dairy standing yard had concentrations of B that exceeded soil health guideline concentrations. Given that the Cu/P and Zn/P ratios found in manure were greater than typically reported in harvested crop materials, these elements will accumulate in soil even if manure application rates are managed to prevent accumulation of P in soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. 432- μm laser's beam-waist measurement for the polarimeter/interferometer on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Z. X.; Liu, H. Q.; Jie, Y. X.; Wu, M. Q.; Lan, T.; Zhu, X.; Zou, Z. Y.; Yang, Y.; Wei, X. C.; Zeng, L.; Li, G. S.; Gao, X.

    2014-10-01

    A far-infrared (FIR) polarimeter/interferometer (PI) system is under development for measurements of the current-density and the electron-density profiles in the EAST tokamak. The system will utilize three identical 432- μm CHCOOH lasers pumped by a CO2 laser. Measurements of the laser beam's waist size and position are basic works. This paper will introduce three methods with a beam profiler and several focusing optical elements. The beam profiler can be used to show the spatial energy distribution of the laser beam. The active area of the profiler is 12.4 × 12.4 mm2. Some focusing optical elements are needed to focus the beam in order for the beam profiler to receive the entire laser beam. Two principles and three methods are used in the measurement. The first and the third methods are based on the same principle, and the second method adopts an other principle. Due to the fast and convenient measurement, although the first method is a special form of the third and it can only give the size of beam waist, it is essential to the development of the experiment and it can provide guidance for the choices of the sizes of the optical elements in the next step. A concave mirror, a high-density polyethylene (HDPE) lens and a polymethylpentene (TPX) lens are each used in the measurement process. The results of these methods are close enough for the design of PI system's optical path.

  4. Measuring and modeling the oxygen profile in a nitrifying Moving Bed Biofilm Reactor.

    PubMed

    Masić, Alma; Bengtsson, Jessica; Christensson, Magnus

    2010-09-01

    In this paper we determine the oxygen profile in a biofilm on suspended carriers in two ways: firstly by microelectrode measurements and secondly by a simple mathematical model. The Moving Bed Biofilm Reactor is well-established for wastewater treatment where bacteria grow as a biofilm on the protective surfaces of suspended carriers. The flat shaped BiofilmChip P was developed to allow good conditions for transport of substrates into the biofilm. The oxygen profile was measured in situ the nitrifying biofilm with a microelectrode and it was simulated with a one-dimensional mathematical model. We extended the model by adding a CSTR equation, to connect the reactor to the biofilm through the boundary conditions. We showed the dependence of the thickness of the mass transfer boundary layer on the bulk flow rate. Finally, we estimated the erosion parameter lambda to increase the concordance between the measured and simulated profiles. This lead to a simple empirical relationship between lambda and the flow rate. The data gathered by in situ microelectrode measurements can, together with the mathematical model, be used in predictive modeling and give more insight in the design of new carriers, with the ambition of making process operation more energy efficient. Copyright 2010 Elsevier Inc. All rights reserved.

  5. CT radiation profile width measurement using CR imaging plate raw data

    PubMed Central

    Yang, Chang‐Ying Joseph

    2015-01-01

    This technical note demonstrates computed tomography (CT) radiation profile measurement using computed radiography (CR) imaging plate raw data showing it is possible to perform the CT collimation width measurement using a single scan without saturating the imaging plate. Previously described methods require careful adjustments to the CR reader settings in order to avoid signal clipping in the CR processed image. CT radiation profile measurements were taken as part of routine quality control on 14 CT scanners from four vendors. CR cassettes were placed on the CT scanner bed, raised to isocenter, and leveled. Axial scans were taken at all available collimations, advancing the cassette for each scan. The CR plates were processed and raw CR data were analyzed using MATLAB scripts to measure collimation widths. The raw data approach was compared with previously established methodology. The quality control analysis scripts are released as open source using creative commons licensing. A log‐linear relationship was found between raw pixel value and air kerma, and raw data collimation width measurements were in agreement with CR‐processed, bit‐reduced data, using previously described methodology. The raw data approach, with intrinsically wider dynamic range, allows improved measurement flexibility and precision. As a result, we demonstrate a methodology for CT collimation width measurements using a single CT scan and without the need for CR scanning parameter adjustments which is more convenient for routine quality control work. PACS numbers: 87.57.Q‐, 87.59.bd, 87.57.uq PMID:26699559

  6. Optimal design of reflectometer density profile measurements using a radar systems approach (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Kim, K. W.; Peebles, W. A.; Rhodes, T. L.

    1997-01-01

    Reflectometry is an attractive and versatile diagnostic technique that can address a wide range of measurement needs on fusion devices. However, progress in the area of profile measurement has been hampered by the lack of a well-understood basis for the optimum design and implementation of such systems. Such a design basis is provided by the realization that reflectometer systems utilized for density profile measurements are in fact specialized forms of radar systems. In this article five criteria are introduced by which reflectometer systems can be systematically designed for optimal performance: range resolution, spatial sampling, turbulence immunity, bandwidth optimization, and the need for adaptive data processing. Many of these criteria are familiar from radar systems analysis, and are applicable to reflectometry after allowance is made for differences stemming from the nature of the plasma target. These criteria are utilized to critically evaluate current reflectometer density profile techniques and indicate improvements that can impact current and next step devices, such as ITER.

  7. Use of dual coolant displacing media for in-process optical measurement of form profiles

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Xie, F.

    2018-07-01

    In-process measurement supports feedback control to reduce workpiece surface form error. Without it, the workpiece surface must be measured offline causing significant errors in workpiece positioning and reduced productivity. To offer better performance, a new in-process optical measurement method based on the use of dual coolant displacing media is proposed and studied, which uses an air and liquid phase together to resist coolant and to achieve in-process measurement. In the proposed new design, coolant is used to replace the previously used clean water to avoid coolant dilution. Compared with the previous methods, the distance between the applicator and the workpiece surface can be relaxed to 1 mm. The result is 4 times larger than before, thus permitting measurement of curved surfaces. The use of air is up to 1.5 times less than the best method previously available. For a sample workpiece with curved surfaces, the relative error of profile measurement under coolant conditions can be as small as 0.1% compared with the one under no coolant conditions. Problems in comparing measured 3D surfaces are discussed. A comparative study between a Bruker Npflex optical profiler and the developed new in-process optical profiler was conducted. For a surface area of 5.5 mm  ×  5.5 mm, the average measurement error under coolant conditions is only 0.693 µm. In addition, the error due to the new method is only 0.10 µm when compared between coolant and no coolant conditions. The effect of a thin liquid film on workpiece surface is discussed. The experimental results show that the new method can successfully solve the coolant dilution problem and is able to accurately measure the workpiece surface whilst fully submerged in the opaque coolant. The proposed new method is advantageous and should be very useful for in-process optical form profile measurement in precision machining.

  8. Dial Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Newchurch, Mike; Kuang, Shi; Burris, John; Johnson, Steve; Long, Stephanie

    2008-01-01

    A tropospheric ozone DIfferential Absorption Lidar (DIAL) system has been developed jointly by NASA and the University of Alabama at Huntsville (UAH). Two separated Nd:YAG pumped dye laser systems produce the laser pulses with wavelengths of 285 and 291 nm at 20 Hz frequency. The receiver is a Newtonian telescope with a 40 cm primary and a two-channel aft optics unit. The detection system currently uses photon counting to facilitate operations at the maximum achievable altitude. This lidar measures free-tropospheric ozone profiles between 4-10 km at Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) in UAH campus (ASL 206 m) under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from approx.5% at 4 km to approx.60% at 10 km with 750-m vertical resolution and 30-minute integration. Three Hamamatsu 7400 PMTs and analog detection technique will be added on the current system to extend the measurement to approx.100 m above ground to monitor the PBL and lower tropospheric ozone variations.

  9. Potential function of element measurement for form-finding of wide sense tensegrity

    NASA Astrophysics Data System (ADS)

    Soe, C. K.; Obiya, H.; Koga, D.; Nizam, Z. M.; Ijima, K.

    2018-04-01

    Tensegrity is a unique morphological structure in which disconnected compression members and connected tension members make the whole structure in self-equilibrium. Many researches have been done on tensegrity structure because of its mysteriousness in form-finding analysis. This study is proposed to investigate the trends and to group into some patterns of the shape that a tensegrity structure can have under the same connectivity and support condition. In this study, tangent stiffness method adopts two different functions, namely power function and logarithm function to element measurement. Numerical examples are based on a simplex initial shape with statically determinate support condition to examine the pure effectiveness of two proposed methods. The tangent stiffness method that can evaluate strict rigid body displacement of elements has a superiority to define various measure potentials and to allow the use of virtual element stiffness freely. From the results of numerical examples, the finding of the dominant trends and patterns of the equilibrium solutions is achieved although it has many related solutions under the same circumstances.

  10. Modelling bucket excavation by finite element

    NASA Astrophysics Data System (ADS)

    Pecingina, O. M.

    2015-11-01

    Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the

  11. Impedance probe to measure local void fraction profiles

    NASA Astrophysics Data System (ADS)

    Teyssedou, A.; Tapucu, A.; Lortie, M.

    1988-04-01

    A conductivity-type local void measurement system has been developed. The effects of the sensor tip geometry, the unbalance of the front-end bridge, the comparator threshold level, and the mass fluxes on the response of the instrument have been studied. The system has been calibrated under air-water two-phase flow conditions using the quick-closing-valve technique. Comparison of the void profiles obtained with the conductivity probe with those obtained using an optical probe confirms the applicability of this system for two-phase (air-water) flows.

  12. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkden, N. R., E-mail: nrw504@york.ac.uk; Department of Physics, York Plasma Institute, University of York, Heslington, York YO10 5DD; Adamek, J.

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate ofmore » the radial electric field is extracted which is shown to be of the order ∼1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the E{sub R} measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak.« less

  13. Validation of streamflow measurements made with acoustic doppler current profilers

    USGS Publications Warehouse

    Oberg, K.; Mueller, D.S.

    2007-01-01

    The U.S. Geological Survey and other international agencies have collaborated to conduct laboratory and field validations of acoustic Doppler current profiler (ADCP) measurements of streamflow. Laboratory validations made in a large towing basin show that the mean differences between tow cart velocity and ADCP bottom-track and water-track velocities were -0.51 and -1.10%, respectively. Field validations of commercially available ADCPs were conducted by comparing streamflow measurements made with ADCPs to reference streamflow measurements obtained from concurrent mechanical current-meter measurements, stable rating curves, salt-dilution measurements, or acoustic velocity meters. Data from 1,032 transects, comprising 100 discharge measurements, were analyzed from 22 sites in the United States, Canada, Sweden, and The Netherlands. Results of these analyses show that broadband ADCP streamflow measurements are unbiased when compared to the reference discharges regardless of the water mode used for making the measurement. Measurement duration is more important than the number of transects for reducing the uncertainty of the ADCP streamflow measurement. ?? 2007 ASCE.

  14. Comparison of stratospheric NO2 profiles above Kiruna, Sweden retrieved from ground-based zenith sky DOAS measurements, SAOZ balloon measurements and SCIAMACHY limb observations

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2015-04-01

    Stratospheric NO2 not only destroys ozone but acts as a buffer against halogen catalyzed ozone loss by converting halogen species into stable nitrates. These two roles of stratospheric NO2 depend on the altitude. Hence, the objective of this study is to investigate the vertical distribution of stratospheric NO2. We compare the NO2 profiles derived from the zenith sky DOAS with those obtained from, SAOZ balloon measurements and satellite limb observations. Vertical profiles of stratospheric NO2 are retrieved from ground-based zenith sky DOAS observations operated at Kiruna, Sweden (68.84°N, 20.41°E) since 1996. To determine the profile of stratospheric NO2 measured from ground-based zenith sky DOAS, we apply the Optimal Estimation Method (OEM) to retrieval of vertical profiles of stratospheric NO2 which has been developed by IASB-BIRA. The basic principle behind this profiling approach is the dependence of the mean scattering height on solar zenith angle (SZA). We compare the retrieved profiles to two additional datasets of stratospheric NO2 profile. The first one is derived from satellite limb observations by SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on EnviSAT. The second is derived from the SAOZ balloon measurements (using a UV/Visible spectrometer) performed at Kiruna in Sweden.

  15. Arbitrarily Complete Bell-State Measurement Using only Linear Optical Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grice, Warren P

    2011-01-01

    A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.

  16. Measurement of refractive index profile of non-symmetric, complex silica preforms with high refractive index differences

    NASA Astrophysics Data System (ADS)

    Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel

    2016-04-01

    Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.

  17. Association of trace elements with lipid profiles and glycaemic control in patients with type 1 diabetes mellitus in northern Sardinia, Italy: An observational study.

    PubMed

    Peruzzu, Angela; Solinas, Giuliana; Asara, Yolande; Forte, Giovanni; Bocca, Beatrice; Tolu, Francesco; Malaguarnera, Lucia; Montella, Andrea; Madeddu, Roberto

    2015-08-01

    Sardinia is an Italian region with a high incidence of type 1 diabetes mellitus. This study aimed to determine the associations of trace elements with lipid profiles and glycaemic control in patients with T1DM. A total of 192 patients with T1DM who attended the Unit of Diabetology and Metabolic Diseases in Sassari, Italy, were enrolled. Trace elements zinc, copper, selenium, chromium, and iron were measured in whole blood by sector field inductively coupled plasma mass spectrometry. The correlations between metabolic variables and the levels of trace elements were determined. Zinc was positively correlated with total cholesterol (P=0.023), low-density lipoprotein (P=0.0015), and triglycerides (P=0.027). Iron as significantly correlated with TC (P=0.0189), LDL (P=0.0121), and high-density lipoprotein (HDL) (P=0.0466). In males, Cr was positively correlated with HDL (P=0.0079) and Se, in females was correlated with TG (P=0.0113). The mean fasting plasma glucose was166.2mgdL(-1). Chromium was correlated with fasting plasma glucose (P=0.0149), particularly in males (P=0.0038). Overall, 63.5% of the patients had moderate HbA1c (7-9%). Copper was significantly correlated with HbA1c% in males (P=0.0155). In conclusion, the results of this study indicate that trace elements show different associations with lipid levels and glycaemic control in T1DM. Zinc, Fe, and Se were associated with lipid levels whereas Cu and Cr were associated with HbA1c%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    PubMed Central

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  19. Single element laser beam shaper

    DOEpatents

    Zhang, Shukui [Yorktown, VA; Shinn, Michelle D [Newport News, VA

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  20. Millimeter-wave reflectometry for electron density profile and fluctuation measurements on NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, S.; Nguyen, X. V.; Peebles, W. A.

    2001-01-01

    A millimeter-wave reflectometry system for electron density profile and fluctuation measurements is being developed and installed on the National Spherical Torus Experiment. The initial frequency coverage will be in the bands 12--18, 20--32, and 33--50 GHz, provided by frequency-tunable solid-state sources. These frequencies correspond to O-mode cutoff densities ranging from 1.8x10{sup 12} to 3.1x10{sup 13}cm{sup -3}, which will span both the plasma core ({rho}=r/a<0.8) and edge ({rho}>0.8) regions. Operated as a broadband swept-frequency (frequency-modulated continuous-wave) reflectometer, the diagnostic is expected to provide routine (shot-to-shot) time- ({<=}50 {mu}s) and spatially resolved ({approx}1 cm) density profiles. The previous hardware can be easilymore » reconfigured as a fixed-frequency reflectometer for density fluctuation measurements. The combination of measurements would be valuable for studying phenomena such as possible L- to H-mode transitions and edge-localized modes.« less

  1. Measurements of temperature profiles at the exit of small rockets.

    PubMed

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  2. Preschool children's performance on Profiling Elements of Prosody in Speech-Communication (PEPS-C).

    PubMed

    Gibbon, Fiona E; Smyth, Heather

    2013-07-01

    Profiling Elements of Prosody in Speech-Communication (PEPS-C) has not been used widely to assess prosodic abilities of preschool children. This study was therefore aimed at investigating typically developing 4-year-olds' performance on PEPS-C. PEPS-C was presented to 30 typically developing 4-year-olds recruited in southern Ireland. Children were judged to have completed the test if they produced analysable responses to >95% of the items. The children's scores were compared with data from typically developing 5-6-year-olds. The majority (83%) of 4-year-olds were able to complete the test. The children scored at chance or weak ability levels on all subtests. The 4-year-olds had lower scores than 5-6-year-olds in all subtests, apart from one, with the difference reaching statistical significance in 8 out of 12 subtests. The results indicate that PEPS-C could be a valuable tool for assessing prosody in young children with typical development and some groups of young children with communication disorders.

  3. Verification of finite element analysis of fixed partial denture with in vitro electronic strain measurement.

    PubMed

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2016-01-01

    The purpose of the study was to verify the finite element analysis model of three-unite fixed partial denture with in vitro electronic strain analysis and analyze clinical situation with the verified model. First, strain gauges were attached to the critical areas of a three-unit fixed partial denture. Strain values were measured under 300 N load perpendicular to the occlusal plane. Secondly, a three-dimensional finite element model in accordance with the electronic strain analysis experiment was constructed from the scanning data. And the strain values obtained by finite element analysis and in vitro measurements were compared. Finally, the clinical destruction of the fixed partial denture was evaluated with the verified finite element analysis model. There was a mutual agreement and consistency between the finite element analysis results and experimental data. The finite element analysis revealed that failure will occur in the veneer layer on buccal surface of the connector under occlusal force of 570 N. The results indicate that the electronic strain analysis is an appropriate and cost saving method to verify the finite element model. The veneer layer on buccal surface of the connector is the weakest area in the fixed partial denture. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  5. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  6. The measurement capabilities of cross-sectional profile of Nanoimprint template pattern using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya

    2016-05-01

    Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this

  7. Measurement of the profile and intensity of the solar He I lambda 584-A resonance line

    NASA Technical Reports Server (NTRS)

    Maloy, J. O.; Hartmann, U. G.; Judge, D. L.; Carlson, R. W.

    1978-01-01

    The intensity and profile of the helium resonance line at 584 A from the entire disk of the sun was investigated by using a rocket-borne helium-filled spectrometer and a curve-of-growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 + or - 10 mA, while the integrated intensity was measured to be 2.6 + or - 1.3 billion photons/s per sq cm at solar activity levels of F(10.7) = 90.8 x 10 to the -22nd per sq m/Hz and Rz = 27. The measured line width is in good agreement with previous spectrographic measurements, but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of 20 + or - 10 billion photons/s per sq cm/A is in good agreement with values inferred from airglow measurements.

  8. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    NASA Astrophysics Data System (ADS)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  9. Discharge measurements at gaging stations

    USGS Publications Warehouse

    Turnipseed, D. Phil; Sauer, Vernon B.

    2010-01-01

    The techniques and standards for making discharge measurements at streamflow gaging stations are described in this publication. The vertical axis rotating-element current meter, principally the Price current meter, has been traditionally used for most measurements of discharge; however, advancements in acoustic technology have led to important developments in the use of acoustic Doppler current profilers, acoustic Doppler velocimeters, and other emerging technologies for the measurement of discharge. These new instruments, based on acoustic Doppler theory, have the advantage of no moving parts, and in the case of the acoustic Doppler current profiler, quickly and easily provide three-dimensional stream-velocity profile data through much of the vertical water column. For much of the discussion of acoustic Doppler current profiler moving-boat methodology, the reader is referred to U.S. Geological Survey Techniques and Methods 3-A22 (Mueller and Wagner, 2009). Personal digital assistants (PDAs), electronic field notebooks, and other personal computers provide fast and efficient data-collection methods that are more error-free than traditional hand methods. The use of portable weirs and flumes, floats, volumetric tanks, indirect methods, and tracers in measuring discharge are briefly described.

  10. Higher Order Lagrange Finite Elements In M3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Chen; H.R. Strauss; S.C. Jardin

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemesmore » have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.« less

  11. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device.

    PubMed

    Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  12. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  13. Autonomous Ocean Turbulence Measurements From a Moored Upwardly Rising Profiler Based on a Buoyancy-Driven Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiuyan; Luan, Xin; Daniel Deng, Z.

    An autonomous Moored Reciprocating Vertical Profiler (MRVP) has been developed and tested for measuring ocean turbulence. The MRVP is designed to combine the advantages of long-term moored measurements at specified depths with those of short-term ship-supported continuous profiling performed at high vertical resolution. The profiler is programmed to repeat vertical motions autonomously along the mooring cable based on a buoyancy-driven mechanism. A sea trial has been conducted in the South China Sea to evaluate the performance of the profiler. The shear probe data are unreliable when the flow past sensors is not sufficiently greater than an estimate of turbulent velocity.more » For 65% of the dataset, turbulence measurements are of high quality and the magnitude of dissipation rates is up to O(10 -10) W kg -1. To minimize the contamination induced by instrument vibration and improve the estimation of turbulent kinetic energy terms, an advanced cross-spectrum algorithm is implemented to the measured shear data. The corrected spectra agrees well with the empirical Nasmyth spectrum, and dissipation rates had averagely decreased a factor of 2 and 8 times lower than the raw spectra. The autonomous MRVP is proven to be a stable platform, and the novel upward measurement provides a new perspective for measuring long-term time series of turbulence mixing.« less

  14. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE PAGES

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; ...

    2015-01-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  15. Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William

    2004-01-01

    A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.

  16. The Retrieval of Ozone Profiles from Limb Scatter Measurements: Results from the Shuttle Ozone Limb Sounding Experiment

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Janz, Scott J.; Hilsenrath, Ernest; Brown, Tammy L.; Flittner, David E.; Heath, Donald F.

    1999-01-01

    Two instruments were flown on shuttle flight STS-87 to test a new technique for inferring the ozone vertical profile using measurements of scattered sunlight from the Earth's limb. The instruments were an ultraviolet imaging spectrometer designed to measure ozone between 30 and 50 km, and a multi-filter imaging photometer that uses 600 nm radiances to measure ozone between 15 km and 35 km. Two orbits of limb data were obtained on December 2, 1997. For the scans analyzed the ozone profile was measured from 15 km to 50 km with approximately 3 km vertical resolution. Comparisons with a profile from an ozonesonde launched from Ascension Island showed agreement mostly within +/- 5%. The tropopause at 15 km was clearly detected.

  17. Mapping trace element distribution in fossil teeth and bone with LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Hinz, E. A.; Kohn, M. J.

    2009-12-01

    Trace element profiles were measured in fossil bones and teeth from the late Pleistocene (c. 25 ka) Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Laser-ablation ICP-MS can collect element counts along predefined tracks on a sample’s surface using a constant ablation speed allowing for rapid spatial sampling of element distribution. Key elements analyzed included common divalent cations (e.g. Sr, Zn, Ba), a suite of REE (La, Ce, Nd, Sm, Eu, Yb), and U, in addition to Ca for composition normalization and standardization. In teeth, characteristic diffusion penetration distances for all trace elements are at least a factor of 4 greater in traverses parallel to the dentine-enamel interface (parallel to the growth axis of the tooth) than perpendicular to the interface. Multiple parallel traverses in sections parallel and perpendicular to the tooth growth axis were transformed into trace element maps, and illustrate greater uptake of all trace elements along the central axis of dentine compared to areas closer to enamel, or within the enamel itself. Traverses in bone extending from the external surface, through the thickness of cortical bone and several mm into trabecular bone show major differences in trace element uptake compared to teeth: U and Sr are homogeneous, whereas all REE show a kinked profile with high concentrations on outer surfaces that decrease by several orders of magnitude within a few mm inward. The Eu anomaly increases uniformly from the outer edge of bone inward, whereas the Ce anomaly decreases slightly. These observations point to major structural anisotropies in trace element transport and uptake during fossilization, yet transport and uptake of U and REE are not resolvably different. In contrast, transport and uptake of U in bone must proceed orders of magnitude faster than REE as U is homogeneous whereas REE exhibit strong gradients. The kinked REE profiles in bone unequivocally indicate differential transport rates

  18. Method for measuring recovery of catalytic elements from fuel cells

    DOEpatents

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley, NJ

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  19. High-Resolution Vertical Profile Measurements for Carbon Dioxide and Water Vapour Concentrations Within and Above Crop Canopies

    NASA Astrophysics Data System (ADS)

    Ney, Patrizia; Graf, Alexander

    2018-03-01

    We present a portable elevator-based facility for measuring CO2, water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of 20 s^{-1}. Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of CO2 and H2O over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of CO2, latent and sensible heat and momentum show good agreement with eddy-covariance measurements.

  20. An interlaboratory comparison study on the measurement of elements in PM10

    NASA Astrophysics Data System (ADS)

    Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna

    2016-01-01

    An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.

  1. Spatial profiles of methane at the Swiss Plateau: A confrontation between measurements and emission inventories.

    NASA Astrophysics Data System (ADS)

    Bamberger, Ines; Eugster, Werner; Buchmann, Nina

    2013-04-01

    Methane and carbon dioxide are the two most prominent greenhouse gases in the atmosphere and a detailed knowledge about their sources is essential for climate predictions (Solomon et al., 2007). The knowledge about greenhouse gas fluxes is usually merged, albeit including considerable uncertainties, to emission inventories. To increase the quality of the inventories a comparison with measurements is necessary. We evaluate the values given by a Swiss emission inventory with regard to atmospheric measurements of methane in Switzerland. Spatial profiles of carbon dioxide and methane were investigated at the Swiss Plateau during two consecutive warm and sunny summer days in July 2012. For the mobile methane and carbon dioxide measurements a LGR methane analyser and a LI-COR closed-path infrared gas analyser (IRGA) were mounted on a car together with an AIRMAR WeatherStation to track geodetic-coordinates and meteorological parameters. First results of the measurements including aerial profiles of the greenhouse gases and bin-averaged elevation profiles of methane and temperature will be presented and a highly-resolved methane emission inventory will be evaluated in comparison with the spatial profiles of atmospheric methane at the Swiss Plateau. References: Solomon, S., Qin D., et al. (Eds.) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996 S. pp., Cambridge University Press, Cambridge.

  2. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparisonmore » of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.« less

  3. Mineral elements and essential trace elements in blood of seals of the North Sea measured by total-reflection X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Griesel, S.; Mundry, R.; Kakuschke, A.; Fonfara, S.; Siebert, U.; Prange, A.

    2006-11-01

    Mineral and essential trace elements are involved in numerous physiological processes in mammals. Often, diseases are associated with an imbalance of the electrolyte homeostasis. In this study, the concentrations of mineral elements (P, S, K, Ca) and essential trace elements (Fe, Cu, Zn, Se, Rb, Sr) in whole blood of harbor seals ( Phoca vitulina) were determined using total-reflection X-ray fluorescence spectrometry (TXRF). Samples from 81 free-ranging harbor seals from the North Sea and two captive seals were collected during 2003-2005. Reference ranges and element correlations for health status determination were derived for P, S, K, Ca, Fe, Cu, and Zn level in whole blood. Grouping the seals by age, gender and sample location the concentration levels of the elements were compared. The blood from two captive seals with signs of diseases and four free-ranging seals showed reduced element levels of P, S, and Ca and differences in element correlation of electrolytes were ascertained. Thus, simultaneous measurements of several elements in only 500 μL volumes of whole blood provide the possibility to obtain information on both, the electrolyte balance and the hydration status of the seals. The method could therefore serve as an additional biomonitoring tool for the health assessment.

  4. Clinical relevance of trace element measurement in patients on initiation of parenteral nutrition.

    PubMed

    Salota, Rashim; Omar, Sohail; Sherwood, Roy A; Raja, Kishor; Vincent, Royce P

    2016-11-01

    Background and Aims Serum zinc, copper and selenium are measured in patients prior to commencing on parenteral nutrition; however, their interpretation can be difficult due to acute phase reactions. We assessed (i) the relationship of raised C-reactive protein with trace elements and albumin (ii) benefits of measuring trace elements when C-reactive protein is raised in patients requiring short-term parenteral nutrition. Methods Samples were collected for zinc, copper, selenium and albumin at baseline and then every two weeks and correlated with C-reactive protein results in patients on parenteral nutrition. Results were categorized into four groups based on the C-reactive protein concentrations: (i) <20 mg/L, (ii) 20-39 mg/L, (iii) 40-79 mg/L and (iv) ≥80 mg/L. Results In 166 patients, zinc, selenium and albumin correlated (Spearman's) negatively with C-reactive protein; r = -0.26, P < 0.001 (95% CI -0.40 to -0.11), r = -0.44, P < 0.001 (-0.56 to -0.29) and r = -0.22 P = 0.005 (-0.36 to -0.07), respectively. Copper did not correlate with C-reactive protein (r = 0.09, P = 0.25 [-0.07 to 0.25]). Comparison of trace elements between the four groups showed no difference in zinc and copper (both P > 0.05), whereas selenium and albumin were lower in the group with C-reactive protein > 40 mg/L ( P < 0.05). Conclusion In patients on short-term parenteral nutrition, measurement of C-reactive protein is essential when interpreting zinc and selenium but not copper results. Routine measurement of trace elements prior to commencing parenteral nutrition has to be considered on an individual basis in patients with inflammation.

  5. Surface Profile and Stress Field Evaluation using Digital Gradient Sensing Method

    DOE PAGES

    Miao, C.; Sundaram, B. M.; Huang, L.; ...

    2016-08-09

    Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output accurate data of that kind. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squaresmore » integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects.« less

  6. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  7. CLASH-X: A Comparison of Lensing and X-Ray Techniques for Measuring the Mass Profiles of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Donahue, Megan; Voit, G. Mark; Mahdavi, Andisheh; Umetsu, Keiichi; Ettori, Stefano; Merten, Julian; Postman, Marc; Hoffer, Aaron; Baldi, Alessandro; Coe, Dan; Czakon, Nicole; Bartelmann, Mattias; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Ford, Holland; Gastaldello, Fabio; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Koekemoer, Anton; Kelson, Daniel; Lahav, Ofer; Lemze, Doron; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Sayers, Jack; Seitz, Stella; Van der Wel, Arjen; Zheng, Wei; Zitrin, Adi

    2014-10-01

    We present profiles of temperature, gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH Hubble Space Telescope and Subaru Telescope lensing data. Radial profiles of Chandra and XMM measurements of electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in gas-temperature measurements. Encouragingly, gas temperatures measured in clusters by XMM and Chandra are consistent with one another at ~100-200 kpc radii, but XMM temperatures systematically decline relative to Chandra temperatures at larger radii. The angular dependence of the discrepancy suggests that additional investigation on systematics such as the XMM point-spread function correction, vignetting, and off-axis responses is yet required. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. We argue that comparisons of circular-velocity profiles are the most robust way to assess mass bias. Ratios of Chandra hydrostatic equilibrium (HSE) mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the weak-lensing (WL) and SaWLens data are different. As an example, the weighted-mean value at 0.5 Mpc is langbrang = 0.12 for the WL comparison and langbrang = -0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias value rising to langbrang >~ 0.3 at ~1 Mpc for the WL comparison and langbrang ≈ 0.25 for the SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value ≈1

  8. Fiber Fabry-Perot interferometer sensor for measuring resonances of piezoelectric elements

    NASA Astrophysics Data System (ADS)

    da Silva, Ricardo E.; Oliveira, Roberson A.; Pohl, Alexandre A. P.

    2011-05-01

    The development of a fiber extrinsic Fabry-Perot interferometer for measuring vibration amplitude and resonances of piezoelectric elements is reported. The signal demodulation method based on the use of an optical spectrum analyzer allows the measurement of displacements and resonances with high resolution. The technique consists basically in monitoring changes in the intensity or the wavelength of a single interferometric fringe at a point of high sensitivity in the sensor response curve. For sensor calibration, three signal processing techniques were employed. Vibration amplitude measurement with 0.84 nm/V sensitivity and the characterization of the piezo resonance is demonstrated.

  9. Measuring the Quality of Inclusive Practices: Findings from the Inclusive Classroom Profile Pilot

    ERIC Educational Resources Information Center

    Soukakou, Elena P.; Winton, Pam J.; West, Tracey A.; Sideris, John H.; Rucker, Lia M.

    2014-01-01

    The purpose of this study was to test the reliability and validity of the Inclusive Classroom Profile (ICP), an observation measure designed to assess the quality of classroom practices in inclusive preschool programs. The measure was field tested in 51 inclusive classrooms. Results confirmed and extended previous research findings, providing…

  10. Poster — Thur Eve — 02: Measurement of CT radiation profile width using Fuji CR imaging plate raw data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjarnason, T A; Department of Radiology, University of British Columbia, Vancouver; Yang, C J

    2014-08-15

    Measuring the CT collimation width and assessing the shape of the overall profile is a relatively straightforward quality control (QC) measure that impacts both image quality and patient dose, and is often required at acceptance and routine testing. Most CT facilities have access to computed radiography (CR) systems, so performing CT collimation profile assessments using CR plates requires no additional equipment. Previous studies have shown how to effectively use CR plates to measure the radiation profile width. However, a major limitation of the previous work is that the full dynamic range of CR detector plates are not used, since themore » CR processing technology reduces the dynamic range of the DICOM output to 2{sup 10}, requiring the sensitivity and latitude settings of CR reader to be adjusted to prevent clipping of the CT profile data. Such adjustments to CR readers unnecessarily complicate the QC procedure. These clipping artefacts hinder the ability to accurately assess CT collimation width because the full-width at half maximum value of the penumbras are not properly determined if the maximum dose of the profile is not available. Furthermore, any inconsistencies in the radiation profile shape are lost if the profile plateau is clipped off. In this work we developed an opensource Matlab script for straightforward CT profile width measurements using raw CR data that also allows assessment of the profile shape without clipping, and applied this approach during CT QC.« less

  11. Analysis of grain elements and identification of best genotypes for Fe and P in Afghan wheat landraces

    PubMed Central

    Kondou, Youichi; Manickavelu, Alagu; Komatsu, Kenji; Arifi, Mujiburahman; Kawashima, Mika; Ishii, Takayoshi; Hattori, Tomohiro; Iwata, Hiroyoshi; Tsujimoto, Hisashi; Ban, Tomohiro; Matsui, Minami

    2016-01-01

    This study was carried out with the aim of developing the methodology to determine elemental composition in wheat and identify the best germplasm for further research. Orphan and genetically diverse Afghan wheat landraces were chosen and EDXRF was used to measure the content of some of the elements to establish elemental composition in grains of 266 landraces using 10 reference lines. Four elements, K, Mg, P, and Fe, were measured by standardizing sample preparation. The results of hierarchical cluster analysis using elemental composition data sets indicated that the Fe content has an opposite pattern to the other elements, especially that of K. By systematic analysis the best wheat germplasms for P content and Fe content were identified. In order to compare the sensitivity of EDXRF, the ICP method was also used and the similar results obtained confirmed the EDXRF methodology. The sampling method for measurement using EDXRF was optimized resulting in high-throughput profiling of elemental composition in wheat grains at low cost. Using this method, we have characterized the Afghan wheat landraces and isolated the best genotypes that have high-elemental content and have the potential to be used in crop improvement. PMID:28163583

  12. GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.

    2016-12-01

    It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.

  13. Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market.

    PubMed

    Santato, Alessandro; Bertoldi, Daniela; Perini, Matteo; Camin, Federica; Larcher, Roberto

    2012-09-01

    A broad elemental profile incorporating 54 elements (Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt, Au, Hg, Tl, Pb, Bi and U) in combination with δ(2) H, δ(13) C, δ(15) N and δ(18) O was used to characterise the composition of 62 green arabica (Coffea arabica) and robusta (Coffea canephora) coffee beans grown in South and Central America, Africa and Asia, the four most internationally renowned areas of production. The δ(2) H, Mg, Fe, Co and Ni content made it possible to correctly assign 95% of green coffee beans to the appropriate variety. Canonical discriminant analysis, performed using δ(13) C, δ(15) N, δ(18) O, Li, Mg, P, K, Mn, Co, Cu, Se, Y, Mo, Cd, La and Ce correctly traced the origin of 98% of coffee beans. Copyright © 2012 John Wiley & Sons, Ltd.

  14. The Feasibility of Sodar Wind Profile Measurements from an Oceanographic Buoy

    DTIC Science & Technology

    2006-09-01

    Brown and Hwang ,1997; Graber et. al., 2000). Waves can be measured from the ASIS buoy using a six-element array of capacitance wave staffs...turbine wakes measured by sodar. Journal of Atmospheric and Oceanic Technology., 20, 466-477. Brown , Robert G. and Patrick Y.C. Hwang (1997...Introduction to random signals and applied Kalman filtering, 3rd ed., J. Wiley. Clay, Clarence S., Herman Medwin (1977): Acoustical Oceanography, J. Wiley

  15. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  16. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J.B.; Rice, M.

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- andmore » right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.« less

  17. DIAL Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John; Newchurch, Michael J.; Johnson, Steve

    2007-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by NASA and the University of Alabama at Huntsville (UAH), measures free-tropospheric ozone profiles between 4-10 km. Located at 192 meters altitude in the Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) on the UAH campus in Huntsville, AL, USA, this tropospheric ozone lidar operates under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from better than 8% at 4km to 40%-60% at 10 kin with 750-m vertical resolution and 30-minute integration. With anticipated improvements to allow retrievals at both higher and lower altitudes, this ozone lidar, along with co-located aerosol and Doppler Wind Lidars, will provide a unique 18 dataset for investigations of PBL and free-tropospheric chemical and dynamic processes.

  18. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, D.M.

    1980-03-27

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space).

  19. A rocket radiobeacon experiment on the electron concentration profile measurements in the bottomside of the ionosphere

    NASA Astrophysics Data System (ADS)

    Sinelnikov, V. M.; Lvova, G. P.; Guliaeva, T. L.; Pakhomov, S. V.; Glotov, A. P.

    The possibility of measuring the electron density profile in the height interval 70-110 km with a two-frequency coherent transmitter set mounted on a 'small' geophysical rocket of type M-100 is investigated. Results are presented of measurements using the phase Doppler method carried out at middle latitudes in May 1979 and February 1980. Good consistency of the profiles measured for the D and E regions of the ionosphere with those of IRI is not always obtained, even when the correct helio and geophysic conditions of the experiments are given for calculations with IRI.

  20. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  1. Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements.

    PubMed

    Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G

    2017-12-15

    To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.

  2. Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.

    2017-12-01

    To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.

  3. Validation of Suomi NPP OMPS Limb Profiler Ozone Measurements

    NASA Astrophysics Data System (ADS)

    Buckner, S. N.; Flynn, L. E.; McCormick, M. P.; Anderson, J.

    2017-12-01

    The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler onboard the Suomi National Polar-Orbiting Partnership satellite (SNPP) makes measurements of limb-scattered solar radiances over Ultraviolet and Visible wavelengths. These measurements are used in retrieval algorithms to create high vertical resolution ozone profiles, helping monitor the evolution of the atmospheric ozone layer. NOAA is in the process of implementing these algorithms to make near-real-time versions of these products. The main objective of this project is to generate estimates of the accuracy and precision of the OMPS Limb products by analysis of matchup comparisons with similar products from the Earth Observing System Microwave Limb Sounder (EOS Aura MLS). The studies investigated the sources of errors, and classified them with respect to height, geographic location, and atmospheric and observation conditions. In addition, this project included working with the algorithm developers in an attempt to develop corrections and adjustments. Collocation and zonal mean comparisons were made and statistics were gathered on both a daily and monthly basis encompassing the entire OMPS data record. This validation effort of the OMPS-LP data will be used to help validate data from the Stratosphere Aerosol and Gas Experiment III on the International Space Station (SAGE III ISS) and will also be used in conjunction with the NOAA Total Ozone from Assimilation of Stratosphere and Troposphere (TOAST) product to develop a new a-priori for the NOAA Unique Combined Atmosphere Processing System (NUCAPS) ozone product. The current NUCAPS ozone product uses a combination of Cross-track Infrared Sounder (CrIS) data for the troposphere and a tropopause based climatology derived from ozonesonde data for the stratosphere a-priori. The latest version of TOAST uses a combination of both CrIS and OMPS-LP data. We will further develop the newest version of TOAST and incorporate it into the NUCAPS system as a new a

  4. The hydrogen epoch of reionization array dish III: measuring chromaticity of prototype element with reflectometry

    NASA Astrophysics Data System (ADS)

    Patra, Nipanjana; Parsons, Aaron R.; DeBoer, David R.; Thyagarajan, Nithyanandan; Ewall-Wice, Aaron; Hsyu, Gilbert; Leung, Tsz Kuk; Day, Cherie K.; de Lera Acedo, Eloy; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; Dillon, Joshua S.; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lebedeva, Anna; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Williams, Peter K. G.; Zheng, Haoxuan

    2018-04-01

    Spectral structures due to the instrument response is the current limiting factor for the experiments attempting to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR). Recent advances in the delay spectrum methodology for measuring the redshifted 21 cm EoR power spectrum brought new attention to the impact of an antenna's frequency response on the viability of making this challenging measurement. The delay spectrum methodology provides a somewhat straightforward relationship between the time-domain response of an instrument that can be directly measured and the power spectrum modes accessible to a 21 cm EoR experiment. In this paper, we derive the explicit relationship between antenna reflection coefficient ( S 11) measurements made by a Vector Network Analyzer (VNA) and the extent of additional foreground contaminations in delay space. In the light of this mathematical framework, we examine the chromaticity of a prototype antenna element that will constitute the Hydrogen Epoch of Reionization Array (HERA) between 100 and 200 MHz. These reflectometry measurements exhibit additional structures relative to electromagnetic simulations, but we find that even without any further design improvement, such an antenna element will support measuring spatial k modes with line-of-sight components of k ∥ > 0.2 h Mpc- 1. We also find that when combined with the powerful inverse covariance weighting method used in optimal quadratic estimation of redshifted 21 cm power spectra the HERA prototype elements can successfully measure the power spectrum at spatial modes as low as k ∥ > 0.1 h Mpc- 1. This work represents a major step toward understanding the HERA antenna element and highlights a straightforward method for characterizing instrument response for future experiments designed to detect the 21 cm EoR power spectrum.

  5. Measuring temperature and field profiles in heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Hohlfeld, J.; Zheng, X.; Benakli, M.

    2015-08-01

    We introduce a theoretical and experimental framework that enables quantitative measurements of the temperature and magnetic field profiles governing the thermo-magnetic write process in heat assisted magnetic recording. Since our approach allows the identification of the correct temperature dependence of the magneto-crystalline anisotropy field in the vicinity of the Curie point as well, it provides an unprecedented experimental foundation to assess our understanding of heat assisted magnetic recording.

  6. Method of fabricating reflection-mode EUV diffraction elements

    DOEpatents

    Naulleau, Patrick P.

    2002-01-01

    Techniques for fabricating a well-controlled, quantized-level, engineered surface that serves as substrates for EUV reflection multilayer overcomes problems associated with the fabrication of reflective EUV diffraction elements. The technique when employed to fabricate an EUV diffraction element that includes the steps of: (a) forming an etch stack comprising alternating layers of first and second materials on a substrate surface where the two material can provide relative etch selectivity; (b) creating a relief profile in the etch stack wherein the relief profile has a defined contour; and (c) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. For a typical EUV multilayer, if the features on the substrate are larger than 50 nm, the multilayer will be conformal to the substrate. Thus, the phase imparted to the reflected wavefront will closely match that geometrically set by the surface height profile.

  7. Fast energy spectrum and transverse beam profile monitoring and feedback systems for the SLC linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soderstrom, E.J.; Abrams, G.S.; Weinstein, A.J.

    Fast energy spectrum and transverse beam profile monitoring systems have been tested at the SLC. The signals for each system are derived from digitizations of images on phosphor screens. Individual beam bunch images are digitized in the case of the transverse profile system and synchrotron radiation images produced by wiggler magnets for the energy spectrum. Measurements are taken at two-second intervals. Feedback elements have been installed for future use and consist of rf phase shifters to control energy spectrum and dipole correctors to control the beam launch into the linac affecting the transverse beam profile. Details of these systems, includingmore » hardware, timing, data acquisition, data reduction, measurement accuracy, and operational experience will be presented. 9 refs.« less

  8. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  9. IMS Infrasound Monitoring Test Site at Trafelberg, Austria: Preliminary Results from In-Situ Response Measurements of Infrasound Elements

    DTIC Science & Technology

    2010-09-01

    IMS INFRASOUND MONITORING TEST SITE AT TRAFELBERG, AUSTRIA: PRELIMINARY RESULTS FROM IN-SITU RESPONSE MEASUREMENTS OF INFRASOUND ELEMENTS Thomas...The International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) has a unique infrasound test site...all four infrasound elements at I99 were made from 0.008 Hz to several Hz. For all four elements, from 0.01 to 0.1 Hz, the measured magnitude and

  10. Profiling of Atmospheric Water Vapor from the SSM/T-2 Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    2000-01-01

    An advantage of using the millimeter-wave measurements for water vapor profiling is the ability to probe beyond a moderate cloud cover. Such a capability has been demonstrated from an airborne MIR (Millimeter-wave Imaging Radiometer) flight over the Pacific Ocean during an intense observation period of TOGA/COARE (Tropical Ocean Global Atmosphere/ Couple Ocean Atmospheric Response Experiment) in early 1993. A Cloud Lidar System (CLS) and MODIS Airborne Simulator (MAS) were on board the same aircraft to identify the presence of clouds and cloud type. The retrieval algorithm not only provides output of a water vapor profile, but also the cloud liquid water and approximate cloud altitude required to satisfy convergence of the retrieval. The validity of these cloud parameters has not been verified previously. In this document, these cloud parameters are compared with those derived from concurrent measurements from the CLS and AMPR (Advanced Microwave Precipitation Radiometer).

  11. Transfer characteristics of optical profilers with respect to rectangular edge and step height measurement

    NASA Astrophysics Data System (ADS)

    Xie, Weichang; Hagemeier, Sebastian; Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard; Lehmann, Peter

    2017-06-01

    Optical profilers are mature instruments used in research and industry to study surface topography features. Although the corresponding standards are based on simple step height measurements, in practical applications these instruments are often used to study the fidelity of surface topography. In this context it is well-known that in certain situations a surface profile obtained by an optical profiler will differ from the real profile. With respect to practical applications such deviations often occur in the vicinity of steep walls and in cases of high aspect ratio. In this contribution we compare the transfer characteristics of different 3D optical profiler principles, namely white-light interferometry, focus sensing, and confocal microscopy. Experimental results demonstrate that the transfer characteristics do not only depend on the parameters of the optical measurement system (e. g. wavelength and coherence of light, numerical aperture, evaluated signal feature, polarization) but also on the properties of the measuring object such as step height, aspect ratio, material properties and homogeneity, rounding and steepness of the edges, surface roughness. As a result, typical artefacts such as batwings occur for certain parameter combinations, particularly at certain height-to-wavelength ratio (HWR) values. Understanding of the mechanisms behind these phenomena enables to reduce them by an appropriate parameter adaption. However, it is not only the edge artefacts, but also the position of an edge that may be changed due to the properties of the measuring object. In order to investigate the relevant effects theoretically, several models are introduced. These are based on either an extension of Richards-Wolf modeling or rigorous coupled wave analysis (RCWA). Although these models explain the experimental effects quite well they suffer from different limitations, so that a quantitative correspondence of theoretical modeling and experimental results is hard to achieve

  12. CLASH-X: A comparison of lensing and X-ray techniques for measuring the mass profiles of galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donahue, Megan; Voit, G. Mark; Hoffer, Aaron

    2014-10-20

    We present profiles of temperature, gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH Hubble Space Telescope and Subaru Telescope lensing data. Radial profiles of Chandra and XMM measurements of electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in gas-temperature measurements. Encouragingly, gas temperatures measured in clusters by XMM and Chandra are consistent with one another atmore » ∼100-200 kpc radii, but XMM temperatures systematically decline relative to Chandra temperatures at larger radii. The angular dependence of the discrepancy suggests that additional investigation on systematics such as the XMM point-spread function correction, vignetting, and off-axis responses is yet required. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. We argue that comparisons of circular-velocity profiles are the most robust way to assess mass bias. Ratios of Chandra hydrostatic equilibrium (HSE) mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the weak-lensing (WL) and SaWLens data are different. As an example, the weighted-mean value at 0.5 Mpc is (b) = 0.12 for the WL comparison and (b) = –0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias value rising to (b) ≳ 0.3 at ∼1 Mpc for the WL comparison and (b) ≈ 0.25 for the SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value ≈1/8 times

  13. Accuracy analysis of the space shuttle solid rocket motor profile measuring device

    NASA Technical Reports Server (NTRS)

    Estler, W. Tyler

    1989-01-01

    The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

  14. Radiation Budget Profiles measured through the Atmosphere with a Return Glider Radiosonde

    NASA Astrophysics Data System (ADS)

    Philipona, R.; Kraeuchi, A.; Kivi, R.

    2015-12-01

    Very promising radiation budget profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a release mechanism and an autopilot that flies the glider radiosonde back to the launch site, or to a predefined open space, where it releases a parachute for landing once it is 100 meter above ground. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  15. Collis-Romberg Mathematical Problem Solving Profiles.

    ERIC Educational Resources Information Center

    Collis, K. F.; Romberg, T. A.

    Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

  16. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile.

    PubMed

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-11-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research.

  17. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile

    PubMed Central

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-01-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research. PMID:29188093

  18. Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule.

    PubMed

    Li, Shaobai; Wang, Yun; Wang, Qi; Ma, Xianxian; Wang, Longxiao; Zhao, Weiqian; Zhang, Xusheng

    2018-05-10

    In this paper, we propose a new measurement and compensation method for the eccentricity of the inertial confinement fusion (ICF) capsule, which combines computer vision and the laser differential confocal method to align the capsule in rotation measurement. This technique measures the eccentricity of the capsule by obtaining the sub-pixel profile with a moment-based algorithm, then performs the preliminary alignment by the two-dimensional adjustment. Next, we use the laser differential confocal sensor to measure the height data of the equatorial surface of the capsule by turning it around, then obtain and compensate the remaining eccentricity ultimately. This method is a non-contact, automatic, rapid, high-precision measurement and compensation technique of eccentricity for the capsule. Theoretical analyses and preliminary experiments indicate that the maximum measurement range of eccentricity of this proposed method is 1.8 mm for the capsule with a diameter of 1 mm, and it could eliminate the eccentricity to less than 0.5 μm in 30 s.

  19. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  20. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  1. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  2. Beam profile measurement on HITU transducers using a thermal intensity sensor technique

    NASA Astrophysics Data System (ADS)

    Wilkens, V.; Sonntag, S.; Jenderka, K.-V.

    2011-02-01

    Thermal intensity sensors based on the transformation of the incident ultrasonic energy into heat inside a small cylindrical absorber have been developed at PTB in the past, in particular to determine the acoustic output of medical diagnostic ultrasound equipment. Currently, this sensor technique is being expanded to match the measurement challenges of high intensity therapeutic ultrasound (HITU) fields. At the high acoustic power levels as utilized in the clinical application of HITU transducers, beam characterization using hydrophones is critical due to the possible damage of the sensitive and expensive measurement devices. Therefore, the low-cost and robust thermal sensors developed offer a promising alternative for the determination of high intensity output beam profiles. A sensor prototype with a spatial resolution of 0.5 mm was applied to the beam characterization of an HITU transducer operated at several driving amplitude levels. Axial beam plots and lateral profiles at focus were acquired. The absolute continuous wave output power was, in addition, determined using a radiation force balance.

  3. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    PubMed

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  4. Experimental measurements and finite element models of High Displacement Piezoelectric Actuators.

    NASA Astrophysics Data System (ADS)

    Camargo, Gilberto; Ashford, Gevale; Naco, Eris; Usher, Tim

    2004-03-01

    Piezoelectric actuators have many applications including morphable wing technology and piezoelectric transformers. A Piezoelectric ceramic is a material that will move when a voltage is applied and conversely produces a charge when a pressure is applied. In our study, we examine THUNDER (Thin Layer Unimorph Ferroelectric Driver and Sensor) actuators (Thunder TM is a trademark of FACE International Corporation.) Thunder actuators are constructed by bonding thin PZT piezoelectric ceramics to metal sheets. We will present physical measurements of piezoelectric actuators, as well as measurements of the displacements due to applied voltages. In our studies we used a laser micrometer to measure the dimensional characteristics of four sizes of THUNDER actuators including TH-8R, TH-9R, TH-10R, and finally the TH-11R. We also developed computer models using a commercial fine element modeling package (FEM) known as ANSYS6.0®. This software enables us to construct our models controlling such attributes as exact dimensions of the three layers of the piezoelectric actuator, the material properties of each element, the type of load that is to be applied as well as the manner in which the layers are bonded together. The computer model compares favorably with the experimental results. Acknowledgements: NASA Grant No. 0051-0078 Department of Defense (DoD) Control No.ISP02-EUG15

  5. Fate and Transport of Elemental Copper (Cu0) Nanoparticles through Saturated Porous Media in the Presence of Organic Materials

    EPA Science Inventory

    Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu0) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic...

  6. Preliminary study on multi-element profile mapping of crustal and mantle zircons by using Synchrotron Radiation X-ray Fluorescence (SR-XRF)

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Shyam, Badri; Siebel, Wolfgang; Schmitt, Axel; Akay, Erhan; Skinner, Lawrie

    2013-04-01

    Zircon (ZrSiO4) is a mineral of singular importance in the geosciences. Zircon microanalysis has greatly contributed to our understanding of key events in earth's history as certain radioactive heavy elements and their daughter products are well-preserved within the exceptionally stable inorganic matrix of the mineral. A prevailing notion in this field is that zircon, as a mineral, is predominantly a crustal mineral; this has been contested in the last few years with more reports of mantle-derived zircons (Siebel et al., 2009). Zircons enriched from different parts of the upper mantle to lower crust from Turkey (Hasozbek et al. 2010) and Germany (Siebel et al., 2009) will be presented in this study using SR-XRF mapping carried out at beamline 2-IDE at the Advanced Photon Source synchrotron facility (Argonne National Laboratory, USA). The high-resolution (5-10 µm) elemental maps were obtained with collimated and linearly polarized synchrotron radiation (10 to 17 keV) and possess the advantage of being a completely non-destructive technique. Elemental maps of various trace and rare-earth elements along the cross-section of the zircons reveal a zonation-related distribution, which may be used to reveal factors affecting the growth history and dynamics of the crystal formation. Further, abrupt changes in elemental distribution or concentration were found to correspond to faults or inclusions within the zircon crystal. If such observations are found to be applicable for a wide range of samples, elemental mapping with this technique may serve as an important qualitative diagnostic to locating µ-meter inclusions that may be challenging to identify using other techniques (ICP-MS LA, SHRIMP,…) Through these preliminary elemental profile mapping studies of crustal and mantle zircons using SR-XRF methods, we aim to highlight a relatively quick and promising analytical method that may be used to study various geological problems.

  7. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen

    2015-01-01

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632

  8. Membrane fluidity profiles as deduced by saturation-recovery EPR measurements of spin-lattice relaxation times of spin labels

    NASA Astrophysics Data System (ADS)

    Mainali, Laxman; Feix, Jimmy B.; Hyde, James S.; Subczynski, Witold K.

    2011-10-01

    There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate ( T1-1) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T1-1 can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T1-1 profiles obtained for 1-palmitoyl-2-( n-doxylstearoyl)phosphatidylcholine ( n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R⊥, obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T1-1 and R⊥ profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz).

  9. Sports participation and alcohol use among adolescents: the impact of measurement and other research design elements.

    PubMed

    Mays, Darren; Gatti, Margaret E; Thompson, Nancy J

    2011-06-01

    Sports participation, while offering numerous developmental benefits for adolescents, has been associated with alcohol use in prior research. However, the relationship between sports participation and alcohol use among adolescents remains unclear, particularly how research design elements impact evidence of this relationship. We reviewed the evidence regarding sports participation and alcohol use among adolescents, with a focus on examining the potential impact of research design elements on this evidence. Studies were assessed for eligibility and coded based on research design elements including: study design, sampling method, sample size, and measures of sports participation and alcohol use. Fifty-four studies were assessed for eligibility, 29 of which were included in the review. Nearly two-thirds used a cross-sectional design and a random sampling method, with sample sizes ranging from 178 to 50,168 adolescents (Median = 1,769). Sixteen studies used a categorical measure of sports participation, while 7 applied an index-type measure and 6 employed some other measure of sports participation. Most studies assessed alcohol-related behaviors (n = 18) through categorical measures, while only 6 applied frequency only measures of alcohol use, 1 study applied quantity only measures, and 3 studies used quantity and frequency measures. Sports participation has been defined and measured in various ways, most of which do not differentiate between interscholastic and community-based contexts, confounding this relationship. Stronger measures of both sports participation and alcohol use need to be applied in future studies to advance our understanding of this relationship among youths.

  10. Balloon-borne radiometer measurements of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Quine, B. M.; Strong, K.; Bernath, P. F.; Boone, C. D.; Jonsson, A. I.; McElroy, C. T.; Walker, K. A.; Wunch, D.

    2007-12-01

    Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990-2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. We therefore find no evidence of long-term changes in the HNO3 summer mid-latitude profile, although the uncertainty of our measurements precludes a conclusive trend analysis.

  11. Balloon-borne radiometer measurement of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Quine, B. M.; Strong, K.; Bernath, P. F.; Boone, C. D.; Jonsson, A. I.; McElroy, C. T.; Walker, K. A.; Wunch, D.

    2007-08-01

    Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990-2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and global optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. This suggests that, to within the errors of the 1990 measurements, there has been no significant change in the HNO3 summer mid-latitude profile.

  12. Measuring mercury and other elemental components in tree rings

    USGS Publications Warehouse

    Gillan, C.; Hollerman, W.A.; Doyle, T.W.; Lewis, T.E.

    2004-01-01

    There has been considerable interest in measuring heavy metal pollution, such as mercury, using tree ring analysis. Since 1970, this method has provided a historical snapshot of pollutant concentrations near hazardous waste sites. Traditional methods of analysis have long been used with heavy metal pollutants such as mercury. These methods, such as atomic fluorescence and laser ablation, are sometimes time consuming and expensive to implement. In recent years, ion beam techniques, such as Particle Induced X-Ray Emission (PIXE), have been used to measure large numbers of elements. Most of the existing research in this area has been completed for low to medium atomic number pollutants, such as titanium, cobalt, nickel, and copper. Due to the reduction of sensitivity, it is often difficult or impossible to use traditional low energy (few MeV) PIXE analysis for pollutants with large atomic numbers. For example, the PIXE detection limit for mercury was recently measured to be about 1 ppm for a spiked Southern Magnolia wood sample [ref. 1]. This presentation will compare PIXE and standard chemical concentration results for a variety of wood samples.

  13. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Proposed rocket experiments to measure the profile and intensity of the solar He1584A resonance line

    NASA Technical Reports Server (NTRS)

    Judge, D. L.

    1978-01-01

    The intensity and profile of the helium resonance line at 584 A from the entire disc of the sun was investigated using a rocket-borne helium-filled spectrometer and a curve of growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 plus or minus 10m A while the integrated intensity was measured to be (2.6 plus or minus 1.3) x 10 to the 9th power/photons sec sq cm at solar levels of F sub 10.7 = 90.8 x 10 to the minus 22th power/sq m H sub z and R sub z = 27. The measured linewidth is in good agreement with previous spectrographic measurement but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of (2.0 plus or minus 1.0) x 10 to the 10th power/photons sec sq cm A is in good agreement with values inferred from airglow measurements.

  15. In Situ Trace Element Measurements on Roda and the Origin of Diogenites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Herrin, J. S.

    2011-01-01

    The origin of diogenites remains poorly understood. A recent model interprets many diogenites to have been formed from melts that were derived by remelting initial magma ocean cumulates, and these penultimate parent melts were then contaminated by melts derived from remelting of the basaltic (eucritic) crust to form the ultimate diogenite parent melts [1] (hereafter the remelting model). This is a very complicated petrogenesis that has profound implications for the geological evolution of 4 Vesta if correct. This model was developed based on trace element analyses of bulk rock samples that had been leached in acids to remove phosphates; the compositions of the residues were interpreted to be close to those of cumulus orthopyroxenes plagioclase, chromite and olivine [1]. In situ measurements of phases in diogenites can be used to test this model. We have begun a campaign of laser ablation ICP-MS of orthopyroxene grains in diogenites for this purpose. Here we report our first results on one diogenite, Roda. We have determined a suite of trace lithophile elements on nine, mm-sized pyroxene grains separated from Roda that have previously been studied [2, 3]. A key observation supporting the remelting model is the very low Eu/Eu* of leached residues; values too low to represent orthopyroxene that crystallized from melts with chondritic Sm/Eu and Gd/Eu [1]. (Eu* = Eu interpolated from REE diagrams.) Crustal remelts have low Sm/Eu and Gd/Eu, and orthopyroxenes that crystallized from parent melts contaminated by them would have very low Eu/Eu* [1]. Roda grains have Eu/Eu* of 0.243 to 0.026; the latter a value lower than any measured on bulk diogenite leached residues (0.041) [1]. There is a general negative correlation between Eu/Eu* and some incompatible elements (Zr, Nb, Hf), but not others (LREE). This appears inconsistent with the remelting model as it would suggest an evolving parent melt with La de-creasing as Zr increased and Eu/Eu* decreased. Grain R-15 includes

  16. Construction of measurement uncertainty profiles for quantitative analysis of genetically modified organisms based on interlaboratory validation data.

    PubMed

    Macarthur, Roy; Feinberg, Max; Bertheau, Yves

    2010-01-01

    A method is presented for estimating the size of uncertainty associated with the measurement of products derived from genetically modified organisms (GMOs). The method is based on the uncertainty profile, which is an extension, for the estimation of uncertainty, of a recent graphical statistical tool called an accuracy profile that was developed for the validation of quantitative analytical methods. The application of uncertainty profiles as an aid to decision making and assessment of fitness for purpose is also presented. Results of the measurement of the quantity of GMOs in flour by PCR-based methods collected through a number of interlaboratory studies followed the log-normal distribution. Uncertainty profiles built using the results generally give an expected range for measurement results of 50-200% of reference concentrations for materials that contain at least 1% GMO. This range is consistent with European Network of GM Laboratories and the European Union (EU) Community Reference Laboratory validation criteria and can be used as a fitness for purpose criterion for measurement methods. The effect on the enforcement of EU labeling regulations is that, in general, an individual analytical result needs to be < 0.45% to demonstrate compliance, and > 1.8% to demonstrate noncompliance with a labeling threshold of 0.9%.

  17. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using

  18. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  19. 1.6μm DIAL System for Measurements of CO2 Concentration Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.

    2013-12-01

    We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere. Our 1.6 μm DIAL system has a 60 cm telescope for vertical measurement and a 25 cm scanning telescope for horizontal measurement. This 1.6 μm DIAL system is also available to measure CO2 concentration profiles for daytime by using narrow-band interference filters. The 1.6 μm DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 30 minutes and vertical resolution of 300 - 600 m. The CO2 DIAL was also operated with the range-height indicator (RHI) mode, and the 2-D measurement provided inhomogeneity in the boundary layer. The vertical distribution of CO2 concentration from 2 km to 7 km altitude has been observed using two telescopes with different apertures. We hope to get the data of the CO2 concentration from lower altitude to 7 km at the same time. Since the change of signal intensity is larger near the ground, it is also important to the install the photon counter with the faster count rate to expand the dynamic range. The high speed counter and the telescope system make the dynamic range expand more than 10 times and the vertical distribution observation of CO2 concentration from 0.5 km to 7 km altitude is performed. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp. 748-757, 2009. Stephens, B. B. et al., Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of

  20. A low cost ion beam profile monitor

    NASA Astrophysics Data System (ADS)

    Godfrey, L.; Hoyes, G. G.; Pairsuwan, W.

    1990-09-01

    An intercepting multiwire ion beam profile monitor, of thickness 0.9 cm and active area 5 × 5 cm, has been developed for use with the low-intensity deuteron beamline at the Fast Neutron Research Facility (FNRF), Chiang Mai University. It has been used to optimise the transport of a continuous ion beam of current up to 200 μA and kinetic energy up to 140 keV. The monitor enables the determination of the two-dimensional beam profile using closely-spaced samples at 1.5 mm, and the measurement of relative beam current. The design incorporates low material and labour costs, elimination of the need for commercial vacuum feedthroughs, a minimal amount of devoted electronics with no need for preamplifiers, and permits quick insertion of the monitors, wherever needed along the beamline, with minimum disruption to neighbouring elements.

  1. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

    PubMed Central

    Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter

    2013-01-01

    X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298

  2. Innovative real-time and non-destructive method of beam profile measurement under large beam current irradiation for BNCT

    NASA Astrophysics Data System (ADS)

    Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.

    2012-10-01

    We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.

  3. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  4. Biomass burning aerosols characterization from ground based and profiling measurements

    NASA Astrophysics Data System (ADS)

    Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona

    2018-04-01

    The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.

  5. Distribution and origin of major and trace elements (particularly REE, U and Th) into labile and residual phases in an acid soil profile (Vosges Mountains, France)

    NASA Astrophysics Data System (ADS)

    Aubert, D.; Probst, A.; Stille, P.

    2003-04-01

    Physical and chemical weathering of rocks and minerals lead to soil formation and allow the removal of chemical elements from these systems to ground- or surface waters. But most of the time the determination of element concentrations in soils is not sufficient to estimate whether they are being accumulated or what is their ability to be released in the environment. Thus, the distribution and chemical binding for a given element is very important because it determines its mobility and potential bioavailability throughout a soil profile. Heavy metals and REE (Rare Earth Elements) are particularly of environmental concern because of their potential toxicity. For most of them, their chemical form strongly depends on the evolution of physico-chemical parameters like pH or redox conditions that will induce adsorption-desorption, complexation or co-precipitation phenomena in the material. The purpose of this study is to determine the distribution of several major and trace elements (especially REE, Th and U) in an acidic forested podzolic soil profile from the Vosges Mountains (France). To achieve this goal we use a 7 step sequential extraction procedure that allows determining precisely the origin and the behaviour of particular elements in the environment (Leleyter et al., 1999). In addition we performed leaching experiments using very dilute acetic and hydrochloric acid in order to establish the origin of REE in this soil. The results of the sequential extraction indicate that most of the metals, Th and U are mainly bound to Fe oxides. Organic matter appears also to be a great carrier of P, Ca, Fe and REE even if its content is very low in the deep horizons of the soil. Moreover, we show that in each soil horizon, middle REE (MREE) to heavy REE (HREE) are more labile than light REE (LREE). Leaching experiments using dilute acid solution further suggest that in the shallowest horizons REE largely derive from atmospheric deposition whereas at greater depth, weathering

  6. Spectroscopic Measurements of L X-rays with a TES Microcalorimeter for a Non-destructive Assay of Transuranium Elements

    NASA Astrophysics Data System (ADS)

    Nakamura, Keisuke; Morishita, Yuki; Takasaki, Koji; Maehata, Keisuke; Sugimoto, Tetsuya; Kiguchi, Yu; Iyomoto, Naoko; Mitsuda, Kazuhisa

    2018-05-01

    Spectroscopic measurement of the L X-rays emitted from transuranium elements is one of the most useful techniques for the non-destructive assays of nuclear materials. In this study, we fabricated a transition-edge-sensor (TES) microcalorimeter using a 5-μm-thick Au absorber and tested its ability to measure the L X-rays emitted from two transuranium elements, Np-237 and Cm-244 sources. The microcalorimeter was found to successfully measure the L X-rays with an energy resolution (full width at half maximum) below 70 eV. These results confirm that L X-rays can be identified using the proposed TES microcalorimeter to enable non-destructive assays of transuranium elements.

  7. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study.

    PubMed

    Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur

    2015-03-01

    A non-linear isotropic finite element (FE) model of a 29-year-old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. The model simulates dis-accommodation by stretching of the lens and predicts the change in surface profiles of the lens capsule, cortex and nucleus at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the finite element results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Aspects of lens shape change relative to stretch were evaluated, including change in diameter, central thickness and accommodation. Maximum accommodation achieved was 10.29 D. From the multiple regression analysis, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5 × 10(-3 ) μm, p < 0.001). The results are compared with those from in vitro studies. The finite element and ray-tracing predictions are consistent with Ex Vivo Accommodation Simulator (EVAS) studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully accommodated states. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  8. Research and application of online measurement system of tire tread profile in automobile tire production

    NASA Astrophysics Data System (ADS)

    Wang, Pengyao; Chen, Xiangguang; Yang, Kai; Liu, Xuejiao

    2017-01-01

    To improve the measuring efficiency of width and thickness of tire tread in the process of automobile tire production, the actual condition for the tire production process is analyzed, and a fast online measurement system based on moving tire tread of tire specifications is established in this paper. The coordinate data of tire tread profile is acquired by 3D laser sensor, and we use C# language for programming which is an object-oriented programming language to complete the development of client program. The system with laser sensor can provide real-time display of tire tread profile and the data to require in the process of tire production. Experimental results demonstrate that the measuring precision of the system is <= 1mm, it can meet the measurement requirements of the production process, and the system has the characteristics of convenient installation and testing, system stable operation.

  9. Laser microprobe and resonant laser ablation for depth profile measurements of hydrogen isotope atoms contained in graphite.

    PubMed

    Yorozu, M; Yanagida, T; Nakajyo, T; Okada, Y; Endo, A

    2001-04-20

    We measured the depth profile of hydrogen atoms in graphite by laser microprobing combined with resonant laser ablation. Deuterium-implanted graphite was employed for the measurements. The sample was ablated by a tunable laser with a wavelength corresponding to the resonant wavelength of 1S-2S of deuterium with two-photon excitation. The ablated deuterium was ionized by a 2 + 1 resonant ionization process. The ions were analyzed by a time-of-flight mass spectrometer. The deuterium ions were detected clearly with the resonant ablation. The detection limit was estimated to be less than 10(16) atoms/cm(3) in our experiments. We determined the depth profile by considering the etching profile and the etching rate. The depth profile agreed well with Monte Carlo simulations to within a precision of 23 mum for the center position and 4-mum precision for distributions for three different implantation depths.

  10. Residual stress profiles in veneering ceramic on Y-TZP, alumina and ZTA frameworks: measurement by hole-drilling.

    PubMed

    Fukushima, K A; Sadoun, M J; Cesar, P F; Mainjot, A K

    2014-02-01

    The residual stress profile developed within the veneering ceramic during the manufacturing process is an important predicting factor in chipping failures, which constitute a well-known problem with yttria-tetragonal-zirconia polycrystal (Y-TZP) based restorations. The objectives of this study are to measure and to compare the residual stress profile in the veneering ceramic layered on three different polycrystalline ceramic framework materials: Y-TZP, alumina polycrystal (AL) and zirconia toughened alumina (ZTA). The stress profile was measured with the hole-drilling method in bilayered disk samples of 19 mm diameter with a 0.7 mm thick Y-TZP, AL or ZTA framework and a 1.5mm thick layer of the corresponding veneering ceramic. The AL samples exhibited increasing compressive stresses with depth, while compressive stresses switching into interior tensile stresses were measured in Y-TZP samples. ZTA samples exhibited compressive stress at the ceramic surface, decreasing with depth up to 0.6mm from the surface, and then becoming compressive again near the framework. Y-TZP samples exhibited a less favorable stress profile than those of AL and ZTA samples. Results support the hypothesis of the occurrence of structural changes within the Y-TZP surface in contact with the veneering ceramic to explain the presence of tensile stresses. Even if the presence of Y-TZP in the alumina matrix seems to negatively affect the residual stress profiles in ZTA samples in comparison with AL samples, the registered profiles remain positive in terms of veneer fracture resistance. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Validation of Ozone Profiles Retrieved from SAGE III Limb Scatter Measurements

    NASA Technical Reports Server (NTRS)

    Rault, Didier F.; Taha, Ghassan

    2007-01-01

    Ozone profiles retrieved from Stratospheric Aerosol and Gas Experiment (SAGE III) limb scatter measurements are compared with correlative measurements made by occultation instruments (SAGE II, SAGE III and HALOE [Halogen Occultation Experiment]), a limb scatter instrument (Optical Spectrograph and InfraRed Imager System [OSIRIS]) and a series of ozonesondes and lidars, in order to ascertain the accuracy and precision of the SAGE III instrument in limb scatter mode. The measurement relative accuracy is found to be 5-10% from the tropopause to about 45km whereas the relative precision is found to be less than 10% from 20 to 38km. The main source of error is height registration uncertainty, which is found to be Gaussian with a standard deviation of about 350m.

  12. Tunnel profile measurement by vision metrology toward application to NATM

    NASA Astrophysics Data System (ADS)

    Hattori, Susumu; Akimoto, Keiichi; Ono, Tetsu; Miura, Satoru

    2003-05-01

    The NATM, a widely used tunnel excavation method, requires precise periodical monitoring of deformations especially at fault zones, which tends to hamper traffics with conventional measurement means. In this paper vision metrology was applied to tunnel profile measurement with a view to developing a new method. Two hundred of Retro-targets are placed on a one-meter spacing lattice at a tunnel site of 7m in diameter and 15m in longitude, and 66 images were taken to cover the target field. The object space coordinates of targets obtained by bundle adjustment were compared with ones obtained by high-precision total station observation. The root mean square (RMS) of differences of coordinates was 0.548mm, which is precise enough for monitoring deformations for the NATM.

  13. Estimation of road profile variability from measured vehicle responses

    NASA Astrophysics Data System (ADS)

    Fauriat, W.; Mattrand, C.; Gayton, N.; Beakou, A.; Cembrzynski, T.

    2016-05-01

    When assessing the statistical variability of fatigue loads acting throughout the life of a vehicle, the question of the variability of road roughness naturally arises, as both quantities are strongly related. For car manufacturers, gathering information on the environment in which vehicles evolve is a long and costly but necessary process to adapt their products to durability requirements. In the present paper, a data processing algorithm is proposed in order to estimate the road profiles covered by a given vehicle, from the dynamic responses measured on this vehicle. The algorithm based on Kalman filtering theory aims at solving a so-called inverse problem, in a stochastic framework. It is validated using experimental data obtained from simulations and real measurements. The proposed method is subsequently applied to extract valuable statistical information on road roughness from an existing load characterisation campaign carried out by Renault within one of its markets.

  14. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits?

    PubMed Central

    Baxter, Ivan

    2015-01-01

    It has been more than 10 years since the concept of the ionome, all of the mineral nutrients in a cell tissue or organism, was introduced. In the intervening years, ionomics, high throughput elemental profiling, has been used to analyse over 400 000 samples from at least 10 different organisms. There are now multiple published examples where an ionomics approach has been used to find genes of novel function, find lines or environments that produce foods with altered nutritional profiles, or define gene by environmental effects on elemental accumulation. In almost all of these studies, the ionome has been treated as a collection of independent elements, with the analysis repeated on each measured element. However, many elements share chemical properties, are known to interact with each other, or have been shown to have similar interactions with biological molecules. Accordingly, there is strong evidence from ionomic studies that the elements of the ionome do not behave independently and that combinations of elements should be treated as the phenotypes of interest. In this review, I will consider the evidence that we have for the interdependence of the ionome, some of its causes, methods for incorporating this interdependence into analyses and the benefits, drawbacks, and challenges of taking these approaches. PMID:25711709

  15. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Newman, Jennifer

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in windmore » profiling aimed at reducing uncertainty and increasing data availability are introduced.« less

  16. Increasing the Efficiency of Electron Microprobe Measurements of Minor and Trace Elements in Rutile

    NASA Astrophysics Data System (ADS)

    Neill, O. K.; Mattinson, C. G.; Donovan, J.; Hernández Uribe, D.; Sains, A.

    2016-12-01

    Minor and trace element contents of rutile, an accessory mineral found in numerous lithologic settings, has many applications for interpreting earth systems. While these applications vary widely, they share a need for precise and accurate elemental measurements. The electron microprobe can be used to measure rutile compositions, although long X-ray counting times are necessary to achieve acceptable precision. Continuum ("background") intensity can be estimated using the iterative Mean Atomic Number (MAN) method of Donovan and Tingle (1996), obviating the need for direct off-peak background measurements, and reducing counting times by half. For this study, several natural and synthetic rutiles were measured by electron microprobe. Data was collected once but reduced twice, using off-peak and an MAN background corrections, allowing direct comparison of the two methods without influence of other variables (counting time, analyte homogeneity, beam current, calibration standards, etc.). These measurements show that, if a "blank" correction (Donovan et al., 2011, 2016) is used, minor and trace elements of interest can be measured in rutile using the MAN background method in half the time of traditional off-peak measurements, without sacrificing accuracy or precision (Figure 1). This method has already been applied to Zr-in-rutile thermometry of ultra-high pressure metamorphic rocks from the North Qaidam terrane in northwest China. Finally, secondary fluorescence of adjacent phases by continuum X-rays can lead to artificially elevated concentrations. For example, when measuring Zr, care should be taken to avoid analytical spots within 100 microns of zircon or baddeleyite crystals. References: 1) J.J. Donovan and T.N Tingle (1996) J. Microscopy, 2(1), 1-7 2) J.J. Donovan, H.A. Lowers, and B.G. Rusk (2011) Am. Mineral., 96, 274­282 3) J.J. Donovan, J.W. Singer and J.T. Armstrong (2016) Am. Mineral., 101, 1839-1853 4) G.L. Lovizotto et al. (2009) Chem. Geol., 261, 346-369

  17. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  18. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument: Gamma and Neutron Measurements on Mars

    DOE PAGES

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...

    2017-02-01

    Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less

  19. Trace elements and common ions in southeastern Idaho snow: Regional air pollutant tracers for source area emissions

    USGS Publications Warehouse

    Abbott, M.; Einerson, J.; Schuster, P.; Susong, D.; Taylor, Howard E.; ,

    2004-01-01

    Snow sampling and analysis methods which produce accurate and ultra-low measurements of trace elements and common ion concentration in southeastern Idaho snow, were developed. Snow samples were collected over two winters to assess trace elements and common ion concentrations in air pollutant fallout across the southeastern Idaho. The area apportionment of apportionment of fallout concentrations measured at downwind location were investigated using pattern recognition and multivariate statistical technical techniques. Results show a high level of contribution from phosphates processing facilities located outside Pocatello in the southern portion of the Eastern Snake River Plain, and no obvious source area profiles other than at Pocatello.

  20. Statistics of Storm Updraft Velocities from TWP-ICE Including Verification with Profiling Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collis, Scott; Protat, Alain; May, Peter T.

    2013-08-01

    Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate themore » veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloudresolving modeling studies suggest. 1. Introduction The regionalization of global climate models has been a driver of demand for more complex convective parameterization schemes. A key readjustment of the modeled atmosphere« less

  1. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  2. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  3. Social and economic profile technical guide

    Treesearch

    David Seesholtz; Denise Wickwar; John C. Russell

    2006-01-01

    A social and economic profile is a key element of a social assessment. A social and economic assessment or profile is used by line officers, planning staff social scientists, and others to inform both forest planning activities and project-level work. It is important to discover how planning and management decisions made by National Forest System staff will affect...

  4. Sensing Device with Whisker Elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2013-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  5. Sensing device with whisker elements

    NASA Technical Reports Server (NTRS)

    Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)

    2010-01-01

    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.

  6. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Cruz Minguillón, María; Yadav, Varun; Slowik, Jay G.; Hüglin, Christoph; Fröhlich, Roman; Petterson, Krag; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background) periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb) showed excellent correlation between the compared methods, with r2 values ≥ 0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28) and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.

  7. Endoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology.

    PubMed

    Peccerella, Teresa; Lukan, Nadine; Hofheinz, Ralf; Schadendorf, Dirk; Kostrezewa, Markus; Neumaier, Michael; Findeisen, Peter

    2010-02-01

    The measurement of disease-related proteolytic activity in complex biological matrices like serum is of emerging interest to improve the diagnosis of malignant diseases. We developed a mass spectrometry (MS)-based functional proteomic profiling approach that tracks degradation of artificial endoprotease substrates in serum specimens. The synthetic reporter peptides that are cleaved by tumor-associated endopeptidases were systematically optimized with regard to flanking affinity tags, linkers, and stabilizing elements. Serum specimens were incubated with reporter peptides under standardized conditions and the peptides subsequently extracted with affinity chromatography before MS. In a pilot study an optimized reporter peptide with the cleavage motif WKPYDAADL was added to serum specimens from colorectal tumor patients (n = 50) and healthy controls (n = 50). This reporter peptide comprised a known cleavage site for the cysteine-endopeptidase "cancer procoagulant." Serial affinity chromatography using biotin- and 6xHis tags was superior to the single affinity enrichment using only 6xHis tags. Furthermore, protease-resistant stop elements ensured signal accumulation after prolonged incubation. In contrast, signals from reporter peptides without stop elements vanished completely after prolonged incubation owing to their total degradation. Reporter-peptide spiking showed good reproducibility, and the difference in proteolytic activity between serum specimens from cancer patients and controls was highly significant (P < 0.001). The introduction of a few structural key elements (affinity tags, linkers, d-amino acids) into synthetic reporter peptides increases the diagnostic sensitivity for MS-based protease profiling of serum specimens. This new approach might lead to functional MS-based protease profiling for improved disease classification.

  8. Method for measuring radial impurity emission profiles using correlations of line integrated signals

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Drake, J.; Menmuir, S.; Rachlew, E.

    2006-04-01

    A method of determining radial impurity emission profiles is outlined. The method uses correlations between line integrated signals and is based on the assumption of cylindrically symmetric fluctuations. Measurements at the reversed field pinch EXTRAP T2R show that emission from impurities expected to be close to the edge is clearly different in raw as well as analyzed data to impurities expected to be more central. Best fitting of experimental data to simulated correlation coefficients yields emission profiles that are remarkably close to emission profiles determined using more conventional techniques. The radial extension of the fluctuations is small enough for the method to be used and bandpass filtered signals indicate that fluctuations below 10kHz are cylindrically symmetric. The novel method is not sensitive to vessel window attenuation or wall reflections and can therefore complement the standard methods in the impurity emission reconstruction procedure.

  9. Connectivity Measures in EEG Microstructural Sleep Elements.

    PubMed

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence

  10. Precision measurements of solar energetic particle elemental composition

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Using data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spacecraft, solar energetic particle abundances or upper limits for all elements with 3 = Z = 30 from a combined set of 10 solar flares during the 1977 to 1982 time period were determined. Statistically meaningful abundances have been determined for the first time for several rare elements including P, Cl, K, Ti and Mn, while the precision of the mean abundances for the more abundant elements has been improved by typically a factor of approximately 3 over previously reported values.

  11. Measuring mercury and other elemental components in tree rings

    USGS Publications Warehouse

    Gillan, C.; Hollerman, W.A.; Doyle, T.W.; Lewis, T.E.

    2004-01-01

    There has been considerable interest in measuring heavy metal pollution, such as mercury, using tree ring analysis. Since 1970, this method has provided a historical snapshot of pollutant concentrations near hazardous waste sites. Traditional methods of analysis have long been used with heavy metal pollutants such as mercury. These methods, such as atomic fluorescence and laser ablation, are sometimes time consuming and expensive to implement. In recent years, ion beam techniques, such as Particle Induced X-Ray Emission (PIXE), have been used to measure large numbers of elements. Most of the existing research in this area has been completed for low to medium atomic number pollutants, such as titanium, cobalt, nickel, and copper. Due to the reduction of sensitivity, it is often difficult or impossible to use traditional low energy (few MeV) PIXE analysis for pollutants with large atomic numbers. For example, the PIXE detection limit for mercury was recently measured to be about 1 ppm for a spiked Southern Magnolia wood sample [ref. 1]. This presentation will compare PIXE and standard chemical concentration results for a variety of wood samples. Copyright 2004 by ISA.

  12. Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong

    2017-06-01

    The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.

  13. Glass microneedles for force measurements: a finite-element analysis model

    PubMed Central

    Ayittey, Peter N.; Walker, John S.; Rice, Jeremy J.; de Tombe, Pieter P.

    2010-01-01

    Changes in developed force (0.1–3.0 μN) observed during contraction of single myofibrils in response to rapidly changing calcium concentrations can be measured using glass microneedles. These microneedles are calibrated for stiffness and deflect on response to developed myofibril force. The precision and accuracy of kinetic measurements are highly dependent on the structural and mechanical characteristics of the microneedles, which are generally assumed to have a linear force–deflection relationship. We present a finite-element analysis (FEA) model used to simulate the effects of measurable geometry on stiffness as a function of applied force and validate our model with actual measured needle properties. In addition, we developed a simple heuristic constitutive equation that best describes the stiffness of our range of microneedles used and define limits of geometry parameters within which our predictions hold true. Our model also maps a relation between the geometry parameters and natural frequencies in air, enabling optimum parametric combinations for microneedle fabrication that would reflect more reliable force measurement in fluids and physiological environments. We propose a use for this model to aid in the design of microneedles to improve calibration time, reproducibility, and precision for measuring myofibrillar, cellular, and supramolecular kinetic forces. PMID:19104827

  14. Interlaboratory comparison of autoradiographic DNA profiling measurements: precision and concordance.

    PubMed

    Duewer, D L; Lalonde, S A; Aubin, R A; Fourney, R M; Reeder, D J

    1998-05-01

    Knowledge of the expected uncertainty in restriction fragment length polymorphism (RFLP) measurements is required for confident exchange of such data among different laboratories. The total measurement uncertainty among all Technical Working Group for DNA Analysis Methods laboratories has previously been characterized and found to be acceptably small. Casework cell line control measurements provided by six Royal Canadian Mounted Police (RCMP) and 30 U.S. commercial, local, state, and Federal forensic laboratories enable quantitative determination of the within-laboratory precision and among-laboratory concordance components of measurement uncertainty typical of both sets of laboratories. Measurement precision is the same in the two countries for DNA fragments of size 1000 base pairs (bp) to 10,000 bp. However, the measurement concordance among the RCMP laboratories is clearly superior to that within the U.S. forensic community. This result is attributable to the use of a single analytical protocol in all RCMP laboratories. Concordance among U.S. laboratories cannot be improved through simple mathematical adjustments. Community-wide efforts focused on improved concordance may be the most efficient mechanism for further reduction of among-laboratory RFLP measurement uncertainty, should the resources required to fully evaluate potential cross-jurisdictional matches become burdensome as the number of RFLP profiles on record increases.

  15. Surface photovoltage measurements and finite element modeling of SAW devices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form ofmore » the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.« less

  16. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices.

    PubMed

    Bachim, Brent L; Gaylord, Thomas K

    2005-01-20

    A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

  17. Mis-estimation and bias of hyperpolarized apparent diffusion coefficient measurements due to slice profile effects.

    PubMed

    Gordon, Jeremy W; Milshteyn, Eugene; Marco-Rius, Irene; Ohliger, Michael; Vigneron, Daniel B; Larson, Peder E Z

    2017-09-01

    The purpose of this work was to explore the impact of slice profile effects on apparent diffusion coefficient (ADC) mapping of hyperpolarized (HP) substrates. Slice profile effects were simulated using a Gaussian radiofrequency (RF) pulse with a variety of flip angle schedules and b-value ordering schemes. A long T 1 water phantom was used to validate the simulation results, and ADC mapping of HP [ 13 C, 15 N 2 ]urea was performed on the murine liver to assess these effects in vivo. Slice profile effects result in excess signal after repeated RF pulses, causing bias in HP measurements. The largest error occurs for metabolites with small ADCs, resulting in up to 10-fold overestimation for metabolites that are in more-restricted environments. A mixed b-value scheme substantially reduces this bias, whereas scaling the slice-select gradient can mitigate it completely. In vivo, the liver ADC of hyperpolarized [ 13 C, 15 N 2 ]urea is nearly 70% lower (0.99 ± 0.22 vs 1.69 ± 0.21 × 10 -3 mm 2 /s) when slice-select gradient scaling is used. Slice profile effects can lead to bias in HP ADC measurements. A mixed b-value ordering scheme can reduce this bias compared to sequential b-value ordering. Slice-select gradient scaling can also correct for this deviation, minimizing bias and providing more-precise ADC measurements of HP substrates. Magn Reson Med 78:1087-1092, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Comparison of Air Fluorescence and Ionization Measurements of E.M. Shower Depth Profiles: Test of a UHECR Detector Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belz, J.; Cao, Z.; Huentemeyer, P.

    Measurements are reported on the fluorescence of air as a function of depth in electromagnetic showers initiated by bunches of 28.5 GeV electrons. The light yield is compared with the expected and observed depth profiles of ionization in the showers. It validates the use of atmospheric fluorescence profiles in measuring ultra high energy cosmic rays.

  19. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  20. Radiographic film dosimetry of proton beams for depth‐dose constancy check and beam profile measurement

    PubMed Central

    Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-01-01

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in‐phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off‐axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread‐out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5 mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the

  1. Ionomics: The functional genomics of elements.

    PubMed

    Baxter, Ivan

    2010-03-01

    Ionomics is the study of elemental accumulation in living systems using high-throughput elemental profiling. This approach has been applied extensively in plants for forward and reverse genetics, screening diversity panels, and modeling of physiological states. In this review, I will discuss some of the advantages and limitations of the ionomics approach as well as the important parameters to consider when designing ionomics experiments, and how to evaluate ionomics data.

  2. Watershed Scale Shear Stress From Tethersonde Wind Profile Measurements Under Near Neutral and Unstable Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Katul, G. G.

    1995-04-01

    Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.

  3. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  4. Transition Induced by a Streamwise Array of Roughness Elements on a Supersonic Flat Plate

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Kegerise, Michael A.

    2017-01-01

    Roughness is unavoidable on practical high-speed vehicles, so it is critical to determine its impact on boundary layer transition. The flow field downstream of a streamwise array of cylindrical roughness elements is probed with hot-wire anemometry in this experiment. Mean flow distortion is examined in several measurement planes in the wake of the cylindrical roughness using the streak strength profiles and contour plots of the mass flux and total temperature. The roughness element heights and spacings were varied and their instability modes were examined. Cylindrical roughness elements approximately 140 micron tall produce an odd instability mode that grows weakly with downstream distance in the measurement range of this experiment. Cylindrical roughness elements approximately 280 micron tall produce an even instability mode that grows, becomes nonlinear, and then breaks down. Transition onset remains constant relative to the most downstream roughness in the streamwise array when the 280 micron roughness elements are spaced 2 diameters apart. Transition onset occurs at an earlier upstream location relative to the most downstream roughness in the streamwise array when the roughness elements are spaced 4 diameters appear to recover before the next downstream roughness element, so the location of transition shifts with the location of the most downstream roughness element in the array. When the rough- apart. The wake behind roughness elements spaced 2 diameters apart do not ness elements are spaced 4 diameters apart, the flow behind the first roughness element has enough space to recover before feeding into the second roughness element, and thus, moves transition forward.

  5. Comparative speaking, shouting and singing voice range profile measurement: physiological and pathological aspects.

    PubMed

    Hacki, T

    1996-01-01

    The Voice Range Profile (VRP) measurement offers a method for the investigation of voice modalities i.e. speaking voice, shouting voice and singing voice in their mutual pitch and intensity relations. The parameters FO and SPL are evaluated by means of automatic pitch and SPL measurements from (1) sustained phonation /a:/ in the speaker's natural pitch and intensity range, (2) the continuous speaking voice beginning with Pianissimo up to Fortissimo, (3) the shouting voice. Vocal intensity is plotted vertically, vocal pitch horizontally. The displays of the vocal intensity versus fundamental frequency are defined as singing voice range profile (VRP), speaking VRP and shouting VRP. The VRPs are superimposed on the same plot. Their form, their shape and their position to each other are analysed. The physiological relationships between the VRPs of the different voice modalities to each other are defined. The pathological relationships between the VRPs (i.e. reduction, shifting) give information about etiology and pathomechanism of voice disorders.

  6. The Effect of Clouds on Water Vapor Profiling from the Millimeter-Wave Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Spinhirne, J. D.; Racette, P.; Chang, L. A.; Hart, W.

    1997-01-01

    Simultaneous measurements with the millimeter-wave imaging radiometer (MIR), cloud lidar system (CLS), and the MODIS airborne simulator (MAS) were made aboard the NASA ER-2 aircraft over the western Pacific Ocean on 17-18 January 1993. These measurements were used to study the effects of clouds on water vapor profile retrievals based on millimeter-wave radiometer measurements. The CLS backscatter measurements (at 0.532 and 1.064 am) provided information on the heights and a detailed structure of cloud layers; the types of clouds could be positively identified. All 12 MAS channels (0.6-13 Am) essentially respond to all types of clouds, while the six MIR channels (89-220 GHz) show little sensitivity to cirrus clouds. The radiances from the 12-/Am and 0.875-gm channels of the MAS and the 89-GHz channel of the MIR were used to gauge the performance of the retrieval of water vapor profiles from the MIR observations under cloudy conditions. It was found that, for cirrus and absorptive (liquid) clouds, better than 80% of the retrieval was convergent when one of the three criteria was satisfied; that is, the radiance at 0.875 Am is less than 100 W/cm.sr, or the brightness at 12 Am is greater than 260 K, or brightness at 89 GHz is less than 270 K (equivalent to cloud liquid water of less than 0.04 g/cm). The range of these radiances for convergent retrieval increases markedly when the condition for convergent retrieval was somewhat relaxed. The algorithm of water vapor profiling from the MIR measurements could not perform adequately over the areas of storm-related clouds that scatter radiation at millimeter wavelengths.

  7. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    PubMed

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  8. Precision Measurements of Solar Energetic Particle Elemental Composition

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spaceraft were used to determined, solar energetic particle abundances or upper limits for all elements with Z 30 from a combined set of 10 solar flares during the 1977 to 1982 time period. Statistically meaningful abundances were determined for several rare elements including P, C1, K, Ti and Mn, while the precision of the mean abundances for the more abundant elements was proved. When compared to solar photospheric spectroscopic abundances, these new SEP abundances more clearly exhibit the step-function dependence on first ionization potential previously reported.

  9. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground

    NASA Astrophysics Data System (ADS)

    Hurter, F.; Maier, O.

    2013-11-01

    We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a) zenith path delays that are a byproduct of the GPS (global positioning system) processing, (b) ground meteorological measurements, (c) wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d) radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is -16% and quartiles are 5% to 40% for the lower

  10. Not rare. But, endangered Elemental profiles of three corticolous lichen species on red spruce in Maine. [Usnea subfloridana; Platismatia glauca; Hypogymnia physodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, C.S.; Homola, R.H.

    1990-01-01

    Usnea subfloridana Stirton, Platismatia glauca (L.) Club. and Club., and Hypogymnia physodes (L.) Nyl. are lichen species moderately to highly sensitive to air pollutants, including acid deposition and ozone. Some researchers have attributed depauperate populations and local extinctions of these species to poor air quality. Since 1985, areas of Maine annually experienced mean summer rain and fog events of pH 4.5 or lower and ozone levels above national standards. Given this possible threat to these and other pollution sensitive species, baseline elemental analyses for Ca, K, P, Mg, Al, B, Fe, Cu, Mn, Zn, N, S, Na, and Pb weremore » performed in 1986 on coastal and inland populations on Picea rubens L. Elemental analyses were again performed on nontransplanted and transplanted lichens from the same populations in 1988. There were statistically significant differences in elemental profiles between nontransplanted 1986 and 1988 samples for all three species, such as significant decreases in Ca and Mg concentrations, and increases in Al, Cu, Fe, and Zn for U. subfloridana. Elemental concentrations between nontransplanted and transplanted material differed significantly, but no consistent pattern emerged. These results, coupled with other evidence (such as luxuriance and density ratings), suggest that both inland and coastal populations of U. subfloridana on red spruce are experiencing ecophysiological stress.« less

  11. Three Dimensional Plenoptic PIV Measurements of a Turbulent Boundary Layer Overlying a Hemispherical Roughness Element

    NASA Astrophysics Data System (ADS)

    Johnson, Kyle; Thurow, Brian; Kim, Taehoon; Blois, Gianluca; Christensen, Kenneth

    2016-11-01

    Three-dimensional, three-component (3D-3C) measurements were made using a plenoptic camera on the flow around a roughness element immersed in a turbulent boundary layer. A refractive index matched approach allowed whole-field optical access from a single camera to a measurement volume that includes transparent solid geometries. In particular, this experiment measures the flow over a single hemispherical roughness element made of acrylic and immersed in a working fluid consisting of Sodium Iodide solution. Our results demonstrate that plenoptic particle image velocimetry (PIV) is a viable technique to obtaining statistically-significant volumetric velocity measurements even in a complex separated flow. The boundary layer to roughness height-ratio of the flow was 4.97 and the Reynolds number (based on roughness height) was 4.57×103. Our measurements reveal key flow features such as spiraling legs of the shear layer, a recirculation region, and shed arch vortices. Proper orthogonal decomposition (POD) analysis was applied to the instantaneous velocity and vorticity data to extract these features. Supported by the National Science Foundation Grant No. 1235726.

  12. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    PubMed

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.

  13. Ultrasonic Method for Measuring Internal Temperature Profile in Heated Materials

    NASA Astrophysics Data System (ADS)

    Ihara, I.; Takahashi, M.

    2008-02-01

    A new ultrasonic method for internal temperature measurement is presented. The principle of the method is based on temperature dependence of the velocity of the ultrasonic wave propagating through the material. An inverse analysis to determine the temperature profile in a heated material is developed and an experiment is carried out to verify the validity of the developed method. A single side of a silicone rubber plate of 30 mm thickness is heated and ultrasonic pulse-echo measurements are then performed during heating. A change in transit time of ultrasonic wave in the heated rubber plate is monitored and used to determine the transient variation in internal temperature distribution of the rubber. The internal temperature distribution determined ultrasonically agrees well with both obtained using commercial thermocouples installed in the rubber and estimated theoretically.

  14. Benchmark Wall Heat Flux Data for a GO2/GH2 Single Element Combustor

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Pal, Sibtosh; Woodward, Roger d.; Santoro, Robert J.

    2005-01-01

    Wall heat flux measurements in a 1.5 in. diameter circular cross-section rocket chamber for a uni-element shear coaxial injector element operating on gaseous oxygen (GOz)/gaseous hydrogen (GH,) propellants are presented. The wall heat flux measurements were made using arrays of Gardon type heat flux gauges and coaxial thermocouple instrumentation. Wall heat flux measurements were made for two cases. For the first case, GOZ/GHz oxidizer-rich (O/F=l65) and fuel-rich preburners (O/F=1.09) integrated with the main chamber were utilized to provide vitiated hot fuel and oxidizer to the study shear coaxial injector element. For the second case, the preburners were removed and ambient temperature gaseous oxygen/gaseous hydrogen propellants were supplied to the study injector. Experiments were conducted at four chamber pressures of 750, 600, 450 and 300psia for each case. The overall mixture ratio for the preburner case was 6.6, whereas for the ambient propellant case, the mixture ratio was 6.0. Total propellant flow was nominally 0.27-0.29 Ibm/s for the 750 psia case with flowrates scaled down linearly for lower chamber pressures. The axial heat flux profile results for both the preburner and ambient propellant cases show peak heat flux levels a t axial locations between 2.0 and 3.0 in. from the injector face. The maximum heat flux level was about two times greater for the preburner case. This is attributed to the higher injector fuel-to-oxidizer momentum flux ratio that promotes mixing and higher initial propellant temperature for the preburner case which results in a shorter reaction zone. The axial heat flux profiles were also scaled with respect to the chamber pressure to the power 0.8. The results at the four chamber pressures for both cases collapsed to a single profile indicating that at least to first approximation, the basic fluid dynamic structures in the flow field are pressure independent as long as the chamber/njector/nozzle geometry and injection velocities

  15. On the Prospects of Measuring the Cosmic History of Element Synthesis with Future Far-IR/Submillimeter Observatories

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2003-01-01

    To understand the cosmic history of element synthesis it will be important to obtain extinction-free measures of the heavy element contents of high-redshift objects and to chart two monumental events: the collapse of the first metal-free clouds to form stars, and the initial seeding of the universe with dust. The information needed to achieve these objectives is uniquely available in the far-infrared/submillimeter (FIR/SMM) spectral region. Following the Decadal Report and anticipating the development of the Single Aperature Far-IR (SAFIR) telescope capabilities of a large-aperature, background-limited FIR/SMM observatory and an interferometer on a boom, and discuss how such instruments could be used to measure the element synthesis history of the universe.

  16. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    NASA Astrophysics Data System (ADS)

    Devès, Guillaume; Cohen-Bouhacina, Touria; Ortega, Richard

    2004-10-01

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm).

  17. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  18. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  19. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the

  20. Modeled Martian subsurface elemental composition measurements with the Probing In situ with Neutron and Gamma ray instrument

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.

    2017-02-01

    The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.

  1. Technical Note: Robust measurement of the slice-sensitivity profile in breast tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maki, Aili K., E-mail: aili.maki@sri.utoronto.ca

    2016-08-15

    Purpose: The purpose of this work is to improve the repeatability of the measurement of the slice-sensitivity profile (SSP) in reconstructed breast tomosynthesis volumes. Methods: A grid of aluminum ball-bearings (BBs) within a PMMA phantom was imaged on breast tomosynthesis systems from three different manufacturers. The full-width half-maximum (FWHM) values were measured for the SSPs of the BBs in the reconstructed volumes. The effect of transforming the volumes from a Cartesian coordinate system (CCS) to a cone-beam coordinate system (CBCS) on the variability in the FWHM values was assessed. Results: Transforming the volumes from a CCS to a CBCS beforemore » measuring the SSPs reduced the coefficient of variation (COV) in the measurements of FWHM in repeated measurements by 56% and reduced the dependence of the FWHM values on the location of the BBs within the reconstructed volume by 76%. Conclusions: Measuring the SSP in the volumes in a CBCS improves the robustness of the measurement.« less

  2. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  3. Test and Evaluation Plan for the Manual Domestic Passive Profiling System (MDPPS)

    DTIC Science & Technology

    1994-02-01

    Aviation Security (FAA/ACS) personnel and Northwest Airlines Security personnel. These elements were evaluated and refined at a Subject-Matter Expert (SME) workshop using Federal Bureau of Investigation (FBI), Immigration and Naturalization Service (INS), Customs, airline security personnel, and FAA personnel. A worksheet and scoring procedures for using the profiling elements were developed so that domestic passengers could be profiled by airline or other personnel. A field test of the feasibility of the Manual Domestic Passive Profiling (MDPP) worksheet was conducted at

  4. Anchorage Kindergarten Profile: Implementing the Alaska Kindergarten Developmental Profile.

    ERIC Educational Resources Information Center

    Fenton, Ray

    This paper discusses the development of the Anchorage Kindergarten Developmental Profile in the context of the Alaska Kindergarten Developmental Profile and presents some evaluation results from studies of the Anchorage measure. Alaska mandated the completion of an Alaska Developmental Profile (ADP) on each kindergarten student and each student…

  5. Trends in ozone profile measurements

    NASA Technical Reports Server (NTRS)

    Johnston, H.; Aikin, A.; Barnes, R.; Chandra, S.; Cunnold, D.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mccormick, M. P.; Mcmaster, L.

    1989-01-01

    From an examination of the agreements and differences between different satellite instruments, it is difficult to believe that existing satellite instruments determine upper stratospheric ozone much better than 4 pct.; by extension, it probably would require at least a 4 pct. change to be reliably detected as a change. The best estimates of the vertical profiles of ozone change in the upper stratosphere between 1979 and 1986 are judged to be those given by the two SAGE satellite instruments. SAGE-2 minus SAGE-1 gives a much lower ozone reduction than that given by the archived Solar Backscatter UV data. The average SAGE profiles of ozone changes between 20 and 50 degs north and between 20 and 50 degs south are given. The SAGE-1 and SAGE-2 comparison gives an ozone reduction of about 4 pct. at 25 km over temperate latitudes. Five ground based Umkehr stations between 36 and 52 degs north, corrected for the effects of volcanic aerosols, report an ozone reduction between 1979 and 1987 at Umkehr layer 8 of 9 + or - 5 pct. The central estimate of upper stratospheric ozone reduction given by SAGE at 40 km is less than the central value estimated by the Umkehr method at layer 8.

  6. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.

    PubMed

    D'Ariano, G M; Lo Presti, P

    2001-05-07

    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.

  7. SU-E-J-121: Measuring Prompt Gamma Emission Profiles with a Multi-Stage Compton Camera During Proton Beam Irradiation: Initial Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polf, J; McCleskey, M; Brown, S

    2014-06-01

    Purpose: Recent studies have suggested that the characteristics of prompt gammas (PG) emitted during proton beam irradiation are advantageous for determining beam range during treatment delivery. The purpose of this work was to determine the feasibility of determining the proton beam range from PG data measured with a prototype Compton camera (CC) during proton beam irradiation. Methods: Using a prototype multi-stage CC the PG emission from a water phantom was measured during irradiation with clinical proton therapy beams. The measured PG emission data was used to reconstruct an image of the PG emission using a backprojection reconstruction algorithm. One dimensionalmore » (1D) profiles extracted from the PG images were compared to: 1) PG emission data measured at fixed depths using collimated high purity Germanium and Lanthanum Bromide detectors, and 2) the measured depth dose profiles of the proton beams. Results: Comparisons showed that the PG emission profiles reconstructed from CC measurements agreed very well with the measurements of PG emission as a function of depth made with the collimated detectors. The distal falloff of the measured PG profile was between 1 mm to 4 mm proximal to the distal edge of the Bragg peak for proton beam ranges from 4 cm to 16 cm in water. Doses of at least 5 Gy were needed for the CC to measure sufficient data to image the PG profile and localize the distal PG falloff. Conclusion: Initial tests of a prototype CC for imaging PG emission during proton beam irradiation indicated that measurement and reconstruction of the PG profile was possible. However, due to limitations of the operational parameters (energy range and count rate) of the current CC prototype, doses of greater than a typical treatment dose (∼2 Gy) were needed to measure adequate PG signal to reconstruct viable images. Funding support for this project provided by a grant from DoD.« less

  8. Measurement of the fluid-velocity profile using a self-mixing superluminescent diode

    NASA Astrophysics Data System (ADS)

    Rovati, Luigi; Cattini, Stefano; Palanisamy, Nithiyanantham

    2011-02-01

    A novel optical Doppler velocimeter using a self-mixing superluminescent diode is proposed and demonstrated. The operation mechanism uses the photodiode on the back-face of a commercial superluminescent diode to detect the Doppler signal from an interferometer. Thanks to the low coherence length of the optical source, the position of the measuring volume can be easily moved into the sample under test by adjusting the reference arm length, thus allowing us to measure the velocity profile of the flowing scatterers even in turbid media. The proposed velocimeter is expected to have several industrial as well as medical applications.

  9. Recurrence quantification analysis to characterize cyclical components of environmental elemental exposures during fetal and postnatal development

    PubMed Central

    Austin, Christine; Gennings, Chris; Tammimies, Kristiina; Bölte, Sven; Arora, Manish

    2017-01-01

    Environmental exposures to essential and toxic elements may alter health trajectories, depending on the timing, intensity, and mixture of exposures. In epidemiologic studies, these factors are typically analyzed as a function of elemental concentrations in biological matrices measured at one or more points in time. Such an approach, however, fails to account for the temporal cyclicity in the metabolism of environmental chemicals, which if perturbed may lead to adverse health outcomes. Here, we conceptualize and apply a non-linear method–recurrence quantification analysis (RQA)–to quantify cyclical components of prenatal and early postnatal exposure profiles for elements essential to normal development, including Zn, Mn, Mg, and Ca, and elements associated with deleterious health effects or narrow tolerance ranges, including Pb, As, and Cr. We found robust evidence of cyclical patterns in the metabolic profiles of nutrient elements, which we validated against randomized twin-surrogate time-series, and further found that nutrient dynamical properties differ from those of Cr, As, and Pb. Furthermore, we extended this approach to provide a novel method of quantifying dynamic interactions between two environmental exposures. To achieve this, we used cross-recurrence quantification analysis (CRQA), and found that elemental nutrient-nutrient interactions differed from those involving toxicants. These rhythmic regulatory interactions, which we characterize in two geographically distinct cohorts, have not previously been uncovered using traditional regression-based approaches, and may provide a critical unit of analysis for environmental and dietary exposures in epidemiological studies. PMID:29112980

  10. Measurement of multipath delay profile in land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Arakaki, Yoshiya; Wakana, Hiromitsu; Suzuki, Ryutaro

    1993-01-01

    Mobile satellite communication channel has been evaluated mainly with fading statistics of signal. When bandwidth of transmitting signal becomes wider, frequency selectivity of fading becomes a significant factor of the channel. Channel characteristics, not only signal variation but multipath delay spread should be evaluated. A multipath measurement system is proposed and developed for mobile satellite applications. With this system and ETS-V satellite, multipath delay profiles are measured in various environments including Tokyo metropolis and Sapporo city at 1.5 GHz. Results show that the maximum excess delay is within 1 microsec and the maximum delay spread is 0.2 microsecs at elevation angles of 40 to 47 degrees. In wideband signal transmission of about 1 MHz and more, designers should consider the effect of selective fading due to the multipath of land mobile satellite channel.

  11. Measurement of the lunar neutron density profile. [Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1974-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically.

  12. A Highly Flexible, Automated System Providing Reliable Sample Preparation in Element- and Structure-Specific Measurements.

    PubMed

    Vorberg, Ellen; Fleischer, Heidi; Junginger, Steffen; Liu, Hui; Stoll, Norbert; Thurow, Kerstin

    2016-10-01

    Life science areas require specific sample pretreatment to increase the concentration of the analytes and/or to convert the analytes into an appropriate form for the detection and separation systems. Various workstations are commercially available, allowing for automated biological sample pretreatment. Nevertheless, due to the required temperature, pressure, and volume conditions in typical element and structure-specific measurements, automated platforms are not suitable for analytical processes. Thus, the purpose of the presented investigation was the design, realization, and evaluation of an automated system ensuring high-precision sample preparation for a variety of analytical measurements. The developed system has to enable system adaption and high performance flexibility. Furthermore, the system has to be capable of dealing with the wide range of required vessels simultaneously, allowing for less cost and time-consuming process steps. However, the system's functionality has been confirmed in various validation sequences. Using element-specific measurements, the automated system was up to 25% more precise compared to the manual procedure and as precise as the manual procedure using structure-specific measurements. © 2015 Society for Laboratory Automation and Screening.

  13. Indication of two Pacific walrus stocks from whole tooth elemental analysis

    USGS Publications Warehouse

    Jay, C.V.; Outridge, P.M.; Garlich-Miller, J. L.

    2008-01-01

    The Pacific walrus (Odobenus rosmarus divergens) is considered to be a single panmictic population for management purposes. However, studies on population structuring in this species are limited; in part, because portions of the population's range are often inaccessible. Therefore, alternative and complementary methods for investigating stock structure in the Pacific walrus are of particular interest. We used measures of elemental concentrations in whole tooth sections from ICP-MS in a discriminant analysis to investigate evidence of stock separation between walruses from two of three known breeding areas (S.E. Bering, St Lawrence, and Anadyr Gulf). Elemental compositions of teeth from female and male walruses from the S.E. Bering and St Lawrence breeding areas were significantly different, providing evidence of separate stocks. We also obtained insights into the potential relation of walruses from non-breeding areas to walruses from these breeding groups based on similarities in their dental elemental profiles. ?? 2008 Springer-Verlag.

  14. Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina

    NASA Astrophysics Data System (ADS)

    Morales Del Mastro, Anabella; Pereyra, Marcelo; Londonio, Agustín; Pereyra, Victoria; Rebagliati, Raúl Jiménez; Dawidowski, Laura; Gómez, Darío; Smichowski, Patricia

    2014-12-01

    A study was undertaken to assess the chemical profile of soil collected in Bahía Blanca (Argentina). In this industrial city, semiarid soils are affected by different industrial and agricultural activities, the presence of a saltpeter extraction facility, traffic and increasing urbanization. Sixteen soil samples (superficial and sub-superficial) were collected. Samples were sieved in two fractions (A < 37 μm, and 37 < B < 50 μm) before elemental analysis. Major, minor and trace elements namely, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Ti, V and Zn were determined by inductively coupled plasma optical emission spectrometry (ICP OES). Anions (Cl-, F-, SO42-) and cations (K+, Na+ and NH4+) were determined by high performance liquid chromatography (HPLC) after an aqueous extraction. As expected, crustal elements namely, Al, Ca, Fe, Mg and Ti exhibited the highest concentrations. Mean elemental concentration ranged from <0.3 μg g-1 (Sb) to 14.6 ± 0.6% (Ca). Ions concentrations in the soluble fraction measured at mg g-1 levels were in the order Cl- > Na+ ≅ SO42- > K+ > NO3-. Three indicators, namely, (i) coefficient of variation, (ii) coefficient of divergence and (iii) ratio of elemental concentration with respect to Ca were used to assess chemical, spatial and inter-profile variability. Chloride > Ca > Na+ > Mo > SO42-, dominated the variability indicating that these are key chemical markers for future assessment of crustal contribution to airborne particles in the area. The ratios Xi/Ca allowed discriminating the soil of the semi-arid region surrounding Bahía Blanca. The chemical profiles obtained in this study, particularly those of topsoil, will be a key input to characterize soil resuspension and its contribution to airborne particulate matter in a forthcoming receptor model analysis.

  15. Mars dayside temperature from airglow limb profiles : comparison with in situ measurements and models

    NASA Astrophysics Data System (ADS)

    Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.

    The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.

  16. Trace element diffusion in minerals: the role of multiple diffusion mechanisms operating simultaneously

    NASA Astrophysics Data System (ADS)

    Dohmen, R.; Marschall, H.; Wiedenbeck, M.; Polednia, J.; Chakraborty, S.

    2016-12-01

    Diffusion of trace elements, often with ionic charge that differs from those of ions in the regular structural sites of a mineral, controls a number of important processes in rocks, such as: (i) Closure of radiogenic isotopic systems, (e.g. Pb diffusion in rutile; REE diffusion in garnet); (ii) Closure of trace element thermometers (e.g., Zr in rutile, Mg in plagioclase, Al in olivine); (iii) Closure of element exchange between melt inclusions and host minerals (e.g., H, REE in olivine). In addition, preserved trace element zoning profiles in minerals can be used for diffusion chronometry (e.g. Nb in rutile, Mg in plagioclase). However, experimentally determined diffusion coefficients of these trace elements are in many cases controversial (e.g., REE in olivine: [1] vs. [2]; Mg in plagioclase: [3] vs. [4]). We have carried out experiments to study the diffusion behavior in olivine, rutile, and plagioclase, and are able to show that two mechanisms of diffusion, differing in rates by up to four orders of magnitude, may operate simultaneously in a given crystal. The two mechanisms result in complex diffusion profile shapes. As a general rule, the incorporation of heterovalent substituting elements in relatively high concentrations is necessary to activate two diffusion mechanisms. This behavior is produced by the control of these elements on the point defect chemistry of a mineral - these impurities become a majority point defect when a threshold concentration limit is exceeded. In certain cases, e.g., for Li in olivine, the trace element can also be incorporated in different sites, resulting in interaction of the different species with other point defects (vacancies) during diffusion. Thus, depending on the diffusion couple used in the experiment, the associated concentration gradients within the mineral, and the analytical techniques used to measure the diffusion profile, only one diffusion mechanism may be activated or detected. These studies allow us to explain

  17. On the incorporation of trace elements into human hair measured with micro-PIXE

    NASA Astrophysics Data System (ADS)

    Bos, A. J. J.; Van Der Stap, C. C. A. H.; Valković, V.; Vis, R. D.; Verheul, H.

    1984-04-01

    A study has been made on the incorporation of trace elements into human hair by measuring concentration distributions across hair diameters of selected samples using the Amsterdam proton microbeam. Because hair is considered as a recording filament, reflecting metabolic changes over a period of time, a hair of a young mother was plucked 4 months after delivery of her first child. No change in the Zn and Cu concentrations correlated with the period of gestation was observed. A strong increase of Ca in the distal end must be attributed to outside contamination. From a study of a hair root, including the root sheaths, it is found that the method of incorporation of sulfur (minor element) differs strikingly from the behaviour of the trace elements Zn, Cu, Fe and Ca. The Zn and Cu distributions provide evidence of a, not yet reported, transversal transcellular input route, in which the root sheaths play an important role. From the results it is deduced that Zn and Cu seem to be distributed homogeneously by nature, while Fe, present at a high level in the root sheaths, seems to be peaked by nature on the periphery. The results are discussed against the background of the range of values of concentrations of certain elements found in the literature.

  18. Simultaneous Measurements of CO2 Concentration and Temperature profiles using 1.6 μm DIAL in the Lower-Atmosphere

    NASA Astrophysics Data System (ADS)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. The barometric formula can derive atmospheric pressure of each altitude using atmospheric pressure of ground level at the lidar site. Comparison of atmospheric pressure prlofiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan are consisted within 0.2 % below 3 km altitude. So, we have developed a 1.6 μm CO2 DIAL system for simultaneous measurements of the CO2 concentration and temperature profiles in the lower-atmosphere. Laser beams of three wavelengths around a CO2 absorption spectrum is transmitted alternately to the atmosphere. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration and temperature, which measured by these DIAL techniques. We have acheived vertical CO2 concentration and temperature profile from 0.5 to 2.0 km altitude by this DIAL system. In the next step, we will use this high accuracy CO2 concentration profile and back-trajectory analysis for the behavior analysis of the CO2 mass. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  19. [Application of ICP-MS in evaluating element contamination in soils].

    PubMed

    Wu, Ying-juan; Chen, Yong-heng; Yang, Chun-xia; Chang, Xiang-yang

    2008-12-01

    The Yunfu pyrite was the second biggest pyrite bed in the world. Plants using industrial ore of the Yunfu pyrite are distributed in many sections across the country. In the present paper, elements V, Cr, Co, Cu, Zn, Mo, Cd, Sb, Rb and Cs in soil profiles in slag disposing area of a sulfuric acid plant using industrial ore of theYunfu pyrite were studied. A method for simultaneously determination of metals and some reference elements in soils by ICP-MS was developed. The correlations between the metals and their reference elements were fast found. Enrichment factors were applied for evaluating the degree of soil contamination, and the problem about choosing contamination elements background values was pointed out. The results indicated that element V showed apparent and serious pollution, The Co showed middle degree pollution, and there has been a trend of apparent pollution. The Cr, Mo and Cd showed pollution between light degree and middle degree. The Zn and Sb showed light degree pollution, and there was a latent trend of middle degree pollution. The Cu showed light degree pollution. The high enrichment points of the V and the Cr were observed in the upper part (4.0-10.5 cm) and deep part of soil profiles (44.0-75.5 cm). Those of Co and Mo were found in the surface of soil profiles (0-5.0 cm), middle-upper part (9.5-10.5 cm) and middle part (29.5-46.0 cm), while those of Cd and Cu occurred just in the middle of soil profiles (29.5-46.0 cm). The formation of highly enrichment points of contamination elements in the soil profiles was the result of leaching and accumulating effect of the metals released from slag and the residual metals of highly weathered red soils. Most of pollution of V in the soil was contributed by the V in soil bed. Part of the V pollution in the soil was supplied by leaching and accumulating effect of the V which came from catalyst with lost activity in sulfuric acid production volatilizing into slag.

  20. Temperature profiles measurements in turbulent Rayleigh-Bénard convection by optical fibre system at the Barrel of II-menau

    NASA Astrophysics Data System (ADS)

    Drahotský, Jakub; Hanzelka, Pavel; Musilová, Věra; Macek, Michal; du Puits, Ronald; Urban, Pavel

    2018-06-01

    Modelling of large-scale natural (thermally-generated) turbulent flows (such as the turbulent convection in Earth's atmosphere, oceans, or Sun) is approached in laboratory experiments in the simplified model system called the Rayleigh-Bénard convection (RBC). We present preliminary measurements of vertical temperature profiles in the cell with the height of 4:7 m, 7:15m in diameter, obtained at the Barrel of Ilmenau (BOI), the worldwide largest experimental setup to study highly turbulent RBC, newly equipped with the Luna ODiSI-B optical fibre system. In our configuration, the system permits to measure the temperature with a high spatial resolution of 5mm along a very thin glass optical fibre with the length of 5m and seems to be perfectly suited for measurement of time series of instantaneous vertical temperature profiles. The system was supplemented with the two Pt100 vertically movable probes specially designed by us for reference temperature profiles measurements.

  1. Remote Measurement of the Atmospheric Isoplanatic Angle and Determination of Refractive Turbulence Profiles by Direct Inversion of the Scintillation Amplitude Covariance Function with Tikhonov Regularization.

    DTIC Science & Technology

    1985-12-01

    shows Good’s 2 data between 500 m and 40 km. Good obtained thisCn profile by differential temperature measurement between two balloon-borne microthermal ...Cn profiles. However, they are difficult to obtain by remote measurements. In Chapters IV and V, I presented a profile measured by microthermal probes

  2. Low altitude wind shear statistics derived from measured and FAA proposed standard wind profiles

    NASA Technical Reports Server (NTRS)

    Dunham, R. E., Jr.; Usry, J. W.

    1984-01-01

    Wind shear statistics were calculated for a simulated data set using wind profiles proposed as a standard and compared to statistics derived from measured wind profile data. Wind shear values were grouped in altitude bands of 100 ft between 100 and 1400 ft, and in wind shear increments of 0.025 kt/ft between + or - 0.600 kt/ft for the simulated data set and between + or - 0.200 kt/ft for the measured set. No values existed outside the + or - 0.200 kt/ft boundaries for the measured data. Frequency distributions, means, and standard deviations were derived for each altitude band for both data sets, and compared. Also, frequency distributions were derived for the total sample for both data sets and compared. Frequency of occurrence of a given wind shear was about the same for both data sets for wind shears, but less than + or 0.10 kt/ft, but the simulated data set had larger values outside these boundaries. Neglecting the vertical wind component did not significantly affect the statistics for these data sets. The frequency of occurrence of wind shears for the flight measured data was essentially the same for each altitude band and the total sample, but the simulated data distributions were different for each altitude band. The larger wind shears for the flight measured data were found to have short durations.

  3. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-09-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  4. Method of measuring a profile of the density of charged particles in a particle beam

    DOEpatents

    Hyman, L.G.; Jankowski, D.J.

    1975-10-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.

  5. Latent profile analysis of neuropsychological measures to determine preschoolers' risk for ADHD.

    PubMed

    Rajendran, Khushmand; O'Neill, Sarah; Marks, David J; Halperin, Jeffrey M

    2015-09-01

    Hyperactive/Inattentive preschool children show clear evidence of neuropsychological dysfunction. We examined whether patterns and severity of test scores could reliably identify subgroups of preschoolers with differential risk for ADHD during school-age. Typically developing (TD: n = 76) and Hyperactive/Inattentive (HI: n = 138) 3-4 year olds were assessed annually for 6 years (T1-T6). Latent profile analysis (LPA) was used to form subgroups among the HI group based on objective/neuropsychological measures (NEPSY, Actigraph and Continuous Performance Test). Logistic regression assessed the predictive validity of empirically formed subgroups at risk for ADHD diagnosis relative to the TD group and to each other from T2 to T6. Latent profile analysis yielded two subgroups of HI preschoolers: (a) selectively weak Attention/Executive functions, and (b) pervasive neuropsychological dysfunction across all measures. Both subgroups were more likely to have ADHD at all follow-up time-points relative to the TD group (OR range: 11.29-86.32), but there were no significant differences between the LPA-formed subgroups of HI children at any time-point. Objective/neuropsychological measures distinguish HI preschoolers from their TD peers, but patterns and severity of neuropsychological dysfunction do not predict risk for ADHD during school-age. We hypothesize that trajectories in at-risk children are influenced by subsequent environmental and neurodevelopmental factors, raising the possibility that they are amenable to early intervention. © 2015 Association for Child and Adolescent Mental Health.

  6. Distinctive Pattern of Serum Elements During the Progression of Alzheimer's Disease.

    PubMed

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-03-09

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer's disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD.

  7. Fast elemental screening of soil and sediment profiles using small-spot energy-dispersive X-ray fluorescence: application to mining sediments geochemistry.

    PubMed

    Gonzalez-Fernandez, Oscar; Queralt, Ignacio

    2010-09-01

    Elemental analysis of different sediment cores originating from the Cartagena-La Union mining district in Spain was carried out by means of a programmable small-spot energy-dispersive X-ray fluorescence (EDXRF) spectrometer to study the distribution of heavy metals along soil profiles. Cores were obtained from upstream sediments of a mining creek, from the lowland sedimentation plain, and from a mining landfill dump (tailings pile). A programmable two-dimensional (2D) stage and a focal spot resolution of 600 μm allow us to obtain complete core mapping. Geochemical results were verified using a more powerful wavelength-dispersion X-ray fluorescence (WDXRF) technique. The data obtained was processed in order to study the statistical correlations within the elemental compositions. The results obtained allow us to observe the differential in-depth distribution of heavy metals among the sampled zones. Dump site cores exhibit a homogeneous distribution of heavy metals, whereas the alluvial plain core shows accumulation of heavy metals in the upper part. This approach can be useful for the fast screening of heavy metals in depositional environments around mining sites.

  8. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    PubMed

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-04-01

    Framework design is reported to influence chipping in zirconia-based restorations, which is an important cause of failure of such restorations. Residual stress profile in the veneering ceramic after the manufacturing process is an important predictive factor of the mechanical behavior of the material. The objective of this study is to investigate the influence of framework thickness on the stress profile measured in zirconia-based structures. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 1.5 mm thick veneering ceramic layer. Six different framework thicknesses from 0.5 mm to 3 mm were studied. Two different cooling procedures were also investigated. Compressive stresses were observed in the surface, and tensile stresses in the depth of most of the samples. The slow cooling procedure was found to promote the development of interior tensile stresses, except for the sample with a 3mm thick framework. With the tempering procedure, samples with a 1.5 mm thick framework exhibited the most favorable stress profile, while thicker and thinner frameworks exhibited respectively in surface or interior tensile stresses. The measurements performed highlight the importance of framework thickness, which determine the nature of stresses and can explain clinical failures encountered, especially with thin frameworks. The adequate ratio between veneering ceramic and zirconia is hard to define, restricting the range of indications of zirconia-based restorations until a better understanding of such a delicate veneering process is achieved. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Smith, Earnest C. (Inventor); Oliver, Charles E. (Inventor); Redmon, John W., Sr. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1987-01-01

    A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  10. Genome-Wide Profiling of p63 DNA–Binding Sites Identifies an Element that Regulates Gene Expression during Limb Development in the 7q21 SHFM1 Locus

    PubMed Central

    Oti, Martin; Dutilh, Bas E.; Alonso, M. Eva; de la Calle-Mustienes, Elisa; Smeenk, Leonie; Rinne, Tuula; Parsaulian, Lilian; Bolat, Emine; Jurgelenaite, Rasa; Huynen, Martijn A.; Hoischen, Alexander; Veltman, Joris A.; Brunner, Han G.; Roscioli, Tony; Oates, Emily; Wilson, Meredith; Manzanares, Miguel; Gómez-Skarmeta, José Luis; Stunnenberg, Hendrik G.; Lohrum, Marion; van Bokhoven, Hans; Zhou, Huiqing

    2010-01-01

    Heterozygous mutations in p63 are associated with split hand/foot malformations (SHFM), orofacial clefting, and ectodermal abnormalities. Elucidation of the p63 gene network that includes target genes and regulatory elements may reveal new genes for other malformation disorders. We performed genome-wide DNA–binding profiling by chromatin immunoprecipitation (ChIP), followed by deep sequencing (ChIP–seq) in primary human keratinocytes, and identified potential target genes and regulatory elements controlled by p63. We show that p63 binds to an enhancer element in the SHFM1 locus on chromosome 7q and that this element controls expression of DLX6 and possibly DLX5, both of which are important for limb development. A unique micro-deletion including this enhancer element, but not the DLX5/DLX6 genes, was identified in a patient with SHFM. Our study strongly indicates disruption of a non-coding cis-regulatory element located more than 250 kb from the DLX5/DLX6 genes as a novel disease mechanism in SHFM1. These data provide a proof-of-concept that the catalogue of p63 binding sites identified in this study may be of relevance to the studies of SHFM and other congenital malformations that resemble the p63-associated phenotypes. PMID:20808887

  11. Thickness of Weathering Profiles:Relaying Tectonic Signal to Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Weinman, B. A.; Hurst, M. D.; Mudd, S. M.; Gabet, E. J.; Attal, M.; Maher, K.

    2011-12-01

    Generation and transport of sediment across hillslopes and rivers are closely tied to mechanisms that produce and remove weathered material; in uplands this production and transport controls the thicknesses of weathering profiles. These processes, by controlling the residence time of minerals in the weathering profiles, further regulate the interactions between these minerals and largely biologically cycled elements like carbon and calcium. Here, we present and discuss the thicknesses of colluvial soils and underlying saprolites along three hillslopes that are subject to different rates of basal channel incision. Our field site is within a tributary basin to the Middle Folk Feather River in the Northern Sierra Nevada of California where the river has been down cutting through an uplifting granitic batholith over the past five to ten million years. Conventional modeling predicts that colluvial soil thickness declines with increasing denudation rates. Contrary to this expectation, intensive measurements of colluvial soil thickness show largely consistent values across the three hillslopes examined. This finding, in combination with the abrupt transitions to partial or full bare-rock landscapes with further increase in slope curvature or greater proximity to the Middle Folk Feather River, suggests that the mechanisms of soil production are capable of keeping pace with physical erosion rate until a certain threshold erosion rate is reached. We observe, however, that thicknesses of the underlying saprolite and the morphology (eg., color and texture) and geochemistry (eg., elemental concentration and extraction chemistry of iron) of both colluvial soil and saprolite materials vary systematically with the total denudation rates. This finding further allows us to build a simple relationship to describe and predict how the changes in erosion rates translate to the soils' capacity to store biologically cycled elements within rooting depths. Therefore, geomorphic and

  12. Eco-environmental implications of elemental and carbon isotope distributions in ornithogenic sediments from the Ross Sea region, Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Nie, Yaguang; Sun, Liguang; Emslie, Steven D.

    2013-09-01

    Seabirds have substantial influence on geochemical circulation of elements, serving as a link for substance exchange between their foraging area and colonies. In this study, we investigated the elemental and carbon isotopic composition of five penguin-affected sediment profiles excavated from Ross Island and Beaufort Island in the Ross Sea region, Antarctica. Among the three main constituents of the sediments (including weathered bedrock, guano and algae), guano was the main source of organic matter and nutrients, causing selective enrichment of several elements in each of the sediment profiles. In the 22 measured elements, As, Cd, Cu, P, S, Se and Zn were identified as penguin bio-elements in the Ross Sea region through statistical analysis and comparison with local end-member environmental media such as weathered bedrock, fresh guano and fresh algae. Carbon isotopic composition in the ornithogenic sediments showed a mixing feature of guano and algae. Using a two-member isotope mixing equation, we were able to reconstruct the historical change of guano input and algal bio-mass. Compared with research in other parts of Antarctic, Arctic, and South China Sea, we found apparent overlap of avian bio-elements including As, Cd, Cu, P, Se, and Zn. Information on the composition and behavior of bio-elements in seabird guano on a global scale, and the role that bio-vectors play in the geochemical circulation between land and sea, will facilitate future research on avian ecology and paleoclimatic reconstruction.

  13. Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) on some metabolic and reproductive profiles in dairy cows during transition period.

    PubMed

    Omur, A; Kirbas, A; Aksu, E; Kandemir, F; Dorman, E; Kaynar, O; Ucar, O

    2016-12-01

    The objective of this study was to determine the effects of some antioxidant vitamins and trace elements on some metabolic and postpartum reproductive profiles in dairy cows during transition period. In the study, altogether 20 clinically healthy Brown Swiss dairy cows (aged 4-5 years-old) under the same management and feeding conditions in periparturient period were used. The animals were divided into two equal groups: control (C) and treatment (T) group (n=10 for each group). Vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) were administered intramuscularly into the cows of the T group, while isotonic saline, as placebo, was injected subcutaneously into those in the C group. Blood samples were collected by venipuncture of the jugular vein at the beginning of transition period, parturition and 3-weeks after the parturition. The metabolic and reproductive parameters were determined. In the C group, statistically significant changes were observed in the levels of non-esterified fatty acids (NEFA), high density lipoprotein (HDL), low density lipoprotein (LDL), total protein (TP) (p<0.05), glucose (GLU), progesterone (P4) (p<0.01), total cholesterol (T.CHOL), triglycerides (TG), UREA, creatinine (CRSC) and total bilirubin (TBIL) (p<0.001). In the T group, significant changes in the levels of NEFA, TBIL (p<0.05), T.CHOL, HDL, LDL (p<0.01), TG, GLU, P4, TAC and TOC (p<0.001) were observed. It was concluded that the administration of various vitamins and trace elements could be effective to improve some metabolic and reproductive profiles in dairy cows during the transition period.

  14. A tunable single-monochromator Raman system based on the supercontinuum laser and tunable filters for resonant Raman profile measurements.

    PubMed

    Liu, X-L; Liu, H-N; Tan, P-H

    2017-08-01

    Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.

  15. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh

    2008-09-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational testsmore » were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows

  16. Four reference soil and rock samples for measuring element availability in the Western Energy Regions

    USGS Publications Warehouse

    Crock, J.G.; Severson, R.C.

    1980-01-01

    Attaining acceptable precision in extractable element determinations is more difficult than in total element determinations. In total element determinations, dissolution of the sample is qualitatively checked by the clarity of the solution and the absence of residues. These criteria cannot be used for extracts. Possibilities for error are introduced in virtually every step in soil extractions. Therefore, the use of reference materials whose homogeneity and element content are reasonably well known is essential for determination of extractable elements. In this report, estimates of homogeneity and element content are presented for four reference samples. Bulk samples of about 100 kilograms of each sample were ground to pass an 80-mesh sieve. The samples were homogenized and split using a Jones-type splitter. Fourteen splits of each reference sample were analyzed for total content of Ca, Co, Cu, Fe, K, Mg, Mn, Na, and Zn; DTPA-extractable Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn; exchangeable Ca, Mg, K, and Na; cation exchange capacity water-saturation-extractable Ca, Mg, K, Na, C1, and SO4; soil pH; and hot-water-extractable boron. Error measured between splits was small, indicating that the samples were homogenized adequately and that the laboratory procedure provided reproducible results.

  17. Elemental concentrations in tropospheric and lower stratospheric air in a Northeastern region of Poland

    NASA Astrophysics Data System (ADS)

    Braziewicz, Janusz; Kownacka, Ludwika; Majewska, Urszula; Korman, Andrzej

    Element concentrations of K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Se, Br, Sr and Pb as well as the activity of natural radionuclides 210Pb and 226Ra in air were measured. The aerosol samples were collected during tropospheric and stratospheric aircraft flights over the Northeastern region of Poland, which is mostly an agricultural and wooded area. The air volumes were filtered using Petrianov filters at 1, 3, 6, 9, 12 and 15 km above the ground level by special equipment attached to a jet plane. Aircraft flights were provided from September 1997 to August 1998 in 5 separate sampling runs. The long sampling distances served as a good representation of mean aerosol composition and distribution. Concentrations of the same elements were also measured using stationary equipment near the ground level at the outskirts of Warsaw. The vertical profiles of element concentration were obtained and the elemental compositions for the tropospheric and stratospheric aerosols were compared with those from the near-ground level. Contribution of K, Ca, Ti and Fe, which are the main components of soil, in total mass of all detected ones was estimated. Relative concentrations of all measured elements, which show any differences in the composition of the aerosol were calculated. The results obtained confirm the fact that the stratospheric reservoir is observed in the bottom stratosphere. The XRF method based on molybdenum X-ray tube was used as an analytical tool in the determination of aerosols trace elements. The altitude distributions of radioactivity of 226Ra and 210Pb were determined using radiochemical methods.

  18. PM2.5 Emission Elemental Composition from Diverse Combustion Sources in the Metropolitan Area of Mexico City

    PubMed Central

    Mugica, V.; Mugica, F.; Torres, M.; Figueroa, J.

    2008-01-01

    A field study was carried out from 2003 to 2004 with the aim to develop the PM2.5 emission source profiles from light-duty gasoline and heavy-duty diesel vehicles, as well as emission source profiles from waste incineration, wood burning, LP gas combustion, and meat broiling. Over 25 chemical species were quantified from the fine particles emitted by the different combustion sources investigated, including organic and elemental carbon, ions, and elements. The OC/TC ratio found in the different PM2.5 profiles was dissimilar as well as the sulfate, nitrate, ammonium, soil species, and trace element content. Consequently, these combustion emission profiles could be used in source reconciliation studies for fine particles. PMID:18379705

  19. Silver/oxygen depth profile in coins by using laser ablation, mass quadrupole spectrometer and X-rays fluorescence

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Torrisi, L.; Caridi, F.; Sayed, R.; Gentile, C.; Mondio, G.; Serafino, T.; Castrizio, E. D.

    2013-05-01

    Silver coins belonging to different historical periods were investigated to determine the Ag/O atomic ratio depth profiles. Laser ablation has been employed to remove, in high vacuum, the first superficial layers of the coins. Mass quadrupole spectrometry has been used to detect the Ag and the O atomic elements vaporized from the coin surface. The depth profile allowed to determine the thickness of the oxidation layer indicating that, in general, it is high in old coins. A complementary technique, using scanning electron microscope and the associated XRF microprobe, have been devoted to confirm the measurements of Ag/O atomic ratio measured with the laser-coupled mass spectrometry. The oxidation layer thicknesses range between about 25 and 250 microns.

  20. First density profile measurements using frequency modulation of the continuous wave reflectometry on JETa)

    NASA Astrophysics Data System (ADS)

    Meneses, L.; Cupido, L.; Sirinelli, A.; Manso, M. E.; Jet-Efds Contributors

    2008-10-01

    We present the main design options and implementation of an X-mode reflectometer developed and successfully installed at JET using an innovative approach. It aims to prove the viability of measuring density profiles with high spatial and temporal resolution using broadband reflectometry operating in long and complex transmission lines. It probes the plasma with magnetic fields between 2.4 and 3.0 T using the V band [~(0-1.4)×1019 m-3]. The first experimental results show the high sensitivity of the diagnostic when measuring changes in the plasma density profile occurring ITER relevant regimes, such as ELMy H-modes. The successful demonstration of this concept motivated the upgrade of the JET frequency modulation of the continuous wave (FMCW) reflectometry diagnostic, to probe both the edge and core. This new system is essential to prove the viability of using the FMCW reflectometry technique to probe the plasma in next step devices, such as ITER, since they share the same waveguide complexity.

  1. Conjugate Ground-Spacecraft Observations of VLF Chorus Elements

    NASA Astrophysics Data System (ADS)

    Demekhov, A. G.; Manninen, J.; Santolík, O.; Titova, E. E.

    2017-12-01

    We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propagate at small angles to the geomagnetic field and oppositely to its direction, that is, from northern to southern geographic hemisphere. The spacecraft was located at L≃4.1 at a geomagnetic latitude of -12.4∘ close to the plasmapause and inside a localized density inhomogeneity with about 30% density increase and a transverse size of about 600 km. The time delay between the waves detected on the ground and on the spacecraft is about 1.3 s, with ground-based detection leading spacecraft detection. The measured time delay is consistent with the wave travel time of quasi-parallel whistler-mode waves for a realistic profile of the plasma density distribution along the field line. The results suggest that chorus discrete elements can preserve their spectral shape during a hop from the generation region to the ground followed by reflection from the ionosphere and return to the near-equatorial region.

  2. Evaluation of a Magnetically-Filtered Faraday Probe for Measuring the ion Current Density Profile of a Hall Thruster

    DTIC Science & Technology

    2004-07-01

    The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the

  3. Long-term elemental dry deposition fluxes measured around Lake Michigan with an automated dry deposition sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahin, U. Yi, S.M.; Paode, R.D.; Holsen, T.M.

    2000-05-15

    Long-term measurements of mass and elemental dry deposition (MG, Al, V, Cr, Mn, Ni, Co, Cu, Zn, As, Sr, Mo, Cd, Sb, Ba, and Pb) were made with an automated dry deposition sampler (Eagle II) containing knife-edge surrogate surfaces during the Lake Michigan Mass Balance/Mass Budget Study. Measurements were made over a roughly 700-day period in Chicago, IL; in South Haven and Sleeping Bear Dunes, MI; and over Lake Michigan on the 68th Street drinking water intake cribs from December 1993 to October 1995. Average mass fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib weremore » 65, 10, 3.6, and 12 mg m{sup {minus}2} day{sup {minus}1}, respectively. Primarily crustal elemental fluxes were significantly smaller than the mass fluxes but higher than primarily anthropogenic elemental fluxes. For example, the average elemental flux of Al in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 1.0, 0.34, 0.074, and 0.34 mg m{sup {minus}2}day{sup {minus}1}, respectively. The average Pb fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 0.038, 0.023, 0.035, and 0.032 mg m{sup {minus}2}day{sup {minus}1}, respectively. The measured fluxes at the various sites were used to calculate the dry deposition loadings to the lake. These estimated fluxes were highest for Mg and lowest for Cd.« less

  4. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: documenting the uptake of elemental toxicants.

    PubMed

    Seltzer, Michaeld; Berry, Kristinh

    2005-03-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  5. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: Documenting the uptake of elemental toxicants

    USGS Publications Warehouse

    Seltzer, M.D.; Berry, K.H.

    2005-01-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  6. Measuring discharge with acoustic Doppler current profilers from a moving boat

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  7. Measurement of Interfacial Profiles of Wavy Film Flow on Inclined Wall

    NASA Astrophysics Data System (ADS)

    Rosli, N.; Amagai, K.

    2016-02-01

    Falling liquid films on inclined wall present in many industrial processes such as in food processing, seawater desalination and electronic devices manufacturing industries. In order to ensure an optimal efficiency of the operation in these industries, a fundamental study on the interfacial flow profiles of the liquid film is of great importance. However, it is generally difficult to experimentally predict the interfacial profiles of liquid film flow on inclined wall due to the instable wavy flow that usually formed on the liquid film surface. In this paper, the liquid film surface velocity was measured by using a non-intrusive technique called as photochromic dye marking method. This technique utilizes the color change of liquid containing the photochromic dye when exposed to the UV light source. The movement of liquid film surface marked by the UV light was analyzed together with the wave passing over the liquid. As a result, the liquid film surface was found to slightly shrink its gradual movement when approached by the wave before gradually move again after the intersection with the wave.

  8. Inferred UV Fluence Focal-Spot Profiles from Soft X-Ray Pinhole Camera Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Theobald, W.; Sorce, C.; Epstein, R.; Keck, R. L.; Kellogg, C.; Kessler, T. J.; Kwiatkowski, J.; Marshall, F. J.; Seka, W.; Shvydky, A.; Stoeckl, C.

    2017-10-01

    The drive uniformity of OMEGA cryogenic implosions is affected by UV beamfluence variations on target, which require careful monitoring at full laser power. This is routinely performed with multiple pinhole cameras equipped with charge-injection devices (CID's) that record the x-ray emission in the 3- to 7-keV photon energy range from an Au-coated target. The technique relies on the knowledge of the relation between x-ray fluence Fx and UV fluence FUV ,Fx FUVγ , with a measured γ = 3.42 for the CID-based diagnostic and 1-ns laser pulse. It is demonstrated here that using a back-thinned charge-coupled-device camera with softer filtration for x-rays with photon energies <2 keV and well calibrated pinhole provides a lower γ 2 and a larger dynamic range in the measured UV fluence. Inferred UV fluence profiles were measured for 100-ps and 1-ns laser pulses and were compared to directly measured profiles from a UV equivalent-target-plane diagnostic. Good agreement between both techniques is reported for selected beams. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Line Profile Measurements of the Lunar Exospheric Sodium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Line, Michael R.; Roesler, Fred L.; Lupie, Olivia L.

    2012-01-01

    We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.

  10. GIS-measured walkability, transit, and recreation environments in relation to older Adults' physical activity: A latent profile analysis.

    PubMed

    Todd, Michael; Adams, Marc A; Kurka, Jonathan; Conway, Terry L; Cain, Kelli L; Buman, Matthew P; Frank, Lawrence D; Sallis, James F; King, Abby C

    2016-12-01

    An infrequently studied question is how diverse combinations of built environment (BE) features relate to physical activity (PA) for older adults. We derived patterns of geographic information systems- (GIS) measured BE features and explored how they accounted for differences in objective and self-reported PA, sedentary time, and BMI in a sample of older adults. Senior Neighborhood Quality of Life Study participants (N=714, aged 66-97years, 52.1% women, 29.7% racial/ethnic minority) were sampled in 2005-2008 from the Seattle-King County, WA and Baltimore, MD-Washington, DC regions. Participants' home addresses were geocoded, and net residential density, land use mix, retail floor area ratio, intersection density, public transit density, and public park and private recreation facility density measures for 1-km network buffers were derived. Latent profile analyses (LPAs) were estimated from these GIS-based measures. In multilevel regression models, profiles were compared on accelerometer-measured moderate-to-vigorous PA (MVPA) and sedentary time and self-reported PA, adjusting for covariates and clustering. Analyses were conducted in 2014-2015. LPAs yielded three profiles: low walkability/transit/recreation (L-L-L); mean walkability/transit/recreation (M-M-M); and high walkability/transit/recreation (H-H-H). Three PA outcomes were more favorable in the HHH than the LLL profile group (difference of 7.2min/day for MVPA, 97.8min/week for walking for errands, and 79.2min/week for walking for exercise; all ps<0.02). The most and least activity-supportive BE profiles showed greater differences in older adults' PA than did groupings based solely on a 4-component walkability index, suggesting that diverse BE features are important for healthy aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. GIS-measured Walkability, Transit, and Recreation Environments in Relation to Older Adults’ Physical Activity: A Latent Profile Analysis

    PubMed Central

    Todd, Michael; Adams, Marc A.; Kurka, Jonathan; Conway, Terry L.; Cain, Kelli L.; Buman, Matthew P.; Frank, Lawrence D.; Sallis, James F.; King, Abby C.

    2016-01-01

    An infrequently studied question is how diverse combinations of built environment (BE) features relate to physical activity (PA) for older adults. We derived patterns of Geographical Information Systems- (GIS) measured BE features and explored how they accounted for differences in objective and self-reported PA, sedentary time, and BMI in a sample of older adults. Senior Neighborhood Quality of Life Study participants (N=714, aged 66–97 years, 52.1% women, 29.7% racial/ethnic minority) were sampled in 2005–2008 from the Seattle-King County, WA and Baltimore, MD-Washington, DC regions. Participants’ home addresses were geocoded, and net residential density, land use mix, retail floor area ratio, intersection density, public transit density, and public park and private recreation facility density measures for 1-km network buffers were derived. Latent profile analyses (LPAs) were estimated from these GIS-based measures. In multilevel regression models, profiles were compared on accelerometer-measured moderate-to-vigorous PA (MVPA) and sedentary time and self-reported PA, adjusting for covariates and clustering. Analyses were conducted in 2014–2015. LPAs yielded three profiles: low walkability/transit/recreation (L-L-L); mean walkability/transit/recreation (M-M-M); and high walkability/transit/recreation (H-H-H). Three PA outcomes were more favorable in the HHH than the LLL profile group (difference of 7.2 minutes/day for MVPA, 97.8 minutes/week for walking for errands, and 79.2 minutes/week for walking for exercise; all ps < 0.02). The most and least activity-supportive BE profiles showed greater differences in older adults’ PA than did groupings based solely on a 4-component walkability index, suggesting that diverse BE features are important for healthy aging. PMID:27663428

  12. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon.

    PubMed

    Kuuluvainen, Heino; Poikkimäki, Mikko; Järvinen, Anssi; Kuula, Joel; Irjala, Matti; Dal Maso, Miikka; Keskinen, Jorma; Timonen, Hilkka; Niemi, Jarkko V; Rönkkö, Topi

    2018-05-23

    The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm 2 /cm 3 measured close to the ground level to 36-40 μm 2 /cm 3 measured close to the rooftop level of the street canyon, and further to 16-26 μm 2 /cm 3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Skin-Friction Measurements in Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Smith, Donald W.; Walker, John H.

    1959-01-01

    Experiments have been conducted to measure the local surface-shear stress and the average skin-friction coefficient in Incompressible flow for a turbulent boundary layer on a smooth flat plate having zero pressure gradient. Data were obtained for a range of Reynolds numbers from 1 million to 45 million. The local surface-shear stress was measured by a floating-element skin-friction balance and also by a calibrated total head tube located on the surface of the test wall. The average skin-friction coefficient was obtained from boundary-layer velocity profiles.

  14. Computer programs for optical dendrometer measurements of standing tree profiles

    Treesearch

    Jacob R. Beard; Thomas G. Matney; Emily B. Schultz

    2015-01-01

    Tree profile equations are effective volume predictors. Diameter data for building these equations are collected from felled trees using diameter tapes and calipers or from standing trees using optical dendrometers. Developing and implementing a profile function from the collected data is a tedious and error prone task. This study created a computer program, Profile...

  15. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits?

    PubMed

    Baxter, Ivan

    2015-04-01

    It has been more than 10 years since the concept of the ionome, all of the mineral nutrients in a cell tissue or organism, was introduced. In the intervening years, ionomics, high throughput elemental profiling, has been used to analyse over 400,000 samples from at least 10 different organisms. There are now multiple published examples where an ionomics approach has been used to find genes of novel function, find lines or environments that produce foods with altered nutritional profiles, or define gene by environmental effects on elemental accumulation. In almost all of these studies, the ionome has been treated as a collection of independent elements, with the analysis repeated on each measured element. However, many elements share chemical properties, are known to interact with each other, or have been shown to have similar interactions with biological molecules. Accordingly, there is strong evidence from ionomic studies that the elements of the ionome do not behave independently and that combinations of elements should be treated as the phenotypes of interest. In this review, I will consider the evidence that we have for the interdependence of the ionome, some of its causes, methods for incorporating this interdependence into analyses and the benefits, drawbacks, and challenges of taking these approaches. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Radiation profiles measured through clouds using a return glider radiosonde

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Kivi, Rigel

    2016-04-01

    With new and improved radiation sensors in a small glider aircraft vertical flights through clouds have been conducted. This new Return Glider Radiosonde (RG-R) is lifted up with double balloon technique to keep the radiation instruments as horizontal as possible during ascent. The RG-R is equipped with a routine radiosonde to transmit the data to a ground station and an autopilot to fly the glider radiosonde back to the launch site, where it lands autonomous with a parachute. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  17. The Profile of a School and Measurement of a Multi-School Organization Change Program.

    ERIC Educational Resources Information Center

    Feitler, Fred C.

    Modern organization theory and research from business and industry predicts that schools which change toward the Likert participative group organizations will increase productivity. This paper reports interventions of a one-year organization development program carried out with 12 schools and the change results measured by the Profile of a School.…

  18. Cross-flow vortex structure and transition measurements using multi-element hot films

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.

    1991-01-01

    An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.

  19. Aligning physical elements with persons' attitude: an approach using Rasch measurement theory

    NASA Astrophysics Data System (ADS)

    Camargo, F. R.; Henson, B.

    2013-09-01

    Affective engineering uses mathematical models to convert the information obtained from persons' attitude to physical elements into an ergonomic design. However, applications in the domain have not in many cases met measurement assumptions. This paper proposes a novel approach based on Rasch measurement theory to overcome the problem. The research demonstrates that if data fit the model, further variables can be added to a scale. An empirical study was designed to determine the range of compliance where consumers could obtain an impression of a moisturizer cream when touching some product containers. Persons, variables and stimulus objects were parameterised independently on a linear continuum. The results showed that a calibrated scale preserves comparability although incorporating further variables.

  20. Soils element history, sampling, analyses, and recommendations. [Plutonium isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, E.B.; Essington, E.H.

    A five year history of the Soils Element of the Nevada Applied Ecology Group (NAEG) is presented. Major projects are reviewed. Emphasis is placed on mound studies and profile studies for the period March 1, 1975, through February 1, 1976. A series of recommendations is made relative to extensions of past efforts of the Soils Element of the NAEG.

  1. A system for measuring bottom profile, waves and currents in the high-energy nearshore environment

    USGS Publications Warehouse

    Sallenger, A.H.; Howard, P.C.; Fletcher, C. H.; Howd, P.A.

    1983-01-01

    A new data-acquisition system capable of measuring waves, currents and the nearshore profile in breaking waves as high as 5 m has been developed and successfully field-tested. Components of the mechanical system are a sled carrying a vertical mast, a double-drum winch placed landward of the beach, and a line that runs from one drum of the winch around three blocks, which are the corners of a right triangle, to the other drum of the winch. The sled is attached to the shore-normal side of the triangular line arrangement and is pulled offshore by one drum of the winch and onshore by the other. The profile is measured as the sled is towed along the shore-normal transect using an infrared rangefinder mounted landward of the winch and optical prisms mounted on top of the sled's mast. A pressure sensor and two-axis electromagnetic current meter are mounted on the frame of the sled. These data are encoded on the sled and telemetered to a receiving/recording station onshore. Preliminary results suggest that near-bottom offshore-flowing currents during periods of high-energy swell are important in forcing changes to the configuration of the nearshore profile. ?? 1983.

  2. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the

  3. The effect of tissue structure and soil chemistry on trace element uptake in fossils

    NASA Astrophysics Data System (ADS)

    Hinz, Emily A.; Kohn, Matthew J.

    2010-06-01

    Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes

  4. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  5. Robust optode-based method for measuring in situ oxygen profiles in gravelly streambeds.

    PubMed

    Vieweg, Michael; Trauth, Nico; Fleckenstein, Jan H; Schmidt, Christian

    2013-09-03

    One of the key environmental conditions controlling biogeochemical reactions in aquatic sediments like streambeds is the distribution of dissolved oxygen. We present a novel approach for the in situ measurement of vertical oxygen profiles using a planar luminescence-based optical sensor. The instrument consists of a transparent acrylic tube with the oxygen-sensitive layer mounted on the outside. The luminescence is excited and detected by a moveable piston inside the acrylic tube. Since no moving parts are in contact with the streambed, the disturbance of the subsurface flow field is minimized. The precision of the distributed oxygen sensor (DOS) was assessed by a comparison with spot optodes. Although the precision of the DOS, expressed as standard deviation of calculated oxygen air saturation, is lower (0.2-6.2%) compared to spot optodes (<0.1-0.6%), variations of the oxygen content along the profile can be resolved. The uncertainty of the calculated oxygen is assessed with a Monte Carlo uncertainty assessment. The obtained vertical oxygen profiles of 40 cm in length reveal variations of the oxygen content reaching from 90% to 0% air saturation and are characterized by patches of low oxygen rather than a continuous decrease with depth.

  6. A measurement of the average longitudinal development profile of cosmic ray air showers between 10 17 and 10 18 eV

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Belov, K.; Bird, D. J.; Boyer, J.; Cao, Z.; Catanese, M.; Chen, G. F.; Clay, R. W.; Covault, C. E.; Dai, H. Y.; Dawson, B. R.; Elbert, J. W.; Fick, B. E.; Fortson, L. F.; Fowler, J. W.; Gibbs, K. G.; Glasmacher, M. A. K.; Green, K. D.; Ho, Y.; Huang, A.; Jui, C. C.; Kidd, M. J.; Kieda, D. B.; Knapp, B. C.; Ko, S.; Larsen, C. G.; Lee, W.; Loh, E. C.; Mannel, E. J.; Matthews, J.; Matthews, J. N.; Newport, B. J.; Nitz, D. F.; Ong, R. A.; Simpson, K. M.; Smith, J. D.; Sinclair, D.; Sokolsky, P.; Song, C.; Tang, J. K. K.; Thomas, S. B.; van der Velde, J. C.; Wiencke, L. R.; Wilkinson, C. R.; Yoshida, S.; Zhang, X. Z.

    2001-10-01

    The average extensive air shower longitudinal development profile is measured. Events between 10 17 and 10 18 eV recorded by the HiRes/MIA hybrid experiment are used for the average profile. Several functional forms are examined using this average profile. The best-fit parameters for the above functions are determined.

  7. Sexual Harassment Solutions at Work. Profiles of Successful Policy and Practice.

    ERIC Educational Resources Information Center

    Phelan, Colleen

    This publication profiles the successful efforts of eight organizations to develop programs and policies to prevent sexual harassment in their workplaces. The profiles highlight a facet of each organization's efforts. An introduction offers a blueprint for action. The first profile is a look at US West and the key elements for developing and…

  8. Assessing trace element diffusion models in fossil and sub-fossil bone

    NASA Astrophysics Data System (ADS)

    Suarez, C. A.; Kohn, M. J.

    2012-12-01

    Three different diffusion models have been proposed to explain trace element uptake during fossilization of bone: diffusion-adsorption (DA), diffusion-recrystallization (DR), and double-medium diffusion (DMD). Theoretically, differences in trace element profiles, particularly the rare earth elements (REE) and U, can discriminate among these possibilities. In this study, we tested which model best explains natural samples by analyzing trace element profiles in natural bone using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Fossil bones ranging in age from a few ka to over 100 Ma were analyzed along traverses from the outer cortical edge to the inner marrow cavity margin. Forty major, minor and trace elements were analyzed, notably Ca, P, transition metals, Sr, Ba, REE, U, Th and Pb. Spatial and analytical resolutions were ~10 μm and ~100 ppb respectively. Many specimens show commonly observed exponential decreases in REE from the outer edge and marrow cavity, with relatively homogeneous U distributions. Yet, most significantly, specimens from American Falls (last interglacial) and Duck Point (last glacial maximum) show distinctive U plateaus adjacent to the outer and inner cortical bone margins. Whereas exponential profiles can be produced by different uptake processes, such plateaus are diagnostic of a DR mechanism. Our work is consistent with recent investigation of trace element diffusivities in modern fresh and deproteinated bone. These studies show similar diffusion rates for REE and U, so the profound disparity in U vs. REE profiles in most fossils cannot result solely from differences in volume diffusion within the context of DA and DMD. Rather, as a recrystallization front propagates into bone, the bone appears to encode changing soil water compositions with earlier vs. later compositions reflected in the bone margin vs. interior. Soil water U concentrations apparently remain nearly fixed during fossilization, whereas REE are

  9. Trace Element Cycling in Lithogenic Particles at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Morton, P. L.; Weisend, R.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Trace element cycling in marine particles is influenced by atmospheric deposition, vertical export, biological uptake and remineralization, scavenging, and lateral transport processes. To investigate the cycling of lithogenic particles in the central North Pacific Ocean, surface and vertical profile samples of marine suspended particulate matter (SPM) were collected July-August 2012 during the HOE-DYLAN cruises at Station ALOHA. In the late summer, atmospheric dust inputs from the Gobi desert (which peak during the spring, April-May) were sparse, as indicated by low surface particulate Ti (pTi) concentrations. In contrast, surface pAl concentrations did not follow pTi trends as expected, but appear to be dominated by scavenging/uptake of dissolved Al during diatom blooms. Surface pMn concentrations were low, but vertical profiles of pMn and pMn/pTi reveal a strong sedimentary source at 200 m, originating from the Hawaiian continental shelf through a combination of redox mobilization and resuspension processes. The redox active elements Ce and Co can have chemistries similar to that of Mn, but in these samples the pCe and pCo distributions were distinct from Mn and each other in both surface trends and vertical profiles. Surface pREE (e.g., La, Ce, Pr) were highest during the earliest sampling events and quickly decreased to consistently low concentrations, while vertical distributions were characterized by scavenging onto biotic particles and mid-depth inputs. The surface particulate Co trend is similar to those of pAl and pP, while the pCo vertical profiles reflect surface enrichment but low concentrations and little variability at depth. A second, complementary poster is also being presented which examines the biological influence over particulate trace element cycling (Weisend et al., "Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA").

  10. 20 MHz/40 MHz dual element transducers for high frequency harmonic imaging.

    PubMed

    Kim, Hyung Ham; Cannata, Jonathan M; Liu, Ruibin; Chang, Jin Ho; Silverman, Ronald H; Shung, K Kirk

    2008-12-01

    Concentric annular type dual element transducers for second harmonic imaging at 20 MHz / 40 MHz were designed and fabricated to improve spatial resolution and depth of penetration for ophthalmic imaging applications. The outer ring element was designed to transmit the 20 MHz signal and the inner circular element was designed to receive the 40 MHz second harmonic signal. Lithium niobate (LiNbO(3)), with its low dielectric constant, was used as the piezoelectric material to achieve good electrical impedance matching. Double matching layers and conductive backing were used and optimized by KLM modeling to achieve high sensitivity and wide bandwidth for harmonic imaging and superior time-domain characteristics. Prototype transducers were fabricated and evaluated quantitatively and clinically. The average measured center frequency for the transmit ring element was 21 MHz and the one-way --3 dB bandwidth was greater than 50%. The 40 MHz receive element functioned at 31 MHz center frequency with acceptable bandwidth to receive attenuated and frequency downshifted harmonic signal. The lateral beam profile for the 20 MHz ring elements at the focus matched the Field II simulated results well, and the effect of outer ring diameter was also examined. Images of a posterior segment of an excised pig eye and a choroidal nevus of human eye were obtained both for single element and dual element transducers and compared to demonstrate the advantages of dual element harmonic imaging.

  11. 20 MHz/40 MHz Dual Element Transducers for High Frequency Harmonic Imaging

    PubMed Central

    Kim, Hyung Ham; Cannata, Jonathan M.; Liu, Ruibin; Chang, Jin Ho; Silverman, Ronald H.; Shung, K. Kirk

    2009-01-01

    Concentric annular type dual element transducers for second harmonic imaging at 20 MHz / 40 MHz were designed and fabricated to improve spatial resolution and depth of penetration for ophthalmic imaging applications. The outer ring element was designed to transmit the 20 MHz signal and the inner circular element was designed to receive the 40 MHz second harmonic signal. Lithium niobate (LiNbO3), with its low dielectric constant, was used as the piezoelectric material to achieve good electrical impedance matching. Double matching layers and conductive backing were used and optimized by KLM modeling to achieve high sensitivity and wide bandwidth for harmonic imaging and superior time-domain characteristics. Prototype transducers were fabricated and evaluated quantitatively and clinically. The average measured center frequency for the transmit ring element was 21 MHz and the one-way –3 dB bandwidth was greater than 50%. The 40 MHz receive element functioned at 31 MHz center frequency with acceptable bandwidth to receive attenuated and frequency downshifted harmonic signal. The lateral beam profile for the 20 MHz ring elements at the focus matched the Field II simulated results well, and the effect of outer ring diameter was also examined. Images of a posterior segment of an excised pig eye and a choroidal nevus of human eye were obtained both for single element and dual element transducers and compared to demonstrate the advantages of dual element harmonic imaging. PMID:19126492

  12. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Oliver, Charles E. (Inventor); Smith, Earnest C. (Inventor); Redmon, John W. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1989-01-01

    A tool is shown having a cross beam assembly (15) made of beams (18, 19, 20, 21) joined by a center box structure (23). The assembly (15) is adapted to be mounted by brackets (16) to the outer end of a cylindrical case (11). The center box structure (23) has a vertical shaft (25) rotatably mounted therein and extending beneath the assembly (15). Secured to the vertical shaft (25) is a radius arm (28) which is adapted to rotate with shaft (25). On the longer end of the radius arm (28) is a measuring tip (30) which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm (28). An electric servomotor (49) rotates the vertical shaft (25) and an electronic resolver (61) provides an electric signal representing the angle of rotation of the shaft (25). The electric signals are provided to a computer station (73) which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  13. Modeling carbon cycle process of soil profile in Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Finke, P.; Guo, Z.; Wu, H.

    2011-12-01

    SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.

  14. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, S.; Bramstedt, K.; Hilker, M.; Liebing, P.; Plieninger, J.; Reuter, M.; Rozanov, A.; Bovensmann, H.; Burrows, J. P.

    2015-11-01

    Stratospheric profiles of methane (CH4) and carbon dioxide (CO2) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called "Onion Peeling DOAS" (ONPD) which combines an onion peeling approach with a weighting function DOAS (Differential Optical Absorption Spectroscopy) fit. By use of updated pointing information and optimisation of the data selection and of the retrieval approach the altitude range for reasonable CH4 could be extended to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5-10 % for CH4 and 2-3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002-April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated, which are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.

  15. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  16. A Simplified Finite Element Simulation for Straightening Process of Thin-Walled Tube

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqian; Yang, Huilin

    2017-12-01

    The finite element simulation is an effective way for the study of thin-walled tube in the two cross rolls straightening process. To determine the accurate radius of curvature of the roll profile more efficiently, a simplified finite element model based on the technical parameters of an actual two cross roll straightening machine, was developed to simulate the complex straightening process. Then a dynamic simulation was carried out using ANSYS LS-DYNA program. The result implied that the simplified finite element model was reasonable for simulate the two cross rolls straightening process, and can be obtained the radius of curvature of the roll profile with the tube’s straightness 2 mm/m.

  17. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  18. Measurement of computed tomography dose profile with pitch variation using Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD)

    NASA Astrophysics Data System (ADS)

    Purwaningsih, S.; Lubis, L. E.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    This research was aimed to check the patterns of dose profile on adult and pediatric head scan. We compared measurement result on dose profile along the z- axis rotation at peripheries and center phantom with a variety of pitch, i.e. 0.75, 1, 1.5 for adult and pediatric head protocol, keeping the rest of the scan parameters constant. Measurements were performed on homogeneous, cylindrical PMMA phantom with diameters of 16 and 10 cm using XR-QA2 Gafchromic film and TLD as dosimeters. The measurement result indicated a decrease in the dose about 50% and 47% for adult and pediatric head scan with the increase of pitch. For 0.75 value of pitch adult head scan, dose range for each position were (2.4 - 5.0) cGy, (3.1 - 5.3) cGy, (2.2 - 4.5) cGy, (2.8 - 5.3) cGy, and (3.3 - 5.6) cGy for position of center, 3, 6, 9 and 12 o'clock peripheral phantom position respectively. Dose profile for adult and pediatric head scan protocols has pattern curve with the maximum dose in the middle and tendency of symmetry near the edges, with different the plateau length along z- axis direction in accordance to the measurement position in the phantom.

  19. The effects of tibia profile, distraction angle, and knee load on wedge instability and hinge fracture: A finite element study.

    PubMed

    Weng, Pei-Wei; Chen, Chia-Hsien; Luo, Chu-An; Sun, Jui-Sheng; Tsuang, Yang-Hwei; Cheng, Cheng-Kung; Lin, Shang-Chih

    2017-04-01

    Several plate systems for high tibial osteotomy (HTO) have been developed to stabilize the opening wedge of an osteotomized tibia. Among them, the TomoFix system, having a quasi-straight and T-shaped design, has been widely adopted in the literature. However, this system is implemented by inserting a lag (i.e., cortical) screw through the proximal combi-hole, to deform the plate and pull the distal tibia toward the plate. This process potentially induces plate springback and creates an elastic preload on the osteotomized tibia, especially at the lateral hinge of the distracted wedge. Using the finite-element method, this study aims to investigate the contoured effect of lag-screw application on the biomechanical behavior of the tibia-plate construct. Two tibial profiles (normal and more concave), three distraction angles (6°, 9°, and 12°), and three knee loads (intraoperative: contouring plate; postoperative: weight and nonweight bearing) are systematically varied in this study. The wedge instability and fracture risk at the lateral hinge are chosen as the comparison indices. The results show the necessity of preoperative planning for a precontoured procedure, rather than elastic deformation using a lag screw. Within the intraoperative period, a more concave tibial profile and/or reduced distraction angle (i.e., 6° or 9°) necessitate a higher compressive load to elastically deform the plate, thereby deteriorating the lateral-hinge fracture risk. A precontoured plate is recommended in the case that the proximal tibia is highly concave and the distraction angle is insufficient to stretch the tibial profile. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. An Object-Oriented Approach for Analyzing CALIPSO's Profile Observations

    NASA Astrophysics Data System (ADS)

    Trepte, C. R.

    2016-12-01

    The CALIPSO satellite mission is a pioneering international partnership between NASA and the French Space Agency, CNES. Since launch on 28 April 2006, CALIPSO has been acquiring near-continuous lidar profile observations of clouds and aerosols in the Earth's atmosphere. Many studies have profitably used these observations to advance our understanding of climate, weather and air quality. For the most part, however, these studies have considered CALIPSO profile measurements independent from one another and have not related each to neighboring or family observations within a cloud element or aerosol feature. In this presentation we describe an alternative approach that groups measurements into objects visually identified from CALIPSO browse images. The approach makes use of the Visualization of CALIPSO (VOCAL) software tool that enables a user to outline a region of interest and save coordinates into a database. The selected features or objects can then be analyzed to explore spatial correlations over the feature's domain and construct bulk statistical properties for each structure. This presentation will show examples that examine cirrus and dust layers and will describe how this object-oriented approach can provide added insight into physical processes beyond conventional statistical treatments. It will further show results with combined measurements from other A-Train sensors to highlight advantages of viewing features in this manner.

  1. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  2. O(1S) from dissociative recombination of O2(+) - Nonthermal line profile measurements from Dynamics Explorer

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Hays, P. B.

    1983-01-01

    The measurements reported were made of the O(1S) emission line profile at 5577 A at high spectral resolution with the Fabry-Perot interferometer on the Dynamics Explorer spacecraft. It is found that the line profile has marked nonthermal characteristics in the nightglow. A simple collisional relaxation model is used to analyze the nighttime emission line profiles, measured in the equatorial region. The branching ratio is inferred for the dissociative recombination of O2(+) leading to O(1S). The result reveals that the O(1S) + O(1D) channel is favored over the O(1S). The result reveals that the O(1S) + O(1D) channel is favored over the O(1S) + O(3P) channel by a factor of 4; this does not agree with the ratio reported by Hernandez (1971). It is noted, however, that the result is consistent with the active channel for O(1S) production being via the 1Sigma u + repulsive state of O2, as suggested by the theoretical calculations of Guberman (1983). In addition, a value is obtained for the excitation exchange cross section for O(1S).

  3. On Machine Capacitance Dimensional and Surface Profile Measurement System

    NASA Technical Reports Server (NTRS)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  4. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  5. Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posik, Matthew; Flay, David; Parno, Diana

    2014-07-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolvemore » the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.« less

  6. Elemental and isotopic behaviour of Zn in Deccan basalt weathering profiles: Chemical weathering from bedrock to laterite and links to Zn deficiency in tropical soils.

    PubMed

    Suhr, Nils; Schoenberg, Ronny; Chew, David; Rosca, Carolina; Widdowson, Mike; Kamber, Balz S

    2018-04-01

    Zinc (Zn) is a micronutrient for organisms and essential for plant growth, therefore knowledge of its elemental cycling in the surface environment is important regarding wider aspects of human nutrition and health. To explore the nature of Zn cycling, we compared its weathering behaviour in a sub-recent regolith versus an ancient laterite profile of the Deccan Traps, India - an area of known soil Zn deficiency. We demonstrate that progressive breakdown of primary minerals and the associated formation of phyllosilicates and iron oxides leads to a depletion in Zn, ultimately resulting in a loss of 80% in lateritic residues. This residue is mainly composed of resistant iron oxides and hydroxides ultimately delivering insufficient amounts of bio-available Zn. Moreover, (sub)-tropical weathering in regions experiencing extended tectonic quiescence (e.g., cratons) further enhance the development of old and deep soil profiles that become deficient in Zn. This situation is clearly revealed by the spatial correlation of the global distribution of laterites, cratons (Africa, India, South America and Australia) and known regions of Zn deficient soils that result in health problems for humans whose diet is derived from such land. We also investigate whether this elemental depletion of Zn is accompanied by isotope fractionation. In the saprolitic horizons of both weathering profiles, compositions of δ 66 Zn JMC-Lyon lie within the "crustal average" of +0.27±0.07‰ δ 66 Zn JMC-Lyon . By contrast, soil horizons enriched in secondary oxides show lighter isotope compositions. The isotopic signature of Zn (Δ 66 Zn sample-protolith up to ~ -0.65‰) during the formation of the ferruginous-lateritic weathering profile likely resulted from a combination of biotically- and kinetically-controlled sorption reactions on Fe-oxyhydroxides. Our findings suggest that oxide rich soil types/horizons in (sub)-tropical regions likely exert a control on riverine Zn isotope compositions such

  7. Coarse particle (PM10-2.5) source profiles for emissions from domestic cooking and industrial process in Central India.

    PubMed

    Bano, Shahina; Pervez, Shamsh; Chow, Judith C; Matawle, Jeevan Lal; Watson, John G; Sahu, Rakesh Kumar; Srivastava, Anjali; Tiwari, Suresh; Pervez, Yasmeen Fatima; Deb, Manas Kanti

    2018-06-15

    To develop coarse particle (PM 10-2.5 , 2.5 to 10μm) chemical source profiles, real-world source sampling from four domestic cooking and seven industrial processing facilities were carried out in "Raipur-Bhilai" of Central India. Collected samples were analysed for 32 chemical species including 21 elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, S, Sb, Se, V, and Zn) by atomic absorption spectrophotometry (AAS), 8 water-soluble ions (Na + , K + , Mg 2+ , Ca 2+ , Cl - , F - , NO 3 - , and SO 4 2- ) by ion chromatography, ammonium (NH 4 + ) by spectrophotometry, and carbonaceous fractions (OC and EC) by thermal/optical transmittance. The carbonaceous fractions were most abundant fraction in household fuel and municipal solid waste combustion emissions while elemental species were more abundant in industrial emissions. Most of the elemental species were enriched in PM 2.5 (<2.5μm) size fraction as compared to the PM 10-2.5 fraction. Abundant Ca (13-28%) was found in steel-rolling mill (SRM) and cement production industry (CPI) emissions, with abundant Fe (14-32%) in ferro-manganese (FEMNI), steel production industry (SPI), and electric-arc welding emissions. High coefficients of divergence (COD) values (0.46 to 0.88) among the profiles indicate their differences. These region-specific source profiles are more relevant to source apportionment studies in India than profiles measured elsewhere. Copyright © 2018. Published by Elsevier B.V.

  8. Compton profiles of some composite materials normalized by a new method

    NASA Astrophysics Data System (ADS)

    Sankarshan, B. M.; Umesh, T. K.

    2018-03-01

    Recently, we have shown that as a novel approach, in the case of samples which can be treated as pure incoherent scatterers, the effective atomic number Zeff itself could be conveniently used to normalize their un-normalized Compton profiles. In the present investigation, we have attempted to examine the efficacy of this approach. For this purpose, we have first determined the single differential Compton scattering cross sections (SDCS) of the elements C and Al as well as of some H, C, N and O based polymer samples such as bakelite, epoxy, nylon and teflon which are pure incoherent scatterers. The measurements were made at 120° in a goniometer assembly that employs a high resolution high purity germanium detector. The SDCS values were used to obtain the Zeff and the un-normalized Compton profiles. These Compton profiles were separately normalized with their Zeff values (for Compton scattering) as well as with the normalization constant obtained by integrating their Hartree-Fock Biggs et al Compton profiles based on the mixture rule. These two sets of values agreed well within the range of experimental errors, implying that Zeff can be conveniently used to normalize the experimental Compton profiles of pure incoherent scatterers.

  9. UML Profiles for Design Decisions and Non-Functional Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liming; Gorton, Ian

    2007-06-30

    A software architecture is composed of a collection of design decisions. Each design decision helps or hinders certain Non-Functional Requirements (NFR). Current software architecture views focus on expressing components and connectors in the system. Design decisions and their relationships with non-functional requirements are often captured in separate design documentation, not explicitly expressed in any views. This disassociation makes architecture comprehension and architecture evolution harder. In this paper, we propose a UML profile for modeling design decisions and an associated UML profile for modeling non-functional requirements in a generic way. The two UML profiles treat design decisions and nonfunctional requirements asmore » first-class elements. Modeled design decisions always refer to existing architectural elements and thus maintain traceability between the two. We provide a mechanism for checking consistency over this traceability. An exemplar is given as« less

  10. Distribution of elements in individual blood cells in metabolic disorders at the cellular level

    NASA Astrophysics Data System (ADS)

    Johansson, Erland; Lindh, Ulf

    1985-08-01

    In comparison with controls neutrophil granulocytes from Rheumatoid arthritis (RA), Infantile Neuronal Ceroid Lipofuscinosis (INCL), Chronic Lymphatic Leukemia (L) and Aplastic Anemia (AA) displayed significant alterations in essential and non-essential elements which might be interpreted as fingerprints of these deseases. The neutrophils from RA patients displayed alterations in the concentrations of iron, calcium, strontium, manganese, zinc and copper. INCL displayed alterations in the concentrations of iron and copper but in the INCL disease the iron concentration was about 2 times higher than in RA. In leukemia, aluminium was observed but not in the controls (< 0.5 μg/ g). The zinc concentration was lowered in leukemia. Aplastic anemia displayed alterations in zirconium, arsenic, molybdenum, iron and zinc. The platelets from RA, INCL, L and AA patients also displayed alterations in the elemental profiles. The platelets from AA patients displayed a unique elemental distribution of arsenic, zirconium and molybdenum. The elemental profiles of the thrombocytes and neutrophils might be used as a complement in the diagnosis of the examined diseases and in therapy the elemental profile might be used to monitor drugs at the cellular level.

  11. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    PubMed

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-02-01

    The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    NASA Technical Reports Server (NTRS)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  13. A UML profile for framework modeling.

    PubMed

    Xu, Xiao-liang; Wang, Le-yu; Zhou, Hong

    2004-01-01

    The current standard Unified Modeling Language(UML) could not model framework flexibility and extendability adequately due to lack of appropriate constructs to distinguish framework hot-spots from kernel elements. A new UML profile that may customize UML for framework modeling was presented using the extension mechanisms of UML, providing a group of UML extensions to meet the needs of framework modeling. In this profile, the extended class diagrams and sequence diagrams were defined to straightforwardly identify the hot-spots and describe their instantiation restrictions. A transformation model based on design patterns was also put forward, such that the profile based framework design diagrams could be automatically mapped to the corresponding implementation diagrams. It was proved that the presented profile makes framework modeling more straightforwardly and therefore easier to understand and instantiate.

  14. The Formal Elements Art Therapy Scale: A Measurement System for Global Variables in Art

    ERIC Educational Resources Information Center

    Gantt, Linda M.

    2009-01-01

    The Formal Elements Art Therapy Scale (FEATS) is a measurement system for applying numbers to global variables in two-dimensional art (drawing and painting). While it was originally developed for use with the single-picture assessment ("Draw a person picking an apple from a tree" [PPAT]), researchers can also apply many of the 14 scales of the…

  15. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; hide

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  16. The Design of Ocean Turbulence Measurement with a Free Fall Vertical Profiler

    NASA Astrophysics Data System (ADS)

    Luan, Xin; Xin, Jia; Zhu, Tieyi; Yang, Hua; Teng, Yuru; Song, Dalei

    2018-03-01

    The newly designed instrument Free Fall Vertical Profiler (FFVP) developed by Ocean University of China (OUC) had been deployed in the Western Pacific in March 08, 2017 and succeed to collect turbulence signals about 350-m-deep water. According to the requirements of turbulence measurement, the mechanical design was developed for turbulence platform to achieve stability and good flow tracking. By analysing the Heading, Pitch and Roll, the results suggested that the platform satisfies the requirements of stability. The power spectrum of the cleaned shear signals using the noise correction algorithm match well with the theoretical Nasmyth spectrum and the rate of turbulence dissipation are approximately 10-8 W/kg. In general, the FFVP was rationally designed and provided a good measurement platform for turbulence observation.

  17. Determination of Fluxes and their Source Partitioning from high-resolution Profile Measurements of Wind Speed and Scalars within and above short Canopies

    NASA Astrophysics Data System (ADS)

    Graf, A.; Ney, P.

    2017-12-01

    A continuously moving elevator-based system is described to measure vertical profiles of wind speed, temperature, CO2 and H2O within and above short plant canopies with a vertical resolution in the centimeter range. On sample days in 2015 to 2017, we measured profiles from the soil surface to 2 m a.g.l. in a crop rotation including wheat, barley, bare soil, winter catch crops and sugarbeet, with canopy heights of up to 1 m. Profiles over bare soil or very short canopies could be described well by fitting Monin-Obukhov-like profiles, and the derived fluxes of momentum and all three scalars matched well those of a nearby eddy-covariance station. In green canopies during the day, CO2 profiles clearly indicated the plant sink and soil source by a local minimum in the canopy and a maximum at the soil surface. H2O profiles, indicating sources both in the canopy and at the soil surface, did or did not show a local minimum between both, depending on canopy structure and turbulence. Temperature profiles showed various shapes including solar incident angle effects, and often the expected opposing signs of thermal stability between the subcanopy and the roughness sublayer. Finally, we test different existing parametrizations to estimate the vertical source / sink distribution from the measured profiles, compare the resulting vertically integrated fluxes to eddy-covariance based net fluxes, and discuss limitations and needed improvements to quantify subcanopy soil respiration and evaporation from such approaches.

  18. Rare Earth Element Measurements of Melilite and Fassaite in Allende Cai by Nanosims

    NASA Technical Reports Server (NTRS)

    Ito, M.; Messenger, Scott

    2009-01-01

    The rare earth elements (REEs) are concentrated in CAIs by approx. 20 times the chondritic average [e.g., 1]. The REEs in CAIs are important to understand processes of CAI formation including the role of volatilization, condensation, and fractional crystallization [1,2]. REE measurements are a well established application of ion microprobes [e.g., 3]. However the spatial resolution of REE measurements by ion microprobe (approx.20 m) is not adequate to resolve heterogeneous distributions of REEs among/within minerals. We have developed methods for measuring REE with the NanoSIMS 50L at smaller spatial scales. Here we present our initial measurements of REEs in melilite and fassaite in an Allende Type-A CAI with the JSC NanoSIMS 50L. We found that the key parameters for accurate REE abundance measurements differ between the NanoSIMS and conventional SIMS, in particular the oxide-to-element ratios, the relative sensitivity factors, the energy distributions, and requisite energy offset. Our REE abundance measurements of the 100 ppm REE diopside glass standards yielded good reproducibility and accuracy, 0.5-2.5 % and 5-25 %, respectively. We determined abundances and spatial distributions of REEs in core and rim within single crystals of fassaite, and adjacent melilite with 5-10 m spatial resolution. The REE abundances in fassaite core and rim are 20-100 times CI abundance but show a large negative Eu anomaly, exhibiting a well-defined Group III pattern. This is consistent with previous work [4]. On the other hand, adjacent melilite shows modified Group II pattern with no strong depletions of Eu and Yb, and no Tm positive anomaly. REE abundances (2-10 x CI) were lower than that of fassaite. These patterns suggest that fassaite crystallized first followed by a crystallization of melilite from the residual melt. In future work, we will carry out a correlated study of O and Mg isotopes and REEs of the CAI in order to better understand the nature and timescales of its

  19. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    NASA Astrophysics Data System (ADS)

    Schaub, D.; Boersma, K. F.; Kaiser, J. W.; Weiss, A. K.; Folini, D.; Eskes, H. J.; Buchmann, B.

    2006-08-01

    Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is -7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and

  20. Finite Element Peen Forming Simulation

    NASA Astrophysics Data System (ADS)

    Gariépy, Alexandre; Larose, Simon; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening consists of projecting multiple small particles onto a ductile part in order to induce compressive residual stresses near the surface. Peen forming, a derivative of shot peening, is a process that creates an unbalanced stress state which in turn leads to a deformation to shape thin parts. This versatile and cost-effective process is commonly used to manufacture aluminum wing skins and rocket panels. This paper presents the finite element modelling approach that was developed by the authors to simulate the process. The method relies on shell elements and calculated stress profiles and uses an approximation equation to take into account the incremental nature of the process. Finite element predictions were in good agreement with experimental results for small-scale tests. The method was extended to a hypothetical wing skin model to show its potential applications.

  1. Rating locomotive crew diesel emission exposure profiles using statistics and Bayesian Decision Analysis.

    PubMed

    Hewett, Paul; Bullock, William H

    2014-01-01

    For more than 20 years CSX Transportation (CSXT) has collected exposure measurements from locomotive engineers and conductors who are potentially exposed to diesel emissions. The database included measurements for elemental and total carbon, polycyclic aromatic hydrocarbons, aromatics, aldehydes, carbon monoxide, and nitrogen dioxide. This database was statistically analyzed and summarized, and the resulting statistics and exposure profiles were compared to relevant occupational exposure limits (OELs) using both parametric and non-parametric descriptive and compliance statistics. Exposure ratings, using the American Industrial Health Association (AIHA) exposure categorization scheme, were determined using both the compliance statistics and Bayesian Decision Analysis (BDA). The statistical analysis of the elemental carbon data (a marker for diesel particulate) strongly suggests that the majority of levels in the cabs of the lead locomotives (n = 156) were less than the California guideline of 0.020 mg/m(3). The sample 95th percentile was roughly half the guideline; resulting in an AIHA exposure rating of category 2/3 (determined using BDA). The elemental carbon (EC) levels in the trailing locomotives tended to be greater than those in the lead locomotive; however, locomotive crews rarely ride in the trailing locomotive. Lead locomotive EC levels were similar to those reported by other investigators studying locomotive crew exposures and to levels measured in urban areas. Lastly, both the EC sample mean and 95%UCL were less than the Environmental Protection Agency (EPA) reference concentration of 0.005 mg/m(3). With the exception of nitrogen dioxide, the overwhelming majority of the measurements for total carbon, polycyclic aromatic hydrocarbons, aromatics, aldehydes, and combustion gases in the cabs of CSXT locomotives were either non-detects or considerably less than the working OELs for the years represented in the database. When compared to the previous American

  2. Measurement of electron density profiles on HT-6M tokamak by 7-channel FIR HCN laser interferometer

    NASA Astrophysics Data System (ADS)

    Xiang, Gao; Qiliang, Guo

    1990-12-01

    Electron density measurements are periormed on HT-6M tokamak using a 7 channel Far-Infrared HCN laser interferometer. From the measured line integrals--7 channel phase shifts the electron density profile is reconstructed by a fit procedure. Results were tested by comparison to Abel inverted. Some recent interesting experimental results were reported.

  3. Chemometric and trace element profiling methodologies for authenticating, crossmatching and constraining the provenance of illicit tobacco products.

    PubMed

    Stephens, William Edryd

    2016-09-01

    Illicit tobacco products have a disproportionately negative effect on public health. Counterfeits and cheap whites as well as legal brands smuggled from countries not adopting track and trace technologies will require novel forensic tools to aid the disruption of their supply chains. Data sets of trace element concentrations in tobacco were obtained using X-ray fluorescence spectrometry on samples of legal and illicit products mainly from Europe. Authentic and counterfeit products were discriminated by identifying outliers from data sets of legal products using Mahalanobis distance and graphical profiling methods. Identical and closely similar counterfeits were picked out using Euclidean distance, and counterfeit provenance was addressed using chemometric methods to identify geographical affinities. Taking Marlboro as an exemplar, the major brands are shown to be remarkably consistent in composition, in marked contrast to counterfeits bearing the same brand name. Analysis of 35 illicit products seized in the European Union (EU) indicates that 18 are indistinguishable or closely similar to Marlboro legally sold in the EU, while 17 are sufficiently different to be deemed counterfeit, among them being 2 counterfeits so closely similar that their tobaccos are likely to come from the same source. The tobacco in the large majority of counterfeits in this data set appears to originate in Asia. Multivariate and graphical analysis of trace elements in tobacco can effectively authenticate brands, crossmatch illicit products across jurisdictions and may identify their geographical sources. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Distinctive Pattern of Serum Elements During the Progression of Alzheimer’s Disease

    PubMed Central

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-01-01

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer’s disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD. PMID:26957294

  5. Profiling Dissipation Measurements Using Chipods on Moored Profilers in Luzon Strait

    DTIC Science & Technology

    2012-09-30

    quantify the energy losses to turbulence dissipation in the Luzon Strait in a systematic, comprehensive and extended way; • quantify the spring...neap variation in these energy losses; • obtain meaningful, long-term observations of the turbulent heat and momentum flux profiles in Luzon Strait...Std Z39-18 2 Initial engineering tests in December 2009 in Puget Sound prompted refinements which were incorporated into the unit deployed in

  6. Predicting fiber refractive index from a measured preform index profile

    NASA Astrophysics Data System (ADS)

    Kiiveri, P.; Koponen, J.; Harra, J.; Novotny, S.; Husu, H.; Ihalainen, H.; Kokki, T.; Aallos, V.; Kimmelma, O.; Paul, J.

    2018-02-01

    When producing fiber lasers and amplifiers, silica glass compositions consisting of three to six different materials are needed. Due to the varying needs of different applications, substantial number of different glass compositions are used in the active fiber structures. Often it is not possible to find material parameters for theoretical models to estimate thermal and mechanical properties of those glass compositions. This makes it challenging to predict accurately fiber core refractive index values, even if the preform index profile is measured. Usually the desired fiber refractive index value is achieved experimentally, which is expensive. To overcome this problem, we analyzed statistically the changes between the measured preform and fiber index values. We searched for correlations that would help to predict the Δn-value change from preform to fiber in a situation where we don't know the values of the glass material parameters that define the change. Our index change models were built using the data collected from preforms and fibers made by the Direct Nanoparticle Deposition (DND) technology.

  7. Prediction of Process-Induced Distortions in L-Shaped Composite Profiles Using Path-Dependent Constitutive Law

    NASA Astrophysics Data System (ADS)

    Ding, Anxin; Li, Shuxin; Wang, Jihui; Ni, Aiqing; Sun, Liangliang; Chang, Lei

    2016-10-01

    In this paper, the corner spring-in angles of AS4/8552 L-shaped composite profiles with different thicknesses are predicted using path-dependent constitutive law with the consideration of material properties variation due to phase change during curing. The prediction accuracy mainly depends on the properties in the rubbery and glassy states obtained by homogenization method rather than experimental measurements. Both analytical and finite element (FE) homogenization methods are applied to predict the overall properties of AS4/8552 composite. The effect of fiber volume fraction on the properties is investigated for both rubbery and glassy states using both methods. And the predicted results are compared with experimental measurements for the glassy state. Good agreement is achieved between the predicted results and available experimental data, showing the reliability of the homogenization method. Furthermore, the corner spring-in angles of L-shaped composite profiles are measured experimentally and the reliability of path-dependent constitutive law is validated as well as the properties prediction by FE homogenization method.

  8. Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beall, M., E-mail: mbeall@trialphaenergy.com; Deng, B. H.; Gota, H.

    2016-11-15

    In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO{sub 2}/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord. In the system upgrade from C-2 to C-2U a 4-chord far-infrared laser interferometer was developed, which demonstrated superior sensitivity (1 × 10{sup 16} m{sup −2} at >1 MHz bandwidth) and solved the under spatial sampling issue of the C-2 interferometer system. Improved density-profile measurement results are presented in this paper, including evidence of fast-ion modified density profile and stabilization of the n =more » 1 plasma wobble mode.« less

  9. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  10. Profiling interest of students in science: Learning in school and beyond

    NASA Astrophysics Data System (ADS)

    Dierks, Pay O.; Höffler, Tim N.; Parchmann, Ilka

    2014-05-01

    Background:Interest is assumed to be relevant for students' learning processes. Many studies have investigated students' interest in science; most of them however have not offered differentiated insights into the structure and elements of this interest. Purpose:The aim of this study is to obtain a precise image of secondary school students' interest for school and out-of-school learning opportunities, both formal and informal. The study is part of a larger project on measuring the students' Individual Concept about the Natural Sciences (ICoN), including self-efficacy, beliefs and achievements next to interest variables. Sample:Next to regular school students, a specific cohort will be analyzed as well: participants of science competitions who are regarded as having high interest, and perhaps different interest profiles than regular students. In the study described here, participants of the International Junior Science Olympiad (N = 133) and regular students from secondary schools (N = 305), age cohorts 10 to 17 years, participated. Design and methods:We adapted Holland's well-established RIASEC-framework to analyze if and how it can also be used to assess students' interest within science and in-school and out-of-school (leisure-time and enrichment) activities. The resulting questionnaire was piloted according to quality criteria and applied to analyze profiles of different groups (boys - girls, contest participants - non-participants). Results:The RIASEC-adaption to investigate profiles within science works apparently well for school and leisure-time activities. Concerning the interest in fostering measures, different emphases seem to appear. More research in this field needs to be done to adjust measures better to students' interests and other pre-conditions in the future. Contrasting different groups like gender and participation in a junior science contest uncovered specific interest profiles. Conclusions:The instrument seems to offer a promising approach to

  11. Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Singer, J.; Armstrong, J. T.

    2016-12-01

    Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.

  12. Membrane Insertion Profiles of Peptides Probed by Molecular Dynamics Simulations

    DTIC Science & Technology

    2008-07-17

    Membrane insertion profiles of peptides probed by molecular dynamics simulations In-Chul Yeh,* Mark A. Olson,# Michael S. Lee,*#§ and Anders...a methodology based on molecular dynamics simulation techniques to probe the insertion profiles of small peptides across the membrane interface. The...profiles of peptides probed by molecular dynamics simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  13. Using Distributed Temperature Sensing for measuring vertical temperature profiles and air temperature variance in the roughness sublayer above a forest canopy

    NASA Astrophysics Data System (ADS)

    Schilperoort, B.; Coenders, M.; Savenije, H. H. G.

    2017-12-01

    In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.

  14. Vertical electromagnetic profiling (VEMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, R.J.

    1984-08-01

    Vertical seismic profiling (VSP) is based upon reception measurements performed in a borehole with a source near the ground surface. This technology has seen a surge in application and development in the last decade. The analogous concept of vertical electromagnetic profiling (VEMP) consists of reception measurements performed in a borehole with a source near the ground surface. Although the electromagnetic concept has seen some application, this technology has not been as systematically developed and applied as VSP. Vertical electromagnetic profiling provides distinct and complementary data due to sensing different physical parameters than seismic profiling. Certain of the advantages of VEMPmore » are presented. 28 references, 7 figures.« less

  15. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  16. Associations between IVF outcomes and essential trace elements measured in follicular fluid and urine: a pilot study.

    PubMed

    Ingle, Mary E; Bloom, Michael S; Parsons, Patrick J; Steuerwald, Amy J; Kruger, Pamela; Fujimoto, Victor Y

    2017-02-01

    A hypothesis-generating pilot study exploring associations between essential trace elements measured in follicular fluid (FF) and urine and in vitro fertilization (IVF) endpoints. We recruited 58 women undergoing IVF between 2007 and 2008, and measured cobalt, chromium, copper, manganese, molybdenum, and zinc in FF (n = 46) and urine (n = 45) by inductively coupled plasma mass spectrometry (ICP-MS). We used multivariable regression models to assess the impact of FF and urine trace elements on IVF outcomes, adjusted for age, body mass index, race, and cigarette smoking. Trace elements were mostly present at lower concentrations in FF than in urine. The average number of oocytes retrieved was positively associated with higher urine cobalt, chromium, copper, and molybdenum concentrations. FF chromium and manganese were negatively associated with the proportion of mature oocytes, yet urine manganese had a positive association. FF zinc was inversely associated with average oocyte fertilization. Urine trace elements were significant positive predictors for the total number of embryos generated. FF copper predicted lower embryo fragmentation while urine copper was associated with higher embryo cell number and urine manganese with higher embryo fragmentation. No associations were detected for implantation, pregnancy, or live birth. Our results suggest the importance of trace elements in both FF and urine for intermediate, although not necessarily clinical, IVF endpoints. The results differed using FF or urine biomarkers of exposure, which may have implications for the design of clinical and epidemiologic investigations. These initial findings will form the basis of a more definitive future study.

  17. Isotopic and Elemental Determination in Some Romanian Apple Fruit Juices

    PubMed Central

    Magdas, Dana Alina; Dehelean, Adriana; Puscas, Romulus

    2012-01-01

    H, C, O stable isotope ratios and the content of some heavy elements of 31 Romanian single-strength organic apple juices collected from four Transylvanian areas are discussed in this study. The aim of this study was to measure the 2H/1H, 18O/16O, 13C/12C ratios of these juices and their elemental profile and to establish a database of authentic values to be used for adulteration and authenticity testing. Our results have shown mean values of δ 18O = −4.2‰ and δDδ−46.5‰, respectively, for apples from Transylvania and at the same time the mean value of δ 13C = −28.2‰. The content of Cd, Pb, U, Zn, As was below the acceptable limits stipulated in US-EPA standard for drinking water. Cu and Cr limits exceeded for one single juice; Ni content for some apple juices from Maramures, Alba, and Cluj was higher than the acceptable value. PMID:22666164

  18. Elemental and charge state composition of the fast solar wind observed with SMS instruments on WIND

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Galvin, A. B.; Ipavich, F. M.; Hamilton, D. C.; Bochsler, P.; Geiss, J.; Fisk, L. A.; Wilken, B.

    1995-01-01

    The elemental composition and charge state distributions of heavy ions of the solar wind provide essential information about: (1) atom-ion separation processes in the solar atmosphere leading to the 'FIP effect' (the overabundance of low First Ionization potential (FIP) elements in the solar wind compared to the photosphere); and (2) coronal temperature profiles, as well as mechanisms which heat the corona and accelerate the solar wind. This information is required for solar wind acceleration models. The SWICS instrument on Ulysses measures for all solar wind flow conditions the relative abundance of about 8 elements and 20 charge states of the solar wind. Furthermore, the Ulysses high-latitude orbit provides an unprecedented look at the solar wind from the polar coronal holes near solar minimum conditions. The MASS instrument on the WIND spacecraft is a high-mass resolution solar wind ion mass spectrometer that will provide routinely not only the abundances and charge state of all elements easily measured with SWICS, but also of N, Mg, S. The MASS sensor was fully operational at the end of 1994 and has sampled the in-ecliptic solar wind composition in both the slow and the corotating fast streams. This unique combination of SWICS on Ulysses and MASS on WIND allows us to view for the first time the solar wind from two regions of the large coronal hole. Observations with SWICS in the coronal hole wind: (1) indicate that the FIP effect is small; and (2) allow us determine the altitude of the maximum in the electron temperature profile, and indicate a maximum temperature of approximately 1.5 MK. New results from the SMS instruments on Wind will be compared with results from SWICS on Ulysses.

  19. Space-based measurements of elemental abundances and their relation to solar abundances

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Ogilvie, K. W.; Bochsler, P.; Geiss, J.

    1990-01-01

    The Ion Composition Instrument (ICI) aboard the ISEE-3/ICE spacecraft was in the solar wind continuously from August 1978 to December 1982. The results made it possible to establish long-term average solar wind abundance values for helium, oxygen, neon, silicon, and iron. The Charge-Energy-Mass instrument aboard the CCE spacecraft of the AMPTE mission has measured the abundance of these elements in the magnetosheath and has also added carbon, nitrogen, magnesium, and sulfur to the list. There is strong evidence that these magnetosheath abundances are representative of the solar wind. Other sources of solar wind abundances are Solar Energetic Particle experiments and Apollo lunar foils. When comparing the abundances from all of these sources with photospheric abundances, it is clear that helium is depleted in the solar wind while silicon and iron are enhanced. Solar wind abundances for carbon, nitrogen, oxygen, and neon correlate well with the photospheric values. The incorporation of minor ions into the solar wind appears to depend upon both the ionization times for the elements and the Coulomb drag exerted by the outflowing proton flux.

  20. Updating finite element dynamic models using an element-by-element sensitivity methodology

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Hemez, Francois M.

    1993-01-01

    A sensitivity-based methodology for improving the finite element model of a given structure using test modal data and a few sensors is presented. The proposed method searches for both the location and sources of the mass and stiffness errors and does not interfere with the theory behind the finite element model while correcting these errors. The updating algorithm is derived from the unconstrained minimization of the squared L sub 2 norms of the modal dynamic residuals via an iterative two-step staggered procedure. At each iteration, the measured mode shapes are first expanded assuming that the model is error free, then the model parameters are corrected assuming that the expanded mode shapes are exact. The numerical algorithm is implemented in an element-by-element fashion and is capable of 'zooming' on the detected error locations. Several simulation examples which demonstate the potential of the proposed methodology are discussed.