Sample records for element selenium se

  1. Effect of forms of selenium on the accumulation of selenium, sulfur, and forms of nitrogen and phosphorus in forage cowpea (Vigna sinensis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Singh, N.

    1979-05-01

    The effects of forms of selenium on the accumulation of sulfur, selenium, and forms of nitrogen and phosphorus in cowpea (Vigna sinensis) were studied in pots in the greenhouse at Haryana Agricultural University, Hissar, India. The soil used was sandy, and forms of selenium added were Na/sub 2/SeO/sub 4/ 10H/sub 2/O, Na/sub 2/SeO/sub 3/ 5H/sub 2/O, H/sub 2/SeO/sub 3/, and elemental selenium at the rate of 0, 1, 2.5 and 5 ppM. Dry matter yield and sulfur content decreased with increased selenium application. This inhibition in plants, attributable to applied selenium, was in the order SeO/sub 4/ > H/sub 2/SeO/submore » 3/ > SeO/sub 3/ > elemental selenium. Plant selenium increased with increasing application of all forms of selenium. The highest plant selenium (11.58 ppM) was in the plants treated with SeO/sub 4/, followed by the plants treated with H/sub 2/SeO/sub 3/, SeO/sub 3/, and elemental selenium. The total plant phosphorus increased with increased selenium application in any form, but maximum phosphorus occurred in SeO/sub 3/-treated plants. The inorganic phosphorus increased similarly, the largest amount occurring in SeO/sub 4/-treated plants. Organic phosphorus decreased with selenium application; minimum concentration was recorded in SeO/sub 4/-treated plants. Soluble nitrogen decreased, relative to the control, with applications of 2.5 and 5 ppM selenium. This decrease was minimal for elemental selenium and maximum for SeO/sub 4/. Soluble nitrogen, in the case of SeO/sub 3/ was higher than for H/sub 2/SeO/sub 3/. Total plant nitrogen and protein also decreased. Amino N, amide N, and ammoniacal and nitrate N increased, compared to the control. The largest amount of all these forms was noted in SeO/sub 4/-treated plants. Overall, among the forms of selenium normally reported in soils, the SeO/sub 4/ form showed the highest inhibition, whereas SeO/sub 3/ showed less than both SeO/sub 4/ and H/sub 2/SeO/sub 3/.« less

  2. Selenium biomineralization for biotechnological applications.

    PubMed

    Nancharaiah, Yarlagadda V; Lens, Piet N L

    2015-06-01

    Selenium (Se) is not only a strategic element in high-tech electronics and an essential trace element in living organisms, but also a potential toxin with low threshold concentrations. Environmental biotechnological applications using bacterial biomineralization have the potential not only to remove selenium from contaminated waters, but also to sequester it in a reusable form. Selenium biomineralization has been observed in phylogenetically diverse microorganisms isolated from pristine and contaminated environments, yet it is one of the most poorly understood biogeochemical processes. Microbial respiration of selenium is unique because the microbial cells are presented with both soluble (SeO(4)(2-) and SeO(3)(2-)) and insoluble (Se(0)) forms of selenium as terminal electron acceptor. Here, we highlight selenium biomineralization and the potential biotechnological uses for it in bioremediation and wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  4. Reduction of Selenite to Red Elemental Selenium by Rhodopseudomonas palustris Strain N

    PubMed Central

    Li, Baozhen; Liu, Na; Li, Yongquan; Jing, Weixin; Fan, Jinhua; Li, Dan; Zhang, Longyan; Zhang, Xiaofeng; Zhang, Zhaoming; Wang, Lan

    2014-01-01

    The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO3 −2) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO3 −2 and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX) and X ray diffraction analysis (XRD). Our results showed the strain N could reduce SeO3 −2 to red elemental selenium. The diameters of particles were 80–200 nm. The bacteria exhibited significant tolerance to SeO3 −2 up to 8.0 m mol/L concentration with an EC50 value of 2.4 m mol/L. After 9 d of cultivation, the presence of SeO3 2− up to 1.0 m mol/L resulted in 99.9% reduction of selenite, whereas 82.0% (p<0.05), 31.7% (p<0.05) and 2.4% (p<0.05) reduction of SeO3 −2 was observed at 2.0, 4.0 and 8.0 m mol/L SeO3 2− concentrations, respectively. This study indicated that red elemental selenium was synthesized by green technology using Rhodopseudomonas palustris strain N. This strain also indicated a high tolerance to SeO3 −2. The finding of this work will contribute to the application of selenium to human health. PMID:24759917

  5. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  6. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy.

    PubMed

    Yang, Soo In; George, Graham N; Lawrence, John R; Kaminskyj, Susan G W; Dynes, James J; Lai, Barry; Pickering, Ingrid J

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se 0 ). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se 0 using the Se L III edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50-700 nm, suggesting Se 0 nanoparticles. The intimate association of Se 0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  7. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Soo In; George, Graham N.; Lawrence, John R.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to themore » same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.« less

  8. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles.

    PubMed

    Jain, Rohan; Jordan, Norbert; Weiss, Stephan; Foerstendorf, Harald; Heim, Karsten; Kacker, Rohit; Hübner, René; Kramer, Herman; van Hullebusch, Eric D; Farges, François; Lens, Piet N L

    2015-02-03

    The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  9. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    PubMed Central

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new insight into the impact of selenium on green algae, especially with regard to its toxicity and bioaccumulation. PMID:19445666

  10. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.

    PubMed

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2015-10-01

    Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian

    2016-08-01

    Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.

  12. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum.

    PubMed

    Khoei, Nazanin Seyed; Lampis, Silvia; Zonaro, Emanuele; Yrjälä, Kim; Bernardi, Paolo; Vallini, Giovanni

    2017-01-25

    Microorganisms capable of transforming toxic selenium oxyanions into non-toxic elemental selenium (Se°) may be considered as biocatalysts for the production of selenium nanoparticles (SeNPs), eventually exploitable in different biotechnological applications. Two Burkholderia fungorum strains (B. fungorum DBT1 and B. fungorum 95) were monitored during their growth for both capacity and efficiency of selenite (SeO 3 2- ) reduction and elemental selenium formation. Both strains are environmental isolates in origin: B. fungorum DBT1 was previously isolated from an oil refinery drainage, while B. fungorum 95 has been enriched from inner tissues of hybrid poplars grown in a soil contaminated by polycyclic aromatic hydrocarbons. Our results showed that B. fungorum DBT1 is able to reduce 0.5mM SeO 3 2- to Se° when cultured aerobically in liquid medium at 27°C, while B. fungorum 95 can reduce more than 1mM SeO 3 2- to Se° within 96h under the same growth conditions, with the appearance of SeNPs in cultures of both bacterial strains. Biogenic SeNPs were spherical, with pH-dependent charge and an average hydrodynamic diameter of 170nm and 200nm depending on whether they were produced by B. fungorum 95 or B. fungorum DBT1, respectively. Electron microscopy analyses evidenced that Se nanoparticles occurred intracellularly and extracellularly. The mechanism of SeNPs formation can be tentatively attributed to cytoplasmic enzymatic activation mediated by electron donors. Biogenic nanoparticles were then probably released outside the bacterial cells as a consequence of a secretory process or cell lysis. Nevertheless, formation of elemental selenium nanoparticles under aerobic conditions by B. fungorum DBT1 and B. fungorum 95 is likely due to intracellular reduction mechanisms. Biomedical and other high tech sectors might exploit these biogenic nanoparticles in the near future, once fully characterized and tested for their multiple properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biomarkers of selenium status

    USDA-ARS?s Scientific Manuscript database

    The essential trace element selenium (Se) has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potentia...

  14. Effects of selenium biofortification on crop nutritional quality.

    PubMed

    Malagoli, Mario; Schiavon, Michela; dall'Acqua, Stefano; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulfur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health.

  15. Cathodic electrodeposition of amorphous elemental selenium from an air- and water-stable ionic liquid.

    PubMed

    Redman, Daniel W; Murugesan, Sankaran; Stevenson, Keith J

    2014-01-14

    Electrodeposition of selenium from 1-propyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide is reported. In situ UV-vis spectroelectrochemistry was used to investigate the reduction of diethyl selenite to form elemental selenium thin films from an ionic liquid-acetonitrile medium. Three reduction peaks of diethyl selenite were observed via cyclic voltammetry and are attributed to the stepwise reduction of the selenium precursor adsorbed on the electrode. The electrodeposition mechanism is influenced by both potential and time. Electrodeposition at -1.7 V vs Pt QRE resulted in the deposition of elemental selenium nanoparticles that with time coalesced to form a continuous film. At reduction potentials more negative than -1.7 V the morphology of the deposit changed significantly due to the reduction of elemental Se to Se(2-). In addition, p-type photoconductivity of the films was observed during the spectroelectrochemical measurements. X-ray diffraction and Raman spectroscopy confirmed that the deposited selenium films were amorphous. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy confirm the films consisted of pure selenium with minor residual contamination from the precursor and ionic liquid.

  16. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice.

    PubMed

    Wang, Huali; Zhang, Jinsong; Yu, Hanqing

    2007-05-15

    Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.

  17. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration

    USGS Publications Warehouse

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.

  18. Selenium in edible mushrooms.

    PubMed

    Falandysz, Jerzy

    2008-01-01

    Selenium is vital to human health. This article is a compendium of virtually all the published data on total selenium concentrations, its distribution in fruitbody, bioconcentration factors, and chemical forms in wild-grown, cultivated, and selenium-enriched mushrooms worldwide. Of the 190 species reviewed (belonging to 21 families and 56 genera), most are considered edible, and a few selected data relate to inedible mushrooms. Most of edible mushroom species examined until now are selenium-poor (< 1 microg Se/g dry weight). The fruitbody of some species of wild-grown edible mushrooms is naturally rich in selenium; their occurrence data are reviewed, along with information on their suitability as a dietary source of selenium for humans, the impact of cooking and possible leaching out, the significance of traditional mushroom dishes, and the element's absorption rates and co-occurrence with some potentially problematic elements. The Goat's Foot (Albatrellus pes-caprae) with approximately 200 microg Se/g dw on average (maximum up to 370 microg/g dw) is the richest one in this element among the species surveyed. Several other representatives of the genus Albatrellus are also abundant in selenium. Of the most popular edible wild-grown mushrooms, the King Bolete (Boletus edulis) is considered abundant in selenium as well; on average, it contains approximately 20 microg Se/g dw (maximum up to 70 microg/g dw). Some species of the genus Boletus, such as B. pinicola, B. aereus, B. aestivalis, B. erythropus, and B. appendiculus, can also accumulate considerable amounts of selenium. Some other relatively rich sources of selenium include the European Pine Cone Lepidella (Amanita strobiliformis), which contains, on average, approximately 20 microg Se/g dw (up to 37 microg/g dw); the Macrolepiota spp., with an average range of approximately 5 to < 10 microg/g dw (an exception is M. rhacodes with < 10 microg/g dw); and the Lycoperdon spp., with an average of approximately 5 microg Se/g dw. For several wild-grown species of the genus Agaricus, the selenium content ( approximately 5 microg/g dw) is much greater than that from cultivated Champignon Mushroom; these include A. bisporus, A. bitorquis, A. campestris, A. cesarea, A. campestris, A. edulis, A. macrosporus, and A. silvaticus. A particularly rich source of selenium could be obtained from selenium-enriched mushrooms that are cultivated on a substrate fortified with selenium (as inorganic salt or selenized-yeast). The Se-enriched Champignon Mushroom could contain up to 30 or 110 microg Se/g dw, while the Varnished Polypore (Ganoderma lucidum) could contain up to 72 microg Se/g dw. An increasingly growing database on chemical forms of selenium of mushrooms indicates that the seleno-compounds identified in carpophore include selenocysteine, selenomethionine, Se-methylselenocysteine, selenite, and several unidentified seleno-compounds; their proportions vary widely. Some aspects of environmental selenium occurrence and human body pharmacokinetics and nutritional needs will also be briefly discussed in this review.

  19. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    PubMed

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  20. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice.

    PubMed

    Zhang, Jinsong; Wang, Xufang; Xu, Tongwen

    2008-01-01

    Selenium (Se) is an essential trace element with a narrow margin between beneficial and toxic effects. As a promising chemopreventive agent, its use requires consumption over the long term, so the toxicity of Se is always a crucial concern. Based on clinical findings and recent studies in selenoprotein gene-modified mice, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect of Se. Furthermore, upregulation of phase 2 enzymes by Se has been implicated as a possible chemopreventive mechanism at supranutritional dietary levels. Se-methylselenocysteine (SeMSC), a naturally occurring organic Se product, is considered as one of the most effective chemopreventive selenocompounds. The present study revealed that, as compared with SeMSC, elemental Se at nano size (Nano-Se) possessed equal efficacy in increasing the activities of glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase, but had much lower toxicity as indicated by median lethal dose, acute liver injury, survival rate, and short-term toxicity. Our results suggest that Nano-Se can serve as a potential chemopreventive agent with reduced risk of Se toxicity.

  1. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential element for mammals but has not been considered as an essential element for higher plants. Lentil (Lens culinaris Medik.) is a cool season food legume rich in protein and a range of micronutrients including minerals (iron and zinc), folates, and carotenoids. The objecti...

  2. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2013-03-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  3. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2012-09-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate-scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se-species. The spatial and temporal dynamics of the model were validated with data from experiments and predictive simulations were performed covering aggregate sizes between 1 and 2.5 cm diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5-cm-aggregates compared to 1-cm-aggregates. Under oxic conditions, aggregate size and pyruvate-concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  4. Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction.

    PubMed

    Soda, S; Hasegawa, A; Kuroda, M; Hanada, A; Yamashita, M; Ike, M

    2015-01-01

    A novel process by using chemical leaching followed by bacterial reductive precipitation was proposed for selenium recovery from kiln powder as a byproduct of cement manufacturing. The kiln powder at a slurry concentration of 10 w/v% with 0.25 M Na2CO3 at 28°C produced wastewater containing about 30 mg-Se/L selenium. The wastewater was diluted four-fold and adjusted to pH 8.0 as preconditioning for bioreduction. A bacterial strain Pseudomonas stutzeri NT-I, capable of reducing selenate and selenite into insoluble elemental selenium, could recover about 90% selenium from the preconditioned wastewater containing selenium of 5 mg-Se/L when supplemented with lactate or glycerol. The selenium concentrations in the treated wastewater were low around the regulated effluent concentration of 0.1 mg-Se/L in Japan.

  5. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    PubMed Central

    2014-01-01

    Background Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium that is less toxic. Results A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain molybdenum as co-factor. Strain S44 was resistant to multiple heavy and transition metal(loid)s such as Se(IV), As(III), Cu(II), and Cd(II) with minimal inhibitory concentrations (MIC) of 100 mM, 20 mM, 4 mM, and 0.5 mM, respectively. Disruption of iscR encoding a transcriptional regulator negatively impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. Conclusions C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions and to tolerate multiple heavy and transition metals. IscR appears to be an activator to regulate genes involved in resistance to heavy or transition metal(loid)s but not for genes responsible for Se(IV) reduction. PMID:25098921

  6. Selenium accumulation and metabolism in algae.

    PubMed

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways

    USGS Publications Warehouse

    Luoma, S.N.; Johns, C.; Fisher, N.S.; Steinberg, N.A.; Oremland, R.S.; Reinfelder, J.R.

    1992-01-01

    Particulate organo-Se was assimilated with 86% efficiency by the deposit feeding bivalve Macoma balthica, when the clam was fed 75Se-labeled diatoms. Absorption efficiencies of participate elemental Se were 22%, when the animals were fed 75Se-labeled sediments in which elemental Se was precipitated by microbial dissimilatory reduction. Precipitation of elemental Se did not eliminate biological availability of the element. Selenite was taken up from solution slowly by M. balthica (mean concentration factor was 712). Concentrations of selenite high enough to influence Se bioaccumulation by M. balthica did not occur in the oxidized water column of San Francisco Bay. However, 98-99% of the Se observed in M. balthica could be explained by ingestion of the concentrations of participate Se found in the bay. The potential for adverse biological effects occurred at much lower concentrations of environmental Se when food web transfer was considered than when predictions of effects were based upon bioassays with solute forms of the element. Selenium clearly requires a protective criterion based upon particulate concentrations or food web transfer. ?? 1992 American Chemical Society.

  8. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei.

    PubMed

    Kurek, Eliza; Ruszczyńska, Anna; Wojciechowski, Marcin; Łuciuk, Anna; Michalska-Kacymirow, Magdalena; Motyl, Ilona; Bulska, Ewa

    Selenium is an element of very great importance for the proper functioning of the human body, mainly due to its antioxidant properties. Selenium exhibits a preventive effect in the case of cardiovascular disease, the immune system, male infertility and inhibits the toxic action of other agents. Selenium is important for Hashimoto's disease. Intake of selenium in the diet slows the aging process. The biological and toxicological effects of selenium strongly depend on its chemical form. Some organisms for example: plant, yeast, are capable of metabolizing low bioavailable selenium compounds (inorganic selenium) into its high bioavailable forms (organic selenium). The aim of this study was to investigate the bio-transformation of selenium by Lactobacillus bacteria towards the characterisation of selenium metabolites. The speciation of selenium was evaluated by high performance liquid chromatography with inductively coupled plasma mass spectrometry detector. The extraction of selenium species from lyophilized bacteria was executed with water, the mixture of lipase and protease, as well as lisozyme and sodium dodecyl sulphate. All investigated bacteria strains cultivated in the presence of Na2SeO3 effectively uptake selenium. Surprisingly, none of the applied extraction media exhibited a strong power to release the majority of the uptaken selenium compounds. Thus a maximum of 10% of the selenium was extracted from bacteria exposed to the enzymes. However, it was found that Lactobacillus bacteria are able to metabolize inorganic ions of selenium (IV) into Se-methionine, Se-methyloselenocysteine and other unidentified forms. The study confirmed the ability of probiotic bacteria to biotransform inorganic selenium into its organic derivatives. Therefore, Se-enriched bacteria can be considered as an addition to the functional food. selenium speciation, extraction procedure, Lactobacillus casei bacteria, Lactic acid bacteria (LAB), HPLC ICP-MS, functional food.

  9. Production of selenium nanoparticles in Pseudomonas putida KT2440.

    PubMed

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I; Chavarría, Max

    2016-11-15

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L -1 h -1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles.

  10. Production of selenium nanoparticles in Pseudomonas putida KT2440

    PubMed Central

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I.; Chavarría, Max

    2016-01-01

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L−1 h−1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles. PMID:27845437

  11. Selenium cycling across soil-plant atmosphere interfaces: a critical review

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass, and in the atmosphere. Low Se levels in certain terrestrial environments ha...

  12. Microbial Transformations of Selenium Species of Relevance to Bioremediation

    PubMed Central

    Eswayah, Abdurrahman S.; Smith, Thomas J.

    2016-01-01

    Selenium species, particularly the oxyanions selenite (SeO32−) and selenate (SeO42−), are significant pollutants in the environment that leach from rocks and are released by anthropogenic activities. Selenium is also an essential micronutrient for organisms across the tree of life, including microorganisms and human beings, particularly because of its presence in the 21st genetically encoded amino acid, selenocysteine. Environmental microorganisms are known to be capable of a range of transformations of selenium species, including reduction, methylation, oxidation, and demethylation. Assimilatory reduction of selenium species is necessary for the synthesis of selenoproteins. Dissimilatory reduction of selenate is known to support the anaerobic respiration of a number of microorganisms, and the dissimilatory reduction of soluble selenate and selenite to nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of selenium and has a major role in bioremediation and potentially in the production of selenium nanospheres for technological applications. Also, microbial methylation after reduction of Se oxyanions is another potentially effective detoxification process if limitations with low reaction rates and capture of the volatile methylated selenium species can be overcome. This review discusses microbial transformations of different forms of Se in an environmental context, with special emphasis on bioremediation of Se pollution. PMID:27260359

  13. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Sohn, Mary; Anquandah, George A K; Pettine, Maurizio; Zboril, Radek

    2017-12-01

    This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Urinary excretion of platinum, arsenic and selenium of cancer patients from the Antofagasta region in Chile treated with platinum-based drugs

    PubMed Central

    2012-01-01

    Background Arsenic exposure increases the risk of non-cancerous and cancerous diseases. In the Antofagasta region in Chile, an established relationship exists between arsenic exposure and the risk of cancer of the bladder, lung and skin. Platinum-based drugs are first-line treatments, and many works recognise selenium as a cancer-fighting nutrient. We characterised the short-term urinary excretion amounts of arsenic, selenium and platinum in 24-h urine samples from patients with lung cancer and those with cancer other than lung treated with cisplatin or/and carboplatin. As - Se - Pt inter-element relationships were also investigated. Results The amounts of platinum excreted in urine were not significantly different between patients with lung cancer and those with other cancers treated with cisplatin, despite the significant variation in platinum amounts supplied from platinum-based drugs. In general, the analytical amounts of excreted selenium were greater than those for arsenic, which could imply that platinum favours the excretion of selenium. For other types of cancers treated with drugs without platinum, excretion of selenium was also greater than that of arsenic, suggesting an antagonist selenium-anti-cancer drug relationship. Conclusions Regards the baseline status of patients, the analytical amounts of excreted Se is greater than those for As, particularly, for cisplatin chemotherapy. This finding could imply that for over the As displacement Pt favours the excretion of Se. The analytical amounts of excreted Se were greater than those for As, either with and without Pt-containing drugs, suggesting an antagonist Se-anti-cancer drug relationship. However, it seemed that differences existed between As - Se - Pt inter-element associations in patients treated for lung cancer in comparison with those treated for cancer other than lung. Therefore, knowledge obtained in this work, can contribute to understanding the arsenic cancer mechanism and the As - Se - Pt inter-element association for lung cancer and other types of cancer, which in some cases respond at a linear mathematical model. PMID:22546077

  15. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    PubMed

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se 0 ) under both aerobic and anaerobic conditions. The biogenic nano-Se 0 converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg 0 ) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg 0 remediation, probably owing to the release of intracellular nano-Se 0 from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se 0 and Hg 0 . Biosynthesis of nano-Se 0 both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg 0 -contaminated surface and subsurface soils, where the redox potential often changes dramatically. Copyright © 2016. Published by Elsevier Ltd.

  16. Selenium nanoparticles as a nutritional supplement.

    PubMed

    Skalickova, Sylvie; Milosavljevic, Vedran; Cihalova, Kristyna; Horky, Pavel; Richtera, Lukas; Adam, Vojtech

    2017-01-01

    Selenium is an essential trace element in the diet, required for maintenance of health and growth; however, its toxicity could cause serious damage depending on dose and chemical form. Selenium nanoparticles (SeNPs) represent what we believe to be a novel prospect for nutritional supplementation because of their lower toxicity and ability to gradually release selenium after ingestion. In this review, we discuss various forms and types of SeNPs, as well as the way they are synthesized. We also discuss absorption and bioavailability of nanoparticles within the organism. SeNPs demonstrate anticancer and antimicrobial properties that may contribute to human health, not only as dietary supplements, but also as therapeutic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    PubMed

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators (< 100 mg Se/kg DW), to Se-accumulators (100-1000 mg Se/kg DW) to Se hyperaccumulators (> 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  18. Opposing impacts on healthspan and longevity by limiting dietary selenium in Telomere Dysfunctional mice

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential trace element essential for optimal health. We investigated the role of Se in longevity and healthspan in a mouse model of healthy aging in humans with short telomeres. Telomere shortening is associated with aging, mortality and aging-related diseases. We found that whi...

  19. Se(VI) Reduction and the Precipitation of Se(0) Precipitation by the Facultative Bacterium Enterobacter Cloacae SLD1a-1 is Regulated by FNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee,N.; Ma, J.; Dalia, A.

    2007-01-01

    The fate of selenium in the environment is controlled, in part, by microbial selenium oxyanion reduction and Se(0) precipitation. In this study, we identified a genetic regulator that controls selenate reductase activity in the Se-reducing bacterium Enterobacter cloacae SLD1a-1. Heterologous expression of the global anaerobic regulatory gene fnr (fumarate nitrate reduction regulator) from E. cloacae in the non-Se-reducing strain Escherichia coli S17-1 activated the ability to reduce Se(VI) and precipitate insoluble Se(0) particles. Se(VI) reduction by E. coli S17-1 containing the fnr gene occurred at rates similar to those for E. cloacae, with first-order reaction constants of k = 2.07more » x 10{sup -2} h{sup -1} and k = 3.36 x 10{sup -2} h{sup -1}, respectively, and produced elemental selenium particles with identical morphologies and short-range atomic orders. Mutation of the fnr gene in E. cloacae SLD1a-1 resulted in derivative strains that were deficient in selenate reductase activity and unable to precipitate elemental selenium. Complementation by the wild-type fnr sequence restored the ability of mutant strains to reduce Se(VI). Our findings suggest that Se(VI) reduction and the precipitation of Se(0) by facultative anaerobes are regulated by oxygen-sensing transcription factors and occur under suboxic conditions.« less

  20. Polonium-210 and selenium in tissues and tissue extracts of the mussel Mytilus galloprovincialis (Gulf of Trieste).

    PubMed

    Kristan, Urška; Planinšek, Petra; Benedik, Ljudmila; Falnoga, Ingrid; Stibilj, Vekoslava

    2015-01-01

    Marine organisms such as mussels and fish take up polonium (Po) and selenium (Se), and distribute them into different cellular components and compartments. Due to its high radiotoxicity and possible biomagnification across the marine food chain Po-210 is potentially hazardous, while selenium is an essential trace element for humans and animals. The aim of this study was to investigate and compare the presence and extractability of the elements in the mussels Mytilus galloprovincialis collected in the Gulf of Trieste. The levels of Po-210 in the samples ranged from 220 to 400 Bq kg(-1) and of Se from 2.6 to 8.2 mg kg(-1), both on a dry matter basis. Using various extraction types and conditions in water, buffer or enzymatic media, the best extractability was obtained with enzymatic extraction (Protease XIV, 1h shaking at 40 °C) and the worst by water extraction (24 h shaking at 37 °C). 90% of Po-210 and 70% of Se was extractable in the first case versus less than 10% of Po-210 and less than 40% of Se in the second. Such evident differences in extractability between the investigated elements point to different metabolic pathways of the two elements. In enzymatic extracts Se speciation revealed three Se compounds (SeCys2, SeMet, one undefined), while Po-210 levels were too low to allow any conclusions about speciation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Chemical Sample Processing for Combined Selenium Isotope and Selenium-Tellurium Elemental Investigation of the Earth's Igneous Reservoirs

    NASA Astrophysics Data System (ADS)

    Yierpan, Aierken; König, Stephan; Labidi, Jabrane; Kurzawa, Timon; Babechuk, Michael G.; Schoenberg, Ronny

    2018-02-01

    The redox-sensitive, chalcophile, and volatile Se stable isotope system offers new perspectives to investigate the origin and evolution of terrestrial volatiles and the roles of magmatic and recycling processes in the development of the redox contrast between Earth's reservoirs. Selenium isotope systematics become more robust in a well-constrained petrogenetic context as can be inferred from Se-Te elemental signatures of sulfides and igneous rocks. In this study, we present a high-yield chemical sample processing method that allows the determination of Se-Te concentrations and Se isotope composition from the same sample digest of silicate rocks by hydride generation isotope dilution (ID) quadrupole inductively coupled plasma mass spectrometry (ICP-MS) and double spike (DS) multicollector (MC)-ICP-MS, respectively. Our procedure yields ˜80% Se-Te recoveries with quantitative separation of relevant interfering elements such as Ge and HG-buffering metals. Replicate analyses of selected international reference materials yield uncertainties better than 0.11‰ (2 s.d.) on δ82/76Se and 3% (r.s.d.) on Se concentration for DS MC-ICP-MS determinations for as low as ˜10 ng sample Se. The precision of Se-Te concentration measurements by ID ICP-MS is better than 3% and 5% (r.s.d.) for total amounts of ˜0.5-1 ng Se and ˜0.2-0.5 ng Te, respectively. The basaltic reference materials have variable Se-Te contents, but their δ82/76Se values are rather uniform (on average 0.23 ± 0.14‰; 2 s.d.) and different from the chondritic value. This altogether provides the methodology and potential to extend the limited data set of coupled Se isotope and Se-Te elemental systematics of samples relevant to study the terrestrial igneous inventory.

  2. Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.

    PubMed

    Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin

    2011-01-15

    Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Selenium deficiency risk predicted to increase under future climate change

    PubMed Central

    Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.

    2017-01-01

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487

  5. Selenium deficiency risk predicted to increase under future climate change.

    PubMed

    Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E

    2017-03-14

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.

  6. Acute selenium selenite exposure effects on oxidative stress biomarkers and essential metals and trace-elements in the model organism zebrafish (Danio rerio).

    PubMed

    Hauser-Davis, R A; Silva, J A N; Rocha, Rafael C C; Saint'Pierre, Tatiana; Ziolli, R L; Arruda, M A Z

    2016-01-01

    Selenium (Se) is an essential trace-element that becomes toxic when present at high concentrations. Little is known regarding Se effects on parameters such as oxidative stress biomarkers. The aim of the present study was to investigate the effects of acute selenium exposure on oxidative stress biomarkers in a model organism, zebrafish (Danio rerio). Fish were exposed to selenium selenite at 1mgL(-1). Reduced glutathione (GSH), and metallothionein (MT) concentrations were determined in liver, kidney and brain, with MT also being determined in bile. Essential metals and trace-elements were also determined by inductively coupled mass spectrometry (ICP-MS) in order to verify possible metal homeostasis alterations. GSH concentrations in liver, kidney and brain increased significantly (1.05±0.03μmolg(-1) ww, 1.42±0.03μmolg(-1) ww and 1.64±0.03μmolg(-1) ww, respectively) in the Se-exposed group when compared to the controls (0.88±0.05μmolg(-1) ww, 0.80±0.04μmolg(-1) ww and 0.89±0.03μmolg(-1) ww for liver, kidney and brain, respectively). MT levels in Se-exposed liver (0.52±0.03μmolg(-1) ww) decreased significantly in comparison to the control group (0.64±0.02μmolg(-1) ww), while levels in bile increased, albeit non-significantly. This is in accordance with previous studies that indicate efficient biliary MT action, leading to a rapid metabolism and elimination of contaminants from the body. Levels in the brain increased significantly after Se-exposure (0.57±0.01μmolg(-1) ww) when compared to the control group (0.35±0.03μmolg(-1) ww) since this organ does not present a detoxification route as quick as the liver-gallbladder route. Several metal and trace-elements were altered with Se-exposure, indicating that excess of selenium results in metal dyshomeostasis. This is the first report on metal dyshomeostasis due to Se-exposure, which may be the first step in the mechanism of action of selenium toxicity, as is postulated to occur in certain major human pathophysiologies. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Selenium in bone health: roles in antioxidant protection and cell proliferation.

    PubMed

    Zeng, Huawei; Cao, Jay J; Combs, Gerald F

    2013-01-10

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.

  8. Selenium in Bone Health: Roles in Antioxidant Protection and Cell Proliferation

    PubMed Central

    Zeng, Huawei; Cao, Jay J.; Combs, Gerald F.

    2013-01-01

    Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health. PMID:23306191

  9. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    PubMed

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): Implications for nutritional fortification strategies

    USDA-ARS?s Scientific Manuscript database

    Lentils (Lens culinaris L.) are an important protein and carbohydrate food, rich in essential dietary components and trace elements. Selenium (Se) is an essential micronutrient for human health. For adults, 55 µg of daily Se intake is recommended for better health and cancer prevention. Millions of ...

  11. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay.

    PubMed

    Dwivedi, Sourabh; Alkhedhairy, Abdulaziz A; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3(2-)) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3(2-) to insoluble red elemental selenium (Se(0)) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3(2-) to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3(2-) to elemental red Se(0), a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3(2-) bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point.

  12. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant

    PubMed Central

    Afton, Scott E.; Catron, Brittany; Caruso, Joseph A.

    2009-01-01

    Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with SeVI, but a combination of passive and direct absorption occurred when supplemented with SeIV due to the partial oxidation of SeIV to SeVI in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with SeIV, but in the leaves of plants supplemented with SeVI due to an increased translocation rate. When supplemented as AsIII, arsenic is proposed to be passively absorbed as AsIII and partially oxidized to AsV in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant. PMID:19273464

  13. Biofortification and phytoremediation of selenium in China

    PubMed Central

    Wu, Zhilin; Bañuelos, Gary S.; Lin, Zhi-Qing; Liu, Ying; Yuan, Linxi; Yin, Xuebin; Li, Miao

    2015-01-01

    Selenium (Se) is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. Selenium phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed. PMID:25852703

  14. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    PubMed

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Facile Synthesis and Optical Properties of Small Selenium Nanocrystals and Nanorods

    NASA Astrophysics Data System (ADS)

    Jiang, Fengrui; Cai, Weiquan; Tan, Guolong

    2017-06-01

    Selenium is an important element for human's health, small size is very helpful for Se nanoparticles to be absorbed by human's body. Here, we present a facile approach to fabrication of small selenium nanoparticles (Nano-Se) as well as nanorods by dissolving sodium selenite (Na2SeO3) in glycerin and using glucose as the reduction agent. The as-prepared selenium nanoparticles have been characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and high resolution transmission electron microscope (HRTEM). The morphology of small Se nanoparticles and nanorods have been demonstrated in the TEM images. A small amount of 3-mercaptoproprionic acid (MPA) and glycerin play a key role on controlling the particle size and stabilize the dispersion of Nano-Se in the glycerin solution. In this way, we obtained very small and uniform Se nanoparticles; whose size ranges from 2 to 6 nm. This dimension is much smaller than the best value (>20 nm) ever reported in the literatures. Strong quantum confinement effect has been observed upon the size-dependent optical spectrum of these Se nanoparticles.

  16. Ameliorative Effects of Dietary Selenium Against Cadmium Toxicity Is Related to Changes in Trace Elements in Chicken Kidneys.

    PubMed

    Zhang, Runxiang; Wang, Yanan; Wang, Chao; Zhao, Peng; Liu, Huo; Li, Jianhong; Bao, Jun

    2017-04-01

    The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.

  17. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats.

    PubMed

    Shi, Li-guang; Yang, Ru-jie; Yue, Wen-bin; Xun, Wen-juan; Zhang, Chun-xiang; Ren, You-she; Shi, Lei; Lei, Fu-lin

    2010-04-01

    The objective of this experiment is to study the effects of novel elemental nano-selenium in the diet on testicular ultrastructure, semen quality and GSH-Px activity in male goats. Forty-two 2-month-old bucks were offered a total mixed ration which had been supplemented with nano-Se (0.3mg/kg Se) or unsupplemented (the control group only received 0.06mg/kg Se-background), for a period of 12 weeks (from weaning to sexual maturity). Results showed that the testicular Se level, semen glutathione peroxidase and ATPase activity increased significantly in the nano-Se supplementation group compared with control (P<0.05). The semen quality (volume, density, motility and pH) was not affected by added Se in diets, however, the sperm abnormality rate of control bucks was significantly higher than Se supplemented bucks (P<0.05). The testes of 5 goats in each group were examined by transmission electron microscopy (TEM), and showed that in Se-deficient bucks the membrane was damaged, and showed the occurrence of abnormalities in the mitochondria of the midpiece of spermatozoa. In conclusion, selenium deficiency resulted in abnormal spermatozoal mitochondria, and supplementation with nano-Se enhanced the testis Se content, testicular and semen GSH-Px activity, protected the membrane system integrity and the tight arrayment of the midpiece of the mitochondria. Further studies are required to research the novel elemental nano-Se with characterization of bioavailability and toxicity in small ruminants. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Competition between the Brain and Testes under Selenium-Compromised Conditions: Insight into Sex Differences in Selenium Metabolism and Risk of Neurodevelopmental Disease.

    PubMed

    Pitts, Matthew W; Kremer, Penny M; Hashimoto, Ann C; Torres, Daniel J; Byrns, China N; Williams, Christopher S; Berry, Marla J

    2015-11-18

    Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly(-/-)Sepp1(-/-) mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly(-/-)Sepp1(-/-) mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels. Moreover, castration also yields similar neuroprotective benefits to Sepp1(-/-) and wild-type mice challenged with Se-deficient diets. Our data show that, under Se-compromised conditions, the brain and testes compete for Se utilization, with concomitant effects on neurodevelopment and neurodegeneration. Selenium is an essential trace element that promotes male fertility and brain function. Herein, we report that prepubescent castration provides neuroprotection by increasing selenium-dependent antioxidant activity in the brain, revealing a competition between the brain and testes for selenium utilization. These findings provide novel insight into the interaction of sex and oxidative stress upon the developing brain and have potentially significant implications for the prevention of neurodevelopmental disorders characterized by aberrant excitatory/inhibitory balance, such as schizophrenia and epilepsy. Copyright © 2015 the authors 0270-6474/15/3515326-13$15.00/0.

  19. Selenium and other elements in juvenile striped bass from the San Joaquin Valley and San Francisco Estuary, California

    USGS Publications Warehouse

    Saiki, Michael K.; Palawski, Donald U.

    1990-01-01

    Concentrations of selenium and other trace elements were determined in 55 whole body samples of juvenile anadromous striped bass (Morone saxatilis) from the San Joaquin Valley and San Francisco Estuary, California. The fish (≤1 yr old—the predominant life stage in the San Joaquin Valley) were collected in September–December 1986 from 19 sites in the Valley and 3 sites in the Estuary, and analyzed for the following elements: aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), magnesium (Mg), molybdenum (Mo), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), vanadium (V), and zinc (Zn). When compared to concentrations in whole freshwater fish measured by surveys from other waters, a few samples contained higher levels, of As, Cd, Cu, Pb, and Se. The median concentrations of Al, As, Cu, Fe, Mg, Se, and Sr also differed significantly (P⩽0.05) among sites. However, only Se concentrations were highest (up to 7.9 μg/g dry weight) in samples from Valley sites exposed to agricultural subsurface (tile) drainwater; concentrations were lower in samples collected elsewhere. Water quality variables—especially those strongly influenced by tile drainwater (conductivity, total dissolved solids, total alkalinity, and total hardness)—were also significantly correlated (P⩽0.05) with Se concentrations in fish. Selenium concentrations in striped bass from the Estuary were only one-fourth to one-half the concentrations measured in the most contaminated fish from the San Joaquin River.

  20. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres.

    PubMed

    Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran

    2017-01-01

    Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD 50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings.

  1. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres

    PubMed Central

    Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran

    2017-01-01

    Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings. PMID:28684913

  2. Toxicokinetics of selenium in the slider turtle, Trachemys scripta.

    PubMed

    Dyc, Christelle; Far, Johann; Gandar, Frédéric; Poulipoulis, Anastassios; Greco, Anais; Eppe, Gauthier; Das, Krishna

    2016-05-01

    Selenium (Se) is an essential element that can be harmful for wildlife. However, its toxicity in poikilothermic amniotes, including turtles, remains poorly investigated. The present study aims at identifying selenium toxicokinetics and toxicity in juvenile slider turtles (age: 7 months), Trachemys scripta, dietary exposed to selenium, as selenomethionine SeMet, for eight weeks. Non-destructive tissues (i.e. carapace, scutes, skin and blood) were further tested for their suitability to predict selenium levels in target tissues (i.e. kidney, liver and muscle) for conservation perspective. 130 juvenile yellow-bellied slider turtles were assigned in three groups of 42 individuals each (i.e. control, SeMet1 and SeMet2). These groups were subjected to a feeding trial including an eight-week supplementation period SP 8 and a following 4-week elimination period EP 4 . During the SP8, turtles fed on diet containing 1.1 ± 0.04, 22.1 ± 1.0 and 45.0 ± 2.0 µg g(-1) of selenium (control, SeMet1 and SeMet2, respectively). During the EP4, turtles fed on non-supplemented diet. At different time during the trial, six individuals per group were sacrificed and tissues collected (i.e. carapace, scutes, skin, blood, liver, kidney, muscle) for analyses. During the SP8 (Fig. 1), both SeMet1 and SeMet2 turtles efficiently accumulated selenium from a SeMet dietary source. The more selenium was concentrated in the food, the more it was in the turtle body but the less it was removed from their tissues. Moreover, SeMet was found to be the more abundant selenium species in turtles' tissues. Body condition (i.e. growth in mass and size, feeding behaviour and activity) and survival of the SeMet1 and SeMet2 turtles seemed to be unaffected by the selenium exposure. There were clear evidences that reptilian species are differently affected by and sensitive to selenium exposure but the lack of any adverse effects was quite unexpected. Fig. 1 Design of the feeding trial. T, Time of tissues collection in weeks. The feeding trial included a supplementation period of 8 weeks (i.e. SP8) followed by an elimination period of 4 weeks (i.e. EP4). Six turtles from each turtle group (i.e. control, SeMet1 and SeMet2) were sacrifice at each collection time, from T1 to T12. At T0, four turtles were sacrificed.

  3. Microbial Transformations of Selenium

    PubMed Central

    Doran, J. W.; Alexander, M.

    1977-01-01

    Resting cell suspensions of a strain of Corynebacterium isolated from soil formed dimethyl selenide from selenate, selenite, elemental selenium, selenomethionine, selenocystine, and methaneseleninate. Extracts of the bacterium catalyzed the production of dimethyl selenide from selenite, elemental selenium, and methaneseleninate, and methylation of the inorganic Se compounds was enhanced by S-adenosylmethionine. Neither trimethylselenonium nor methaneselenonate was metabolized by the Corynebacterium. Resting cell suspensions of a methionine-utilizing pseudomonad converted selenomethionine to dimethyl diselenide. Six of 10 microorganisms able to grow on cystine used selenocystine as a sole source of carbon and formed elemental selenium, and one of the isolates, a pseudomonad, was found also to produce selenide. Soil enrichments converted trimethylselenonium to dimethyl selenide. Bacteria capable of utilizing trimethylselenonium, dimethyl selenide, and dimethyl diselenide as carbon sources were isolated from soil. PMID:16345188

  4. Biogenic selenium nanoparticles: current status and future prospects.

    PubMed

    Wadhwani, Sweety A; Shedbalkar, Utkarsha U; Singh, Richa; Chopade, Balu A

    2016-03-01

    Selenium nanoparticles (SeNPs) are gaining importance in the field of medicine owing to their antibacterial and anticancer properties. SeNPs are biocompatible and non-toxic compared to the counterparts, selenite (SeO3 (-2)) and selenate (SeO4 (-2)). They can be synthesized by physical, chemical, and biological methods and have distinct bright orange-red color. Biogenic SeNPs are stable and do not aggregate owing to natural coating of the biomolecules. Various hypotheses have been proposed to describe the mechanism of microbial synthesis of SeNPs. It is primarily a two-step reduction process from SeO4 (-2) to SeO3 (-2) to insoluble elemental selenium (Se(0)) catalyzed by selenate and selenite reductases. Phenazine-1-carboxylic acid and glutathione are involved in selenite reduction. Se factor A (SefA) and metalloid reductase Rar A present on the surface of SeNPs confer stability to the nanoparticles. SeNPs act as potent chemopreventive and chemotherapeutic agents. Conjugation with antibiotics enhances their anticancer efficacy. These also have applications in nanobiosensors and environmental remediation.

  5. Selenium protein identification and profiling by mass spectrometry: A tool to assess progression of cardiomyopathy in a whale model.

    PubMed

    Bryan, Colleen E; Bossart, Gregory D; Christopher, Steven J; Davis, W Clay; Kilpatrick, Lisa E; McFee, Wayne E; O'Brien, Terrence X

    2017-12-01

    Non-ischemic cardiomyopathy is a leading cause of congestive heart failure and sudden cardiac death in humans and in some cases the etiology of cardiomyopathy can include the downstream effects of an essential element deficiency. Of all mammal species, pygmy sperm whales (Kogia breviceps) present the greatest known prevalence of cardiomyopathy with more than half of examined individuals indicating the presence of cardiomyopathy from gross and histo-pathology. Several factors such as genetics, infectious agents, contaminants, biotoxins, and inappropriate dietary intake (vitamins, selenium, mercury, and pro-oxidants), may contribute to the development of idiopathic cardiomyopathy in K. breviceps. Due to the important role Se can play in antioxidant biochemistry and protein formation, Se protein presence and relative abundance were explored in cardiomyopathy related cases. Selenium proteins were separated and detected by multi-dimension liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS), Se protein identification was performed by liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS), and Se protein profiles were examined in liver (n=30) and heart tissue (n=5) by SEC/UV/ICP-MS detection. Data collected on selenium proteins was evaluated in the context of individual animal trace element concentration, life history, and histological information. Selenium containing protein peak profiles varied in presence and intensity between animals with no pathological findings of cardiomyopathy and animals exhibiting evidence of cardiomyopathy. In particular, one class of proteins, metallothioneins, was found to be associated with Se and was in greater abundance in animals with cardiomyopathy than those with no pathological findings. Profiling Se species with SEC/ICP-MS proved to be a useful tool to identify Se protein pattern differences between heart disease stages in K. breviceps and an approach similar to this may be applied to other species to study Se protein associations with cardiomyopathy. Published by Elsevier GmbH.

  6. Selenium extraction: development on extraction chromatographic resins compatible with Diffusive Gradient in Thin film (DGT)

    NASA Astrophysics Data System (ADS)

    Rad, S.; Dirks-Fandrei, C.; Happel, S. A.; Bombard, A.; Cary, L.

    2016-12-01

    Measurement of Selenium is of importance regarding public health as the ratio between beneficial daily intake and toxicity is rather low [1], [2]. Also from the radiological perspective, Se-79 as a long-lived fission nuclide (T1/2=2.8x105y) with high mobility in environment, is of concern regarding waste management and decommissioning [3], [4]. Due to the existence of different oxidation states Selenium has a complex speciation chemistry which makes extraction and separation schemes not straightforward. The aim of this research is to develop extraction methods for Selenium based on extraction chromatographic resins allowing for the extraction of Se(VI), as well as Se(IV), from water samples for later use on DGT (Diffusive Gradients in Thin films) devices. Extraction chromatographic resins have been tested and characterized for Se and other elements. For Se(VI) a commercially available Aliquat 336 based extraction chromatographic resin (TEVA resin[5]) was found to be most suitable, for Se(IV) a newly developed extraction chromatographic resin based on Piazselenol chemistry was found to be most effective, data on the selectivity of this resin will be presented. The extraction of Se(IV) and Se(VI) by these resins was tested on water sampled in Lille City, where a high Se spatial variability has been observed. Concentrations in groundwater can reach 30µg/L as a consequence; most Se-contaminated wells are no longer exploited by the water operators. One of the applications of this development is to be able to measure Se concentrations insitu in contaminated areas including very complex object such as hyporheic zone. [1] Cary L. et al. Applied Geochemistry 48 (2014) 70-82 [2] Chen C. et al. Biological Trace Element Research Vols. 71-72 (1999) 131-138 [3] http://www.irsn.fr/FR/Larecherche/publications-documentation/fiches-radionucleides/Documents/environnement/Selenium_Se79_v2.pdf last access 03/03/2016 [4] Uchida et al. WM2009 Conference, March 1-5, 2009, Phoenix, AZ [5] Horwitz P. et al. Analytica Chimica Acta 310 (1995) 63-78

  7. Biomimetic Synthesis of Selenium Nanospheres by Bacterial Strain JS-11 and Its Role as a Biosensor for Nanotoxicity Assessment: A Novel Se-Bioassay

    PubMed Central

    Dwivedi, Sourabh; AlKhedhairy, Abdulaziz A.; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3 2−) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3 2− to insoluble red elemental selenium (Se0) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3 2− to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3 2− to elemental red Se0, a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3 2− bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point. PMID:23483909

  8. Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...

  9. Speciation, Characterization, And Mobility Of As, Se, and Hg In Flue Gas Desulphurization Residues

    EPA Science Inventory

    Flue gas from coal combustion contains significant amounts of volatile elements, such as arsenic (As), selenium (Se) and mercury (Hg), which could lead to serious environmental health risks. The capture of these toxic elements in the scrubber with a flue gas desulphurization (FGD...

  10. Coal fly ash basins as an attractive nuisance to birds: parental provisioning exposes nestlings to harmful trace elements.

    PubMed

    Bryan, A L; Hopkins, W A; Parikh, J H; Jackson, B P; Unrine, J M

    2012-02-01

    Birds attracted to nest around coal ash settling basins may expose their young to contaminants by provisioning them with contaminated food. Diet and tissues of Common Grackle (Quiscalus quiscala) nestlings were analyzed for trace elements to determine if nestlings were accumulating elements via dietary exposure and if feather growth limits elemental accumulation in other tissues. Arsenic, cadmium, and selenium concentrations in ash basin diets were 5× higher than reference diets. Arsenic, cadmium, and selenium concentrations were elevated in feather, liver, and carcass, but only liver Se concentrations approached levels of concern. Approximately 15% of the total body burden of Se, As, and Cd was sequestered in feathers of older (>5 days) nestlings, whereas only 1% of the total body burden of Sr was sequestered in feathers. Feather concentrations of only three elements (As, Se, and Sr) were correlated with liver concentrations, indicating their value as non-lethal indicators of exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Geochemistry of selenium.

    PubMed

    Kabata-Pendias, A

    1998-01-01

    Selenium (Se) is one of the most peculiar chemical elements in the geo- and biospheres. It partly resembles sulfur and tellurium; however, its behavior in the geosphere and its functions in the biosphere are very specific. Despite a relatively large database, its cycling in both the natural environment and in that modified by human activities requires further study. Selenium is rather concentrated in the geospheric cycle and is also bioconcentrated. The values of its accumulation ratios are: 5 for soil/sandstone, 2 for animal tissues/sandstone, and 5 for animal tissues/grain. For a specific plant/soil system, the bioconcentration factor for plants always has to be estimated because some plants can absorb extremely high concentrations of Se. Their ability to accumulate and tolerate high Se levels is related to different Se metabolisms. These plants play a significant role in geochemical prospecting and animal nutrition. This paper presents some geochemical observations toward a better understanding of the environmental properties of Se.

  12. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1

    PubMed Central

    Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed

    2015-01-01

    Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed. PMID:26005349

  13. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1.

    PubMed

    Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed

    2015-01-01

    Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed.

  14. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis

    PubMed Central

    Kehr, Sebastian; Malinouski, Mikalai; Finney, Lydia; Vogt, Stefan; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Carlson, Bradley A.; Zhou, You; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2009-01-01

    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by Selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and co-localized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.14 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis. PMID:19379757

  15. [The relationship between selenium and gastrointestinal inflammatory diseases].

    PubMed

    Nagy, Dániel Tamás; Fülesdi, Béla; Hallay, Judit

    2013-10-13

    The cell-membrane toxicity of reactive oxygen and nitrogen species (RONS) plays an increasing role in the pathomechanism of gastrointestinal tract diseases. Trace elements are important parts of antioxidant protecting system, especially the selenium (Se), which, in the form of glutathione peroxidase contributes to the immunity of the gut (GALT). Due to the absorptional disorders and consequent malnutrition observed in the course of inflammatory bowel diseases (IBD) an important role is associated with nutritional therapy, including energy-, protein- and trace element-support. Human studies show, that IBD is mostly accompanied by lower serum Se concentrations, reduced antoxidant and increased proinflammatory activity. Adequate Se-replacement may reduce the severity of organ failure and infections, but not mortality. However, it is encouraging that in animal studies obvious preventive effect of Se has been found on IBD and chronic inflammation induced colon cancer .

  16. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats.

    PubMed

    Jia, X; Li, N; Chen, J

    2005-03-11

    The subchronic toxicity of Nano-Se was compared with selenite and high-selenium protein in rats. Groups of Sprague-Dawley rats (12 males and 12 females per group) were fed diets containing Nano-Se, selenite and high-selenium protein at concentrations of 0, 2, 3, 4 and 5 ppm Se, respectively, for 13 weeks. Clinical observations were made and body weight and food consumption were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry determination. Histopathological examination was performed on selected tissues. At the two higher doses (4 and 5 ppm Se), significant abnormal changes were found in body weight, hematology, clinical chemistry, relative organ weights and histopathology parameters. However, the toxicity was more pronounced in the selenite and high-selenium protein groups than the Nano-Se group. At the dose of 3 ppm Se, significant growth inhibition and degeneration of liver cells were found in the selenite and high-selenium protein groups. No changes attributable to administration of Nano-Se at the dose of 3 ppm Se were found. Taken together, the no-observed-adverse-effect level (NOAEL) of Nano-Se in male and female rats was considered to be 3 ppm Se, equivalent to 0.22 mg/kg bw/day for males and 0.33 mg/kg bw/day for females. On the other hand, the NOAELs of selenite and high-selenium protein in males and females were considered to be 2 ppm Se, equivalent to 0.14 mg/kg bw/day for males and 0.20 mg/kg bw/day for females. In addition, studies have shown that Nano-Se has a similar bioavailability in rat, and much less acute toxicity in mice compared with selenite. In conclusion, Nano-Se is less toxic than selenite and high-selenium protein in the 13-week rat study.

  17. Novel selenium-doped hydroxyapatite coatings for biomedical applications.

    PubMed

    Rodríguez-Valencia, C; López-Álvarez, M; Cochón-Cores, B; Pereiro, I; Serra, J; González, P

    2013-03-01

    Nowadays there is a short-term need of investigating in orthopedic implants with a greater functionality, including an improved osseointegration and also antibacterial properties. The coating of metallic implants with hydroxyapatite (HA) remains to be the main proposal, but superior quality HA coatings with compositions closer to natural bone apatites, including carbonates, trace elements are required. Selenium is an essential nutrient in biological tissues and, at the same time, it also presents antibacterial properties. A pioneering study on the fabrication of selenium-doped carbonated hydroxyapatite (iHA:Se) coatings by Pulsed Laser Deposition (PLD) is presented. Different proportions of selenium were incorporated to obtain the iHA:Se coatings. Their physicochemical characterization, performed by SEM/EDS, FTIR, FT-Raman, Interferometric Profilometry and XPS, revealed typical columnar growth of HA in globular aggregates and the efficient incorporation of selenium into the HA coatings by the, most probably, substitution of SeO(3)(2-) groups in the CO(3)(2-) sites. Biological evaluation illustrated the absence of cytotoxicity when an amount of 0.6 at.% of Se was added to the iHA:Se coatings and excellent proliferation of the MC3T3-E1 preosteoblasts. Antibacterial properties were also proved with the inhibition of P. aeruginosa and S. aureus from establishing bacterial biofilms. Copyright © 2012 Wiley Periodicals, Inc.

  18. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver.

    PubMed

    Gulyas, G; Csosz, E; Prokisch, J; Javor, A; Mezes, M; Erdelyi, M; Balogh, K; Janaky, T; Szabo, Z; Simon, A; Czegledi, L

    2017-06-01

    The nano-sized (100-500 nm) selenium has higher bioavailability and relatively lower toxicity compared to other selenium forms. The objective of the present study was to compare liver proteome profiles of broiler chicken fed with control diet without Se supplementation and diet supplemented with nano-Se with 4.25 mg/kg DM. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed by tryptic digestion and protein identification by liquid chromatography-mass spectrometry (LC-MS). Seven hundred and eight spots were detected, and 18 protein spots showed significant difference in their intensity (p < 0.05) between the two groups. In response to nano-Se supplementation, the expression of 8 proteins was higher, and 5 proteins were lower in nano-Se supplemented group compared to control group. The functions of the differentially expressed proteins indicate that the high dose of selenium supplementation induced a dietary stress. Selenium supplementation may influence the metabolism of fatty acids and carbohydrates and antioxidant system, and increase the quantity of cytoskeletal actin and the expression of actin regulatory protein as well. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  19. Decreased reproductive rates in sheep fed a high selenium diet

    USDA-ARS?s Scientific Manuscript database

    High Se-containing forages grow on seleniferous soils in many parts of the United States and throughout the world. Selenium is an essential trace element that is required for many physiological processes but can also be either acutely or chronically toxic to livestock. Anecdotal reports of decrease...

  20. Biomagnetic Recovery and Bioaccumulation of Selenium Granules in Magnetotactic Bacteria.

    PubMed

    Tanaka, Masayoshi; Knowles, William; Brown, Rosemary; Hondow, Nicole; Arakaki, Atsushi; Baldwin, Stephen; Staniland, Sarah; Matsunaga, Tadashi

    2016-07-01

    Using microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO3 (2-)). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd(2+) adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water. The development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the largest amount of Se compared to other foreign elements. More importantly, the Se-accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Uptake of trace elements and radionuclides from uranium mill tailings by four-wing saltbush (Atriplex canescens) and alkali sacaton (Sporobolus airoides). [Radium 226; Uranium; Molybdenum; Selenium; Vanadium; Astatine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreesen, D.R.; Marple, M.L.

    1979-01-01

    A greenhouse experiment was performed to determine the uptake of trace elements and radionuclides from uranium mill tailings by native plant species. Four-wing saltbush and alkali sacaton were grown in alkaline tailings covered with soil and in soil alone as controls. The tailings material was highly enriched in Ra-226, Mo, U, Se, V, and As compared with three local soils. The shrub grown in tailings had elevated concentrations of Mo, Se, Ra-226, U, As, and Na compared with the controls. Alkali sacaton contained high concentrations of Mo, Se, Ra-226, and Ni when grown on tailings. Molybdenum and selenium concentrations inmore » plants grown in tailings are above levels reported to be toxic to grazing animals. These results indicate that the bioavailability of Mo and Se in alkaline environments makes these elements among the most hazardous contaminants present in uranium mill wastes.« less

  2. Rhizobium selenitireducens proteins involved in the reduction of selenite to elemental selenium

    USDA-ARS?s Scientific Manuscript database

    Microbial based bioremediation barriers can remove the metalloid selenite (SeO3–2) from flowing groundwater. The organisms associated with the process include microorganisms from within the bacterial and archaeal domains that can reduce soluble SeO3–2 to the insoluble and reddish-colored elemental ...

  3. Homeostasis of chosen bioelements in organs of rats receiving lithium and/or selenium.

    PubMed

    Kiełczykowska, Małgorzata; Musik, Irena; Żelazowska, Renata; Lewandowska, Anna; Kurzepa, Jacek; Kocot, Joanna

    2016-10-01

    Lithium is an essential trace element, widely used in medicine and its application is often long-term. Despite beneficial effects, its administration can lead to severe side effects including hyperparathyroidism, renal and thyroid disorders. The aim of the current study was to evaluate the influence of lithium and/or selenium treatment on magnesium, calcium and silicon levels in rats' organs as well as the possibility of using selenium as an adjuvant in lithium therapy. The study was performed on rats divided into four groups (six animals each): control-treated with saline; Li-treated with Li2CO3 (2.7 mg Li/kg b.w.); Se-treated with Na2SeO3·H2O (0.5 mg Se/kg b.w.); Se + Li-treated simultaneously with Li2CO3 and Na2SeO3·H2O (2.7 mg Li/kg b.w. and of 0.5 mg Se/kg b.w., respectively). The administration was performed in form of water solutions by stomach tube once a day for 3 weeks. In the organs (liver, kidney, brain, spleen, heart, lung and femoral muscle) the concentrations of magnesium, calcium and silicon were determined. Magnesium was increased in liver of Se and Se + Li given rats. Lithium decreased tissue Ca and co-administration of selenium reversed this effect. Silicon was not affected by any treatment. The beneficial effect of selenium on disturbances of calcium homeostasis let suggest that further research on selenium application as an adjuvant in lithium therapy is worth being performed.

  4. Monodispersed spherical shaped selenium nanoparticles (SeNPs) synthesized by Bacillus subtilis and its toxicity evaluation in zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Chandramohan, Subburaman; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2018-02-01

    Selenium is one of the essential elements involved in antioxidative and antiinflammatory effects in human body. By naturally, selenium ions are metabolised and converted into nano selenium. Now a days there is an increasing attention on applications of nanoparticles in therapeutic field. In the present study Bacillus subtilis was used to convert sodium selenite to SeNPs. The synthesized SeNPs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X ray spectroscopy (EDX). The presence of SeNPs was confirmed by the formation of red colour. The bands were sharp with broad absorption peaks at 3562 cm-1 and 1678-1 cm in FTIR which showed that the bacterial proteins were responsible for the reduction of sodium selenite to SeNPs. The average size of the SeNPs was 334 nm and were spherical in shape with uniform distribution. The XRD data confirmed that SeNPs were of amorphous in nature. The zeta potential of SeNPs was negative in charge which indicated high stability. In the present study zebrafish embryos were used to study the toxicity of SeNPs and the results showed that the concentration beyond 10 μg ml-1 leads to toxic effects in embryos/hatchlings. The lesser concentration of SeNPs can be useful in various biomedical applications.

  5. Selenium and hazardous elements distribution in plant-soil-water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China.

    PubMed

    Du, Yajun; Luo, Kunli; Ni, Runxiang; Hussain, Rahib

    2018-03-01

    The natural selenium poisoning due to toxic Se levels in food chain had been observed in humans and animals in Lower Cambrian outcrop areas in Southern Shaanxi, China. To find out the distribution pattern of selenium and other hazardous elements in the plant, soil and water of Lower Cambrian in Southern Shaanxi, China, and their possible potential health risk, a total of 30 elements were analyzed and the health risk assessment of 18 elements was calculated. Results showed that the soil, plant and natural water of Lower Cambrian all had relatively high Se levels. In Lower Cambrian, the soil was enriched with Se, As, Ba, Cu, Mo, Ni, Zn, Ga, Cd and Cr (1.68 < I geo  < 4.48, I geo ; geo-accumulation index). In same plants, the contents of Se, Cd and Zn (except Cd in corn and rice, Zn in potato and corn) of Lower Cambrian were higher than that of the other strata. Ba and Ga in natural water were higher than that of the other strata, while K and Cs were opposite. The health risk assessment results showed that the people living in outcrop areas of Lower Cambrian had both high total non-carcinogenic risk of 18 elements (HI = 16.12, acceptable range: < 1) and carcinogenic risk of As (3.98E-04, acceptable range: 10 -6 -10 -4 ). High contents of Se, As, Mo and Tl of Lower Cambrian may pose a health risk to local people, and food intake was the major pathway. For minimizing potential health risk, the local inhabitants should use the mix-imported food with local growing foods.

  6. Mercury species, selenium, metallothioneins and glutathione in two dolphins from the southeastern Brazilian coast: Mercury detoxification and physiological differences in diving capacity.

    PubMed

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tercia G; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M

    2016-06-01

    In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hginorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hginorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hginorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Selenium: environmental significance, pollution, and biological treatment technologies.

    PubMed

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent biotechnological advances in the management of these selenium-laden wastewaters. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauscher, J.D.

    1988-01-01

    Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects ofmore » Se and Cu on planarians.« less

  9. Low temperature co-pyrolysis of hexabenzylditinsulfide and selenium. An alternate route to Sn(S{sub x}Se{sub 1{minus}x})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudjouk, P.; Remington, M.P. Jr.; Seidler, D.J.

    1999-12-01

    Benzyl-substituted tin chalcogenides (Bn{sub 3}Sn){sub 2}S (1) and (Bn{sub 3}Sn){sub 2}Se (2) yield polycrystalline-phase pure SnS and SnSe in good ceramic yields when pyrolyzed with S and Se, respectively, at 275 C. Heating mixtures of (1) and elemental selenium produce solid solutions of the formula Sn(S{sub x}Se{sub 1{minus}x}). Combustion analysis showed less than 1% residual carbon in all ceramic products. This methodology allows the complete conversion of tin-to-tin chalcogenides and eliminates the need to synthesize organosulfur and organoselenium intermediates.

  10. Selenium in the environment, metabolism and involvement in body functions.

    PubMed

    Mehdi, Youcef; Hornick, Jean-Luc; Istasse, Louis; Dufrasne, Isabelle

    2013-03-13

    Selenium (Se³⁴₇₉) is a metalloid which is close to sulfur (S) in terms of properties. The Se concentration in soil varies with type, texture and organic matter content of the soil and with rainfall. Its assimilation by plants is influenced by the physico-chemical properties of the soil (redox status, pH and microbial activity). The presence of Se in the atmosphere is linked to natural and anthropogenic activities. Selenoproteins, in which selenium is present as selenocysteine, present an important role in many body functions, such as antioxidant defense and the formation of thyroid hormones. Some selenoprotein metabolites play a role in cancer prevention. In the immune system, selenium stimulates antibody formation and activity of helper T cells, cytotoxic T cells and Natural Killer (NK) cells. The mechanisms of intestinal absorption of selenium differ depending on the chemical form of the element. Selenium is mainly absorbed in the duodenum and caecum by active transport through a sodium pump. The recommended daily intake of selenium varies from 60 μg/day for women, to 70 μg/day for men. In growing ruminants the requirements are estimated at 100 μg/kg dry matter and 200 μg/Kg for pregnant or lactating females. A deficiency can cause reproductive disorders in humans and animals.

  11. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang

    2006-12-15

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.

  12. Field evidence of selenium bioreduction in a uranium-contaminated aquifer.

    PubMed

    Williams, Kenneth H; Wilkins, Michael J; N'Guessan, A Lucie; Arey, Bruce; Dodova, Elena; Dohnalkova, Alice; Holmes, Dawn; Lovley, Derek R; Long, Philip E

    2013-06-01

    Removal of selenium from groundwater was documented during injection of acetate into a uranium-contaminated aquifer near Rifle, Colorado (USA). Bioreduction of aqueous selenium to its elemental form (Se0) concentrated it within mineralized biofilms affixed to tubing used to circulate acetate-amended groundwater. Scanning and transmission electron microscopy revealed close association between Se0 precipitates and cell surfaces, with Se0 aggregates having a diameter of 50-60 nm. Accumulation of Se0 within biofilms occurred over a three-week interval at a rate of c. 9 mg Se0 m(-2) tubing day(-1). Removal was inferred to result from the activity of a mixed microbial community within the biofilms capable of coupling acetate oxidation to the reduction of oxygen, nitrate and selenate. Phylogenetic analysis of the biofilm revealed a community dominated by strains of Dechloromonas sp. and Thauera sp., with isolates exhibiting genetic similarity to the latter known to reduce selenate to Se0. Enrichment cultures of selenate-respiring microorganisms were readily established using Rifle site groundwater and acetate, with cultures dominated by strains closely related to D. aromatica (96-99% similarity). Predominance of Dechloromonas sp. in recovered biofilms and enrichments suggests this microorganism may play a role in the removal of selenium oxyanions present in Se-impacted groundwaters and sediments.

  13. Field evidence of selenium bioreduction in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams , K. H.; Wilkins, Michael J.; N'Guessan, A. Lucie

    2013-06-01

    Removal of selenium from groundwater was documented during injection of acetate into a uraniumcontaminated aquifer near Rifle, Colorado (USA). Bioreduction of aqueous selenium to its elemental form (Se0) concentrated it within mineralized biofilms affixed to tubing used to circulate acetate-amended groundwater. Scanning and transmission electron microscopy revealed close association between Se0 precipitates and cell surfaces, with Se0 aggregates having a diameter of 50-60 nm. Accumulation of Se0 within biofilms occurred over a three-week interval at a rate of c. 9 mg Se0m-2 tubing day-1. Removal was inferred to result from the activity of a mixed microbial community within the biofilmsmore » capable of coupling acetate oxidation to the reduction of oxygen, nitrate and selenate. Phylogenetic analysis of the biofilm revealed a community dominated by strains of Dechloromonas sp. and Thauera sp., with isolates exhibiting genetic similarity to the latter known to reduce selenate to Se0. Enrichment cultures of selenate-respiring microorganisms were readily established using Rifle site groundwater and acetate, with cultures dominated by strains closely related to D. aromatica (96-99% similarity). Predominance of Dechloromonas sp. in recovered biofilms and enrichments suggests this microorganism may play a role in the removal of selenium oxyanions present in Se-impacted groundwaters and sediments.« less

  14. In Vitro and in Vivo Mechanism of Bone Tumor Inhibition by Selenium-Doped Bone Mineral Nanoparticles.

    PubMed

    Wang, Yifan; Wang, Jianglin; Hao, Hang; Cai, Mingle; Wang, Shiyao; Ma, Jun; Li, Yan; Mao, Chuanbin; Zhang, Shengmin

    2016-11-22

    Biocompatible tissue-borne crystalline nanoparticles releasing anticancer therapeutic inorganic elements are intriguing therapeutics holding the promise for both tissue repair and cancer therapy. However, how the therapeutic inorganic elements released from the lattice of such nanoparticles induce tumor inhibition remains unclear. Here we use selenium-doped hydroxyapatite nanoparticles (Se-HANs), which could potentially fill the bone defect generated from bone tumor removal while killing residual tumor cells, as an example to study the mechanism by which selenium released from the lattice of Se-HANs induces apoptosis of bone cancer cells in vitro and inhibits the growth of bone tumors in vivo. We found that Se-HANs induced apoptosis of tumor cells by an inherent caspase-dependent apoptosis pathway synergistically orchestrated with the generation of reactive oxygen species. Such mechanism was further validated by in vivo animal evaluation in which Se-HANs tremendously induced tumor apoptosis to inhibit tumor growth while reducing systemic toxicity. Our work proposes a feasible paradigm toward the design of tissue-repairing inorganic nanoparticles that bear therapeutic ions in the lattice and can release them in vivo for inhibiting tumor formation.

  15. Microbial oxidation of elemental selenium in soil slurries and bacterial cultures

    USGS Publications Warehouse

    Dowdle, P.R.; Oremland, R.S.

    1998-01-01

    The microbial oxidation of elemental selenium [Se(O)] was studied by employing 75Se(O) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation ranged from 0.0009 to 0.0117 day-1 which were 3-4 orders of magnitude lower than those reported for dissimilatory Se(VI) reduction in organic-rich, anoxic sediments.The microbial oxidation of elemental selenium [Se(0)] was studied by employing 75Se(0) as a tracer. Live, oxic soil slurries demonstrated a linear production of mostly Se(IV), with the formation of smaller quantities of Se(VI). Production of both Se(IV) and Se(VI) was inhibited by autoclaving, formalin, antibiotics, azide, and 2,4-dinitrophenol, thereby indicating the involvement of microbes. Oxidation of Se(O) in slurries was enhanced by addition of acetate, glucose, or sulfide, which implied involvement of chemoheterotrophs as well as chemoautotrophic thiobacilli. Cultures of Thiobacillus ASN-1, Leptothrix MnB1, and a heterotrophic soil enrichment all oxidized Se(O) with Se(VI) observed as the major product rather than Se(IV). This indicated that microbial oxidation in soils is partly constrained by the adsorption of Se(IV) onto soil surfaces. Rate constants for unamended soil slurry Se(O) oxidation ranged from 0.0009 to 0.0117 day-1 which were 3-4 orders of magnitude lower than those reported for dissimilatory Se(VI) reduction in organic-rich, anoxic sediments.

  16. Microbial Selenite Reduction and the Selenium Biogeochemical Cycle

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Wells, M.

    2016-12-01

    Selenium is an essential trace element utilized by many species in the three domains of life. In most Bacteria and Archaea, selenium is primarily assimilated to form selenocysteine, the 21st amino acid (Sec). Additionally selenium can be methylated, demethylated, or used as a terminal electron acceptor in dissimilatory selenate or selenite reduction. Although progress has been made on elucidating the synthesis of selenoproteins, less is known of their occurrence, diversity, and functionality, primarily due to poor genome annotation (e.g., failure to recognize UGA as a Sec and not a stop codon) and proteomics analysis (e.g., failure to detect Sec in LC/MS-MS). Furthermore important parts of the selenium biogeochemical cycle remain to be fully explored, in particular the reduction of Se(IV) to Se(O). We have examined the selenoproteome of a selenate respiring bacterium Sulfurospirillum barnesii strain SES-3, which reduces Se(VI) to Se(0) and the dissimilatory selenite reducing bacterium, Bacillus selenitireducens, strain MLS-10, which reduces Se(IV) to Se(0). Candidate selenoproteins including D-proline reductase, formate dehydrogenase, and methionine-S sulfoxide reductase have been identified in the genomes. A putative dissimilatory selenate reducase (Ser) was found in the genome of S. barnesii. More significant was the discovery of a candidate for the respiratory selenite reductase in B. selenitireducens as determined by in gel assays and LC/MS-MS. The latter has provided a hint at the potential diversity of DSiR bacteria and the development of molecular probes for investigating DSiR in the selenium biogeochemical cycle.

  17. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California.

    PubMed

    Saiki, Michael K; Martin, Barbara A; May, Thomas W

    2012-09-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 μg Se/g; midge larvae, 12.7-50.6 μg Se/g; mosquitofish, 13.2-20.2 μg Se/g; and mollies, 12.8-30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  18. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2012-01-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98–58.0 μg Se/g; midge larvae, 12.7–50.6 μg Se/g; mosquitofish, 13.2–20.2 μg Se/g; and mollies, 12.8–30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  19. Effect of diet, location and sampling year on bioaccumulation of mercury, selenium and cadmium in pelagic feeding seabirds in Svalbard.

    PubMed

    Øverjordet, Ida Beathe; Gabrielsen, Geir Wing; Berg, Torunn; Ruus, Anders; Evenset, Anita; Borgå, Katrine; Christensen, Guttorm; Lierhagen, Syverin; Jenssen, Bjørn Munro

    2015-03-01

    Hepatic concentrations of mercury (Hg), selenium (Se) and cadmium (Cd) were determined in black-legged kittiwakes (Rissa tridactyla) and little auks (Alle alle) from two fjords in Svalbard (Kongsfjorden; 78°57'N, 12°12'E and Liefdefjorden; 79°37'N, 13°20'E). The inflow of Arctic and Atlantic water differs between the two fjords, potentially affecting element accumulation. Trophic positions (TP) were derived from stable nitrogen isotope ratios (δ(15)N), and stable carbon isotope ratios (δ(13)C) were assessed to evaluate the terrestrial influence on element accumulation. Mercury, Cd, TP and δ(13)C varied significantly between locations and years in both species. Trophic position and feeding habits explained Hg and Cd accumulation in kittiwakes, but not in little auks. Biomagnification of Hg and Cd were found in the food webs of both the Atlantic and the Arctic fjord, and no inter-fjord differences were detected. The δ(13)C were higher in the seabirds from Kongsfjorden than in Liefdefjorden, but this did not explain variations in element accumulation. Selenium concentrations were not influenced by Hg accumulation in kittiwakes, indicating baseline levels of Se in this species. In contrast, correlations between Hg and Se and lower Se:Hg ratios in little auks from Kongsfjorden than in Liefdefjorden indicate a more pronounced influence of Se-Hg complex formation in little auks feeding in Atlantic waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish.

    PubMed

    Kumar, Neeraj; Krishnani, Kishore Kumar; Singh, Narendra Pratap

    2018-03-01

    Recent studies have demonstrated that selenium (Se) and selenium nanoparticles (Se-NPs) exhibited toxicity at a higher concentration. The lethal concentration of Se and Se-NPs was estimated as 5.29 and 3.97 mg/L at 96 h in Pangasius hypophthalmus. However, the effect of different definite concentration of Se (4.5, 5.0, 5.5, and 6.0 mg/L) and Se-NPs (2.5, 3.0, 3.5, and 4.0 mg/L) was decided for acute experiment. Selenium and Se-NPs alter the biochemical attributes such as anti-oxidative status [catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activities], neurotransmitter enzyme, cellular metabolic enzymes, stress marker, and histopathology of P. hypophthalmus in a dose- and time-dependent manner. CAT, SOD, and GST were significantly elevated (p < 0.01) when exposed to Se and Se-NPs, and similarly, a neurotransmitter enzyme (acetylcholine esterase (AChE)) was significantly inhibited in a time- and dose-dependent manner. Further, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and malate hydrogenase were noticeably (p < 0.01) affected by Se and Se-NPs from higher concentration to lower concentration. Stress markers such as cortisol and HSP 70 were drastically enhanced by exposure to Se and Se-NPs. All the cellular metabolic and stress marker parameters were elevated which might be due to hyperaccumulation of Se and Se-NPs in the vital organ and target tissues. The histopathology of liver and gill was also altered such as large vacuole, cloudy swelling, focal necrosis, interstitial edema, necrosis in liver, and thickening of primary lamellae epithelium and curling of secondary lamellae due to Se and Se-NP exposure. The study suggested that essential trace element in both forms (inorganic and nano) at higher concentration in acute exposure of Se and Se-NPs led to pronounced deleterious alteration on histopathology and cellular and metabolic activities of P. hypophthalmus.

  1. Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lin, Jiarui; Lan, Tonghan

    2006-01-01

    Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.

  2. Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO2 photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry.

    PubMed

    Liang, Jing; Wang, Qiuquan; Huang, Benli

    2005-01-01

    An online UV photolysis and UV/TiO2 photocatalysis reduction device (UV-UV/TiO2 PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 microL dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV-UV/TiO2 PCRD-KBH4-acid interface. The detection limits obtained for seleno-DL: -cystine (SeCys), selenite (Se(IV)), seleno-DL: -methionine (SeMet), and selenate (Se(VI)) were 2.1, 2.9, 4.3, and 3.5 ng mL(-1), respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV-UV/TiO2 PCRD-ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH4.

  3. Metastable Se6 as a ligand for Ag+: from isolated molecular to polymeric 1D and 2D structures.

    PubMed

    Aris, Damian; Beck, Johannes; Decken, Andreas; Dionne, Isabelle; Schmedt auf der Günne, Jörn; Hoffbauer, Wilfried; Köchner, Tobias; Krossing, Ingo; Passmore, Jack; Rivard, Eric; Steden, Folker; Wang, Xinping

    2011-06-14

    Attempts to prepare the hitherto unknown Se(6)(2+) cation by the reaction of elemental selenium and Ag[A] ([A](-) = [Sb(OTeF(5))(6)](-), [Al(OC(CF(3))(3))(4)](-)) in SO(2) led to the formation of [(OSO)Ag(Se(6))Ag(OSO)][Sb(OTeF(5))(6)](2)1 and [(OSO)(2)Ag(Se(6))Ag(OSO)(2)][Al(OC(CF(3))(3))(4)](2)2a. 1 could only be prepared by using bromine as co-oxidant, however, bulk 2b (2a with loss of SO(2)) was accessible from Ag[Al(OC(CF(3))(3))(4)] and grey Se in SO(2) (chem. analysis). The reactions of Ag[MF(6)] (M = As, Sb) and elemental selenium led to crystals of 1/∞{[Ag(Se(6))](∞)[Ag(2)(SbF(6))(3)](∞)} 3 and {1/∞[Ag(Se(6))Ag](∞)}[AsF(6)](2)4. Pure bulk 4 was best prepared by the reaction of Se(4)[AsF(6)](2), silver metal and elemental selenium. Attempts to prepare bulk 1 and 3 were unsuccessful. 1-4 were characterized by single-crystal X-ray structure determinations, 2b and 4 additionally by chemical analysis and 4 also by X-ray powder diffraction, FT-Raman and FT-IR spectroscopy. Application of the PRESTO III sequence allowed for the first time (109)Ag MAS NMR investigations of 4 as well as AgF, AgF(2), AgMF(6) and {1/∞[Ag(I(2))](∞)}[MF(6)] (M = As, Sb). Compounds 1 and 2a/b, with the very large counter ions, contain isolated [Ag(Se(6))Ag](2+) heterocubane units consisting of a Se(6) molecule bicapped by two silver cations (local D(3d) sym). 3 and 4, with the smaller anions, contain close packed stacked arrays of Se(6) rings with Ag(+) residing in octahedral holes. Each Ag(+) ion coordinates to three selenium atoms of each adjacent Se(6) ring. 4 contains [Ag(Se(6))(+)](∞) stacks additionally linked by Ag(2)(+) into a two dimensional network. 3 features a remarkable 3-dimensional [Ag(2)(SbF(6))(3)](-) anion held together by strong Sb-FAg contacts between the component Ag(+) and [SbF(6)](-) ions. The hexagonal channels formed by the [Ag(2)(SbF(6))(3)](-) anions are filled by stacks of [Ag(Se(6))(+)](∞) cations. Overall 1-4 are new members of the rare class of metal complexes of neutral main group elemental clusters, in which the main group element is positively polarized due to coordination to a metal ion. Notably, 1 to 4 include the commonly metastable Se(6) molecule as a ligand. The structure, bonding and thermodynamics of 1 to 4 were investigated with the help of quantum chemical calculations (PBE0/TZVPP and (RI-)MP2/TZVPP, in part including COSMO solvation) and Born-Fajans-Haber-cycle calculations. From an analysis of all the available data it appears that the formation of the usually metastable Se(6) molecule from grey selenium is thermodynamically driven by the coordination to the Ag(+) ions.

  4. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles.

    PubMed

    Gao, Fuping; Yuan, Qing; Gao, Liang; Cai, Pengju; Zhu, Huarui; Liu, Ru; Wang, Yaling; Wei, Yueteng; Huang, Guodong; Liang, Jian; Gao, Xueyun

    2014-10-01

    Although chemotherapeutic drugs are widely applied for clinic tumor treatment, severe toxicity restricts their therapeutic efficacy. In this study, we reported a new form of selenium, selenium nanoparticles (Nano Se) which have significant lower toxicity and acceptable bioavailability. We investigated Nano Se as chemotherapy preventive agent to protect against toxicities of anticancer drug irinotecan and synergistically enhance the anti-tumor treatment effect in vitro and in vivo. The underlying mechanisms were also investigated. The combination of Nano Se and irinotecan showed increased cytotoxic effect with HCT-8 tumor cells likely by p53 mediated apoptosis. Nano Se inhibited growth of HCT-8 tumor cells partially through caspases mediated apoptosis. In vivo experiment showed Nano Se at a dose of 4 mg/kg/day significantly alleviated adverse effects induced by irinotecan (60 mg/kg) treatment. Nano Se alone treatment did not induce any toxic manifestations. The combination of Nano Se and irinotecan dramatically inhibited tumor growth and significantly induced apoptosis of tumor cells in HCT-8 cells xenografted tumor. Tumor inhibition rate was about 17.2%, 48.6% and 62.1% for Nano Se, irinotecan and the combination of Nano Se and irinotecan, respectively. The beneficial effects of Nano Se for tumor therapy were mainly ascribed to selectively regulating Nrf2-ARE (antioxidant responsive elements) pathway in tumor tissues and normal tissues. Our results suggest Nano Se is a promising selenium species with potential application in cancer treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Herbel, M.J.; Blum, J.S.; Langley, S.; Beveridge, T.J.; Ajayan, P.M.; Sutto, T.; Ellis, A.V.; Curran, S.

    2004-01-01

    Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ???300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.

  6. Dynamics of the phase formation process upon the low temperature selenization of Cu/In-multilayer stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oertel, M., E-mail: michael.oertel@uni-jena.de; Ronning, C.

    2015-03-14

    Phase reactions occurring during a low temperature selenization of thin In/Cu-multilayer stacks were investigated by ex-situ x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). Therefore, dc-sputtered In/Cu-multilayers onto molybdenum coated soda lime glass were selenized in a high vacuum system at temperatures between 260 and 340 °C with different dwell times and selenium supply. The combination of the results of the phase analysis by XRD and the measurements of the in-depth elemental distribution by EDS allowed a conclusion on the occurring reactions within the layer depth. We found two CuInSe{sub 2} formation processes depending on the applied temperature. Already, atmore » a heater temperature of 260 °C, the CuInSe{sub 2} formation can occur by the reaction of Cu{sub 2−x}Se with In{sub 4}Se{sub 3} and Se. At 340 °C, CuInSe{sub 2} is formed by the reaction of Cu{sub 2−x}Se with InSe and Se. Because both reactions need additional selenium, the selenium supply during the selenization can shift the reaction equilibria either to the metal binaries side or to the CuInSe{sub 2} side. Interestingly, a lower selenium supply shifts the equilibrium to the CuInSe{sub 2} side, because the amount of selenium incorporated into the metallic layer is higher for a lower selenium supply. Most likely, a larger number of grain boundaries are the reason for the stronger selenium incorporation. The results of the phase formation studies were used to design a two stage selenization process to get a defined structure of an indium selenide- and a copper selenide-layer at low temperatures as the origin for a controlled interdiffusion to form the CuInSe{sub 2}-absorber-layer at higher temperatures. The approach delivers a CuInSe{sub 2} absorber which reach total area efficiencies of 11.8% (13.0% active area) in a CuInSe{sub 2}-thin-film solar cell. A finished formation of CuInSe{sub 2} at low temperature was not observed in our experiments but is probably possible for longer dwell times.« less

  7. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice.

    PubMed

    Zhang, Jinsong; Wang, Huali; Bao, Yongping; Zhang, Lide

    2004-05-28

    We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.

  8. Inorganic versus organic selenium supplementation: a review.

    PubMed

    Mahima; Verma, Amit Kumar; Kumar, Amit; Rahal, Anu; Kumar, Vinod; Roy, Debashis

    2012-05-01

    Selenium is an essential trace element in the diets which is required for maintenance of health, growth and biochemical-physiological functions. The area covered in this review has been rapidly unfolding in recent years and has already acquired a vast spread. This study presents a concise introductory overview of the effect of organic and inorganic selenium on growth performance, carcass traits, daily egg production, egg quality, Se uptake in various tissues and plasma and plasma glutathione peroxidase activity in animals.

  9. Determination of Selenium and Nickel in Asphaltite from Milli (Sirnak) Deposit in SE Anatolia of Turkey

    NASA Astrophysics Data System (ADS)

    Aydin, Isil; Fidan, Celal; Kavak, Orhan; Erek, Figen; Aydin, Firat

    2017-12-01

    Asphaltite is one of the naturally occurring black, solid bitumen’s, which are soluble at heating in carbon disulphide band fuse. Asphaltite is also a solidified hydro carbon compound derived from petroleum [1]. According to the World Energy Council, Turkish National Committee (1998), the total reserve of the asphaltic substances that are found in south eastern Turkey is about 82 million tons, with Silopi and Sirnak reserves to get her comprising the major part of the Asphaltite deposits. Selenium and Nickel are very important elements both environmental and health. Selenium plays an important role in the formation of the enzyme antioxidant effect in the cell. The need for Selenium increases in situations such as pregnancy, menopause, grow than development, air pollution. Nickel is used for preventing iron-poor blood, increasing iron absorption, and treating weak bones. In this study, asphaltites were taken from Milli vein from Sirnak deposit in SE Anatolia of Turkey. A total of 6.500.000 tons of Asphaltite reserves have been identified as asphaltites in Milli (Sirnak). The sample preparation method was developed in Asphaltite by spectroanalytical techniques, wet acid digestion. MW-AD followed by ICP-OES were used for the determination of Selenium and Nickel in Asphaltite. Proximate analysis of Asphaltite fly ash samples was made. It also, Selenium and Nickel element analysis in Asphaltite were made.

  10. Effect of sodium selenite on chosen anti- and pro-oxidative parameters in rats treated with lithium: A pilot study.

    PubMed

    Musik, Irena; Kocot, Joanna; Kiełczykowska, Małgorzata

    2015-06-01

    Selenium is an essential element of antioxidant properties. Lithium is widely used in medicine but its administration can cause numerous side effects including oxidative stress. The present study aimed at evaluating if sodium selenite could influence chosen anti- and pro-oxidant parameters in rats treated with lithium. The experiment was performed on four groups of Wistar rats: I (control) - treated with saline; II (Li) - treated with lithium (2.7 mgLi/kg b.w. as Li2CO3), III (Se) - treated with selenium (0.5 mgSe/kg b.w. as Na2SeO3), IV (Li+Se) - treated with Li2CO3 and Na2SeO3 together at the same doses as in group II and III, respectively. All treatments were performed by stomach tube for three weeks in form of water solutions. The following anti- and pro-oxidant parameters: total antioxidant status (TAS) value, catalase (CAT) activity, concentrations of ascorbic acid (AA) and malonyldialdehyde (MDA) in plasma as well as whole blood superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured. Selenium given alone markedly enhanced whole blood GPx and diminished plasma CAT vs. Lithium significantly decreased plasma CAT and slightly increased AA vs. Selenium co-administration restored these parameters to the values observed in control animals. Furthermore, selenium co-administration significantly increased GPx in Li-treated rats. All other parameters (TAS, SOD and MDA) were not affected by lithium and/or selenium. Further research seems to be warranted to decide if application of selenium as an adjuvant in lithium therapy is worth considering. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    PubMed

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO.

  12. Evaluation of the Content of Antimony, Arsenic, Bismuth, Selenium, Tellurium and Their Inorganic Forms in Commercially Baby Foods.

    PubMed

    Ruiz-de-Cenzano, M; Rochina-Marco, A; Cervera, M L; de la Guardia, M

    2017-12-01

    Baby foods, from the Spanish market and prepared from meat, fish, vegetables, cereals, legumes, and fruits, were analyzed to obtain the concentration of antimony (Sb), arsenic (As), bismuth (Bi), and tellurium (Te) as toxic elements and selenium (Se) as essential element. An analytical procedure was employed based on atomic fluorescence spectroscopy which allowed to obtain accurate data at low levels of concentration. Values of 14 commercial samples, expressed in nanograms per gram fresh weight, ranged for Sb 0.66-6.9, As 4.5-242, Te 1.35-2.94, Bi 2.18-4.79, and Se 5.4-109. Additionally, speciation studies were performed based on data from a non-chromatographic screening method. It was concluded that tellurium and bismuth were mainly present as inorganic forms and selenium as organic form, and antimony and arsenic species depend on the ingredients of each baby food. Risk assessment considerations were made by comparing dietary intake of the aforementioned elements through the consumption of one baby food portion a day and recommended or tolerable guideline values.

  13. Feasibility of measuring selenium in humans using in vivo neutron activation analysis.

    PubMed

    Tahir, S N A; Chettle, D R; Byun, S H; Prestwich, W V

    2015-11-01

    Selenium (Se) is an element that, in trace quantities, plays an important role in the normal function of a number of biological processes in humans. Many studies have demonstrated that selenium deficiency in the body may contribute to an increased risk for certain neoplastic, cardiovascular, osseous, and nervous system diseases including retardation of bone formation. However, at higher concentrations Se is cytotoxic. For these reasons it is desirable to have a means of monitoring selenium concentration in humans.This paper presents the outcome of a feasibility study carried out for measuring selenium in humans using in vivo neutron activation analysis (IVNAA). In this technique a small dose of neutrons is delivered to the organ of interest, the neutrons are readily captured by the target nuclei, and the γ-rays given off are detected outside of the body. For the present study, human hand (bone) tissue equivalent phantoms were prepared with varying amounts of Se. These were irradiated by a low energy fast neutron beam produced by the (7)Li(p,n)(7)Be reaction employing the high beam current Tandetron accelerator. The counting data saved using a 4π NaI(TI) detection system were analyzed. The selenium was detected via the neutron capture reaction, (76)Se(n,γ)(77 m)Se, whereas calcium was detected through the (48)Ca(n,γ)(49)Ca reaction for the purpose of normalization of the Se signals to the calcium signals. From the calibration lines drawn between Se/Ca concentrations and Se/Ca counts ratio, the minimum detection limits (MDLs) were computed for two sets of phantoms irradiated under different irradiation parameters.In this study the optimized MDL value was determined to be 81 ng g(-1) (Se/phantom mass) for an equivalent dose of 188 mSv to the phantom. This MDL was found at least 10 times lower than the reported data on Se concentration measured in bone tissues. It was concluded that the NAA technique would be a feasible means of performing in vivo measurements of selenium in humans. Currently the data on in vivo measurement of selenium in humans are limited; the results of the present study would greatly contribute to the present data.

  14. Fractionation of selenium isotopes during bacterial respiratory reduction of selenium oxyanions

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Oremland, R.S.; Bullen, T.D.

    2000-01-01

    Reduction of selenium oxyanions by microorganisms is an important process in the biogeochemical cycling of selenium. Numerous bacteria can reduce Se oxyanions, which are used as electron acceptors during the oxidation of organic matter in anoxic environments. In this study, we used a double spike (82Se and 74Se) thermal ionization mass spectrometry technique to quantify the isotopic fractionation achieved by three different species of anaerobic bacteria capable of accomplishing growth by respiratory reduction of selenate [SeO42- or Se(VI)] or selenite [SeO32- or Se(IV)] to Se(IV) or elemental selenium [Se(0)] coupled with the oxidation of lactate. Isotopic discrimination in these closed system experiments was evaluated by Rayleigh fractionation equations and numerical models. Growing cultures of Bacillus selenitireducens, a haloalkaliphile capable of growth using Se(IV) as an electron acceptor, induced a 80Se/76Se fractionation of -8.0 ?? 0.4??? (instantaneous ?? value) during reduction of Se(IV) to Se(0). With Bacillus arsenicoselenatis, a haloalkaliphile capable of growth using Se(VI) as an electron acceptor, fractionations of -5.0 ?? 0.5??? and -6.0 ?? 1.0??? were observed for reduction of Se(VI) to Se(IV) and reduction of Se(IV) to Se(0), respectively. In growing cultures of Sulfurospirillum barnesii, a freshwater species capable of growth using Se(VI), fractionation was small initially, but near the end of the log growth phase, it increased to -4.0 ?? 1.0??? and -8.4 ?? 0.4??? for reduction of Se(VI) to Se(IV) and reduction of Se(IV) to Se(O), respectively. Washed cell suspensions of S. barnesii induced fractionations of -1.1 ?? 0.4??? during Se(VI) reduction, and -9.1 ?? 0.5% for Se(IV) reduction, with some evidence for smaller values (e.g., -1.7???) in the earliest-formed Se(0) results. These results demonstrate that dissimilatory reduction of selenate or selenite induces significant isotopic fractionation, and suggest that significant Se isotope ratio variation will be found in nature. Copyright (C) 2000 Elsevier Science Ltd.

  15. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum).

    PubMed

    Zhao, Jiating; Gao, Yuxi; Li, Yu-Feng; Hu, Yi; Peng, Xiaomin; Dong, Yuanxing; Li, Bai; Chen, Chunying; Chai, Zhifang

    2013-08-01

    To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg(2+)) and selenite (SeO3(2-)) or selenate (SeO4(2-)). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1mg/L of SeO3(2-) or SeO4(2-)) would significantly inhibit the absorption and transportation of Hg when Hg(2+) levels are higher than 1mg/L in culture media. SeO3(2-) and SeO4(2-) were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg-S bonding as Hg(GSH)2 and Hg(Met)2. Se exposure elicited decrease of Hg-S bonding in the form of Hg(GSH)2, together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Assessment of serum selenium levels in 2-month-old sucking calves using total reflection X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Buoso, M. C.; Ceccato, D.; Moschini, G.; Bernardini, D.; Testoni, S.; Torboli, A.; Valdes, M.

    2001-11-01

    The assessment of selenium status of livestock plays an important role in the production of medicine since low serum Se levels influence disease resistance in ruminants. It has been proved that Se deficiency may cause muscular dystrophy, cardiomyopathy and even death. Serum level has been widely used to evaluate the Se short-term status in animals since there is a good association between serum Se level and the dietary intake of the element over a wide range. The purpose of this work was to determine the Se serum concentration in a population of 78 sucking 2-month-old calves, in order to corroborate a clinical diagnosis of severe deficiency status. The samples were analyzed by total reflection X-ray fluorescence (TXRF) at the ITAL STRUCTURES Research Laboratory. The results obtained from the serum samples presented Se concentrations varying from 10 to 66 ng/ml. The comparison between the obtained values and the expected serum selenium values (60-80 ng/ml), confirmed a mild to severe deficiency status in the investigated population.

  17. Correlation between structural and thermodynamic properties of some selenium based phase-change materials

    NASA Astrophysics Data System (ADS)

    Chandel, Namrata; Mehta, Neeraj

    2018-04-01

    In this study, we prepared novel selenium rich multi-component glasses by incorporating In, Cd and Sb as foreign elements in an Sn containing Sesbnd Te system in order to study their metal-induced effects on the thermal properties of the parent ternary glass. In particular, we determined the thermodynamic parameters of Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glassy semiconductors in a non-isothermal environment using the differential scanning calorimetry. Calorimetric measurements were obtained in the glass transition regions for Se80Te18Sn2 and Se80Te8Sn2M10 (M = Cd, In, Sb) glasses to determine their thermodynamic parameters such as the specific heat, enthalpy, and entropy during glass transition. We analyzed the variation in the specific heat before and after the heat capacity jump in these alloys. The metal-induced effects of foreign elements on the thermodynamic properties of the parent glass were also investigated in terms of the influence of the elemental specific heat of the added elemental metal as well as the thermal stability and glass-forming ability of the glasses.

  18. The investigation of the possible protective influence of selenium on antioxidant barrier in heart of rats exposed to lithium.

    PubMed

    Musik, Irena; Kocot, Joanna; Lewandowska, Anna; Żelazowska, Renata; Kiełczykowska, Małgorzata

    2015-07-01

    Selenium is an essential element possessing antioxidant properties and the treatment with it has displayed protective effects against toxicity of different substances occurring in the environment and food as well as against the side effects of some drugs. Lithium is used in medicine although numerous side effects can occur during therapy, including disturbances of the heart. For these reasons studies to find protective adjuvants have been performed. In the current study the possibility of selenium (as sodium selenite) application as a protective adjuvant in lithium treatment was studied. Male Wistar rats were treated: control - with saline; Li-group - with Li2CO3 (2.7 mg Li/kg b.w.); Se-group - with Na2SeO3 (0.5 mg Se/kg b.w.); Li+Se-group simultaneously with Li2CO3 and Na2SeO3 (2.7 mg Li/kg b.w. and 0.5 mg Se/kg b.w., respectively) by a stomach tube for a period of three weeks, once a day. In heart homogenate activities of antioxidant enzymes - catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), concentrations of low-molecular-weight antioxidants - ascorbic acid (AA) and reduced glutathione (GSH) as well as total antioxidant status (TAS) values were determined. GPx/SOD and CAT/SOD ratios were evaluated. In comparison with control selenium caused no significant changes of the studied parameters except for GPx, whereas lithium slightly disturbed TAS and markedly GPx, CAT and CAT/SOD ratio. In Li-treated rats co-administration of selenium displayed tendency towards restoring the impaired parameters. The results suggest that research on selenium application as an adjuvant in lithium therapy is worthy to be continued. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    PubMed

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  20. Plants and microbes assisted selenium nanoparticles: characterization and application

    PubMed Central

    2014-01-01

    Selenium is an essential trace element and is an essential component of many enzymes without which they become inactive. The Se nanoparticles of varying shape and size may be synthesized from Se salts especially selenite and selenates in presence of reducing agents such as proteins, phenols, alcohols and amines. These biomolecules can be used to reduce Se salts in vitro but the byproducts released in the environment may be hazardous to flora and fauna. In this review, therefore, we analysed in depth, the biogenic synthesis of Se nanoparticles, their characterization and transformation into t- Se, m-Se, Se-nanoballs, Se-nanowires and Se-hollow spheres in an innocuous way preventing the environment from pollution. Their shape, size, FTIR, UV–vis, Raman spectra, SEM, TEM images and XRD pattern have been analysed. The weak forces involved in aggregation and transformation of one nano structure into the other have been carefully resolved. PMID:25128031

  1. Plants and microbes assisted selenium nanoparticles: characterization and application.

    PubMed

    Husen, Azamal; Siddiqi, Khwaja Salahuddin

    2014-08-16

    Selenium is an essential trace element and is an essential component of many enzymes without which they become inactive. The Se nanoparticles of varying shape and size may be synthesized from Se salts especially selenite and selenates in presence of reducing agents such as proteins, phenols, alcohols and amines. These biomolecules can be used to reduce Se salts in vitro but the byproducts released in the environment may be hazardous to flora and fauna. In this review, therefore, we analysed in depth, the biogenic synthesis of Se nanoparticles, their characterization and transformation into t- Se, m-Se, Se-nanoballs, Se-nanowires and Se-hollow spheres in an innocuous way preventing the environment from pollution. Their shape, size, FTIR, UV-vis, Raman spectra, SEM, TEM images and XRD pattern have been analysed. The weak forces involved in aggregation and transformation of one nano structure into the other have been carefully resolved.

  2. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1.

    PubMed

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-11-14

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1*

    PubMed Central

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-01-01

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO32−) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys21 and Cys22 as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO32− to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. PMID:25274629

  4. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    PubMed

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Selenium and other elements in freshwater fishes from the irrigated San Joaquin Valley, California

    USGS Publications Warehouse

    Saiki, M.K.; Jennings, M.R.; May, T.W.

    1992-01-01

    Arsenic (As), chromium (Cr), mercury (Hg), and selenium (Se) were measured in composite whole-body samples of five fishes — bluegill (Lepomis macrochirus), common carp (Cyprinus carpio), mosquitofish (Gambusia affinis), largemouth bass (Micropterus salmoides), and Sacramento blackfish (Orthodon microlepidotus) — from the San Joaquin River system to determine if concentrations were elevated from exposure to agricultural subsurface (tile) drainage. Except for Cr, the concentrations of these elements in fishes from one or more sites were elevated; however, only Se approached concentrations that may adversely affect survival, growth, or reproduction in warm water fishes. Moreover, only Se among the four measured elements exhibited a geographic (spatial) pattern that coincided with known inflows of tile drainage to the San Joaquin River and its tributaries. Historical data from the Grassland Water District (Grasslands; a region exposed to concentrated tile drainage) suggested that concentrations of Se in fishes were at maximum during or shortly after 1984 and have been slightly lower since then. The recent decline of Se concentrations in fishes from the Grasslands could be temporary if additional acreages of irrigated lands in this portion of the San Joaquin Valley must be tile-drained to protect agricultural crops from rising groundwater tables.

  6. Selenium and its relationship with selenoprotein P and glutathione peroxidase in children and adolescents with Hashimoto's thyroiditis and hypothyroidism.

    PubMed

    Nourbakhsh, Mitra; Ahmadpour, Fatemeh; Chahardoli, Behnam; Malekpour-Dehkordi, Zahra; Nourbakhsh, Mona; Hosseini-Fard, Seyed Reza; Doustimotlagh, Amirhossein; Golestani, Abolfazl; Razzaghy-Azar, Maryam

    2016-03-01

    The essential trace element selenium (Se) is required for thyroid hormone synthesis and metabolism. Selenoproteins contain selenocysteine and are responsible for biological functions of selenium. Glutathione peroxidase (GPx) is one of the major selenoproteins which protects the thyroid cells from oxidative damage. Selenoprotein P (SePP) is considered as the plasma selenium transporter to tissues. The aim of this study was to evaluate serum Se and SePP levels, and GPx activity in erythrocytes of children and adolescents with treated Hashimoto's thyroiditis, hypothyroidism, and normal subjects. Blood samples were collected from 32 patients with Hashimoto's thyroiditis, 20 with hypothyroidism, and 25 matched normal subjects. All the patients were under treatment with levothyroxine and at the time of analysis all of the thyroid function tests were normal. GPx enzyme activity was measured by spectrophotometry at 340 nm. Serum selenium levels were measured by high-resolution continuum source graphite furnace atomic absorption. SePP, TPOAb (anti-thyroid peroxidase antibody), and TgAb (anti-thyroglobulin antibody) were determined by ELISA kits. T4, T3, T3 uptake and TSH were also measured. Neither GPx activity nor SePP levels were significantly different in patients with Hashimoto's thyroiditis or hypothyroidism compared to normal subjects. Although GPx and SePP were both lower in patients with hypothyroidism compared to those with Hashimoto's thyroiditis and normal subjects but the difference was not significant. Serum Se levels also did not differ significantly in patients and normal subjects. We did not find any correlation between GPx or SePP with TPOAb or TgAb but SePP was significantly correlated with Se. Results show that in patients with Hashimoto's thyroiditis or hypothyroidism who have been under treatment with levothyroxine and have normal thyroid function tests, the GPx, SePP and Se levels are not significantly different. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. The Implications of selenium deficiency for wild herbivore conservation: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner T. Flueck; J.M. Smith Flueck; J. Mionczynski

    Selenium (Se) has been identified as an essential micronutrient in all animals. It is required at the most fundamental physiological level as a component of the selenoproteins containing the 21st amino acid, selenocysteine. Adequate levels of Se are vital to proper reproductive performance, bone metabolism, immune function and iodine metabolism. Yet, Se is a relatively rare element, and is often present at low concentrations in soil and vegetation. Selenium deficiencies are widespread in domestic stock and are unavoidable in some wildlife populations. This may be especially true for populations confined to high elevation ranges, or on areas with granitic bedrockmore » with low Se content, or that have lost access to Se-containing parts of their ranges such as mineral licks or low-elevation winter range. The condition may be exacerbated by increased levels of oxidative stress. Because our understanding of Se as a micronutrient is relatively new, many wildlife managers are unaware of the element’s importance in physiology and population dynamics. Severe deficiency results in obvious symptoms such as white muscle disease. However, more frequently, deficiency may be chronic and subclinical. Individuals then display no obvious signs of malady, yet performance suffers until their populations decline without apparent cause. While mysterious population declines are not always due to Se deficiency, the wildlife manager should be aware of the possibility. Therefore, this review presents not only a summary of the wildlife literature regarding Se nutrition, but also a comprehensive look at the role of Se in mammalian physiology, and the behavior of this important element in the environment. Finally, the role of the biogeochemical Se cycle is discussed, and evidence is provided that the levels of available Se in the environment are decreasing while physiological demands often are increasing.« less

  8. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS.

    PubMed

    Favorito, Jessica E; Luxton, Todd P; Eick, Matthew J; Grossl, Paul R

    2017-10-01

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO 4 -extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analyses indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Temporal variations in dissolved selenium in Lake Kinneret (Israel)

    USGS Publications Warehouse

    Nishri, A.; Brenner, I.B.; Hall, G.E.M.; Taylor, Howard E.

    1999-01-01

    Selenium is an essential micronutrient for the growth of the dinoflagellate Peridinium gatunense that dominates the spring algal bloom in Lake Kinneret (LK). The relationship between the levels of dissolved selenium species and the occurance of algal blooms in this lake was studied. During algal blooms of P. gatunense in spring and of the blue-green Aphanizomenon ovalisporum in fall (in 1994) the concentration of epilimnetic dissolved organic Se (Se(org)) increased whereas that of selenite (SeIV) decreased, to levels below the limit of detection: 5 ng/l. The disappearance of SeIV during these blooms is attributed to algal uptake and it is suggested that the growth of both algae may have depended on Se(org) regeneration. A budget performed for selenate (SeVI) suggests that this species is also consumed by algae but to a lesser extent than SeIV (in 1994 ~40% of the epilimnetic load). During the stratification period the hypolimnion of Lake Kinneret becomes anoxic, with high levels of dissolved sulfide. The affects of this environment on the distribution of Se oxy-anions, selenite (SeIV) and selenate(SeVI), were also studied. At the onset of thermal stratification (March) about 35% of the lake inventory of both Se oxidized species are entrapped in the hypolimnion. During stages of oxygen depletion and H2S accumulation, SeIV is completely and SeVI partially removed from this layer. The removal is attributed to reduction followed by formation of particulate reduced products, such as elemental selenium Se(o). The ratio between SeVI to total dissolved selenium (SE(T)) in water sources to the lake is ~0.84, about twice the corresponding ratio in the lake (~0.44, during holomixis). In the lake about 75% of annual SeVI inflow from external sources undergoes reduction to selenide (Se-II) and Se(o) through epilimnetic algal assimilation and hypolimnetic anoxic reduction, respectively. It is suggested that the latter oxidation of the dissolved organic selenide released from biogenic particles and of Se(o) only to the tetravalent species is the cause for the lower ratio of SeVI/Se(T) in the lake.

  10. Microbial transformation of elements: the case of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.; Basu, P.; Oremland, R.

    2002-01-01

    Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements.

  11. Microbial transformation of elements: the case of arsenic and selenium.

    PubMed

    Stolz, J F; Basu, P; Oremland, R S

    2002-12-01

    Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements.

  12. Selenium, selected inorganic elements, and organochlorine pesticides in bottom material and biota from the Colorado River delta

    USGS Publications Warehouse

    Garcia-Hernandez, J.; King, K.A.; Velasco, A.L.; Shumilin, E.; Mora, M.A.; Glenn, E.P.

    2001-01-01

    Concentrations of selenium (Se) in bottom material ranged from 0.6 to 5.0 μg g−1, and from 0.5 to 18.3 μg g−1in biota; 23% of samples exceeded the toxic threshold. Concentrations of DDE in biota exceeded the toxic threshold in 30% of the samples. Greater concentrations of selenium in biota were found at sites with strongly reducing conditions, no output, alternating periods of drying and flooding or dredging activities, and at sites that received water directly from the Colorado River. The smallest Se concentrations in biota were found at sites where an outflow and exposure or physical disturbance of the bottom material were uncommon.

  13. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities.

    PubMed

    Shoeibi, Sara; Mashreghi, Mohammad

    2017-01-01

    Microorganisms are capable of synthesizing metal nanoparticles, and specifically Enterococcus faecalis bacteria were tested for its ability to synthesize selenium nanoparticles (Se-NPs) from sodium selenite. The biosynthesized Se-NPs were spherical in shape with the size range of 29-195nm. Also, the TEM microscopy showed the accumulation of nano-structures as extracellular deposits. The ability of the bacteria to tolerate high levels of toxic selenite was studied by changing with different concentrations of sodium selenite (0.19mM-2.97mM). Also, the effect of Se-NPs was studied on the growth profile of number of pathogenic Gram-positive and -negative bacteria. High concentrations of sodium selenite in the medium led to the production of small amounts of selenium nanostructures by bacteria. In addition, Se-NPs can be used as an anti-staphylococcal element to effectively prevent and treat S. aureus infections. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  15. Studies on the origin and transformation of selenium and its chemical species along the process of petroleum refining

    NASA Astrophysics Data System (ADS)

    Stivanin de Almeida, Cibele M.; Ribeiro, Anderson S.; Saint'Pierre, Tatiana D.; Miekeley, Norbert

    2009-06-01

    Inductively coupled plasma optical emission spectrometry and mass spectrometry (ICPMS), the latter hyphenated to flow injection hydride generation, electrothermal vaporization or ion chromatography, have been applied to the chemical characterization of crude oil, aqueous process stream samples and wastewaters from a petroleum refinery, in order to get information on the behavior of selenium and its chemical species along effluent generation and treatment. Multielemental characterization of these effluents by ICPMS revealed a complex composition of most of them, with high salinity and potential spectral and non-spectral interferents present. For this reason, a critical re-assessment of the analytical techniques for the determination of total selenium and its species was performed. Methane was employed as gas in dynamic reaction cell ICPMS and cell parameters were optimized for a simulated brine matrix and for diluted aqueous solutions to match the expected process and treated wastewaters samples. The signal-to-background ratios for 78Se and 80Se were used as criteria in optimization, the first isotope resulting in better detection limits for the simulated brine matrix ( 78Se: 0.07 μg L - 1 , 80Se: 0.31 μg L - 1 ). A large variability in the concentration of selenium (from < 10 μg kg - 1 up to 960 μg kg - 1 ) was observed in 16 of the most frequently processed crude oil samples in the refinery here investigated, which may explain the pronounced concentrations changes of this element measured in aqueous process stream and wastewater samples. Highest concentrations of total selenium were analyzed in samples from the hydrotreater (up to about 1800 μg L - 1 ). The predominance of selenocyanate (SeCN -) was observed in most of the wastewaters so far investigated, but also other species were detected with retention times different from Se(IV), Se(VI) and SeCN -. Colloidal selenium (Se 0) was the only Se-species observed in samples from the atmospheric distillation unit, but was also identified in other samples, most probably formed by the decomposition of SeCN - or other unstable species.

  16. Ethanol Consumption by Wistar Rat Dams Affects Selenium Bioavailability and Antioxidant Balance in Their Progeny

    PubMed Central

    Ojeda, María Luisa; Vázquez, Beatriz; Nogales, Fátima; Murillo, María Luisa; Carreras, Olimpia

    2009-01-01

    Ethanol consumption affects maternal nutrition, the mothers’ antioxidant balance and the future health of their progeny. Selenium (Se) is a trace element cofactor of the enzyme glutathione peroxidase (GPx). We will study the effect of ethanol on Se bioavailability in dams and in their progeny. We have used three experimental groups of dams: control, chronic ethanol and pair-fed; and three groups of pups. Se levels were measured by graphite-furnace atomic absorption spectrometry. Serum and hepatic GPx activity was determined by spectrometry. We have concluded that ethanol decreased Se retention in dams, affecting their tissue Se deposits and those of their offspring, while also compromising their progeny’s weight and oxidation balance. These effects of ethanol are caused by a reduction in Se intake and a direct alcohol-generated oxidation action. PMID:19742151

  17. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations.

  18. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology.

    PubMed

    Schiavon, Michela; Pilon-Smits, Elizabeth A H

    2017-03-01

    Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Determination of changes in the concentration and distribution of elements within olive drupes (cv. Leccino) from Se biofortified plants, using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    D'Amato, Roberto; Petrelli, Maurizio; Proietti, Primo; Onofri, Andrea; Regni, Luca; Perugini, Diego; Businelli, Daniela

    2018-03-25

    Biofortification of food crops has been used to increase the intake of Se in the human diet, even though this may change the concentration of other elements and modify the nutritional properties of the enriched food. Selenium biofortification programs should include routine assessment of the overall mineral composition of enriched plants. Laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) was used for the assessment of mineral composition of table olives. Olive trees were fertilized with sodium selenate before flowering. At harvest, the edible parts of drupes proved to be significantly enriched in Se, delivering 6.1 μg g -1 (39% of the RDA for five olives). Such enrichment was followed by significant changes in the concentrations of B, Mg, K, Cr, Mn, Fe and Cu in edible parts, which are discussed for their impact on food quality. The biofortification of olive plants has allowed the enrichment of fruits with selenium. Enrichment with selenium has caused an increase in the concentration of other elements, which can change the nutritional quality of the drupes. The analytical technique used well as a valuable tool for routinely determining the chemical composition of all fruit parts. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. The effects of di(2-ethylhexyl) phthalate and/or selenium on trace element levels in different organs of rats.

    PubMed

    Erkekoglu, Pinar; Arnaud, Josiane; Rachidi, Walid; Kocer-Gumusel, Belma; Favier, Alain; Hincal, Filiz

    2015-01-01

    Di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer for synthetic polymers, is known to have endocrine disruptive potential, reproductive toxicity, and induces hepatic carcinogenesis in rodents. Selenium (Se) is a component of several selenoenzymes which are essential for cellular antioxidant defense and for the functions of mammalian reproductive system. The present study was designed to investigate the effects of DEHP exposure on trace element distribution in liver, testis, and kidney tissues and plasma of Se-deficient and Se-supplemented rats. Se deficiency was produced by feeding 3-week old Sprague-Dawley rats with ≤0.05mg Se/kg diet for 5 weeks, and supplementation group were on 1mg Se/kg diet. DEHP treated groups received 1000mg/kg dose by gavage during the last 10 days of feeding period. Se, zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) levels were measured by inductively coupled plasma mass spectrometry (ICP-MS). Se supplementation caused significant increases in hepatic, renal, and testicular Se levels. With DEHP exposure, plasma Se and Zn, kidney Se, Cu and Mn levels were significantly decreased. Besides, liver Fe decreased markedly in all the DEHP-treated groups. Liver and kidney Mn levels decreased significantly in DEHP/SeD group compared to both DEHP and SeD groups. These results showed the potential of DEHP exposure and/or different Se status to modify the distribution pattern of essential trace elements in various tissues, the importance of which needs to be further evaluated. Copyright © 2014. Published by Elsevier GmbH.

  1. Selenium semiconductor core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, G. W.; Qian, Q., E-mail: qianqi@scut.edu.cn; Peng, K. L.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Suchmore » crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.« less

  2. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  3. Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes.

    PubMed

    Weiller, Markus; Latta, Markus; Kresse, Matthias; Lucas, Rudolf; Wendel, Albrecht

    2004-09-01

    The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.

  4. Selenium in Cattle: A Review.

    PubMed

    Mehdi, Youcef; Dufrasne, Isabelle

    2016-04-23

    This review article examines the role of selenium (Se) and the effects of Se supplementation especially in the bovine species. Selenium is an important trace element in cattle. Some of its roles include the participation in the antioxidant defense the cattle farms. The nutritional requirements of Se in cattle are estimated at 100 μg/kg DM (dry matter) for beef cattle and at 300 μg/kg DM for dairy cows. The rations high in fermentable carbohydrates, nitrates, sulfates, calcium or hydrogen cyanide negatively influence the organism's use of the selenium contained in the diet. The Se supplementation may reduce the incidence of metritis and ovarian cysts during the postpartum period. The increase in fertility when adding Se is attributed to the reduction of the embryonic death during the first month of gestation. A use of organic Se in feed would provide a better transfer of Se in calves relative to mineral Se supplementation. The addition of Se yeasts in the foodstuffs of cows significantly increases the Se content and the percentage of polyunsaturated fatty acids (PUFA) in milk compared to the addition of sodium selenite. The enzyme 5-iodothyronine deiodinase is a seleno-dependent selenoprotein. It is one of the last proteins to be affected in the event of Se deficiency. This delay in response could explain the fact that several studies did not show the effect of Se supplementation on growth and weight gain of calves. Enrichment of Se in the diet did not significantly affect the slaughter weight and carcass yield of bulls. The impact and results of Se supplementation in cattle depend on physiological stage, Se status of animals, type and content of Se and types of Se administration. Further studies in Se supplementation should investigate the speciation of Se in food and yeasts, as well as understanding their metabolism and absorption. This constitute a path to exploit in order to explain certain different effects of Se.

  5. Selenium accumulation by plants

    PubMed Central

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans. PMID:26718221

  6. Selenium accumulation by plants.

    PubMed

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Hepatic element concentrations of lesser scaup (Aythya affinis) during spring migration in the upper Midwest

    USGS Publications Warehouse

    Pillatzki, Angela E.; Neiger, Regg D.; Chipps, Steven R.; Higgins, Kenneth F.; Thiex, Nancy; Afton, Alan D.

    2011-01-01

    High concentrations of some hepatic elements might be contributing to the decline of the continental lesser scaup (Aythya affinis) population. We evaluated hepatic element concentrations of male and female lesser scaup collected from the upper Midwest (Iowa, Minnesota, North Dakota, and South Dakota) during the 2003 and 2004 spring migrations. We measured concentrations of 24 elements in livers of 117 lesser scaup. We found that only selenium concentrations were at levels (>3.0 μg/g wet weight [ww)]) proposed to adversely affect reproduction. Approximately 49% of females (n = 61) had individual hepatic concentrations >3.0 μg/g ww selenium (Se). Our observed hepatic concentration of Se was similar to that reported in lesser scaup collected from the mid-continental United States but less than Se concentrations reported from the Great Lakes region. We found that the liver cadmium (Cd) concentration for males was significantly higher than that for females. Gender differences in hepatic Cd concentrations have not been previously reported for lesser scaup, but Cd is known to have negative impacts on male reproduction. Our results indicate that lesser scaup migrating through the upper Midwest in spring have elevated Se levels and that males carry a significantly greater Cd burden than females. Moreover, elemental concentrations might be high enough to affect reproduction in both male and female lesser scaup, but controlled laboratory studies are needed to adequately assess the effects of Se and Cd on lesser scaup reproduction.

  8. Hepatic element concentrations of lesser scaup (aythya affinis) during spring migration in the upper midwest

    USGS Publications Warehouse

    Pillatzki, A.E.; Neiger, R.D.; Chipps, S.R.; Higgins, K.F.; Thiex, N.; Afton, A.D.

    2011-01-01

    High concentrations of some hepatic elements might be contributing to the decline of the continental lesser scaup (Aythya affinis) population. We evaluated hepatic element concentrations of male and female lesser scaup collected from the upper Midwest (Iowa, Minnesota, North Dakota, and South Dakota) during the 2003 and 2004 spring migrations. We measured concentrations of 24 elements in livers of 117 lesser scaup. We found that only selenium concentrations were at levels (>3.0 ??g/g wet weight [ww)]) proposed to adversely affect reproduction. Approximately 49% of females (n = 61) had individual hepatic concentrations >3.0 ??g/g ww selenium (Se). Our observed hepatic concentration of Se was similar to that reported in lesser scaup collected from the mid-continental United States but less than Se concentrations reported from the Great Lakes region. We found that the liver cadmium (Cd) concentration for males was significantly higher than that for females. Gender differences in hepatic Cd concentrations have not been previously reported for lesser scaup, but Cd is known to have negative impacts on male reproduction. Our results indicate that lesser scaup migrating through the upper Midwest in spring have elevated Se levels and that males carry a significantly greater Cd burden than females. Moreover, elemental concentrations might be high enough to affect reproduction in both male and female lesser scaup, but controlled laboratory studies are needed to adequately assess the effects of Se and Cd on lesser scaup reproduction. ?? 2010 Springer Science+Business Media, LLC.

  9. Optimised selenium enrichment of Artemia sp. feed to improve red drum (Sciaenops ocellatus) larvae rearing.

    PubMed

    Juhász, Péter; Lengyel, Szvetlana; Udvari, Zsolt; Sándor, Alex Nagy; Stündl, László

    2017-09-01

    Selenium is an essential microelement for the normal functioning of life processes. Moreover, it is a component of enzymes with antioxidant effects. However, it has the smallest window of any micronutrient between requirement and toxicity. Selenium is a regularly used element in fish feeds; moreover, enriching zooplankton with selenium to rear larvae is also a well-known technology. It is accepted that the most common starter foods of fish larvae, natural rotifers contain the smallest dosage of selenium, but providing selenium enriched Artemia sp. instead could increase survival and growth rate of fish. However, no such references are available for the red drum (Sciaenops ocellatus) larvae. Therefore, in this study, Artemia sp. was enriched with nano-selenium of verified low toxicity and easy availability in 5 treatments (1, 5, 10, 50, 100 mg/l Se), and then, fish larvae were fed with four of these enriched Artemia stocks (1, 5, 10, 50 mg/l Se) and a control group. At the end of the 9-day-long experiment, survival rate (S) and growth parameters (SL, W, K-factor, SGR) of fish larvae were calculated as well as their selenium retention and glutathione peroxidase enzyme activity were analysed. It was revealed that a moderate level of selenium enrichment (~4 mg/kg dry matter) of Artemia sp. positively influences the rearing efficiency (i.e. survival and growth) of fish larvae, but higher dosages of selenium could cause adverse effects.

  10. Protective effects of Nano-elemental selenium against chromium-vi-induced oxidative stress in broiler liver.

    PubMed

    Xueting, L; Rehman, M U; Zhang, H; Tian, X; Wu, X; Shixue; Mehmood, K; Zhou, D

    2018-01-01

    The valuable role of selenium in mitigation of oxidative stress and heavy metal toxicity is well-known. Thus, the aim of the current study on broiler chickens was to examine whether nano elemental selenium (Nano-Se) supplementation can reduce the effects of chromium VI (K2Cr2O7) toxicity. For this purpose, a total of 150, one-day-old broiler chickens were allotted to five groups with three replicates: control group (standard diet), poisoned group (K2Cr2O7 via drinking water), protection group (K2Cr2O7 + Nano- Se), cure group (K2Cr2O7 for initial 2 weeks and then Nano-Se), and prevention group (opposite to the cure group). The broilers were detected by the activities of marker enzymes and oxidative stress markers including, aspartate aminotransferase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (GGT) and superoxide dismutase (SOD), glutathione peroxidase (GSH-px), malondialdehyde (MDA), respectively. The (K2Cr2O7 administration caused histopathological damage in the liver of the chickens. Moreover, changes in serum biochemical indicators and oxidative stress parameters were also observed. Nano-Se supplementation increased the levels of GSH-px but reduced the activities of SOD, MDA, GGT, ALT and AST in the experimental groups (P less than 0.05). Our results showed that Nano-Se plays a protective role by preventing the oxidative stress induced by the chromium VI in broiler chickens.

  11. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    PubMed

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Low concentrations of selenium and zinc in nails are associated with childhood asthma.

    PubMed

    Carneiro, Maria Fernanda Hornos; Rhoden, Claudia Ramos; Amantéa, Sérgio Luis; Barbosa, Fernando

    2011-12-01

    The purpose of this study was to investigate possible associations between Zn, Se, Cu, Mn, and Co concentrations in nails and asthma in a young population from a Southern Brazil city. Additionally, correlations between these chemical elements among asthmatic and non-asthmatic children were evaluated. Before nail collection (n = 165), children were asked to complete the International Study of Asthma and Allergies in Childhood questionnaire. The concentrations of trace elements were determined by inductively coupled plasma mass spectrometry. The chi-square test was used to evaluate the association between element concentrations in nails and the respiratory outcome. To evaluate correlations between the elements, we used the Spearman correlation test. For all tests, the significance level was set at 95% (P ≤ 0.05). Children included in the highest quartile of nail Se and Zn concentration presented a fivefold decrease in the prevalence ratio of asthma while children in the lowest Se range presented an almost 2.5-fold increase in the asthma prevalence ratio. There were weak to strong correlations between Cu vs. Zn, Cu vs. Co, Cu vs. Se, Zn vs. Se, Zn vs. Mn, and Mn vs. Co in both asthmatic and non-asthmatic children. Interestingly, non-asthmatics also presented correlations between Co vs. Se and Zn. Taken together, our results clearly demonstrated an association between concentrations of selenium and zinc and childhood asthma and the usefulness of nail as a noninvasive matrix to detect minerals imbalance in asthma patients.

  13. Final report for CCQM-K107: total elements and selenomethionine in human serum

    NASA Astrophysics Data System (ADS)

    Goenaga Infante, Heidi

    2016-01-01

    Routine tests that measure the concentration of electrolytes in serum are needed for diagnosis and management of renal, endocrine, acid-base, water balance and other conditions such as screening D- and A-vitamin disorders, kidney insufficiency, bone diseases and leukaemia. The diagnostic concentration ranges for many such markers are narrow, requiring reference methods with small uncertainty. Serum concentration of total selenium (Se) is important in health studies but there is increasing interest in the speciation of selenium compounds in clinical samples such as serum and individual Se- Species are bio-indicators of Se status. The last CCQM IAWG key comparison for elements in the clinical area (CCQM-K14: Ca in human serum) was organized in 2003 and the previous key comparison (CCQM-K60) for Se and Se species used a wheat flour sample. Therefore, the CCQM IAWG agreed that CCQM-K107 and a parallel pilot study CCQM-P146 should be carried out. The candidate human serum sample used for both CCQM-K107 and P146 is of high complexity and contains approximately 1000-fold lower concentrations of selenium methionine (SeMet) than those encountered in the CCQM-K60 wheat flour. This significantly broadens the scope and degree of difficulty of earlier measurements in this field. A total of eleven institutes participated in CCQM-K107 (11 participants for total elements and 7 for SeMet). The performance of the majority of the K107 participants for all the measurands was very good, illustrating their ability to obtain accurate results for analytes such as electrolytes at mg kg-1 level, essential elements at µg kg-1 level and selenium species at µg kg-1 level in a complex biological fluid. The range of agreement between participants was within the interval of ± 0.1% for Ca and up to ± 1.8% for Fe. CMC claims based on total elements in this study may include other elements with similar core competencies (e.g. Se, Cu, Zn) in a wide range of biological materials (including liquids and solids) at a similar level of performance using the same measurement technique applied in CCQM-K107 provided that there are no additional factors (e.g. blank or dissolution issues). CMC claims based on SeMet measurements in this study may be applied to other biological matrices (e.g., tissues) provided that the concentration range is similar and due diligence is taken to ensure an appropriate extraction process is achieved and species specific spikes are available for quantitation by isotope dilution. Indeed, having accepted such conditions, application to quantitation of other organometallic species and other elements in similar matrices should be possible with the same level of performance. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions.

    PubMed

    Staicu, L C; Ackerson, C J; Cornelis, P; Ye, L; Berendsen, R L; Hunter, W J; Noblitt, S D; Henry, C S; Cappa, J J; Montenieri, R L; Wong, A O; Musilova, L; Sura-de Jong, M; van Hullebusch, E D; Lens, P N L; Reynolds, R J B; Pilon-Smits, E A H

    2015-08-01

    To identify bacteria with high selenium tolerance and reduction capacity for bioremediation of wastewater and nanoselenium particle production. A bacterial endophyte was isolated from the selenium hyperaccumulator Stanleya pinnata (Brassicaceae) growing on seleniferous soils in Colorado, USA. Based on fatty acid methyl ester analysis and multi-locus sequence analysis (MLSA) using 16S rRNA, gyrB, rpoB and rpoD genes, the isolate was identified as a subspecies of Pseudomonas moraviensis (97.3% nucleotide identity) and named P. moraviensis stanleyae. The isolate exhibited extreme tolerance to SeO3(2-) (up to 120 mmol l(-1)) and SeO4(2-) (>150 mmol l(-1)). Selenium oxyanion removal from growth medium was measured by microchip capillary electrophoresis (detection limit 95 nmol l(-1) for SeO3(2-) and 13 nmol l(-1) for SeO4(2-)). Within 48 h, P. moraviensis stanleyae aerobically reduced SeO3(2-) to red Se(0) from 10 mmol l(-1) to below the detection limit (removal rate 0.27 mmol h(-1) at 30 °C); anaerobic SeO3(2-) removal was slower. No SeO4(2-) removal was observed. Pseudomonas moraviensis stanleyae stimulated the growth of crop species Brassica juncea by 70% with no significant effect on Se accumulation. Pseudomonas moraviensis stanleyae can tolerate extreme levels of selenate and selenite and can deplete high levels of selenite under aerobic and anaerobic conditions. Pseudomonas moraviensis subsp. stanleyae may be useful for stimulating plant growth and for the treatment of Se-laden wastewater. © 2015 The Society for Applied Microbiology.

  15. Selenium supplementation to chronic kidney disease patients on hemodialysis does not induce the synthesis of plasma glutathione peroxidase.

    PubMed

    Zachara, Bronislaw A; Gromadzinska, Jolanta; Zbrog, Zbigniew; Swiech, Rafal; Wasowicz, Wojciech; Twardowska, Ewa; Jablonska, Ewa; Sobala, Wojciech

    2009-01-01

    Numerous authors have shown that selenium (Se) concentration and glutathione peroxidase (GSH-Px) activity in plasma of chronic kidney disease (CKD) patients are lower than in healthy subjects, but there are only few publications on the level of GSH-Px protein in those patients and no reports on the effect of Se supplementation to HD patients on the level of this enzyme. Se concentration and GSH-Px protein level in plasma were measured in a group of 30 CKD patients on hemodialysis (HD) supplemented with 200 microg Se/day for 3 months, and 28 patients on HD administered with placebo. Se concentration was measured by graphite furnace atomic absorption spectrometry and plasma GSH-Px protein level by the sandwich ELISA method using polyclonal antibody specific for human plasma GSH-Px. Se concentration in patients on placebo did not change throughout the 3-month study period, but increased significantly in Se supplemented group. Se supplementation to CKD patients on HD had no effect on the level of GSH-Px protein. The lack of GSH-Px protein in CKD patients on HD is not linked to Se deficiency since the level of this element increased after Se supplementation while enzyme protein level did not change. The damaged kidney of HD patients is unable to synthesize GSH-Px, even after induction with selenium.

  16. Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA

    Treesearch

    Lisa L. Stillings; Michael C. Amacher

    2010-01-01

    Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0...

  17. Selenium Distribution and Speciation in the Hyperaccumulator Astragalus bisulcatus and Associated Ecological Partners1[W][OA

    PubMed Central

    Valdez Barillas, José R.; Quinn, Colin F.; Freeman, John L.; Lindblom, Stormy D.; Fakra, Sirine C.; Marcus, Matthew A.; Gilligan, Todd M.; Alford, Élan R.; Wangeline, Ami L.; Pilon-Smits, Elizabeth A.H.

    2012-01-01

    The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704–4,661 mg kg−1 dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems. PMID:22645068

  18. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jiating; Gao, Yuxi, E-mail: gaoyx@ihep.ac.cn; Li, Yu-Feng

    2013-08-15

    To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg{sup 2+}) and selenite (SeO{sub 3}{sup 2−}) or selenate (SeO{sub 4}{sup 2−}). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1 mg/L of SeO{sub 3}{sup 2−} or SeO{sub 4}{sup 2−}) would significantly inhibit the absorption and transportation ofmore » Hg when Hg{sup 2+} levels are higher than 1 mg/L in culture media. SeO{sub 3}{sup 2−} and SeO{sub 4}{sup 2−} were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg–S bonding as Hg(GSH){sub 2} and Hg(Met){sub 2}. Se exposure elicited decrease of Hg–S bonding in the form of Hg(GSH){sub 2}, together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. -- Highlights: ► Hg phytotoxicity can be mitigated by Se supplement in garlic growth. ► Se can inhibit the accumulation and transportation of Hg in garlic tissues. ► Localization and speciation of Hg in garlic can be modified by Se.« less

  19. [Assessment of efficiency of use of the developed supplement containing selenium on laboratory animals].

    PubMed

    Bazhenova, B A; Aslaliev, A D; Danilov, M B; Badmaeva, T M; Vtorushina, I A

    2015-01-01

    The article presents the results of a study of the effectiveness of wheat flour containing selenium in organic form. The organic form of trace element was achieved by transformation of selenium in selenium-methionine (Se-Met) at germination of wheat grains, moistened with a solution of sodium selenite. To determine the effectiveness of selenium- containing supplements experimental investigations were carried out on Long white rats with initial body weight 50 ± 2 g. The duration of the experiment was 30 days. The research model included four groups of animals: control group--animals were fed a complete vivarium diet; group 1--a model of selenium deficiency, which was achieved by feeding selenium-deficient food (grain growh in the Chita region of the Trans-Baikal Territory Zabaikalsky Krai); group 2--animals were administered selenium supplement in the form of enriched flour (0.025 µg Se per 50 g body weight of the animal) on the background of selenium-deficient diet; group 3--animals were treated with a high dose of selenium in the form of a solution of sodium selenite intragastrically through a tube (0.15 µg Se per 50 g body weight). Selenium-containing additive on the background of selenium-deficient diet had a positive impact on the appearance and behavior of animals, the body weight gain per head after 10 days in group 2 amounted to 47.9 g that was 4 fold larger than in rats of group 1. The study of selenium content showed that in the blood, liver, lungs and heart of rats treated with the additive on the background of selenium-deficient diet (group 2), selenium level did not differ from those in the control group and was within physiological norms. The experiment showed that selenium deficiency and rich in selenium rich diet has a significantly different effect on the studied parameters of oxidative-antioxidative status. The activity of blood glutathione peroxidase in animals of group 2 (did not differ from that in group 3) was almost 2 fold higher than in blood of control animals and was seven fold higher than that in blood of animals kept on selenium deficient diet (35.57 ± 3.36 µmol/g per 1 min) A similar dependence was established when studying the activity of glutathione reductase. It has been revealed thatthe oxidative-antioxidative status of animals from experimental groups 1 and 3 was lower than from control group and group 2. Thus, blood antioxidant activity in animals receiving diet with selenium deficiency and high dose of this trace element, was less than in the control group by 43.1 and 25.4%, respectively. Liver MDA level in animals kept on a diet with selenium deficiency exceeded the value of this indicator in the group 2 more than 1.5 fold (110.5 ± 10.70 vs. 72.5 ± 4.30 nmol/mg). When using selenium-containing supplement, this parameter decreased to the control level. In blood plasma of the animals of group 2 total antioxidant activity increased by about five times as compared with the indicators of animals kept on selenium-deficient diet, and was 25% higher than in control. Thus, the introduction of a selenium supplements in the deficient diet contributes to the development of endogenous antioxidants that suppress lipid oxidation. High biological effectiveness of supplements containing organic form of selenium has been proved.

  20. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  1. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins

    PubMed Central

    Zoidis, Evangelos; Seremelis, Isidoros; Kontopoulos, Nikolaos

    2018-01-01

    Unlike other essential trace elements that interact with proteins in the form of cofactors, selenium (Se) becomes co-translationally incorporated into the polypeptide chain as part of 21st naturally occurring amino acid, selenocysteine (Sec), encoded by the UGA codon. Any protein that includes Sec in its polypeptide chain is defined as selenoprotein. Members of the selenoproteins family exert various functions and their synthesis depends on specific cofactors and on dietary Se. The Se intake in productive animals such as chickens affect nutrient utilization, production performances, antioxidative status and responses of the immune system. Although several functions of selenoproteins are unknown, many disorders are related to alterations in selenoprotein expression or activity. Selenium insufficiency and polymorphisms or mutations in selenoproteins’ genes and synthesis cofactors are involved in the pathophysiology of many diseases, including cardiovascular disorders, immune dysfunctions, cancer, muscle and bone disorders, endocrine functions and neurological disorders. Finally, heavy metal poisoning decreases mRNA levels of selenoproteins and increases mRNA levels of inflammatory factors, underlying the antagonistic effect of Se. This review is an update on Se dependent antioxidant enzymes, presenting the current state of the art and is focusing on results obtained mainly in chicken. PMID:29758013

  2. Trace element supplementation in hemodialysis patients: a randomized controlled trial.

    PubMed

    Tonelli, Marcello; Wiebe, Natasha; Thompson, Stephanie; Kinniburgh, David; Klarenbach, Scott W; Walsh, Michael; Bello, Aminu K; Faruque, Labib; Field, Catherine; Manns, Braden J; Hemmelgarn, Brenda R

    2015-04-11

    People with kidney failure are often deficient in zinc and selenium, but little is known about the optimal way to correct such deficiency. We did a double-blind randomized trial evaluating the effects of zinc (Zn), selenium (Se) and vitamin E added to the standard oral renal vitamin supplement (B and C vitamins) among hemodialysis patients in Alberta, Canada. We evaluated the effect of two daily doses of the new supplement (medium dose: 50 mg Zn, 75 mcg Se, 250 IU vitamin E; low dose: 25 mg Zn, 50 mcg Se, 250 IU vitamin E) compared to the standard supplement on blood concentrations of Se and Zn at 90 days (primary outcome) and 180 days (secondary outcome) as well as safety outcomes. We enrolled 150 participants. The proportion of participants with low zinc status (blood level <815 ug/L) did not differ between the control group and the two intervention groups at 90 days (control 23.9% vs combined intervention groups 23.9%, P > 0.99) or 180 days (18.6% vs 28.2%, P = 0.24). The proportion with low selenium status (blood level <121 ug/L) was similar for controls and the combined intervention groups at 90 days (32.6 vs 19.6%, P = 0.09) and 180 days (34.9% vs 23.5%, P = 0.17). There were no significant differences in the risk of adverse events between the groups. Supplementation with low or medium doses of zinc and selenium did not correct low zinc or selenium status in hemodialysis patients. Future studies should consider higher doses of zinc (≥75 mg/d) and selenium (≥100 mcg/d) with the standard supplement. Registered with ClinicalTrials.gov (NCT01473914).

  3. Mercury and selenium biomagnification in a Brazilian coastal food web using nitrogen stable isotope analysis: a case study in an area under the influence of the Paraiba do Sul River plume.

    PubMed

    Kehrig, Helena A; Seixas, Tercia G; Malm, Olaf; Di Beneditto, Ana Paula M; Rezende, Carlos E

    2013-10-15

    Mercury (Hg), selenium (Se) and nitrogen (δ(15)N) stable isotope were assessed in a tropical food web of Rio de Janeiro's north coast. Isotopic data on muscle suggest a difference related to this parameter along the food web; where top-predators (cetacean and voracious fish) displayed heavier δ(15)N over the entire food web. Both top-predators presented similar δ(15)N values. Cetacean displayed higher Hg and lower Se than voracious fish. Five trophic positions (TP) were found in relation to primary consumer as baseline, ranging from 2.0 to 4.0. Positive relationships were found between trace-element and δ(15)N. The slope of regression equations (0.11 for Se and 0.21 for Hg) and food web magnification factors (2.4 for Se and 5.4 for Hg) showed that Hg presented higher rate of increase over the food web. Simultaneous measurements of trace-elements and ecological tracers emphasize the importance of TP into the trophic structure and distribution of Hg and Se throughout the food web. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Relationships for mercury and selenium in muscle and ova of gravid freshwater fish.

    PubMed

    Donald, David B

    2016-10-01

    At high concentrations, mercury (Hg) is toxic to vertebrates, causing neurological, behavioral, and teratological dysfunction. Selenium (Se) not only is an essential element but also has a high affinity for Hg, binding to organic methyl mercury at a molar ratio of Se/Hg of 1:1. Ratios of <1 increase risk of Hg toxicity. For gravid fish, low concentrations of Se in ova could increase potential for Hg toxicity, compromising embryonic development and fitness of fry. Mercury and selenium concentrations and ratios were investigated in the muscle and ovaries of six species from five families of fish to assess potential for risk to ecological fitness. Molar ratios of Se/Hg in muscle were typically >18 for lower trophic level species but ≤2 for piscivores. For all species combined, the concentrations of Hg in ova were significantly related to concentrations of Hg in muscle. Concentrations of Se in ova versus muscle showed a similar significant relationship that was independent of muscle Hg concentration. Mean ova molar Se/Hg ratios were high, ranging from 69 to 955 for the 6 species. However, a declining relationship between the ova Se/Hg molar ratio and the muscle concentration of Hg for all species combined suggests that development of ova and fry might be compromised for those piscivores with the highest muscle Hg concentrations because of Hg-related Se deficiency.

  5. Arsenic and selenium in microbial metabolism

    USGS Publications Warehouse

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  6. Unimolecular rearrangement of the simplest compound models with a selenium-oxygen, selenium-sulphur and selenium-selenium bond: SeXH and HSeXH (X = O,S,Se)

    NASA Astrophysics Data System (ADS)

    Viana, Rommel B.

    2017-04-01

    The aim of this study was to characterise the simplest compound models with a selenium-oxygen, selenium-sulphur and selenium-selenium bond as the SeXH and HSeXH isomers (X = O,S,Se). One of the main aspects of this investigation was to provide a description on the isomerisation pathways involving 2[H,Se,X] and 1[2H,Se,X] potential energy surfaces calculated at the CCSD(T)/CBS//MP2/cc-pVTZ level. The energy difference was 13 kcal mol-1 between hydroxyselenide (SeOH) and oxoselenium (HSeO), while a gap of 3 kcal mol-1 was predicted between thiol-selenide (SeSH) and selenol-sulphide (HSeS). The SeOH→HSeO unimolecular rearrangement showed a barrier energy of 44.6 kcal mol-1, decreasing almost two times in sulphur and selenium analogous reactions. In addition, hydroxyselenide (HSeOH), thioselenenic acid (HSeSH) and diselane (HSeSeH) were the global minimum configurations in the ground state, while the energy differences among the other isomers were close to 30 kcal mol-1. The HSeXH→H2SeX and HSeXH→SeXH2 isomerisations showed barrier energies ranging from 40 to 65 kcal mol-1, while these reverse routes presented heights that were three times smaller. The kinetic rate constant of each 1,2-H shift reaction was performed here as well as an analysis of the selenium-chalcogen bonds using natural bond orbital and bond order index methodologies.

  7. Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens.

    PubMed

    Fellowes, J W; Pattrick, R A D; Green, D I; Dent, A; Lloyd, J R; Pearce, C I

    2011-05-30

    Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl(2) and its transformation to Hg(v)(0) represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼ 1.7 μg m(-3)) are below advised safe levels (<25 μg m(-3)) but up to 90 μg m(-3) mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85 wt% (bulk); XPS, SEM-EDS and XANES suggest the presence of residual HgCl(2) as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19 wt%), and analysis demonstrated that the Hg(v)(0) was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se(0) can be used to reduce Hg(v)(0) in long term, slow release environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product.

    PubMed

    Mishra, Rashmi Ranjan; Prajapati, Sunita; Das, Jyotirmayee; Dangar, Tushar Kanti; Das, Nigamananda; Thatoi, Hrudayanath

    2011-08-01

    Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40°C) and salt concentration (4-12%) having an optimum growth at 37°C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Water selenium speciation and sediment fractionation in a California flow-through wetland system

    USGS Publications Warehouse

    Gao, S.; Tanii, K.K.; Peters, D.W.; Herbel, M.J.

    2000-01-01

    A flow-through wetland system was established in the Tulare Lake Drainage District (TLDD) in California to determine if selenium (Se) from saline irrigation drainage can be removed prior to impoundment in evaporation basins to reduce potential toxicity to waterbirds. The objective of this research was to evaluate Se speciation, accumulation, and fractionation in the waters and sediments of the newly developed wetland system. The inlet water was dominated by selenate [Se(VI), 92%], with smaller percentages of selenite [Se(IV), 5%] and organic Se [org-Se(-II), 3%]. For the outflow water, the average percentage of Se(VI) was 72% in November 1997 and 59% in February 1999. This change may be due to an increase in either residence time and/or accumulation of organic detrital matter, which may enhance Se(VI) reduction processes. Selenium accumulation, transformation, and incorporation with the solid phase were all intensified in the surface sediment (<20 cm). The highest total Se concentrations in the sediments were found in the top 5 cm and concentrations dramatically decreased with depth. Elemental Se [Se(0)], as extracted by Na2SO3, was the largest fraction (average of 46%) of the total sediment Se, followed by organic matter-associated Se (OM-Se) extracted by NaOH (average of 34%). Soluble, adsorbed, and carbonate-associated Se, as extracted by KCl, K2HPO4 (pH 8.0), and NaOAc (pH 5.0), were about 3, 10, and 3% of the total sediment Se, respectively. After establishing the wetland for 2 yr, significant Se removal from the flowing water was observed. The major sink mechanisms in the sediment are reduction to Se(0) and immobilization into the organic phase.A flow-through wetland system was established in the Tulare Lake Drainage District (TLDD) in California to determine if selenium (Se) from saline irrigation drainage can be removed prior to impoundment in evaporation basins to reduce potential toxicity to waterbirds. The objective of this research was to evaluate Se speciation, accumulation, and fractionation in the waters and sediments of the newly developed wetland system. The inlet water was dominated by selenate [Se(VI), 92%], with smaller percentages of selenite [Se(IV), 5%] and organic Se [org-Se(-II), 3%]. For the outflow water, the average percentage of Se(VI) was 72% in November 1997 and 59% in February 1999. This change may be due to an increase in either residence time and/or accumulation of organic detrital matter, which may enhance Se(VI) reduction processes. Selenium accumulation, transformation, and incorporation with the solid phase were all intensified in the surface sediment (<20 cm). The highest total Se concentrations in the sediments were found in the top 5 cm and concentrations dramatically decreased with depth. Elemental Se [Se(0)], as extracted by Na2SO3, was the largest fraction (average of 46%) of the total sediment Se, followed by organic matter-associated Se (OM-Se) extracted by NaOH (average of 34%). Soluble, adsorbed, and carbonate-associated Se, as extracted by KCl, K2HPO4 (pH 8.0), and NaOAc (pH 5.0), were about 3, 10, and 3% of the total sediment Se, respectively. After establishing the wetland for 2 yr, significant Se removal from the flowing water was observed. The major sink mechanisms in the sediment are reduction to Se(0) and immobilization into the organic phase.

  10. Selenium in Paleozoic stone coal (carbonaceous shale) as a significant source of environmental contamination in rural southern China

    NASA Astrophysics Data System (ADS)

    Belkin, H. E.; Luo, K.

    2012-04-01

    Selenium occurs in high concentrations (typically > 10 and up to 700 ppm) in organic-rich Paleozoic shales and cherts (called "stone coal" - shíméi), in southern China. Stone coals are black shales that formed in anoxic to euxinic environments and typically contain high concentrations of organic carbon, are enriched in various metals such as V, Mo, Pb, As, Cr, Ni, Se, etc., and are distinguished from "humic" coal in the Chinese literature. We have examined stone coal from Shaanxi, Hubei, and Guizhou Provinces, People's Republic of China and have focused our study on the mode of occurrence of Se and other elements (e.g. As, Pb, etc.) hazardous to human health. Scanning electron microscope, energy-dispersive analysis and electron microprobe wave-length dispersive spectroscopy were used to identify and determine the composition of host phases observed in the stone coals. Native selenium, Se-bearing pyrite and other sulfides are the hosts for Se, although we cannot preclude an organic or clay-mineral association. Stone coals are an important source of fuel (reserves over 1 billion tonnes), both domestically and in small industry, in some rural parts of southern China and present significant environmental problems for the indigenous population. The stone coals create three main environmental problems related to Se pollution. First, the residual soils formed on stone coal are enriched in Se and other metals contained in the stone coals and, depending on the speciation and bioavailability of the metals, may enrich crops and vegetation grown on them. Second, weathering and leaching of the stone coal contaminates the local ground water and/or surface waters with Se and other metals. Third, the local population uses the stone coal as a source of fuel, which releases the more volatile elements (Se and As) into the atmosphere in the homes. The ash will be extremely enriched with the balance of the heavy metal suite. Disposal of the ash on agricultural lands or near water supplies will contaminate both. Human and animal selenosis has been observed in economically and geographically isolated rural communities in areas underlain by stone coal. However, local Public Health officials have adequately dealt with these cases of local selenium poisoning. In Enshi, Hubei Province, Se-contaminated farmland has been replanted with tea and the Se-enriched tea has been marketed nationally.

  11. The role of selenium in protecting plants against prairie dog herbivory: implications for the evolution of selenium hyperaccumulation.

    PubMed

    Quinn, Colin F; Freeman, John L; Galeas, Miriam L; Klamper, Erin M; Pilon-Smits, Elizabeth A H

    2008-03-01

    Some plants can hyperaccumulate the element selenium (Se) up to 10,000 mg Se kg(-1) dry weight. Hyperaccumulation has been hypothesized to defend against herbivory. In laboratory studies high Se levels protect plants from invertebrate herbivores and pathogens. However, field studies and mammalian herbivore studies that link Se accumulation to herbivory protection are lacking. In this study a combination of field surveys and manipulative field studies were carried out to determine whether plant Se accumulation in the field deters herbivory by black-tailed prairie dogs (Cynomys ludovicianus). The Se hyperaccumulator Astragalus bisulcatus (two-grooved milkvetch) occurs naturally on seleniferous soils in the Western USA, often on prairie dog colonies. Field surveys have shown that this Se hyperaccumulator is relatively abundant on some prairie dog colonies and suffers less herbivory than other forb species. This protection was likely owing to Se accumulation, as judged from subsequent manipulative field experiments. When given a choice between pairs of plants of the Se hyperaccumulator Stanleya pinnata (prince's plume) that were pretreated with or without Se, prairie dogs preferred to feed on the plants with low Se; the same results were obtained for the non-hyperaccumulator Brassica juncea (Indian mustard). Plants containing as little as 38 mg Se kg(-1) DW were protected from herbivory. Taken together these results shed light on the functional significance of Se hyperaccumulation and the possible selection pressures driving its evolution. They also have implications for the use of plants in Se phytoremediation, or as Se-fortified crops.

  12. Optimization of a new methodology for trace determination of elements in biological fluids: Application for speciation of inorganic selenium in children's blood.

    PubMed

    Akramipour, Reza; Hemati, Mitra; Fattahi, Nazir; Pirsaheb, Meghdad; Ahmadi-Jouibari, Toraj

    2017-06-05

    The continuous sample drop flow microextraction (CSDFME) joined with the iridium-modified tube graphite furnace atomic absorption spectrometry (GFAAS) has been developed as a highly sensitive technique for the speciation of selenium in blood samples. In this method 32.0μl carbon tetrachloride is transferred to the bottom of a conical sample cup. Then the 5.0ml of aqueous solution transforms to fine droplets while passing through the organic solvent. At this stage, Se(IV)-APDC hydrophobic complex is extracted into the organic solvent. After extraction, the conical sample cup is transferred to the GFAAS and 20μl of extraction solvent was injected into the graphite tube by the aim of autosampler. Under the optimum conditions, the calibration graph was linear in the range of 0.06-3.0μgl -1 with detection limit of 0.02μgl -1 . The enrichment factor and enhancement factor were 106 and 91, respectively. Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 2.5μgl -1 of selenium were 3.7% and 4.2%, respectively. Total inorganic Se(IV, VΙ) was measured after reduction of Se(VΙ) with gentle boiling in 5M HCl medium for 50min and adjusting pH to 3, and the concentration of Se(VΙ) was calculated by subtracting the Se(IV) concentration from the total selenium concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Quantification of Methylated Selenium, Sulfur, and Arsenic in the Environment

    PubMed Central

    Vriens, Bas; Ammann, Adrian A.; Hagendorfer, Harald; Lenz, Markus; Berg, Michael; Winkel, Lenny H. E.

    2014-01-01

    Biomethylation and volatilization of trace elements may contribute to their redistribution in the environment. However, quantification of volatile, methylated species in the environment is complicated by a lack of straightforward and field-deployable air sampling methods that preserve element speciation. This paper presents a robust and versatile gas trapping method for the simultaneous preconcentration of volatile selenium (Se), sulfur (S), and arsenic (As) species. Using HPLC-HR-ICP-MS and ESI-MS/MS analyses, we demonstrate that volatile Se and S species efficiently transform into specific non-volatile compounds during trapping, which enables the deduction of the original gaseous speciation. With minor adaptations, the presented HPLC-HR-ICP-MS method also allows for the quantification of 13 non-volatile methylated species and oxyanions of Se, S, and As in natural waters. Application of these methods in a peatland indicated that, at the selected sites, fluxes varied between 190–210 ng Se·m−2·d−1, 90–270 ng As·m−2·d−1, and 4–14 µg S·m−2·d−1, and contained at least 70% methylated Se and S species. In the surface water, methylated species were particularly abundant for As (>50% of total As). Our results indicate that methylation plays a significant role in the biogeochemical cycles of these elements. PMID:25047128

  14. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation.

    PubMed

    Šindelářová, Kristýna; Száková, Jiřina; Tremlová, Jana; Mestek, Oto; Praus, Lukáš; Kaňa, Antonín; Najmanová, Jana; Tlustoš, Pavel

    2015-01-01

    A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).

  15. Can selenium be a modifier of cancer risk in CHEK2 mutation carriers?

    PubMed

    Gupta, Satish; Jaworska-Bieniek, Katarzyna; Lubinski, Jan; Jakubowska, Anna

    2013-11-01

    Selenium is an essential trace element for humans, playing an important role in various major metabolic pathways. Selenium helps to protect the body from the poisonous effects of heavy metals and other harmful substances. Medical studies have provided evidence of selenium supplementation in preventing certain cancers. Low and too high selenium (Se) status correlates with increased risk of e.g. lung, larynx, colorectal and prostate cancers. A higher level of selenium and supplementation with selenium has been shown to be associated with substantially reduced cancer mortality. Selenium exerts its biological roles through selenoproteins, which are involved in oxidoreductions, redox signalling, antioxidant defence, thyroid hormone metabolism and immune responses. Checkpoint kinase 2 (CHEK2) is an important signal transducer of cellular responses to DNA damage and acts as a tumour suppressor gene. Mutations in the CHEK2 gene have been shown to be associated with increased risks of several cancers. Four common mutations in CHEK2 gene (1100delC, IVS2+1G>A, del5395 and I157T) have been identified in the Polish population. Studies have provided evidence that CHEK2-truncating and/or missense mutations are associated with increased risk of breast, prostate, thyroid, colon and kidney cancers. The variability in penetrance and cancer expression in CHEK2 mutation carriers can probably be explained by the influence of other genetic or environmental factors. One of the possible candidates is Se, which together with genetic variations in selenoprotein genes may influence susceptibility to cancer risk.

  16. Selection of superior salt/boron tolerant Stanleya pinnata genotypes and quantification of their selenium phytoremediation abilities in drainage sediment.

    USDA-ARS?s Scientific Manuscript database

    The semi-metallic mineral Se, a naturally-occurring trace element, is primarily found as selenate originating from sedimentary and shale rock formations, e.g., in the western side of the San Joaquin Valley of central California (WSJV). Because selenate-Se is water soluble, bioavailable and biomagnif...

  17. Light dependence of selenium uptake by phytoplankton and implications for predicting selenium incorporation into food webs

    USGS Publications Warehouse

    Baines, S.B.; Fisher, N.S.; Doblin, M.A.; Cutter, G.A.; Cutter, L.S.; Cole, B.

    2004-01-01

    The potentially toxic element selenium is first concentrated from solution to a large but highly variable degree by algae and bacteria before being passed on to consumers. The large loads of abiotic and detrital suspended particles often present in rivers and estuaries may obscure spatial and temporal patterns in Se concentrations at the base of the food web. We used radiotracers to estimate uptake of both selenite (Se(IV)) and C by intact plankton communities at two sites in the Sacramento/San Joaquin River Delta. Our goals were to determine (1) whether C and Se(IV) uptake were coupled, (2) the role of bacteria in Se(IV) uptake, and (3) the Se:C uptake ratio of newly produced organic material. Se(IV) uptake, like C uptake, was strongly related to irradiance. The shapes of both relationships were very similar except that at least 42-56% of Se(IV) uptake occurred in the dark, whereas C uptake in the dark was negligible. Of this dark Se(IV) uptake, 34-67% occurred in the 0.2-1.0-??m size fraction, indicating significant uptake by bacteria. In addition to dark uptake, total Se(IV) uptake consisted of a light-driven component that was in fixed proportion to C uptake. Our estimates of daily areal Se(IV):C uptake ratios agreed very well with particulate Se:C measured at a site dominated by phytoplankton biomass. Estimates of bacterial Se:C were 2.4-13 times higher than for the phytoplankton, suggesting that bacteriovores may be exposed to higher dietary Se concentrations than herbivores.

  18. Plasma Selenium Levels in First Trimester Pregnant Women with Hyperthyroidism and the Relationship with Thyroid Hormone Status.

    PubMed

    Arikan, Tugba Atilan

    2015-10-01

    The thyroid gland has the highest selenium (Se) concentration per unit weight among all tissues. The aims of the present study were to evaluate the Se levels in the plasma of hyperthyroidic pregnant women and to investigate the association between maternal plasma Se concentrations and thyroid hormone levels. The study population consisted of 107 pregnant women, 70 healthy pregnant women (group 1) and 37 pregnant women with hyperthyroidism (group 2). The plasma free triiodothyronine (fT3) and free thyroxine (fT4) levels were significantly higher, and the plasma thyroid-stimulating hormone (TSH) and Se levels were significantly lower in group 2 than in group 1 (p < 0.05). A correlation analysis showed a positive correlation between Se and fT4 in group 1 and with TSH in group 2 (p < 0.05). Decreased maternal serum antioxidant trace element Se in hyperthyroidic pregnant women compared with normal pregnant women supported the hypothesis that hyperthyroidism was associated with decreased antioxidant response.

  19. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility.

    PubMed

    Sun, Jianpeng; Zheng, Xiaoyan; Li, Hui; Fan, Daidi; Song, Zhanping; Ma, Haixia; Hua, Xiufu; Hui, Junfeng

    2017-04-01

    Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO 3 2- (SeHA) was successfully synthesized based on the liquid-solid-solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO 3 2- doping level of the Se/(P+Se) molar ratio of 0-0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P+Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. QTL mapping of selenium content using a RIL population in wheat

    PubMed Central

    Wang, Pei; Wang, Huinan; Liu, Qing; Tian, Xia; Shi, Yanxi

    2017-01-01

    Selenium (Se) is an essential trace element that plays various roles in human health. Understanding the genetic control of Se content and quantitative trait loci (QTL) mapping provide a basis for Se biofortification of wheat to enhance grain Se content. In the present study, a set of recombinant inbred lines (RILs) derived from two Chinese winter wheat varieties (Tainong18 and Linmai6) was used to detect QTLs for Se content in hydroponic and field trials. In total, 16 QTLs for six Se content-related traits were detected on eight chromosomes, 1B, 2B, 4B, 5A, 5B, 5D, 6A, and 7D. Of these, seven QTLs were detected at the seedling stage and nine at the adult stage. The contribution of each QTL to Se content ranged from 7.37% to 20.22%. QSsece-7D.2, located between marker loci D-3033829 and D-1668160, had the highest contribution (20.22%). This study helps in understanding the genetic basis for Se contents and will provide a basis for gene mapping of Se content in wheat. PMID:28880898

  1. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review.

    PubMed

    Hu, Jianjun; Sun, Qiang; He, Huan

    2018-05-01

    The release of selenium (Se) during coal combustion can have serious impacts on the ecological environment and human health. Therefore, it is very important to study the factors that concern the release of Se from coal combustion. In this paper, the characteristics of the release of Se from coal combustion, pyrolysis, and gasification of different coal species under different conditions are studied. The results show that the amount of released Se increases at higher combustion temperatures. There are obvious increases in the amount of released Se especially in the temperature range of 300 to 800 °C. In addition, more Se is released from the coal gasification than coal combustion process, but more Se is released from coal combustion than pyrolysis. The type of coal, rate of heating, type of mineral ions, and combustion atmosphere have different effects on the released percentage of Se. Therefore, having a good understanding of the factors that surround the release of Se during coal combustion, and then establishing the combustion conditions can reduce the impacts of this toxic element to humans and the environment.

  2. Preparation and characterization of a laboratory scale selenomethionine-enriched bread. Selenium bioaccessibility.

    PubMed

    Sánchez-Martínez, María; Pérez-Corona, Teresa; Caímara, Carmen; Madrid, Yolanda

    2015-01-14

    This study focuses on the preparation at lab scale of selenomethionine-enriched white and wholemeal bread. Selenium was supplemented either by adding selenite directly to the dough or by using lab-made selenium-enriched yeast. The best results were obtained when using fresh selenium-enriched yeast. The optimum incubation time for selenomethionine-enriched yeast preparation, while keeping formation of selenium byproducts to a minimum, was 96 h. Selenium content measured by isotope dilution analysis (IDA)-ICP-MS in Se-white and Se-wholemeal bread was 1.28 ± 0.02 μg g–1 and 1.16 ± 0.02 μg g–1 (expressed as mean ± SE, 3 replicates), respectively. HPLC postcolumn IDA-ICP-MS measurements revealed that selenomethionine was the main Se species found in Se-enriched bread, which accounted for ca. 80% of total selenium. In vitro gastrointestinal digestion assay provided selenium bioaccessibility values of 100 ± 3% and 40 ± 1% for white and wholemeal Se-enriched bread, respectively, being selenomethionine the main bioaccessible Se species in white bread, while in wholemeal bread this compound was undetectable.

  3. The relationships between mercury and selenium in plankton and fish from a tropical food web.

    PubMed

    do A Kehrig, Helena; Seixas, Tércia G; Palermo, Elisabete A; Baêta, Aida P; Castelo-Branco, Christina W; Malm, Olaf; Moreira, Isabel

    2009-01-01

    Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70-290 microm) and mesoplankton (>or=290 microm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 microg g(-1) dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g(-1)) than in Micropogonias furnieri (2.9 and 15.3 nmol g(-1)), Bagre spp (1.3 and 3.4 nmol g(-1)) and Mugil liza (0.3 and 5.1 nmol g(-1)), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.

  4. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis.

    PubMed

    Mal, Joyabrata; Veneman, Wouter J; Nancharaiah, Y V; van Hullebusch, Eric D; Peijnenburg, Willie J G M; Vijver, Martina G; Lens, Piet N L

    2017-02-01

    Microbial reduction of selenium (Se) oxyanions to elemental Se is a promising technology for bioremediation and treatment of Se wastewaters. But a fraction of biogenic nano-Selenium (nano-Se b ) formed in bioreactors remains suspended in the treated waters, thus entering the aquatic environment. The present study investigated the toxicity of nano-Se b formed by anaerobic granular sludge biofilms on zebrafish embryos in comparison with selenite and chemogenic nano-Se (nano-Se c ). The nano-Se b formed by granular sludge biofilms showed a LC 50 value of 1.77 mg/L, which was 3.2-fold less toxic to zebrafish embryos than selenite (LC 50  =   0.55 mg/L) and 10-fold less toxic than bovine serum albumin stabilized nano-Se c (LC 50  =   0.16 mg/L). Smaller (nano-Se cs ; particle diameter range: 25-80 nm) and larger (nano-Se cl ; particle diameter range: 50-250 nm) sized chemically synthesized nano-Se c particles showed comparable toxicity on zebrafish embryos. The lower toxicity of nano-Se b in comparison with nano-Se c was analyzed in terms of the stabilizing organic layer. The results confirmed that the organic layer extracted from the nano-Se b consisted of components of the extracellular polymeric substances (EPS) matrix, which govern the physiochemical stability and surface properties like ζ-potential of nano-Se b . Based on the data, it is contented that the presence of humic acid like substances of EPS on the surface of nano-Se b plays a major role in lowering the bioavailability (uptake) and toxicity of nano-Se b by decreasing the interactions between nanoparticles and embryos.

  5. Spiral chain structure of high pressure selenium-II{sup '} and sulfur-II from powder x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami

    2004-10-01

    The structure of high pressure phases, selenium-II{sup '} (Se-II{sup '}) and sulfur-II (S-II), for {alpha}-Se{sub 8} (monoclinic Se-I) and {alpha}-S{sub 8} (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II{sup '} and S-II were found to be isostructural and to belong to the tetragonal space group I4{sub 1}/acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4{sub 1} and 4{sub 3} screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemicalmore » bonds of the phases are also discussed from the interatomic distances that were obtained.« less

  6. Selenium species in selenium fortified dietary supplements.

    PubMed

    Niedzielski, Przemyslaw; Rudnicka, Monika; Wachelka, Marcin; Kozak, Lidia; Rzany, Magda; Wozniak, Magdalena; Kaskow, Zaneta

    2016-01-01

    This article presents a study of dietary supplements available on the Polish market. The supplements comprised a large group of products with selenium content declared by the producer. The study involved determination of dissolution time under different conditions and solubility as well as content and speciation of selenium. The total content was determined as well as organic selenium and the inorganic forms Se(IV) and Se(VI). The organic selenium content was calculated as the difference between total Se and inorganic Se. The values obtained were compared with producers' declarations. The work is the first such study of selenium supplements available on the market of an EU Member State. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Bioavailability of particle-associated Se to the bivalve Potamocorbula amurensis

    USGS Publications Warehouse

    Schlekat, C.E.; Dowdle, P.R.; Lee, B.-G.; Luoma, S.N.; Oremland, R.S.

    2000-01-01

    Elemental selenium, Se(0), is a prevalent chemical form in sediments, but little is known about its bioavailability. We evaluated the bioavailability of two forms of Se(0) by generating radioisotopic 75Se(0) through bacterial dissimilatory reduction of 75SeO32- by pure bacterial cultures (SES) and by an anaerobic sediment microbial consortium (SED). A third form was generated by reducing 75SeO32- with ascorbic acid (AA). Speciation determinations showed that AA and SES were >90% Se(0), but SED showed a mixture of Se(0), selenoanions, and a residual fraction. Pulse-chase techniques were used to measure assimilation efficiencies (AE) of these particulate Se forms by the bivalve Potamocorbula amurensis. Mean AE values were 3 ?? 2% for AA, 7 ?? 1% for SES, and 28 ?? 15% for SED, showing that the bioavailability of reduced, particle-associated Se is dependent upon its origin. To determine if oxidative microbial processes increased Se transfer, SES 75Se(0) was incubated with an aerobic sediment microbial consortium. After 113 d of incubation, 36% of SES Se(0) was oxidized to SeO32-. Assimilation of total particulate Se was unaffected however (mean AE = 5.5%). The mean AE from the diatom Phaeodactylum tricornutum was 58 ?? 8%, verifying the importance of Se associated with biogenic particles. Speciation and AE results from SED suggest that selenoanion reduction in wetlands and estuaries produces biologically available reduced selenium.Elemental selenium, Se(0), is a prevalent chemical form in sediments, but little is known about its bioavailability. We evaluated the bioavailability of two forms of Se(0) by generating radioisotopic 75Se(0) through bacterial dissimilatory reduction of 75SeO32- by pure bacterial cultures (SES) and by an anaerobic sediment microbial consortium (SED). A third form was generated by reducing 75SeO32 with ascorbic acid (AA). Speciation determinations showed that AA and SES were > 90% Se(0), but SED showed a mixture of Se(0), selenoanions, and a residual fraction. Pulse-chase techniques were used to measure assimilation efficiencies (AE) of these particulate Se forms by the bivalve Potamocorbula amurensis. Mean AE values were 3 ?? 2% for AA, 7 ?? 1% for SES, and 28 ?? 15% for SED, showing that the bioavailability of reduced, particle-associated Se is dependent upon its origin. To determine if oxidative microbial processes increased Se transfer, SES 75Se(0) was incubated with an aerobic sediment microbial consortium. After 113 d of incubation, 36% of SES Se(0) was oxidized to SeO32-. Assimilation of total particulate Se was unaffected however (mean AE = 5.5%). The mean AE from the diatom Phaeodactylum tricornutum was 58 ?? 8%, verifying the importance of Se associated with biogenic particles. Speciation and AE results from SED suggest that selenoanion reduction in wetlands and estuaries produces biologically available reduced selenium.

  8. Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory.

    PubMed

    El Mehdawi, Ali F; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-09-13

    Soil surrounding selenium (Se) hyperaccumulator plants was shown earlier to be enriched in Se, impairing the growth of Se-sensitive plant species. Because Se levels in neighbors of hyperaccumulators were higher and Se has been shown to protect plants from herbivory, we investigate here the potential facilitating effect of Se hyperaccumulators on Se-tolerant neighboring species in the field. We measured growth and herbivory of Artemisia ludoviciana and Symphyotrichum ericoides as a function of their Se concentration and proximity to hyperaccumulators Astragalus bisulcatus and Stanleya pinnata. When growing next to hyperaccumulators, A. ludoviciana and S. ericoides contained 10- to 20-fold higher Se levels (800-2,000 mg kg(-1) DW) than when growing next to nonaccumulators. The roots of both species were predominantly (70%-90%) directed toward hyperaccumulator neighbors, not toward other neighbors. Moreover, neighbors of hyperaccumulators were 2-fold bigger, showed 2-fold less herbivory damage, and harbored 3- to 4-fold fewer arthropods. When used in laboratory choice and nonchoice grasshopper herbivory experiments, Se-rich neighbors of hyperaccumulators experienced less herbivory and caused higher grasshopper Se accumulation (10-fold) and mortality (4-fold). Enhanced soil Se levels around hyperaccumulators can facilitate growth of Se-tolerant plant species through reduced herbivory and enhanced growth. This study is the first to show facilitation via enrichment with a nonessential element. It is interesting that Se enrichment of hyperaccumulator neighbors may affect competition in two ways, by reducing growth of Se-sensitive neighbors while facilitating Se-tolerant neighbors. Via these competitive and facilitating effects, Se hyperaccumulators may affect plant community composition and, consequently, higher trophic levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Effects of incubation time and filtration method on Kd of indigenous selenium and iodine in temperate soils.

    PubMed

    Almahayni, T; Bailey, E; Crout, N M J; Shaw, G

    2017-10-01

    In this study, the effects of incubation time and the method of soil solution extraction and filtration on the empirical distribution coefficient (K d ) obtained by de-sorbing indigenous selenium (Se) and iodine (I) from arable and woodland soils under temperate conditions were investigated. Incubation time had a significant soil- and element-dependent effect on the K d values, which tended to decrease with the incubation time. Generally, a four-week period was sufficient for the desorption K d value to stabilise. Concurrent solubilisation of soil organic matter (OM) and release of organically-bound Se and I was probably responsible for the observed decrease in K d with time. This contrasts with the conventional view of OM as a sink for Se and I in soils. Selenium and I K d values were not significantly affected by the method of soil solution extraction and filtration. The results suggest that incubation time is a key criterion when selecting Se and I K d values from the literature for risk assessments. Values derived from desorption of indigenous soil Se and I might be most appropriate for long-term assessments since they reflect the quasi-equilibrium state of their partitioning in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Selenium-tolerant diamondback moth disarms hyperaccumulator plantdefense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, J.L.; Quinn, C.F.; Marcus, M.A.

    2006-11-20

    Background Some plants hyperaccumulate the toxic element selenium (Se) to extreme levels, up to 1% of dry weight. The function of this intriguing phenomenon is obscure. Results Here, we show that the Se in the hyperaccumulator prince's plume (Stanleya pinnata) protects it from caterpillar herbivory because of deterrence and toxicity. In its natural habitat, however, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed this elemental defense. It thrives on plants containing highly toxic Se levels and shows no oviposition or feeding deterrence, in contrast to related varieties. Interestingly, a Se-tolerant wasp (Diadegma insulare) was foundmore » to parasitize the tolerant moth. The insect's Se tolerance mechanism was revealed by X-ray absorption spectroscopy and liquid chromatography--mass spectroscopy, which showed that the Se-tolerant moth and its parasite both accumulate methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related sensitive moths accumulate selenocysteine. The latter is toxic because of its nonspecific incorporation into proteins. Indeed, the Se-tolerant diamondback moth incorporated less Se into protein. Additionally, the tolerant variety sequestered Se in distinct abdominal areas, potentially involved in detoxification and larval defense to predators. Conclusions Although Se hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique Se-tolerant herbivores and thus provide a portal for Se into the local ecosystem. In a broader context, this study provides insight into the possible ecological implications of using Se-enriched crops as a source of anti-carcinogenic selenocompounds and for the remediation of Se-polluted environments.« less

  11. Accumulation of mercury and selenium in tissues of kittens fed commercial cat food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, C.I. Jr.; Andrews, E.J.; deLahunta, A.

    1978-07-01

    Six kittens, three males and three females, were fed exclusively for one hundred days a commercially canned red meat tuna found to contain elevated concentrations of Mercury (Hg) and Selenium (Se). A similarly sized control group was fed for the same period a dry commercial cat food comparatively low in the concentration of these elements. At the end of the feeding trial, concentrations of Hg and Se were markedly higher in blood, bone, brain, kidney, liver, muscle and spleen of the kittens fed the tuna diet as compared to the corresponding controls. No behavioral abnormalities or pathological lesions were detectedmore » in any of the kittens.« less

  12. Activity of Selected Antioxidant Enzymes, Selenium Content and Fatty Acid Composition in the Liver of the Brown Hare (Lepus europaeus L.) in Relation to the Season of the Year.

    PubMed

    Drozd, Radosław; Pilarczyk, Renata; Pilarczyk, Bogumiła; Drozd, Arleta; Tomza-Marciniak, Agnieszka; Bombik, Teresa; Bąkowska, Małgorzata; Bombik, Elżbieta; Jankowiak, Dorota; Wasak, Agata

    2015-12-01

    The aim of the study was to evaluate the effect of low concentrations of selenium in the environment on the activity of selected antioxidant enzymes: Se-GSHPx, total GSHPx, SOD, CAT, and GST as well as fatty acid profile in the livers of brown hares during winter and spring. Liver tissues obtained from 20 brown hares collected in the north-eastern Poland in the winter and spring season were analyzed. In the tissue analyzed, a significantly lower level of selenium was noticeable in the spring compared to winter; however, values measured in both seasons indicated a deficiency of this element in the analyzed population of brown hares. There were no differences found that could indicate the influence of Se deficiency on the activity of antioxidant enzymes. The determined activity of antioxidant enzymes and fatty acid composition suggest a negligible impact of the low concentration of Se on the analyzed biochemical parameters of brown hare livers.

  13. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    PubMed

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Selenium uptake through cystine transporter mediated by glutathione conjugation.

    PubMed

    Tobe, Takao; Ueda, Koji; Aoki, Akira; Okamoto, Yoshinori; Kojima, Nakao; Jinno, Hideto

    2017-01-01

    Selenium (Se) is an essential trace element and is regarded as a protective agent against cancer. In particular, antioxidant effects of selenoenzymes contribute to cancer prevention. Se can also produce reactive oxygen species and, thereby, exert cancer-selective cytotoxicity. Selenodiglutathione (SDG) is a primary Se metabolite conjugated to two glutathione (GSH) moieties. SDG increases intracellular Se accumulation and is more toxic than selenous acid (H 2 SeO 3 ), but the mechanisms for importing Se compounds into cells are not fully understood. Here, we propose a novel mechanism for importing Se, in the form of SDG. Cellular intake of Se compounds was assessed based on Se accumulation, as detected by ICP-MS. SDG incorporation was decreased in the presence of thiols (GSH, cysteine or their oxidized forms, GSSG and cystine), whereas H 2 SeO 3 uptake was increased by addition of GSH or cysteine. Cellular SDG uptake was decreased by pretreatment with specific inhibitors against gamma-glutamyl transpeptidase (GGT) or the cystine/glutamate antiporter (system x c - ). Furthermore, siRNA against xCT, which is the light chain component of system x c - , significantly decreased SDG incorporation. These data suggest an involvement of SDG in Se incorporation, with SDG processed at the cell surface by GGT, leading to formation of selenodicysteine which, in turn, is likely to be imported via xCT. Because GGT and xCT are highly expressed in cancer cells, these mechanisms mediated by the cystine transporter might underlie the cancer-selective toxicity of Se. In addition, the system described in our study appears to represent a physiological transport mechanism for the essential element Se.

  15. Changing selenium nutritional status of Chinese residents

    USDA-ARS?s Scientific Manuscript database

    China has been designated as one of 40 countries deficient in selenium (Se) according to the World Health Organization. Selenium concentrations in hair are commonly used to evaluate the Se level of the human body. Moreover, hair Se concentrations are significantly correlated with Se concentrations ...

  16. Reduction of selenite to elemental selenium by Enterobacter cloacae SLD1a-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dungan, R.S.; Frankenberger, W.T. Jr.

    1998-11-01

    The facultative anaerobic bacterium Enterobacter cloacae strain SLD1a-1 was studied in washed cell suspensions to assess optimal conditions required for the reduction of selenite (SeO{sub 3}{sup 2{minus}}) to elemental selenium (Se{sup 0}). Enterobacter cloacae using glucose (1.4 mM) as an electron donor removed 79% of the added SeO{sub 3}{sup 2{minus}} from solution in 2.5 h. Optimal SeO{sub 3}{sup 2{minus}} reduction occurred at a pH of 6.5 and a temperature of 40 C. Carbohydrate sources arabinose, xylose, and sorbose were found to significantly enhance SeO{sub 3}{sup 2{minus}} reduction over that of glucose. The reduction of SeO{sub 3}{sup 2{minus}} at 7.9 {micro}Mmore » was inhibited by nitrate of levels 1 to 100 times greater, nitrite at levels 5 and 10 times greater, while sulfite at levels of two to four times greater was found to stimulate the reduction of SeO{sub 3}{sup 2{minus}}. Enterobacter cloacae grows on anaerobically incubated plates containing NO{sub 3}{sup {minus}} as the sole terminal electron acceptor and acetate as the electron donor. Use of SeO{sub 3}{sup 2{minus}} as the terminal electron acceptor during anaerobic respiration did not support growth and could only be reduced to Se{sup 0} when NO{sub 3}{sup {minus}} was present.« less

  17. Atomic-absorption spectrochemical analysis for ultratrace elements in geological materials by hydride-forming techniques: Selenium.

    PubMed

    Sighinolfi, G P; Gorgoni, C

    1981-03-01

    A method based on hydride generation for the AAS determination of selenium at nanogram levels in geological materials is described. The sample is decomposed by aqua regia attack in a sealed Teflon bomb. After treatment with hydrochloric acid, selenium is converted into hydrogen selenide by reaction with sodium borohydride and determined by AAS. Matrix interference effects have been investigated, but though they are rarely significant, the standard-additions method is recommended. The absolute sensitivity of the method is about 2.0 ng of Se (in 10 ml of solution). Detection limits of about 5-10 ng in a 1.0-g sample have been achieved with the use of "Suprapure" reagents. The selenium content of some USGS, CRPG and ANRT reference samples is reported.

  18. Selenium and tellurium nanomaterials

    NASA Astrophysics Data System (ADS)

    Piacenza, Elena; Presentato, Alessandro; Zonaro, Emanuele; Lampis, Silvia; Vallini, Giovanni; Turner, Raymond J.

    2018-04-01

    Over the last 40 years, the rapid and exponential growth of nanotechnology led to the development of various synthesis methodologies to generate nanomaterials different in size, shape and composition to be applied in various fields. In particular, nanostructures composed of Selenium (Se) or Tellurium (Te) have attracted increasing interest, due to their intermediate nature between metallic and non-metallic elements, being defined as metalloids. Indeed, this key shared feature of Se and Te allows us the use of their compounds in a variety of applications fields, such as for manufacturing photocells, photographic exposure meters, piezoelectric devices, and thermoelectric materials, to name a few. Considering also that the chemical-physical properties of elements result to be much more emphasized when they are assembled at the nanoscale range, huge efforts have been made to develop highly effective synthesis methods to generate Se- or Te-nanomaterials. In this context, the present book chapter will explore the most used chemical and/or physical methods exploited to generate different morphologies of metalloid-nanostructures, focusing also the attention on the major advantages, drawbacks as well as the safety related to these synthetic procedures.

  19. Spatial Imaging, Speciation, and Quantification of Selenium in theHyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, J.L.; Zhang, L.H.; Marcus, M.A.

    2006-09-01

    Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and {gamma}-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in additionmore » to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism.« less

  20. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods.

    PubMed

    Santos, Sílvia; Ungureanu, Gabriela; Boaventura, Rui; Botelho, Cidália

    2015-07-15

    Selenium is an essential trace element for many organisms, including humans, but it is bioaccumulative and toxic at higher than homeostatic levels. Both selenium deficiency and toxicity are problems around the world. Mines, coal-fired power plants, oil refineries and agriculture are important examples of anthropogenic sources, generating contaminated waters and wastewaters. For reasons of human health and ecotoxicity, selenium concentration has to be controlled in drinking-water and in wastewater, as it is a potential pollutant of water bodies. This review article provides firstly a general overview about selenium distribution, sources, chemistry, toxicity and environmental impact. Analytical techniques used for Se determination and speciation and water and wastewater treatment options are reviewed. In particular, published works on adsorption as a treatment method for Se removal from aqueous solutions are critically analyzed. Recent published literature has given particular attention to the development and search for effective adsorbents, including low-cost alternative materials. Published works mostly consist in exploratory findings and laboratory-scale experiments. Binary metal oxides and LDHs (layered double hydroxides) have presented excellent adsorption capacities for selenium species. Unconventional sorbents (algae, agricultural wastes and other biomaterials), in raw or modified forms, have also led to very interesting results with the advantage of their availability and low-cost. Some directions to be considered in future works are also suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles.

    PubMed

    Wu, Shanshan; Sun, Kang; Wang, Xin; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong

    2013-07-31

    The current results show that epigallocatechin-3-gallate (EGCG), in the form of phenolic anions at pH 8.0, can effectively disperse selenium nanoparticles. However, at gastric juice pH (1.0), the EGCG-dispersed selenium nanoparticles (referred to as E-Se) extensively aggregated, so that nano features largely disappeared. This demonstrates that deprotonated phenolic anions of EGCG play an important role in maintaining E-Se stability and suggests that E-Se would suffer from reduced oral bioavailability. To validate this conjecture, size-equivalent E-Se and bovine serum albumin (BSA)-dispersed selenium nanoparticles (B-Se), whose physicochemical properties were not altered at pH 1.0, were orally administered to selenium-deficient mice. In comparison to B-Se, the bioavailabilities of E-Se as indicated with hepatic and renal glutathione peroxidase activity and hepatic selenium levels were significantly (p < 0.01) reduced by 39, 32, and 31%, respectively. Therefore, the present study reveals that size-equivalent selenium nanoparticles prepared by different dispersers do not necessarily guarantee equivalent oral bioavailability.

  2. Selenium in the Therapy of Neurological Diseases. Where is it Going?

    PubMed Central

    Dominiak, Agnieszka; Wilkaniec, Anna; Wroczyńsk, Piotr; Adamczyk, Agata

    2016-01-01

    Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income. PMID:26549649

  3. Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release.

    PubMed

    Tabelin, Carlito Baltazar; Hashimoto, Ayaka; Igarashi, Toshifumi; Yoneda, Tetsuro

    2014-03-01

    Sedimentary rocks excavated in Japan from road- and railway-tunnel projects contain relatively low concentrations of hazardous trace elements like boron (B), arsenic (As) and selenium (Se). However, these seemingly harmless waste rocks often produced leachates with concentrations of hazardous trace elements that exceeded the environmental standards. In this study, the leaching behaviors and release mechanisms of B, As and Se were evaluated using batch leaching experiments, sequential extraction and geochemical modeling calculations. The results showed that B was mostly partitioned with the residual/crystalline phase that is relatively stable under normal environmental conditions. In contrast, the majority of As and Se were associated with the exchangeable and organics/sulfides phases that are unstable under oxidizing conditions. Dissolution of water-soluble phases controlled the leaching of B, As and Se from these rocks in the short term, but pyrite oxidation, calcite dissolution and adsorption/desorption reactions became more important in the long term. The mobilities of these trace elements were also strongly influenced by the pH of the rock-water system. Although the leaching of Se only increased in the acidic region, those of B and As were enhanced under both acidic and alkaline conditions. Under strongly acidic conditions, the primarily release mechanism of B, As and Se was the dissolution of mineral phases that incorporated and/or adsorbed these elements. Lower concentrations of these trace elements in the circumneutral pH range could be attributed to their strong adsorption onto minerals like Al-/Fe-oxyhydroxides and clays, which are inherently present and/or precipitated in the rock-water system. The leaching of As and B increased under strongly alkaline conditions because of enhanced desorption and pyrite oxidation while that of Se remained minimal due to its adsorption onto Fe-oxyhydroxides and co-precipitation with calcite. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Selenium Cycling Across Soil-Plant-Atmosphere Interfaces: A Critical Review

    PubMed Central

    Winkel, Lenny H.E.; Vriens, Bas; Jones, Gerrad D.; Schneider, Leila S.; Pilon-Smits, Elizabeth; Bañuelos, Gary S.

    2015-01-01

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels. PMID:26035246

  5. Selenium cycling across soil-plant-atmosphere interfaces: a critical review.

    PubMed

    Winkel, Lenny H E; Vriens, Bas; Jones, Gerrad D; Schneider, Leila S; Pilon-Smits, Elizabeth; Bañuelos, Gary S

    2015-05-29

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels.

  6. Microbial oxidation and solubilization of precipitated elemental selenium in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Losi, M.E.; Frankenberger, W.T. Jr.

    1998-07-01

    Oxidation of elemental selenium (Se{sup 0}) leads to increased solubilization and enhanced bioavailability. In this work, laboratory microcosm experiments were conducted to study oxidation of Se{sup 0} in soil and liquid cultures. Major objectives were to examine the oxidation rates of four San Joaquin Valley, California soils, and to assess the contribution of biological vs. chemical processes. For these experiments, red, crystalline Se{sup 0} was prepared by both chemical and biological synthesis, and its presence was confirmed by synchrotron-based x-ray absorption spectroscopy. The amount of Se{sup 0} oxidized over 125 d was from 1 to 10% of Se{sup 0} inmore » soils spiked to 250 mg Se{sup 0} kg{sup {minus}1} and approximately half that in soils spiked to 100 mg Se{sup 0} kg{sup {minus}1}. First order rate constants for oxidation of Se{sup 0} were from 0.05 to 0.32 yr{sup {minus}1} and 0.04 to 0.39 yr{sup {minus}1} at 250 and 100 mg Se{sup 0} kg{sup {minus}1} soil, respectively. The amount of Se{sup 0} oxidized was generally correlated with prior exposure of the soil to Se. Products included either selenite (SeO{sub 3}{sup 2{minus}}), or both (SeO{sub 3}{sup 2{minus}}) and selenate (SeO{sub 4}{sup 2{minus}}). Biotic processes were shown to be of major importance. Both heterotrophic and autotrophic oxidation were observed, and an inorganic C source (NaHCO{sub 3}) was favored relative to glucose. This study demonstrates that Se{sup 0} oxidation in soils is largely biotic in nature, occurs at relatively slow rates and yields both SeO{sub 3}{sup 2{minus}} and SeO{sub 4}{sup 2{minus}}.« less

  7. Selenium capped monolayer NbSe 2 for two-dimensional superconductivity studies

    DOE PAGES

    Onishi, Seita; Ugeda, Miguel M.; Zhang, Yi; ...

    2016-08-01

    Superconductivity in monolayer niobium diselenide (NbSe 2) on bilayer graphene is studied by electrical transport. Monolayer NbSe 2 is grown on bilayer graphene by molecular beam epitaxy and capped with a selenium film to avoid degradation in air. The selenium capped samples have T C = 1.9 K. In situ measurements down to 4 K in ultrahigh vacuum show that the effect of the selenium layer on the transport is negligible. Lastly, the superconducting transition and upper critical fields in air exposed and selenium capped samples are compared. Schematic of monolayer NbSe 2/bilayer graphene with selenium capping layer and electricalmore » contacts.« less

  8. Prostatic Response to Supranutritional Selenium Supplementation: Comparison of the Target Tissue Potency of Selenomethionine vs. Selenium-Yeast on Markers of Prostatic Homeostasis

    PubMed Central

    Waters, David J.; Shen, Shuren; Kengeri, Seema S.; Chiang, Emily C.; Combs, Gerald F.; Morris, J. Steven; Bostwick, David G.

    2012-01-01

    Prostate cancer is the product of dysregulated homeostasis within the aging prostate. Supplementation with selenium in the form of selenized yeast (Se-yeast) significantly reduced prostate cancer incidence in the Nutritional Prevention of Cancer Trial. Conversely, the Selenium and Vitamin E Cancer Prevention Trial (SELECT) showed no such cancer-protective advantage using selenomethionine (SeMet). The possibility that SeMet and Se-yeast are not equipotent in promoting homeostasis and cancer risk reduction in the aging prostate has not been adequately investigated; no direct comparison has ever been reported in man or animals. Here, we analyzed data on prostatic responses to SeMet or Se-yeast from a controlled feeding trial of 49 elderly beagle dogs—the only non-human species to frequently develop prostate cancer during aging—randomized to one of five groups: control; low-dose SeMet, low-dose Se-yeast (3 μg/kg); high-dose SeMet, high-dose Se-yeast (6 μg/kg). After seven months of supplementation, we found no significant selenium form-dependent differences in toenail or intraprostatic selenium concentration. Next, we determined whether SeMet or Se-yeast acts with different potency on six markers of prostatic homeostasis that likely contribute to prostate cancer risk reduction—intraprostatic dihydrotestosterone (DHT), testosterone (T), DHT:T, and epithelial cell DNA damage, proliferation, and apoptosis. By analyzing dogs supplemented with SeMet or Se-yeast that achieved equivalent intraprostatic selenium concentration after supplementation, we showed no significant differences in potency of either selenium form on any of the six parameters over three different ranges of target tissue selenium concentration. Our findings, which represent the first direct comparison of SeMet and Se-yeast on a suite of readouts in the aging prostate that reflect flux through multiple gene networks, do not further support the notion that the null results of SELECT are attributable to differences in prostatic consequences achievable through daily supplementation with SeMet, rather than Se-yeast. PMID:23201838

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favorito, Jessica E.; Luxton, Todd P.; Eick, Matthew J.

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO4-extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analysesmore » indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils.« less

  10. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs.

    PubMed

    Calvo, Luis; Toldrá, Fidel; Rodríguez, Ana I; López-Bote, Clemente; Rey, Ana I

    2017-01-01

    This study evaluates the effect of organic (Se-enriched yeast; SeY) versus inorganic selenium (sodium selenite; SeS) supplementation and the different response of selenium source according to muscle pH on pork meat quality characteristics. Pigs ( n  = 30) were fed the Se-supplemented diets (0.3 mg/kg) for 65 days. Neither electric conductivity (EC) nor drip loss were affected by the selenium source. The SeY group had lower TBARS in muscle samples after day 7 of refrigerated storage and higher a * values on days 1 and 7 than the SeS group. The effect of dietary selenium source on some meat quality characteristics was affected by muscle pH. Hence, as the muscle pH increases, the drip loss decreases but this effect is more marked with the dietary organic Se enrichment. Muscle pH seems to modulate the action of selenium in pork, especially some meat characteristics such as drip loss.

  11. Trace-elements, methylmercury and metallothionein levels in Magellanic penguin (Spheniscus magellanicus) found stranded on the Southern Brazilian coast.

    PubMed

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tércia G; Fillmann, Gilberto

    2015-07-15

    Magellanic penguins have been reported as good biomonitors for several types of pollutants, including trace-elements. In this context, selenium (Se), total mercury, methylmercury, inorganic mercury (Hg(inorg)), cadmium (Cd) and lead (Pb), as well as metallothionein (MT) levels, were evaluated in the feathers, liver and kidney of juvenile Magellanic penguins found stranded along the coast of Southern Brazil. The highest concentrations of all trace-elements and methylmercury were found in internal organs. Concentrations of Cd and Se in feathers were extremely low in comparison with their concentrations in soft tissues. The results showed that both Se and MT are involved in the detoxification of trace-elements (Cd, Pb and Hg(inorg)) since statistically significant relationships were found in liver. Conversely, hepatic Se was shown to be the only detoxifying agent for methylmercury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Differences in the responses of three plasma selenium-containing proteins in relation to methylmercury-exposure through consumption of fish/whales.

    PubMed

    Ser, Ping Han; Omi, Sanae; Shimizu-Furusawa, Hana; Yasutake, Akira; Sakamoto, Mineshi; Hachiya, Noriyuki; Konishi, Shoko; Nakamura, Masaaki; Watanabe, Chiho

    2017-02-05

    Putative protective effects of selenium (Se) against methylmercury (MeHg) toxicity have been examined but no conclusion has been reached. We recently reported the lack of serious neurological symptoms in a Japanese fish-eating population with high intakes of MeHg and suggested a potential protective role for Se. Here, relationships between levels of Hg and Se in the blood and plasma samples, with a quantitative evaluation of Se-containing proteins, obtained from this population were examined. While levels of the whole-blood Hg (WB-Hg) and plasma Se (P-Se) showed a positive correlation, stratified analysis revealed that they correlated only in samples with higher (greater than the median) levels of MeHg. A food frequency questionnaire showed that consumption of fish/whales correlated with WB-Hg, but not with P-Se, suggesting that the positive correlation between WB-Hg and P-Se might not be the result of co-intake of these elements from seafood. Speciation of plasma Se revealed the differences in the responses of two plasma selenoproteins, glutathione peroxidase (GPx) and selenoprotein P (SePP), in relation to Hg exposure. In the high-Hg group, SePP showed a positive correlation with WB-Hg, but GPx did not. In the low-Hg group, neither SePP nor GPx showed any correlation with WB-Hg. These observations suggest that the increase in P-Se in the high-Hg group might be associated with an increase in SePP, which may, in turn, suggest an increased demand for one or more selenoproteins in various organs, for which SePP supplies the element. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Preparation and purification of organic samples for selenium isotope studies.

    PubMed

    Banning, Helena; Stelling, Monika; König, Stephan; Schoenberg, Ronny; Neumann, Thomas

    2018-01-01

    Selenium (Se) is an important micronutrient but also a strong toxin with a narrow tolerance range for many organisms. As such, a globally heterogeneous Se distribution in soils is responsible for various disease patterns (i.e. Se excess and deficiency) and environmental problems, whereby plants play a key role for the Se entrance into the biosphere. Selenium isotope variations were proved to be a powerful tracer for redox processes and are therefore promising for the exploration of the species dependent Se metabolism in plants and the Se cycling within the Critical Zone. Plant cultivation setups enable systematic controlled investigations, but samples derived from them-plant tissue and phytoagar-are particularly challenging and require specific preparation and purification steps to ensure precise and valid Se isotope analytics performed with HG-MC-ICP-MS. In this study, different methods for the entire process from solid tissue preparation to Se isotope measurements were tested, optimized and validated. A particular microwave digestion procedure for plant tissue and a vacuum filtration method for phytoagar led to full Se recoveries, whereby unfavorable organic residues were reduced to a minimum. Three purification methods predominantly described in the literature were systematically tested with pure Se solution, high concentrated multi-element standard solution as well as plant and phytoagar as target matrices. All these methods efficiently remove critical matrix elements, but differ in Se recovery and organic residues. Validation tests doping Se-free plant material and phytoagar with a reference material of known Se isotope composition revealed the high impact of organic residues on the accuracy of MC-ICP-MS measurements. Only the purification method with no detectable organic residues, hydride generation and trapping, results in valid mass bias correction for plant samples with an average deviation to true δ82/76Se values of 0.2 ‰ and a reproducibility (2 SD) of ± 0.2 ‰. For phytoagar this test yields a higher deviation of 1.1 ‰ from the true value and a 2 SD of ± 0.1 ‰. The application of the developed methods to cultivated plants shows sufficient accuracy and precision and is a promising approach to resolve plant internal Se isotope fractionations, for which respective δ82/76Se values of +2.3 to +3.5 ‰ for selenate and +1.2 to +1.9 ‰ for selenite were obtained.

  14. Preparation and purification of organic samples for selenium isotope studies

    PubMed Central

    Stelling, Monika; König, Stephan; Schoenberg, Ronny; Neumann, Thomas

    2018-01-01

    Selenium (Se) is an important micronutrient but also a strong toxin with a narrow tolerance range for many organisms. As such, a globally heterogeneous Se distribution in soils is responsible for various disease patterns (i.e. Se excess and deficiency) and environmental problems, whereby plants play a key role for the Se entrance into the biosphere. Selenium isotope variations were proved to be a powerful tracer for redox processes and are therefore promising for the exploration of the species dependent Se metabolism in plants and the Se cycling within the Critical Zone. Plant cultivation setups enable systematic controlled investigations, but samples derived from them–plant tissue and phytoagar–are particularly challenging and require specific preparation and purification steps to ensure precise and valid Se isotope analytics performed with HG-MC-ICP-MS. In this study, different methods for the entire process from solid tissue preparation to Se isotope measurements were tested, optimized and validated. A particular microwave digestion procedure for plant tissue and a vacuum filtration method for phytoagar led to full Se recoveries, whereby unfavorable organic residues were reduced to a minimum. Three purification methods predominantly described in the literature were systematically tested with pure Se solution, high concentrated multi-element standard solution as well as plant and phytoagar as target matrices. All these methods efficiently remove critical matrix elements, but differ in Se recovery and organic residues. Validation tests doping Se-free plant material and phytoagar with a reference material of known Se isotope composition revealed the high impact of organic residues on the accuracy of MC-ICP-MS measurements. Only the purification method with no detectable organic residues, hydride generation and trapping, results in valid mass bias correction for plant samples with an average deviation to true δ82/76Se values of 0.2 ‰ and a reproducibility (2 SD) of ± 0.2 ‰. For phytoagar this test yields a higher deviation of 1.1 ‰ from the true value and a 2 SD of ± 0.1 ‰. The application of the developed methods to cultivated plants shows sufficient accuracy and precision and is a promising approach to resolve plant internal Se isotope fractionations, for which respective δ82/76Se values of +2.3 to +3.5 ‰ for selenate and +1.2 to +1.9 ‰ for selenite were obtained. PMID:29509798

  15. Microbial-enhanced Selenium and Iron Biofortification of Wheat (Triticum aestivum L.)--Applications in Phytoremediation and Biofortification.

    PubMed

    Yasin, Muhammad; El-Mehdawi, Ali Farag; Anwar, Aneela; Pilon-Smits, Elizabeth A H; Faisal, Muhammad

    2015-01-01

    Selenium (Se) is an essential trace element for humans and other mammals. Most dietary Se is derived from crops. To develop a Se biofortification strategy for wheat, the effect of selenate fertilization and bacterial inoculation on Se uptake and plant growth was investigated. YAM2, a bacterium with 99% similarity to Bacillus pichinotyi, showed many plant growth promoting characteristics. Inoculation with YAM2 enhanced wheat growth, both in the presence and absence of selenate: YAM2-inoculated plants showed significantly higher dry weight, shoot length and spike length compared to un-inoculated plants. Selenate also stimulated wheat growth; Un-inoculated Se-treated plants showed a significantly higher dry weight and shoot length compared to control plants without Se. Bacterial inoculation significantly enhanced Se concentration in wheat kernels (167%) and stems (252%), as well as iron (Fe) levels in kernels (70%) and stems (147%), compared to un-inoculated plants. Inoculated Se-treated plants showed a significant increase in acid phosphatase activity, which may have contributed to the enhanced growth. In conclusion; Inoculation with Bacillus sp. YAM2 is a promising Se biofortification strategy for wheat and potentially other crops.

  16. [The selenium haemostasis during experimental anaphylaxis reaction in rats treated with reduced glutathione and selenium enriched spirulina].

    PubMed

    Golubkina, N A; Mazo, V K; Gmoshinskiĭ, I V; Zorin, S N; Tambiev, A Kh; Kirikova, N N

    2000-01-01

    The main events caused by anaphilaxis in selenium haemostasis in rats include significant increase of selenium excretion with urine (6.36 +/- 1.18 nM Se/18 h., n = 10, compared with 1.72 +/- 0.38 nM Se/18 h., n = 10) and decrease of selenium plasma/selenium erythrocytes ratio from 0.939 to 0.791. Reduced glutathione (G-SH) administration led to 1.5-fold decrease of plasma selenium level and 1.3-fold increase of selenium concentration in intestinal walls of sensitized rats (r = -0.720, P < 0.001). Chromatographic separation of plasma proteins showed that intragastric intubation of G-SH to sensibilized rats significantly decreased the protein P content and did not influence the concentration of Se-GSHPx, thus indicating the local selenium acceptor role of G-SH. G-SH administration did not influence the intestinal permeability in sensitised rats while use of complex additive: G-SH and selenium enriched spirulina--normalized the latter parameter and the ratio of protein P/Se-GSHPx in plasma.

  17. Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi

    PubMed Central

    Chilimba, Allan D. C.; Young, Scott D.; Black, Colin R.; Rogerson, Katie B.; Ander, E. Louise; Watts, Michael J.; Lammel, Joachim; Broadley, Martin R.

    2011-01-01

    Selenium is an essential element in human diets but the risk of suboptimal intake increases where food choices are narrow. Here we show that suboptimal dietary intake (i.e. 20–30 µg Se person−1 d−1) is widespread in Malawi, based on a spatial integration of Se concentrations of maize (Zea mays L.) grain and soil surveys for 88 field sites, representing 10 primary soil types and >75% of the national land area. The median maize grain Se concentration was 0.019 mg kg−1 (range 0.005–0.533), a mean intake of 6.7 µg Se person−1 d−1 from maize flour based on national consumption patterns. Maize grain Se concentration was up to 10-fold higher in crops grown on soils with naturally high pH (>6.5) (Eutric Vertisols). Under these less acidic conditions, Se becomes considerably more available to plants due to the greater solubility of Se(IV) species and oxidation to Se(VI). PMID:22355591

  18. Selenium. Role of the Essential Metalloid in Health

    PubMed Central

    Kurokawa, Suguru; Berry, Marla J.

    2015-01-01

    Selenium is an essential micronutrient in mammals, but is also recognized as toxic in excess. It is a non-metal with properties that are intermediate between the chalcogen elements sulfur and tellurium. Selenium exerts its biological functions through selenoproteins. Selenoproteins contain selenium in the form of the 21st amino acid, selenocysteine (Sec), which is an analog of cysteine with the sulfur-containing side chain replaced by a Se-containing side chain. Sec is encoded by the codon UGA, which is one of three termination codons for mRNA translation in non-selenoprotein genes. Recognition of the UGA codon as a Sec insertion site instead of stop requires a Sec insertion sequence (SECIS) element in selenoprotein mRNAs and a unique selenocysteyl-tRNA, both of which are recognized by specialized protein factors. Unlike the 20 standard amino acids, Sec is biosynthesized from serine on its tRNA. Twenty-five selenoproteins are encoded in the human genome. Most of the selenoprotein genes were discovered by bioinformatics approaches, searching for SECIS elements downstream of in-frame UGA codons. Sec has been described as having stronger nucleophilic and electrophilic properties than cysteine, and Sec is present in the catalytic site of all selenoenzymes. Most selenoproteins, whose functions are known, are involved in redox systems and signaling pathways. However, several selenoproteins are not well characterized in terms of their function. The selenium field has grown dramatically in the last few decades, and research on selenium biology is providing extensive new information regarding its importance for human health. PMID:24470102

  19. Effects of dietary supplementation of selenium and iodine on growth performance, carcass characteristics and histology of thyroid gland in goats.

    PubMed

    Aghwan, Zeiad Amjad; Sazili, Awis Qurni; Kadhim, Khalid Kamil; Alimon, Abdul Razak; Goh, Yong Meng; Adeyemi, Kazeem Dauda

    2016-05-01

    This study assessed the effects of dietary selenium (Se), iodine (I) and a combination of both on growth performance, thyroid gland activity, carcass characteristics and the concentration of iodine and selenium in Longissimus lumborum (LL) muscle in goats. Twenty-four bucks were randomly assigned to four dietary treatments: control (CON), basal diet without supplementation, basal diet + 0.6 mg Se/kg dry matter (DM) (SS), 0.6 mg I/kg DM (IP), or combination of 0.6 mg/kg DM Se and 0.6 mg/kg DM I (SSIP) and fed for 100 days. Animals fed diet SSIP exhibited higher (P < 0.05) body weight and better feed conversion ratio (FCR) than those fed other diets. Dressing percentage of goats fed the supplemented diets was higher (P < 0.05) than that of the control. Carcasses from the IP group had higher (P < 0.05) total fat proportion than the SSIP group. The levels of both elements were significantly elevated (P < 0.05) in LL muscle in supplemented goats. Thyroid follicular epithelial cells of IP and SSIP animals were significantly higher than those of CON and SS groups. The study demonstrated that the combined Se and I dietary supplementation improves growth performance, carcass dressing percentage and increases the retention of Se and I in goat meat. © 2015 Japanese Society of Animal Science.

  20. A Novel Organic Selenium Compound Exerts Unique Regulation of Selenium Speciation, Selenogenome, and Selenoproteins in Broiler Chicks.

    PubMed

    Zhao, Ling; Sun, Lv-Hui; Huang, Jia-Qiang; Briens, Mickael; Qi, De-Sheng; Xu, Shi-Wen; Lei, Xin Gen

    2017-05-01

    Background: A new organic selenium compound, 2-hydroxy-4-methylselenobutanoic acid (SeO), displayed a greater bioavailability than sodium selenite (SeNa) or seleno-yeast (SeY) in several species. Objective: This study sought to determine the regulation of the speciation of selenium, expression of selenogenome and selenocysteine biosynthesis and degradation-related genes, and production of selenoproteins by the 3 forms of selenium in the tissues of broiler chicks. Methods: Day-old male chicks ( n = 6 cages/diet, 6 chicks/cage) were fed a selenium-deficient, corn and soy-based diet [base diet (BD), 0.05 mg Se/kg] or the BD + SeNa, SeY, or SeO at 0.2 mg Se/kg for 6 wk. Plasma, livers, and pectoral and thigh muscles were collected at weeks 3 and 6 to assay for total selenium, selenomethionine, selenocysteine, redox status, and selected genes, proteins, and enzymes. Results: Although both SeY and SeO produced greater concentrations ( P < 0.05) of total selenium (20-172%) and of selenomethionine (≤15-fold) in the liver, pectoral muscle, and thigh than those of SeNa, SeO further raised ( P < 0.05) these concentrations by 13-37% and 43-87%, respectively, compared with SeY. Compared with the BD, only SeO enhanced ( P < 0.05) the mRNA of selenoprotein ( Seleno ) s and methionine sulfoxide reductase B1 ( Msrb1 ) in the liver and thigh (62-98%) and thioredoxin reductase (TXRND) activity in the pectoral and thigh muscles (20-37%) at week 3. Furthermore, SeO increased ( P < 0.05) the expression of glutathione peroxidase ( Gpx ) 3 , GPX4, SELENOP, and SELENOU relative to the SeNa group by 26-207%, and the expression of Selenop, O-phosphoseryl-transfer RNA (tRNA):selenocysteinyl-tRNA synthase , GPX4, and SELENOP relative to the SeY group by 23-55% in various tissues. Conclusions: Compared with SeNa or SeY, SeO demonstrated a unique ability to enrich selenomethionine and total selenium depositions, to induce the early expression of Selenos and Mrsb1 mRNA and TXRND activity, and to enhance the protein production of GPX4, SELENOP, and SELENOU in the tissues of chicks. © 2017 American Society for Nutrition.

  1. Selenium Accumulation, Distribution, and Speciation in Spineless Prickly Pear Cactus: A Drought- and Salt-Tolerant, Selenium-Enriched Nutraceutical Fruit Crop for Biofortified Foods1[OA

    PubMed Central

    Bañuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.; Marcus, Matthew A.; Yang, Soo In; Pickering, Ingrid J.; Pilon-Smits, Elizabeth A.H.; Freeman, John L.

    2011-01-01

    The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping (μXRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). μXRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tips contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a “free” nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. μXRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers. PMID:21059825

  2. Selenium Accumulation, Distribution, and Speciation in Spineless Prickly Pear Cactus: A Drought- and Salt-Tolerant, Selenium-Enriched Nutraceutical Fruit Crop for Biofortified Foods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.

    The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping ({micro}XRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). {micro}XRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tipsmore » contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a 'free' nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. {micro}XRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers.« less

  3. Bacteria versus selenium: A view from the inside out

    USGS Publications Warehouse

    Staicu, Lucian; Oremland, Ronald S.; Tobe, Ryuta; Mihara, Hisaaki

    2017-01-01

    Bacteria and selenium (Se) are closely interlinked as the element serves both essential nutrient requirements and energy generation functions. However, Se can also behave as a powerful toxicant for bacterial homeostasis. Conversely, bacteria play a tremendous role in the cycling of Se between different environmental compartments, and bacterial metabolism has been shown to participate to all valence state transformations undergone by Se in nature. Bacteria possess an extensive molecular repertoire for Se metabolism. At the end of the 1980s, a novel mode of anaerobic respiration based on Se oxyanions was experimentally documented for the first time. Following this discovery, specific enzymes capable of reducing Se oxyanions and harvesting energy were found in a number of anaerobic bacteria. The genes involved in the expression of these enzymes have later been identified and cloned. This iterative approach undertaken outside-in led to the understanding of the molecular mechanisms of Se transformations in bacteria. Based on the extensive knowledge accumulated over the years, we now have a full(er) view from the inside out, from DNA-encoding genes to enzymes and thermodynamics. Bacterial transformations of Se for assimilatory purposes have been the object of numerous studies predating the investigation of Se respiration. Remarkable contributions related to the understating of the molecular picture underlying seleno-amino acid biosynthesis are reviewed herein. Under certain circumstances, Se is a toxicant for bacterial metabolism and bacteria have evolved strategies to counteract this toxicity, most notably by the formation of elemental Se (nano)particles. Several biotechnological applications, such as the production of functional materials and the biofortification of crop species using Se-utilizing bacteria, are presented in this chapter.

  4. Trace elements in patients on continuous renal replacement therapy.

    PubMed

    Broman, M; Bryland, A; Carlsson, O

    2017-07-01

    Intensive care patients with acute kidney injury (AKI), treated with continuous renal replacement therapy (CRRT) are at great risk for disturbances in plasma levels of trace elements due to the underlying illness, AKI, and dialysis. This study was performed to increase our knowledge regarding eight different trace elements during CRRT. Thirty one stable patients with AKI, treated with CRRT, were included in the study. Blood, plasma and effluent samples were taken at the start of the study and 36 ± 12 h later. A group of 48 healthy volunteers were included as controls and exposed to one fasting blood sample. Samples were analysed for trace elements (Cr, Cu, Mn, Co, Zn, Rb, Mo, Se) and standard blood chemistry. Blood and plasma levels of selenium and rubidium were significantly reduced while the levels of chromium, cobalt, and molybdenum were significantly increased in the study group vs. healthy volunteers. There was an uptake of chromium, manganese, and zinc. Molybdenum mass balance was around zero. For selenium, copper, and rubidium there were a marked loss. The low levels of selenium and rubidium in blood and plasma from CRRT patients, together with the loss via CRRT effluent, raises the possibility of the need for selenium supplementation in this group of patients, despite the unchanged levels during the short study period. Further investigations on the effect of additional administration of trace elements to CRRT patients would be of interest. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Aflatoxin B1 Induced Systemic Toxicity in Poultry and Rescue Effects of Selenium and Zinc.

    PubMed

    Mughal, Muhammad Jameel; Peng, Xi; Kamboh, Asghar Ali; Zhou, Yi; Fang, Jing

    2017-08-01

    Among many challenges, exposure to aflatoxins, particularly aflatoxin B 1 (AFB 1 ), is one of the major concerns in poultry industry. AFB 1 intoxication results in decreased meat/egg production, hepatotoxicity, nephrotoxicity, disturbance in gastrointestinal tract (GIT) and reproduction, immune suppression, and increased disease susceptibility. Selenium (Se) and zinc (Zn), in dietary supplementation, offer easy, cost-effective, and efficient ways to neutralize the toxic effect of AFB 1 . In the current review, we discussed the impact of AFB 1 on poultry industry, its biotransformation, and organ-specific noxious effects, along with the action mechanism of AFB 1 -induced toxicity. Moreover, we explained the biological and detoxifying roles of Se and Zn in avian species as well as the protection mechanism of these two trace elements. Ultimately, we discussed the use of Se and Zn supplementation against AFB 1 -induced toxicity in poultry birds.

  6. Selenium biotransformations in an engineered aquatic ecosystem for bioremediation of agricultural wastewater via brine shrimp production.

    PubMed

    Schmidt, Radomir; Tantoyotai, Prapakorn; Fakra, Sirine C; Marcus, Matthew A; Yang, Soo In; Pickering, Ingrid J; Bañuelos, Gary S; Hristova, Krassimira R; Freeman, John L

    2013-05-21

    An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filter-feeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp ( Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested.

  7. [Dietary reference intakes of trace elements for Japanese and problems in clinical fields].

    PubMed

    Inoue, Yoshifumi

    2016-07-01

    In the dietary reference intakes, EAR(estimated average requirement), RDA(recommended dietary allowance), AL(adequate intake), DG(tentative dietary goal for preventing life style related diseases) and UL(tolerable upper intake level) of eight types of trace elements (iron: Fe, zinc: Zn, copper: Cu, manganese: Mn, iodine: I, selenium: Se, chromium: Cr, molybdenum: Mo) have been set. However, in the meals of hospitals, only iron of which has been taken into account. The content of these trace elements in the enteral nutrient released after 2000 was determined by considering the content of dietary reference intakes of trace elements for Japanese and considered so not fall into deficiency. However, enteral nutrient must be used considering the content of Zn, Cu and the Zn/Cu ratio, the selenium content, and the route of administration, in order to avoid falling into deficiency.

  8. SE-72/AS-72 generator system based on Se extraction/ As reextraction

    DOEpatents

    Fassbender, Michael Ernst; Ballard, Beau D

    2013-09-10

    The preparation of a .sup.72Se/.sup.72As radioisotope generator involves forming an acidic aqueous solution of an irradiated alkali bromide target such as a NaBr target, oxidizing soluble bromide in the solution to elemental bromine, removing the elemental bromine, evaporating the resulting solution to a residue, removing hydrogen chloride from the residue, forming an acidic aqueous solution of the residue, adding a chelator that selectively forms a chelation complex with selenium, and extracting the chelation complex from the acidic aqueous solution into an organic phase. As the .sup.72Se generates .sup.72As in the organic phase, the .sup.72As may be extracted repeatedly from the organic phase with an aqueous acid solution.

  9. Influences of fiber, methionine and form of selenium on selenium hindgut targeting and tissue accumulation

    USDA-ARS?s Scientific Manuscript database

    Increased selenium (Se) status has beneficial outcomes, including decreased colorectal cancer risk, yet obesity may interfere with Se metabolism. Commensal bacteria can influence colon carcinogenesis and Se influences the microbiome, including production of volatile fatty acids by these microbes. We...

  10. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    PubMed

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  11. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil.

    PubMed

    Wang, Dan; Dinh, Quang Toan; Anh Thu, Tran Thi; Zhou, Fei; Yang, Wenxiao; Wang, Mengke; Song, Weiwei; Liang, Dongli

    2018-05-01

    To exploit the plant byproducts from selenium (Se) biofortification and reduce environmental risk of inorganic Se fertilizer, pot experiment was conducted in this study. The effects of Se-enriched wheat (Triticum aestivum L.) straw (WS + Se) and pak choi (Brassica chinensis L.) (P + Se) amendment on organo-selenium speciation transformation in soil and its bioavailability was evaluated by pak choi uptake. The Se contents of the cultivated pak choi in treatments amended with the same amount of Se-enriched wheat straw and pak choi were 1.7 and 9.7 times in the shoots and 2.3 and 6.3 times in the roots compared with control treatment. Soil respiration rate was significantly increased after all organic material amendment in soil (p < 0.05), which accelerated the mineralization of organic materials and thus resulted in soluble Se (SOL-Se), exchangeable Se (EX-Se), and fulvic acid-bound Se (FA-Se) fraction increasing by 25.2-29.2%, 9-13.8%, and 4.92-8.28%, respectively. In addition, both Pearson correlation and cluster analysis showed that EX-Se and FA-Se were better indicators for soil Se availability in organic material amendment soils. The Marquardt-Levenberg Model well described the dynamic kinetics of FA-Se content after Se-enriched organic material amendment in soil mainly because of the mineralization of organic carbon and organo-selenium. The utilization of Se in P + Se treatment was significantly higher than those in WS + Se treatment because of the different mineralization rates and the amount of FA-Se in soil. Se-enriched organic materials amendment can not only increase the availability of selenium in soil but also avoid the waste of valuable Se source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA

    USGS Publications Warehouse

    Mills, Taylor J.; Mast, M. Alisa; Thomas, Judith C.; Keith, Gabrielle L.

    2016-01-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (< 0.5 μg L− 1) to 4070 μg L− 1, and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted.

  13. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA.

    PubMed

    Mills, Taylor J; Mast, M Alisa; Thomas, Judith; Keith, Gabrielle

    2016-10-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (<0.5μgL(-1)) to 4070μgL(-1), and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted. Published by Elsevier B.V.

  14. The leaching characteristics of selenium from coal fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Wang, J.; Burken, J.G.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results formore » different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.« less

  15. Plasma selenium, zinc, copper and lipid levels in postmenopausal Turkish women and their relation with osteoporosis.

    PubMed

    Arikan, Deniz Cemgil; Coskun, Ayhan; Ozer, Ali; Kilinc, Metin; Atalay, Filiz; Arikan, Tugba

    2011-12-01

    It has been shown that the trace elements and lipids play role in the growth, development and maintenance of bones. We aimed to investigate serum selenium (Se), zinc (Zn), copper (Cu) and lipid (total cholesterol, triglyceride (TG), high density lipoprotein-cholesterol, low-density lipoprotein-cholesterol) levels in postmenopausal women with osteoporosis, osteopenia and in healthy controls, and to determine the relationship between Se, Zn, Cu and lipid parameters and bone mineral density (BMD). The study included 107 postmenopausal women; 35 healthy (group 1), 37 osteopenic (group 2) and 35 osteoporotic (group 3). The women in all three groups were carefully matched for body mass index (BMI). Serum concentrations of Se, Zn and Cu were measured by atomic absorption spectrophotometry. Plasma Se, Cu, Zn and lipid levels were similar in all groups (p > 0.05). When we combined the women in each of the three groups, and considered them as one group (n = 107) we found a positive correlation between BMI and lumbar vertebra BMD, femur neck BMD, femur total BMD; a positive correlation between TG and femur neck BMD, femur total BMD; a positive correlation between Zn and lumbar vertebra BMD (total T score) (p < 0.05). There was no correlation between Se, Cu, Zn, P and lipid parameters (p > 0.05). Although BMI has a positive effect on BMD, trace elements and lipids, except Zn and TG, did not directly and correlatively influence BMD. Further studies are needed to clarify the role and relationship of trace elements and lipid parameters in postmenopausal osteoporosis.

  16. Selenium(IV) and (VI) sorption by soils surrounding fly ash management facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, S.; Burns, P.E.; Murarka, I.

    2006-11-15

    Leachate derived from unlined coal ash disposal facilities is one of the most significant anthropogenic sources of selenium to the environment. To establish a practical framework for predicting transport of selenium in ash leachate, sorption of Se(IV) and Se(VI) from 1 mM CaSO{sub 4} was measured for 18 soils obtained down-gradient from three ash landfill sites and evaluated with respect to several soil properties. Furthermore, soil attenuation from lab-generated ash leachate and the effect of Ca{sup 2+} and SO{sub 4}{sup 2-} concentrations as well as pH on both Se(IV) and Se(VI) was quantified for a subset of soils. For bothmore » Se(IV) and Se(VI), pH combined with either percentage clay or dithionite-citrate-bicarbonate (DCB)-extractable Fe described {gt} 80% of the differences in sorption across all soils, yielding an easy approach for making initial predictions regarding site-specific selenium transport to sensitive water bodies. Se(IV) consistently exhibited an order of magnitude greater sorption than Se(VI). Selenium sorption was highest at lower pH values, with Se(IV) sorption decreasing at pH values above 6, whereas Se(VI) decreased over the entire pH range (2.5-10). Using these pH adsorption envelopes, the likely effect of ash leachate-induced changes in soil pore water pH with time on selenium attenuation by down gradient soils can be predicted. Selenium sorption increased with increasing Ca{sup 2+} concentrations while SO{sub 4}2- suppressed sorption well above enhancements by Ca{sup 2+}. Soil attenuation of selenium from ash leachates agreed well with sorption measured from 1 mM CaSO{sub 4}, indicating that 1 mM CaSO{sub 4} is a reasonable synthetic leachate for assessing selenium behavior at ash landfill sites.« less

  17. Potential Moderating Effects of Selenium on Mercury Uptake and Selenium:Mercury Molar Ratios in Fish From Oak Ridge and Savannah River Site - 12086

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna; Gochfeld, Michael; Donio, Mark

    2012-07-01

    Mercury contamination is an important remediation issue at the U.S. Department of Energy's (DOE) Oak Ridge Reservation and to a lesser extent at other DOE sites because of the hazard it presents, potential consequences to humans and eco-receptors, and completed pathways, to offsite receptors. Recent work has emphasized that selenium might ameliorate the toxicity of mercury, and we examine the selenium:mercury (Se:Hg) molar ratios in fish from Oak Ridge, and compare them to Se:Hg molar ratios in fish from the Savannah River. Selenium/mercury molar ratios varied considerably among and within fish species. There was considerable variation in the molar ratiosmore » for individual fish (as opposed to mean ratios by species) for freshwater fish from both sites. The inter-individual variation in molar ratios indicates that such that the molar ratios of mean Se and Hg concentrations may not be representative. Even for fish species with relatively low mercury levels, some individual fish have molar ratios less than unity, the value sometime thought to be protective. Selenium levels varied narrowly regardless of fish size, consistent with homeostatic regulation of this essential trace element. The data indicate that considerable attention will need to be directed toward variations and variances, as well as the mechanisms of the interaction of selenium and mercury, before risk assessment and risk management policies can use this information to manage mercury pollution and risk. Even so, if there are high levels of selenium in the fish from Poplar Creek on Oak Ridge, then the potential exists for some amelioration of adverse health effects, on the fish themselves, predators that eat them, and people who consume them. This work will aid DOE because it will allow managers and scientists to understand another aspect that affects fate and transport of mercury, as well as the potential effects of methylmercury in fish for human and ecological receptors. The variability within fish species, however, suggests that the relative Se:Hg molar ratios in fish are not stable enough to be used in risk assessment at this time. Nor is it known how much excess selenium is required to confer any degree of protectiveness. That is, in conducting risk assessments, it is not possible to determine the spread of ratios, which would be needed for probabilistic risk assessment. Significantly more fish samples per species are required to begin to generate data that would allow it use in risk assessment. Adding Se:Hg molar ratios seems to complicate risk assessment for the potential adverse effects of mercury exposure, and using mercury levels at this time remains the most viable option. (authors)« less

  18. Genetic Identification of an Enzymatic Se(VI) Reduction Pathway

    NASA Astrophysics Data System (ADS)

    Yee, N.; Kobayashi, D. Y.

    2006-12-01

    Enterobacter cloacae is a biofilm-forming organism that colonizes the subterranean portions of plants. Because of its ability to catalyze the reduction of selenium oxyanions, this bacterium plays an important role in Se(0) biomineralization and Se cycling in soils. Identification of the genes that regulate selenate reductase activity is needed to elucidate the mechanisms employed by this organism to reduce Se(VI). However, the genes in E. cloacae involved in selenium reduction are currently unknown. In this study, transposon mutagenesis and direct cloning techniques were used to identify genetic regions in E. cloacae SLD1a-1 associated with selenate reductase activity. The mini-Tn5 transposon system was used to produce mutants that have lost the ability to reduce selenate. E. cloacae mutants and genomic library clones heterologously expressed in E. coli S17-1 were screened for activity on LB agar supplemented with sodium selenate. The rate of selenate reduction by the clones was measured in liquid minimal media, and the Se(0) minerals formed by the clones were examined using EXAFS, TEM, and XRD. The transposon mutagenesis experiments revealed that mutation of menaquinone biosynthesis genes inhibits selenate reduction. The direct cloning experiments showed that heterologous expression of the global anaerobic regulatory gene fnr from Enterobacter cloacae in the non Se-reducing strain E. coli S17-1 activated selenate reductase activity and the ability to precipitate Se(0) particles. Se(VI) reduction by E. coli S17-1 containing the fnr gene occurred at similar rates as E. cloacae and produced elemental selenium particles with identical morphologies and short range atomic order. These findings indicate that Se(VI) reduction by facultative anaerobes is regulated by anaerobic electron carriers and oxygen sensing transcription factors.

  19. COMPARING THE RECOMMENDED DIETARY ALLOWANCE TO TOXICITY VALUES FOR ZN, SE, MN, AND MB

    EPA Science Inventory

    Certain essential nutrients can be toxic when ingested at dosages higher than the daily nutritional requirement. Research data for the essential trace elements, zinc, selenium, manganese and molybdenum have been reviewed by various government agencies for both their nutritional n...

  20. Parenteral selenium and vitamin E supplementation to lambs: hematology, serum biochemistry, performance, and relationship with other trace elements.

    PubMed

    Mohri, Mehrdad; Ehsani, Abdollah; Norouzian, M A; Bami, Mohammad Heidarpour; Seifi, Hesam A

    2011-03-01

    Most regions in Iran are generally selenium (Se) deficient and all mineral premixes which used in farm animals contain Se in the form of sodium selenite. The objective of this study was to evaluate the effects of injected Se and vitamin E (vit E) on hematology, serum proteins, and performance of lambs during the period which the animals are at risk of Se and/or vit E deficiency. The study also aims to determine the relationship between selenium injection and the levels of other trace elements in blood serum of lambs. A total of 16 lambs of Baloochi breed (age, 70 ± 7 days and weight, 15.2 ± 1.4) were enrolled in the study. The animals were divided into two groups. In the test group, vit E and Se injected at a dose of 0.2 ml/kg BW (Vetoquinol, Selepherol®, Lure Cedex, France, α-tocopherol acetate 3.82 g/100 ml plus sodium selenite 0.023 g/100 ml) at the enrollment. Control lambs were received equal amounts of normal saline as placebo. Blood was sampled from the jugular vein at the beginning of the study (enrollment, before injection of vit E and selenium and saline) and at days 7, 14, 21, and 28 of experiment. The amounts of total serum protein, albumin, glucose, iron, copper, zinc, creatine kinase (CK), and aspartate aminotransferase (AST) and Se were measured. The concentration of globulin was calculated as the difference between total serum protein and albumin. For evaluation of growth and health, body weight of all the lambs was measured at day 0 of the experiment and the sampling times and days of treatment for each lamb were recorded. Treatment with Se and vit E decreased the activities of CK and AST compared to the controls (p < 0.05). Age (sampling time) had significant effects on the values of Se, iron, zinc, AST, hemoglobin, total protein, glucose, weight, height, and length (p < 0.05). Significant interactions between sampling time and group were seen for CK, AST, iron, glucose, weight, and length. No significant differences were seen for total weight gain (control, 3.48 ± 0.75 kg; test, 3.85 ± 0.9 kg), and average daily gain (control, 0.12 ± 0.03 kg; test, 0.14 ± 0.03 kg) between trial groups.

  1. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate.

    PubMed

    Larsen, Erik H; Lobinski, Ryszard; Burger-Meÿer, Karin; Hansen, Marianne; Ruzik, Rafal; Mazurowska, Lena; Rasmussen, Peter Have; Sloth, Jens J; Scholten, Olga; Kik, Chris

    2006-07-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 microg g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that gamma-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of gamma-glutamyl-Se-methyl-selenocysteine and gamma-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry.

  2. Applicability of direct total reflection X-ray fluorescence analysis for selenium determination in solutions related to environmental and geochemical studies

    NASA Astrophysics Data System (ADS)

    Marguí, E.; Floor, G. H.; Hidalgo, M.; Kregsamer, P.; Roman-Ross, G.; Streli, C.; Queralt, I.

    2010-12-01

    A significant amount of environmental studies related to selenium determination in different environmental compartments have been published in the last years due to the narrow range between the Se nutritious requirement as essential element and toxic effects upon exposure. However, the direct analysis of complex liquid samples like natural waters and extraction solutions presents significant problems related to the low Se concentrations and the complicated matrix of this type of samples. The goal of the present research was to study the applicability of direct TXRF analysis of different type of solutions commonly used in environmental and geochemical studies, confirm the absence or presence of matrix effects and evaluate the limits of detection and accuracy for Se determination in the different matrices. Good analytical results were obtained for the direct analysis of ground and rain water samples with limits of detection for Se two orders of magnitude lower than the permissible Se concentration in drinking waters ([Se] = 10 μg/L) according to the WHO. However, the Se detection limits for more complex liquid samples such as thermal waters and extraction solutions were in the μg/L range due to the presence of high contents of other elements present in the matrix (i.e., Br, Fe, Zn) or the high background of the TXRF spectrum that hamper the Se determination at trace levels. Our results give insight into the possibilities and drawbacks of direct TXRF analysis and to a certain extent the potential applications in the environmental and geochemical field.

  3. Effects of Dietary Selenium Against Lead Toxicity on mRNA Levels of 25 Selenoprotein Genes in the Cartilage Tissue of Broiler Chicken.

    PubMed

    Gao, H; Liu, C P; Song, S Q; Fu, J

    2016-07-01

    The interactions between the essential element selenium (Se) and the toxic element lead (Pb) have been reported extensively; however, little is known about the effect of Se on Pb toxicity and the expression pattern of selenoproteins in the cartilage of chicken. To investigate the effects of Se on Pb toxicity and the messenger RNA (mRNA) expressions of selenoproteins in cartilage tissue, an in vitro study was performed on 1-day-old broiler chickens (randomly allocated into four groups) with diet of different concentration of Se and Pb. After 90 days, the meniscus cartilage and sword cartilage tissue were examined for the mRNA levels of 25 selenoprotein genes. The results showed that Se and Pb influenced the expression of selenoprotein genes in the chicken cartilage tissue. In detail, Se could alleviate the downtrend of the expression of Gpx1, Gpx2, Gpx4, Txnrd2, Txnrd3, Dio1, Dio2, Seli, Selu, Sepx1, Selk, Selw, Selo, Selm, Sep15, Sepnn1, Sels, and Selt induced by Pb exposure in the meniscus cartilage. In the sword cartilage, Se alleviated the downtrend of the expression of Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Dio2, Dio3, Seli, Selh, SPS2, Sepx1, Selk, Selw, Selo, Selm, Sep15, Selpb, Sepn1, and Selt induced by Pb exposure. The present study provided some compensated data about the roles of Se against Pb toxicity in the regulation of selenoprotein expression.

  4. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  5. Plasma and breastmilk selenium in HIV-infected Malawian mothers is positively associated with infant selenium status at 2 or 6 and 24 weeks post-partum but is not associated with supplementation

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) levels are typically low in HIV-infected individuals, but have been increased by supplementation in previous studies. In HIV-infected populations, the effect of Se supplementation on breastmilk Se and, consequently, plasma Se levels in exclusively breastfed infants is unknown. HIV-inf...

  6. Distribution of selenium, molybdenum and uranium in sediment cores from the Colorado River delta, Baja California, Mexico.

    PubMed

    Orozco-Durán, A; Daesslé, L W; Gutiérrez-Galindo, E A; Muñoz-Barbosa, A

    2012-01-01

    The distribution of selenium, molybdenum and uranium was studied in ~1.5 m sediment cores from the Colorado River delta, at the Colorado (CR) and Hardy (HR) riverbeds. Core HR2 showed highest Se, Mo and U concentrations at its bottom (2.3, 0.95 and 1.8 μg g(-1)) within a sandy-silt layer deposited prior to dam construction. In CR5 the highest concentrations of these elements (0.9, 1.4 and 1.7 μg g(-1) respectively) were located at the top of the core within a surface layer enriched in organic carbon. A few samples from HR2 had Se above the probable toxic effect level guidelines.

  7. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food.

    PubMed

    Hart, D J; Fairweather-Tait, S J; Broadley, M R; Dickinson, S J; Foot, I; Knott, P; McGrath, S P; Mowat, H; Norman, K; Scott, P R; Stroud, J L; Tucker, M; White, P J; Zhao, F J; Hurst, R

    2011-06-15

    The retention and speciation of selenium in flour and bread was determined following experimental applications of selenium fertilisers to a high-yielding UK wheat crop. Flour and bread were produced using standard commercial practices. Total selenium was measured using inductively coupled plasma-mass spectrometry (ICP-MS) and the profile of selenium species in the flour and bread were determined using high performance liquid chromatography (HPLC) ICP-MS. The selenium concentration of flour ranged from 30ng/g in white flour and 35ng/g in wholemeal flour from untreated plots up to >1800ng/g in white and >2200ng/g in wholemeal flour processed from grain treated with selenium (as selenate) at the highest application rate of 100g/ha. The relationship between the amount of selenium applied to the crop and the amount of selenium in flour and bread was approximately linear, indicating minimal loss of Se during grain processing and bread production. On average, application of selenium at 10g/ha increased total selenium in white and wholemeal bread by 155 and 185ng/g, respectively, equivalent to 6.4 and 7.1μg selenium per average slice of white and wholemeal bread, respectively. Selenomethionine accounted for 65-87% of total extractable selenium species in Se-enriched flour and bread; selenocysteine, Se-methylselenocysteine selenite and selenate were also detected. Controlled agronomic biofortification of wheat crops for flour and bread production could provide an appropriate strategy to increase the intake of bioavailable selenium. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Investigation of biotransformation of selenium in plants using spectrometric methods

    NASA Astrophysics Data System (ADS)

    Ruszczyńska, Anna; Konopka, Anna; Kurek, Eliza; Torres Elguera, Julio Cesar; Bulska, Ewa

    2017-04-01

    The aim of this research was to study the processes of biotransformation of selenium in plants such as garlic, radish sprouts and sunflower sprouts via identification of selenium-containing compounds as metabolites of inorganic selenium using mass spectrometry. Speciation analysis of selenium in extracts from plant samples was performed with the use of hyphenated high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method. Matching the retention times of sample compounds with standards allowed identification of Se-methyl-selenocysteine, selenomethionine, γ-glutamyl-Se-methylselenocysteine and inorganic SeO32 -. However, registered chromatograms included additional 82Se signals which couldn't be identified due to the lack of standards. Qualitative analysis of unknown compounds was achieved using high-resolution mass spectrometer equipped with mass analyzer Orbitrap coupled to high performance liquid chromatography. Since selenium has six stable isotopes of different abundance in nature, mass spectra of have a very characteristic isotopic pattern. In order to elucidate the structure of unknown Se compounds, selected ions were subjected to the fragmentation. Following selenocompounds were identified an inorganic selenium metabolites in garlic, sunflower sprouts and/or radish sprouts: selenohomolanthionine, Se-methyl-selenocysteine, selenomethionine, selenomethionine oxide, deaminohydroxy-selenohomolanthionine, N-acetylcysteine-selenomethionine, γ-glutamyl-Se-methyl-selenocysteine, methylseleno-Se-pentose-hexose, Se-methyl-selenoglutathione, 2,3-dihydroxy-propionyl-selenocysteine-cysteine, methyltio-selenoglutathione, 2,3-dihydroxypropionyl-selenolanthionine and two Se-containing compounds with proposed molecular formula C10H18N2O6Se and C10H13N5O3Se. Moreover, the structure was proposed for one selenocompound found in sunflower sprouts which has not been reported so far.

  9. Selenium hyperaccumulation - Astragalus bisulcatus, Cardamine hupingshanensis and Stanleya pinnata - may be useful for agromining selenium-rich soils

    USDA-ARS?s Scientific Manuscript database

    Selenium hyperaccumulator plants like Stanleya pinnata, Astragalus bisulcatus and the newly discovered Se-accumulator Cardamine hupingshanensis may play an important role in the Se cycle from soil to plant to human in China. Se-hyperaccumulators can be used for agromining or for phytoremediation of ...

  10. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff.

    PubMed

    Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2017-03-04

    The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.

  11. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken.

    PubMed

    Zhou, X; Wang, Y

    2011-03-01

    This experiment was designed to investigate the effect of feed supplementation with nano elemental Se (Nano-Se) on growth performance, tissue Se distribution, meat quality, and glutathione peroxidase (GSH-Px) activity in Guangxi Yellow chicken. Four treatments (control, T-1, T-2, and T-3 treatment groups) with 3 replicates of 30 chickens each were carried out. Diets for the control, T-1, T-2, and T-3 groups consisted of the basal diet supplemented with, respectively, 0.00, 0.10, 0.30, and 0.50 mg/kg of Nano-Se. Improved final BW, daily BW gain (DWG), feed conversion ratios, and survival rate (P < 0.05) were observed in the groups supplemented with Nano-Se as compared with the control groups after 90 d of feeding. The groups that received Nano-Se showed higher (P < 0.05) hepatic and muscle Se contents, drip loss percentage, inosine 5'-monophosphate content, and GSH-Px activities in the serum and liver than that did the control groups. For the T-2 and T-3 groups, a significant difference (P < 0.05) was observed in final BW, DWG, muscle Se content, breast drip loss, and GSH-Px activities in the serum and liver compared with the T-1 group. However, no significant differences were observed in final BW, DWG, and GSH-Px activities in the serum and liver between the T-2 and T-3 groups. It could be concluded from this study that supplementing diets with 0.30 mg/kg of Nano-Se for was effective in increasing the growth performance and feed conversion ratios of chickens, the Se content of tissues, and the quality of the meat.

  12. Increased selenium threat as a result of invasion of the exotic bivalve Potamocorbula amurensis into the San Francisco Bay-Delta.

    PubMed

    Linville, Regina G; Luoma, Samuel N; Cutter, Lynda; Cutter, Gregory A

    2002-04-01

    Following the aggressive invasion of the bivalve, Potamocorbula amurensis, in the San Francisco Bay-Delta in 1986, selenium contamination in the benthic food web increased. Concentrations in this dominant (exotic) bivalve in North Bay were three times higher in 1995-1997 than in earlier studies, and 1990 concentrations in benthic predators (sturgeon and diving ducks) were also higher than in 1986. The contamination was widespread, varied seasonally and was greater in P. amurensis than in co-occurring and transplanted species. Selenium concentrations in the water column of the Bay were enriched relative to the Sacramento River but were not as high as observed in many contaminated aquatic environments. Total Se concentrations in the dissolved phase never exceeded 0.3 microg Se per l in 1995 and 1996; Se concentrations on particulate material ranged from 0.5 to 2.0 microg Se per g dry weight (dw) in the Bay. Nevertheless, concentrations in P. amurensis reached as high as 20 microg Se per g dw in October 1996. The enriched concentrations in bivalves (6-20 microg Se per g dw) were widespread throughout North San Francisco Bay in October 1995 and October 1996. Concentrations varied seasonally from 5 to 20 microg Se per g dw, and were highest during the periods of lowest river inflows and lowest after extended high river inflows. Transplanted bivalves (oysters, mussels or clams) were not effective indicators of either the degree of Se contamination in P. amurensis or the seasonal increases in contamination in the resident benthos. Se is a potent environmental toxin that threatens higher trophic level species because of its reproductive toxicity and efficient food web transfer. Bivalves concentrate selenium effectively because they bioaccumulate the element strongly and lose it slowly; and they are a direct link in the exposure of predaceous benthivore species. Biological invasions of estuaries are increasing worldwide. Changes in ecological structure and function are well known in response to invasions. This study shows that changes in processes such as cycling and effects of contaminants can accompany such invasions.

  13. Increased selenium threat as a result of invasion of the exotic bivalve Potamocorbula amurensis into the San Francisco Bay-Delta

    USGS Publications Warehouse

    Linville, R.G.; Luoma, S.N.; Cutter, L.; Cutter, G.A.

    2002-01-01

    Following the aggressive invasion of the bivalve, Potamocorbula amurensis, in the San Francisco Bay-Delta in 1986, selenium contamination in the benthic food web increased. Concentrations in this dominant (exotic) bivalve in North Bay were three times higher in 1995-1997 than in earlier studies, and 1990 concentrations in benthic predators (sturgeon and diving ducks) were also higher than in 1986. The contamination was widespread, varied seasonally and was greater in P. amurensis than in co-occurring and transplanted species. Selenium concentrations in the water column of the Bay were enriched relative to the Sacramento River but were not as high as observed in many contaminated aquatic environments. Total Se concentrations in the dissolved phase never exceeded 0.3 ??g Se per l in 1995 and 1996; Se concentrations on particulate material ranged from 0.5 to 2.0 ??g Se per g dry weight (dw) in the Bay. Nevertheless, concentrations in P. amurensis reached as high as 20 ??g Se per g dw in October 1996. The enriched concentrations in bivalves (6-20 ??g Se per g dw) were widespread throughout North San Francisco Bay in October 1995 and October 1996. Concentrations varied seasonally from 5 to 20 ??g Se per g dw, and were highest during the periods of lowest river inflows and lowest after extended high river inflows. Transplanted bivalves (oysters, mussels or clams) were not effective indicators of either the degree of Se contamination in P. amurensis or the seasonal increases in contamination in the resident benthos. Se is a potent environmental toxin that threatens higher trophic level species because of its reproductive toxicity and efficient food web transfer. Bivalves concentrate selenium effectively because they bioaccumulate the element strongly and lose it slowly; and they are a direct link in the exposure of predaceous benthivore species. Biological invasions of estuaries are increasing worldwide. Changes in ecological structure and function are well known in response to invasions. This study shows that changes in processes such as cycling and effects of contaminants can accompany such invasions. Copyright ?? 2002 .

  14. Chemical equilibrium and reaction modeling of arsenic and selenium in soils

    USDA-ARS?s Scientific Manuscript database

    The chemical processes and soil factors that affect the concentrations of As and Se in soil solution were discussed. Both elements occur in two redox states differing in toxicity and reactivity. Methylation and volatilization reactions occur in soils and can act as detoxification pathways. Precip...

  15. Improvement of Heart Redox States Contributes to the Beneficial Effects of Selenium Against Penconazole-Induced Cardiotoxicity in Adult Rats.

    PubMed

    Chaâbane, Mariem; Tir, Meriem; Hamdi, Safa; Boudawara, Ons; Jamoussi, Kamel; Boudawara, Tahia; Ghorbel, Raoudha Ellouze; Zeghal, Najiba; Soudani, Nejla

    2016-02-01

    The present study was performed to evaluate the protective effect of selenium (Se) against penconazole (PEN)-induced oxidative stress in the cardiac tissue of adult rats. Male Wistar rats were divided into four groups of six each. The first group represented the controls. For the second group (PEN), no treatment was performed during the first 6 days, and then, the rats received intraperitoneally 67 mg/kg body weight (bw) of PEN every 2 days from day 7 until day 15, the sacrifice day. For the third group (Se + PEN), Se was administered daily through the diet at a dose of 0.5 mg/kg of diet for 15 days. Rats of this group received also every 2 days PEN (67 mg/kg bw) from day 7 until day 15. The fourth group (Se) received daily, through the diet, Se (0.5 mg/Kg of diet) during 15 days. Our results showed that Se reduced significantly the elevated cardiac levels of malondialdehyde and protein carbonyl following PEN treatment, and attenuated DNA fragmentation induced by this fungicide. In addition, Se modulated the alterations of antioxidant status: enzymatic (superoxide dismutase, glutathione peroxidase, and catalase) and nonenzymatic (glutathione and vitamin C) antioxidants in the heart of PEN-treated rats. This trace element was also able to alleviate perturbations of lipid profile. The protective effect of selenium was further evident through the histopathological changes produced by PEN in the heart tissue. Taken together, our results indicated that Se might be beneficial against PEN-induced cardiac oxidative damage in rats.

  16. Comparative oral dose toxicokinetics of selenium compounds commonly found in selenium accumulator plants

    USDA-ARS?s Scientific Manuscript database

    Consumption of Se accumulator plants by livestock can result in Se intoxication. Recent research indicates that the Se forms most common in Se accumulator plants are selenate and Se-methylselenocysteine (MeSeCys). In this study the absorption, distribution, and elimination kinetics of Se in serum ...

  17. Hydrochemical characteristics of natural water and selenium-rich water resources in the Northern Daba Mountains, China.

    PubMed

    Zhao, Chao; Luo, Kunli; Du, Yajun; Tian, Yuan; Long, Jie; Zhao, Xiaofeng; Zhang, Shixi

    2017-04-01

    The Northern Daba Mountains (NDM) of Shaanxi Province, China, are a well-known selenium (Se)-rich area, and the area is also known for endemic fluorine (F) and arsenic (As) poisoning. In order to study the hydrochemical characteristics and trace element contents of the natural waters of this region, 62 water samples were collected from Lan'gao area in the NDM. The hydrochemical composition was principally characterized by Ca·Mg-HCO 3 ·SO 4 . F and As concentrations ranged from 0.01 to 0.67 mg/L and from 0.33 to 6.29 μg/L, respectively, lower than Chinese national standard and international guidelines for drinking water quality. One year of monitoring proved that F and As in natural water were not the sources of the local fluorosis and arseniasis in the NDM. The average Se concentration in fissure water was 5.20 μg/L. The average Se content of river water was 2.82 μg/L, 14 times that of the world's surface level (0.2 μg/L). The Se content in eight samples reached the Chinese national standards for mineral drinking water quality (>10 μg/L). Contrasting the water samples of May, July, and September in 2015 shows that the Se content is relatively stable and the increase of humidity might be beneficial to increase the content of selenium and strontium in water.

  18. Selenium

    USGS Publications Warehouse

    Stillings, Lisa L.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Selenium (Se) was discovered in 1817 in pyrite from copper mines in Sweden. It is a trace element in Earth’s crust, with an abundance of three to seven orders of magnitude less than the major rock-forming elements. Commercial use of selenium began in the United States in 1910, when it was used as a pigment for paints, ceramic glazes, and red glass. Since that time, it has had many other economic uses—notably, in the 1930s and 1940s, when it was used in rectifiers (which change alternating current to direct current), and in the 1960s, when it began to be used in the liner of photocopier drums. In the 21st century, other compounds have replaced selenium in these older products; modern uses for selenium include energy-efficient windows that limit heat transfer and thin-film photovoltaic cells that convert solar energy into electricity.In Earth’s crust, selenium is found as selenide minerals, selenate and selenite salts, and as substitution for sulfur in sulfide minerals. It is the sulfide minerals, most commonly those in porphyry copper deposits, that provide the bulk of the selenium produced for the international commodity market. Selenium is obtained as a byproduct of copper refining and recovered from the anode slimes generated in electrolytic production of copper. Because of this, the countries that have the largest resources and (or) reserves of copper also have the largest resources and (or) reserves of selenium.Because selenium occurs naturally in Earth’s crust, its presence in air, water, and soil results from both geologic reactions and human activity. Selenium is found concentrated naturally in soils that overlie bedrock with high selenium concentrations. Selenium mining, processing, use in industrial and agricultural applications, and disposal may all contribute selenium to the environment. A well-known case of selenium contamination from agricultural practices was discovered in 1983 in the Kesterson National Wildlife Refuge in California. There, waters draining from agricultural fields created wetlands with high concentrations of dissolved selenium in the water. The selenium was taken up by aquatic wildlife and caused massive numbers of embryonic deformities and deaths.Regulatory agencies have since worked to safeguard ecological and human health by creating environmental exposure guidelines based upon selenium concentrations in water and in fish tissue. Any attempt to regulate selenium concentrations requires a delicate balance because selenium occurs naturally and is also a vital nutrient for the health of wildlife, domestic stock, and humans. Selenium is commonly added as a vitamin to animal feed, and in some regions of the United States and the world, it is added as an amendment to soils for uptake by agricultural crops.The important role of selenium in economic products, energy supply, agriculture, and health will continue for well into the future. The challenge to society is to balance the benefits of selenium use with the environmental consequences of its extraction. Increased understanding of the elemental cycle of selenium in the earth may lead to new (or unconventional) sources of selenium, the discovery of new methods of extraction, and new technologies for minimizing the transfer of selenium from rock to biota, so to protect environmental and human health.

  19. Ameliorative effects of nano-elemental selenium against hexavalent chromium-induced apoptosis in broiler liver.

    PubMed

    Xueting, Liu; Rehman, Mujeeb Ur; Mehmood, Khalid; Huang, Shucheng; Tian, Xinxin; Wu, Xiaoxing; Zhou, Donghai

    2018-06-01

    The current study examined the ameliorative effects of nano-elemental selenium (Nano-Se) against chromium-VI (K 2 Cr 2 O 7 )-induced apoptosis in chickens. The expression of apoptosis-related genes was evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. A total of 60, one-day-old broiler chickens allotted to six equal groups, i.e., control group (standard diet), Cr(VI)-exposed group (K 2 Cr 2 O 7 via drinking water), Nano-Se group (Nano-Se at 0.5 mg/kg via diet), protection group (K 2 Cr 2 O 7  + Nano-Se), cure group (K 2 Cr 2 O 7 for initial 2 weeks and then Nano-Se), and prevention group (opposite to the cure group) and were detected by the activities of pro-apoptosis (Bax, Caspase-3) and anti-apoptosis (Bcl-2) genes expression at day 35 of the experiment. Intense apoptosis was observed in liver tissues of chickens exposed to K 2 Cr 2 O 7 . The Nano-Se supplementation caused a significant decrease (P < 0.01) in the mRNA expression levels of Bax and Caspase-3 genes, while significantly elevated (P < 0.05) mRNA expression level of Bcl-2 gene was observed in Nano-Se experimental groups as compare to control and Cr(VI)-exposed group. The results quantified by the RT-qPCR were further confirmed by the western blot analysis. Altogether, these results suggest anti-apoptotic effects of Nano-Se in the chicken liver, which is interesting for further study. The present findings suggested that Nano-Se has protective effects against K 2 Cr 2 O 7 -induced apoptosis in broilers liver and can serve a key role as a protective agent against apoptosis.

  20. Extraordinarily High Leaf Selenium to Sulfur Ratios Define ‘Se-accumulator’ Plants

    PubMed Central

    White, Philip J.; Bowen, Helen C.; Marshall, Bruce; Broadley, Martin R.

    2007-01-01

    Background and Aims Selenium (Se) and sulfur (S) exhibit similar chemical properties. In flowering plants (angiosperms) selenate and sulfate are acquired and assimilated by common transport and metabolic pathways. It is hypothesized that most angiosperm species show little or no discrimination in the accumulation of Se and S in leaves when their roots are supplied a mixture of selenate and sulfate, but some, termed Se-accumulator plants, selectively accumulate Se in preference to S under these conditions. Methods This paper surveys Se and S accumulation in leaves of 39 angiosperm species, chosen to represent the range of plant Se accumulation phenotypes, grown hydroponically under identical conditions. Results The data show that, when supplied a mixture of selenate and sulfate: (1) plant species differ in both their leaf Se ([Se]leaf) and leaf S ([S]leaf) concentrations; (2) most angiosperms show little discrimination for the accumulation of Se and S in their leaves and, in non-accumulator plants, [Se]leaf and [S]leaf are highly correlated; (3) [Se]leaf in Se-accumulator plants is significantly greater than in other angiosperms, but [S]leaf, although high, is within the range expected for angiosperms in general; and (4) the Se/S quotient in leaves of Se-accumulator plants is significantly higher than in leaves of other angiosperms. Conclusion The traits of extraordinarily high [Se]leaf and leaf Se/S quotients define the distinct elemental composition of Se-accumulator plants. PMID:17525099

  1. Controlling factors of soil selenium distribution in a watershed in Se-enriched and longevity region of South China.

    PubMed

    Shao, Ya; Cai, Chongfa; Zhang, Haitao; Fu, Wei; Zhong, Xuemei; Tang, Shen

    2018-05-10

    Selenium (Se) is an essential nutritional element for human beings. Many studies have been conducted on concentration and distribution patterns of soil Se in low Se, Se-enriched, and selenosis areas; however, soil Se has not been systematically studied in a watershed, especially in Se-enriched longevity region and karst area in South China. This study is carried out to explore the controlling factors of Se-enriched soils in Baishou river tributary watershed, where soils are Se-enriched, and local people have the phenomenon of longevity. The area-weighted average rock Se concentration in the watershed is 0.054 mg/kg, and there are no significant differences in rock Se concentration between different strata and between different lithological rocks. The area-weighted average concentration of Se in soils (0-20 cm) is 0.80 mg/kg, and the soil Se concentration is of high level in the watershed. Soil Se concentration decreases from upstream to downstream in the watershed, and significantly correlated with elevation. Climate is the main factor causing high content of soil Se in the watershed which lacks black rock series. The difference of clastic and carbonate parent materials in soil forming process and the physical and chemical properties (pH, OM, etc.) are the main reasons for the spatial variation of Se distribution in the watershed. The research will be beneficial to the development and utilization of Se-enriched soil in Se-enriched area.

  2. Insights for Setting of Nutrient Requirements, Gleaned by Comparison of Selenium Status Biomarkers in Turkeys and Chickens versus Rats, Mice, and Lambs12

    PubMed Central

    Sunde, Roger A; Li, Jin-Long; Taylor, Rachel M

    2016-01-01

    To gain insights into nutrient biomarkers and setting of dietary nutrient requirements, selenium biomarker levels and requirements in response to multiple graded levels of dietary selenium were compared between day-old turkeys and chickens versus weanling rats and mice and 2-d-old lambs supplemented with sodium selenite. In rodents, there was no significant effect of dietary selenium on growth, indicating that the minimum selenium requirement was <0.007 μg Se/g diet. In contrast, there was a significant effect in turkeys, chicks, and lambs, which showed selenium requirements for growth of 0.05, 0.025, and 0.05 μg Se/g diet, respectively. Liver glutathione peroxidase (GPX) 1 activity fell in all species to <4% of selenium-adequate levels, plasma GPX3 activity fell to <3% in all species except for mice, and liver GPX4 activity fell to <10% in avians but only to ∼50% of selenium-adequate levels in rodents. Selenium-response curves for these biomarkers reached well-defined plateaus with increasing selenium supplementation in all species, collectively indicating minimum selenium requirements of 0.06–0.10 μg Se/g for rats, mice, and lambs but 0.10–0.13 μg Se/g for chicks and 0.23–0.33 μg Se/g for turkeys. In contrast, increasing dietary selenium did not result in well-defined plateaus for erythrocyte GPX1 activity and liver selenium in most species. Selenium-response curves for GPX1 mRNA for rodents and avians had well-defined plateaus and similar breakpoints. GPX4 mRNA was not significantly regulated by dietary selenium in rodents, but GPX4 mRNA in avians decreased in selenium deficiency to ∼35% of selenium-adequate plateau levels. Notably, no selenoprotein activities or mRNA were effective biomarkers for supernutritional selenium status. Robust biomarkers, such as liver GPX1 and plasma GPX3 activity for selenium, should be specific for the nutrient, fall dramatically in deficiency, and reach well-defined plateaus. Differences in biomarker-response curves may help researchers better understand nutrient metabolism and targeting of tissues in deficiency, thus to better characterize requirements. PMID:28140330

  3. Insights for Setting of Nutrient Requirements, Gleaned by Comparison of Selenium Status Biomarkers in Turkeys and Chickens versus Rats, Mice, and Lambs.

    PubMed

    Sunde, Roger A; Li, Jin-Long; Taylor, Rachel M

    2016-11-01

    To gain insights into nutrient biomarkers and setting of dietary nutrient requirements, selenium biomarker levels and requirements in response to multiple graded levels of dietary selenium were compared between day-old turkeys and chickens versus weanling rats and mice and 2-d-old lambs supplemented with sodium selenite. In rodents, there was no significant effect of dietary selenium on growth, indicating that the minimum selenium requirement was <0.007 μg Se/g diet. In contrast, there was a significant effect in turkeys, chicks, and lambs, which showed selenium requirements for growth of 0.05, 0.025, and 0.05 μg Se/g diet, respectively. Liver glutathione peroxidase (GPX) 1 activity fell in all species to <4% of selenium-adequate levels, plasma GPX3 activity fell to <3% in all species except for mice, and liver GPX4 activity fell to <10% in avians but only to ∼50% of selenium-adequate levels in rodents. Selenium-response curves for these biomarkers reached well-defined plateaus with increasing selenium supplementation in all species, collectively indicating minimum selenium requirements of 0.06-0.10 μg Se/g for rats, mice, and lambs but 0.10-0.13 μg Se/g for chicks and 0.23-0.33 μg Se/g for turkeys. In contrast, increasing dietary selenium did not result in well-defined plateaus for erythrocyte GPX1 activity and liver selenium in most species. Selenium-response curves for GPX1 mRNA for rodents and avians had well-defined plateaus and similar breakpoints. GPX4 mRNA was not significantly regulated by dietary selenium in rodents, but GPX4 mRNA in avians decreased in selenium deficiency to ∼35% of selenium-adequate plateau levels. Notably, no selenoprotein activities or mRNA were effective biomarkers for supernutritional selenium status. Robust biomarkers, such as liver GPX1 and plasma GPX3 activity for selenium, should be specific for the nutrient, fall dramatically in deficiency, and reach well-defined plateaus. Differences in biomarker-response curves may help researchers better understand nutrient metabolism and targeting of tissues in deficiency, thus to better characterize requirements. © 2016 American Society for Nutrition.

  4. Long-term mortality patterns in a residential cohort exposed to inorganic selenium in drinking water.

    PubMed

    Vinceti, Marco; Ballotari, Paola; Steinmaus, Craig; Malagoli, Carlotta; Luberto, Ferdinando; Malavolti, Marcella; Giorgi Rossi, Paolo

    2016-10-01

    Selenium (Se) is a metalloid of considerable nutritional and toxicological importance in humans. To date, limited epidemiologic evidence exists about the health effects of exposure to this trace element in drinking water. We investigated the relationship between Se levels in water and mortality in the municipality of Reggio Emilia, Italy, where high levels of Se were previously observed in drinking water. From 1974 to 1985, 2065 residents consumed drinking water with Se levels close to the European standard of 10μg/l, in its inorganic hexavalent form (selenate). Follow-up was conducted for the years 1986-2012 in Reggio Emilia and a lesser exposed comparison group of around 100,000 municipal residents, with comparable socio-demographic characteristics. Overall mortality from all causes, cardiovascular disease and cancer showed little evidence of differences. However, excess rate ratios were seen for some site specific cancers such as neoplasms of buccal cavity and pharynx, urinary tract, lymphohematopoietic tissue, melanoma, and two neurodegenerative diseases, Parkinson's disease and amyotrophic lateral sclerosis. Excess mortality in the exposed cohort for specific outcomes was concentrated in the first period of follow-up (1986-1997), and waned starting 10 years after the high exposure ended. We also found lower mortality from breast cancer in females during the first period of follow-up. When we extended the analysis to include residents who had been consuming the high-selenium drinking water for a shorter period, mortality rate ratios were also increased, but to a lesser extent. Overall, we found that the mortality patterns related to long-term exposure to inorganic hexavalent selenium through drinking water were elevated for several site-specific cancers and neurodegenerative disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Role of selenium toxicity and oxidative stress in aquatic birds

    USGS Publications Warehouse

    Hoffman, D.J.

    2002-01-01

    Adverse effects of selenium (Se) in wild aquatic birds have been documented as a consequence of pollution of the aquatic environment by subsurface agricultural drainwater and other sources. These effects include mortality, impaired reproduction with teratogenesis, reduced growth, histopathological lesions and alterations in hepatic glutathione metabolism. A review is provided, relating adverse biological effects of Se in aquatic birds to altered glutathione metabolism and oxidative stress. Laboratory studies, mainly with an organic form of Se, selenomethionine, have revealed oxidative stress in different stages of the mallard (Anas platyrhynchos) life cycle. As dietary and tissue concentrations of Se increase, increases in plasma and hepatic GSH peroxidase activities occur, followed by dose-dependent increases in the ratio of hepatic oxidized to reduced glutathione (GSSG:GSH) and ultimately hepatic lipid peroxidation measured as an increase in thiobarbituric acid reactive substances (TBARS). One or more of these oxidative effects were associated with teratogenesis (4.6 ppm wet weight Se in eggs), reduced growth in ducklings (15 ppm Se in liver), diminished immune function (5 ppm Se in liver) and histopathological lesions (29 ppm Se in liver) in adults. Manifestations of Serelated effects on glutathione metabolism were also apparent in field studies in seven species of aquatic birds. Reduced growth and possibly immune function but increased liver:body weight and hepatic GSSG:GSH ratios were apparent in American avocet (Recurvirostra americana) hatchlings from eggs containing 9 ppm Se. In blacknecked stilts (Himantopus mexicanus), which contained somewhat lower Se concentrations, a decrease in hepatic GSH was apparent with few other effects. In adult American coots (Fulica americana), signs of Se toxicosis included emaciation, abnormal feather loss and histopathological lesions. Mean liver concentrations of 28 ppm Se (ww) in the coots were associated with elevated hepatic GSH peroxidase, depletion of hepatic protein bound thiols and total thiols, but a small increase in GSH. Diving ducks in the San Francisco Bay area exhibited a positive correlation between hepatic Se concentration and GSH peroxidase activity (r=0.63, P<0.05), but a negative correlation between hepatic Se and GSH concentration (r=0.740, P<0.05). In willets (Catoptrophorus semipalmatus) from the San Diego area, positive correlations occurred between hepatic Se concentration and GSSG (r=0.70, P<0.001), GSSG:GSH ratio, and TBARS. In emperor geese (Chen canagica) from western Alaska, blood levels of up to 9.4 ppm occurred and were associated with increased plasma GSH peroxidase activity (r=0.62, P<0.001), but with decreased plasma GSSG reductase activity. When evaluating Se toxicity, interactive nutritional factors, including other elements and dietary protein, should also be taken into consideration. Further studies are needed to examine the relationship between different forms of environmentally occurring selenium, arsenic and mercury on reproduction, hepatotoxicity and immune function of aquatic birds. Further selenium nutritional interaction studies may also help to illucidate the mechanism of selenium induced teratogenesis, by optimizing GSH and other antioxidant defense mechanisms in a manner that would stabilize or raise the cell's threshold for susceptibility to toxic attack from excess selenium. It is concluded that Se-related manifestations of oxidative stress may serve as useful bioindicators of Se exposure and toxicity in wild aquatic birds.

  6. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants

    PubMed Central

    Gupta, Meetu; Gupta, Shikha

    2017-01-01

    Selenium (Se) is an essential micronutrient for humans and animals, but lead to toxicity when taken in excessive amounts. Plants are the main source of dietary Se, but essentiality of Se for plants is still controversial. However, Se at low doses protects the plants from variety of abiotic stresses such as cold, drought, desiccation, and metal stress. In animals, Se acts as an antioxidant and helps in reproduction, immune responses, thyroid hormone metabolism. Selenium is chemically similar to sulfur, hence taken up inside the plants via sulfur transporters present inside root plasma membrane, metabolized via sulfur assimilatory pathway, and volatilized into atmosphere. Selenium induced oxidative stress, distorted protein structure and function, are the main causes of Se toxicity in plants at high doses. Plants can play vital role in overcoming Se deficiency and Se toxicity in different regions of the world, hence, detailed mechanism of Se metabolism inside the plants is necessary for designing effective Se phytoremediation and biofortification strategies. PMID:28123395

  7. Continued selenium biofortification of carrots and broccoli grown in soils once amended with Se-enriched S. pinnata

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) biofortification has been practiced in Se-deficient regions throughout the world primarily by adding inorganic sources of Se to the soil. Adding organic sources of Se could be useful as an alternative Se amendment for the production of Se-biofortified food crops needed in Se-deficient ...

  8. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Kurek, Eliza

    2017-02-25

    Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20-30 mg Se 4+ ∙L -1 ) to the experimental media in the form of sodium(IV) selenite (Na₂SeO₃) salt caused a significant increase in selenium content in the biomass of C. utilis ,irrespective of the concentration. The highest amount of selenium (1841 μg∙g d.w. -1 ) was obtained after a 48-h culture in media containing 30 mg Se 4+ ∙L -1 . The highest content of selenomethionine (238.8 μg∙g d.w. -1 ) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se 4+ ∙L -1 . Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L -1 . The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans.

  9. Selenomethionine protects against neuronal degeneration by methylmercury in the developing rat cerebrum.

    PubMed

    Sakamoto, Mineshi; Yasutake, Akira; Kakita, Akiyoshi; Ryufuku, Masae; Chan, Hing Man; Yamamoto, Megumi; Oumi, Sanae; Kobayashi, Sayaka; Watanabe, Chiho

    2013-03-19

    Although many experimental studies have shown that selenium protects against methylmercury (MeHg) toxicity at different end points, the direct interactive effects of selenium and MeHg on neurons in the brain remain unknown. Our goal is to confirm the protective effects of selenium against neuronal degeneration induced by MeHg in the developing postnatal rat brain using a postnatal rat model that is suitable for extrapolating the effects of MeHg to the fetal brain of humans. As an exposure source of selenium, we used selenomethionine (SeMet), a food-originated selenium. Wistar rats of postnatal days 14 were orally administered with vehicle (control), MeHg (8 mg Hg/kg/day), SeMet (2 mg Se/kg/day), or MeHg plus SeMet coexposure for 10 consecutive days. Neuronal degeneration and reactive astrocytosis were observed in the cerebral cortex of the MeHg-group but the symptoms were prevented by coexposure to SeMet. These findings serve as a proof that dietary selenium can directly protect neurons against MeHg toxicity in the mammalian brain, especially in the developing cerebrum.

  10. Mercury Cadmium Selenide for Infrared Detection

    DTIC Science & Technology

    2013-06-01

    were grown using elemental mercury (Hg), cadmium (Cd), and selenium (Se) sources. The beam equiva- lent pressure ( BEP ) emanating from all sources was...flux), the BEP measured for the cracker source was found to vary with the cracking zone temperature, tracking with the data found in Ref. 7. This sug...The Se BEP measured for the typical cracking zone temperature of 800 C was found to be close to a factor of two lower than at the typical effusion cell

  11. Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    DTIC Science & Technology

    2015-03-26

    appropriate. Group 16 (VI) contains the following elements: Oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and polonium (Po). They are shown...below in Figure 33. S, Se, and Te are referred to as chalcogens, and their compounds are chalcogenides [68]. Polonium is excluded from the chalcogen...temperature dots and paint were placed on samples on the substrate. Temperature dots are typically used in the transportation of goods such as food in order

  12. Redox reactions of selenium as catalyzed by magnetite: Lessons learned from using electrochemistry and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Kim, YoungJae; Yuan, Ke; Ellis, Brian R.; Becker, Udo

    2017-02-01

    Although previous studies have demonstrated redox transformations of selenium (Se) in the presence of Fe-bearing minerals, the specific mechanism of magnetite-mediated Se electron transfer reactions are poorly understood. In this study, the redox chemistry of Se on magnetite is investigated over an environmentally relevant range of Eh and pH conditions (+0.85 to -1.0 V vs. Ag/AgCl; pH 4.0-9.5). Se redox peaks are found via cyclic voltammetry (CV) experiments at pH conditions of 4.0-8.0. A broad reduction peak centered at -0.5 V represents a multi-electron transfer process involving the transformation of selenite to Se(0) and Se(-II) and the comproportionation reaction between Se(-II) and Se(IV). Upon anodic scans, the oxidation peak centered at -0.25 V is observed and is attributed to the oxidation of Se(-II) to higher oxidation states. Deposited Se(0) may be oxidized at +0.2 V when pH is below 7.0. Over a pH range of 4.0-8.0, the pH dependence of peak potentials is less pronounced than predicted from equilibrium redox potentials. This is attributed to pH gradients in the microporous media of the cavity where the rate of proton consumption by the selenite reduction is faster relative to mass transfer from the solution. In chronoamperometry measurements at potentials ⩾-0.6 V, the current-time transients show good linearity between the current and time in a log-log scale. In contrast, deviation from the linear trend is observed at more negative potentials. Such a trend is indicative of Se(0) nucleation and growth on the magnetite surface, which can be theoretically explained by the progressive nucleation model. XPS analysis reveals the dominance of elemental selenium at potentials ⩽-0.5 V, in good agreement with the peak assignment on the cyclic voltammograms and the nucleation kinetic results.

  13. Selenium Alleviates Oxidative Stress and Lung Damage Induced by Aluminum Chloride in Adult Rats: Biochemical and Histological Approach.

    PubMed

    Ghorbel, Imen; Elwej, Awatef; Chaabane, Mariem; Jamoussi, Kamel; Mnif, Hela; Boudawara, Tahia; Zeghal, Najiba

    2017-03-01

    Our study pertains to the potential ability of selenium, used as a nutritional supplement, to alleviate oxidative stress induced by aluminum chloride in the lung tissue. Rats have received during 21 days either aluminum chloride (AlCl 3 ) (400 ppm) via drinking water, AlCl 3 associated with Na 2 SeO 3 (0.5 mg/kg of diet), or only Na 2 SeO 3 . Exposure of rats to AlCl 3 induced lung oxidative stress with an increase of malondialdehyde, hydrogen peroxide, and protein carbonyls levels. An alteration of lactate dehydrogenase activities and antioxidant redox status, enzymatic (catalase, superoxide dismutase, and glutathione peroxidase), and non-enzymatic (non-protein thiols, glutathione, metallothionein, and vitamin C) was also observed. These biochemical modifications were substantiated by histopathological data showing alveolar edema, a large number of hemosiderin-laden macrophages, and emphysema. Se supplementation attenuated the levels of oxidative stress by restoring antioxidant state and improved lung histological damage. Our results revealed that Se, a trace element with antioxidant properties, was effective in preventing lung damage.

  14. High hair selenium mother to fetus transfer after the Brazil nuts consumption.

    PubMed

    Momčilović, B; Prejac, J; Višnjević, V; Brundić, S; Skalny, A A; Mimica, N

    2016-01-01

    Lactating mother and her two month old healthy daughter (APGAR 10) gave their scalp hair for a multielement profile analysis; 25 elements were analyzed with the ICP MS. Mother's hair was divided into 5cm long segment proximal to the scull (Young), and the distal segment further up to the hair tip (Old). One centimeter of hair records one month of the metabolic activity of the bioelements in the body. Mother's Young hair and daughters hair have 2.70 and 9.74μgg(-1)Se, a distinctly higher Se concentrations than the Old hair of 0.87μgg(-1). The adequate hair Se concentrations in Croatia women population vary from 0.08 to 0.63μgg(-1); values below or above that range indicate deficiency or excess, respectively. Dietary recall revealed that during the last trimester of pregnancy and over a period of a week, the mother has consumed 135g of Brazil nuts (Bertholletia excelsa) (BN); BN is an exceptionally rich Se dietary source. The amount of Se in BN varies and one week consumption of 135g of BN may result in Se daily intake of 367 to 492μgg(-1)day(-1) over a period of seven consecutive days, and what is about or exceeds the Upper Limit of daily selenium intake of 400μg(-1)g(-1). The excessively high infant hair Se mirrored a natural high mother to fetus transplacental transfer of bio elements in the last trimester of pregnancy. The potential toxicological risks of such a high Se transfer remains to be elucidated. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children

    PubMed Central

    Chen, Zhu; Myers, Robert; Wei, Taiyin; Bind, Eric; Kassim, Prince; Wang, Guoying; Ji, Yuelong; Hong, Xiumei; Caruso, Deanna; Bartell, Tami; Gong, Yiwei; Strickland, Paul; Navas-Acien, Ana; Guallar, Eliseo; Wang, Xiaobin

    2015-01-01

    There is an emerging hypothesis that exposure to cadmium (Cd), mercury (Hg), lead (Pb), and selenium (Se) in utero and early childhood could have long-term health consequences. However, there are sparse data on early life exposures to these elements in US populations, particularly in urban minority samples. This study measured levels of Cd, Hg, Pb, and Se in 50 paired maternal, umbilical cord, and postnatal blood samples from the Boston Birth Cohort (BBC). Maternal exposure to Cd, Hg, Pb, and Se was 100% detectable in red blood cells (RBCs), and there was a high degree of maternal–fetal transfer of Hg, Pb, and Se. In particular, we found that Hg levels in cord RBCs were 1.5 times higher than those found in the mothers. This study also investigated changes in concentrations of Cd, Hg, Pb, and Se during the first few years of life. We found decreased levels of Hg and Se but elevated Pb levels in early childhood. Finally, this study investigated the association between metal burden and preterm birth and low birthweight. We found significantly higher levels of Hg in maternal and cord plasma and RBCs in preterm or low birthweight births, compared with term or normal birthweight births. In conclusion, this study showed that maternal exposure to these elements was widespread in the BBC, and maternal–fetal transfer was a major source of early life exposure to Hg, Pb, and Se. Our results also suggest that RBCs are better than plasma at reflecting the trans-placental transfer of Hg, Pb, and Se from the mother to the fetus. Our study findings remain to be confirmed in larger studies, and the implications for early screening and interventions of preconception and pregnant mothers and newborns warrant further investigation. PMID:24756102

  16. Speciation of selenium and arsenic compounds by capillary electrophoresis with hydrodynamically modified electroosmotic flow and on-line reduction of selenium(VI) to selenium(IV) with hydride generation inductively coupled plasma mass spectrometric detection.

    PubMed

    Magnuson, M L; Creed, J T; Brockhoff, C A

    1997-10-01

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV) by mixing the CE effluent with concentrated HCl. A microporous PTFE tube was used as a gas-liquid separator to eliminate the 40Ar37Cl and 40Ar35Cl interference from 77Se and 75As, respectively. The direction of the electroosmotic flow during CE was reversed with hydrodynamic pressure, which allowed increased freedom of buffer choice. For conventional pressure injection, method detection limits for SeIV and SeVI based on seven replicate injections were 10 and 24 pg, respectively. Recoveries of SeIV and SeVI in drinking water were measured.

  17. The role of metallothioneins, selenium and transfer to offspring in mercury detoxification in Franciscana dolphins (Pontoporia blainvillei).

    PubMed

    Romero, M B; Polizzi, P; Chiodi, L; Das, K; Gerpe, M

    2016-08-15

    The concentrations of mercury (Hg), selenium (Se) and metallothioneins (MT) were evaluated in fetuses, calves, juveniles and adults of the endangered coastal Franciscana dolphin (Pontoporia blainvillei) from Argentina. Mercury concentrations varied among analyzed tissues (liver, kidney, muscle and brain), with liver showing the higher concentrations in all specimens. An age-dependent accumulation was found in liver, kidney and brain. No significant relationship between Hg and MT concentrations was found for all tissues analyzed. Hepatic Hg molar concentrations were positively correlated with those of Se, indicating a great affinity between these two elements. Furthermore, dark granules of HgSe were observed in Kupffer cells in the liver by electron microscopy, suggesting the role of this macrophage in the detoxification of Hg. A transfer of Hg through placenta was proved. The presence of Hg in brain in all age classes did not show concentrations associated with neurotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The selenium content of SEPP1 versus selenium requirements in vertebrates

    PubMed Central

    Hamre, Kristin; Ellingsen, Ståle

    2015-01-01

    Selenoprotein P (SEPP1) distributes selenium (Se) throughout the body via the circulatory system. For vertebrates, the Se content of SEPP1 varies from 7 to 18 Se atoms depending on the species, but the reason for this variation remains unclear. Herein we provide evidence that vertebrate SEPP1 Sec content correlates positively with Se requirements. As the Se content of full length SEPP1 is genetically determined, this presents a unique case where a nutrient requirement can be predicted based on genomic sequence information. PMID:26734501

  19. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron

    USDA-ARS?s Scientific Manuscript database

    Salinization is one important factor contributing to land degradation, which affects agricultural production and environmental quality, especially in the West side of central California. When salinization is combined with a natural contamination of trace elements (i.e., Se and B) in arid and semi-ar...

  20. Selenium-induced toxicity is counteracted by sulfur in broccoli (Brassica oleracea L. var. italic)

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se ...

  1. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    USDA-ARS?s Scientific Manuscript database

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  2. Treating chronic arsenic toxicity with high selenium lentil diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Shweta; Vandenberg, Albert; Smits, Judit, E-mail: judit.smits@ucalgary.ca

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we comparemore » diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B cell response.« less

  3. Acute selenium toxicosis induced in baby pigs by parenteral administration of selenium-vitamin E preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vleet, J.F.; Meyer, K.B.; Olander, H.J.

    1974-09-15

    Acute selenium (Se) toxicosis was induced in baby pigs by intramuscular (IM) injection of Se, as selenite, using commercially available selenium-vitamin E (Se-E) preparations. Graded amounts of Se were given to 26 pigs from a herd that had not experienced losses from Se-E deficiency and to 136 pigs from a herd that had continual losses from Se-E deficiency. Of the 2 groups of pigs, those from the Se-E-deficient herd were more susceptible to acute Se toxicosis. Clinical signs of toxicosis were vomiting, anorexia, depression, dyspnea, weakness, and coma, with death occurring 24 to 48 hours after injection. Pathologic alterations observedmore » grossly and histologically included pulmonary edema, skeletal myodegeneration, hepatic degeneration and necrosis, transudation into body cavities, and widespread circulatory disturbances. Mean tissue Se concentrations in 20 pigs with acute toxicosis 24 to 48 hours after injection were 12.44 ppm in liver, 1.31 ppm in kidney, and 0.32 ppm in skeletal muscle.« less

  4. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to comparemore » Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens« less

  5. Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard.

    PubMed

    Ogra, Yasumitsu; Ogihara, Yurie; Anan, Yasumi

    2017-01-25

    The metabolism of selenomethionine (SeMet) in two major selenium (Se) accumulator plants, garlic and Indian mustard, was compared to that of stable isotope labeled selenate. Indian mustard more efficiently transported Se from roots to leaves than garlic. In addition, Indian mustard accumulated larger amounts of Se than garlic. γ-Glutamyl-Se-methylselenocysteine (γ-GluMeSeCys) and Se-methylselenocysteine (MeSeCys) were the common metabolites of selenate and SeMet in garlic and Indian mustard. Indian mustard had a specific metabolic pathway to selenohomolanthionine (SeHLan) from both inorganic and organic Se species. SeMet was a more effective fertilizer for cultivating Se-enriched plants than selenate in terms of the production of selenoamino acids.

  6. Plasma and breastmilk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementations: Breastfeeding, Antiretrovirals, and Nutrition Study

    USDA-ARS?s Scientific Manuscript database

    Background: Low dietary selenium (Se) intake coupled with low plasma Se concentrations in HIV infection could result in inadequate breastmilk Se intake by exclusively breastfed infants of HIV-infected women. Objective: To test the effect of lipid-based nutrient supplements (LNS) containing 1.3 R...

  7. Effect of temperature on selenium removal from wastewater by UASB reactors.

    PubMed

    Dessì, Paolo; Jain, Rohan; Singh, Satyendra; Seder-Colomina, Marina; van Hullebusch, Eric D; Rene, Eldon R; Ahammad, Shaikh Ziauddin; Carucci, Alessandra; Lens, Piet N L

    2016-05-01

    The effect of temperature on selenium (Se) removal by upflow anaerobic sludge blanket (UASB) reactors treating selenate and nitrate containing wastewater was investigated by comparing the performance of a thermophilic (55 °C) versus a mesophilic (30 °C) UASB reactor. When only selenate (50 μM) was fed to the UASB reactors (pH 7.3; hydraulic retention time 8 h) with excess electron donor (lactate at 1.38 mM corresponding to an organic loading rate of 0.5 g COD L(-1) d(-1)), the thermophilic UASB reactor achieved a higher total Se removal efficiency (94.4 ± 2.4%) than the mesophilic UASB reactor (82.0 ± 3.8%). When 5000 μM nitrate was further added to the influent, total Se removal was again better under thermophilic (70.1 ± 6.6%) when compared to mesophilic (43.6 ± 8.8%) conditions. The higher total effluent Se concentration in the mesophilic UASB reactor was due to the higher concentrations of biogenic elemental Se nanoparticles (BioSeNPs). The shape of the BioSeNPs observed in both UASB reactors was different: nanospheres and nanorods, respectively, in the mesophilic and thermophilic UASB reactors. Microbial community analysis showed the presence of selenate respirers as well as denitrifying microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Selenium accumulation in lettuce germplasm

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential micronutrient for animals and humans. Increasing Se content in food crops offers an effective approach to reduce the widespread selenium deficiency problem in many parts of the world. In this study, we evaluated thirty diverse accessions of lettuce (Lactuca sativa L.) f...

  9. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  10. Influence of processing in mercury and selenium vapor on the electrical properties of Cd /SUB x/ Hg /SUB 1-x/ Se, Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavaleshko, N.P.; Khomyak, V.V.; Makogonenko, V.N.

    1985-12-01

    In order to determine the predominant intrinsic point defects in Cd /SUB x/ Hg /SUB 1-x/ Se and Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions, the authors study the influence of annealing in mercury and selenium vapor on the carrier concentration and mobility. When the specimens are annealed in selenium vapor the electron concentration at first increases and then becomes constant. A theoretical analysis of the results obtained indicate that selenium vacancies are the predominant point defects in the solutions, and that the process of defect formation itself is quasiepitaxial.

  11. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance.

    PubMed

    Bocchini, Marika; D'Amato, Roberto; Ciancaleoni, Simona; Fontanella, Maria C; Palmerini, Carlo A; Beone, Gian M; Onofri, Andrea; Negri, Valeria; Marconi, Gianpiero; Albertini, Emidio; Businelli, Daniela

    2018-01-01

    Requiring water and minerals to grow and to develop its organs, Maize ( Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity plays a central role in biochemical adaptation to environmental stress. In conclusion, Se-biofortification could help maize plants to cope with drought stress conditions, by inducing a higher drought tolerance.

  12. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance

    PubMed Central

    Bocchini, Marika; D’Amato, Roberto; Ciancaleoni, Simona; Fontanella, Maria C.; Palmerini, Carlo A.; Beone, Gian M.; Onofri, Andrea; Negri, Valeria; Marconi, Gianpiero; Albertini, Emidio; Businelli, Daniela

    2018-01-01

    Requiring water and minerals to grow and to develop its organs, Maize (Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity plays a central role in biochemical adaptation to environmental stress. In conclusion, Se-biofortification could help maize plants to cope with drought stress conditions, by inducing a higher drought tolerance. PMID:29636765

  13. Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic Damage.

    PubMed

    Amin, Kamal Adel; Hashem, Khalid Shaban; Alshehri, Fawziah Saleh; Awad, Said T; Hassan, Mohammed S

    2017-01-01

    Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10-20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.

  14. Health effects of arsenic, fluorine, and selenium from indoor burning of Chinese coal.

    PubMed

    Guijian, Liu; Liugen, Zheng; Duzgoren-Aydin, Nurdan S; Lianfen, Gao; Junhua, Liu; Zicheng, Peng

    2007-01-01

    China's economy has developed rapidly in the last two decades, leading to an increase in energy consumption and consequently emissions from energy generation. Coal is a primary energy source in China because of its abundance and will continue to be used in the future. The dominance of coal in energy production is expected to result in increasing levels of exposure to environmental pollution in China. Toxic trace elements emitted during coal combustion are the main sources of indoor air pollution. They are released into the atmosphere mainly in the forms of fine ash and vapors and have the potential to adversely affect human health. Those trace elements, which volatilize during combustion, are hazardous air pollutants (HAPs) and are particularly rich in Chinese coals. Among the HAPs, arsenic (As), fluorine (F), and selenium (Se) have already been identified as pollutants that can induce severe health problems. In this review, the geochemical characteristics of As, F, and Se, including their concentration, distribution, and mode of occurrences in Chinese coal, are documented and discussed. Our investigations have confirmed the current As- and F-induced epidemics in Guizhou (Southwest China) and Se epidemic in Hubei (Northeast China). In this study, diagnostic symptoms of arseniasis, fluorosis, and selenosis are also illustrated.

  15. Selenium, zinc, copper, Cu/Zn ratio and total antioxidant status in the serum of vitiligo patients treated by narrow-band ultraviolet-B phototherapy.

    PubMed

    Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H

    2018-03-01

    Vitiligo is a chronic, depigmenting skin disorder, whose pathogenesis is still unknown. Narrow band ultraviolet-B (NB-UVB) is now one of the most widely used treatment of vitiligo. It was suggested that trace elements may play a role in pathogenesis of vitiligo. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) in the serum of patients with vitiligo. We assessed 50 patients with vitiligo and 58 healthy controls. Serum levels of Se, Zn and Cu were determined by the atomic absorption spectrometry method, and the Cu/Zn ratio was also calculated. TAS in serum was measured spectrophotometrically. Serum concentration of Se in patients with vitiligo before and after phototherapy was significantly lower as compared to the control group. Zn level in the serum of patients decreased significantly after phototherapy. We observed higher Cu/Zn ratio (p < .05) in examined patients than in the control group and after NB-UVB. We have found decrease in TAS in the serum of vitiligo patients after NB-UVB. The current study showed some disturbances in the serum levels of trace elements and total antioxidant status in vitiligo patients.

  16. Developmental selenium exposure and health risk in daily foodstuffs: A systematic review and meta-analysis.

    PubMed

    Ullah, Habib; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Munir, Mehr Ahmed Mujtaba; Mian, Md Manik

    2018-03-01

    Selenium (Se) is a trace mineral and an essential nutrient of vital importance to human health in trace amounts. It acts as an antioxidant in both humans and animals, immunomodulator and also involved in the control of specific endocrine pathways. The aim of this work is to provide a brief knowledge on selenium content in daily used various foodstuffs, nutritional requirement and its various health consequences. In general, fruits and vegetables contain low content of selenium, with some exceptions. Selenium level in meat, eggs, poultry and seafood is usually high. For most countries, cereals, legumes, and derivatives are the major donors to the dietary selenium intake. Low level of selenium has been related with higher mortality risk, dysfunction of an immune system, and mental failure. Selenium supplementation or higher selenium content has antiviral outcomes and is necessary for effective reproduction of male and female, also decreases the threat of chronic disease (autoimmune thyroid). Generally, some advantages of higher content of selenium have been shown in various potential studies regarding lung, colorectal, prostate and bladder cancers risk, nevertheless results depicted from different trials have been diverse, which perhaps indicates the evidence that supplementation will merely grant advantage if the intakes of a nutrient is deficient. In conclusion, the over-all people should be advised against the usage of Se supplements for prevention of cardiovascular, hepatopathies, or cancer diseases, as advantages of Se supplements are still ambiguous, and their haphazard usage could result in an increased Se toxicity risk. The associations among Se intake/status and health, or disease risk, are complicated and need exposition to notify medical practice, to improve dietary recommendations, and to develop adequate communal health guidelines. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*

    PubMed Central

    Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135

  18. Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions

    NASA Astrophysics Data System (ADS)

    Liu, Yonghui; Ma, Jun; Zhang, Shengmin

    2015-12-01

    Selenium (Se) plays a specific role in human health, especially for its antitumor effect. Incorporation of selenium into biocompatible hydroxyapatite (HAP) may endow the materials with novel characteristics. In the current work, a series of seleniumdoped hydroxyapatite (Se-HAP) nanoparticles with different Se/P ratios were synthesized by a modified chemical precipitation. It was revealed that the powders with/without heattreatment were nano-sized needle-like HAP while the heat-treated samples have high crystallinity. The addition of selenium decreases the crystallinity of the synthesized apatite, and also takes a negative effect on the thermal stability of the as-prepared powders. The Se-HAP nanoparticles with Se/P molar ratio not more than 5% sintered at 900°C can achieve good crystallinity and thermal stability.

  19. Daily selenium intake in a moderate selenium deficiency area of Suzhou China

    USDA-ARS?s Scientific Manuscript database

    Daily dietary selenium (Se) intake in Suzhou China was investigated to determine whether residents were susceptible to Se deficiency. Food samples were purchased from local supermarkets, including vegetables, fruits, meats and seafood. Hair samples were collected from 285 people ranging from 20 to ...

  20. Trace Element Status (Zinc, Copper, Selenium, Iron, Manganese) in Patients with Long-Term Home Parenteral Nutrition.

    PubMed

    Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel

    2016-01-01

    The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.

  1. Effects of selenium and zinc supplementation on nutritional status in patients with cancer of digestive tract.

    PubMed

    Federico, A; Iodice, P; Federico, P; Del Rio, A; Mellone, M C; Catalano, G; Federico, P

    2001-04-01

    To evaluate the effect of oral administration of selenium and zinc tablets in patients with cancer of the digestive tract during chemotherapy. A case-control, randomized study. Medical Oncology, II University of Naples, Naples, Italy. A total of 60 patients (median age 55 y, range 46-61 y) with diagnosis of gut cancer were randomized in 1999. Patients were treated for 60 days with chemotherapy. Trace elements were measured by atomic absorption spectroscopy. The nutritional status of the patients was assessed by biochemical and bio-impedance analysis (BIA) parameters in basal condition and after 60 days of treatment. Oral administration of selenium and zinc in oral tablet form for 50 days was Se 200 microg/day (50 microg/tablet) and Zn 21 mg/day (7 mg/tablet). Both in the basal condition and at 60 days all patients were malnourished. Selenium and zinc concentrations were significantly lower (P < 0.01) whereas copper concentration was significantly higher (P < 0.01) in cancer patients than in control subjects. However, 21/30 (70%) of those treated with Se and Zn did not showed a further worsening of nutritional status and experienced a significant decrease of asthenia with an increase of appetite. On the other hand, 24/30 (80%) untreated patients had a significant decline of all parameters studied after 60 days (prealbumin, cholesterol, transferrin, P < 0.05 vs 0 time; total proteins, albumin/globulin ratio, P < 0.01 vs 0 time; fat-free mass, fat mass, Na+/K+ ratio, body mass index P < 0.05 vs 0 time; fat free mass/fat mass, total body water, extra cellular/intra cellular water, basal metabolic rate: P < 0.01 vs 0 time). Data indicate that Se and Zn supplementation may improve the clinical course of general conditions in patients with gut cancer. These effects of Se and Zn require confirmation in an independent trial of appropriate design before new public health recommendations regarding Se and Zn supplementation can be made.

  2. Rumen microorganisms decrease bioavailability of inorganic selenium supplements

    USDA-ARS?s Scientific Manuscript database

    Despite the availaility of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study w...

  3. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System.

    PubMed

    Huang, Baifei; Xin, Junliang; Dai, Hongwen; Zhou, Wenjing

    2017-11-01

    A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg -1 ; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.

  4. Alcohol, gestation and breastfeeding: selenium as an antioxidant therapy.

    PubMed

    Ojeda, Ma Luisa; Nogales, Fatima; Vázquez, Beatriz; Delgado, Ma José; Murillo, Ma Luisa; Carreras, Olimpia

    2009-01-01

    The aim of this paper is to study the relationship between alcohol, selenium and oxidative stress in breastfeeding rat pups exposed to ethanol during gestation and lactation. We have also studied how a Se-supplemented diet among mothers could prevent different oxidative liver disorders in the pups. Pups of 21 days were randomized into four groups: control group (C), alcohol group (A), alcohol selenium group (AS) and control selenium group (CS). Alcohol was supplied to their mothers for 13 weeks (induction, reproduction, gestation and lactation periods). The selenium-supplemented diet contained 0.5 ppm as selenite. We determined serum and liver selenium by graphite-furnace atomic absorption spectrometry. We measured antioxidant enzyme activities: glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD); and lipid peroxidation (TBARS) and protein carbonyl (PC) by a spectrophotometric method in the liver. In the liver of pups, exposure to ethanol provoked a decrease in selenium and GPx activity and an increase in GR and CAT activity, as well as in carbonyl groups in protein. A pups had higher Se levels and GPx activity in serum than C pups. Administering Se with alcohol balances the activities of scavenging enzymes and reduces peroxidation protein products. These results suggest that selenium could be effective in neutralizing the damage of ethanol consumption during gestation and lactation in pups since it repairs selenium levels in liver as well as the activity of scavenging enzymes and peroxidation protein products. In serum, Se also recovers GPx activity and increases the levels of Se that are available to other organs.

  5. Blood Selenium Concentration and Blood Cystatin C Concentration in a Randomly Selected Population of Healthy Children Environmentally Exposed to Lead and Cadmium.

    PubMed

    Gać, Paweł; Pawlas, Natalia; Wylężek, Paweł; Poręba, Rafał; Poręba, Małgorzata; Pawlas, Krystyna

    2017-01-01

    This study aimed at evaluation of a relationship between blood selenium concentration (Se-B) and blood cystatin C concentration (CST) in a randomly selected population of healthy children, environmentally exposed to lead and cadmium. The studies were conducted on 172 randomly selected children (7.98 ± 0.97 years). Among participants, the subgroups were distinguished, manifesting marginally low blood selenium concentration (Se-B 40-59 μg/l), suboptimal blood selenium concentration (Se-B: 60-79 μg/l) or optimal blood selenium concentration (Se-B ≥ 80 μg/l). At the subsequent stage, analogous subgroups of participants were selected separately in groups of children with BMI below median value (BMI <16.48 kg/m 2 ) and in children with BMI ≥ median value (BMI ≥16.48 kg/m 2 ). In all participants, values of Se-B and CST were estimated. In the entire group of examined children no significant differences in mean CST values were detected between groups distinguished on the base of normative Se-B values. Among children with BMI below 16.48 kg/m 2 , children with marginally low Se-B manifested significantly higher mean CST values, as compared to children with optimum Se-B (0.95 ± 0.07 vs. 0.82 ± 0.15 mg/l, p < 0.05). In summary, in a randomly selected population of healthy children no relationships could be detected between blood selenium concentration and blood cystatin C concentration. On the other hand, in children with low body mass index, a negative non-linear relationship was present between blood selenium concentration and blood cystatin C concentration.

  6. Selenite resistant rhizobacteria stimulate SeO(3) (2-) phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds.

    PubMed

    Lampis, Silvia; Ferrari, Anita; Cunha-Queda, A Cristina F; Alvarenga, Paula; Di Gregorio, Simona; Vallini, Giovanni

    2009-09-01

    Selenium is a trace metalloid of global environmental concern. The boundary among its essentiality, deficiency, and toxicity is narrow and mainly depends on the chemical forms and concentrations in which this element occurs. Different plant species-including Brassica juncea-have been shown to play a significant role in Se removal from soil as well as water bodies. Furthermore, the interactions between such plants, showing natural capabilities of metal uptake and their rhizospheric microbial communities, might be exploited to increase both Se scavenging and vegetable biomass production in order to improve the whole phytoextraction efficiency. The aim of the present study was to evaluate the capability of selenite removal of B. juncea grown in hydroponic conditions on artificially spiked effluents. To optimize phytoextraction efficiency, interactions between B. juncea and rhizobacteria were designedly elicited. Firstly, B. juncea was grown on water-filtering agriperlite beds in the presence of three different selenite concentrations, namely, 0.2, 1.0, and 2.0 mM. Plant growth was measured after 3 and 6 weeks of incubation in order to establish the selenite concentration at which the best plant biomass production could be obtained. Afterwards, water-filtering agriperlite beds were inoculated either with a selenium-acclimated microbial community deriving from the rhizosphere of B. juncea grown, erstwhile, in a selenite-amended soil or with axenic cultures of two bacterial strains, vicelike Bacillus mycoides SeITE01 and Stenotrophomonas maltophilia SeITE02, previously isolated and described for their high resistance to selenite. These latter were seeded separately or as a dual consortium. Selenite was amended at a final concentration of 1.0 mM. Total Se content in plant tissues (both shoots and roots), plant biomass production, and persistence of bioaugmented microbial inocula during the experimental time were monitored. Moreover, parameters such as bioconcentration factor (BF) and phytoextraction efficiency (PE) were determined at the end of the testing run to evaluate the effects of the different bioaugmentation strategies adopted on selenite phytoextraction efficiency of B. juncea. A general but significant increase in capacity to extract and transport selenium to the epigeous plant compartments was recorded in B. juncea grown in beds augmented with microbial inocula, except for the treatment with B. mycoides SeITE01 alone. Nevertheless, a severe decrease in vegetable biomass production was observed after all microbial treatments with the exception of the plants that had received only S. maltophilia SeITE02. Actually, an increase in selenium phytoextraction efficiency up to 65% was observed in B. juncea, when this bacterial strain was inoculated. Emendation of B. juncea grown in water-filtering beds with a Se(IV)-acclimated microbial community caused a higher Se uptake along with a reduction of plant biomass yield with respect to plants grown without addition of the same bacterial inoculum. The increase of selenium BF in shoots suggests that the Se(IV)-acclimated microbial community not only elicited the plant capacity to absorb selenite, but also did improve the capacity to transport the metalloid to the epigeous compartments. On the other hand, the reduction in plant biomass yield might be related exactly to this improved capability of B. juncea to accumulate selenium at concentrations that are actually toxic for plants. Differently, addition of two selenite-resistant bacterial strains, namely, S. maltophilia SeITE02 and B. mycoides SEITE01, had weaker effects on plant biomass production when compared to those recorded in the presence of the Se(IV)-adapted microbial community. In particular, inoculation of water-filtering beds with the SeITE02 strain alone was the sole strategy resulting in a positive effect on both plant biomass production in stressful conditions and the capacity of shoots to accumulate selenium. In fact, its putative ability of reducing Se(IV) to organo-Se compounds significantly enhanced either selenium absorption by the plants or active metalloid translocation to epigeous parts. Bioaugmentation with the bacterial strain S. malthophila SeITE02 is suggested to elicit selenite phytoextraction efficiency in B. juncea. Manipulation of synergistic interactions between plants having phytoextraction capabilities and their associated rhizobacteria may enhance already consolidated treatment processes aimed to detoxify selenite laden wastewater.

  7. Magnesium, zinc, arsenic, selenium and platinum urinary excretion from cancer patients of Antofagasta region, Chile: multi-metal approach

    PubMed Central

    Pizarro, I; Rivera, L; Ávila, J; Cortés, P

    2016-01-01

    Objectives To evaluate the short-term 24 h urinary excretion of platinum, arsenic, selenium, magnesium and zinc in patients with lung cancer and with cancer other than lungs treated with cisplatin or/and carboplatin from Antofagasta, Chile. Design Urine measurements of Pt and Se were made by inductively coupled plasma optical emission spectrometry, As by hydride-generation atomic absorption spectrometry and Mg and Zn by means of flame furnace atomic absorption spectrometry. Setting All samples were provided by the Oncological Centre of Antofagasta Regional Hospital (Region of Antofagasta, Chile). Participants Ninety 24-h urine samples from cancer patients after the infusion of Pt-base drugs and 10 24-h urine samples from cancer patients not treated with metal-base drugs. Main outcome measures Concentrations of Pt, Se, As, Zn and Mg coming from 24-h urine samples. Results Pt excreted was not significantly different between patients with lung and other cancers treated with cisplatin. The excretion of Mg, Zn and Se was greater than As. Then, Pt favours the excretion of essential elements. For lung and other types of cancers treated with drugs without Pt, excretion of Mg, Zn and Se was also greater than that of As, suggesting antagonism Mg-Zn-Se–anti-cancer drug relationship. Conclusions The amounts of Mg, Zn and Se excreted were greater than for As either with or without Pt-containing drugs, suggesting antagonist Mg-Zn-Se–anti-cancer drug relationships. The excretion of As, Mg, Zn and Se is induced by Pt. Knowledge obtained can contribute to understanding the arsenic cancer mechanism and the As-Mg-Zn-Se-Pt inter-element association for lung cancer and other types of cancer. PMID:27757244

  8. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention.

    PubMed

    Wang, Dongxu; Taylor, Ethan Will; Wang, Yijun; Wan, Xiaochun; Zhang, Jinsong

    2012-01-01

    Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size ("Nano-Se"), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.

  9. Assessment of selenium bioavailability from naturally produced high-selenium soy foods in selenium-deficient rats.

    PubMed

    Yan, Lin; Reeves, Philip G; Johnson, LuAnn K

    2010-10-01

    We assessed the bioavailability of selenium (Se) from a protein isolate and tofu (bean curd) prepared from naturally produced high-Se soybeans. The Se concentrations of the soybeans, the protein isolate and tofu were 5.2±0.2, 11.4±0.1 and 7.4±0.1mg/kg, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet containing 14, 24 or 30 μg Se/kg from the protein isolate or 13, 23 or 31 μg Se/kg from tofu, respectively. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for the protein isolate and tofu to those for SeMet by using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Furthermore, supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in the Se concentrations of plasma, liver, muscle and kidneys. These results indicated an overall bioavailability of approximately 101% for Se from the protein isolate and 94% from tofu, relative to SeMet. We conclude that Se from naturally produced high-Se soybeans is highly bioavailable in this model and that high-Se soybeans may be a good dietary source of Se. Published by Elsevier GmbH.

  10. Relationship of dietary intake of fish and non-fish selenium to serum lipids in Japanese rural coastal community.

    PubMed

    Miyazaki, Yukiko; Koyama, Hiroshi; Nojiri, Masami; Suzuki, Shosuke

    2002-01-01

    Several studies have suggested that dietary selenium deficiency may be associated with an increased risk of coronary heart disease (CHD). In the present study, 55 men and 71 women were selected from participants in a health examination in a rural coastal community in Japan. The mean dietary selenium intake calculated from the simple food frequency questionnaire (SFFQ) was 127.5 micrograms/day. Fish was the major source of dietary selenium and it contributed to 68.7% of the daily total. HDL cholesterol was higher in the middle selenium intake group and in the high selenium intake group than in the low selenium intake group in all subjects and for males, and a significant difference was found between the middle selenium intake group and the low selenium intake group. The atherogenic index was significantly higher in the low selenium intake group than in the middle selenium intake group and in the high selenium intake group in males. GPx activity, total cholesterol and triacylglycerols did not show any significant differences among the three different selenium intake groups. Dietary intake of non-fish Se had a positive correlation with HDL cholesterol, and an inverse correlation with the atherogenic index in all subjects and for females. On the other hand, dietary intake of fish-Se had no relationship with any serum lipids. Non-fish Se is an important factor in selenium status for the prevention of CHD.

  11. Tracking selenium behaviour in chalk aquifer (northern France): Sr and 34S-sulphates isotopes constraints.

    NASA Astrophysics Data System (ADS)

    Cary, Lise; Benabderraziq, Hind; Elkhattabi, Jamal; Parmentier, Marc; Gourcy, Laurence; Négrel, Philippe

    2014-05-01

    Groundwaters in parts of the Paris Basin (France) are facing increasing selenium (Se) contents that can exceed the drinking water limit of 10 μg/L according to the European Framework Directive in the field of water policy (2000/60/EC). To better understand the groundwater origins and the selenium dynamics, the water chemistry of the Chalk aquifer supplying drinkable water to Lille city was studied. This area is submitted to quantitative and qualitative pressure from industrial, urban and agriculture origins. An integrated study was settled to determine the water sources and dynamics of elements, with a focus on Se. After a large chemical characterisation of the groundwater chemistry in the four field wells, a monthly monitoring was held in four wells and in the Deûle channel. Chemical analysis of major and trace elements, stable isotopes (δ18O, δ2H), strontium isotopes, and δ34S and δ18O of sulphates were realised. The chemical composition of solids sampled at various depths at vicinity of the four wells was also analysed. The specific geochemical signature of groundwater as revealed by Sr isotopes, in addition to element concentrations ratios like Mg/Sr and Se/Sr, highlighted mixture of three main groundwaters bodies: (1) the upstream groundwaters in the recharge area with the most radiogenic 87Sr/86Sr isotopic signature; (2) the confined groundwaters with high Sr concentrations due to water-rock interactions and the lowest 87Sr/86Sr isotopic signature close to the one of the chalk in Paris and London basins; (3) the Se-rich formations of Tertiary and Quaternary. The contents of Se, mainly present as SeV I (and locally as SeIV ), displayed spatial and temporal disparities that can be explained by geological and hydrogeological conditions. Se-rich clayed sediments originating from the dismantling of Se-rich tertiary formations (i.e. Ypresian) overlay the chalk formation and can be found in saturated conditions depending of the water table level. Oxidation of Se0, Se-pyrite and Se linked to organic matters happens according to two pathways. The first one is oxidation of Se species present in the reductive clayed sediments by oxidizing groundwaters during periods of high piezometric levels. The decrease of the piezometric level induces a decrease of the Se contents in groundwaters. Negative δ34S (0 to -28 ) coherent with pyrite oxidation are observed in groundwater. The second one is linked to the infiltration of nitrate-rich recharge waters through quaternary loess which also contain Se. In this case, δ34S of groundwaters are slightly positive and close to the signature of fertilizers. Denitrification by pyrite or Se0 oxidation plays a great role in enhancing Se mobility in a very reactive system. To limit the Se content in groundwaters, a precise water management is needed, e.g. mainly maintaining low piezometric levels in the chalk aquifer or avoiding mixings between contaminated wells, together with a precise knowledge of the geology of the quaternary clayed sediments.

  12. Interaction of mercury and selenium in the larval stage zebrafish vertebrate model.

    PubMed

    MacDonald, Tracy C; Korbas, Malgorzata; James, Ashley K; Sylvain, Nicole J; Hackett, Mark J; Nehzati, Susan; Krone, Patrick H; George, Graham N; Pickering, Ingrid J

    2015-08-01

    The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood. We report herein a study of the interaction of mercury and selenium in the larval stage zebrafish, a model vertebrate system, using X-ray fluorescence imaging. Exposure of larval zebrafish to inorganic mercury shows nano-scale structures containing co-localized mercury and selenium. No such co-localization is seen with methylmercury exposure under similar conditions. Micro X-ray absorption spectra support the hypothesis that the co-localized deposits are most likely comprised of highly insoluble mixed chalcogenide HgSxSe(1-x) where x is 0.4-0.9, probably with the cubic zincblende structure.

  13. Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range.

    PubMed

    Wangeline, Ami L; Valdez, J Rodolfo; Lindblom, Stormy Dawn; Bowling, Keri L; Reeves, F Brent; Pilon-Smits, Elizabeth A H

    2011-07-01

    Selenium-hyperaccumulator plants can store over 1% (dry mass) Se in their tissues, despite the toxicity of this element at high concentrations across eukaryotes. These levels of Se can have widespread effects on the plant's ecological partners, including herbivores and pathogens. Still other partners seem to have coevolved Se tolerance. This is the first known study addressing the rhizosphere mycoflora of Se hyperaccumulators and aims to evaluate the rhizospheric fungal diversity and Se tolerance to further the knowledge of how these organisms interact with their host plants and survive in these extreme habitats. Rhizosphere fungi were isolated from Se-hyperaccumulator and nonaccumulator plant species collected from five sites in Colorado and Wyoming; four seleniferous sites and one nonseleniferous site. 259 isolates were identified to genus or species and evaluated for Se tolerance. Among the 24 represented genera, 11 comprised 86% of the isolates. The majority of isolates from the seleniferous sites were unaffected by 10 mg·L(-1) Se, irrespective of host plant (hyperaccumulator vs. nonaccumulator), while rhizosphere fungi from a control, nonseleniferous site were highly sensitive to Se at 10 mg·L(-1) and as a group were significantly less (α = 0.05) tolerant than the isolates from the seleniferous sites. Even though Se is a commonly used antifungal agent, these results suggest that rhizosphere fungi from seleniferous habitats have widespread Se tolerance, likely an adaptive advantage in their Se-rich habitat.

  14. Relationships between hepatic trace element concentrations, reproductive status, and body condition of female greater scaup

    USGS Publications Warehouse

    Badzinski, Shannon S.; Flint, Paul L.; Gorman, Kristen B.; Petrie, Scott A.

    2009-01-01

    We collected female greater scaup (Aythya marila) on the Yukon–Kuskokwim Delta, Alaska during two breeding seasons to determine if concentrations of 18 trace elements in livers and eggs were elevated and if hepatic concentrations correlated with body condition or affected reproductive status. Fifty-six percent, 5%, and 42% of females, respectively, had elevated hepatic cadmium (Cd: >3 μg g−1 dry weight [dw]), mercury (Hg: >3 μg g−1 dw), and selenium (Se: >10 μg g−1 dw). Somatic protein and lipid reserves were not correlated with hepatic Cd or Hg, but there was a weak negative correlation between protein and Se. Hepatic Cd, Hg, and Se were similar in females that had and had not initiated egg production. In a sample of six eggs, 33% and 100%, respectively, contained Se and Hg, but concentrations were below embryotoxicity thresholds. We conclude that trace element concentrations documented likely were not adversely impacting this study population.

  15. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Se metallomics during lactic fermentation of Se-enriched yogurt.

    PubMed

    Palomo, María; Gutiérrez, Ana M; Pérez-Conde, M Concepción; Cámara, Carmen; Madrid, Yolanda

    2014-12-01

    Selenium biotransformation by lactic acid bacteria during the preparation of Se-enriched yogurt was evaluated. The study focused on the distribution of selenium in the aqueous soluble protein fraction and the detection of selenoamino acids. Screening of selenium in Tris-buffer-urea soluble fraction was carried out by sodium dodecyl sulphate polyacrylamide gel electrophoresis after pre-fractionating with asymmetric field flow fractionation using inductively coupled plasma-mass spectrometry as the detector. Selenium-containing fractions were identified by peptide mapping using nano LC-ESI/LTQMS. Proteins such as thioredoxin, glutaredoxin, albumin, β-lactoglobulin, and lactoperoxidase were identified in the selenium-containing fraction. All these proteins were detected in both the control and the selenium-enriched yogurt except chaperones, which were only detected in the control samples. Chaperones are heat-shock proteins expressed in response to elevated temperature or other cellular stresses. Selenium may have an effect on chaperones expression in Lactobacillus. For the amino acids analysis, selenocysteine was the primary seleno-containing species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Impact of selenium supply on se-methylselenocysteine and glucosinolates accumulation in selenium-biofortified brassica sprouts

    USDA-ARS?s Scientific Manuscript database

    Brassica sprouts are widely marketed as functional foods. Here we examined the effects of Se treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in Brassica sprouts. Cultivars from the six most extensively consumed Brassica vegetables (broccoli, ...

  18. Overview and prospects of selenium phytoremediation approaches

    USDA-ARS?s Scientific Manuscript database

    Evidence is lacking on whether selenium (Se) is essential for vegetation growth, but plants can absorb, assimilate, and accumulate Se in leaves and roots. The capability of plants to take up substantial amount of Se is now being utilized to remove excess Se from contaminated soils. This process has ...

  19. Determination of Chromium, Selenium, and Molybdenum in Infant Formula and Adult Nutritional Products by Inductively Coupled Plasma/Mass Spectrometry: Collaborative Study, Final Action 2011.19.

    PubMed

    Pacquette, Lawrence H; Thompson, Joseph J

    2015-01-01

    AOAC First Action Method 2011.19: Chromium, Selenium, and Molybdenum in Infant Formula and Adult Nutritional Products, was collaboratively studied. This method uses microwave digestion of samples with nitric acid, hydrogen peroxide, and internal standard followed by simultaneous detection of the elements by an inductively coupled plasma (ICP)/MS instrument equipped with a collision/reaction cell. During this collaborative study, nine laboratories from four different countries, using seven different models of ICP/MS instruments, analyzed blind duplicates of seven infant, pediatric, and adult nutritional formulas. One laboratory's set of data was rejected in its entirety. The method demonstrated acceptable repeatability and reproducibility and met the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) Standard Method Performance Requirements (SMPRs®) for almost all of the matrixes analyzed. The Cr, Mo, and Se SPIFAN requirement for repeatability was ≤5% RSD. The SMPR called for a reproducibility of ≤15% RSD for products with ultratrace element concentrations above the targeted LOQ of 20 μg/kg Cr/Mo and 10 μg/kg Se (as ready-to-feed). During this collaborative study, RSDr ranged from 1.0 to 7.0% and RSDR ranged from 2.5 to 13.4% across all three ultratrace elements.

  20. Selenium accumulation in captive American kestrels (Falco sparverius) fed selenomethionine and naturally incorporated selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, J.T.; Wilson, B.W.; Santolo, G.M.

    1998-12-01

    Male-female pairs of kestrels were maintained for 11 weeks on diets containing 5 or 9 ppm selenium (Se) (dry weight) as seleno-L-methionine, or naturally incorporated Se in the form of mammals collected at Kesterson Reservoir, CA, USA. Selenium concentrations in blood and excreta of male and female kestrels within groups were similar. Near-maximal mean Se concentrations in blood were observed after the 5th week of treatment in the seleno-L-methionine-treated kestrels, and an approximately 1:1 ratio was observed between maximal blood concentrations and dietary concentrations. All treatment groups exhibited reduction of Se concentration in excreta, but not in blood, to baselinemore » values 4 weeks after treatment ended. No birds were observed to exhibit signs of general illness or Se toxicity during the study.« less

  1. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  2. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity.

    PubMed

    Peng, Dungeng; Zhang, Jinsong; Liu, Qingliang; Taylor, Ethan Will

    2007-10-01

    It has been shown that 36 nm Nano-Se has lower toxicity than selenite or selenomethionine, but these forms of selenium (Se) all possess similar ability to increase selenoenzyme levels. The size of nanoparticles plays an important role in their biological activity: as expected, 5-200 nm Nano-Se can directly scavenge free radicals in vitro in a size-dependent fashion. However, in Se-deficient cells and Se-deficient mice, the size effect of Nano-Se on increasing selenoenzymes and liver Se disappears unexpectedly. We hypothesize that under conditions of Se deficiency, the avidity of Se uptake mechanisms may be increased to maintain the biosynthesis of selenoenzymes, which are fundamental for redox homeostasis. This increased avidity may override the potential advantage of small size Nano-Se seen under Se-replete conditions, thereby eliminating the size effect. Once selenoenzymes have been saturated, Se uptake mechanisms may downregulate; accordingly, the size effect of Nano-Se can then reappear. To test this hypothesis, Se-deficient mice were administered either 36 or 90 nm Nano-Se at supranutritional doses, in both a short-term model and a single-dose model. Under these conditions, Nano-Se showed a size effect on Se accumulation and glutathione S-transferase (GST) activity. A size effect of Nano-Se was found in 15 out of 18 total comparisons between sizes at the same dose and time in the two models. Furthermore, the magnitude of the size effect was more prominent on Se accumulation than on GST activity. GST is strictly regulated by transcriptional and translational mechanisms, so its increase in activity normally does not exceed 3-fold. In contrast, the homeostasis of Se accumulation is not as tightly controlled. In the present experiments, GST activity had reached or was approaching saturation, but liver Se was far below saturation. Therefore, our results strongly suggest that the saturation profile of the tested biomarker has an impact on the size effect of Nano-Se. Since both GST and small molecular weight selenocompounds accumulated in vivo are important intermediates for chemoprevention by Se, our results also suggest that Nano-Se should be most effective as a chemopreventive agent at smaller particle size.

  3. Testing the Late-Veneer hypothesis with selenium isotopes

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Koenig, S.; Bennett, N.; Kurzawa, T.; Aierken, E.; Shahar, A.; Schoenberg, R.

    2016-12-01

    Selenium (Se) is a siderophile element displaying an excess abundance in Earth's mantle compared to experimental predictions [1], which may be attributed to the Late-Veneer. As Se is also volatile, testing the late-veneer addition of Se can constrain the origin of other volatile elements on Earth. Here we combine high-precision Se isotope measurements of metal-silicate partitioning experiments and chondrites to assess whether planetary differentiation could leave a measurable Se isotopic signature on planetary mantles. We performed Se isotopic measurements of 5 metal-silicate partitioning experiments and 20 chondrites of all major classes. Experiments were conducted at 1 GPa and 1650 C for 1 to 4 hours using the piston-cylinder apparatus at Carnegie's Geophysical Laboratory. After wet chemistry, data were obtained on a ThermoFisher Scientific™ NeptunePlus MC-ICP-MS at the University of Tübingen with a 74Se/77Se double spike technique. δ82/76Se values are given relative to NIST SRM-3149 and the external reproducibility calculated from duplicate meteorite analyses is ≤ 0.1‰ (2 s.d.). Chondrites vary over a 0.8‰ range of δ82/76Se values. CIs and CMs show evidence for heavier 82Se/76Se ratios, likely due to mixing processes in the proto-planetary nebula. When these isotopically heavier meteorites are excluded, remaining chondrites have δ82/76Se values varying over a 0.3‰ range, within uncertainty of previous results [2]. We suggest that these chondrites may be used to estimate a δ82/76Se value of bulk planets. At the conditions of our experiments, the partition coefficients for Se log Dmetal-silicate range from 0.7±0.1 to 1.9±0.1, consistent with previous work [1]. A small but resolvable Se isotopic fractionation was observed: 82Se/76Se ratios were enriched by ≤ 0.5‰ in the silicates relative to the metals. Thus, given current uncertainties for Se isotopic measurements, marginal differences between planetary mantles and chondrites may be resolved. [1] Rose-Weston et al. 2009, GCA, 73(15), 4598-4615. [2] Vollstaedt et al. 2016, 450, 372-380.

  4. Selenium speciation in Lower Cambrian Se-enriched strata in South China and its geological implications

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng; Wen, Hanjie; Hu, Ruizhong; Zhao, Hui

    2011-12-01

    To understand the impact of Selenium (Se) into the biogeochemical cycle and implications for palaeo-redox environment, a sequential extraction method was utilized for samples including black shales, cherts, a Ni-Mo-Se sulfide layer, K-bentonite and phosphorite from Lower Cambrian Se-enriched strata in southern China. Seven species (water-soluble, phosphate exchangeable, base-soluble, acetic acid-soluble, sulfide/selenide associated, residual Se) and different oxidation states (selenate Se(VI), selenite Se(IV), organic Se, Se (0) and mineral Se(-II)) were determinated in this study. We found that the Ni-Mo-Se sulfide layer contained a significantly greater amount of Se(-II) associated with sulfides/selenides than those in host black shales and cherts. Furthermore, a positive correlation between the degree of sulfidation of iron (DOS) and the percentage of the sulfide/selenide-associated Se(-II) was observed for samples, which suggests the proportion of sulfide/selenide-associated Se(-II) could serve as a proxy for palaeo-redox conditions. In addition, the higher percentage of Se(IV) in K-bentonite and phosphorite was found and possibly attributed to the adsorption of Se by clay minerals, iron hydroxide surfaces and organic particles. Based on the negative correlations between the percentage of Se(IV) and that of Se(-II) in samples, we propose that the K-bentonite has been altered under the acid oxic conditions, and the most of black shale (and cherts) and the Ni-Mo-Se sulfide layer formed under the anoxic and euxinic environments, respectively. Concerning Se accumulation in the Ni-Mo-Se sulfide layer, the major mechanism can be described by (1) biotic and abiotic adsorption and further dissimilatory reduction from oxidized Se(VI) and Se(IV) to Se(-II), through elemental Se, (2) contribution of hydrothermal fluid with mineral Se(-II).

  5. [Studies of bioavailability of different food sources of selenium in experiment].

    PubMed

    Egorova, E A; Gmoshinskiĭ, I V; Zorin, S I; Mazo, V K

    2006-01-01

    The selenium bioavailability in selenium enriched Spirulina (Arthrospira platensis), phycocyanin containing (Se-PC) protein isolate, separated from this micro algae and in sodium selenite was studied and compared in rats. The daily dose of selenium per one animal was 5 microgram in all experimental groups. The average selenium levels in blood serum and liver of animals that received sodium selenite during 14 days were the highest. The average selenium level in blood serum of animals fed with selenium enriched Spirulina platensis after 14 days of receiving was the same with the control group, but the average concentration of selenium in their liver was rather high and close to this parameter of sodium selenite animal group. The animals which were fed with Se-PC showed better results. Their average selenium level in blood serum was higher than in Spirulina group, but lower than in sodium selenite group. The average concentration of selenium in the liver of these animals was the same with sodium selenite animal group. As regards to animals that were fed with selenium enriched Spirulina, Se-PC and sodium selenite for 21 days, the average selenium levels ratio in their blood serum and liver was higher than in control group, but these results were not significantly different among each other. The concentrations of selenium in seminal glands in all groups of animals including control group both after 14 and 21 days feeding were close to each other.

  6. Producing selenium-enriched eggs and meat to improve the selenium status of the general population.

    PubMed

    Fisinin, Vladimir I; Papazyan, Tigran T; Surai, Peter F

    2009-01-01

    The role of selenium (Se) in human health and diseases has been discussed in detail in several recent reviews, with the main conclusion being that selenium deficiency is recognised as a global problem which urgently needs resolution. Since selenium content in plant-based food depends on its availability from soil, the level of this element in food and feeds varies among regions. In general, eggs and meat are considered to be good sources of selenium in human diet. When considering ways to improve human selenium intake, there are several potential options. These include direct supplementation, soil fertilisation and supplementation of food staples such as flour, and production of functional foods. Analysing recent publications related to functional food production, it is evident that selenium-enriched eggs can be used as an important delivery system of this trace mineral for humans. In particular, developments and commercialisation of organic forms of selenium have initiated a new era in the availability of selenium-enriched products. It has been shown that egg selenium content can easily be manipulated to give increased levels, especially when organic selenium is included in hens' diet at levels that provide 0.3-0.5 mg/kg selenium in the feed. As a result, technology for the production of eggs delivering approximately 50% (30-35 microg) of the human selenium RDA have been developed and successfully tested. Currently companies all over the world market selenium-enriched eggs including the UK, Ireland, Mexico, Columbia, Malaysia, Thailand, Australia, Turkey, Russia and the Ukraine. Prices for enriched eggs vary from country to country, typically being similar to free-range eggs. Selenium-enriched chicken, pork and beef can also be produced when using organic selenium in the diet of poultry and farm animals. The scientific, technological and other advantages and limitations of producing designer/modified eggs as functional foods are discussed in this review.

  7. Inverse association between gluthathione peroxidase activity and both selenium-binding protein 1 levels and gleason score in human prostate tissue

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND. Data from human epidemiological studies, cultured mammalian cells, and animal models have supported a potentially beneficial role of selenium (Se) in prostate cancer prevention. In addition, Se-containing proteins including members of the gutathione peroxidase (GPx) family and Selenium-B...

  8. Chemical characterisation and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus.

    PubMed

    Maseko, Tebo; Callahan, Damien L; Dunshea, Frank R; Doronila, Augustine; Kolev, Spas D; Ng, Ken

    2013-12-15

    The selenium concentration in Agaricus bisporus cultivated in growth compost irrigated with sodium selenite solution increased by 28- and 43-fold compared to the control mushroom irrigated solely with water. Selenium contents of mushroom proteins increased from 13.8 to 60.1 and 14.1 to 137 μgSe/g in caps and stalks from control and selenised mushrooms, respectively. Selenocystine (SeCys; detected as [SeCys]2 dimer), selenomethionine (SeMet), and methyl-selenocysteine (MeSeCys) were separated, identified and quantified by liquid chromatography-electrospray ionisation-mass spectrometry from water solubilised and acetone precipitated proteins, and significant increases were observed for the selenised mushrooms. The maximum selenoamino acids concentration in caps and stalks of control/selenised mushrooms was 4.16/9.65 μg/g dried weight (DW) for SeCys, 0.08/0.58 μg/g DW for SeMet, and 0.031/0.10 μg/g DW for MeSeCys, respectively. The most notable result was the much higher levels of SeCys accumulated by A. bisporus compared to SeMet and MeSeCys, for both control and selenised A. bisporus. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing

    2008-06-25

    Both selenium and phycocyanin have been reported to show potent cancer chemopreventive activities. In this study, we investigated the in vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin (Se-PC) purified from selenium-enriched Spirulina platensis. The antioxidant activity of Se-PC was evaluated by using four different free radical scavenging assays, namely, the 2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) assay, 1,1-diphenyl-2-picryhydrazyl (DPPH) assay, superoxide anion scavenging assay, and erythrocyte hemolysis assay. The results indicated that Se-PC exhibited stronger antioxidant activity than phycocyanin by scavenging ABTS, DPPH, superoxide anion, and 2,2'-azobis-(2-amidinopropane)dihydrochloride free radicals. Se-PC also showed dose-dependent protective effects on erythrocytes against H 2O 2-induced oxidative DNA damage as evaluated by the Comet assay. Moreover, Se-PC was identified as a potent antiproliferative agent against human melanoma A375 cells and human breast adenocarcinoma MCF-7 cells. Induction of apoptosis in both A375 and MCF-7 cells by Se-PC was evidenced by accumulation of sub-G1 cell populations, DNA fragmentation, and nuclear condensation. Further investigation on intracellular mechanisms indicated that depletion of mitochondrial membrane potential (DeltaPsi m) was involved in Se-PC-induced cell apoptosis. Our findings suggest that Se-PC is a promising organic Se species with potential applications in cancer chemoprevention.

  10. Germanium, Arsenic, and Selenium Abundances in Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.

    2012-09-01

    The elements germanium (Ge, Z = 32), arsenic (As, Z = 33), and selenium (Se, Z = 34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, only the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 <= [Fe/H] <= -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios remain roughly constant. These data do not directly indicate the origin of germanium, arsenic, and selenium at low metallicity, but they suggest that the weak and main components of the s-process are not likely sources. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This research made use of StarCAT, hosted by the Mikulski Archive at the Space Telescope Science Institute (MAST). These data are associated with Programs GO-7348, GO-7433, GO-8197, GO-9048, GO-9455, and GO-9804.Based on data obtained from the European Southern Observatory (ESO) Science Archive Facility. These data are associated with Programs 67.D-0439(A), 074.C-0364(A), 076.B-0055(A), and 080.D-0347(A).This research has made use of the Keck Observatory Archive (KOA), which is operated by the W.M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. These data are associated with Programs H2aH, H6aH, and H39aH (PI: Boesgaard), N01H (PI: Latham), and U11H (PI: Prochaska).This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  11. Trace elements in sera of patients with hepatitis B: Determination and analysis

    NASA Astrophysics Data System (ADS)

    Saod, Wahran M.; Darwish, Nadiya T.; Zaidan, Tahseen A.; Alfalujie, Abdul Wahab A.

    2018-04-01

    Chronic Hepatitis B (HBV) is the leading cause of morbidity and mortality worldwide with about 248 million people having HBV infection. Trace elements e.g. copper (Cu), zinc (Zn), selenium (Se) and iron (Fe) are constituent components of many metal proteins and metalloenzymes in human sera. Therefore, the ratios of these trace elements in human sera are often stated to be a good marker for diagnosing various diseases including HBV. The aims of this study are: to compare the level of trace elements in sera of patients infected with HBV and healthy participants, and to evaluate the efficiency of analytical techniques (e.g. Inductively Coupled Plasma-Mass spectrometry (ICP-MS), Atomic Absorption Spectroscopy (hydride generation) (AAS) and Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) that are currently used to detect Fe and Se elements in Patients' human sera. The findings of this study show that the concentration range of copper element between (132.80±28.64 µg/dl) to (105.66±23.20 µg/dl) was significantly higher in HBV infected patients as compared to those in healthy controls (91.27±9.20 µg/dl). Iron concentration range between (206.64±61.60 µg/l) to (170.00±36.71 µg/l) was significantly higher in HBV infected patients as compared to those in healthy controls (158.00±15.13 µg/l). However, patients with HBV had significantly lower serum concentrations of zinc with a concentration range between (111.64±20.90 µg/dl) to (99.25±24.06 µg/dl) as compared to those in healthy controls (113.44±16.38 µg/dl). While selenium concentration range between (64.39±7.39 µg/l) to (51.10±4.96 µg/l) was significantly lower in HBV infected patients as compared to those in healthy controls (67.68±7.60) (μg/l). Moreover, the results of this study suggest that (AAS) technique was the most accurate method to measure the concentration of selenium element, while (UV and ICP-MS) analytical techniques have the same efficiency in measuring the iron concentration.

  12. Antioxidant Actions of Selenium in Orbital Fibroblasts: A Basis for the Effects of Selenium in Graves' Orbitopathy.

    PubMed

    Rotondo Dottore, Giovanna; Leo, Marenza; Casini, Giamberto; Latrofa, Francesco; Cestari, Luca; Sellari-Franceschini, Stefano; Nardi, Marco; Vitti, Paolo; Marcocci, Claudio; Marinò, Michele

    2017-02-01

    A recent clinical trial has shown a beneficial effect of the antioxidant agent selenium in Graves' orbitopathy (GO). In order to shed light on the cellular mechanisms on which selenium may act, this study investigated its effects in cultured orbital fibroblasts. Primary cultures of orbital fibroblasts from six GO patients and six control subjects were established. Cells were treated with H 2 O 2 to induce oxidative stress, after pre-incubation with selenium-(methyl)selenocysteine (SeMCys). The following assays were performed: glutathione disulfide (GSSG), as a measure of oxidative stress, glutathione peroxidase (GPX) activity, cell proliferation, hyaluronic acid (HA), and pro-inflammatory cytokines. H 2 O 2 induced an increase in cell GSSG and fibroblast proliferation, which were reduced by SeMCys. Incubation of H 2 O 2 -treated cells with SeMCys was followed by an increase in glutathione peroxidase activity, one of the antioxidant enzymes into which selenium is incorporated. At the concentrations used (5 μM), H 2 O 2 did not significantly affect HA release, but it was reduced by SeMCys. H 2 O 2 determined an increase in endogenous cytokines involved in the response to oxidative stress and GO pathogenesis, namely tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma. The increases in tumor necrosis factor alpha and interferon gamma were blocked by SeMCys. While the effects of SeMCys on oxidative stress and cytokines were similar in GO and control fibroblasts, they were exclusive to GO fibroblasts in terms of inhibiting proliferation and HA secretion. Selenium, in the form of SeMCys, abolishes some of the effects of oxidative stress in orbital fibroblasts, namely increased proliferation and secretion of pro-inflammatory cytokines. SeMCys reduces HA release in GO fibroblasts in a manner that seems at least in part independent from H 2 O 2 -induced oxidative stress. Some effects of SeMCys are specific for GO fibroblasts. These findings reveal some cellular mechanisms by which selenium may act in patients with GO.

  13. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    PubMed

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Role of Selenium from Different Sources in Prevention of Pulmonary Arterial Hypertension Syndrome in Broiler Chickens.

    PubMed

    Zamani Moghaddam, A K; Mehraei Hamzekolaei, M H; Khajali, F; Hassanpour, H

    2017-11-01

    Pulmonary arterial hypertension (PAH) syndrome in broilers is associated with hypoxia, which prevails at high altitude. Oxidative stress is the pathogenic mechanism underlying PAH. Because selenium is key element in the structure of antioxidant enzymes, we evaluated pulmonary hypertensive responses in broiler chickens fed with diets supplemented with organic or nano-selenium. One hundred forty-four broilers (starting at 5 days old) were fed with (i) control group: birds received a standard diet; (ii) nano-selenium group: birds were fed with basal diet supplemented with nano-selenium at 0.3 mg/kg; and (iii) organic selenium group: birds received basal diet supplemented with organic selenium at 0.3 mg/kg. We assessed growth performance, carcass characteristics, antioxidant variables, blood parameters, and small intestine morphology. Although Se supplementation did not affect growth performance, carcass traits, and organ weight (P > 0.05), the right to total ventricular weight ratio (RV:TV), malondialdehyde concentration in the liver, and heterophil to lymphocyte ratio were significantly lower in the nano-selenium group relative to the control (P < 0.05). Chickens that received nano-selenium also elicited significantly higher antibody titers after 24 h of an injection of sheep red blood cells (P < 0.05). Nano-selenium supplementation also significantly increased villus height, absorptive surface area, and lamina propria thickness relative to the control (P < 0.05) in different segments of the small intestine. In contrast, organic selenium supplement improved intestinal morphometry only in the jejunum. We conclude that dietary supplementation of 0.30 mg/kg nano-selenium could prevent right ventricular hypertrophy as reflected by reduced RV:TV, reduced levels of lipid peroxidation in the liver, and improved gut function.

  15. Potential of Cultivated Ganoderma lucidum Mushrooms for the Production of Supplements Enriched with Essential Elements.

    PubMed

    Rzymski, Piotr; Mleczek, Mirosław; Niedzielski, Przemysław; Siwulski, Marek; Gąsecka, Monika

    2016-03-01

    Ganoderma lucidum is an important medicinal mushroom species and there is continuous interest in its bioactive properties. This study evaluated whether it may additionally serve as a nutritional supplement for the trace elements: selenium (Se), copper (Cu), and zinc (Zn). Mushrooms were cultivated on substrates enriched with 0.1 to 0.8 mM of inorganic Se alone or in combination with Zn and/or Cu. Supplementation increased accumulation of the elements in fruiting bodies regardless of the applied cultivation model. G. lucidum demonstrated the ability to accumulate significant amounts of organic Se, maximally amounting to (i) over 44 mg/kg when the substrate was supplemented only with Se, (ii) over 20 mg/kg in the Se+Cu model, (iii) over 25 mg/kg in the Se+Zn model, and (iv) 15 mg/kg in the Se+Cu+Zn model. The accumulation of Cu and Zn steadily increased with their initial substrate concentrations. Maximum concentrations found after supplementation with 0.8 mM amounted to over 55 mg/kg (Se+Zn) and 52 mg/kg (Se+Cu+Zn) of Zn, and 29 mg/kg (Se+Cu) and over 31 mg/kg (Se+Cu+Zn) of Cu. The greater the supplemented concentration and number of supplemented elements, the lower the biomass of G. lucidum fruiting bodies. Nevertheless, it still remained high when the substrate was supplemented up to 0.4 mM with each element. These results highlight that G. lucidum can easily incorporate elements from the substrate and that, when biofortified, its dried fruiting bodies may serve as a nutritional source of these essential elements. © 2016 Institute of Food Technologists®

  16. Selenium Biomarkers in Prostate Cancer Cell Lines and Influence of Selenium on Invasive Potential of PC3 Cells

    PubMed Central

    Hendrickx, Wouter; Decock, Julie; Mulholland, Francis; Bao, Yongping; Fairweather-Tait, Susan

    2013-01-01

    Dietary selenium intake has been linked to reduced cancer risk, however the underlying mechanisms are yet unknown. We question the commonly used practice of applying selenium concentrations found in human blood to in vitro studies and evaluated the utility of biomarkers, e.g., glutathione peroxidase 1 (GPx1) and thioredoxin reductase 1 (TrxR1), to determine appropriate selenium levels for in vitro work. Furthermore, we investigated the effects of Se-methylselenocysteine (SeMSC) on prostate cancer cell migration and invasion. After excluding cytotoxicity, we demonstrated that prostate cancer cell lines respond differently to selenium treatment as observed through biomarker assessment. We found that the maximum levels of GPx1 activity and TrxR1 expression were reached at lower selenium concentrations in LNCaP compared to PC3 cells, and PC3 compared to DU145 cells. Therefore the use of selenium concentrations extrapolated from human studies for in vitro work may be applicable when further informed using a readout of selenium repletion including use of selenium responsive biomarkers. No effect on PC3 migration or invasion was observed after long term SeMSC treatment; however a slight increase was found when treatment was solely administered during the assay. The opposite could be observed when cells were cultured under low serum conditions, with a significant increase in migration upon long term but not upon acute SeMSC treatment. To conclude, these findings indicate that it is imperative to study the selenium sensitivity of an in vitro model preferably using biomarkers before investigating any effects on biological processes, or before comparing models. PMID:24066278

  17. Copper/zinc and copper/selenium ratios, and oxidative stress as biochemical markers in recurrent aphthous stomatitis.

    PubMed

    Ozturk, Perihan; Belge Kurutas, Ergul; Ataseven, Arzu

    2013-10-01

    Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder characterized by recurrent, painful oral aphthae, and oxidative stress presumably contributes to its pathogenesis. The aim of this study is to scrutinize the relationship between oxidative stress and serum trace elements (copper, Cu; zinc, Zn; selenium, Se), and to evaluate the ratios of Cu/Zn and Cu/Se in this disorder. Patients with RAS (n = 33) and age- and sex-matched healthy control subjects (n = 30) were enrolled in this study. Malondialdehyde (MDA) concentrations in plasma and the activities of superoxide dismutase (SOD1; CuZnSOD), glutathione peroxidase (GPx) and catalase (CAT) in erythrocyte were determined as spectrophotometric. Also, the levels of Se, Zn and Cu in serum were determined on flame and furnace atomic absorption spectrophotometer using Zeeman background correction. Oxidative stress was confirmed by the significant elevation in plasma MDA, and by the significant decrease in CAT, SOD1, and GPx (p < 0.05). When compared to controls, Zn and Se levels were significantly lower in patients, whereas Cu levels was higher in RAS patients than those in controls (p < 0.05). In addition, the correlation results of this study were firstly shown that there were significant and positive correlations between Se-CAT, Se-GPx, and Cu-MDA parameters, but negative correlations between Se-Cu, Se-MDA, Cu-CAT, Cu-SOD1 and Cu-GPx parameters in RAS patients. Furthermore, the ratios of Cu/Zn and Cu/Se were significantly higher in the patients than the control subjects (p < 0.05). Our results indicated that lipid peroxidation associated with the imbalance of the trace elements seems to play a crucial role in the pathogenesis of RAS. Furthermore, the serum Cu/Zn and Cu/Se ratios may be used as biochemical markers in these patients. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  18. Protective Effect of Selenium Against Cisplatin-Induced Ototoxicity in an Experimental Design.

    PubMed

    Doğan, Sedat; Yazici, Hasmet; Yalçinkaya, Esin; Erdoğdu, Halil Ibrahim; Tokgöz, Sibel Alicura; Sarici, Furkan; Namuslu, Mehmet; Sarikaya, Yasin

    2016-10-01

    Cisplatin is an effective chemotherapeutic agent in the treatment of several types of malignant solid tumors but its clinical use is associated with ototoxicity. In the present study, we investigated the effect of selenium administration on lipid peroxidation (malondialdehyde [MDA]) and cisplatin-induced ototoxicity in rats. Healthy wistar albino rats (n = 21) were randomly divided into 3 groups: control (C), cisplatin (Cis), cisplatin and selenium (Cis+Se). Cisplatin was administered for 3 days to Cis and Cis+Se groups. Cis+Se group received selenium 5 days before cisplatin injection and continued for 11 consecutive days. Hearing thresholds and lipid peroxidation (MDA) levels of the rats were recorded before injections and at the end of experimental protocol. The cochleas of animals were harvested for histologic and immunuhistochemical examinations. In biochemichal analyses, pretreatment with selenium prevented the elevation of MDA levels in Cis+Se group rats. Moreover, animals in Cis+Se group had better hearing threshold levels than animals in cis group. Samples obtained from the animals in Cis group revealed extensive loss of the normal microarchitecture of the organ of Corti. On the other hand, animals in Cis+Se group exhibited a preservation of the morphology of the organ of Corti and outer hair cells. In the immunohistochemical examinations of cochlear tissues stained with anti-caspase-3, a higher degree of immunopositivity was found in the Cis group. When Cis+Se group and Cis group were compared, significantly less immunopositivity occurred in the Cis+Se group (P < 0.05). Thus, it appears that pretreatment with selenium may reduce cisplatin-induced ototoxicity in rats.

  19. [Studies of immunomodulation caused by selenium-enriched phycocyanin].

    PubMed

    Egorova, E A; Gmoshinskiĭ, I V; Zorin, S N; Mazo, V K

    2006-01-01

    An influense was studied in rats of selenium enriched phycocyanin (Se-PC) from food microalgae Spirulina on anaphylactic reaction severity and circulating antibody response against model allergen--hen's egg white ovalbumin. Se-PC was introduced into diet in form of protein isolate precipitated with ammonia sulphate. Se-PC dosage made up to 450 mcg per rat daily that corresponded to 5 mcg of selenium. There were no differences revealed between experimental and control group that received standard diet in severity of anaphylactic reaction. Nevertheless rats receiving Se-PC demonstrated significantly increased specific IgG response. The probable immunomodulating properties of Se-PC included into food are discussed.

  20. Sex, age, and tissue specific accumulation of eight metals, arsenic, and selenium in the European hedgehog (Erinaceus europaeus).

    PubMed

    Rautio, Anni; Kunnasranta, Mervi; Valtonen, Anu; Ikonen, Mirva; Hyvärinen, Heikki; Holopainen, Ismo J; Kukkonen, Jussi V K

    2010-11-01

    Many insectivores have been shown to be sensitive to heavy metals and therefore suitable for biomonitoring purposes. In Finland, the hibernation period of the European hedgehog (Erinaceus europaeus) is long, and during hibernation the stress caused by environmental toxins may be crucial. Concentrations of cadmium (Cd), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), arsenic (As), and selenium (Se) were measured in a population of hedgehogs in the town of Joensuu in eastern Finland during the summers of 2004 and 2005. The analyzed tissues were kidney, liver, hair, and spine. The sampled hedgehogs (n = 65) were mainly road-killed animals. As expected, the concentrations of heavy metals were low because the hedgehogs were living in a comparatively unpolluted area. Significant increases with age were found in Cd concentrations (kidney, liver, and spine) and some essential elements (Se in spine, kidney, and liver; Mo in kidney and liver; Cu in spine; Fe in liver; and Mn in spine). Age accumulation and correlations between Se and Cd and between Mo and Cd may indicate the protective roles of Se and Mo against Cd toxicity in hedgehogs, in which Cd is already at comparatively low concentrations. Sex had no significant effect on concentrations of the elements studied. In conclusion, age is an important parameter to be taken into account when studying heavy-metal concentrations in hedgehogs and other insectivores.

  1. How might selenium moderate the toxic effects of mercury in stream fish of the Western USA?

    EPA Science Inventory

    The ability of selenium (Se) to moderate mercury (Hg) toxicity is well established in the literature. Mercury exposures that might otherwise produce toxic effects are counteracted by Se, particularly when Se:Hg molar ratios approach or exceed 1. We analyzed whole body Se and Hg c...

  2. How might selenium moderate the toxic effects of mercury in stream fish of the Western USA? - abstract

    EPA Science Inventory

    The ability of selenium (Se) to moderate mercury (Hg) toxicity is well established in the literature. Mercury exposures that might otherwise produce toxic effects are counteracted by Se, particularly when Se:Hg molar ratios approach or exceed 1. We analyzed whole body Se and Hg c...

  3. Significant Beneficial Association of High Dietary Selenium Intake with Reduced Body Fat in the CODING Study

    PubMed Central

    Wang, Yongbo; Gao, Xiang; Pedram, Pardis; Shahidi, Mariam; Du, Jianling; Yi, Yanqing; Gulliver, Wayne; Zhang, Hongwei; Sun, Guang

    2016-01-01

    Selenium (Se) is a trace element which plays an important role in adipocyte hypertrophy and adipogenesis. Some studies suggest that variations in serum Se may be associated with obesity. However, there are few studies examining the relationship between dietary Se and obesity, and findings are inconsistent. We aimed to investigate the association between dietary Se intake and a panel of obesity measurements with systematic control of major confounding factors. A total of 3214 subjects participated in the study. Dietary Se intake was determined from the Willett food frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry. Obese men and women had the lowest dietary Se intake, being 24% to 31% lower than corresponding normal weight men and women, classified by both BMI and body fat percentage. Moreover, subjects with the highest dietary Se intake had the lowest BMI, waist circumference, and trunk, android, gynoid and total body fat percentages, with a clear dose-dependent inverse relationship observed in both gender groups. Furthermore, significant negative associations discovered between dietary Se intake and obesity measurements were independent of age, total dietary calorie intake, physical activity, smoking, alcohol, medication, and menopausal status. Dietary Se intake alone may account for 9%–27% of the observed variations in body fat percentage. The findings from this study strongly suggest that high dietary Se intake is associated with a beneficial body composition profile. PMID:26742059

  4. Flow injection determination of Se in dietary supplements using TiO2 mediated ultraviolet-photochemical volatile species generation

    NASA Astrophysics Data System (ADS)

    Nováková, E.; Linhart, O.; Červený, V.; Rychlovský, P.; Hraníček, J.

    2017-08-01

    This paper proposes a method for determination of selenium content in samples of dietary supplements using TiO2 mediated UV-photochemical vapor generation with quartz furnace atomic spectrometric detection. The flow-injection method was optimized for determination of selenium in the form of selenite or selenate ions. The limits of detection of the proposed method are 0.89 ng mL- 1 and 0.68 ng mL- 1 for selenite and selenate, respectively. Extraction in neutral medium was used for the leaching of selenate and NaOH solution was used for the leaching of selenite. The methods accuracy was verified against the declared amounts of Se in five different samples of over-the-counter dietary supplements and on NIST SRM 3280. The method was also compared to results achieved with determination by electrothermal atomization atomic absorption spectrometry following microwave decomposition. The recovery of selenium during sample preparation was tested by spiking the tablets prior to extraction and estimated to be approximately 100%. An interference study has been carried out to estimate the effect of concomitant elements on the methods accuracy.

  5. Chemical Kinetic and Molecular Genetic Study of Selenium Oxyanion Reduction by Enterobactor cloacae SLD1a-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma,J.; Kobayashi, D.; Yee, N.

    2007-01-01

    Microbial processes play an important role in the redox transformations of toxic selenium oxyanions. In this study, we employed chemical kinetic and molecular genetic techniques to investigate the mechanisms of Se(IV) and Se(VI) reduction by the facultative anaerobe Enterobacter cloacae SLD1a-1. The rates of microbial selenium oxyanion reduction were measured as a function of initial selenium oxyanion concentration (0-1.0 mM) and temperature (10-40 C), and mutagenesis studies were performed to identify the genes involved in the selenium oxyanion reduction pathway. The results indicate that Se(IV) reduction is significantly more rapid than the reduction of Se(VI). The kinetics of the reductionmore » reactions were successfully quantified using the Michaelis-Menten kinetic equation. Both the rates of Se(VI) and Se(IV) reduction displayed strong temperature-dependence with Ea values of 121 and 71.2 kJ/mol, respectively. X-ray absorption near-edge spectra collected for the precipitates formed by Se(VI) and Se(IV) reduction confirmed the formation of Se(0). A miniTn5 transposon mutant of E. cloacae SLD1a-1 was isolated that had lost the ability to reduce Se(VI) but was not affected in Se(IV) reduction activity. Nucleotide sequence analysis revealed the transposon was inserted within a tatC gene, which encodes for a central protein in the twin arginine translocation system. Complementation by the wild-type tatC sequence restored the ability of mutant strains to reduce Se(VI). The results suggest that Se(VI) reduction activity is dependent on enzyme export across the cytoplasmic membrane and that reduction of Se(VI) and Se(IV) are catalyzed by different enzymatic systems.« less

  6. Mitochondria-Mediated Protein Regulation Mechanism of Polymorphs-Dependent Inhibition of Nanoselenium on Cancer Cells

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Guo, Yuming; Yang, Gai; Yang, Lin; Ma, Xiaoming; Wang, Kui; Zhu, Lin; Sun, Jiaojiao; Wang, Xiaobing; Zhang, Hua

    2016-08-01

    The present study was (i) to prepare two types of selenium nanoparticles, namely an amorphous form of selenium quantum dots (A-SeQDs) and a crystalline form of selenium quantum dots (C-SeQDs); and (ii) to investigate the nano-bio interactions of A-SeQDs and C-SeQDs in MCF-7, HepG2, HeLa, NIH/3T3, L929 cells and BRL-3A cells. It was found that A-SeQDs could induce the mitochondria-mediated apoptosis, necrosis and death of cells, while C-SeQDs had much weaker effects. This polymorphs-dependent anti-proliferative activity of nano-selenium was scarcely reported. Further investigation demonstrated that A-SeQDs could differentially regulate 61 proteins and several pathways related to stress response, protein synthesis, cell migration and cell cycle, including “p38 MAPK Signaling”, “p53 Signaling”, “14-3-3-mediated Signaling”, “p70S6K Signaling” and “Protein Ubiquitination Pathway”. This was the first report to demonstrate the involvement of protein synthesis and post-translational modification pathways in the anti-proliferative activity associated with NMs. Compared with previously fragmentary studies, this study use a nanomics approach combining bioinformatics and proteomics to systematically investigate the nano-bio interactions of selenium nanoparticles in cancer cells.

  7. Distribution and bioaccumulation of selenium in aquatic microcosms

    USGS Publications Warehouse

    Besser, John M.; Huckins, James N.; Little, Edward E.; La Point, Thomas W.

    1989-01-01

    Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved 75Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of 75Se over the range 80–180 mg SO4 liter−1. When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.

  8. Selenium-containing allophycocyanin purified from selenium-enriched Spirulina platensis attenuates AAPH-induced oxidative stress in human erythrocytes through inhibition of ROS generation.

    PubMed

    Zhang, Haobin; Chen, Tianfeng; Jiang, Jie; Wong, Yum-Shing; Yang, Fang; Zheng, Wenjie

    2011-08-24

    Both selenium and allophycocyanin (APC) have been reported to show novel antioxidant activities. In this study, a fast protein liquid chromatographic method for purification of selenium-containing allophycocyanin (Se-APC) from selenium-enriched Spirulina platensis and the protective effect of Se-APC on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress have been described. After fractionation by ammonium sulfate precipitation, and separation by DEAE-Sepharose ion-exchange and Sephacryl S-300 size exclusion chromatography, Se-APC with purity ratio (A652/A280) of 5.30 and Se concentration of 343.02 μg g(-1) protein was obtained. Se-APC exhibited stronger antioxidant activity than APC by scavenging ABTS (2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid) and AAPH free radicals. The oxidative hemolysis and morphological changes induced by AAPH in human erythrocytes were effectively reversed by coincubation with Se-APC. Lipid oxidation induced by the pro-oxidant agent cupric chloride in human plasma, as evaluated by formation of conjugated diene, was blocked by Se-APC. The accumulation of malondialdehyde, loss of reduced glutathione, and increase in enzyme activities of glutathione peroxidase and reductase induced by AAPH in human erythrocytes were effectively suppressed by Se-APC. Furthermore, Se-APC significantly prevented AAPH-induced intracellular reactive oxygen species (ROS) generation. Taken together, our results suggest that Se-APC demonstrates application potential in treatment of diseases in which excess production of ROS acts as a casual or contributory factor.

  9. Distribution and reuse of {sup 76}Se-selenosugar in selenium-deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazuo T.; Somekawa, Layla; Suzuki, Noriyuki

    2006-10-15

    Nutritional selenium compounds are transformed to the common intermediate selenide and then utilized for selenoprotein synthesis or excreted in urine mostly as 1{beta}-methylseleno-N-acetyl-DD-galactosamine (selenosugar). Since the biological significance of selenosugar formation is unknown, we investigated their role in the formation of selenoenzymes in selenium deficiency. Rats were depleted of endogenous natural abundance selenium with a single stable isotope ({sup 82}Se) and then made Se-deficient. {sup 76}Se-Selenosugar was administered intravenously to the rats and their urine, serum, liver, kidneys and testes were subjected to speciation analysis with HPLC inductively coupled argon plasma mass spectrometry. Most {sup 76}Se was recovered in itsmore » intact form (approximately 80% of dose) in urine within 1 h. Speciation analysis revealed that residual endogenous natural abundance selenium estimated by {sup 77}Se and {sup 78}Se was negligible and distinct distributions of the labeled {sup 76}Se were detected in the body fluids and organs without interference from the endogenous natural abundance stable isotope. Namely, intact {sup 76}Se-selenosugar was distributed to organs after the injection, and {sup 76}Se was used for selenoprotein synthesis. Oxidation to methylseleninic acid and/or hydrolysis of the selenoacetal group to methylselenol were proposed to the transformation of selenosugar for the reuse. Effective use of an enriched stable isotope as an absolute label in hosts depleted of natural abundance isotopes was discussed for application in tracer experiments.« less

  10. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved.

    PubMed

    Skröder, Helena; Engström, Karin; Kuehnelt, Doris; Kippler, Maria; Francesconi, Kevin; Nermell, Barbro; Tofail, Fahmida; Broberg, Karin; Vahter, Marie

    2018-02-01

    It has been proposed that interactions between selenium and arsenic in the body may affect their kinetics and toxicity. However, it is unknown how the elements influence each other in humans. We aimed to investigate potential interactions in the methylation of selenium and arsenic. Urinary selenium (U-Se) and arsenic (U-As) were measured using inductively coupled plasma mass spectrometry (ICPMS) in samples collected from pregnant women ( n =226) in rural Bangladesh at gestational weeks (GW) 8, 14, 19, and 30. Urinary concentrations of trimethyl selenonium ion (TMSe) were measured by HPLC-vapor generation-ICPMS, as were inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methylation efficiency was assessed based on relative amounts (%) of arsenic and selenium metabolites in urine. Genotyping for the main arsenite and selenium methyltransferases, AS3MT and INMT, was performed using TaqMan probes or Sequenom. Multivariable-adjusted linear regression analyses indicated that %TMSe (at GW8) was positively associated with %MMA (β=1.3, 95% CI: 0.56, 2.0) and U-As, and inversely associated with %DMA and U-Se in producers of TMSe ( INMT rs6970396 AG+AA, n =74), who had a wide range of urinary TMSe (12-42%). Also, %TMSe decreased in parallel to %MMA during pregnancy, especially in the first trimester (-0.58 %TMSe per gestational week). We found a gene-gene interaction for %MMA ( p -interaction=0.076 for haplotype 1). In analysis stratified by INMT genotype, the association between %MMA and both AS3MT haplotypes 1 and 3 was stronger in women with the INMT GG (TMSe nonproducers, 5th-95th percentile: 0.2-2%TMSe) vs. AG+AA genotype. Our findings for Bangladeshi women suggest a positive association between urinary %MMA and %TMSe. Genes involved in the methylation of selenium and arsenic may interact on associations with urinary %MMA. https://doi.org/10.1289/EHP1912.

  11. [Effect of nano-selenium on the activities of glutathione peroxidase and type-I deiodinase in the liver of weanling pigs].

    PubMed

    Zhang, Hongmei; Xia, Meisheng; Hu, Caihong

    2007-02-01

    To study the effects of nano elemental selenium (Nano-Se) or sodium selenite (Na2SeO3) on the activities of glutathione peroxidase (GSH-Px) and Type-I deiodinase in the liver. A total of 234 weanling pigs (Duroc x Landrace x Yorkshire) at an average initial body weight of 8.3 kg were allocated to 13 treatments. The thirteen dietary treatments were basal diet only (containing 0.04 mg/kg Se), basal diet + 0.1, 0.2, 0.3, 0.4, 0.5, 1.0 mg/kg Se as Na2SeO3 or Nano-Se, respectively. The results were as follows: Supplementation with 1.0 mg/ kg Se as Na2SeO3 reduced (P < 0.05) growth performance and GSH-Px activities as compared with the addition of a concentration range of 0.20-0.40 mg/kg Se. When Nano-Se was added to the diet, the growth and GSH-Px activities remained steady at the peak value as at a concentration of 1.0 mg/kg Se; There were no difference in the activities of GSH-Px between the treatments of Nano-Se and Na2SeO3 when added concentration of Se was 0.10-0.40 mg/kg. The pigs had higher (P < 0.05) activities of GSH-Px at a concentration range of 0.50 and 1.0 mg/kg as Nano-Se than Na2SeO3; Supplentation with Se increased the activity of Type- I deiodinase in liver, however, the increased extent was affected by neither Se sources nor added concentration of Se. The results implicated that for the best concentration range of Weinberg curve, Nano-Se is wider than Na2SeO3.

  12. Electrodeposition Process and Performance of CuIn(Se x S1- x )2 Film for Absorption Layer of Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Li, Libo; Yang, Xueying; Gao, Guanxiong; Wang, Wentao; You, Jun

    2017-11-01

    CuIn(Se x S1- x )2 thin film is prepared by the electrodeposition method for the absorption layer of the solar cell. The CuIn(Se x S1- x )2 films are characterized by cyclic voltammetry measurement for the reduction of copper, indium, selenium and sulfur in selenium and sulfur in aqueous solutions with sodium citrate and without sodium citrate. In the four cases, the defined reduction process for every single element is obtained and it is observed that sodium citrate changes the reduction potentials. A linear relationship between the current density of the reduction peak and (scan rate v)1/2 for copper and indium is achieved, indicating that the process is diffusion controlled. The diffusion coefficients of copper and indium ions are calculated. The diffusional coefficient D value of copper is higher than that of indium, and this is the reason why the deposition rate of copper is higher. When four elements are co-deposited in the aqueous solution with sodium citrate, the quaternary compound of CuIn(Se x S1- x )2 is deposited together with Cu3Se2 impure phases after annealing, as found by XRD spectra. Morphology is observed by SEM and AFM. The chemical state of the films components is analyzed by XPS. The UV-Visible spectrophotometer and electrochemistry workstation are employed to measure the photoelectric properties. The results show that the smooth, uniform and compact CuIn(Se x S1- x )2 film is a semiconductor with a band gap of 1.49 eV and a photovoltaic conversion efficiency of 0.45%.

  13. Potential impact of acid precipitation on arsenic and selenium.

    PubMed Central

    Mushak, P

    1985-01-01

    The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling. PMID:4076075

  14. Potential impact of acid precipitation on arsenic and selenium.

    PubMed

    Mushak, P

    1985-11-01

    The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling.

  15. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention

    PubMed Central

    Wang, Dongxu; Taylor, Ethan Will; Wang, Yijun; Wan, Xiaochun; Zhang, Jinsong

    2012-01-01

    Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size (“Nano-Se”), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels. PMID:22619522

  16. Effect of Intestinal Tapeworm Clestobothrium crassiceps on Concentrations of Toxic Elements and Selenium in European Hake Merluccius merluccius from the Gulf of Lion (Northwestern Mediterranean Sea).

    PubMed

    Torres, Jordi; Eira, Catarina; Miquel, Jordi; Ferrer-Maza, Dolors; Delgado, Eulàlia; Casadevall, Margarida

    2015-10-28

    The capacity for heavy metal bioaccumulation by some fish parasites has been demonstrated, and their contribution to decreasing metal concentrations in tissues of parasitized fish has been hypothesized. The present study evaluated the effect of the cestode Clestobothrium crassiceps on the accumulation of trace elements in 30 European hake, Merluccius merluccius, in Spain (half of them infested by C. crassiceps). Tissue samples from all M. merluccius and specimens of C. crassiceps from the infected hakes were collected and stored until element analysis by inductively coupled plasma mass spectrometry (ICP-MS). Arsenic, mercury, and selenium were generally present in lower levels in the cestode than in all hake tissues. The mean value of the muscular Se:Hg molar ratio in the infested subsample was higher than that in hakes without cestodes. Values indicate that the edible part of infested hakes presents a lower amount of Cd and Pb in relation to noninfested hakes.

  17. Chemiluminescent photon yields measured in the flame photometric detector on chromatographic peaks containing sulfur, phosphorus, manganese, ruthenium, iron or selenium

    NASA Astrophysics Data System (ADS)

    Aue, Walter A.; Singh, Hameraj

    2001-05-01

    Photon yields — the number of photons generated per analyte atom — are of obvious analytical and mechanistic importance in flame chemiluminescence. However, such numbers are unavailable for spectral detectors in gas chromatography (as well as for most conventional spectroscopic systems). In this study, photon yields have been determined for the chemiluminescence of several elements in the flame photometric detector (FPD). The number of photons generated per atom of FPD-active element was 2×10 -3 for sulfur (emitter S 2*, test compound thianaphthene), 3×10 -3 for phosphorus [HPO*, tris(pentafluorophenyl)phosphine], 8×10 -3 for manganese (Mn*, methylcyclopentadienyl manganese tricarbonyl), 3×10 -3 for ruthenium (emitter unknown, ruthenocene), 4×10 -5 for iron (Fe*, ferrocene) and 2×10 -4 for selenium (Se 2*, dimethylbenzselenazole). Total flows, maximum thermocouple temperatures, and visible flame volumes have also been estimated for each element under signal/noise-optimized conditions in order to provide a database for kinetic calculations.

  18. Modulation of nano-selenium on tetrodotoxin-sensitive voltage-gated sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lan, Tonghan; Lin, Jiarui

    2005-01-01

    Nano-Selenium, a novel Nano technology production, was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Selenium on tetrodotoxin-sensitive (TTX-S) voltage-dependent Na+channels in isolated rat dorsal root ganglion neurons, using whole-cell patch-clamp method. Nano-Selenium irreversibly decreased TTX-S Na+current (INa) in a concentration-dependent manner and shifted the maximum of the current/voltage relationship from -67mV to -52mV, without modifying the threshold potential of the current. Nano-Selenium shifted the steady-state activation and inactivation curves to the left. In the contrast of Na2SeO3, the inhibition effect of 1nM Nano-Se was much stronger. The cell treated with 1nM Na2SeO3firstly, still respond to futher addition of 1nM Nano-Selenium. These results prove Nano-Selenium to be a novel antiagonist, acted within the channel pore, not on or near the exterior surface of the channel protein where it would experience the membrane electric field, which possesses a distinct binding site from Na2SeO3.

  19. Status of selenium in cancer prevention

    USDA-ARS?s Scientific Manuscript database

    An abundance of data indicate that selenium (Se) can be antitumorigenic. Those data, mostly from controlled studies using animal tumor models and some from clinical studies in free-living people, indicate that treatment with Se in the absence of nutritional Se-deficiency, can reduce cancer risk. T...

  20. Selenium Characterization In The Global Rice Supply Chain

    EPA Science Inventory

    For up to 1 billion people worldwide, insufficient dietary intake of selenium (Se) is a serious health constraint. Cereals are the dominant Se source for those on low protein diets, as typified by the global malnourished population. With crop Se content constrained largely by u...

  1. Selecting Lentil Accessions for Global Selenium Biofortification

    USDA-ARS?s Scientific Manuscript database

    Biofortification of lentil (Lens culinaris Medikus.) has the potential to provide adequate daily selenium (Se) to human diets. The objectives of this study were to (1) determine how low dose Se fertilizer application at germination affects seedling biomass, antioxidant activity, and Se uptake of 26 ...

  2. Naphthalene-1,2,3-dithiazolyl and its selenium-containing variants.

    PubMed

    Oakley, Richard T; Reed, Robert W; Robertson, Craig M; Richardson, John F

    2005-03-21

    Synthetic routes to salts of the 3H-naphtho[1,2-d][1,2,3]dithiazolylium cation and its three selenium-containing variants (SSeN, SeSN, and SeSeN) are described. The most efficient and general method involves the intermediacy of bis-acetylated aminothiolates and aminoselenolates. These reagents react smoothly with sulfur and selenium halides to afford the desired ring closure products. Electrochemical reduction of the four cations indicates that corresponding radicals (SSN, SSeN, SeSN, and SeSeN) are stable in solution. The EPR spectra of all four have been recorded, and experimental spin distributions have been cross-matched with those obtained from DFT calculations. The selenium-containing radicals are thermally unstable at or slightly above room temperature, but the all-sulfur species has been isolated and characterized crystallographically. In the solid state, the radicals are associated into cofacial dimers which are closely linked to other dimers by intermolecular S---S, S---N, and C-H---aromatic ring interactions.

  3. Selenium mass balance in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Naftz, D.L.

    2009-01-01

    A mass balance for Se in the south arm of the Great Salt Lake was developed for September 2006 to August 2007 of monitoring for Se loads and removal flows. The combined removal flows (sedimentation and volatilization) totaled to a geometric mean value of 2079??kg Se/yr, with the estimated low value being 1255??kg Se/yr, and an estimated high value of 3143??kg Se/yr at the 68% confidence level. The total (particulates + dissolved) loads (via runoff) were about 1560??kg Se/yr, for which the error is expected to be ?? 15% for the measured loads. Comparison of volatilization to sedimentation flux demonstrates that volatilization rather than sedimentation is likely the major mechanism of selenium removal from the Great Salt Lake. The measured loss flows balance (within the range of uncertainties), and possibly surpass, the measured annual loads. Concentration histories were modeled using a simple mass balance, which indicated that no significant change in Se concentration was expected during the period of study. Surprisingly, the measured total Se concentration increased during the period of the study, indicating that the removal processes operate at their low estimated rates, and/or there are unmeasured selenium loads entering the lake. The selenium concentration trajectories were compared to those of other trace metals to assess the significance of selenium concentration trends. ?? 2008 Elsevier B.V.

  4. Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize.

    PubMed

    Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Laplanche, Christophe; Pierart, Antoine; Longchamp, Mélanie; Besson, Philippe; Castrec-Rouelle, Maryse

    2016-06-01

    Selenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (Se(IV) and Se(VI)) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L(-1) of selenium (Se(IV), Se(VI), Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility.

  5. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    PubMed

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Oxidation Mechanism of Copper Selenide

    NASA Astrophysics Data System (ADS)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  7. Chloride and sulfate salinity effects on selenium accumulation by tall fescue. [Festuca arundinacea Schreb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Wu; Zhang-Zhi Huang

    The discovery of high levels of Se in soil and water samples from the San Joaquin Valley, California, and of its responsibility for deformity and death of wildlife at Kesterson National Wildlife Refuge have renewed interest in the bioaccumulation of this element. Greenhouse nutrient solution culture and field experiments were conducted to examine the effects of Cl and SO{sub 4} salt on growth and Se accumulation in tall fescue (Festuca arundinacea Schreb.) cultivars Alta, Falcon, and Olympic. Sulfate salt substantially reduced growth inhibition and Se accumulation. Tall fescue from the field irrigated with water low in salinity had higher tissuemore » Se concentration than plants from the field irrigated with water high in salinity. No difference in tissue Se concentration was found among the three tall fescue cultivars; however, forage-type Alta produced the most shoot biomass and accumulated the most total Se. The soil irrigated with water high in salinity had 10 times higher Se concentration than soil irrigated with water low in salinity. The highest soil Se concentration was found in the top 15 cm of soil. Growing fescue for one year reduced soil Se by 50%. Selenium concentrations below 15-cm depth were lower and similar between the bare soil and the soil under tall fescue. Both the high and low salinity water irrigations did not cause high levels of Se accumulation by the tall fescue cultivars unless there was continual addition of Se into the system. This study generated important information for Se bioaccumulation management in soils with elevated salinity and Se levels.« less

  8. Roles and potential mechanisms of selenium in countering thyrotoxicity of DEHP.

    PubMed

    Zhang, Pei; Guan, Xie; Yang, Min; Zeng, Li; Liu, Changjiang

    2018-04-01

    Di-(2-ethylhexyl) phthalate (DEHP) as a ubiquitous environmental contaminant could disturb thyroid hormone (TH) homeostasis. Selenium as an essential trace element has protective effects on thyroids. To verify roles of selenium in countering thyrotoxicity of DEHP and elucidate potential mechanisms, Sprague-Dawley rats and Nthy-ori 3-1 cells were treated with DEHP or/and selenomethionine (SeMet). Results showed that selenium supplementation elevated plasma free thyroxine (FT4) that was decreased by DEHP, and free triiodothyronine (FT3) and thyroid stimulating hormone (TSH) levels were also partially recovered. DEHP-caused histopathologic changes were ameliorated after selenium supplementation, as indicated by recovered thyroid follicular epithelial cell numbers and cavity diameters. DEHP disrupted the redox equilibrium, causing depletions of SOD, GPx1, GPx3, and TxnRd, and accumulations of MDA. Nevertheless, selenium supplementation effectively improved the redox status. DEHP affected biosynthesis, biotransformation, biotransport, and metabolism of THs, as well as thyrotropin releasing hormone receptor (TRHr) levels. Plasma selenium, thyroid peroxidase (TPO), deiodinase 1 (Dio1), and transthyretin (TTR) were downregulated, while Dio3, Ugt1a1, Sult1e1, CYP2b1, CYP3a1, and TRHr were upregulated by DEHP. However, selenium supplementation led to elevations of selenium, Dio1 and TTR, and reductions of Ugt1a1, Sult1e1, CYP2b1, and TRHr. TPO, Dio3, and CYP3a1 were not significantly affected by selenium supplementation. Taken together, selenium could ameliorate DEHP-caused TH dyshomeostasis via modulations of the redox status, Dio1, TTR, TRHr, and hepatic enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Seasonal assessment of selenium as a hazardous element in pasture and animal system: a case study of Kajli sheep in Sargodha, Pakistan.

    PubMed

    Khan, Zafar Iqbal; Ashraf, Muhammad; Ahmad, Kafeel; Al-Qurainy, F

    2010-07-15

    Grazing Kajli Pakistani sheep (30 in number) with mean body weight of 35 kg and of 36 months old were investigated to evaluate seasonal influence on Se levels of three different sheep classes including lactating and non-lactating ewes and male sheep. Samples of forage and blood were obtained four times after one month interval during summer and winter seasons and these were analyzed to assess the Se contents. Forage Se content was higher in winter than that in summer, while the reverse was true during summer. Blood plasma Se contents were higher in summer, particularly in male sheep compared to those in lactating and non lactating ewes. High incidence of deficiency was found in lactating ewes compared to the other groups of animal. The plasma concentrations of all sheep classes were found in the acceptable range required for normal metabolism and reproduction. Although there is no urgent need for supplementing the animals with mineral mixture with higher availability of selenium, forage plants and lactating sheep in some instances were found deficient in Se during this investigation, therefore, their low Se concentrations may pose a threat for grazing ruminants at this livestock farm. So, a Se supplementation in the form of forages with high Se contents or mineral mixture is required at this animal ranch to prevent the potential hazards of Se deficiency. 2010 Elsevier B.V. All rights reserved.

  10. Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization.

    PubMed

    Lin, Z Q; Cervinka, V; Pickering, I J; Zayed, A; Terry, N

    2002-07-01

    The Integrated on-Farm Drainage Management (IFDM) system was designed to dispose of selenium (Se)-contaminated agricultural irrigation drainage water through the sequential reuse of saline drainage water to grow crops having different salt tolerance. This study quantified the extent of biological volatilization in Se removal from the IFDM system located in the western San Joaquin Valley, California. Selenium volatilization from selected treatment areas, including pickleweed (Salicornia bigelovii Torr.), saltgrass (Distichlis spicata L.), bare soil, and the solar evaporator, was monitored biweekly using an open-flow sampling chamber system during the pickleweed growing season from February to September 1997, and monthly from September 1997 to January 1998. Biological volatilization from the pickleweed section removed 62.0 +/- 3.6 mg Se m(-2) y(-1) to the atmosphere, which was 5.5-fold greater than the Se accumulated in pickleweed tissues (i.e., phytoextraction). The total Se removed by volatilization from the bare soil, saltgrass, and the solar evaporator was 16.7 +/- 1.1, 4.8 +/- 0.3, and 4.3 +/- 0.9mg Se m(-2) y(-1), respectively. Selenium removal by volatilization accounted for 6.5% of the annual total Se input (957.7mg Sem(-2) y(-1)) in the pickleweed field, and about 1% of the total Se input (432.7 mg Se m(-2) y(-1)) in the solar evaporator. We concluded that Se volatilization under naturally occurring field conditions represented a relatively minor, but environmentally important pathway of Se removal from the IFDM system.

  11. Selenium Enrichment of Horticultural Crops.

    PubMed

    Puccinelli, Martina; Malorgio, Fernando; Pezzarossa, Beatrice

    2017-06-04

    The ability of some crops to accumulate selenium (Se) is crucial for human nutrition and health. Selenium has been identified as a cofactor of the enzyme glutathione peroxidase, which is a catalyzer in the reduction of peroxides that can damage cells and tissues, and can act as an antioxidant. Plants are the first link in the food chain, which ends with humans. Increasing the Se quantity in plant products, including leafy and fruity vegetables, and fruit crops, without exceeding the toxic threshold, is thus a good way to increase animal and human Se intake, with positive effects on long-term health. In many Se-enriched plants, most Se is in its major organic form. Given that this form is more available to humans and more efficient in increasing the selenium content than inorganic forms, the consumption of Se-enriched plants appears to be beneficial. An antioxidant effect of Se has been detected in Se-enriched vegetables and fruit crops due to an improved antioxidative status and to a reduced biosynthesis of ethylene, which is the hormone with a primary role in plant senescence and fruit ripening. This thus highlights the possible positive effect of Se in preserving a longer shelf-life and longer-lasting quality.

  12. Selenomethionine ameliorates cognitive decline, reduces tau hyperphosphorylation, and reverses synaptic deficit in the triple transgenic mouse model of Alzheimer's disease.

    PubMed

    Song, Guoli; Zhang, Zhonghao; Wen, Lei; Chen, Chen; Shi, Qingxue; Zhang, Yu; Ni, Jiazuan; Liu, Qiong

    2014-01-01

    Disruption of the intracellular balance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of Alzheimer's disease (AD). Selenium, a vital trace element with known antioxidant potential, has been reported to provide neuroprotection through resisting oxidative damage but its therapeutic effect on AD remains to be investigated. The objective of our study was to investigate the potential of selenomethionine (Se-Met), an organic form of selenium, in the treatment of cognitive dysfunction and neuropathology of triple transgenic AD (3 × Tg-AD) mice. 3 × Tg-AD mice, which were four months old, were treated with Se-Met for 3 months and demonstrated significant improvements in cognitive deficit along with an increased selenium level compared with the untreated control mice. Se-Met treatment significantly reduced the level of total tau and phosphorylated tau, mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in the hippocampus and cortex of the 3 × Tg-AD mice. Meanwhile, glial activation in AD mice was inhibited and the level of reduced glutathione was increased in the treated mice compared with control mice. Additionally, the expression and activity of glycogen synthase kinase 3β and protein phosphatase 2A, two important enzymes involved in tau phosphorylation, were markedly decreased and increased respectively by Se-Met treatment. Thus Se-Met improves cognitive deficit in a murine model of AD, which is associated with reduction in tau expression and hyperphosphorylation, amelioration of inflammation, and restoration of synaptic proteins and antioxidants. This study provides a novel therapeutic approach for the prevention of AD.

  13. Desulfurization: Critical step towards enhanced selenium removal from industrial effluents.

    PubMed

    Staicu, Lucian C; Morin-Crini, Nadia; Crini, Grégorio

    2017-04-01

    Selenium (Se) removal from synthetic solutions and from real Flue Gas Desulfurization (FGD) wastewater generated by a coal-fired power plant was studied for the first time using a commercial iron oxide impregnated strong base anion exchange resin, Purolite ® FerrIX A33E. In synthetic solutions, the resin showed high affinity for selenate and selenite, while sulfate exhibited a strong competition for both oxyanions. The FGD wastewater investigated is a complex system that contains Se (∼1200 μg L -1 ), SO 4 2- (∼1.1 g L -1 ), Cl - (∼9.5 g L -1 ), and Ca 2+ (∼5 g L -1 ), alongside a broad spectrum of toxic trace metals including Cd, Cr, Hg, Ni, and Zn. The resin performed poorly against Se in the raw FGD wastewater and showed moderate to good removal of several trace elements such as Cd, Cr, Hg, and Zn. In FGD effluent, sulfate was identified as a powerful competing anion for Se, having high affinity for the exchange active sites of the resin. The desulfurization of the FGD effluent using BaCl 2 led to the increase in Se removal from 3% (non-desulfurized effluent) to 80% (desulfurized effluent) by combined precipitation and ion exchange treatment. However, complete desulfurization using equimolar BaCl 2 could not be achieved due to the presence of bicarbonate that acts as a sulfate competitor for barium. In addition to selenium and sulfate removal, several toxic metals were efficiently removed (Cd: 91%; Cr: 100%; Zn: 99%) by the combined (desulfurization and ion exchange) treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Selenium biofortification

    USDA-ARS?s Scientific Manuscript database

    Plant foods are the major dietary sources of selenium (Se) in most countries around the world, followed by meats and seafood. For this reason, it is vital to increase Se uptake by plants and to produce crops with higher Se concentrations and bioavailability in their edible tissues. One of the most p...

  15. Conditional effect of selenium on the mammalian hind gut microbiota

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) status is linked to cancer risk in humans and other mammals. Because Se is used by certain microbial species which contain selenoproteins, and because hind gut microfloral composition is linked to cancer development, we proposed that supranutritional Se could reduce tumorigenisis by af...

  16. Potentially-toxic and essential elements profile of AH1N1 patients in Mexico City

    PubMed Central

    Moya, Mireya; Bautista, Edgar G.; Velázquez-González, Antonio; Vázquez-Gutiérrez, Felipe; Tzintzun, Guadalupe; García-Arreola, María Elena; Castillejos, Manuel; Hernández, Andrés

    2013-01-01

    During spring of 2009, a new influenza virus AH1N1 spread in the world causing acute respiratory illness and death, resulting in the first influenza pandemic since 1968. Blood levels of potentially-toxic and essential elements of 40 pneumonia and confirmed AH1N1 were evaluated against two different groups of controls, both not infected with the pandemic strain. Significant concentrations of potentially-toxic elements (lead, mercury, cadmium, chromium, arsenic) along with deficiency of selenium or increased Zn/Cu ratios characterized AH1N1 cases under study when evaluated versus controlled cases. Deficiency of selenium is progressively observed from controls I (influenza like illness) through controls II (pneumonia) and finally pneumonia -AH1N1 infected patients. Cases with blood Se levels greater than the recommended for an optimal cut-off to activate glutathione peroxidase (12.5 μg/dL) recovered from illness and survived. Evaluation of this essential element in critical pneumonia patients at the National Institutes is under evaluation as a clinical trial. PMID:23422930

  17. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort.

    PubMed

    Hughes, David J; Duarte-Salles, Talita; Hybsier, Sandra; Trichopoulou, Antonia; Stepien, Magdalena; Aleksandrova, Krasimira; Overvad, Kim; Tjønneland, Anne; Olsen, Anja; Affret, Aurélie; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Katzke, Verena; Kaaks, Rudolf; Boeing, Heiner; Bamia, Christina; Lagiou, Pagona; Peppa, Eleni; Palli, Domenico; Krogh, Vittorio; Panico, Salvatore; Tumino, Rosario; Sacerdote, Carlotta; Bueno-de-Mesquita, Hendrik Bastiaan; Peeters, Petra H; Engeset, Dagrun; Weiderpass, Elisabete; Lasheras, Cristina; Agudo, Antonio; Sánchez, Maria-José; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Hemmingsson, Oskar; Wareham, Nicholas J; Khaw, Kay-Tee; Bradbury, Kathryn E; Cross, Amanda J; Gunter, Marc; Riboli, Elio; Romieu, Isabelle; Schomburg, Lutz; Jenab, Mazda

    2016-08-01

    Selenium status is suboptimal in many Europeans and may be a risk factor for the development of various cancers, including those of the liver and biliary tract. We wished to examine whether selenium status in advance of cancer onset is associated with hepatobiliary cancers in the EPIC (European Prospective Investigation into Cancer and Nutrition) study. We assessed prediagnostic selenium status by measuring serum concentrations of selenium and selenoprotein P (SePP; the major circulating selenium transfer protein) and examined the association with hepatocellular carcinoma (HCC; n = 121), gallbladder and biliary tract cancers (GBTCs; n = 100), and intrahepatic bile duct cancer (IHBC; n = 40) risk in a nested case-control design within the EPIC study. Selenium was measured by total reflection X-ray fluorescence, and SePP was determined by a colorimetric sandwich ELISA. Multivariable ORs and 95% CIs were calculated by using conditional logistic regression. HCC and GBTC cases, but not IHBC cases, showed significantly lower circulating selenium and SePP concentrations than their matched controls. Higher circulating selenium was associated with a significantly lower HCC risk (OR per 20-μg/L increase: 0.41; 95% CI: 0.23, 0.72) but not with the risk of GBTC or IHBC. Similarly, higher SePP concentrations were associated with lowered HCC risk only in both the categorical and continuous analyses (HCC: P-trend ≤ 0.0001; OR per 1.5-mg/L increase: 0.37; 95% CI: 0.21, 0.63). These findings from a large prospective cohort provide evidence that suboptimal selenium status in Europeans may be associated with an appreciably increased risk of HCC development. © 2016 American Society for Nutrition.

  18. Toxicity and bioaccumulation of waterborne and dietary selenium in juvenile bluegill (Lepomis macrochirus)

    USGS Publications Warehouse

    Cleveland, Laverne; Little, Edward E.; Buckler, Denny R.; Wiedmeyer, Raymond H.

    1993-01-01

    Juvenile bluegill (Lepomis macrochirus) were exposed to waterborne selenium as a 6:1 mixture of selenate to selenite (as Se) for 60 d and to dietary seleno-l-methionine for 90 d. Measured concentrations of total selenium in the waterborne exposure ranged from 0.16 to 2.8 mg/l, and concentrations of seleno-l-methionine in the test diet ranged from 2.3 to 25.0 mg/kg wet weight. Mortality, body weight, condition factor, swimming and feeding behavior, aggression, and selenium tissue residues were monitored during the tests. Increased mortality at measured concentrations of 0.64 mg Se/l and greater was the primary adverse effect of waterborne selenium on the juvenile bluegill. Bluegill exposed to 2.8 mg/l of waterborne Se for 30 d exhibited a significant reduction in condition factor (K), whereas dietary exposure of bluegill to 25 mg Se/kg for 30 d and 13 mg Se/kg or greater for 90 d elicited significant reductions in K. Mortality and swimming activity of bluegill were not affected in the dietary exposure. Net accumulation of Se from both water and diet was directly related to exposure concentration. Bioconcentration factors ranged from 5 to 7 for bluegill exposed to waterborne Se and from 0.5 to 1.0 for fish exposed to dietary Se. Results of these laboratory tests indicate that survival of bluegill may be impaired in natural waters with elevated Se concentrations.

  19. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours.

    PubMed

    Liu, Zijian; Fu, Xiang; Huang, Wei; Li, Chunxia; Wang, Xinyan; Huang, Bei

    2018-03-01

    Selenium-containing phycocyanin (Se-PC) has been proved to have many biological effects, including anti-inflammatory and antioxidant. In this study, we investigated the photodynamic therapy (PDT) effects of Se-PC against liver tumour in vitro and in vivo experiment. Our results demonstrated that the half lethal dose of Se-PC PDT on HepG2 cells was 100μg/ml PC containing 20% selenium. Se-PC location migration from lysosomes to mitochondria was time dependent. In in vivo experiments, the tumour inhibition rate was 75.4% in the Se-PC PDT group, compared to 52.6% in PC PDT group. Histological observations revealed that the tumour cells outside the tissue showed cellular necrosis, and those inside the tissue exhibited apoptotic nuclei and digested vacuoles in the cytoplasm after Se-PC PDT treatment. Antioxidant enzyme analysis indicated that GSH-Px activity was linked to the selenium content of Se-PC, and SOD activity was affected by PC PDT. Therefore, Se-PC PDT could induce cell death through free radical production of PDT in tumours and enhance the activity of antioxidant enzymes with selenium in vivo. The mechanism of Se-PC PDT against liver tumour involves hematocyte damage and mitochondria-mediated apoptosis accompanied with autophagy inhibition during early stage of tumour development, which displayed new prospect and offered relatively safe way for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Adsorption of Selenium and Strontium on Goethite: EXAFS Study and Surface Complexation Modeling of the Ternary Systems.

    PubMed

    Nie, Zhe; Finck, Nicolas; Heberling, Frank; Pruessmann, Tim; Liu, Chunli; Lützenkirchen, Johannes

    2017-04-04

    Knowledge of the geochemical behavior of selenium and strontium is critical for the safe disposal of radioactive wastes. Goethite, as one of the most thermodynamically stable and commonly occurring natural iron oxy-hydroxides, promisingly retains these elements. This work comprehensively studies the adsorption of Se(IV) and Sr(II) on goethite. Starting from electrokinetic measurements, the binary and ternary adsorption systems are investigated and systematically compared via batch experiments, EXAFS analysis, and CD-MUSIC modeling. Se(IV) forms bidentate inner-sphere surface complexes, while Sr(II) is assumed to form outer-sphere complexes at low and intermediate pH and inner-sphere complexes at high pH. Instead of a direct interaction between Se(IV) and Sr(II), our results indicate an electrostatically driven mutual enhancement of adsorption. Adsorption of Sr(II) is promoted by an average factor of 5 within the typical groundwater pH range from 6 to 8 for the concentration range studied here. However, the interaction between Se(IV) and Sr(II) at the surface is two-sided, Se(IV) promotes Sr(II) outer-sphere adsorption, but competes for inner-sphere adsorption sites at high pH. The complexity of surfaces is highlighted by the inability of adsorption models to predict isoelectric points without additional constraints.

  1. Pressure-Stabilized Tin Selenide Phase with an Unexpected Stoichiometry and a Predicted Superconducting State at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Hulei; Lao, Wenxin; Wang, Lijuan; Li, Kuo; Chen, Yue

    2017-03-01

    Tin-selenium binary compounds are important semiconductors that have attracted much interest for thermoelectric and photovoltaic applications. As tin has a +2 or +4 oxidation state and selenium has an oxidation number of -2 , only SnSe and SnSe2 have been observed. In this work, we show that the chemical bonding between tin and selenium becomes counterintuitive under pressures. Combining evolutionary algorithms and density functional theory, a novel cubic tin-selenium compound with an unexpected stoichiometry 3 ∶4 has been predicted and further synthesized in laser-heated diamond anvil cell experiments. Different from the conventional SnSe and SnSe2 semiconductors, Sn3 Se4 is predicted to be metallic and exhibit a superconducting transition at low temperatures. Based on electron density and Bader charge analysis, we show that Sn3 Se4 has a mixed nature of chemical bonds. The successful synthesis of Sn3 Se4 paves the way for the discovery of other IV-VI compounds with nonconventional stoichiometries and novel properties.

  2. Pressure-Stabilized Tin Selenide Phase with an Unexpected Stoichiometry and a Predicted Superconducting State at Low Temperatures.

    PubMed

    Yu, Hulei; Lao, Wenxin; Wang, Lijuan; Li, Kuo; Chen, Yue

    2017-03-31

    Tin-selenium binary compounds are important semiconductors that have attracted much interest for thermoelectric and photovoltaic applications. As tin has a +2 or +4 oxidation state and selenium has an oxidation number of -2, only SnSe and SnSe_{2} have been observed. In this work, we show that the chemical bonding between tin and selenium becomes counterintuitive under pressures. Combining evolutionary algorithms and density functional theory, a novel cubic tin-selenium compound with an unexpected stoichiometry 3∶4 has been predicted and further synthesized in laser-heated diamond anvil cell experiments. Different from the conventional SnSe and SnSe_{2} semiconductors, Sn_{3}Se_{4} is predicted to be metallic and exhibit a superconducting transition at low temperatures. Based on electron density and Bader charge analysis, we show that Sn_{3}Se_{4} has a mixed nature of chemical bonds. The successful synthesis of Sn_{3}Se_{4} paves the way for the discovery of other IV-VI compounds with nonconventional stoichiometries and novel properties.

  3. A study of selenium nanoparticles as charge storage element for flexible semi-transparent memory devices

    NASA Astrophysics Data System (ADS)

    Alotaibi, Sattam; Nama Manjunatha, Krishna; Paul, Shashi

    2017-12-01

    Flexible Semi-Transparent electronic memory would be useful in coming years for integrated flexible transparent electronic devices. However, attaining such flexibility and semi-transparency leads to the boundaries in material composition. Thus, impeding processing speed and device performance. In this work, we present the use of inorganic stable selenium nanoparticles (Se-NPs) as a storage element and hydrogenated amorphous carbon (a-C:H) as an insulating layer in two terminal non-volatile physically flexible and semi-transparent capacitive memory devices (2T-NMDs). Furthermore, a-C:H films can be deposited at very low temperature (<40° C) on a variety of substrates (including many kinds of plastic substrates) by an industrial technique called Plasma Enhanced Chemical Vapour Deposition (PECVD) which is available in many existing fabrication labs. Self-assembled Se-NPs has several unique features including deposition at room temperature by simple vacuum thermal evaporation process without the need for further optimisation. This facilitates the fabrication of memory on a flexible substrate. Moreover, the memory behaviour of the Se-NPs was found to be more distinct than those of the semiconductor and metal nanostructures due to higher work function compared to the commonly used semiconductor and metal species. The memory behaviour was observed from the hysteresis of current-voltage (I-V) measurements while the two distinguishable electrical conductivity states (;0; and "1") were studied by current-time (I-t) measurements.

  4. Effects of Copper and Selenium Supplementation on Performance and Lipid Metabolism in Confined Brangus Bulls

    PubMed Central

    Netto, Arlindo Saran; Zanetti, Marcus Antônio; Claro, Gustavo Ribeiro Del; de Melo, Mariza Pires; Vilela, Flávio Garcia; Correa, Lisia Bertonha

    2014-01-01

    Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on performance, feed efficiency, composition of fatty acids in Longissimus dorsi (LD) muscle, and cholesterol concentration in serum and in LD muscle and enzymes activities, reduced glutathione (GSH) and oxidized glutathione (GSSG). The treatments were: i) Control, without copper (Cu) and selenium (Se) supplementation; ii) Se, 2 mg Se/kg of dry matter such as sodium selenite; iii) Cu, 40 mg Cu/kg of dry matter such as copper sulfate; iv) Se/Cu, 2 mg Se/kg of dry matter such as sodium selenite and 40 mg Cu/kg of dry matter such as copper sulfate. LD muscle fatty acid composition was not influenced by the treatments (p>0.05). The serum concentration of cholesterol was not influenced by the treatments (p>0.05), however, the concentration of cholesterol in LD was lower in cattle supplemented with copper and selenium (p<0.05). Oxidized glutathione and reduced glutathione increased (p<0.05) with Cu, Se and Se/Cu supplementation. The supplementation of copper (40 mg/kg DM) and selenium (2 mg/kg DM) altered the metabolism of lipids in confined Brangus cattle, through a decrease in cholesterol deposition in the LD, possibly by changing the ratio between reduced glutathione/oxidized glutathione. Copper and selenium supplementation improved animal performance and feed efficiency (p<0.05) when compared to the control group, providing advantages in the production system, while also benefiting consumers by reducing cholesterol concentration in the meat. PMID:25049978

  5. Selenium metabolites in urine of cancer patients receiving L-selenomethionine at high doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehnelt, Doris; Juresa, Dijana; Francesconi, Kevin A.

    2007-04-15

    We investigated, with quantitative HPLC/mass spectrometry, the selenium metabolites in urine from five cancer patients receiving high doses of L-selenomethionine over an extended period (2 x 4000 {mu}g Se/day for 7 days, then 4000 {mu}g Se/day for 21 days) as an adjunct to their normal cancer chemotherapy. Urine samples were collected at day 0 (all 5 patients), and at 2-3 additional collection times ranging from 1 to 33 days. The background selenium concentrations ranged from 12 to 55 {mu}g Se/L and increased to 870 to 4420 {mu}g Se/L for the five patients during the study. All five patients had appreciablemore » levels of selenosugars in their background urine sample, and the concentrations increased dramatically after selenium intake. Trimethylselenonium ion (TMSe), on the other hand, was generally present as only a trace metabolite in background urine, and, although the concentration of TMSe increased following selenium exposure, it became a less significant proportion relative to selenosugars. These data refute the currently accepted role of TMSe as the preferred excretion metabolite when selenium exposure is high.« less

  6. Teeth as biomonitors of selenium concentrations in tissues of beluga whales (Delphinapterus leucas).

    PubMed

    Kinghorn, April; Humphries, Murray M; Outridge, Peter; Chan, Hing Man

    2008-08-25

    Selenium (Se) is an essential element which has been shown to play an important role in protecting marine mammals against the toxic effects of mercury (Hg) and other metals. It has been suggested that metal concentration in marine mammal teeth can potentially be used as bioindicators for body burden. The objective of this study was to investigate the relationship between Se concentrations in beluga (Delphinapterus leucas) teeth and those previously measured in soft tissues (liver, kidney, muscle and muktuk). Tooth Hg concentrations are also measured, and the relationships between Se and Hg in teeth and soft tissues are examined. Se in the teeth of beluga was measured using hydride generation atomic fluorescence spectrometry (HG-AFS) and Hg in beluga teeth was measured by cold-vapour atomic absorption. Tooth Se concentrations ranged from 108 ng/g to 245 ng/g dry weight, and tooth Hg concentrations ranged from 10 to 189 ng/g dry weight. In the soft tissues, Se concentrations were highest in the liver, followed by kidney, muktuk, and muscle. There were significant correlations between tooth Se concentrations and animal age, tooth Se and liver and muscle Se, and between liver Se and animal age. The molar ratio of Hg:Se in the liver was found to be 0.70. This study is the first to measure Se in the teeth of a marine mammal species, and HG-AFS is found to be an effective technique for determining Se in beluga teeth. Tooth Se can be used as predictor for liver and muscle Se, although these relationships may be strongly influenced by the association of Se with Hg in marine mammal tissues. This study contributes to an increased understanding of the storage and metabolism of Se in marine mammals.

  7. Pre-Clinical Study for the Antidiabetic Potential of Selenium Nanoparticles.

    PubMed

    Ahmed, Hanaa H; Abd El-Maksoud, Mohamed Diaa; Abdel Moneim, Ahmed E; Aglan, Hadeer A

    2017-06-01

    This research was delineated to explore the efficacy of selenium nanoparticles delivered in liposomes (L-Se) in the mitigation of type-2 diabetes mellitus. Adult female Wistar rats were assigned into four groups: group I, the normal control group in which the rats received normal saline solution orally; group II, the diabetic control group in which the rats were injected intraperitoneally with a single dose of streptozotocin (STZ) for induction of diabetes; group III, the metformin (Met)-treated group in which the diabetic rats were treated orally with Met; and group IV, the L-Se-treated group in which the diabetic rats were treated orally with L-Se. All treatments were delivered for 21 days. Blood and pancreas tissue samples were obtained for biochemical analysis, immunohistochemical examinations, and histopathological investigation. The L-Se-treated group showed significant drop in serum glucose and pancreatic malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-α (TNF-α), and prostaglandin F2α (PGF2α) levels associated with significant rise in serum insulin and pancreatic glutathione, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) values, in addition to significant improvement in the immunohistochemical indices (insulin and glucagon). Aforementioned results are appreciated by the histopathological findings of pancreatic tissue. In conclusion, our data have brought about compelling evidence favoring the antidiabetic potency of elemental selenium nanoparticles delivered in liposomes through preservation of pancreatic β cell integrity with consequent increment of insulin secretion and in turn glucose depletion, repression of oxidative stress, potentiation of the antioxidant defense system, and inhibition of pancreatic inflammation.

  8. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata.

    PubMed

    Bañuelos, Gary S; Arroyo, Irvin; Pickering, Ingrid J; Yang, Soo In; Freeman, John L

    2015-01-01

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing the Se content in food crops in Se-deficient regions of the world. In this study we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with ground shoots of the Se-hyperaccumulator Stanleyapinnata. With increasing application rates of S. pinnata, total plant Se concentrations increased to nutritionally ideal levels inside edible parts. Selenium compounds in aqueous extracts were analyzed by SAX-HPLC-ICPMS and identified as a variety of mainly organic-Se forms. Together with bulk Se K-edge X-ray absorption near-edge structure (XANES) analysis performed on broccoli florets, carrot roots and shoots, dried ground S. pinnata, and the amended soil at post-plant, we demonstrate that Se-enriched S. pinnata is valuable as a soil amendment for enriching broccoli and carrots with healthful forms of organic-Se. Published by Elsevier Ltd.

  9. Photon-induced selenium migration in TiSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lioi, David B.; Gosztola, David J.; Wiederrecht, Gary P.

    2017-02-20

    TiSe 2 is a member of the transition metal dichalcogenide family of layered van der Waals materials which exhibits some distinct electronic and optical properties. Here, we perform Raman spectroscopy and microscopy studies on single crystal TiSe 2 to investigate thermal and photon-induced defects associated with diffusion of selenium to the surface. Additional phonon peaks near 250 cm -1 are observed in the laser- irradiated regions that are consistent with formation of amorphous and nanocrys- talline selenium on the surface. Temperature dependent studies of the threshold temperature and laser intensity necessary to initiate selenium migration to the surface show anmore » activation barrier for the process of 1.55 eV. The impact of these results on the properties of strongly correlated electron states in TiSe 2 are discussed« less

  10. Selenium and breast cancer risk: A prospective nested case-control study on serum selenium levels, smoking habits and overweight.

    PubMed

    Sandsveden, Malte; Manjer, Jonas

    2017-11-01

    Previous research has not been conclusive regarding the association between selenium (Se) and breast cancer. This study was conducted to clarify if there is an association between prediagnostic serum Se levels and breast cancer risk. A population based cohort, the Malmö Diet and Cancer Study, was used and linked with the Swedish cancer registry up to 31 December 2013. Our study included 1,186 women with breast cancer and an equal number of controls. Selenium levels were analysed from stored serum samples. The included individuals were divided into quartiles based on Se value and we compared breast cancer cases with controls using logistic regression yielding odds ratios (OR) with 95% confidence intervals. Serum Se was also analysed as a continuous variable regarding breast cancer risk. The analyses were adjusted for established risk factors and stratified on smoking status and body mass index (BMI). When comparing the highest Se quartile with the lowest, the adjusted OR for breast cancer was 0.98 (0.75-1.26). With selenium as a continuous variable the adjusted OR was 1.00 (1.00-1.01) per 10 ng/ml. When comparing the highest with the lowest Se quartile in women with BMI > 25 kg/m 2 the adjusted OR was 0.77 (0.53-1.14). We conclude that it is unlikely that prediagnostic serum selenium is overall associated with breast cancer risk and no modifying effect from BMI or smoking was seen. © 2017 UICC.

  11. Comparative effects of two different forms of selenium on oxidative stress biomarkers in healthy men: a randomized clinical trial.

    PubMed

    Richie, John P; Das, Arun; Calcagnotto, Ana M; Sinha, Raghu; Neidig, Wanda; Liao, Jiangang; Lengerich, Eugene J; Berg, Arthur; Hartman, Terryl J; Ciccarella, Amy; Baker, Aaron; Kaag, Matthew G; Goodin, Susan; DiPaola, Robert S; El-Bayoumy, Karam

    2014-08-01

    Epidemiologic and laboratory studies indicate that dietary selenium protects against prostate cancer. Results from clinical trials suggest that selenium-enriched yeast (SY) but not selenomethionine (SeMet) may be effective at reducing prostate cancer risk. Our objectives were to directly compare for the first time the effects of SeMet and SY on prostate cancer relevant biomarkers in men. We performed a randomized double blind, placebo-controlled trial of SY (200 or 285 μg/day) and SeMet (200 μg/day) administered for 9 months in 69 healthy men. Primary endpoints included blood levels of selenium-containing compounds and oxidative stress biomarkers [urine 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin-F2α (8-iso-PGF2α) and blood glutathione (GSH)]. Secondary endpoints included plasma glucose and PSA levels. Compliance was high in all groups (>95%). Plasma selenium levels were increased 93%, 54%, and 86% after 9 months in SeMet and low- and high-dose SY groups, respectively, and returned to baseline levels after a 3-month washout (P < 0.05). Levels of 8-OHdG and 8-iso-PGF2α were decreased 34% and 28%, respectively, after 9 months in the high-dose SY group (P < 0.05). These decreases were greatest in individuals with low baseline plasma levels of selenium (<127 ng/mL). No changes in serum PSA or blood glucose and GSH were observed. Overall, we showed for the first time, reductions in biomarkers of oxidative stress following supplementation with SY but not SeMet in healthy men. These findings suggest that selenium-containing compounds other than SeMet may account for the decrease in oxidative stress. ©2014 American Association for Cancer Research.

  12. Comparative effects of two different forms of selenium on oxidative stress biomarkers in healthy men: a randomized clinical trial

    PubMed Central

    Richie, John P.; Das, Arun; Calcagnotto, Ana M.; Sinha, Raghu; Neidig, Wanda; Liao, Jiangang; Lengerich, Eugene J.; Berg, Arthur; Hartman, Terryl J.; Ciccarella, Amy; Baker, Aaron; Kaag, Matthew G.; Goodin, Susan; DiPaola, Robert S.; El-Bayoumy, Karam

    2014-01-01

    Epidemiological and laboratory studies indicate that dietary selenium protects against prostate cancer. Results from clinical trials suggest that selenium-enriched yeast (SY) but not selenomethionine (SeMet) may be effective at reducing prostate cancer risk. Our objectives were to directly compare for the first time the effects of SeMet and SY on prostate cancer relevant biomarkers in men. We performed a randomized double blind, placebo-controlled trial of SY (200 or 285 µg/day) and SeMet (200 µg/day) administered for 9 months in 69 healthy men. Primary endpoints included blood levels of selenium-containing compounds and oxidative stress biomarkers (urine 8-hydroxy-2’-deoxyguanosine [8-OHdG] and 8-iso-prostaglandin-F2α [8-iso-PGF2α] and blood glutathione [GSH]). Secondary endpoints included plasma glucose and PSA levels. Compliance was high in all groups (>95%). Plasma selenium levels were increased 93%, 54%, and 86% after 9 months in SeMet and low and high dose SY groups, respectively, and returned to baseline levels after a 3 month washout (P<0.05). Levels of 8-OHdG and 8-iso-PGF2α, were decreased 34% and 28%, respectively, after 9 months in the high dose SY group (P<0.05). These decreases were greatest in individuals with low baseline plasma levels of selenium (<127 ng/ml). No changes in serum PSA or blood glucose and GSH were observed. Overall, we showed for the first time, reductions in biomarkers of oxidative stress following supplementation with SY but not SeMet in healthy men. These findings suggest that selenium-containing compounds other than SeMet may account for the decrease in oxidative stress. PMID:24938534

  13. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors.

    PubMed

    Kolmas, Joanna; Pajor, Kamil; Pajchel, Lukasz; Przekora, Agata; Ginalska, Grażyna; Oledzka, Ewa; Sobczak, Marcin

    2017-01-01

    Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1-1.5 mm in 2 ways: during the granules' preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13 C and 31 P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a "burst release" probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals' interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the "burst release" of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well.

  14. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors

    PubMed Central

    Kolmas, Joanna; Pajor, Kamil; Pajchel, Lukasz; Przekora, Agata; Ginalska, Grażyna; Oledzka, Ewa; Sobczak, Marcin

    2017-01-01

    Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1–1.5 mm in 2 ways: during the granules’ preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13C and 31P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a “burst release” probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals’ interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the “burst release” of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well. PMID:28848343

  15. Toxicokinetics and pathology of plant-associated acute selenium toxicosis in steers

    USDA-ARS?s Scientific Manuscript database

    Sixteen of about 500 yearling steers died of acute selenium (Se) toxicosis after grazing Se contaminated range for only a few days. Field studies and chemical analyses identified the predominant toxic plant as western aster (Aster ascendens), which contained over 4,000 ppm Se. Several dead animals...

  16. A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos.

    PubMed

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2016-01-01

    Over the last 50 years, compelling evidence has accumulated on the beneficial role of selenium in human health. In the present study, different proteins were evaluated as reducing agents for the eco-friendly synthesis of selenium nanoparticles from an aqueous solution of sodium selenite. This method is a simple, low cost green synthesis alternative to chemical synthesis. The high conversion of selenium ions to selenium nanoparticles (SeNPs) was achieved by a reaction mixture of 0.1 g bovine serum albumin and 0.1 g sodium selenite at a reaction temperature of 121°C for 20 min duration. The selenium nanoparticles were characterized by fourier transform infrared (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The FTIR spectral bands were sharp with strong absorption peaks at 1649 and 1551 cm(-1). SEM analysis of the synthesized selenium nanoparticles clearly showed the spherical shape with an average size ranging from 500 to 600 nm. The toxicity of SeNPs was evaluated using zebrafish embryos as a model system. SeNPs induced malformations in zebrafish embryos in a concentration-dependent manner. Selenium nanoparticles at 15-25 μg/ml concentration caused pericardial edema, tail malformation and decrease in heart rate in zebrafish embryos. Treatments with lower concentrations did not alter the heart rate or display any heart abnormalities. This study underlines the importance of identifying optimal SeNP concentration that could have potential therapeutic applications.

  17. Ni(II)-tetrahedral complexes: Characterization, antimicrobial properties, theoretical studies and a new family of charge-transfer transitions

    NASA Astrophysics Data System (ADS)

    Sarı, Nurşen; Şahin, Songül Çiğdem; Öğütcü, Hatice; Dede, Yavuz; Yalcin, Soydan; Altundaş, Aliye; Doğanay, Kadir

    2013-04-01

    A new amine containing selenium and their five imine, (SeSchX)(X: -H, F, Cl, Br, CH3), and Ni (II) complexes, [Ni(SeSchX)(H2O)2]Cl/[Ni(SeSchCl)(H2O)Cl], were synthesized. The compounds were characterized by means of elemental analyses, 13C and 1H NMR (for imine), FT-IR, UV-Visible spectroscopy, TGA/DTA and elemental analyses. [Ni(SeSchCl)(H2O)Cl] complex from Ni(II) complexes changes color from yellow to orange in the range pH 5-7. [Ni(SeSchCl)(H2O)Cl] complex has ligand-to-metal charge-transfer (LMCT) transitions in the basic medium. Excitation characteristics and energetic of [Ni(SeSchCl)(H2O)Cl] complex, examined via TD-DFT calculations, reveals transitions of LMCT and π → π* character that matches the experimental values. [Ni(SeSchCl)(H2O)Cl] complex showed the highest antibacterial activity when compared to other complexes reported in this work.

  18. The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb.

    PubMed

    Steenstra, Edgar S; Lin, Yanhao; Dankers, Dian; Rai, Nachiketa; Berndt, Jasper; Matveev, Sergei; van Westrenen, Wim

    2017-11-06

    The Moon bears a striking compositional and isotopic resemblance to the bulk silicate Earth (BSE) for many elements, but is considered highly depleted in many volatile elements compared to BSE due to high-temperature volatile loss from Moon-forming materials in the Moon-forming giant impact and/or due to evaporative loss during subsequent magmatism on the Moon. Here, we use high-pressure metal-silicate partitioning experiments to show that the observed low concentrations of volatile elements sulfur (S), selenium (Se), tellurium (Te), and antimony (Sb) in the silicate Moon can instead reflect core-mantle equilibration in a largely to fully molten Moon. When incorporating the core as a reservoir for these elements, their bulk Moon concentrations are similar to those in the present-day bulk silicate Earth. This suggests that Moon formation was not accompanied by major loss of S, Se, Te, Sb from Moon-forming materials, consistent with recent indications from lunar carbon and S isotopic compositions of primitive lunar materials. This is in marked contrast with the losses of other volatile elements (e.g., K, Zn) during the Moon-forming event. This discrepancy may be related to distinctly different cosmochemical behavior of S, Se, Te and Sb within the proto-lunar disk, which is as of yet virtually unconstrained.

  19. Toxicity of organic selenium in the diet to chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Buhl, Kevin J.; Faerber, Neil L.; Bullard, Fern A.; Wiedmeyer, Raymond H.

    1990-01-01

    The toxicity of two organoselenium diets was evaluated in 90- to 120-d partial life cycle tests with two life stages of chinook salmon (Oncorhynchus tshawytscha Walbaum). One of the diets contained fish meal made from high-selenium mosquitofish (Gambusia affinis Baird and Girard) collected from the selenium-laden San Luis Drain, California (here termed SLD diet) and the other contained meal made from low-selenium mosquitofish (collected from a reference site) fortified with selenomethionine. A 90-d study was conducted with swim-up larvae in a water-simulating dilution of San Luis Drain water in a standardized fresh water; and a 120-d study was conducted with fingerlings 70-mm long in a water of similar quality but prepared with a standardized brackish water. After 90 d of exposure in the freshwater study, survival was reduced in fish fed ≥9.6 μg Se/g of either diet, and growth was reduced in fish fed ≥5.3 μg Se/g of SLD diet or ≥18.2 μg Se/g of selenomethionine diet. Reduced fish growth, whole-body concentrations of selenium and survival were strongly correlated to concentrations of selenium in both diets. After 120 d of exposure in the brackish-water study, survival was unaffected but growth was reduced in fish fed ≥18.2 μg Se/g of SLD diet or 35.4 μg Se/g of selenomethionine diet. After 120 d of dietary exposure, survival during a 10-d seawater challenge test was reduced in fish fed 35.4 μg Se/g of either diet. In this second dietary study, concentration—response relations were observed in both dietary treatments between the dietary concentrations of selenium and all three characteristics — fish growth, whole-body concentrations of selenium and survival in seawater.

  20. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions

    PubMed Central

    2014-01-01

    Background Selenite (SeO32−) oxyanion shows severe toxicity to biota. Different bacterial strains exist that are capable of reducing SeO32− to non-toxic elemental selenium (Se0), with the formation of Se nanoparticles (SeNPs). These SeNPs might be exploited for technological applications due to their physico-chemical and biological characteristics. The present paper discusses the reduction of selenite to SeNPs by a strain of Bacillus sp., SeITE01, isolated from the rhizosphere of the Se-hyperaccumulator legume Astragalus bisulcatus. Results Use of 16S rRNA and GyrB gene sequence analysis positioned SeITE01 phylogenetically close to B. mycoides. On agarized medium, this strain showed rhizoid growth whilst, in liquid cultures, it was capable of reducing 0.5 and 2.0 mM SeO32− within 12 and 24 hours, respectively. The resultant Se0 aggregated to form nanoparticles and the amount of Se0 measured was equivalent to the amount of selenium originally added as selenite to the growth medium. A delay of more than 24 hours was observed between the depletion of SeO32 and the detection of SeNPs. Nearly spherical-shaped SeNPs were mostly found in the extracellular environment whilst rarely in the cytoplasmic compartment. Size of SeNPs ranged from 50 to 400 nm in diameter, with dimensions greatly influenced by the incubation times. Different SeITE01 protein fractions were assayed for SeO32− reductase capability, revealing that enzymatic activity was mainly associated with the membrane fraction. Reduction of SeO32− was also detected in the supernatant of bacterial cultures upon NADH addition. Conclusions The selenite reducing bacterial strain SeITE01 was attributed to the species Bacillus mycoides on the basis of phenotypic and molecular traits. Under aerobic conditions, the formation of SeNPs were observed both extracellularly or intracellullarly. Possible mechanisms of Se0 precipitation and SeNPs assembly are suggested. SeO32− is proposed to be enzimatically reduced to Se0 through redox reactions by proteins released from bacterial cells. Sulfhydryl groups on peptides excreted outside the cells may also react directly with selenite. Furthermore, membrane reductases and the intracellular synthesis of low molecular weight thiols such as bacillithiols may also play a role in SeO32− reduction. Formation of SeNPs seems to be the result of an Ostwald ripening mechanism. PMID:24606965

  1. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Koenig, A.E.; Lowers, H.A.; Ruppert, L.F.

    2012-01-01

    Pennsylvanian coals in the Appalachian Basin host pyrite that is locally enriched in potentially toxic trace elements such as As, Se, Hg, Pb, and Ni. A comparison of pyrite-rich coals from northwestern Alabama, eastern Kentucky, and West Virginia reveals differences in concentrations and mode of occurrence of trace elements in pyrite. Pyrite occurs as framboids, dendrites, or in massive crystalline form in cell lumens or crosscutting veins. Metal concentrations in pyrite vary over all scales, from microscopic to mine to regional, because trace elements are inhomogeneously distributed in the different morphological forms of pyrite, and in the multiple generations of sulfide mineral precipitates. Early diagenetic framboidal pyrite is usually depleted in As, Se, and Hg, and enriched in Pb and Ni, compared to other pyrite forms. In dendritic pyrite, maps of As distribution show a chemical gradient from As-rich centers to As-poor distal branches, whereas Se concentrations are highest at the distal edges of the branches. Massive crystalline pyrite that fills veins is composed of several generations of sulfide minerals. Pyrite in late-stage veins commonly exhibits As-rich growth zones, indicating a probable epigenetic hydrothermal origin. Selenium is concentrated at the distal edges of veins. A positive correlation of As and Se in pyrite veins from Kentucky coals, and of As and Hg in pyrite-filled veins from Alabama coals, suggests coprecipitation of these elements from the same fluid. In the Kentucky coal samples (n = 18), As and Se contents in pyrite-filled veins average 4200 ppm and 200 ppm, respectively. In Alabama coal samples, As in pyrite-filled veins averages 2700 ppm (n = 34), whereas As in pyrite-filled cellular structures averages 6470 ppm (n = 35). In these same Alabama samples, Se averages 80 ppm in pyrite-filled veins, but was below the detection limit in cell structures. In samples of West Virginia massive pyrite, As averages 1700 ppm, and Se averages 270 ppm (n = 24). The highest concentration of Hg (≤ 102 ppm) is in Alabama pyrite veins. Improved detailed descriptions of sulfide morphology, sulfide mineral paragenesis, and trace-element concentration and distribution allow more informed predictions of: (1) the relative rate of release of trace elements during weathering of pyrite in coals, and (2) the relative effectiveness of various coal-cleaning procedures of removing pyrite. For example, trace element-rich pyrite has been shown to be more soluble than stoichiometric pyrite, and fragile fine-grained pyrite forms such as dendrites and framboids are more susceptible to dissolution and disaggregation but less amenable to removal during coal cleaning.

  2. Comparing immune and anti-oxidant effects of selenium sources by in ovo treatment on post-hatch experimental avian necrotic enteritis

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to investigate the effects of in ovo injection of selenium (Se) from 3 different sources on modulating the immune and antioxidant responses in broiler chickens in experimental necrotic enteritis (NE). SE contents of Sodium selenite (Na2SeO3 [SS]), Se-enriched yeast (YS), and...

  3. Chemical Form and Distribution of Selenium and Sulfur in the Selenium Hyperaccumulator Astragalus bisulcatus1

    PubMed Central

    Pickering, Ingrid J.; Wright, Carrie; Bubner, Ben; Ellis, Danielle; Persans, Michael W.; Yu, Eileen Y.; George, Graham N.; Prince, Roger C.; Salt, David E.

    2003-01-01

    In its natural habitat, Astragalus bisulcatus can accumulate up to 0.65% (w/w) selenium (Se) in its shoot dry weight. X-ray absorption spectroscopy has been used to examine the selenium biochemistry of A. bisulcatus. High concentrations of the nonprotein amino acid Se-methylseleno-cysteine (Cys) are present in young leaves of A. bisulcatus, but in more mature leaves, the Se-methylseleno-Cys concentration is lower, and selenate predominates. Seleno-Cys methyltransferase is the enzyme responsible for the biosynthesis of Se-methylseleno-Cys from seleno-Cys and S-methyl-methionine. Seleno-Cys methyltransferase is found to be expressed in A. bisulcatus leaves of all ages, and thus the biosynthesis of Se-methylseleno-Cys in older leaves is limited earlier in the metabolic pathway, probably by an inability to chemically reduce selenate. A comparative study of sulfur (S) and Se in A. bisulcatus using x-ray absorption spectroscopy indicates similar trends for oxidized and reduced Se and S species, but also indicates that the proportions of these differ significantly. These results also indicate that sulfate and selenate reduction are developmentally correlated, and they suggest important differences between S and Se biochemistries. PMID:12644695

  4. Effect of atmospheric mercury deposition on selenium accumulation in rice (Oryza sativa L.) at a mercury mining region in southwestern China.

    PubMed

    Zhang, Chao; Qiu, Guangle; Anderson, Christopher W N; Zhang, Hua; Meng, Bo; Liang, Liang; Feng, Xinbin

    2015-03-17

    Selenium (Se) is an important trace element for human nutrition and has an interactive effect on mercury (Hg) uptake by plants and Hg toxicity in animals. Rice (Oryza sativa L.) is the dominant source of dietary Se in China, however the effect of soil Hg contamination on the Se concentration in rice is unknown. We collected 29 whole rice plant samples and corresponding soils from an active artisanal mercury mining area and an abandoned commercial mercury mining area. The soil Se concentration was similar across the two mining areas and greater than the background concentration for China. However, the Se concentration in rice grain was dramatically different (artisanal area 51±3 ng g(-1); abandoned area 235±99 ng g(-1)). The total gaseous mercury (TGM) concentration in ambient air at the artisanal mining site was significantly greater than at the abandoned area (231 and 34 ng m(-3), respectively) and we found a negative correlation between TGM and the Se concentration in grain for the artisanal area. Principal component analysis indicated that the source of Se in rice was the atmosphere for the artisanal area (no contribution from soil), and both the atmosphere and soil for the abandoned area. We propose that TGM falls to soil and reacts with Se, inhibiting the translocation of Se to rice grain. Our data suggest that Se intake by the artisanal mining community is insufficient to meet Se dietary requirements, predisposing this community to greater risk from Hg poisoning.

  5. XAS Studies of Se Speciation in Selenite-Fed Rats

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.

    2014-01-01

    The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824

  6. Selenium modification of β-lactoglobulin (β-Lg) and its biological activity.

    PubMed

    Zheng, GuoQiang; Liu, HaoYu; Zhu, ZhenYuan; Zheng, Jie; Liu, AnJun

    2016-08-01

    β-Lg is a major whey protein in cow's milk. This study was aimed to find a new kind of organic selenium compound synthesized with β-Lg and selenium dioxide as raw materials under the conditions of vacuum and low temperature. Fourier transformed infrared spectroscopy revealed that seleno-β-lactoglobulin (Se-β-Lg) displayed a strong band at 878cm(-1), belonging to SeO. Circular dichroism spectra results indicated that the conformation of Se-β-Lg was transformed and α-helical, and unordered structures were increased by 9% and 11.2%, respectively, while β-sheet and β-turn were reduced by 14.2% and 6%, respectively. Electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry results showed that there were two protein bands (1-Seβ-Lg and 2-Seβ-Lg) in Se-β-Lg, only one β-Lg connected with selenate in 1-Seβ-Lg, but two β-Lgs, connected to each other, and with selenate, in 2-Seβ-Lg. Morphological observation and hematoxylin and eosin staining indicated that Se-β-lg could induce K562 cell apoptosis. These results indicated that Se-β-Lg could be synthesized by selenium conjugating β-Lg and it had antitumor activity. Copyright © 2016. Published by Elsevier Ltd.

  7. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers.

    PubMed

    Cai, S J; Wu, C X; Gong, L M; Song, T; Wu, H; Zhang, L Y

    2012-10-01

    This study was conducted to investigate the effect of nano-selenium (nano-Se) on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. A total of five hundred forty 1-d-old male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The 5 treatments consisted of corn-soybean meal-based diets supplemented with 0.0, 0.3, 0.5, 1.0, or 2.0 mg/kg of nano-Se. The selenium content of the unsupplemented control diet was 0.09 mg/kg for the starter phase (0 to 21 d) and 0.08 mg/kg for the grower phase (22 to 42 d). There were no significant differences (P > 0.05) in performance, meat color, or immune organ index (thymus, bursa, and spleen) due to supplementation with nano-Se. On d 42, a significant quadratic effect of nano-Se was observed on glutathione peroxidase activity, free radical inhibition, contents of IgM, glutathione, and malondialdehyde in serum, on glutathione peroxidase activity, free radical inhibition in liver, and on glutathione peroxidase activity in muscle, with birds fed 0.30 mg/kg of nano-Se exhibiting the best effect and birds fed 2.0 mg/kg of nano-Se showing the worst effect on these parameters. Liver and muscle selenium content increased linearly and quadratically as the dietary nano-Se level increased (P < 0.01), and reached the highest value when 2.0 mg/kg of nano-Se was fed. Based on a consideration of all experiment indexes, 0.3 to 0.5 mg/kg is suggested to be the optimum level of supplementation of nano-Se, and the maximum supplementation of nano-Se could not be more than 1.0 mg/kg in broilers.

  8. Ecology and Biotechnology of Selenium-Respiring Bacteria

    PubMed Central

    2015-01-01

    SUMMARY In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  9. Ecology and biotechnology of selenium-respiring bacteria.

    PubMed

    Nancharaiah, Y V; Lens, P N L

    2015-03-01

    In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata)

    PubMed Central

    Smoleń, Sylwester; Kowalska, Iwona; Czernicka, Małgorzata; Halka, Mariya; Kęska, Kinga; Sady, Włodzimierz

    2016-01-01

    Iodine (I) and selenium (Se) are included in the group of beneficial elements. They both play important roles in humans and other animals, particularly in the regulation of thyroid functioning. A substantial percentage of people around the world suffer from health disorders related to the deficiency of these elements in the diet. Salicylic acid (SA) is a compound similar to phytohormones and is known to improve the efficiency of I biofortification of plants. The influence of SA on Se enrichment of plants has not, however, been recognized together with its effect on simultaneous application of I and Se to plants. Two-year studies (2014–2015) were conducted in a greenhouse with hydroponic cultivation of lettuce in an NFT (nutrient film technique) system. They included the application of I (as KIO3), Se (as Na2SeO3) and SA into the nutrient solution. KIO3 was used at a dose of 5 mg I⋅dm-3 (i.e., 39.4 μM I), while Na2SeO3 was 0.5 mg Se⋅dm-3 (i.e., 6.3 μM Se). SA was introduced at three doses: 0.1, 1.0, and 10.0 mg⋅dm-3 nutrient solutions, equivalent to 0.724, 7.24, and 72.4 μM SA, respectively. The tested combinations were as follows: (1) control, (2) I + Se, (3) I + Se + 0.1 mg SA⋅dm-3, (4) I + Se + 1.0 mg SA⋅dm-3 and (5) I + Se + 10.0 mg SA⋅dm-3. The applied treatments had no significant impact on lettuce biomass (leaves and roots). Depending on the dose, a diverse influence of SA was noted with respect to the efficiency of I and Se biofortification; chemical composition of leaves; and mineral nutrition of lettuce plants, including the content of macro- and microelements and selenocysteine methyltransferase (SMT) gene expression. SA application at all tested doses comparably increased the level of selenomethionine (SeMet) and decreased the content of SA in leaves. PMID:27803709

  11. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)--consequences to human health.

    PubMed

    Jarzyńska, Grażyna; Falandysz, Jerzy

    2011-07-01

    Concentrations, composition and interrelationships of selenium and metallic elements (Ag, Ba, Cd, Co, Cr, Cs, Cu, Ga, Mn, Mo, Pb, Rb, Sb, Sr, Tl, V and Zn) have been examined in muscle and organ meats of Red Deer hunted in Poland. The analytical data obtained were also discussed in terms of Se supplementation and deficit to Deer as well as the benefits and risk to humans associated with the essential and toxic metals intake resulting from consumption of Deer meat and products. These elements were determined in 20 adult animals of both sexes that were obtained in the 2000/2001 hunting season from Warmia and Mazury in the north-eastern part of Poland. The whole kidneys contained Ba, Cd, Cr, Ga, Pb, Se, Sr and Tl at statistically greater concentrations than liver or muscle tissue from the same animal. Liver showed statistically greater concentrations of Ag, Co, Cu, Mn and Mo than kidneys or muscle tissue, and muscle tissue was richer in Zn, when compared to the kidneys or liver. Cs and Rb were similarly distributed between all three tissue types, while V was less abundant in liver than kidneys or muscle tissue. There were significant associations between some metallic elements retained in Red Deer demonstrated by Principal Component Analysis (PCA) of the data set. In organ and muscle meats (kidneys, liver and muscle tissue considered together) the first principal component (PC1) was strongly influenced by positively correlated variables describing Se, Ba and Cd and negatively correlated variables describing Ag, Co, Cs, Mn, Pb, Tl and V; PC2, respectively, by Cu, Mn and Mo (+) and Zn (-); PC3 by Ga (+) and PC4 by Sb (+). Selenium occurred in muscle tissue, liver and kidneys at median concentrations of 0.13, 0.19 and 4.0mg/g dry weight, respectively. These values can be defined as marginally deficient (< 0.6mg Se/kg liver dw) or satisfactory (≤ 3.0mg Se/kg kidneys dw) for the amount required to maintain the Deer's body condition and health, depending on the criterion for supplementation used. In terms of human nutritional needs, a relatively high selenium content of kidneys can be beneficial. The muscle meat, liver and kidneys of Red Deer can be considered as a very good source of essential Co, Cr, Cu, Mo, Mn, Se and Zn in the human diet. Lead is generally considered as toxic, and the concentrations found in Red Deer (via the food chain intake) were well below the European Union tolerance limit. Pb from the lead bullets can always create food hygienic problem, if not well recognized during sanitary inspection, and this was noted for one muscle meat sample in this study (5% surveyed). There is no tolerance limit of Cd in game animal meats. The median values of Cd noted in fresh muscle tissue, liver and whole kidneys were 0.07, 0.18, and 3.3mg/kg wet weight, respectively. Cd exists as a chemical element present at trace levels in plants and mushrooms in Deer's food chain in background (uncontaminated) areas. When these are consumed by the Deer, the amount of Cd sequestered with metallothioneins and retained in the organ and muscle meat in this study is low enough to be considered safe for human consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Speciation and weathering of selenium in upper cretaceous chalk and shale from South Dakota and Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Kulp, Thomas R.; Pratt, Lisa M.

    2004-09-01

    In geologic materials, petroleum, and the environment, selenium occurs in various oxidation states (VI, IV, 0, -II), mineralized forms, and organo-Se complexes. Each of these forms is characterized by specific chemical and biochemical properties that control the element's solubility, toxicity, and environmental behavior. The organic rich chalks and shales of the Upper Cretaceous Niobrara Formation and the Pierre Shale in South Dakota and Wyoming are bentoniferous stratigraphic intervals characterized by anomalously high concentrations of naturally occurring Se. Numerous environmental problems have been associated with Se derived from these geological units, including the development of seleniferous soils and vegetation that are toxic to livestock and the contamination of drinking water supplies by Se mobilized in groundwater. This study describes a sequential extraction protocol followed by speciation treatments and quantitative analysis by Hydride Generation-Atomic Absorption Spectroscopy. This protocol was utilized to investigate the geochemical forms and the oxidation states in which Se occurs in these geologic units. Organic Se and di-selenide minerals are the predominant forms of Se present in the chalks, shales, and bentonites, but distinctive variations in these forms were observed between different sample types. Chalks contain significantly greater proportions of Se in the form of di-selenide minerals (including Se associated with pyrite) than the shales where base-soluble, humic, organo-Se complexes are more prevalent. A comparison between unweathered samples collected from lithologic drill cores and weathered samples collected from outcrop suggest that the humic, organic-Se compounds in shale are formed during oxidative weathering and that Se oxidized by weathering is more likely to be retained by shale than by chalk. Selenium enrichment in bentonites is inferred to result from secondary processes including the adsorption of Se mobilized by groundwater from surrounding organic rich sediments to clay mineral and iron hydroxide surfaces, as well as microbial reduction of Se within the bentonitic intervals. Distinct differences are inferred for the biogeochemical pathways that affected sedimentary Se sequestration during periods of chalk accumulation compared to shale deposition in the Cretaceous seaway. Mineralogy of sediment and the nature of the organic matter associated with each of these rock types have important implications for the environmental chemistry and release of Se to the environment during weathering.

  13. The protection of selenium against cadmium-induced cytotoxicity via the heat shock protein pathway in chicken splenic lymphocytes.

    PubMed

    Chen, Xi; Zhu, Yi-Hao; Cheng, Xin-Yue; Zhang, Zi-Wei; Xu, Shi-Wen

    2012-12-07

    Cadmium (Cd) is a heavy metal that poses a hazard to animal health due to its toxicity. Selenium (Se) is an important nutritional trace element. However, the potential protective effects of Se against Cd-induced toxicity remain to be elucidated. To investigate the cytotoxicity of Cd on bird immunocytes in vitro and the protective effects of Se against exposure to Cd, chicken splenic lymphocytes received Cd (10⁻⁶ mol/L), Se (10⁻⁷ mol/L), and the mixture of 10⁻⁷ mol/L Se and 10⁻⁶ mol/L Cd and were incubated for 12 h, 24 h, 36 h, 48 h, respectively. The transcription of heat shock protein (HSP) 27, HSP40, HSP60, HSP70 and HSP90 mRNA was tested by fluorescence quantitative PCR. The results showed that the mRNA expression of HSPs exposed to 10⁻⁶ mol/L Cd showed a sustained decrease at 12-48 h exposure. A statistically significant increase in the mRNA expression of HSPs in the case of Se group was observed, as compared to the control group of chicken splenic lymphocytes. Concomitantly, treatment of chicken splenic lymphocytes with Se in combination with Cd enhanced the mRNA expression of HSPs which were reduced by Cd treatment. This indicated that the protective effect of Se against the toxicity of Cd might, at least partially, be attributed to stimulation of the level of HSPs.

  14. Selenium deficiency occurs in some patients with moderate-to-severe cirrhosis and can be corrected by administration of selenate but not selenomethionine: a randomized controlled trial123

    PubMed Central

    Burk, Raymond F; Hill, Kristina E; Motley, Amy K; Byrne, Daniel W; Norsworthy, Brooke K

    2015-01-01

    Background: Selenomethionine, which is the principal dietary form of selenium, is metabolized by the liver to selenide, which is the form of the element required for the synthesis of selenoproteins. The liver synthesizes selenium-rich selenoprotein P (SEPP1) and secretes it into the plasma to supply extrahepatic tissues with selenium. Objectives: We conducted a randomized controlled trial to determine whether cirrhosis is associated with functional selenium deficiency (the lack of selenium for the process of selenoprotein synthesis even though selenium intake is not limited) and, if it is, whether the deficiency is associated with impairment of selenomethionine metabolism. Design: Patients with Child-Pugh (C-P) classes A, B, and C (mild, moderate, and severe, respectively) cirrhosis were supplemented with a placebo or supranutritional amounts of selenium as selenate (200 or 400 μg/d) or as selenomethionine (200 μg/d) for 4 wk. Plasma SEPP1 concentration and glutathione peroxidase (GPX) activity, the latter due largely to the selenoprotein GPX3 secreted by the kidneys, were measured before and after supplementation. Results: GPX activity was increased more by both doses of selenate than by the placebo in C-P class B patients. The activity was not increased more by selenomethionine supplementation than by the placebo in C-P class B patients. Plasma selenium was increased more by 400 μg Se as selenate than by the placebo in C-P class C patients. Within the groups who responded to selenate, there was a considerable variation in responses. Conclusion: These results indicate that severe cirrhosis causes mild functional selenium deficiency in some patients that is associated with impaired metabolism of selenomethionine. This trial was registered at clinicaltrials.gov as NCT00271245. PMID:26468123

  15. Selenium quantum dots: Preparation, structure, and properties

    NASA Astrophysics Data System (ADS)

    Qian, Fuli; Li, Xueming; Tang, Libin; Lai, Sin Ki; Lu, Chaoyu; Lau, Shu Ping

    2017-01-01

    An interesting class of low-dimensional nanomaterials, namely, selenium quantum dots (SeQDs), which are composed of nano-sized selenium particles, is reported in this study. The SeQDs possess a hexagonal crystal structure. They can be synthesized in large quantity by ultrasound liquid-phase exfoliation using NbSe2 powders as the source material and N-Methyl-2-pyrrolidone (NMP) as the dispersant. During sonication, the Nb-Se bonds dissociate; the SeQDs are formed, while niobium is separated by centrifugation. The SeQDs have a narrow diameter distribution from 1.9 to 4.6 nm and can be dispersed with high stability in NMP without the need for passivating agents. They exhibit photoluminescence properties that are expected to find useful applications in bioimaging, optoelectronics, as well as nanocomposites.

  16. Evaluation of simultaneous reduction and transport of selenium in saturated soil columns

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Frankenberger, William T.; Jury, William A.

    1999-03-01

    Speciation plays an important role in determining the overall leachability of selenium in soil. In this study we present a mathematical model and results of miscible displacement experiments that were conducted to evaluate simultaneous reduction and transport of selenate in saturated soil columns. The experiments were carried out in organic amended (compost manure or gluten) or unamended soil, with O2-sparged or nonsparged influent solution. In all columns, reduction of selenate was fast enough to produce selenite flux in the effluent and elemental Se in the soil profile during a mean residence time of ˜30 hours. Reduction was accelerated in the presence of organic amendments and under low O2 concentrations, resulting in an increased retardation of selenium transport as a whole. The results of our experiments show that although selenate does not sorb to solid surfaces during transport, it reduces rapidly to forms that are strongly retarded. On the basis of simulation with the consecutive reaction and transport model using parameters derived from this study, selenium is expected to be retained near the soil surface, even under extreme leaching conditions.

  17. Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract

    NASA Astrophysics Data System (ADS)

    Li, Shikuo; Shen, Yuhua; Xie, Anjian; Yu, Xuerong; Zhang, Xiuzhen; Yang, Liangbao; Li, Chuanhao

    2007-10-01

    We describe the formation of amorphous selenium (α-Se)/protein composites using Capsicum annuum L extract to reduce selenium ions (SeO32-) at room temperature. The reaction occurs rapidly and the process is simple and easy to handle. A protein with a molecular weight of 30 kDa extracted from Capsicum annuum L not only reduces the SeO32- ions to Se0, but also controls the nucleation and growth of Se0, and even participates in the formation of α-Se/protein composites. The size and shell thickness of the α-Se/protein composites increases with high Capsicum annuum L extract concentration, and decreases with low reaction solution pH. The results suggest that this eco-friendly, biogenic synthesis strategy could be widely used for preparing inorganic/organic biocomposites. In addition, we also discuss the possible mechanism of the reduction of SeO32- ions by Capsicum annuum L extract.

  18. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    NASA Astrophysics Data System (ADS)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-03-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  19. Determination of Se in soil samples using the proton induced X-ray emission technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Flocchini, Robert G.

    1993-04-01

    An alternative method for the direct determination of total Se in soil samples is presented. A large number of trace elements is present in soil at concentration values in the range of part per billion and tenths of parts of million. The most common are the trace elements of Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Br, Rb, Mo, Cd and Pb. As for biological samples many of these elements are of great importance for the nutrition of plants, while others are toxic and others have an unknown role. Selenium is an essential micronutrient for humans and animals but it is also known that in certain areas Se deficiency or toxicity has caused endemic disease to livestock and humans through the soil-plant-animal linkage. In this work the suitability of the proton induced X-ray emission (PIXE) technique as a fast and nondestructive technique useful to measure total the Se content in soil samples is demonstrated. To validate the results a comparison of data collected using the conventional atomic absorption spectrophotometry (AAS) method was performed.

  20. Effects of dietary selenium on host response to necrotic enteritis in young broilers

    USDA-ARS?s Scientific Manuscript database

    The effects of dietary supplementation of young broiler chickens with a new organic selenium (Se) formulation, B-Traxim Se, on the host response to experimental necrotic enteritis (NE) were studied. Broiler chickens treated with three Se doses (0.25, 0.50, 1.00 mg/kg) from hatch were orally challeng...

  1. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum)

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well ...

  2. Selenium as an Essential Micronutrient: Roles in Cell Cycle and Apoptosis

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an anticancer nutrient, and the essential role of Se in growth of most mammalian cells is well recognized but certain cancer cells appear to have acquired a survival advantage under conditions of Se-deficiency. The objective of the present study is to understand the molecular basis ...

  3. Dietary Selenium Deficiency or Excess Reduces Sperm Quality and Testicular mRNA Abundance of Nuclear Glutathione Peroxidase 4 in Rats.

    PubMed

    Zhou, Ji-Chang; Zheng, Shijie; Mo, Junluan; Liang, Xiongshun; Xu, Yuanfei; Zhang, Huimin; Gong, Chunmei; Liu, Xiao-Li; Lei, Xin Gen

    2017-10-01

    Background: Glutathione peroxidase (GPX) 4 and selenoprotein P (SELENOP) are abundant, and several variants are expressed in the testis. Objective: We determined the effects of dietary selenium deficiency or excess on sperm quality and expressions of GPX4 and SELENOP variants in rat testis and liver. Methods: After weaning, male Sprague-Dawley rats were fed a Se-deficient basal diet (BD) for 5 wk until they were 9 wk old [mean ± SEM body weight (BW) = 256 ± 5 g]. They were then fed the BD diet alone (deficient) or with 0.25 (adequate), 3 (excess), or 5 (excess) mg Se/kg for 4 wk. Testis, liver, blood, and semen were collected to assay for selenoprotein mRNA and protein abundances, selenium concentration, GPX activity, 8-hydroxy-deoxyguanosine concentration, and sperm quality. Results: Dietary selenium supplementations elevated ( P < 0.05) tissue selenium concentrations and GPX activities. Compared with those fed BD + 0.25 mg Se/kg, rats fed BD showed lower ( P < 0.05) BW gain (86%) and sperm density (57%) but higher ( P < 0.05) plasma 8-hydroxy-deoxyguanosine concentrations (189%), and nonprogressive sperm motility (4.4-fold). Likewise, rats fed BD + 5 mg Se/kg had ( P = 0.06) lower BW gain and higher (1.9-fold) sperm deformity rates than those in the selenium-adequate group. Compared with the selenium-adequate group, dietary selenium deficiency (BD) or excess (BD + 3 or 5 mg Se/kg) resulted in 45-77% lower ( P < 0.05) nuclear Gpx4 ( nGpx4 ) mRNA abundance in the testis. Rats fed BD had lower ( P < 0.05) mRNA levels of 2 Selenop variants in both testis and liver than those in the other groups. Testicular SELENOP was 155-170% higher ( P < 0.05) in rats fed BD + 5 mg Se/kg and hepatic c/mGPX4 was 13-15% lower ( P < 0.05) in rats fed BD than in the other groups. Conclusions: The mRNA abundance of rat testicular nGPX4 responded to dietary selenium concentrations in similar ways to sperm parameters and may be used as a sensitive marker to assess appropriate Se status for male function. © 2017 American Society for Nutrition.

  4. Does boiling affect the bioaccessibility of selenium from cabbage?

    PubMed

    Funes-Collado, Virginia; Rubio, Roser; López-Sánchez, J Fermín

    2015-08-15

    The bioaccessible selenium species from cabbage were studied using an in vitro physiologically-based extraction test (PBET) which establishes conditions that simulate the gastric and gastrointestinal phases of human digestion. Samples of cabbage (Brassica oleracea) grown in peat fortified with different concentrations of Se(IV) and Se(VI) were analysed, and several enzymes (pepsin, pancreatin and amylase) were used in the PBET. The effect of boiling before extraction was also assayed. Selenium speciation in the PBET extracts was determined using anionic exchange and LC-ICP/MS. The selenocompounds in the extracts were Se(IV), SeMet and, mostly, Se(VI) species. The results show that the activity of the enzymes increased the concentration of the selenocompounds slightly, although the use of amylase had no effect on the results. The PBET showed the concentration of inorganic selenium in the extracts from boiled cabbage decreased as much as 4-fold while the release of SeMet and its concentration increased (up to 6-fold), with respect to raw cabbage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of foliar selenite on the nutrient components of turnip (Brassica rapa var. rapa Linn.)

    NASA Astrophysics Data System (ADS)

    Li, Xiong; Li, Boqun; Yang, Yongping

    2018-03-01

    We administered foliar applications of 50, 100 and 200 mg L‑1 selenium (Se, selenite) on turnip (Brassica rapa var. rapa Linn.) and detected the changes in the main nutrient components in fleshy roots. Results showed that the foliar application of Se (Ⅳ) significantly increased the Se content in turnip, and Se (Ⅳ) positively affected the uptake of several mineral elements, including magnesium, phosphorus, iron, zinc, manganese and copper. Se (Ⅳ) treatments also improved the synthesis of protein and multiple amino acids instead of crude fat and total carbohydrate in turnip, indicating that the foliar application of Se (Ⅳ) could enhance Se biofortification in turnip and promote its nutritional value. We recommended 50–100 mg L‑1 Se treatment for foliar application on turnip based on the daily intake of Se for adults (96–139 µg person‑1 day‑1) and its favourable effects on the nutrient components of turnip.

  6. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China.

    PubMed

    Xu, Yuefeng; Li, Yonghua; Li, Hairong; Wang, Li; Liao, Xiaoyong; Wang, Jing; Kong, Chang

    2018-08-15

    Selenium (Se) is an essential trace element for humans. In order to investigate how soil Se is influenced by topography and soil properties, we selected Yongjia County, an area with mountainous topography, as a study area. This study used cultivated soil data to comprehensively analyze the effects of topography and soil properties on Se mobility and bioavailability and to identify the key factors influencing Se distribution in the environment. Factors considered in this study were elevation, slope, topographic wetness index, the coefficient of weathering and eluviation, pH, organic matter, and Fe 2 O 3 . The concentration of total soil Se (0.382±0.123mgkg -1 ) was far higher than the background value of soil in China, and 98% of the soil samples were classified as having moderate Se levels (>0.175mgkg -1 ), indicating Yongjia County is a Se-rich region in China. Phosphate extracted Se accounted for an average of 9% of the total Se and was significantly associated with soil total Se, Fe 2 O 3 , pH, and the coefficient of weathering and eluviation. Fe 2 O 3 primarily controlled Se adsorption, fixation, and availability in soil. Under the geo-environmental conditions in the study area, the total Se in the soil increased first and then decreased with increases in elevation, slope, and the topographic wetness index, and the phosphate extracted Se showed similar patterns except for the elevation. The findings showed that topographical attributes and soil physicochemical properties synthetically influenced the distribution and bioavailability of Se in soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Effect of lead and selenium on learning and memory ability in rats].

    PubMed

    Han, Xiaojie; Hu, Xiaoxia; Wei, Qing; Chen, Yilin; Yu, De'e; Hu, Qiansheng

    2013-11-01

    To study the effect of lead and (or) selenium on learning and memory ability in rats. SPF Wistar rats, after weaning, were divided into six groups, control group, Pb group (respectively Pb exposed), Se group (respectively Se added), Pb-Se group (added Se after Pb exposure), Se-Pb group (added Se before Pb exposure) and Pb + Se group (Pb and Se exposed simultaneously). After intervention for six weeks in rats, the spatial learning and memory of each group rats were measured by Morris water maze assay. Rats in Pb group had significantly longer latency, less site crossings, less percentage of time and distance spent in the target quadrant, and bigger first bearing compared with control group (P < 0.05). Rats in Pb and Se joint exposure groups had significantly shorter latency, more site crossings, less percentage of time and distance spent in the target quadrant, and smaller first bearing compared with Pb group (P < 0.05). There were no significant differences in the indexes of spatial learning and memory ability between the groups of lead and selenium joint exposure groups (P > 0.05). Lead damaged the ability of learning and memory in rats and organic selenium had protective effects on Pb-induced spatial learning and memory deficits in rats.

  8. Efficient interface for online coupling of capillary electrophoresis with inductively coupled plasma-mass spectrometry and its application in simultaneous speciation analysis of arsenic and selenium.

    PubMed

    Liu, Lihong; Yun, Zhaojun; He, Bin; Jiang, Guibin

    2014-08-19

    A simple and highly efficient online system coupling of capillary electrophoresis to inductively coupled plasma-mass spectrometry (CE-ICP-MS) for simultaneous separation and determination of arsenic and selenium compounds was developed. CE was coupled to an ICP-MS system by a sprayer with a novel direct-injection high-efficiency nebulizer (DIHEN) chamber as the interface. By using this interface, six arsenic species, including arsenite (As(III), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) and five selenium species (such as sodium selenite (Se(IV)), sodium selenate (Se(VI)), selenocysteine (SeCys), selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys)) were baseline-separated and determined in a single run within 9 min under the optimized conditions. Minimum dead volume, low and steady sheath flow liquid, high nebulization efficiency, and high sample transport efficiency were obtained by using this interface. Detection limits were in the range of 0.11-0.37 μg L(-1) for the six arsenic compounds (determined as (75)As at m/z 75) and 1.33-2.31 μg L(-1) for the five selenium species (determined as (82)Se at m/z 82). Repeatability expressed as the relative standard deviations (RSD, n = 6) of both migration time and peak area were better than 2.68% for arsenic compounds and 3.28% for selenium compounds, respectively. The proposed method had been successfully applied for the determination of arsenic and selenium species in the certified reference materials DORM-3, water, urine, and fish samples.

  9. Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA.

    PubMed

    Schlekat, Christian E; Purkerson, David G; Luoma, Samuel N

    2004-12-01

    Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton-based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass: A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73-250 microm) and large (250-500 microm) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41-52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12-25% d(-1)), especially compared to bivalves (2-3% d(-1)). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5-5.4 microg g(-1)) was lower than concentrations of 4.5 to 24 microg g(-1) observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.

  10. Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Schlekat, C.E.; Purkerson, D.G.; Luoma, S.N.

    2004-01-01

    Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton-based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass. A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73-250 ??m) and large (250-500 ??m) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41-52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12-25% d-1), especially compared to bivalves (2-3% d-1). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5-5.4 ??g g -1) was lower than concentrations of 4.5 to 24 ??g g-1 observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.

  11. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles.

    PubMed

    Tugarova, Anna V; Vetchinkina, Elena P; Loshchinina, Ekaterina A; Burov, Andrei M; Nikitina, Valentina E; Kamnev, Alexander A

    2014-10-01

    The ability to reduce selenite (SeO(3)(2-)) ions with the formation of selenium nanoparticles was demonstrated in Azospirillum brasilense for the first time. The influence of selenite ions on the growth of A. brasilense Sp7 and Sp245, two widely studied wild-type strains, was investigated. Growth of cultures on both liquid and solid (2 % agar) media in the presence of SeO(3)(2-) was found to be accompanied by the appearance of the typical red colouration. By means of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and X-ray fluorescence analysis (XFA), intracellular accumulation of elementary selenium in the form of nanoparticles (50 to 400 nm in diameter) was demonstrated for both strains. The proposed mechanism of selenite-to-selenium (0) reduction could involve SeO(3)(2-) in the denitrification process, which has been well studied in azospirilla, rather than a selenite detoxification strategy. The results obtained point to the possibility of using Azospirillum strains as endophytic or rhizospheric bacteria to assist phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of A. brasilense to synthesise selenium nanoparticles may be of interest to nanobiotechnology for "green synthesis" of bioavailable amorphous red selenium nanostructures.

  12. Selenium Partitioning and Removal Across a Wet FGD Scrubber at a Coal-Fired Power Plant.

    PubMed

    Senior, Constance L; Tyree, Corey A; Meeks, Noah D; Acharya, Chethan; McCain, Joseph D; Cushing, Kenneth M

    2015-12-15

    Selenium has unique fate and transport through a coal-fired power plant because of high vapor pressures of oxide (SeO2) in flue gas. This study was done at full-scale on a 900 MW coal-fired power plant with electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. The first objective was to quantify the partitioning of selenium between gas and condensed phases at the scrubber inlet and outlet. The second objective was to determine the effect of scrubber operation conditions (pH, mass transfer, SO2 removal) on Se removal in both particulate and vapor phases. During part of the testing, hydrated lime (calcium hydroxide) was injected upstream of the scrubber. Gas-phase selenium and particulate-bound selenium were measured as a function of particle size at the inlet and outlet of the scrubber. The total (both phases) removal of Se across the scrubber averaged 61%, and was enhanced when hydrated lime sorbent was injected. There was evidence of gas-to-particle conversion of selenium across the scrubber, based on the dependence of selenium concentration on particle diameter downstream of the scrubber and on thermodynamic calculations.

  13. Synergistic Effects of SAM and Selenium Compounds on Proliferation, Migration and Adhesion of HeLa Cells.

    PubMed

    Sun, Licui; Zhang, Jianxin; Yang, Qiu; Si, Yang; Liu, Yiqun; Wang, Qin; Han, Feng; Huang, Zhenwu

    2017-08-01

    To determine the antitumor activities and molecular mechanism of selenium compounds in HeLa cells. Western blotting was used to detect ERK and AKT activation in HeLa cells induced by selenium compounds selenomethionine (SeMet), methylselenocysteine (MeSeCys) and methylseleninic acids (MeSeA). Using MTT, wound-healing and Matrigel adhesion assays, the antitumor effects of SAM and selenium compounds were evaluated in HeLa cells. MeSeA inhibited ERK and AKT signaling pathways and suppressed the proliferation (p<0.05 vs. HeLa control), migration (p<0.05 vs. HeLa control) and adhesion (p<0.01 vs. HeLa control) of HeLa cells. MeSeCys and SeMet inhibited AKT signaling pathways and the migration (p<0.05 vs. HeLa control) and adhesion (p<0.01 vs. HeLa control) of HeLa cells. The synergistic action of MeSeA with SAM led to a statistically significant inhibition of proliferation, migration and adhesion of HeLa cells. MeSeA, MeSeCys and SeMet exert different antitumor activities by inhibiting ERK and AKT signaling pathways. The combination of MeSeA and SAM exhibited better antitumor effects compared to the other treatments. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Covalent Incorporation of Selenium into Oligonucleotides for X-ray Crystal Structure Determination via MAD: Proof of Principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplova, M.; Wilds, C.J.; Wawrzak, Z.

    2010-03-08

    Selenium was incorporated into an oligodeoxynucleotide in the form of 2'-methylseleno-uridine (U{sub Se}). The X-ray crystal structure of the duplex d(GCGTA)U{sub Se}d(ACGC){sub 2} was determined by the multiwavelength anomalous dispersion (MAD) technique and refined to a resolution of 1.3 {angstrom}, demonstrating that selenium can selectively substitute oxygen in DNA and that the resulting compounds are chemically stable. Since derivatization at the 2'-{alpha}-position with selenium does not affect the preference of the sugar for the C3'-endo conformation, this strategy is suitable for incorporating selenium into RNA. The availability of selenium-containing nucleic acids for crystallographic phasing offers an attractive alternative to themore » commonly used halogenated pyrimidines.« less

  15. Separation and identification of selenotrisulfides in epithelial cell homogenates by LC-ICP-MS and LC-ESI-MS after incubation with selenite.

    PubMed

    Gabel-Jensen, Charlotte; Gammelgaard, Bente; Bendahl, Lars; Stürup, Stefan; Jøns, Ole

    2006-02-01

    To elucidate how selenite is metabolised in the intestine after oral intake, it was incubated with homogenized epithelial cells from pigs. When the metabolites were analysed by LC-ICP-MS, two major selenium metabolites were separated in the supernatant from the homogenate. These metabolites were formed instantly but disappeared within 15 min. No other selenium-containing compounds appeared during this time. Hence, the secondary reaction products were either volatilised or precipitated. To verify the identity of the compounds, a larger amount of selenite was incubated with epithelial cells. The presence of Cys-Se-SG and GS-Se-SG was verified by LC-ESI-MS. Selenotrisulfides were synthesized by reaction of L-cysteine and L-glutathione with sodium selenite. The reaction mixture contained three main products: selenodicysteine (Cys-Se-Cys), selenocysteine glutathione (Cys-Se-SG), and selenodiglutathione (GS-Se-SG). The two transient selenium compounds in the epithelial cell incubation mixture co-eluted with the synthesized Cys-Se-SG and GS-Se-SG, respectively. The identities of these compounds were verified by LC-ESI-MS. Hence, these selenium metabolites have now been identified by ESI-MS after isolation from epithelial cells.

  16. Purification and characterization of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie

    2006-11-01

    A fast protein liquid chromatographic method for purification of selenium-containing phycocyanin (Se-PC) from selenium-enriched Spirulina platensis was described in this study. The purification procedures involved fractionation by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange chromatography and Sephacry S-300 size exclusion chromatography. The purity ratio (A620/A280) and the separation factor (A620/A655) of the purified Se-PC were 5.12 and 7.92, respectively. The Se concentration of purified Se-PC was 496.5 microg g(-1) protein, as determined by ICP-AES analysis. The purity of the Se-PC was further characterized by UV-VIS and fluorescence spectrometry, SDS-PAGE, RP-HPLC and gel filtration HPLC. The apparent molecular mass of the native Se-PC determined by gel filtration HPLC was 109 kDa, indicating that the protein existed as a trimer. SDS-PAGE of the purified Se-PC yielded two major bands corresponding to the alpha and beta subunits. A better separation of these two subunits was obtained by RP-HPLC. Identification of the alpha and beta subunits separated by SDS-PAGE and RP-HPLC was achieved by peptide mass fingerprinting (PMF) using MALDI-TOF-TOF mass spectrometry.

  17. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  18. Combined effect of selenium and ascorbic acid on alcohol induced hyperlipidemia in male guinea pigs.

    PubMed

    Asha, G S; Indira, M

    2004-02-01

    Alcoholics usually suffer from malnutrition and are especially deficient in micronutrients like vitamin C, selenium and Zn. In the present study, combined effects of selenium and ascorbic acid on alcohol-induced hyperlipidemia were studied in guinea pigs. Four groups of male guinea pigs were maintained for 45 days as follows: control (1 mg ascorbate (AA)/100 g body mass/day), ethanol (900 mg ethanol/100 g body mass + 1 mg AA/100 g body mass/day), selenium+ascorbic acid [(25 mg AA + 0.05 mg Se)/100 g body mass/day], ethanol+selenium+ascorbic acid [(25 mg AA + 0.05 mg Se + 900 mg ethanol)/100 g body mass/day]. Co-administration of selenium and ascorbic acid along with alcohol reduced the concentration of all lipids, as also evidenced from the decreased activities of hydroxymethylglutaryl-CoA reductase and enhanced activities of plasma lecithin cholesterol acyl transferase and lipoprotein lipase. Concentrations of bile acids were increased. We conclude that the supplementation of Se and ascorbic acid reduced alcohol induced hyperlipidemia, by decreased synthesis and increased catabolism.

  19. Distribution of soil selenium in China is potentially controlled by deposition and volatilization?

    PubMed Central

    Sun, Guo-Xin; Meharg, Andrew A.; Li, Gang; Chen, Zheng; Yang, Lei; Chen, Song-Can; Zhu, Yong-Guan

    2016-01-01

    Elucidating the environmental drivers of selenium (Se) spatial distribution in soils at a continental scale is essential to better understand it’s biogeochemical cycling to improve Se transfer into diets. Through modelling Se biogeochemistry in China we found that deposition and volatilization are key factors controlling distribution in surface soil, rather than bedrock-derived Se (<0.1 mg/kg). Wet deposition associated with the East Asian summer monsoon, and dry deposition associated with the East Asian winter monsoon, are responsible for dominant Se inputs into northwest and southeast China, respectively. In Central China the rate of soil Se volatilization is similar to that of Se deposition, suggesting that Se volatilization offsets it’s deposition, resulting in negligible net Se input in soil. Selenium in surface soil at Central China is roughly equal to low petrogenic Se, which is the main reason for the presence of the Se poor belt. We suggest that both deposition and volatilization of Se could play a key role in Se balance in other terrestrial environments worldwide. PMID:26883576

  20. Effects of various doses of selenite on stinging nettle (Urtica dioica L.).

    PubMed

    Krystofova, Olga; Adam, Vojtech; Babula, Petr; Zehnalek, Josef; Beklova, Miroslava; Havel, Ladislav; Kizek, Rene

    2010-10-01

    The aim of this study was to investigate the effects of selenium (Se) on the growth, accumulation and possible mechanisms of Se transport in certain parts (roots, leaves, stamp and apex) of nettle (Urtica dioica L.) plants. Se was supplemented by one-shot and two repeated doses to the soil (2.0 and 4.0 mg Se per kg of substrate). Selenium content in roots increased linearly with dose and was significantly higher compared to other plant parts of interest. However, growth of the above-ground parts of plant as well as roots was slightly inhibited with increasing selenium concentration in comparison to the untreated plants. The content of phytochelatin2, a low molecular mass peptide containing a sulfhydryl group, correlated well with the Se content. This suggests a possible stimulation of synthesis of this plant peptide by Se.

  1. Optimization of selenizing conditions for Seleno-Lentinan and its characteristics.

    PubMed

    Ren, Guangming; Li, Koukou; Hu, Yang; Yu, Min; Qu, Juanjuan; Xu, Xiuhong

    2015-11-01

    Lentinan was successfully modified with nitric acid-sodium selenite method based on L9(3(4)) orthogonal experiments. The optimum selenizing conditions were obtained according to selenium conversion rate as follows: Lentinan of 1.0g, pH of 4.5, temperature of 70°C and sodium selenite of 1.50g. The antioxidant activity assays in vitro (DPPH, reducing power, superoxide radicals and hydroxyl radicals) proved that Lentinan had stronger antioxidant activity after selenizing. The elevations of serum alanine aminotransferase and aspartate aminotransferase, as well as the abnormal hepatic architecture, verified that oral administration of Seleno-Lentinan (SL2-1) markedly alleviated oxidative damage in the liver of mice induced by D-gal. In addition, SL2-1 significantly increased total antioxidant capacity, activities and protein expressions of catalase and glutathione peroxidase and lowered malondialdehyde levels in serum and liver. Fourier transform infrared spectroscopy analysis indicated that selenium of SL2-1 was mostly existed as the formations of OSeO, SeO and SeOC. Scanning electron microscope coupled with energy dispersive X-ray spectroscopy analysis revealed that the surface structure and elemental components of Lentinan significantly changed after selenizing. The results are instructive for the development of organic selenium-supplement resource. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Selenium retention in tissues of swine fed carcasses of pigs grown on diets containing sodium selenite or high selenium white sweet clover grown on fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandisodza, K.T.; Pond, W.G.; Lisk, D.J.

    1980-04-01

    Growing pigs were fed diets containing 5 or 10% white sweet clover, and 0, 3.5 or 7.0 ppM selenium (Se) supplied as sodium selenite (Na/sub 2/SeO/sub 3/) or occurring naturally in white sweet clover harvested from a coal fly ash dump. Ground carcasses of these pigs were included in corn meal diets at 23% and fed back to pigs. Compared to the pigs fed the high Se, fly ash-grown clover diets, the pigs fed Na/sub 2/SeO/sub 3/ diets had higher blood Se levels but lower Se concentrations in kidney, liver and skeletal muscle. Tissues of the pigs which were fedmore » carcasses of the high Se clover-fed pigs had higher Se concentrations than those of the pigs fed carcasses of the Na/sub 2/SeO/sub 3/ - fed pigs.« less

  3. Selenium and mercury molar ratios in saltwater fish from New Jersey: individual and species variability complicate use in human health fish consumption advisories.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2012-04-01

    Balancing risk versus benefits to humans and other organisms from consuming fish is a national concern in the USA, as well as in many other parts of the world. Protecting public health is both a federal and state responsibility, and states respond by issuing fish consumption advisories, particularly for mercury. Recently it has been emphasized that the protective role of selenium against mercury toxicity depends on their molar ratios, which should be evaluated as an indication of selenium's protective capacity, and incorporated in risk assessments for fish consumption. However, there is no single "protective" ratio agreed upon. In this paper we examine the selenium:mercury (Se:Hg) molar ratios in a wide range of saltwater fish caught and eaten by recreational fishers along the New Jersey coast. We were particularly interested in interspecific and intraspecific variability, and whether the molar ratios were consistent within a species, allowing for its use in managing risk. The selenium-mercury molar ratio showed significant variation among and within fish species. The molar ratio decreased with the size of the fish species, decreased with the mercury levels, and within a fish species, the selenium:mercury ratio decreased with fish size. As an essential element, selenium undergoes some homeostatic regulation, but it is also highly toxic. Within species, mercury level tends to increase with size, accounting for the negative relationship between size and ratio. This variability may make it difficult to use the selenium:mercury molar ratio in risk assessment, risk management, and risk communication at this time, and more information is needed on how mercury and selenium actually interact and on the relationship between the molar ratios and health outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Comparative study of a new organic selenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens.

    PubMed

    Briens, Mickaël; Mercier, Yves; Rouffineau, Friedrich; Vacchina, Veronique; Geraert, Pierre-André

    2013-08-01

    Two experiments were conducted on broiler chickens to compare the effect of a new organic Se source, 2-hydroxy-4-methylselenobutanoic acid (HMSeBA; SO), with two practical Se additives, sodium selenite (SS) and Se yeast (SY). The relative bioavailability of the different Se sources was compared on muscle (pectoralis major) total Se, selenomethionine (SeMet) and selenocysteine (SeCys) concentrations and apparent digestibility of total Se (ADSe). In the first experiment, from day (d) 0 to d21, Se sources were tested at different supplied levels and compared with an unsupplemented diet (NC). No significant effects were observed on growth performance during the experimental period. However, the different Se sources and levels improved muscle Se concentration compared with the NC, with a significant source effect in the following order: SS < SY < SO (P<0·05). Seleno-amino acids speciation results for NC, SY and SO at 0·3 mg Se/kg feed indicated that muscle Se was only present as SeMet or SeCys, showing a full conversion of Se by the bird. The second experiment (d0-d24) compared SS, SY or SO at 0·3 mg Se/kg feed. The ADSe measurements carried out between d20 and d23 were 24, 46 and 49% for SS, SY and SO, respectively, with significant differences between the organic and mineral Se sources (P<0·05). These results confirmed the higher bioavailability of organic Se sources compared with the mineral source and demonstrated a significantly better efficiency of HMSeBA compared with SY for muscle Se enrichment.

  5. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated.

    USGS Publications Warehouse

    Felton, S.P.; Landolt, M.L.; Grace, R.; Palmisano, A.N.

    1996-01-01

    Hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), were fed elevated levels of selenium (as Na2SeO3) to raise eviscerated body burdens to the level measured in wild counterparts. The goal was to find a dietary concentration that would achieve the desired effect without causing damage to growth and normal development. To measure some indices of health, the detoxifying enzymes chosen were hepatic glutathione peroxidase (GSH-Px) and hepatic superoxide dismutase (SOD). Eviscerated body selenium (Se) concentration, GSH-Px and SOD levels were measured during and at the end of the 9 month freshwater feeding trial. Selenium retention and enzyme activity were also measured during 6 months’residence in sea water (SW). Selenium supplements were added to a commercial ration to give final concentrations of 1.1, 8.6, 11.1, 13.6 μg g-1 Se in the four respective diets. The results indicated that a dietary concentration of 8.6 μg g-1selenium was capable of inducing eviscerated body burdens similar to those found in wild fish. The elevated selenium levels persisted throughout the freshwater (FW) rearing phase, but declined when the fish were fed an unsupplemented ration upon SW entry. Superoxide dismutase levels did not increase above control levels. Glutathione peroxidase levels increased in fish fed the supplemented diets. GSH-Px activity declined in the higher supplemented dietary groups when all groups were reduced to the control group level of 1.1 μg g-1. Cumulative mortality in SW was 20% in fish fed either the 1.1 or the 8.6 μg g-1 Se diets. The 8.6 μg g-1 Se supplemented diets did produce healthy coho, comparable to their wild counterparts.

  6. Serum selenium concentration in a representative sample of the Canarian population.

    PubMed

    Diaz Romero, C; López Blanco, F; Henríquez Sánchez, P; Rodríguez, E; Serra Majem, L

    2001-03-26

    The concentration of serum selenium in 395 individuals (187 males + 218 females) living in the Canary Islands, Spain was determined by hydride generation atomic absorption spectrometry. The mean selenium concentration was 74.7 +/- 25.2 microg/l ranging between 7.86 and 182.3 microg/l. Twenty-two adults (7.2% of the total) had serum selenium concentrations under 45 microg/l. It is widely accepted that below this selenium serum concentration (45 microg/l) there is an increased risk of cardiovascular disease and cancer. Our results fall within data recently published in other Spanish and European regions and are much lower than data observed in USA or seleniferous regions. The estimated Se intakes of our population were lower than the Recommended Dietary Allowances for American people. Individuals from Lanzarote had a mean Se concentration significantly higher than individuals from the other islands. This could be attributed to differences in Se content of soil and/or differences in dietary habits of the populations. Serum selenium concentration did not vary with the sex of the subjects. Individuals younger than 14 years old had a serum selenium concentration significantly lower than the rest of the individuals. No relationship with socio-economic status, educational level, smoking habits, physical exercise or beer consumption was found. However, individuals who consume wine more than three times a week showed higher selenium concentrations than individuals with lower consumption. Also, individuals with consumption above seven units of spirit drinks a week had the highest mean selenium concentration.

  7. Hybrid Physical-Chemical Vapor Deposition of Bi2Se3 Thin films on Sapphire

    NASA Astrophysics Data System (ADS)

    Brom, Joseph; Ke, Yue; Du, Renzhong; Gagnon, Jarod; Li, Qi; Redwing, Joan

    2012-02-01

    High quality thin films of topological insulators continue to garner much interest. We report on the growth of highly-oriented thin films of Bi2Se3 on c-plane sapphire using hybrid physical-chemical vapor deposition (HPCVD). The HPCVD process utilizes the thermal decomposition of trimethyl bismuth (TMBi) and evaporation of elemental selenium in a hydrogen ambient to deposit Bi2Se3. Growth parameters including TMBi flow rate and decomposition temperature and selenium evaporation temperature were optimized, effectively changing the Bi:Se ratio, to produce high quality films. Glancing angle x- ray diffraction measurements revealed that the films were c-axis oriented on sapphire. Trigonal crystal planes were observed in atomic force microscopy images with an RMS surface roughness of 1.24 nm over an area of 2μmx2μm. Variable temperature Hall effect measurements were also carried out on films that were nominally 50-70 nm thick. Over the temperature range from 300K down to 4.2K, the carrier concentration remained constant at approximately 6x10^18 cm-3 while the mobility increased from 480 cm^2/Vs to 900 cm^2/Vs. These results demonstrate that the HPCVD technique can be used to deposit Bi2Se3 films with structural and electrical properties comparable to films produced by molecular beam epitaxy.

  8. Association of Plasma Selenium Concentrations with Total IGF-1 Among Older Community-Dwelling Adults: the InCHIANTI Study

    PubMed Central

    Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Dall'Aglio, Elisabetta; Guralnik, Jack M.; Paolisso, Giuseppe; Semba, Richard D.; Nouvenne, Antonio; Borghi, Loris; Ceresini, Graziano; Ablondi, Fabrizio; Benatti, Mario; Ferrucci, Luigi

    2011-01-01

    Background and Aims Insulin-like growth factor (IGF-1) stimulates cell proliferation and inhibits cell apoptosis. Recent studies underline its importance as anabolic hormone and nutritional marker in older individuals. IGF-1 synthesis and bioactivity are modulated by nutritional factors including selenium intake. However, whether circulating IGF-1 levels are positively influenced by plasma selenium, one of the most important human antioxidants, is still unknown. Methods Selenium and total IGF-1 were measured in 951 men and women ≥65 years from the InCHIANTI study, Tuscany, Italy. Results Means (SD) of plasma selenium and total IGF-1 were 0.95 (0.15) µmol/L and 113.4 (31.2) ng/mL, respectively. After adjustment for age and sex, selenium levels were positively associated with total IGF-1 (ß ± SE: 43.76±11.2, p=0.0001).After further adjustment for total energy and alcohol intake, serum alanine amino transferase (ALT), congestive heart failure, selenium remained significantly associated with IGF-1 (β ± SE: 36.7 ± 12.2, p=0.003). The association was still significant when IL-6 was introduced in the model (β ± SE: 40.1 ± 12.0, p=0.0008). Conclusions We found an independent, positive and significant association between selenium and IGF-1 serum levels in community dwelling older adults. PMID:20416996

  9. Uptake and subcellular distributions of cadmium and selenium in transplanted aquatic insect larvae.

    PubMed

    Rosabal, Maikel; Ponton, Dominic E; Campbell, Peter G C; Hare, Landis

    2014-11-04

    We transplanted larvae of the phantom midge Chaoborus punctipennis from a lake having lower concentrations of Cd and Se (Lake Dasserat) to a more contaminated lake (Lake Dufault) located near a metal smelter in Rouyn-Noranda, Quebec. Transplanted individuals were held in mesh mesocosms for up to 16 days where they were fed with indigenous contaminated zooplankton. Larval Cd and Se burdens increased over time, and came to equal those measured in indigenous C. punctipennis from contaminated Lake Dufault. Larval Se burdens increased steadily, whereas those of Cd showed an initial lag phase that we explain by a change in the efficiency with which this insect assimilated Cd from its prey. We measured Cd and Se in subcellular fractions and found that larvae sequestered the majority (60%) of the incoming Cd in a detoxified fraction containing metal-binding proteins, whereas a minority of this nonessential metal was in sensitive fractions (20%). In contrast, a much higher proportion of the essential element Se (40%) was apportioned to metabolically active sensitive fractions. Larvae took up equimolar quantities of these elements over the course of the experiment. Likewise, Cd and Se concentrations in wild larvae were equimolar, which suggests that they are exposed to equimolar bioavailable concentrations of these elements in our study lakes.

  10. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY...

    EPA Science Inventory

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV) by mixing the CE effluent with concentrated HCl. A microporou...

  11. Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same.

    PubMed

    Khanam, Anjum; Platel, Kalpana

    2016-03-01

    Selenium (Se) is an essential nutrient with diverse physiological functions. The selenium content of commonly consumed cereals, pulses and green leafy vegetables (GLV) was determined. Bioaccessibility of Se, and its organic forms selenomethionine (SeMet), and selenocysteine (SeCys2) was also examined, and the effect of heat processing on the same was studied. The bioaccessibility of Se in cereals ranged from 10% to 24%, that of pulses was between 12% and 29%, and of GLV, 10-31%. The concentration of SeMet in the dialysates of the cereals, pulses and GLV ranged from 5.15 to 28.7, 2.7 to 36.2, and 0.03 to 5ngg(-1), respectively. The concentration of SeCys2 in the dialysates of the foods examined was negligible. Heat processing significantly decreased the bioaccessibility of Se, SeMet and SeCys2. This is the first report on the bioaccessibility of Se and its major organic forms from commonly consumed staples, and the effect of heat processing on the same. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The behavior of dissolved inorganic selenium in the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Jing; Qu, Jianguo; Zhang, Guosen; Zhang, Anyu; Zhang, Ruifeng

    2016-02-01

    To investigate the behavior of inorganic selenium species in the Changjiang Estuary, samples were taken during summer (July 2011) and winter (March 2012). Dissolved inorganic selenium (DISe) concentrations averaged 1.79 nmol/L in summer and 1.24 nmol/L in winter; the average selenite [Se(IV)] to selenate [Se(VI)] ratio [Se(IV)/Se(VI)] was 0.42 in summer and 0.61 in winter. The data show that Se(IV) and Se(VI) concentrations in the estuary behaved strictly conservatively during winter but non-conservatively during summer due to adsorption by suspended particulate matter (SPM) and assimilation by phytoplankton. In addition, the Se concentration distributions in the Changjiang Estuary were controlled by three water masses, each with a specific Se(IV)/Se(VI) ratio "signature": the Changjiang Water input, the Taiwan Warm Current, and the Yellow Sea Coastal Current. The Se(IV) concentrations were related to the nitrate, silicate, and phosphate concentrations in the estuary. The DISe and Se(IV) concentrations were comparable to those found in other coastal regions and estuaries, which were considered to be natural levels.

  13. Chemoprotective and chemosensitizing properties of selenium nanoparticle (Nano-Se) during adjuvant therapy with cyclophosphamide in tumor-bearing mice.

    PubMed

    Bhattacharjee, Arin; Basu, Abhishek; Biswas, Jaydip; Sen, Tuhinadri; Bhattacharya, Sudin

    2017-01-01

    Cyclophosphamide (CP) is one of the widely used anticancer agents; however, it has serious deleterious effects on normal host cells due to its nonspecific action. The essential trace element Selenium (Se) is suggested to have chemopreventive and chemotherapeutic efficacy and currently used in pharmaceutical formulations. Previous report had shown Nano-Se could protect CP-induced hepatotoxicity and genotoxicity in normal Swiss albino mice; however, its role in cancer management is still not clear. The aim of present study is to investigate the chemoprotective efficacy of Nano-Se against CP-induced toxicity as well as its chemoenhancing capability when used along with CP in Swiss albino mice against Ehrlich's ascites carcinoma (EAC) cells. CP was administered (25 mg/kg b.w., i.p.) and Nano-Se was given (2 mg Se/kg b.w., p.o.) in concomitant and pretreatment schedule. Increase levels of serum hepatic marker, hepatic lipid peroxidation, DNA damage, and chromosomal aberration in CP-treated mice were significantly (P < 0.05) reversed by Nano-Se. The lowered status of various antioxidant enzymes in tumor-bearing mice after CP treatment was also effectively increased by Nano-Se. Administration of Nano-Se along with CP caused a significant reduction in tumor volume, packed cell volume, viable tumor cell count, and increased the survivability of the tumor-bearing hosts. The results suggest that Nano-Se exhibits significant antitumor and antioxidant effects in EAC-bearing mice. The potential for Nano-Se to ameliorate the CP-evoked toxicity as well as to improve the chemotherapeutic effect could have beneficial implications for patients undergoing chemotherapy with CP.

  14. Relatively high mortality risk in elderly Swedish subjects with low selenium status.

    PubMed

    Alehagen, U; Johansson, P; Björnstedt, M; Rosén, A; Post, C; Aaseth, J

    2016-01-01

    The daily dietary intake of selenium (Se), an essential trace element, is still low in Sweden in spite of decades of nutritional information campaigns and the effect of this on the public health is presently not well known. The objective of this study was to determine the serum Se levels in an elderly Swedish population and to analyze whether a low Se status had any influence on mortality. Six-hundred sixty-eight (n=668) elderly participants were invited from a municipality and evaluated in an observational study. Individuals were followed for 6.8 years and Se levels were re-evaluated in 98 individuals after 48 months. Clinical examination of all individuals included functional classification, echocardiography, electrocardiogram and serum Se measurement. All mortality was registered and endpoints of mortality were assessed by Kaplan-Meier plots, and Cox proportional hazard ratios adjusted for potential confounding factors were calculated. The mean serum Se level of the study population (n=668) was 67.1 μg/l, corresponding to relatively low Se intake. After adjustment for male gender, smoking, ischemic heart disease, diabetes, chronic obstructive pulmonary disease and impaired heart function, persons with serum Se in the lowest quartile had 43% (95% confidence interval (CI): 1.02-2.00) and 56% (95% CI: 1.03-2.36) increased risk for all-cause and cardiovascular mortality, respectively. The result was not driven by inflammatory effects on Se concentration in serum. The mean serum Se concentration in an elderly Swedish population was 67.1 μg/l, which is below the physiological saturation level for several selenoprotein enzymes. This result may suggest the value of modest Se supplementation in order to improve the health of the Swedish population.

  15. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    USDA-ARS?s Scientific Manuscript database

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  16. Selenoprotein W depletion induces a p53- and p21-dependent delay in cell cycle progression in RWPE-1 prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    The anticancer activity of selenium (Se) has been demonstrated in myriad animal and in vitro studies, yet the mechanisms remain obscure. The relative importance of small selenium compounds versus selenoproteins in the cancer-protective activity of Se is unresolved, but the main form of Se in animal ...

  17. Effects of Various Doses of Selenite on Stinging Nettle (Urtica dioica L.)

    PubMed Central

    Krystofova, Olga; Adam, Vojtech; Babula, Petr; Zehnalek, Josef; Beklova, Miroslava; Havel, Ladislav; Kizek, Rene

    2010-01-01

    The aim of this study was to investigate the effects of selenium (Se) on the growth, accumulation and possible mechanisms of Se transport in certain parts (roots, leaves, stamp and apex) of nettle (Urtica dioica L.) plants. Se was supplemented by one-shot and two repeated doses to the soil (2.0 and 4.0 mg Se per kg of substrate). Selenium content in roots increased linearly with dose and was significantly higher compared to other plant parts of interest. However, growth of the above-ground parts of plant as well as roots was slightly inhibited with increasing selenium concentration in comparison to the untreated plants. The content of phytochelatin2, a low molecular mass peptide containing a sulfhydryl group, correlated well with the Se content. This suggests a possible stimulation of synthesis of this plant peptide by Se. PMID:21139861

  18. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli

    NASA Astrophysics Data System (ADS)

    Tran, Phong A.; O'Brien-Simpson, Neil; Reynolds, Eric C.; Pantarat, Namfon; Biswas, Dhee P.; O'Connor, Andrea J.

    2016-01-01

    Antimicrobial agents that have no or low cytotoxicity and high specificity are desirable to have no or minimal side effects. We report here the low cytotoxicity of polyvinyl alcohol-stabilized selenium (Se) nanoparticles and their differential effects on growth of S. aureus, a gram-positive bacterium and E. coli, a gram-negative bacterium. The nanoparticles were synthesised through redox reactions in an aqueous environment at room temperature and were characterised using UV visible spectrophotometry, transmission electron microscopy, dynamic light scattering and x-ray photoelectron spectroscopy. The nanoparticles showed low toxicity toward fibroblasts which remained more than 70% viable at Se concentrations as high as 128 ppm. The nanoparticles also exhibited very low haemolysis with only 18% of maximal lysis observed at a Se concentration of 128 ppm. Importantly, the nanoparticles showed strong growth inhibition toward S. aureus at a concentration as low as 1 ppm. Interestingly, growth of E. coli was unaffected at all concentrations tested. This study therefore strongly suggests that these nanoparticles should be investigated further to understand this differential effect as well as for potential advanced antimicrobial applications such as S. aureus infection—resisting, non-cytotoxic coatings for medical devices.

  19. Influence of volcanic activity and anthropic impact in the trace element contents of fishes from the North Patagonia in a global context.

    PubMed

    Bubach, D F; Macchi, P J; Pérez Catán, S

    2015-11-01

    The elemental contents in salmonid muscle and liver tissues from different lakes around the world were investigated. Fish from pristine areas were compared with those fishes from impacted environments, both by volcanic and anthropogenic activities. Within the data, special attention was given to fishes from the Andean Patagonian lakes in two contexts: local and global. The local evaluation includes geological and limnological parameters and diet composition which were obtained through a data search from published works. The volcanic influence in Andean Patagonian lakes was mainly observed by an increase of cesium (Cs) and rubidium (Rb) concentrations in fishes, influenced by calcium (Ca) and potassium (K) water contents. Zinc (Zn), selenium (Se), iron (Fe), silver (Ag), and mercury (Hg) contents in fishes showed the effect of the geological substratum, and some limnological parameters. The diet composition was another factor which affects the elemental concentration in fishes. The analyzed data showed that the fishes from Andean Patagonian lakes had elemental content patterns corresponding to those of pristine regions with volcanic influence. Selenium and Ag contents from Andean Patagonian fishes were the highest reported.

  20. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis.

    PubMed

    Shakibaie, Mojtaba; Forootanfar, Hamid; Golkari, Yaser; Mohammadi-Khorsand, Tayebe; Shakibaie, Mohammad Reza

    2015-01-01

    The aim of the present study was to investigate the anti-biofilm activity of biologically synthesized selenium nanoparticles (Se NPs) against the biofilm produced by clinically isolated bacterial strains compared to that of selenium dioxide. Thirty strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis were isolated from various specimens of the patients hospitalized in different hospitals (Kerman, Iran). Quantification of the biofilm using microtiter plate assay method introduced 30% of S. aureus, 13% of P. aeruginosa and 17% of P. mirabilis isolates as severely adherent strains. Transmission electron micrograph (TEM) of the purified Se NPs (produced by Bacillus sp. MSh-1) showed individual and spherical nano-structure in the size range of 80-220nm. Obtained results of the biofilm formation revealed that selenium nanoparticles inhibited the biofilm of S. aureus, P. aeruginosa, and P. mirabilis by 42%, 34.3%, and 53.4%, respectively, compared to that of the non-treated samples. Effect of temperature and pH on the biofilm formation in the presence of Se NPs and SeO2 was also evaluated. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions.

    PubMed

    Huang, Zhi; Pei, Qiuling; Sun, Guifan; Zhang, Sichum; Liang, Jiang; Gao, Yi; Zhang, Xinrong

    2008-01-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low selenium status plays important roles in arsenism development. However, no study has been reported for humans suffering from chronic arsenic exposure with low selenium status. Sixty-three subjects were divided into 2 experimental groups by skin lesions (including hyperkeratosis, depigmentation, and hyperpigmentation). Total urine and serum concentrations of arsenic and selenium were determined by ICP-MS with collision/reaction cell. Arsenic species were analysed by ICP-MS coupled with HPLC. The mean concentration of As in the drinking waters was 41.5 microg/l. The selenium dietary intake for the studied population was 31.7 microg Se/d, and which for the cases and controls were 25.9 and 36.3 microg Se/d, respectively. Compared with the controls, the skin lesions cases had lower selenium concentrations in serum and urine (41.4 vs 49.6 microg/l and 71.0 vs 78.8 microg/l, respectively), higher inorganic arsenic (iAs) in serum (5.2 vs 3.4 microg/l, P<0.01), higher percentages of iAs in serum and urine (20.2) vs 16.9% and 18.3 vs 14.5%, respectively, P<0.01) but lower percentages of monomethylarsonate (MMA) in serum (15.5 vs 18.8%, P<0.01) ans dimethylarsinate acid (DMA) in urine (65.1 vs 69.8%, P<0.01). Subjects with lower selenium concentrations in serum (<50 microg/l) had a stronger tendency to the risk of skin lesions than individual having higher selenium concentrations [odd ratio (OR), 7.3; 95% confidence interval (95% CI), 1.5-35.7; P=0.014]. This OR estimation was confirmed in those subjects having higher ratios of As/Se in urine and serum, with OR as high as 10.3 and 3.8 respectively. Lower serum selenium status (<50 microg/l) is significantly correlated to the arsenic-associated skin lesions in the arsenic exposed population. The accumulation of iAs and its inhibition to be biotransformed to DMA occurred in human due to chronic exposure of low selenium status.

  2. Enhancing nutritiousness of lamb meat and preventing selenium deficiency.

    USDA-ARS?s Scientific Manuscript database

    Lamb meat is a naturally flavorful and nutritious product. Our research indicates that feeding a specific wheat-milling coproduct will enhance the nutritiousness of lamb, potentially add monetary value to lamb, and prevent Se deficiency. Selenium is an essential micromineral, and Se supplementation ...

  3. Selenium isotope ratios as indicators of selenium sources and oxyanion reduction

    USGS Publications Warehouse

    Johnson, T.M.; Herbel, M.J.; Bullen, T.D.; Zawislanski, P.T.

    1999-01-01

    Selenium stable isotope ratio measurements should serve as indicators of sources and biogeochemical transformations of Se. We report measurements of Se isotope fractionation during selenate reduction, selenite sorption, oxidation of reduced Se in soils, and Se volatilization by algae and soil samples. These results, combined with previous work with Se isotopes, indicate that reduction of soluble oxyanions is the dominant cause of Se isotope fractionation. Accordingly, Se isotope ratios should be useful as indicators of oxyanion reduction, which can transform mobile species to forms that are less mobile and less bioavailable. Additional investigations of Se isotope fractionation are needed to confirm this preliminary assessment. We have developed a new method for measurement of natural Se isotope ratio variation which requires less than 500 ng Se per analysis and yields ??0.2??? precision on 80Se/76Se. A double isotope spike technique corrects for isotopic fractionation during sample preparation and mass spectrometry. The small minimum sample size is important, as Se concentrations are often below 1 ppm in solids and 1 ??g/L in fluids. The Se purification process is rapid and compatible with various sample matrices, including acidic rock or sediment digests.

  4. Selenium isotope ratios as indicators of selenium sources and oxyanion reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, T.M.; Herbel, M.J.; Bullen, T.D.

    1999-09-01

    Selenium stable isotope ratio measurements should serve as indicators of sources and biogeochemical transformations of Se. The authors report measurements of Se isotope fractionation during selenate reduction, selenite sorption, oxidation of reduced Se in soils, and Se volatilization by algae and soil samples. These results, combined with previous work with Se isotopes, indicate that reduction of soluble oxyanions is the dominant cause of Se isotope fractionation. Accordingly, Se isotope ratios should be useful as indicators of oxyanion reduction, which can transform mobile species to forms that are less mobile and less bioavailable. Additional investigations of Se isotope fractionation are neededmore » to confirm this preliminary assessment. The authors have developed a new method for measurement of natural Se isotope ratio variation which requires less than 500 ng Se per analysis and yields {+-}0.2% precision on {sup 80}Se/{sup 76}Se. A double isotope spike technique corrects for isotopic fractionation during sample preparation and mass spectrometry. The small minimum sample size is important, as Se concentrations are often below 1 ppm in solids and 1 {micro}g/L in fluids. The Se purification process is rapid and compatible with various sample matrices, including acidic rock or sediment digests.« less

  5. No-carrier-added labeling of the neuroprotective Ebselen with selenium-73 and selenium-75.

    PubMed

    Helfer, Andreas; Ermert, Johannes; Humpert, Sven; Coenen, Heinz H

    2015-03-01

    Selenium-73 is a positron emitting non-standard radionuclide, which is suitable for positron emission tomography. A copper-catalyzed reaction allowed no-carrier-added labeling of the anti-inflammatory seleno-organic compound Ebselen with (73) Se and (75) Se under addition of sulfur carrier in a one-step reaction. The new authentically labeled radioselenium molecule is thus available for preclinical evaluation and positron emission tomography studies. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Synthesis, purification, and structural characterization of the dimethyldiselenoarsinate anion.

    PubMed

    Gailer, Jürgen; George, Graham N; Harris, Hugh H; Pickering, Ingrid J; Prince, Roger C; Somogyi, Arpad; Buttigieg, Gavin A; Glass, Richard S; Denton, M Bonner

    2002-10-21

    A novel arsenic-selenium solution species was synthesized by reacting equimolar sodium selenite and sodium dimethylarsinate with 10 mol equiv of glutathione (pH 7.5) in aqueous solution. The solution species showed a single (77)Se NMR resonance at 112.8 ppm. Size-exclusion chromatography (SEC) using an inductively coupled plasma atomic emission spectrometer (ICP-AES) as the simultaneous arsenic-, selenium-, sulfur-, and carbon-specific detector revealed an arsenic-selenium moiety with an As:Se molar ratio of 1:2. Electrospray ionization mass spectrometry (ESI-MS) of the chromatographically purified compound showed a molecular mass peak at m/z 263 in the negative ion mode. Fragmentation of the parent ion (ESI-MS-MS) produced (CH(3))(2)As(-) and Se(2)(-) fragments. Arsenic and selenium extended X-ray absorption fine structure spectroscopy (EXAFS) of the purified species revealed two As-C interactions at 1.943 A and two As-Se interactions at 2.279 A. On the basis of these results this novel solution species is identified as the dimethyldiselenoarsinate anion.

  7. Sorption and diffusion of selenium oxyanions in granitic rock

    NASA Astrophysics Data System (ADS)

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0 ± 2.0) × 10- 3 m3/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5 ± 0.3) × 10- 3 m3/kg and (1.0 ± 0.6) × 10- 4 m3/kg. The De of selenium was significantly higher for GG; De = (2.5 ± 1.5) × 10- 12 m2/s than for KGG; De = (7 ± 2) × 10- 13 m2/s due to the higher permeability of GG compared with KGG.

  8. Sorption and diffusion of selenium oxyanions in granitic rock.

    PubMed

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen atmosphere. The speciation of selenium was studied by HPLC-ICP-MS in simulated ground waters of each of the rock types. The Kd of selenium was found to be in the range of (6.2-7.0±2.0)×10(-3)m(3)/kg in crushed rock whereas the Kd obtained from block scale through diffusion experiment varied between (1.5±0.3)×10(-3)m(3)/kg and (1.0±0.6)×10(-4)m(3)/kg. The De of selenium was significantly higher for GG; De=(2.5±1.5)×10(-12)m(2)/s than for KGG; De=(7±2)×10(-13)m(2)/s due to the higher permeability of GG compared with KGG. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Impact of Phosphorus Supply on Selenium Uptake During Hydroponics Experiment of Winter Wheat (Triticum aestivum) in China.

    PubMed

    Liu, Hongen; Shi, Zhiwei; Li, Jinfeng; Zhao, Peng; Qin, Shiyu; Nie, Zhaojun

    2018-01-01

    Selenium (Se) is a necessary trace element for humans and animals, and Se fertilization is an efficient way to increase Se concentration in the edible parts of crops, thus enhance the beneficiary effects of Se in human and animal health. Due to the similarity of physical and chemical properties between phosphate () and selenite (), phosphorus (P) supply often significantly impacts the absorption of Se in plants, but little is known about how P supply influences the subcellular distribution and chemical forms of Se. In this study, the effects of P supply on subcellular distribution and chemical forms of Se in winter wheat were investigated in a hydroponic trial with medium Se level (0.1 mg Se L -1 ). P was applied with three concentrations (0.31, 3.1, and 31 mg P L -1 ) in the experiment. The results showed that increasing P supply significantly decreased the concentration and accumulation of Se in the roots, stems, and leaves of winter wheat. An increase in P supply significantly inhibited Se accumulation in the root cell wall, but enhanced Se distribution in the organelles and soluble fraction of root cells. These findings suggest that increased P supply inhibited the root-to-shoot transport of Se. An increase in P supply enhanced Se accumulation in the cell wall of plant stems (both apical and axillary stem) and cell organelles of plants leaves, but inhibited Se distribution in the soluble fraction of stems and leaves. This suggests that P supply enhances Se transportation across the cell membrane in shoots of winter wheat. In addition, increased P supply also altered the chemical forms of Se in tissues of winter wheat. These findings will help in understanding of the regulation grain Se accumulation and provide a practical way to enhance Se intake for humans inform Se-enriched grains.

  10. Graphene-Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium-Selenium Secondary Battery Applications.

    PubMed

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-08-02

    In this study, graphene-selenium hybrid microballs (G-SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G-SeHMs thus prepared is investigated for use as cathode material in applications of lithium-selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g(-1) at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g(-1) after 100 cycles at 0.1 C; 84.5% retention) and high rate capability (specific capacity of 301 mA h g(-1) at 5 C). These electrochemical properties are attributed to the fact that the G-SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.

  11. Selenium content of game meat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, L.C.; Belden, R.P.

    Selenium (Se) content of elk, deer, bison and beef were measured and compared. Samples were obtained from animals grazed on soil known to contain high, but variable amounts of Se. Beef were feedlot grazed and elk, deer, and bison were from captive or semi-captive herds. Selenium content was determined by graphite furnace after high pressure wet microwave digestion of samples. Deer and bison contained more Se than elk or beef. On a dry weight basis, deer contained more Se than bison. Game species contained more Se than beef. Within samples from male elk and deer and elk and bison ofmore » both genders, there were interactions between specie and muscle effects. Muscle and gender did not significantly influence Se content. The animals from which these samples were taken were supplemented with feeds grown on high Se containing soils, which was reflected in all values. Se values were twofold higher than those previously reported for meat. Those consuming large quantities of game from areas with high Se soil may need to monitor Se intake to avoid consuming excessive quantities.« less

  12. Interaction between mercury (Hg), arsenic (As) and selenium (Se) affects the activity of glutathione S-transferase in breast milk; possible relationship with fish and sellfish intake.

    PubMed

    Gaxiola-Robles, Ramón; Labrada-Martagón, Vanessa; Celis de la Rosa, Alfredo de Jesús; Acosta-Vargas, Baudilio; Méndez-Rodríguez, Lía Celina; Zenteno-Savín, Tania

    2014-08-01

    Breast milk is regarded as an ideal source of nutrients for the growth and development of neonates, but it can also be a potential source of pollutants. Mothers can be exposed to different contaminants as a result of their lifestyle and environmental pollution. Mercury (Hg) and arsenic (As) could adversely affect the development of fetal and neonatal nervous system. Some fish and shellfish are rich in selenium (Se), an essential trace element that forms part of several enzymes related to the detoxification process, including glutathione S-transferase (GST). The goal of this study was to determine the interaction between Hg, As and Se and analyze its effect on the activity of GST in breast milk. Milk samples were collected from women between day 7 and 10 postpartum. The GST activity was determined spectrophotometrically; total Hg, As and Se concentrations were measured by atomic absorption spectrometry. To explain the possible association of Hg, As and Se concentrations with GST activity in breast milk, generalized linear models were constructed. The model explained 44% of the GST activity measured in breast milk. The GLM suggests that GST activity was positively correlated with Hg, As and Se concentrations. The activity of the enzyme was also explained by the frequency of consumption of marine fish and shellfish in the diet of the breastfeeding women. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Selenium and boron in aquatic birds from central California

    USGS Publications Warehouse

    Paveglio, F.L.; Bunck, C.M.; Heinz, G.H.

    1992-01-01

    Subsurface agricultural drainwater used for marsh management has resulted in trace element contamination of aquatic bird food chains in central California. Consequently, we collected breeding and wintering aquatic birds from the Grassland Water District (GWD) of California during 1985-88 to measure selenium (Se) and boron (B) contamination resulting from use of such drainage water for wetland management. During the breeding and wintering periods, livers of birds from the North and South areas of the Grasslands contained concentrations of Se and B that have been associated with reproductive impairment. Birds from the South Grasslands, which had received more undiluted drainage water, were more contaminated than those from the North Grasslands. Birds had higher (P < 0.001) levels of Se and B at the end of the 1985-86 wintering period than at the beginning, indicating that the Grasslands was the major source of contamination. Concentrations of Se decreased from 1985 through 1988, after freshwater was substituted for irrigation drainage water during autumn 1985. B concentrations in wintering birds, except for American coots (Fulica americana), declined to background levels, while concentrations in breeding birds remained slightly elevated. However, after 3 years of freshwater management of the Grasslands, liver Se levels in some breeding and wintering birds still were above concentrations associated with impaired reproduction in laboratory and field studies. In areas with high potential for leaching of Se and B from agricultural land, irrigation drainage water should not be used for wetland management.

  14. The Protective Role of Selenium in AFB1-Induced Tissue Damage and Cell Cycle Arrest in Chicken's Bursa of Fabricius.

    PubMed

    Hu, Ping; Zuo, Zhicai; Wang, Fengyuan; Peng, Xi; Guan, Ke; Li, Hang; Fang, Jing; Cui, Hengmin; Su, Gang; Ouyang, Ping; Zhou, Yi

    2018-03-06

    Aflatoxin B 1 (AFB 1 ) is a naturally occurring secondary metabolites of Aspergillus flavus and Aspergillus parasiticus, and is the most toxic form of aflatoxins. Selenium (Se) with antioxidant and detoxification functions is one of the essential trace elements for human beings and animals. This study aims to evaluate the protective effects of Se on AFB 1 -induced tissue damage and cell cycle arrest in bursa of Fabricius (BF) of chickens. The results showed that a dietary supplement of 0.4 mg·kg -1 Se alleviated the histological lesions induced by AFB 1 , as demonstrated by decreasing vacuoles and nuclear debris, and relieving oxidative stress. Furthermore, flow cytometry studies showed that a Se supplement protected AFB 1 -induced G 2 M phase arrest at 7 days and G 0 G 1 phase arrest at 14 and 21 days. Moreover, the mRNA expression results of ATM, Chk2, p53, p21, cdc25, PCNA, cyclin D 1 , cyclin E 1 , cyclin B 3 , CDK6, CDK2, and cdc2 indicated that Se supplement could restore these parameters to be close to those in the control group. It is concluded that a dietary supplement of 0.4 mg kg -1 Se could diminish AFB 1 -induced immune toxicity in chicken's BF by alleviating oxidative damage and cell cycle arrest through an ATM-Chk2-cdc25 route and the ATM-Chk2-p21 pathway.

  15. Cardioprotective Effect of Aloe vera Biomacromolecules Conjugated with Selenium Trace Element on Myocardial Ischemia-Reperfusion Injury in Rats.

    PubMed

    Yang, Yang; Yang, Ming; Ai, Fen; Huang, Congxin

    2017-06-01

    The present study was undertaken to evaluate the cardioprotection potential and underlying molecular mechanism afforded by a selenium (Se) polysaccharide (Se-AVP) from Aloe vera in the ischemia-reperfusion (I/R) model of rats in vivo. Myocardial I/R injury was induced by occluding the left anterior descending coronary artery (LAD) for 30 min followed by 2-h continuous reperfusion. Pretreatment with Se-AVP (100, 200, and 400 mg/kg) attenuated myocardial damage, as evidenced by reduction of the infarct sizes, increase in serum and myocardial endogenous antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GSH), and catalase (CAT)), and decrease in the malondialdehyde (MDA) level in the rats suffering I/R injury. This cardioprotective activity afforded by Se-AVP is further supported by the decreased levels of cardiac marker enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as the rise of myocardial Na + -K + -ATPase and Ca 2+ -Mg 2+ -ATPase activities in I/R rats. Additionally, cardiomyocytic apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining and the result showed that the percent of TUNEL-positive cells in myocardium of Se-AVP-treated groups was lower than I/R rats. In conclusion, we clearly demonstrated that Se-AVP had a protective effect against myocardial I/R injury in rats by augmenting endogenous antioxidants and protecting rat hearts from oxidative stress-induced myocardial apoptosis.

  16. Assessing Selenium, Manganese, and Iodine Status in Pediatric Patients Receiving Parenteral Nutrition.

    PubMed

    Johnsen, Jacob Clarke; Reese, Susan Anne; Mackay, Mark; Anderson, Collin R; Jackson, Daniel; Paul, Irasema Libertad

    2017-08-01

    Pediatric patients who are receiving parenteral nutrition (PN) unsupplemented with trace minerals can become deficient. Due to shortages in trace mineral products and the 2004 American Society for Parenteral and Enteral Nutrition report stating that individualized trace element supplementation may be warranted, a review was conducted concerning the trace minerals selenium (Se), manganese (Mn), and iodine (I). A retrospective review of pediatric patients receiving PN that contained Se and Mn was conducted to determine if a difference existed between them and patients receiving PN without Se and Mn. Statistical analysis was done to assess a difference between trace mineral levels and the time to deficiency between supplemented and unsupplemented patients. Unsupplemented I patients had urine I levels assessed to determine deficiencies in patients receiving PN. Plasma Se levels were measured at a mean of 20 days for supplemented patients (n = 131) and 19 days for nonsupplemented patients (n = 57) with no difference between groups ( P = .2973). Plasma Mn levels were measured at a mean of 28 days, showing no statistical difference ( P = .721). Of the 177 nonsupplemented I patients, 74% demonstrated I deficiencies without supplementation. Time to the development of a Se, Mn, or I deficiency is important to guide supplementation of exclusive PN in children when trace mineral products are short in supply. Our retrospective experience supports assessment of the trace minerals Se at 21 days and Mn at 30 days. It also suggests that some pediatric patients receiving PN are deficient in I.

  17. Selenium as a versatile center in fluorescence probe for the redox cycle between HClO oxidative stress and H2S repair.

    PubMed

    Lou, Zhangrong; Li, Peng; Han, Keli

    2015-01-01

    Selenium is a biologically important trace element and acts as an active center of glutathione peroxidase (GPx). GPx is the important antioxidant enzyme to protect organisms from oxidative damage via catalyzing the reaction between ROS and glutathione (GSH). Mimicking the oxidation-reduction cycles of the versatile selenium core in GPx, we can develop fluorescence probes to detect oxidation and reduction events in living systems. The cellular redox balance between hypochloric acid (HClO) and hydrogen sulfide (H2S) has broad implications in human health and diseases, such as Alzheimer's disease (AD). Therefore, to further investigate the roles of this redox balance and understand the pathogenesis of neurodegenerative diseases, it is necessary to detect the redox state between HClO and H2S in real time. We have developed a reversible fluorescence probe MPhSe-BOD for imaging of the redox cycle between HClO and H2S based on oxidation and reduction of selenide in living cells.

  18. Critical evaluation of the ability of sequential extraction procedures to quantify discrete forms of selenium in sediments and soils.

    PubMed

    Wright, Michael T; Parker, David R; Amrhein, Christopher

    2003-10-15

    Sequential extraction procedures (SEPs) have been widely used to characterize the mobility, bioavailibility, and potential toxicity of trace elements in soils and sediments. Although oft-criticized, these methods may perform best with redox-labile elements (As, Hg, Se) for which more discrete biogeochemical phases may arise from variations in oxidation number. We critically evaluated two published SEPs for Se for their specificity and precision by applying them to four discrete components in an inert silica matrix: soluble Se(VI) (selenate), Se(IV) (selenite) adsorbed onto goethite, elemental Se, and a metal selenide (FeSe; achavalite). These were extracted both individually and in a mixed model sediment. The more selective of the two procedures was modified to further improve its selectivity (SEP 2M). Both SEP 1 and SEP 2M quantitatively recovered soluble selenate but yielded incomplete recoveries of adsorbed selenite (64% and 81%, respectively). SEP 1 utilizes 0.1 M K2S2O8 to target "organically associated" Se, but this extractant also solubilized most of the elemental (64%) and iron selenide (91%) components of the model sediment. In SEP 2M, the Na2SO3 used in step III is effective in extracting elemental Se but also extracted 17% of the Se from the iron selenide, such that the elemental fraction would be overestimated should both forms coexist. Application of SEP 2M to eight wetland sediments further suggested that the Na2SO3 in step III extracts some organically associated Se, so a NaOH extraction was inserted beforehand to yield a further modification, SEP 2OH. Results using this five-step procedure suggested that the four-step SEP 2M could overestimate elemental Se by as much as 43% due to solubilization of organic Se. Although still imperfect in its selectivity, SEP 20H may be the most suitable procedure for routine, accurate fractionation of Se in soils and sediments. However, the strong oxidant (NaOCl) used in the final step cannot distinguish between refractory organic forms of Se and pyritic Se that might form under sulfur-reducing conditions.

  19. Simultaneous Speciation Analysis of Arsenic, Chromium, and Selenium in the Bioaccessible Fraction for Realistic Risk Assessment of Food Safety.

    PubMed

    Sadiq, Nausheen W; Beauchemin, Diane

    2017-12-19

    A simple and fast method was developed for risk assessment of As, Cr, and Se in food, which is demonstrated here using three cooked and uncooked rice samples (basmati as well as organic white and brown rice). The bioaccessible fraction was first determined through online leaching of rice minicolumns (maintained at 37 °C) sequentially with artificial saliva, gastric juice, and intestinal juice while continuously monitoring potentially toxic elements (As, Cr, and Se) by inductively coupled plasma mass spectrometry (ICPMS). Then, a new ion chromatography method with online detection by ICPMS was developed for the simultaneous speciation analysis of As, Cr, and Se in the bioaccessible fraction to determine the portion of these elements that was actually toxic. Using gradient elution, four As species [As(III), As(V), monomethylarsonic acid, and dimethylarsinic acid], two Cr species [Cr(III) and Cr(VI)], and two Se species [Se(IV) and Se(VI)] were separated within 12 min. The simultaneous speciation analysis of As, Cr, and Se revealed that the simple act of cooking can convert all of the carcinogenic Cr(VI) to the safer Cr(III).

  20. Selenium speciation in radix puerariae using ultrasonic assisted extraction combined with reversed phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry after magnetic solid-phase extraction with 5-sulfosalicylic acid functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cao, Yupin; Yan, Lizhen; Huang, Hongli; Deng, Biyang

    2016-08-01

    A new method for determination of selenium species in radix puerariae was described. The method consists of sample enrichment with 5-sulfosalicylic acid (SSA)-functionalized silica-coated magnetic nanoparticles (SMNPs), high performance liquid chromatography (HPLC) separation, and online detection using inductively coupled plasma mass spectrometry (ICP-MS). The selenium species were extracted using ultrasonic extraction system with a mixture of protease K and lipase. The SSA-SMNPs were used to enrich trace amounts of selenite [Se(IV)], selenate [Se(VI)], selenomethionine (SeMet), and selenocystine (SeCys2) from lower selenium containing samples. Under the optimal conditions, the limits of detection (3σ) for SeCys2, Se(IV), SeMet and Se(VI) were observed as 0.0023, 0.0015, 0.0043, and 0.0016 ng mL- 1, respectively. The RSD values (n = 6) of method for intraday were observed between 0.5% and 0.9%. The RSD values of method for interday were less than 1.3%. The linear concentration ranges for SeCys2, Se(IV), SeMet and Se(VI) were 0.008-1000, 0.005-200, 0.015-500 and 0.006-200 ng mL- 1, respectively. The detection limits of this method were improved by 10 times due to the enrichment with the SSA-SMNP extraction. The contents of SeCys2, Se(IV), SeMet, and Se(VI) in radix puerariae were determined as 0.0140, 0.171, 0.0178, and 0.0344 μg g- 1, respectively. The recoveries were in the range of 95.6%-99.4% and the RSDs (n = 6) of recoveries were less than 1.5%.

  1. Selenium deposition kinetics of different selenium sources in muscle and feathers of broilers.

    PubMed

    Couloigner, Florian; Jlali, Maamer; Briens, Mickael; Rouffineau, Friedrich; Geraert, Pierre-André; Mercier, Yves

    2015-11-01

    The objective of this study was to determine selenium (Se) deposition kinetics in muscles and feathers of broilers in order to develop a rapid method to compare bioavailability of selenium sources. Different Se sources such as 2-hydroxy-4-methylselenobutanoic acid (HMSeBA, SO), sodium selenite (SS) and seleno-yeast (SY) were compared for their kinetics on Se deposition in muscles and feathers in broiler chicks from 0 to 21 d of age. A total of 576 day-old broilers were divided into four treatments with 8 replicates of 18 birds per pen. The diets used in the experiment were a negative control (NC) not supplemented with Se and 3 diets supplemented with 0.2 mg Se/kg as SS, SY or SO. Total Se content in breast muscle and feathers were assessed on days 0, 7, 14 and 21. At 7 d of age, SO increased muscle Se content compared to D0 (P < 0.05), whereas with the other treatments, muscle Se concentration decreased (P < 0.05). After 21 days, organic Se sources maintained (SY) or increased (SO) (P < 0.05) breast muscle Se concentration compared to hatch value whereas inorganic source (SS) or non-supplemented group (NC) showed a significant decrease in tissue Se concentration (P < 0.05). At D21, Se contents of muscle and feathers were highly correlated (R(2) = 0.927; P < 0.0001). To conclude, these results indicate that efficiency of different Se sources can be discriminated through a 7 d using muscle Se content in broiler chickens. Muscle and feathers Se contents were highly correlated after 21 days. Also feather sampling at 21 days of age represents a reliable and non-invasive procedure for Se bioefficacy comparison. © 2015 Poultry Science Association Inc.

  2. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa)

    PubMed Central

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-01-01

    Background and Aims Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Methods Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. Key Results The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Conclusions Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. PMID:24948669

  3. Chemical Forms of Selenium in the Metal-Resistant Bacterium Ralstonia metallidurans CH34 Exposed to Selenite and Selenate

    PubMed Central

    Sarret, Géraldine; Avoscan, Laure; Carrière, Marie; Collins, Richard; Geoffroy, Nicolas; Carrot, Francine; Covès, Jacques; Gouget, Barbara

    2005-01-01

    Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se0). We have studied the kinetics of selenite (SeIV) and selenate (SeVI) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se0 and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se0. Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se0 was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. SeIV was detected as a transient species in the first 12 h after selenate introduction, Se0 also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments. PMID:15870319

  4. Ameliorative effect of selenium in cisplatin-induced testicular damage in rats.

    PubMed

    Simsek, Nejdet; Koc, Akif; Karadeniz, Ali; Yildirim, Mehmet Erol; Celik, Hüseyin Tuğrul; Sari, Erhan; Kara, Adem

    2016-04-01

    In this study, we investigated the protective effect of selenium (Se) on cisplatin (Cis) induced testicular damage using histopathological, immunohistochemical and biochemical approaches. Twenty-one male Wistar rats were equally divided into three groups of seven rats each: control (C), Cis, and Cis+Se. Cis and Cis+Se group rats received Cis at a dose of 12mg/kg b.w./day, intraperitoneally for 3 consecutive days. Cis+Se group rats received selenium via oral gavage 3mg/kg/day (twice-a day as 1.5mg/kg) until 11th consecutive days starting at 5 days before cisplatin injection. C group received only 0.9% NaCl intraperitoneally and orally at same time and at equal volume. After the treatment, the histopathological, immunohistochemical and biochemical examinations were performed. In seminiferous tubules of Cis treated rats were observed the most consistent findings characterized with vacuolization, desquamation, disorganization, and also was a considerable reduction in elongated spermatids, however the Cis+Se group exhibited improved histopathologic changes. In the immunohistochemical examinations, caspase-3 immunopositive cells displayed higher in the Cis group according to C and Cis+Se groups. Bcl-2 and NF-κB staining revealed a moderate number in the C group and significantly fewer in the Cis group compared to the Cis+Se groups. Additionally, MDA levels were also significantly increased in the Cis group in comparison to Control group, but pretreatment with selenium prevented elevation of MDA levels significantly in Cis+Se group rats. This study indicates that Cis-treatment induced testicular apoptosis and lipid peroxidation, and combined treatment with selenium prevented severity of the toxicity in rats. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival

    USGS Publications Warehouse

    Stanley, T.R.; Spann, J.W.; Smith, G.J.; Rosscoe, R.

    1994-01-01

    Arsenic (As) and selenium (Se) occur together in high concentrations in the environment and can accumulate in aquatic plants and invertebrates consumed by waterfowl. Ninety-nine pairs of breeding mallards (Anas platyrhynchos) were fed diets supplemented with As (sodium arsenate) at 0, 25, 100, or 400 ug/g, in combination with Se (seleno-DL-methionine) at 0 or 10 ug/g, in a replicated factorial experiment. Ducklings produced were placed on the same treatment combination as their parents. Arsenic accumulated in adult liver and egg, reduced adult weight gain and liver weight, delayed the onset of egg laying, decreased whole egg weight, and caused eggshell thinning. Arsenic did not affect hatching success and was not teratogenic. In ducklings, As accumulated in the liver and reduced body weight, growth, and liver weight. Arsenic did not increase duckling mortality, but it did decrease overall duckling production. Selenium accumulated in adult liver and egg, was teratogenic, and decreased hatching success. Selenium did not affect adult weight, liver weight, survival, onset of egg laying, egg fertility, egg weight, or eggshell thickness. In ducklings, Se accumulated in the liver and reduced body weight and growth, and increased liver weight. Selenium increased duckling mortality and decreased overall duckling production. Antagonistic interactions between As and Se occurred whereby As reduced Se accumulation in liver and egg, and alleviated the effects of Se on hatching success and embryo deformities. It was demonstrated that As and Se, in the chemical forms and at the dietary levels administered in this study, can adversely affect mallard reproduction and duckling growth and survival, and that As can alleviate toxic effects of Se.

  6. Effect of Phosphine-Free Selenium Precursor Reactivity on The Optical and Vibrational properties of Colloidal CdSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Thi, L. A.; Lieu, N. T. T.; Hoa, N. M.; Tran, N.; Binh, N. T.; Quang, V. X.; Nghia, N. X.

    2018-03-01

    Phosphine-free selenium precursor solutions have been prepared by heating at temperatures ranging from 160 °C to 240 °C and studied by means of infrared absorption spectroscopy. The colloidal CdSe nanocrystals (NCs) synthesized from all those solutions by the wet chemical method. The influence of heating temperature on the chemical reactivity of selenium precursor and its role on the optical and vibrational properties of CdSe NCs are discussed in details. Their morphology, particle size, structural, optical and vibrational properties were investigated using transmission electron microscopy, X-ray diffraction, UV-Vis, fluorescence and Raman spectroscopy, respectively.

  7. Selenium in San Francisco Bay zooplankton: Potential effects of hydrodynamics and food web interactions

    USGS Publications Warehouse

    Purkerson, D.G.; Doblin, M.A.; Bollens, S.M.; Luoma, S.N.; Cutter, G.A.

    2003-01-01

    The potential toxicity of elevated selenium (Se) concentrations in aquatic ecosystems has stimulated efforts to measure Se concentrations in benthos, nekton, and waterfowl in San Francisco Bay (SF Bay). In September 1998, we initiated a 14 mo field study to determine the concentration of Se in SF Bay zooplankton, which play a major role in the Bay food web, but which have not previously been studied with respect to Se. Monthly vertical plankton tows were collected at several stations throughout SF Bay, and zooplankton were separated into two operationally defined size classes for Se analyses: 73-2,000 ??m, and ???2,000 ??m. Selenium values ranged 1.02-6.07 ??g Se g-1 dry weight. No spatial differences in zooplankton Se concentrations were found. However, there were inter- and intra-annual differences. Zooplankton Se concentrations were enriched in the North Bay in Fall 1999 when compared to other seasons and locations within and outside SF Bay. The abundance and biovolume of the zooplankton community varied spatially between stations, but not seasonally within each station. Smaller herbivorous-omnivorous zooplankton had higher Se concentrations than larger omnivorous-carnivorous zooplankton. Selenium concentrations in zooplankton were negatively correlated with the proportion of total copepod biovolume comprising the large carnivorous copepod Tortanus dextrilobatus, but positively correlated with the proportion of copepod biovolume comprising smaller copepods of the family Oithonidae, suggesting an important role of trophic level and size in regulating zooplankton Se concentrations.

  8. Grain Accumulation of Selenium Species in Rice (Oryza sativa L.)

    EPA Science Inventory

    Selenium (Se) is an essential micronutrient in which up to 1 billion people worldwide are deficient, causing a range of health disorders and potentially an increased risk of certain cancers. Consequently, there is much interest in Se biofortification of rice, the staple food for...

  9. Nanometer-sized alumina packed microcolumn solid-phase extraction combined with field-amplified sample stacking-capillary electrophoresis for the speciation analysis of inorganic selenium in environmental water samples.

    PubMed

    Duan, Jiankuan; Hu, Bin; He, Man

    2012-10-01

    In this paper, a new method of nanometer-sized alumina packed microcolumn SPE combined with field-amplified sample stacking (FASS)-CE-UV detection was developed for the speciation analysis of inorganic selenium in environmental water samples. Self-synthesized nanometer-sized alumina was packed in a microcolumn as the SPE adsorbent to retain Se(IV) and Se(VI) simultaneously at pH 6 and the retained inorganic selenium was eluted by concentrated ammonia. The eluent was used for FASS-CE-UV analysis after NH₃ evaporation. The factors affecting the preconcentration of both Se(IV) and Se(VI) by SPE and FASS were studied and the optimal CE separation conditions for Se(IV) and Se(VI) were obtained. Under the optimal conditions, the LODs of 57 ng L⁻¹ (Se(IV)) and 71 ng L⁻¹ (Se(VI)) were obtained, respectively. The developed method was validated by the analysis of a certified reference material of GBW(E)080395 environmental water and the determined value was in a good agreement with the certified value. It was also successfully applied to the speciation analysis of inorganic selenium in environmental water samples, including Yangtze River water, spring water, and tap water. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Liquid chromatography-mass spectrometry (LC-MS): a powerful combination for selenium speciation in garlic (Allium sativum).

    PubMed

    Dumont, Emmie; Ogra, Yasumitsu; Vanhaecke, Frank; Suzuki, Kazuo T; Cornelis, Rita

    2006-03-01

    Liquid chromatography (LC) hyphenated with both elemental and molecular mass spectrometry has been used for Se speciation in Se-enriched garlic. Different species were separated by ion-pair liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) after hot-water extraction. They were identified by on-line reversed-phase liquid chromatography-electrospray ionization tandem mass spectrometry (RPLC-ESI-MS-MS). Se-methionine and Se-methylselenocysteine were determined by monitoring their product ions. Another compound, gamma-glutamyl-Se-methylselenocysteine, shown to be the most abundant form of Se in the garlic, was determined without any additional sample pre-treatment after extraction and without the need for a synthesized standard. Product ions for this dipeptide were detected by LC-ESI-MS-MS for three isotopes of Se-78 Se, 80Se: and 82Se. The method was extended to the species extracted during in-vitro gastrointestinal digestion. Because both Se-methylselenocysteine and gamma-glutamyl-Se-methylselenocysteine have anticarcinogenic properties, their extractability and stability during human digestion are very important. Garlic was also treated with saliva, to enable detection and analysis of species extracted during mastication. Detailed information on the extractability of selenium species by both simulated gastric and intestinal fluid are given, and variation of the distribution of Se among the different species with time is discussed. Although the main species in garlic is the dipeptide gamma-glutamyl-Se-methylselenocysteine, Se-methylselenocysteine is the main compound present in the extracts after treatment with gastrointestinal fluids. Two more, so far unknown compounds were observed in the chromatogram. The extracted species and their transformations were analysed by combining LC-ICP-MS and LC-ESI-MS-MS. In both the simulated gastric and intestinal digests, Se-methionine, Se-methylselenocysteine, and gamma-glutamyl-Se-methylselenocysteine could be determined by LC-ESI-MS-MS by measuring their typical product ions.

  11. Biotransformation and accumulation of selenium inside organisms in an engineered aquatic ecosystem designed for bioremediation of Se from agriculture drainage water and brine shrimp production

    USDA-ARS?s Scientific Manuscript database

    Excessive selenium (Se) in soils and waters present in the westside of central California was determined to be responsible for ecotoxicities observed in water fowl frequenting large bodies of water, i.e., evaporation ponds. In order to monitor the fate and potentially design an aquatic Se remediatio...

  12. Responses of growing Japanese quails that received selenium from selenium enriched kale sprout (Brassica oleracea var. alboglabra L.).

    PubMed

    Chantiratikul, Anut; Chinrasri, Orawan; Pakmaruek, Pornpan; Chantiratikul, Piyanete; Thosaikham, Withpol; Aengwanich, Worapol

    2011-12-01

    The objectives of this study were to determine the effect of selenium (Se) from Se-enriched kale sprout (Brassica oleracea var. alboglabra L.) on the performance and Se concentrations in tissues of growing Japanese quails. Two hundred quails were divided into five treatments. Each treatment consisted of four replicates and each replicate contained ten quails in a completely randomize design. The experiment was conducted for 5 weeks. The treatments were T1, control diet; T2, control diet plus 0.2 mg Se/kg from sodium selenite; T3, T4, and T5, control diet plus 0.2, 0.5, and 1.0 mg Se/kg from Se-enriched kale sprout. The results revealed that Se supplementation had no impact on feed intake, performance, and carcass characteristics of quails (p > 0.05). However, Se supplementation from both sodium selenite and Se-enriched kale sprout increased (p < 0.05) Se concentrations in the heart and breast meat of quails. Se concentrations in the liver and breast meat of quails increased (p < 0.05) with increasing Se concentration from Se-enriched kale sprout. The results indicate that Se from Se-enriched kale sprout offers no advantage over Se from sodium selenite on tissue Se concentration.

  13. Association of plasma selenium concentrations with total IGF-1 among older community-dwelling adults: the InCHIANTI study.

    PubMed

    Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Dall'Aglio, Elisabetta; Guralnik, Jack M; Paolisso, Giuseppe; Semba, Richard D; Nouvenne, Antonio; Borghi, Loris; Ceresini, Graziano; Ablondi, Fabrizio; Benatti, Mario; Ferrucci, Luigi

    2010-10-01

    Insulin-like growth factor (IGF-1) stimulates cell proliferation and inhibits cell apoptosis. Recent studies underline its importance as anabolic hormone and nutritional marker in older individuals. IGF-1 synthesis and bioactivity are modulated by nutritional factors including selenium intake. However, whether circulating IGF-1 levels are positively influenced by plasma selenium, one of the most important human antioxidants, is still unknown. Selenium and total IGF-1 were measured in 951 men and women ≥ 65 years from the InCHIANTI study, Tuscany, Italy. Means (SD) of plasma selenium and total IGF-1 were 0.95 (0.15) μmol/L and 113.4 (31.2)ng/mL, respectively. After adjustment for age and sex, selenium levels were positively associated with total IGF-1 (β±SE: 43.76±11.2, p=0.0001). After further adjustment for total energy and alcohol intake, serum alanine aminotransferase (ALT), congestive heart failure, selenium remained significantly associated with IGF-1 (β±SE: 36.7±12.2, p=0.003). The association was still significant when IL-6 was introduced in the model (β±SE: 40.1±12.0, p=0.0008). We found an independent, positive and significant association between selenium and IGF-1 serum levels in community dwelling older adults. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Interaction between carcinogenic and anti-carcinogenic trace elements in the scalp hair samples of different types of Pakistani female cancer patients.

    PubMed

    Wadhwa, Sham Kumar; Kazi, Tasneem Gul; Afridi, Hassan Imran; Talpur, Farah Naz; Naeemullah

    2015-01-15

    It was investigated that carcinogenic processes are linked with the imbalances of essential trace and toxic elements in body fluid and tissues of human. In this study, the relationship between carcinogenic elements, arsenic (As), cadmium (Cd), and nickel (Ni), and anti-carcinogenic elements, selenium (Se) and zinc (Zn), in the scalp hair of different female cancer patients (breast, cervix, mouth and ovarian) was studied. The scalp hair samples were collected from cancer patients and referent female subjects of the same age group and socioeconomic status. The scalp hair samples were oxidized by 65% nitric acid and 30% hydrogen peroxide by microwave oven and analyzed by atomic absorption spectrometry. The validity and accuracy of the methodology were checked using certified reference material of human hair (BCR 397). The mean concentrations of As, Cd, and Ni were found to be significantly higher in the scalp hair samples of cancerous patients as compared to referents, while reverse results were obtained in the case of Zn and Se (p<0.01). The study revealed that low level of trace elements (Se, Zn) and high level of heavy elements (As, Cd, and Ni) were associated with increased risk of cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dietary selenium requirements based on tissue selenium concentration and glutathione peroxidase activities in old female rats.

    PubMed

    Sunde, Roger A; Thompson, Kevin M

    2009-01-01

    Dietary nutrient requirements for older animals have been studied far less than have requirements for young growing animals. To determine dietary selenium (Se) requirements in old rats, we fed female weanling rats a Se-deficient diet (0.007 microg Se/g) or supplemented rats with graded levels of dietary Se (0-0.3 microg Se/g) as Na(2)SeO(3) for 52 weeks. At no point did Se deficiency or level of Se supplementation have a significant effect (P>0.05) on growth. To determine Se requirements, Se response curves were determined for 7 Se-dependent parameters. We found that minimum dietary Se requirements in year-old female rats were at or below 0.05 microg Se/g diet based on liver Se, red blood cell glutathione peroxidase (Gpx1) activity, plasma Gpx3 activity, liver and kidney Gpx1 activity, and liver and kidney Gpx4 activity. In conclusion, this study found that dietary Se requirements in old female rats were decreased at least 50% relative to requirements found in young, rapidly growing female rats. Collectively, this indicates that the homeostatic mechanisms related to retention and maintenance of Se status are still fully functional in old female rats.

  16. Elk (Cervus elaphus canadensis) preference for feeds varying in selenium concentration

    USDA-ARS?s Scientific Manuscript database

    Selenium-accumulator plants are reputed to be unpalatable to large ungulates. Elk (Cervus elaphus canadensis) populations in south-eastern Idaho overlap with populations of Se-rich plants, but there is no information on the influence of plant Se concentration on elk dietary preferences. The objecti...

  17. Selenium deficiency decreases antioxidative capacity and is detrimental to bone microarchitecture in mice

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se), a chemical component of selenoproteins (such as glutathione peroxidases and thioredoxin reductase), plays a major role in cellular redox status and may have beneficial effects on bone health. The deficiency of Se has been linked to increased oxidative stress with increased levels of r...

  18. Selenium speciation analysis of Misgurnus anguillicaudatus selenoprotein by HPLC-ICP-MS and HPLC-ESI-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...

  19. The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens.

    PubMed

    Gobler, Christopher J; Lobanov, Alexei V; Tang, Ying-Zhong; Turanov, Anton A; Zhang, Yan; Doblin, Martina; Taylor, Gordon T; Sañudo-Wilhelmy, Sergio A; Grigoriev, Igor V; Gladyshev, Vadim N

    2013-07-01

    The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95% during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.

  20. The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobler, Christopher J.; Lobanov, Alexei V.; Tang, Ying-Zhong

    The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated bymore » the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95percent during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.« less

Top