Upgraded HFIR Fuel Element Welding System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sease, John D
2010-02-01
The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. Inmore » recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.« less
Automatic non-destructive system for quality assurance of welded elements in the aircraft industry
NASA Astrophysics Data System (ADS)
Chady, Tomasz; Waszczuk, Paweł; Szydłowski, Michał; Szwagiel, Mariusz
2018-04-01
Flaws that might be a result of the welding process have to be detected, in order to assure high quality thus reliability of elements exploited in aircraft industry. Currently the inspection stage is conducted manually by a qualified workforce. There are no commercially available systems that could support or replace humans in the flaw detection process. In this paper authors present a novel non-destructive system developed for quality assurance purposes of welded elements utilized in the aircraft industry.
Actively controlled vibration welding system and method
Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An
2013-04-02
A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.
Design and Development of a Package for a Diluted Waveguide Electro-Absorption Modulator
2008-11-01
the coupling efficiency. A design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for...results, a design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for fiber placement and...fixation. The laser welding techniques were customized in order to meet the needs of the EAM package design. Keywords: Electroabsorption
NASA Technical Reports Server (NTRS)
Nabors, Sammy
2015-01-01
NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.
NASA Astrophysics Data System (ADS)
Krejsa, M.; Brozovsky, J.; Mikolasek, D.; Parenica, P.; Koubova, L.
2018-04-01
The paper is focused on the numerical modeling of welded steel bearing elements using commercial software system ANSYS, which is based on the finite element method - FEM. It is important to check and compare the results of FEM analysis with the results of physical verification test, in which the real behavior of the bearing element can be observed. The results of the comparison can be used for calibration of the computational model. The article deals with the physical test of steel supporting elements, whose main purpose is obtaining of material, geometry and strength characteristics of the fillet and butt welds including heat affected zone in the basic material of welded steel bearing element. The pressure test was performed during the experiment, wherein the total load value and the corresponding deformation of the specimens under the load was monitored. Obtained data were used for the calibration of numerical models of test samples and they are necessary for further stress and strain analysis of steel supporting elements.
Physical characteristics of welding arc ignition process
NASA Astrophysics Data System (ADS)
Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei
2012-07-01
The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.
Friction-Stir Welding of Large Scale Cryogenic Fuel Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Jones, Clyde S., III; Venable, Richard A.
1998-01-01
The Marshall Space Flight Center has established a facility for the joining of large-scale aluminum-lithium alloy 2195 cryogenic fuel tanks using the friction-stir welding process. Longitudinal welds, approximately five meters in length, were made possible by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and the spindle travel system will be described in this paper. Process controls and real-time data acquisition will also be described, and were critical elements contributing to successful weld operation.
NASA'S MSFC Welding Development for Ares I
NASA Technical Reports Server (NTRS)
Ding, Jeff
2008-01-01
This slide presentation reviews the development of welding for the Ares I launch vehicle. Shown are views of the Ares I and Ares 5, and comparisons with the space shuttle and Saturn V launch vehicles. The elements, and the contractor charged with developing each is shown. The various types of welding capabilities are reviewed. Pictures of the various welding systems available at Marshall Space Flight Center are shown.
Emery, John M.; Field, Richard V.; Foulk, James W.; ...
2015-05-26
Laser welds are prevalent in complex engineering systems and they frequently govern failure. The weld process often results in partial penetration of the base metals, leaving sharp crack-like features with a high degree of variability in the geometry and material properties of the welded structure. Furthermore, accurate finite element predictions of the structural reliability of components containing laser welds requires the analysis of a large number of finite element meshes with very fine spatial resolution, where each mesh has different geometry and/or material properties in the welded region to address variability. We found that traditional modeling approaches could not bemore » efficiently employed. Consequently, a method is presented for constructing a surrogate model, based on stochastic reduced-order models, and is proposed to represent the laser welds within the component. Here, the uncertainty in weld microstructure and geometry is captured by calibrating plasticity parameters to experimental observations of necking as, because of the ductility of the welds, necking – and thus peak load – plays the pivotal role in structural failure. The proposed method is exercised for a simplified verification problem and compared with the traditional Monte Carlo simulation with rather remarkable results.« less
Diffractive beam shaping for enhanced laser polymer welding
NASA Astrophysics Data System (ADS)
Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.
2015-03-01
Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.
Effects of welding technology on welding stress based on the finite element method
NASA Astrophysics Data System (ADS)
Fu, Jianke; Jin, Jun
2017-01-01
Finite element method is used to simulate the welding process under four different conditions of welding flat butt joints. Welding seams are simulated with birth and death elements. The size and distribution of welding residual stress is obtained in the four kinds of welding conditions by Q345 manganese steel plate butt joint of the work piece. The results shown that when using two-layers welding,the longitudinal and transverse residual stress were reduced;When welding from Middle to both sides,the residual stress distribution will change,and the residual stress in the middle of the work piece was reduced.
Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper
NASA Astrophysics Data System (ADS)
Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan
2018-06-01
Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.
Automatic weld torch guidance control system
NASA Technical Reports Server (NTRS)
Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.
1982-01-01
A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.
The characteristics of welded joints for air conditioning application
NASA Astrophysics Data System (ADS)
Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.
2017-10-01
In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.
Zirconium as a Structural Material for Naval Systems
1985-03-29
case with the technologically critical chemical elements chromium and cobalt, for example, from a military perspective. The case, therefore, for...By adding small amounts of tin, iron, nickel, and chromium , the impurities were effectively bound or coalesced within the metal and the corrosion...and nitrogen from the atmosphere, embrittling the weld. The techniques used for zirconium welding are gas tungsten arc welding ( GTAW ), tungsten inert
Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool
Heiple, C.R.; Burgardt, P.
1984-03-13
An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.
David, Stan A.; Miller, Roger G.; Feng, Zhili
2016-08-31
Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Stan A.; Miller, Roger G.; Feng, Zhili
Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less
Surface-active element effects on the shape of GTA, laser, and electron-beam welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiple, C.R.; Roper, J.R.; Stagner, R.T.
1983-03-01
Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effectmore » of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.« less
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey
2003-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)
2002-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Alloying Elements Transition Into the Weld Metal When Using an Inventor Power Source
NASA Astrophysics Data System (ADS)
Mamadaliev, R. A.; Kuskov, V. N.; Popova, A. A.; Valuev, D. V.
2016-04-01
The temperature distribution over the surface of the welded 12Kh18N10T steel plates using the inventor power source ARC-200 has been calculated. In order to imitate multipass welding when conducting the thermal analysis the initial temperature was changed from 298K up to 798K in 100K increments. It has been determined that alloying elements transition into the weld metal depends on temperature. Using an inventor power source facilitates a uniform distribution of alloying elements along the length and height of the weld seam.
NASA Astrophysics Data System (ADS)
Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil
2018-04-01
The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.
Dynamic analysis of I cross beam section dissimilar plate joined by TIG welding
NASA Astrophysics Data System (ADS)
Sani, M. S. M.; Nazri, N. A.; Rani, M. N. Abdul; Yunus, M. A.
2018-04-01
In this paper, finite element (FE) joint modelling technique for prediction of dynamic properties of sheet metal jointed by tungsten inert gas (TTG) will be presented. I cross section dissimilar flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by TTG are used. In order to find the most optimum set of TTG welding dissimilar plate, the finite element model with three types of joint modelling were engaged in this study; bar element (CBAR), beam element and spot weld element connector (CWELD). Experimental modal analysis (EMA) was carried out by impact hammer excitation on the dissimilar plates that welding by TTG method. Modal properties of FE model with joints were compared and validated with model testing. CWELD element was chosen to represent weld model for TTG joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, average percentage of error of the natural frequencies for CWELD model is improved significantly.
The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel
NASA Astrophysics Data System (ADS)
Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang
2017-11-01
2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.
Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process
NASA Astrophysics Data System (ADS)
Perez Regalado, Waldo Josue
The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data acquired during the aluminum welding process. Finally, a fuzzy system was designed to receive these parameters and determine the weld quality.
Pulsed Magnetic Welding for Advanced Core and Cladding Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Guoping; Yang, Yong
2013-12-19
To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pinmore » end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.« less
Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Triveni; Walsh, Josh; Gangone, Elizabeth
2015-12-29
A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsulemore » is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.« less
Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same
Rao, Triveni; Walsh, John; Gangone, Elizabeth
2014-12-30
A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.
Parametric study in weld mismatch of longitudinally welded SSME HPFTP inlet
NASA Technical Reports Server (NTRS)
Min, J. B.; Spanyer, K. L.; Brunair, R. M.
1991-01-01
Welded joints are an essential part of pressure vessels such as the Space Shuttle Main Engine (SSME) Turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet x rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered. Using the finite element method and mathematical formulations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thickness on both sides of the joint. From the study, the finite element results and theoretical solutions are presented.
NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY
Stengel, F.G.
1963-12-24
A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)
NASA Astrophysics Data System (ADS)
Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas
2018-01-01
A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.
Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies
NASA Astrophysics Data System (ADS)
Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry
2016-08-01
Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.
Role of Oxygen as Surface-Active Element in Linear GTA Welding Process
NASA Astrophysics Data System (ADS)
Yadaiah, Nirsanametla; Bag, Swarup
2013-11-01
Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Duderstadt, E. C.; Wein, D.; Titran, R. H.
1978-01-01
A Mini Brayton space power generation system required the development of a Columbium alloy heat exchanger to transfer heat from a radioisotope heat source to a He/Xe working fluid. A light-weight design featured the simultaneous diffusion welding of 148 longitudinal fins in an annular heat exchanger about 9-1/2 in. in diameter, 13-1/2 in. in length and 1/4 in. in radial thickness. To complete the heat exchanger, additional gas ducting elements and attachment supports were added by GTA welding in a vacuum-purged inert atmosphere welding chamber. The development required the modification of an existing large size hot isostatic press to achieve HIP capabilities of 2800 F and 10,000 psi for at least 3 hr. Excellent diffusion welds were achieved in a high-quality component which met all system requirements.
Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium
NASA Astrophysics Data System (ADS)
Wang, Yonghui; Hu, Shengsun; Shen, Junqi
2015-10-01
The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.
An inelastic analysis of a welded aluminum joint
NASA Astrophysics Data System (ADS)
Vaughan, R. E.
1994-09-01
Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.
An inelastic analysis of a welded aluminum joint
NASA Technical Reports Server (NTRS)
Vaughan, R. E.
1994-01-01
Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2012-01-01
A welding method is provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.
Thermal stir welding apparatus
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2011-01-01
A welding method and apparatus are provided for forming a weld joint between first and second elements of a workpiece. The method includes heating the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding process, to remove any dendritic-type weld microstructures introduced into the interface material during the heating process.
NASA Technical Reports Server (NTRS)
HARTMANN E C; Stickley, G W
1942-01-01
Available information concerning spot welding as a means of joining aluminum-alloy parts has been summarized and comparisons have been made of the relative merits of spot-welded and riveted aluminum-alloy structural elements. The results indicated that spot welding was as satisfactory as riveting insofar as resistance to static loads is concerned. Spot welds showed slightly lower resistance to impact loads but definitely lower resistance to repeated loads than rivets.
Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure
NASA Astrophysics Data System (ADS)
Nazri, N. A.; Sani, M. S. M.
2017-10-01
Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.
Study the Effect of SiO2 Based Flux on Dilution in Submerged Arc Welding
NASA Astrophysics Data System (ADS)
kumar, Aditya; Maheshwari, Sachin
2017-08-01
This paper highlights the method for prediction of dilution in submerged arc welding (SAW). The most important factors of weld bead geometry are governed by the weld dilution which controls the chemical and mechanical properties. Submerged arc welding process is used generally due to its very easy control of process variables, good penetration, high weld quality, and smooth finish. Machining parameters, with suitable weld quality can be achieved with the different composition of the flux in the weld. In the present study Si02-Al2O3-CaO flux system was used. In SiO2 based flux NiO, MnO, MgO were mixed in various proportions. The paper investigates the relationship between the process parameters like voltage, % of flux constituents and dilution with the help of Taguchi’s method. The experiments were designed according to Taguchi L9 orthogonal array, while varying the voltage at two different levels in addition to alloying elements. Then the optimal results conditions were verified by confirmatory experiments.
Simplified welding distortion analysis for fillet welding using composite shell elements
NASA Astrophysics Data System (ADS)
Kim, Mingyu; Kang, Minseok; Chung, Hyun
2015-09-01
This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.
NASA Astrophysics Data System (ADS)
Wu, Dongsheng; Hua, Xueming; Ye, Youxiong; Huang, Lijin; Li, Fang; Huang, Ye
2018-05-01
A laser welding experiment with glass is conducted to directly observe the keyhole behavior and spatter formation in fiber laser welding of aluminum alloy. A 3D model is developed to investigate the spatter formation and composition change. An additional conservation equation is introduced to describe the Mg element distribution, and the Mg element loss due to evaporation is also considered. Based on numerical and experimental results, it is found that the keyhole geometry in laser welding of aluminum alloy is different from that in laser welding of steel. There are three required steps for spatter formation around the keyhole. The high momentum of the molten metal, the high recoil pressure and vapor shear stress, and the low surface tension around the keyhole contribute to the easy formation of spatter. The in-homogeneous distribution of Mg element in the weld can be attributable to the continuous evaporation of Mg element at the top surface of keyhole rear, the upward flow of low Mg element region from the bottom of the keyhole to the top surface of keyhole rear along the fusion line, the collapse of the keyhole, and the ejection of spatters.
Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy
NASA Astrophysics Data System (ADS)
Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola
2016-04-01
In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.
Experimental Investigation of Tensile Test on Connection of Cold-formed Cut-curved Steel Section
NASA Astrophysics Data System (ADS)
Sani, Mohd Syahrul Hisyam Mohd; Muftah, Fadhluhartini; Rahman, Nurul Farraheeda Abdul; Fakri Muda, Mohd
2017-08-01
Cold-formed steel (CFS) is widely used as structural and non-structural components such as roof trusses and purlin. A CFS channel section with double intermediate web stiffener and lipped is chosen based on the broader usage in roof truss construction. CFS section is cut to form cold-formed pre-cut-curved steel section and lastly strengthened by several types of method or likely known as connection to establish the cold-formed cut-curved steel (CFCCS) section. CFCCS is proposed to be used as a top chord section in the roof truss system. The CFCCS is to resist the buckling phenomena of the roof truss structure and reduced the compression effect on the top chord. The tensile test connection of CFCCS section, especially at the flange element with eight types of connection by welding, plate with self-drilling screw and combination is investigated. The flange element is the weakest part that must be solved first other than the web element because they are being cut totally, 100% of their length for curving process. The testing is done using a universal testing machine for a tensile load. From the experiment, specimen with full welding has shown as a good result with an ultimate load of 13.37 kN and reported having 35.41% when compared with normal specimen without any of connection methods. Furthermore, the experimental result is distinguished by using Eurocode 3. The failure of a full welding specimen is due to breaking at the welding location. Additionally, all specimens with either full weld or spot weld or combination failed due to breaking on weld connection, but specimen with flange plate and self-drilling screw failed due to tilting and bearing. Finally, the full welding specimen is chosen as a good connection to perform the strengthening method of CFCCS section.
Uysal, Hakan; Kurtoglu, Cem; Gurbuz, Riza; Tutuncu, Naki
2005-03-01
The Cresco-Ti System uses a laser-welded process that provides an efficient technique to achieve passive fit frameworks. However, mechanical behavior of the laser-welded joint under biomechanical stress factors has not been demonstrated. This study describes the effect of Cresco-Ti laser-welding conditions on the material properties of the welded specimen and analyzes stresses on the weld joint through 3-dimensional finite element models (3-D FEM) of implant-supported fixed dentures with cantilever extensions and fixed partial denture designs. Twenty Grade III (ASTM B348) commercially pure titanium specimens were machine-milled to the dimensions described in the EN10002-1 tensile test standard and divided into test (n = 10) and control (n = 10) groups. The test specimens were sectioned and laser-welded. All specimens were subjected to tensile testing to determine yield strength (YS), ultimate tensile strength (UTS), and percent elongation (PE). The Knoop micro-indentation test was performed to determine the hardness of all specimens. On welded specimens, the hardness test was performed at the welded surface. Data were analyzed with the Mann-Whitney U test and Student's t test (alpha=.05). Fracture surfaces were examined by scanning electron microscopy to characterize the mode of fracture and identify defects due to welding. Three-dimensional FEMs were created that simulated a fixed denture with cantilever extensions supported by 5 implants (M1) and a fixed partial denture supported by 2 implants (M2), 1 of which was angled 30 degrees mesio-axially. An oblique load of 400 N with 15 degrees lingual-axial inclinations was applied to both models at various locations. Test specimens fractured between the weld and the parent material. No porosities were observed on the fractured surfaces. Mean values for YS, UTS, PE, and Knoop hardness were 428 +/- 88 MPa, 574 +/- 113 MPa, 11.2 +/- 0.4%, 270 +/- 17 KHN, respectively, for the control group and 642 +/- 2 MPa, 772 +/- 72 MPa, 4.8 +/- 0.7%, 353 +/- 23 KHN, respectively, for the test group. The differences between the groups were significant for all mechanical properties ( P <.05). For both models, the FEA revealed that maximum principal stresses were concentrated at the framework-weld junction but did not exceed the UTS of the weld joint. Within the constraints of the finite element models, mechanical failure of the welded joint between the support and the framework may not be expected under biomechanical conditions simulated in this study.
Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075
NASA Astrophysics Data System (ADS)
Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.
High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.
Online quality monitoring of welding processes by means of plasma optical spectroscopy
NASA Astrophysics Data System (ADS)
Ferrara, Michele; Ancona, Antonio; Lugara, Pietro M.; Sibilano, Michele
2000-02-01
An optical monitoring system for the welding process has been developed; it is based on the study of the optical emission of the welding plasma plume, created during the welding of stainless steels and other iron-based materials. In the first approach a continuous wave CO2 laser of 2500-Watt maximum power, available at the INFM Research Unit labs in Bari University, has been used as welding source. A detailed spectroscopic study of the visible and UV welding plasma emission has been carried out; many transition lines corresponding to the elements composing the material to be welded have been found. By means of an appropriate selection of these lines and suitable algorithms, the electronic temperature of the plasma plume has been calculated and its evolution recorded as a function of several welding parameters. The behavior of the registered signal has resulted to be correlated to the welded joint quality. These findings have allowed to design and assemble a portable, non-intrusive and real-time welding quality optical sensor which has been successfully tested for laser welding of metals in different geometrical configurations; it has been capable of detecting a wide range of weld defects normally occurring during industrial laser metal-working. This sensor has also been tested in arc welding industrial processes (TIG) with promising results.
Automated fuel pin loading system
Christiansen, David W.; Brown, William F.; Steffen, Jim M.
1985-01-01
An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.
Automated fuel pin loading system
Christiansen, D.W.; Brown, W.F.; Steffen, J.M.
An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.
NASA Astrophysics Data System (ADS)
Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.
2016-04-01
The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.
NASA Astrophysics Data System (ADS)
Ivanov, S. Yu.; Karkhin, V. A.; Mikhailov, V. G.; Martikainen, J.; Hiltunen, E.
2018-03-01
The microstructure and the distribution of chemical elements in laser-welded joints of Al - Mg - Si alloy 6005-T6 are studied. Segregations of chemical elements are detected over grain boundaries in the heat-affected zones of the welded joints. The joints fracture by the intergrain mechanism. A Gleeble 3800 device is used to determine the temperature dependences of the mechanical properties of the alloy with allowance for the special features of the welding cycle. Amethod for evaluating the sensitivity of welded joints of aluminum alloys to formation of liquation cracks with allowance for the local properties of the metal, the welding conditions, and the rigidity of the construction is suggested.
Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.
Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua
2015-09-01
Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.
A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals
NASA Astrophysics Data System (ADS)
Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.
2017-03-01
Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.
Alternate Design of ITER Cryostat Skirt Support System
NASA Astrophysics Data System (ADS)
Pandey, Manish Kumar; Jha, Saroj Kumar; Gupta, Girish Kumar; Bhattacharya, Avik; Jogi, Gaurav; Bhardwaj, Anil Kumar
2017-04-01
The skirt support of ITER cryostat is a support system which takes all the load of cryostat cylinder and dome during normal and operational condition. The present design of skirt support has full penetration weld joints at the bottom (shell to horizontal plate joint). To fulfil the requirements of tolerances and control the welding distortions, we have proposed to change the full penetration weld into fillet weld. A detail calculation is done to check the feasibility and structural impact due to proposed design. The calculations provide the size requirements of fillet weld. To verify the structural integrity during most severe load case, finite element analysis (FEA) has been done in line with ASME section VIII division 2 [1]. By FEA ‘Plastic Collapse’ and ‘Local Failure’ modes has been assessed. 5° sector of skirt clamp has been modelled in CATIA V5 R21 and used in FEA. Fillet weld at shell to horizontal plate joint has been modelled and symmetry boundary condition at ± 2.5° applied. ‘Elastic Plastic Analysis’ has been performed for the most severe loading case i.e. Category IV loading. The alternate design of Cryostat Skirt support system has been found safe by analysis against Plastic collapse and Local Failure Modes with load proportionality factor 2.3. Alternate design of Cryostat skirt support system has been done and validated by FEA. As per alternate design, the proposal of fillet weld has been implemented in manufacturing.
ERIC Educational Resources Information Center
Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.
This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2012-01-01
A welding apparatus is provided for forming a weld joint between first and second elements of a workpiece. The apparatus heats the first and second elements to form an interface of material in a plasticized or melted state interface between the elements. The interface material is then allowed to cool to a plasticized state if previously in a melted state. The interface material, while in the plasticized state, is then mixed, for example, using a grinding/extruding mixer, to remove any dendritic-type weld microstructures introduced into the interface material during heating.
Fatigue Behavior of a Box-Type Welded Structure of Hydraulic Support Used in Coal Mine
Zhao, Xiaohui; Li, Fuyong; Liu, Yu; Fan, Yanjun
2015-01-01
Hydraulic support is the main supporting equipment of the coal mining systems, and they are usually subjected to fatigue failure under the high dynamic load. The fracture positions are generally at welded joints where there is a serious stress concentration. In order to investigate and further improve the fatigue strength of hydraulic support, the present work first located the possible position where fatigue failure occurs through finite element analysis, and then fatigue tests were carried out on the different forms of welded joints for the dangerous parts. Finally, Fatigue strength-life (S-N) curves and fracture mechanism were studied. This research will provide a theoretical reference for the fatigue design of welded structures for hydraulic support. PMID:28793586
[The application of laser beam welding of biological tissues for the purpose of ossiculoplasty].
Semenov, V F
2013-01-01
The objective of the present work was to estimate the functional outcome of ossiculoplasty in the patients presenting with chronic suppurative otitis media and treated by means of laser beam welding of biological tissues. In order to obtain a good functional result of tympanoplasty including ossiculoplasty, it is necessary to conserve the elements of the sound-conducting system in the positions to which they were set during surgery. We reached this goal by fixing individual elements of the chain of the auditory ossicles by means of the laser beam welding of biological tissues with the use of platelet-rich plasma as a solder alloy. The audiometric examination of the patients within 1, 3, and 12 months after surgery showed that this technique improves the functional outcome of the treatment of the patients with chronic suppurative otitis media using prostheses for the substitution of the auditory ossicles.
3D finite element simulation of TIG weld pool
NASA Astrophysics Data System (ADS)
Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.
2012-07-01
The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.
Stresses in Circular Plates with Rigid Elements
NASA Astrophysics Data System (ADS)
Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.
2018-05-01
Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.
New technique of skin embedded wire double-sided laser beam welding
NASA Astrophysics Data System (ADS)
Han, Bing; Tao, Wang; Chen, Yanbin
2017-06-01
In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.
Combined PIXE and X-ray SEM studies on time-resolved deposits of welding shop aerosols
NASA Astrophysics Data System (ADS)
Barfoot, K. M.; Mitchell, I. V.; Verheyen, F.; Babeliowsky, T.
1981-03-01
Time-resolved deposits of welding shop air particulates have been obtained using a streak sampling system. PIXE analysis of these deposits, using 2 MeV protons, typically revealed the presence of a large number of elements, with many in the range Z = 11-30. Strong variations, up to three orders of magnitude, in the concentrations of several elements such as Al, Si and Fe as well as Zn, Na, K and Ca were found. The 2 h sampling resolution normally used was found to be insufficient to follow the short pollution episodes that regularly occur in a welding shop environment and so sampling with a 20 min resolution was used. The variation of elemental concentrations for different sampling times together with information on the physical nature of these air particulates, determined with a scanning electron microscope (SEM) and Si(Li) X-ray detector attachment, are presented. This type of information together with that obtained from the PIXE analysis is of importance in industrial hygiene studies. The need to make corrections for partial filter clogging, based on air-flow rate monitoring, is discussed.
NASA Astrophysics Data System (ADS)
Tsirkas, S. A.
2018-03-01
The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.
Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy
Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; ...
2015-12-08
Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less
Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.
Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less
Calculation methods study on hot spot stress of new girder structure detail
NASA Astrophysics Data System (ADS)
Liao, Ping; Zhao, Renda; Jia, Yi; Wei, Xing
2017-10-01
To study modeling calculation methods of new girder structure detail's hot spot stress, based on surface extrapolation method among hot spot stress method, a few finite element analysis models of this welded detail were established by finite element software ANSYS. The influence of element type, mesh density, different local modeling methods of the weld toe and extrapolation methods was analyzed on hot spot stress calculation results at the toe of welds. The results show that the difference of the normal stress in the thickness direction and the surface direction among different models is larger when the distance from the weld toe is smaller. When the distance from the toe is greater than 0.5t, the normal stress of solid models, shell models with welds and non-weld shell models tends to be consistent along the surface direction. Therefore, it is recommended that the extrapolated point should be selected outside the 0.5t for new girder welded detail. According to the results of the calculation and analysis, shell models have good grid stability, and extrapolated hot spot stress of solid models is smaller than that of shell models. So it is suggested that formula 2 and solid45 should be carried out during the hot spot stress extrapolation calculation of this welded detail. For each finite element model under different shell modeling methods, the results calculated by formula 2 are smaller than those of the other two methods, and the results of shell models with welds are the largest. Under the same local mesh density, the extrapolated hot spot stress decreases gradually with the increase of the number of layers in the thickness direction of the main plate, and the variation range is within 7.5%.
High power x-ray welding of metal-matrix composites
Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing
1999-01-01
A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.
Theoretical prediction of welding distortion in large and complex structures
NASA Astrophysics Data System (ADS)
Deng, De-An
2010-06-01
Welding technology is widely used to assemble large thin plate structures such as ships, automobiles, and passenger trains because of its high productivity. However, it is impossible to avoid welding-induced distortion during the assembly process. Welding distortion not only reduces the fabrication accuracy of a weldment, but also decreases the productivity due to correction work. If welding distortion can be predicted using a practical method beforehand, the prediction will be useful for taking appropriate measures to control the dimensional accuracy to an acceptable limit. In this study, a two-step computational approach, which is a combination of a thermoelastic-plastic finite element method (FEM) and an elastic finite element with consideration for large deformation, is developed to estimate welding distortion for large and complex welded structures. Welding distortions in several representative large complex structures, which are often used in shipbuilding, are simulated using the proposed method. By comparing the predictions and the measurements, the effectiveness of the two-step computational approach is verified.
NASA Astrophysics Data System (ADS)
He, Xiuli
Nd: YAG Laser welding with hundreds of micrometers in laser beam diameter is widely used for assembly and closure of high reliability electrical and electronic packages for the telecommunications, aerospace and medical industries. However, certain concerns have to be addressed to obtain defect-free and structurally sound welds. During laser welding, Because of the high power density used, the pressures at the weld pool surface can be greater than the ambient pressure. This excess pressure provides a driving force for the vaporization to take place. As a result of vaporization for different elements, the composition in the weld pool may differ from that of base metal, which can result in changes in the microstructure and degradation of mechanical properties of weldments. When the weld pool temperatures are very high, the escaping vapor exerts a large recoil force on the weld pool surface, and as a consequence, tiny liquid metal particles may be expelled from the weld pool. Vaporization of alloying elements and liquid metal expulsion are the two main mechanisms of material loss. Besides, for laser welds with small length scale, heat transfer and fluid flow are different from those for arc welds with much larger length scale. Because of small weld pool size, rapid changes of temperature and very short duration of the laser welding process, physical measurements of important parameters such as temperature and velocity fields, weld thermal cycles, solidification and cooling rates are very difficult. The objective of the research is to quantitatively understand the influences of various factors on the heat transfer, fluid flow, vaporization of alloying elements and liquid metal expulsion in Nd:YAG laser welding with small length scale of 304 stainless steel. In this study, a comprehensive three dimensional heat transfer and fluid flow model based on the mass, momentum and energy conservation equations is relied upon to calculate temperature and velocity fields in the weld pool, weld thermal cycle, weld pool geometry and solidification parameters. Surface tension and buoyancy forces were considered for the calculation of transient weld pool convection. Very fine grids and small time steps were used to achieve accuracy in the calculations. The calculated weld pool dimensions were compared with the corresponding measured values to validate the model. (Abstract shortened by UMI.)
Mechanisms of hydrogen-assisted fracture in austenitic stainless steel welds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balch, Dorian K.; Sofronis, Petros; Somerday, Brian P.
2005-03-01
The objective of this study was to quantify the hydrogen-assisted fracture susceptibility of gas-tungsten arc (GTA) welds in the nitrogen-strengthened, austenitic stainless steels 21Cr-6Ni-9Mn (21-6-9) and 22Cr-13Ni-5Mn (22-13-5). In addition, mechanisms of hydrogen-assisted fracture in the welds were identified using electron microscopy and finite-element modeling. Elastic-plastic fracture mechanics experiments were conducted on hydrogen-charged GTA welds at 25 C. Results showed that hydrogen dramatically lowered the fracture toughness from 412 kJ/m{sup 2} to 57 kJ/m{sup 2} in 21-6-9 welds and from 91 kJ/m{sup 2} to 26 kJ/m{sup 2} in 22-13-5 welds. Microscopy results suggested that hydrogen served two roles in themore » fracture of welds: it promoted the nucleation of microcracks along the dendritic structure and accelerated the link-up of microcracks by facilitating localized deformation. A continuum finite-element model was formulated to test the notion that hydrogen could facilitate localized deformation in the ligament between microcracks. On the assumption that hydrogen decreased local flow stress in accordance with the hydrogen-enhanced dislocation mobility argument, the finite-element results showed that deformation was localized in a narrow band between two parallel, overlapping microcracks. In contrast, in the absence of hydrogen, the finite-element results showed that deformation between microcracks was more uniformly distributed.« less
DOT National Transportation Integrated Search
2009-09-01
This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...
NASA Astrophysics Data System (ADS)
Li, Hui; Zhang, Jiansheng; Ding, Rongrong
2017-11-01
The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.
NASA Astrophysics Data System (ADS)
Dijmărescu, M. C.; Dijmărescu, M. R.
2017-08-01
When talking about tests that include measurements, the uncertainty of measurement is an essential element because it is important to know the limits within the obtained results may be assumed to lie and the influence the measurement technological system elements have on these results. The research presented in this paper focuses on the estimation of the Vickers hardness uncertainty of measurement for the heterogeneous welded joint between S235JR+AR and X2CrNiMo17-12-2 materials in order to establish the results relevance and the quality assessment of this joint. The paper contents are structured in three main parts. In the first part, the initial data necessary for the experiment is presented in terms of the welded joint and technological means characterisation. The second part presents the physical experiment development and its results and in the third part the uncertainty of the measurements is calculated and a results discussion is undertaken.
Development of Chromium-Free Welding Consumables for Stainless Steels
2009-02-01
FINAL REPORT Development of Chromium -Free Welding Consumables for Stainless Steels SERDP Project WP-1415 FEBRUARY 2009 J.C. Lippold...NUMBER 4. TITLE AND SUBTITLE Development of Chromium -Free Welding Consumables for Stainless Steels 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Energy dispersive spectroscopy FGR Fume generation rate GMAW Gas metal arc welding GTAW Gas tungsten arc welding HAZ Heat affected zone LTE Long
Modeling of laser transmission contour welding process using FEA and DoE
NASA Astrophysics Data System (ADS)
Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten
2012-07-01
In this research, a systematic investigation on laser transmission contour welding process is carried out using finite element analysis (FEA) and design of experiments (DoE) techniques. First of all, a three-dimensional thermal model is developed to simulate the laser transmission contour welding process with a moving heat source. The commercial finite element code ANSYS® multi-physics is used to obtain the numerical results by implementing a volumetric Gaussian heat source, and combined convection-radiation boundary conditions. Design of experiments together with regression analysis is then employed to plan the experiments and to develop mathematical models based on simulation results. Four key process parameters, namely power, welding speed, beam diameter, and carbon black content in absorbing polymer, are considered as independent variables, while maximum temperature at weld interface, weld width, and weld depths in transparent and absorbing polymers are considered as dependent variables. Sensitivity analysis is performed to determine how different values of an independent variable affect a particular dependent variable.
Nuclear Technology. Course 28: Welding Inspection. Module 28-9, Weld Repair Control.
ERIC Educational Resources Information Center
Espy, John
This ninth in a series of ten modules for a course titled Welding Inspection describes the purposes, essential elements, and application of a weld control program. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…
Scanning the welded joints of aluminium alloys using subminiature eddy-current transducers
NASA Astrophysics Data System (ADS)
Dmitriev, Sergey; Ishkov, Alexey; Malikov, Vladimir; Sagalakov, Anatoly
2018-03-01
Aluminium has a reputation for ease of use, strength and durability. In addition to its exceptional aesthetic properties, solid aluminium does not burn. As architects, contractors, consultants and real estate owners look to meet stringent safety requirements in the construction and refurbishment of high-rise constructions for both residential and commercial uses, aluminium cladding provides an alternative that is not only safe but that is also durable and attractive. One of the ways to connect elements into a aluminium construction is welding. friction stir welding is one of the most efficient. The authors developed a measuring system based on subminiaturized eddy-current transducers aimed at examining locally the defects of welded joints in aluminium-magnesium alloy plates connected by means of friction stir welding. The authors made a modification of the Delyann filter, which allowed them to increase considerably the signal-noise relations. The dependency of the eddy-current transducer response on defects was provided, i.e. concealed cuts and openings inside the welded joint, at the frequencies of 100-10000 Hz of the exciting winding.
Frequency response function (FRF) based updating of a laser spot welded structure
NASA Astrophysics Data System (ADS)
Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.
2018-04-01
The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.
Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.
2017-09-01
Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.
Modeling aluminum-lithium alloy welding characteristics
NASA Technical Reports Server (NTRS)
Bernstein, Edward L.
1996-01-01
The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.
Metal transfer and V-I transients in GMAW of aluminium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, S.; Rao, U.R.K.; Aghakhani, M.
1996-12-31
The mode of metal transfer in arc welding significantly affects the positional weldability; particularly the overhead welding, the chemical composition and properties of weld metal, metallurgy of weld metal, weld pool stability, arc stability, spatter losses, and weld bead geometry. The mode of metal transfer is affected mainly by the type of the arc, welding current, electrode polarity, arc voltage, contact tube to plate distance (CTPD)/Stand-off, type and flow rate of the shielding gas, torch angle and alloying elements in GMAW of aluminium and its alloys.
Mars Atmosphere Effects on Arc Welds: Phase 1
NASA Technical Reports Server (NTRS)
Courtright, Z. S.
2016-01-01
NASA has been unprecedented in achieving its goals related to space exploration and furthering the understanding of our solar system. In keeping with this trend, NASA's current mission is to land a team of astronauts on Mars and return them safely to Earth. In addition to comprising much of the structure and life support systems that will be brought to Mars for the habitat and vehicle, titanium and aluminum can be found and mined on Mars and may be used when building structures.Where metals are present, there will be a need for welding capabilities. For welds that need to be made quickly and are located far from heavy resistance or solid state welding machinery, there will be a need for basic arc welding. Arc welding has been a major cornerstone of manufacturing throughout the 20th century, and the portability and capability of gas tungsten arc welding (GTAW) will be necessary for repair, manufacturing, and survival on Mars. The two primary concerns for welding on Mars are that the Martian atmosphere contains high levels of carbon dioxide (CO2), and the atmospheric pressure is much lower than it is on Earth. The high levels of CO2 in the Martian atmosphere may dissociate and produce oxygen in the arc and therefore increase the risk of oxidation. For simplification, atmospheric pressure will not be taken into account for this experiment. For survival on Mars during this mission, the life support and water filtration systems must be kept operational at all times. In order to ensure that water filtration systems can be repaired in the event of an emergency, it is very important to have the capability to weld. The Orion capsule and Mars lander must also remain operational throughout the duration of the mission to ensure the safe return of the astronauts on the mission to Mars. A better understanding of welding in a Mars environment is important to ensure that repair welds are possible if the Orion capsule/Mars lander or water filtration system is damaged at any point while on the surface of Mars. The Orion capsule is made primarily of AA2219-T87, and the water filtration system is primarily Ti-6Al-4V, so the effect of the Mars environment on welding those materials must be known to reduce potential mission risk. GTAW is a portable process that can weld a versatile group of metals, so it has many potential applications for welding on Mars. Thus, missions to colonize Mars will depend on the capability to weld a strong, leak-tight joint. Metals are also likely to be used in support structures made of a lightweight and durable material. For this reason, it is important to understand the implications of welding in a Mars environment. A comparison of the Martian and terrestrial atmospheres are provided in table 1. Based on the elemental compositions, simulation of the Martian atmosphere can be made using primarily CO2 gas.
NASA Astrophysics Data System (ADS)
Lee, Juhwa; Hwang, Jeongho; Bae, Dongho
2018-03-01
In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.
NASA Astrophysics Data System (ADS)
Lee, Juhwa; Hwang, Jeongho; Bae, Dongho
2018-07-01
In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.
A hot-cracking mitigation technique for welding high-strength aluminum alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y.P.; Dong, P.; Zhang, J.
2000-01-01
A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weldmore » pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).« less
NASA Astrophysics Data System (ADS)
Tian, Yingtao; Robson, Joseph D.; Riekehr, Stefan; Kashaev, Nikolai; Wang, Li; Lowe, Tristan; Karanika, Alexandra
2016-07-01
Laser welding of advanced Al-Li alloys has been developed to meet the increasing demand for light-weight and high-strength aerospace structures. However, welding of high-strength Al-Li alloys can be problematic due to the tendency for hot cracking. Finding suitable welding parameters and filler material for this combination currently requires extensive and costly trial and error experimentation. The present work describes a novel coupled model to predict hot crack susceptibility (HCS) in Al-Li welds. Such a model can be used to shortcut the weld development process. The coupled model combines finite element process simulation with a two-level HCS model. The finite element process model predicts thermal field data for the subsequent HCS hot cracking prediction. The model can be used to predict the influences of filler wire composition and welding parameters on HCS. The modeling results have been validated by comparing predictions with results from fully instrumented laser welds performed under a range of process parameters and analyzed using high-resolution X-ray tomography to identify weld defects. It is shown that the model is capable of accurately predicting the thermal field around the weld and the trend of HCS as a function of process parameters.
[Determination of fumes and their elements from flux cored arc welding].
Matczak, Wanda; Przybylska-Stanisławska, Magdalena
2004-01-01
The aim of this work was to assay the concentration levels and composition of welding fumes, released during flux cored arc welding, to assess exposure of welders. Concentrations and welding fume components, such as iron, manganese, chromium (including the soluble and chromium VI), nickel, copper, calcium, aluminium, barium, and fluorides (including hydrogen fluoride) were determined in the air of six industrial plants (shipyards, mechanical engineering plants and a power station) at the breathing zones of the welders who used 10 types of wires during flux cored arc welding. The following determination methods were used: gravimetry (fumes), AAS (metals), and spectrophotometry (chromium VI, fluorides--including hydrogen fluoride). The results made it possible to determine the relationship between concentrations of welding fume and its elements, and to assess worker's exposure. Time weighted average concentrations of the welding fumes and its elements at the worker's breathing zone were: mg/m3: dust 0.2-24.3; Fe 0.2-6.7; Mn 0.01-1.8; Cr 0.004-0.5 (mainly Cr III); Ca 0.004-2.5; Ni < or = 0.004; Cu < 0.002-0.05; Al < 0.14-0.4; Ba < 0.14; F- 0.07-0.43. The welders using some types of flux cored welding wires worked in conditions harmful to their health owing to the considerably exceeded TLV value for fume and MAC values for manganese, and occasional slightly excessive MAC values for calcium and iron.
Analysis of thermal stresses and metal movement during welding
NASA Technical Reports Server (NTRS)
Muraki, T.; Pattee, F. M.; Masubuchi, K.
1974-01-01
Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.
NASA Technical Reports Server (NTRS)
Stein, B. A. (Compiler); Buckley, J. D. (Compiler)
1972-01-01
Various technological processes to achieve lightweight reliable joining systems for structural elements of aircraft and spacecraft are considered. Joining methods, combinations of them, and nondestructive evaluation and quality assurance are emphasized.
NASA Astrophysics Data System (ADS)
Zhang, Shengyong
2017-07-01
Spot welding has been widely used for vehicle body construction due to its advantages of high speed and adaptability for automation. An effort to increase the stiffness-to-weight ratio of spot-welded structures is investigated based upon nonlinear finite element analysis. Topology optimization is conducted for reducing weight in the overlapping regions by choosing an appropriate topology. Three spot-welded models (lap, doubt-hat and T-shape) that approximate “typical” vehicle body components are studied for validating and illustrating the proposed method. It is concluded that removing underutilized material from overlapping regions can result in a significant increase in structural stiffness-to-weight ratio.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Wan, Z. Y.; Lindgren, L.-E.; Tan, Z. J.; Zhou, X.
2017-12-01
A finite element model of friction stir welding capable of re-meshing is used to simulate the temperature variations. Re-meshing of the finite element model is used to maintain a fine mesh resolving the gradients of the solution. The Kampmann-Wagner numerical model for precipitation is then used to study the relation between friction stir welds with post-weld heat treatment (PWHT) and the changes in mechanical properties. Results indicate that the PWHT holding time and PWHT holding temperature need to be optimally designed to obtain FSW with better mechanical properties. Higher precipitate number with lower precipitate sizes gives higher strength in the stirring zone after PWHT. The coarsening of precipitates in HAZ are the main reason to hinder the improvement of mechanical property when PWHT is used.
Sail GTS ground system analysis: Avionics system engineering
NASA Technical Reports Server (NTRS)
Lawton, R. M.
1977-01-01
A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.
2015-11-01
induced residual stresses and distortions from weld simulations in the SYSWELD software code in structural Finite Element Analysis ( FEA ) simulations...performed in the Abaqus FEA code is presented. The translation of these results is accomplished using a newly developed Python script. Full details of...Local Weld Model in Structural FEA ....................................................15 CONCLUSIONS
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Avuthu, V.; Galgalikar, R.; Zhang, Z.
2015-09-01
A thermo-mechanical finite element analysis of the friction stir welding (FSW) process is carried out and the evolution of the material state (e.g., temperature, the extent of plastic deformation, etc.) monitored. Subsequently, the finite-element results are used as input to a Monte-Carlo simulation algorithm in order to predict the evolution of the grain microstructure within different weld zones, during the FSW process and the subsequent cooling of the material within the weld to room temperature. To help delineate different weld zones, (a) temperature and deformation fields during the welding process, and during the subsequent cooling, are monitored; and (b) competition between the grain growth (driven by the reduction in the total grain-boundary surface area) and dynamic-recrystallization grain refinement (driven by the replacement of highly deformed material with an effectively "dislocation-free" material) is simulated. The results obtained clearly revealed that different weld zones form as a result of different outcomes of the competition between the grain growth and grain refinement processes.
Modeling of plasma and thermo-fluid transport in hybrid welding
NASA Astrophysics Data System (ADS)
Ribic, Brandon D.
Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of processes parameters on heat transfer, fluid flow, and plasma characteristics for arc and laser welding. However, numerical modeling of laser/GTA hybrid welding is just beginning. Arc and laser welding plasmas have been previously analyzed successfully using optical emission spectroscopy in order to better understand arc and laser plasma properties as a function of plasma radius. Variation of hybrid welding plasma properties with radial distance is not known. Since plasma properties can affect arc and laser energy absorption and weld integrity, a better understanding of the change in hybrid welding plasma properties as a function of plasma radius is important and necessary. Material composition influences welding plasma properties, arc and laser energy absorption, heat transfer, and fluid flow. The presence of surface active elements such as oxygen and sulfur can affect weld pool fluid flow and bead geometry depending upon the significance of heat transfer by convection. Easily vaporized and ionized alloying elements can influence arc plasma characteristics and arc energy absorption. The effects of surface active elements on heat transfer and fluid flow are well understood in the case of arc and conduction mode laser welding. However, the influence of surface active elements on heat transfer and fluid flow during keyhole mode laser welding and laser/arc hybrid welding are not well known. Modeling has been used to successfully analyze the influence of surface active elements during arc and conduction mode laser welding in the past and offers promise in the case of laser/arc hybrid welding. A critical review of the literature revealed several important areas for further research and unanswered questions. (1) The understanding of heat transfer and fluid flow during hybrid welding is still beginning and further research is necessary. (2) Why hybrid welding weld bead width is greater than that of laser or arc welding is not well understood. (3) The influence of arc power and heat source separation distance on cooling rates during hybrid welding are not known. (4) Convection during hybrid welding is not well understood despite its importance to weld integrity. (5) The influence of surface active elements on weld geometry, weld pool temperatures, and fluid flow during high power density laser and laser/arc hybrid welding are not known. (6) Although the arc power and heat source separation distance have been experimentally shown to influence arc stability and plasma light emission during hybrid welding, the influence of these parameters on plasma properties is unknown. (7) The electrical conductivity of hybrid welding plasmas is not known, despite its importance to arc stability and weld integrity. In this study, heat transfer and fluid flow are analyzed for laser, gas tungsten arc (GTA), and laser/GTA hybrid welding using an experimentally validated three dimensional phenomenological model. By evaluating arc and laser welding using similar process parameters, a better understanding of the hybrid welding process is expected. The role of arc power and heat source separation distance on weld depth, weld pool centerline cooling rates, and fluid flow profiles during CO2 laser/GTA hybrid welding of 321 stainless steel are analyzed. Laser power is varied for a constant heat source separation distance to evaluate its influence on weld temperatures, weld geometry, and fluid flow during Nd:YAG laser/GTA hybrid welding of A131 structural steel. The influence of oxygen and sulfur on keyhole and weld bead geometry, weld temperatures, and fluid flow are analyzed for high power density Yb doped fiber laser welding of (0.16 %C, 1.46 %Mn) mild steel. Optical emission spectroscopy was performed on GTA, Nd:YAG laser, and Nd:YAG laser/GTA hybrid welding plasmas for welding of 304L stainless steel. Emission spectroscopy provides a means of determining plasma temperatures and species densities using deconvoluted measured spectral intensities, which can then be used to calculate plasma electrical conductivity. In this study, hybrid welding plasma temperatures, species densities, and electrical conductivities were determined using various heat source separation distances and arc currents using an analytical method coupled calculated plasma compositions. As a result of these studies heat transfer by convection was determined to be dominant during hybrid welding of steels. The primary driving forces affecting hybrid welding fluid flow are the surface tension gradient and electromagnetic force. Fiber laser weld depth showed a negligible change when increasing the (0.16 %C, 1.46 %Mn) mild steel sulfur concentration from 0.006 wt% to 0.15 wt%. Increasing the dissolved oxygen content in weld pool from 0.0038 wt% to 0.0257 wt% increased the experimental weld depth from 9.3 mm to 10.8 mm. Calculated partial pressure of carbon monoxide increased from 0.1 atm to 0.75 atm with the 0.0219 wt% increase in dissolved oxygen in the weld metal and may explain the increase in weld depth. Nd:YAG laser/GTA hybrid welding plasma temperatures were calculated to be approximately between 7927 K and 9357 K. Increasing the Nd:YAG laser/GTA hybrid welding heat source separation distance from 4 mm to 6 mm reduced plasma temperatures between 500 K and 900 K. Hybrid welding plasma total electron densities and electrical conductivities were on the order of 1 x 1022 m-3 and 3000 S m-1, respectively.
NASA Astrophysics Data System (ADS)
Syahroni, N.; Hartono, A. B. W.; Murtedjo, M.
2018-03-01
In the ship fabrication industry, welding is the most critical stage. If the quality of welding on ship fabrication is not good, then it will affect the strength and overall appearance of the structure. One of the factors that affect the quality of welding is residual stress and distortion. In this research welding simulation is performed on the inner bottom construction of Geomarin IV Ship Survey using shell element and has variation to welding sequence. In this study, welding simulations produced peak temperatures at 2490 K at variation 4. While the lowest peak temperature was produced by variation 2 with a temperature of 2339 K. After welding simulation, it continued simulating residual stresses and distortion. The smallest maximum tensile residual stress found in the inner bottom construction is 375.23 MPa, and the maximum tensile pressure is -20.18 MPa. The residual stress is obtained from variation 3. The distortion occurring in the inner bottom construction for X=720 mm is 4.2 mm and for X=-720 mm, the distortion is 4.92 mm. The distortion is obtained from the variation 3. Near the welding area, distortion value reaches its minimum point. This is because the stiffeners in the form of frames serves as anchoring.
3D Ultrasonic Non-destructive Evaluation of Spot Welds Using an Enhanced Total Focusing Method
NASA Astrophysics Data System (ADS)
Jasiuniene, Elena; Samaitis, Vykintas; Mazeika, Liudas; Sanderson, Ruth
2015-02-01
Spot welds are used to join sheets of metals in the automotive industry. When spot weld quality is evaluated using conventional ultrasonic manual pulse-echo method, the reliability of the inspection is affected by selection of the probe diameter and the positioning of the probe in the weld center. The application of a 2D matrix array is a potential solution to the aforementioned problems. The objective of this work was to develop a signal processing algorithm to reconstruct the 3D spot weld volume showing the size of the nugget and the defects in it. In order to achieve this, the conventional total focusing method was enhanced by taking into account the directivities of the single elements of the array and the divergence of the ultrasonic beam due to the propagation distance. Enhancements enabled a reduction in the background noise and uniform sensitivity at different depths to be obtained. The proposed algorithm was verified using a finite element model of ultrasonic wave propagation simulating three common spot weld conditions: a good weld, an undersized weld, and a weld containing a pore. The investigations have demonstrated that proposed method enables the determination of the size of the nugget and detection of discontinuities.
Numerical and Experimental Evaluation on the Residual Stresses of Welded Joints
NASA Astrophysics Data System (ADS)
Huh, Sun Chul; Park, Wonjo; Yang, Haesug; Jung, Haeyoung; Kim, Chuyoung
Wings for the defense industry such as fighters, missiles, and rockets should show no deformation or damage on the structure. The structures of existing wings had holes for weight reduction. The plates and frames were fixed with rivets or screws, which limited the weight reduction possible. In this study, an improvement was made in jointing methods through EB welding and laser welding. Welding strength was measured through tension testing. In addition, finite element analysis was performed for the welding process so as to deduce the optimum welding condition.
NASA Astrophysics Data System (ADS)
Mendizabal, A.; González-Díaz, J. B.; San Sebastián, M.; Echeverría, A.
2016-07-01
This paper describes the implementation of a simple strategy adopted for the inherent shrinkage method (ISM) to predict welding-induced distortion. This strategy not only makes it possible for the ISM to reach accuracy levels similar to the detailed transient analysis method (considered the most reliable technique for calculating welding distortion) but also significantly reduces the time required for these types of calculations. This strategy is based on the sequential activation of welding blocks to account for welding direction and transient movement of the heat source. As a result, a significant improvement in distortion prediction is achieved. This is demonstrated by experimentally measuring and numerically analyzing distortions in two case studies: a vane segment subassembly of an aero-engine, represented with 3D-solid elements, and a car body component, represented with 3D-shell elements. The proposed strategy proves to be a good alternative for quickly estimating the correct behaviors of large welded components and may have important practical applications in the manufacturing industry.
Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars
NASA Astrophysics Data System (ADS)
Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina
2018-03-01
The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.
Solid State Welding Development at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ding, Robert J.; Walker, Bryant
2012-01-01
What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.
Weld microfissuring in Inconel 718 minimized by minor elements
NASA Technical Reports Server (NTRS)
Morrison, T. J.; Shira, C. S.; Weisenberg, L. A.
1968-01-01
Manganese, silicon, and magnesium markedly reduce the tendency of Inconel 718 to weld microfissuring. By combining a manganese, 0.20 percent by content, with silicon, greater than 0.25 percent content, or by adding 20 ppm of magnesium, the weld microfissuring decreased in the standard alloy.
Contribution to study of heat transfer and fluid flow during GTA welding
NASA Astrophysics Data System (ADS)
Koudadje, Koffi; Delalondre, Clarisse; Médale, Marc; Carpreau, Jean-Michel
2014-06-01
In this paper, the effect of surface-active elements especially sulfur on weld pool shape has been reported. In our contribution, we analyze the influence of the weld pool chemical composition (Mn, Si, …), welding energy, sulphur gradient and electromagnetic effect. The computed results are in good agreement with the corresponding experimental results, indicating the validity of the modeling approach.
Quality evaluation and control of end cap welds in PHWR fuel elements by ultrasonic examination
NASA Astrophysics Data System (ADS)
Choi, M. S.; Yang, M. S.
1991-02-01
The current quality control procedure of nuclear fuel end cap weld is mainly dependent on the destructive metallographic examination. A nondestructive examination technique, i.e., ultrasonic examination, has been developed to identify and evaluate weld discontinuities. A few interesting results of the weld quality evaluation by applying the developed ultrasonic examination technique to PHWR fuel welds are presented. In addition, the feasibility of the weld quality control by the ultrasonic examination is discussed. This study shows that the ultrasonic examination is effective and reliable method for detecting abnormal weld contours and weld discontinuities such as micro-fissure, crack, upset split and expulsion, and can be used as a quality control tool for the end cap welding process.
NASA Astrophysics Data System (ADS)
Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.
2016-04-01
It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.
In situ strain and temperature measurement and modelling during arc welding
Chen, Jian; Yu, Xinghua; Miller, Roger G.; ...
2014-12-26
In this study, experiments and numerical models were applied to investigate the thermal and mechanical behaviours of materials adjacent to the weld pool during arc welding. In the experiment, a new high temperature strain measurement technique based on digital image correlation (DIC) was developed and applied to measure the in situ strain evolution. In contrast to the conventional DIC method that is vulnerable to the high temperature and intense arc light involved in fusion welding processes, the new technique utilised a special surface preparation method to produce high temperature sustaining speckle patterns required by the DIC algorithm as well asmore » a unique optical illumination and filtering system to suppress the influence of the intense arc light. These efforts made it possible for the first time to measure in situ the strain field 1 mm away from the fusion line. The temperature evolution in the weld and the adjacent regions was simultaneously monitored by an infrared camera. Finally and additionally, a thermal–mechanical finite element model was applied to substantiate the experimental measurement.« less
Plasma-Arc Torch For Welding Ducts In Place
NASA Technical Reports Server (NTRS)
Gangl, Kenneth J.; Bayless, Ernest; Looney, Alan
1991-01-01
Plasma-arc-welding torch redesigned, more suitable for applications in which moved in circular or other orbits about stationary cylindrical workpieces. Preserves elements of original design critical to performance and endurance, but modifies other elements to decrease overall size of torch. Electrode collet and collet nut installed and removed through hole in top; makes installation and removal easier.
Code of Federal Regulations, 2010 CFR
2010-01-01
... performance and safety during reactor operation. Also, in all cases precise control of processes, procedures... elements include equipment that: (1) Normally comes in direct contact with, or directly processes or... pellets; (2) Automatic welding machines especially designed or prepared for welding end caps onto the fuel...
Brandt, D.
1984-06-05
An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.
Brandt, Daniel
1985-01-01
An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.
Energy Losses Estimation During Pulsed-Laser Seam Welding
NASA Astrophysics Data System (ADS)
Sebestova, Hana; Havelkova, Martina; Chmelickova, Hana
2014-06-01
The finite-element tool SYSWELD (ESI Group, Paris, France) was adapted to simulate pulsed-laser seam welding. Besides temperature field distribution, one of the possible outputs of the welding simulation is the amount of absorbed power necessary to melt the required material volume including energy losses. Comparing absorbed or melting energy with applied laser energy, welding efficiencies can be calculated. This article presents achieved results of welding efficiency estimation based on the assimilation both experimental and simulation output data of the pulsed Nd:YAG laser bead on plate welding of 0.6-mm-thick AISI 304 stainless steel sheets using different beam powers.
Wu, Haishu; Liu, Jihong; Liu, Xuecheng; Li, Changyi; Yu, Zhiwei
2002-07-01
To study micro morphology and element-mixing distribution of different alloys welded in laser and analyze the feasibility of laser welding different alloys. Alloys and titanium were matched into 4 groups: Au-Pt with Ni-Cr; Au-Pt with pure Ti; pure Ti with Ni-Cr; Ni-Cr with Co-Cr. They were welded in laser. Changes in metallography after hybridization of crystalline grain, ranges of heat-affected zone and pores were observed through SEM with ultra-thin windowed X-ray energy atlas. Meanwhile 10 testing points were chosen with area of 300 micro m x 900 micro m along the welding surface from the side A alloy to the side B alloy, than the element mixing distribution and tendency were analyzed with X-ray energy atlas. 1. Hybridization of different alloys: (l) in the group of Au-Pt with Ti, there was titanium element mixing into Au-Pt tissue gradually and evenly on the Au-Pt side of the interface without clear boundary and increasing in size of crystalline grain. However, there was titanium crystalline grain increasing in size, irregular morphology and small sacks on the titanium side with clear boundary. (2) in the group of Ni-Cr with Ti, there was mixing regularly, slow transition and interlocks between crystalline grains on the Ni-Cr side of the in terface. Poor transition, clear boundary and small cracks were observed on titanium side. (3) in the group of Co-Cr with Ni-Cr, there was good transition, obscure boundary on both sides resulting from network, cylinder and branch structure growing. 2. Element-mixing distribution of different alloys. In fusion zone, the metal elements in matched groups mixed well and hybridized into new alloys except titanium blocks. The location of wave peak depended on the composition of alloys. Most of elements were from the alloy far from the fusion zone. The hybridization between pure titanium and any other alloys is not good The effect of laser welding different alloys is ideal except with pure titanium.
NASA Astrophysics Data System (ADS)
Iordache, M.; Sicoe, G.; Iacomi, D.; Niţu, E.; Ducu, C.
2017-08-01
The research conducted in this article aimed to check the quality of joining some dissimilar materials Al-Cu by determining the mechanical properties and microstructure analysis. For the experimental measurements there were used tin alloy Al - EN-AW-1050A with a thickness of 2 mm and Cu99 sheet with a thickness of 2 mm, joined by FSW weld overlay. The main welding parameters were: rotating speed of the rotating element 1400 rev/min, speed of the rotating element 50 mm/min. The experimental results were determined on samples specially prepared for metallographic analysis. In order to prepare samples for their characterization, there was designed and built a device that allowed simultaneous positioning and fixing for grinding. The characteristics analyzed in the joint welded samples were mictrostructure, microhardness and residual stresses. The techniques used to determine these characteristics were optical microscopy, electron microscopy with fluorescence radioactive elemental analysis (EDS), Vickers microhardness line - HV0.3 and X-ray diffractometry.
Matczak, W; Chmielnicka, J
1993-03-01
For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr VI). Total Cr content of fumes varied from 0.1 to 7.4%. The distribution of particular Cr compounds was: 52.6% soluble Cr (including 50.7% Cr VI), 65.5% total Cr VI, and 11.4% insoluble Cr VI. The results obtained indicate that MMA/SS welding is a process that could be highly hazardous to human health. Evaluation of occupational exposure has shown that MMA/SS welders may exceed the admissible concentrations of soluble and insoluble Cr VI forms as well as of Mn and Ni. In the plants investigated the sum of the ratios of concentrations of particular welding fumes in the breathing zone of welders exceeded corresponding maximum allowable concentration values by 24 times (including 17 times for total Cr VI). Due to the variety and changeability of particular parameters occurring in the working environment, the composition of MMA/SS welding fumes (in the welder's breathing zone) is so variable that it is not possible to assess the exposure by means of one universal exposure indicator (maximum additive hygienic limit value). The evaluation should be based on the results of measurements of concentrations of particular elements in welding fumes.
Matczak, W; Chmielnicka, J
1993-01-01
For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr VI). Total Cr content of fumes varied from 0.1 to 7.4%. The distribution of particular Cr compounds was: 52.6% soluble Cr (including 50.7% Cr VI), 65.5% total Cr VI, and 11.4% insoluble Cr VI. The results obtained indicate that MMA/SS welding is a process that could be highly hazardous to human health. Evaluation of occupational exposure has shown that MMA/SS welders may exceed the admissible concentrations of soluble and insoluble Cr VI forms as well as of Mn and Ni. In the plants investigated the sum of the ratios of concentrations of particular welding fumes in the breathing zone of welders exceeded corresponding maximum allowable concentration values by 24 times (including 17 times for total Cr VI). Due to the variety and changeability of particular parameters occurring in the working environment, the composition of MMA/SS welding fumes (in the welder's breathing zone) is so variable that it is not possible to assess the exposure by means of one universal exposure indicator (maximum additive hygienic limit value). The evaluation should be based on the results of measurements of concentrations of particular elements in welding fumes. PMID:8457491
Dasch, Jean; D'Arcy, James
2008-07-01
Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles <100 nm. About half the mass of aluminum welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels.
Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowers, O.; Duxbury, D. J.; Velichko, A.
2015-03-31
The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is usedmore » to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.« less
NASA Astrophysics Data System (ADS)
Wesling, V.; Schram, A.; Müller, T.; Treutler, K.
2016-03-01
Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes are significantly affected by thin film coatings on solid wire electrodes for Gas Metal Arc welding. The influences are regarding the stability of the arc, the properties of the weld metal in terms of geometric expression, chemical composition and mechanical properties, the composition of the arc-plasma and the dynamics of the molten metal.
NASA Astrophysics Data System (ADS)
Wang, Z. P.; Hayhurst, D. R.
1994-07-01
The creep deformation and damage evolution in a pipe weldment has been modeled by using the finite-element continuum damage mechanics (CDM) method. The finite-element CDM computer program DAMAGE XX has been adapted to run with increased speed on a Cray XMP/416 supercomputer. Run times are sufficiently short (20 min) to permit many parametric studies to be carried out on vessel lifetimes for different weld and heat affected zone (HAZ) materials. Finite-element mesh sensitivity was studied first in order to select a mesh capable of correctly predicting experimentally observed results using at least possible computer time. A study was then made of the effect on the lifetime of a butt welded vessel of each of the commomly measured material parameters for the weld and HAZ materials. Forty different ferritic steel welded vessels were analyzed for a constant internal pressure of 45.5 MPa at a temperature of 565 C; each vessel having the same parent pipe material but different weld and HAZ materials. A lifetime improvement has been demonstrated of 30% over that obtained for the initial materials property data. A methodology for weldment design has been established which uses supercomputer-based CDM analysis techniques; it is quick to use, provides accurate results, and is a viable design tool.
NASA Astrophysics Data System (ADS)
Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili
2007-05-01
Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.
Multiple exposure to metals in eight types of welding.
Apostoli, P; Porru, S; Brunelli, E; Alessio, L
1997-01-01
This article evaluates multiple exposures to metals in different types of metal welding such as manual metal arc for mild and stainless steel, continuous wire, submerged arc, laser and brazing. Environmental monitoring was carried out in eight different occupational situations and the inductively coupled plasma mass spectrometry technique was adopted in order to characterize exposure to several elements simultaneously and with high accuracy. The results showed that up to 23 elements could be measured. The highest concentrations were found for Al, Mn, Fr, Ni, Cr, Cu and Zn. For some elements such as In, Nd, I, Rb the concentrations were very low. A qualitative and quantitative variation in fume composition was observed at a certain distance from the welding point, which should be to taken into account when evaluating indirect exposures. It would also be possible, with this technique, to identify specific elements in the mixture which could also be measured in biological fluids.
Chemical composition and morphology of welding fume particles and grinding dusts.
Karlsen, J T; Farrants, G; Torgrimsen, T; Reith, A
1992-05-01
Elemental composition and morphology of pure manual metal arc (MMA) welding fumes, pure grinding dust, and combined fume/dust air samples were collected and determined separately under semilaboratory conditions. The base material was stainless steel. The purpose of the present study was to create a "synthetic" work situation under semilaboratory conditions by combining one grinding period and two MMA welding periods and comparing these results with results during welding in a workshop. The duty cycles of pure welding and of pure grinding were also observed. A comparison was also made between metal inert gas (MIG) and MMA welding on stainless steel as well as a nickel-rich alloy under regular conditions. The amount of collected material was determined by weighing the membrane filters before and after exposure, and the element contents were determined by atomic spectroscopy. Other transmission electron microscopy (TEM) filters were used for TEM and computer-image analysis, in which the amount of collected material and its morphological characteristics were observed. The arcing time and the consumption of filler material were estimated for different kinds of electrodes. Chemical analysis showed that the contents of manganese and total chromium were lower in grinding dust than in welding fumes. The contents of hexavalent chromium, Cr(VI), in grinding dust were undetectable. Samples collected in welding shops where concomitant grinding was performed contained about 30% less Cr(VI) than those collected under laboratory conditions during welding only. The sizes and shapes of the particles depend on the welding process and distance of collection from the plume of the fume. To compare laboratory experiments with regular welding situations, the experiment must resemble industrial welding.(ABSTRACT TRUNCATED AT 250 WORDS)
Fillet Weld Stress Using Finite Element Methods
NASA Technical Reports Server (NTRS)
Lehnhoff, T. F.; Green, G. W.
1985-01-01
Average elastic Von Mises equivalent stresses were calculated along the throat of a single lap fillet weld. The average elastic stresses were compared to initial yield and to plastic instability conditions to modify conventional design formulas is presented. The factor is a linear function of the thicknesses of the parent plates attached by the fillet weld.
Modeling the Formation of Transverse Weld during Billet-on-Billet Extrusion
Mahmoodkhani, Yahya; Wells, Mary; Parson, Nick; Jowett, Chris; Poole, Warren
2014-01-01
A comprehensive mathematical model of the hot extrusion process for aluminum alloys has been developed and validated. The plasticity module was developed using a commercial finite element package, DEFORM-2D, a transient Lagrangian model which couples the thermal and deformation phenomena. Validation of the model against industrial data indicated that it gave excellent predictions of the pressure during extrusion. The finite element predictions of the velocity fields were post-processed to calculate the thickness of the surface cladding as one billet is fed in after another through the die (i.e., the transverse weld). The mathematical model was then used to assess the effect a change in feeder dimensions would have on the shape, thickness and extent of the transverse weld during extrusion. Experimental measurements for different combinations of billet materials show that the model is able to accurately predict the transverse weld shape as well as the clad surface layer to thicknesses of 50 μm. The transverse weld is significantly affected by the feeder geometry shape, but the effects of ram speed, billet material and temperature on the transverse weld dimensions are negligible. PMID:28788629
Welding technologies as applied to nuclear manufacturing
NASA Astrophysics Data System (ADS)
Roper, J. R.
1992-10-01
This is the trip report of John R. Roper, who traveled to England 25 Sep. through 8 Oct. 1992. Dr. Roper attended the US/UK JOWOG 22-D Joining Technical Exchange meeting and gave a presentation on Welding Finite Element Analysis and the Precision Joining Center at the Atomic Weapons Establishment in Aldermaston, United Kingdom. Dr. Roper also toured the Welding Institute in Abington, UK and discussed technology exchange of weld thermal and mechanical material responses.
Optimum Design and Development of High Strength and Toughness Welding Wire for Pipeline Steel
NASA Astrophysics Data System (ADS)
Chen, Cuixin; Xue, Haitao; Yin, Fuxing; Peng, Huifen; Zhi, Lei; Wang, Sixu
Pipeline steel with higher strength(>800MPa) has been gradually used in recent years, so how to achieve good match of base metal and weld deposit is very important for its practical application. Based on the alloy system of 0.02-0.04%C, 2.0%Mn and 0.5%Si, four different kinds of welding wires were designed and produced. The effects of alloy elements on phase transformation and mechanical properties were analyzed. Experimental results show that the designed steels with the addition of 2-4% Ni+Cr+Mo and <0.2% Nb+V+Ti have high strength (>800MPa) and good elongation (>15%). The microstructure of deposits metal is mainly composed of granular bainite and M-A constituents with the mean size of 0.2-07μm are dispersed on ferritic matrix. The deposited metals have good match of strength (>800MPa) and impact toughness (>130J) which well meet the requirement of pipeline welding.
Brandt, D.
1985-12-31
An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.
Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties
NASA Astrophysics Data System (ADS)
Biradar, N. S.; Raman, R.
AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.
Influence of Processing Parameters on the Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.
2006-01-01
Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.
Fundamentals and advances in the development of remote welding fabrication systems
NASA Technical Reports Server (NTRS)
Agapakis, J. E.; Masubuchi, K.; Von Alt, C.
1986-01-01
Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.
NASA Astrophysics Data System (ADS)
Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat
2017-02-01
Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.
Comparison of joint designs for laser welding of cast metal plates and wrought wires.
Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro
2013-01-01
The purpose of the present study was to compare joint designs for the laser welding of cast metal plates and wrought wire, and to evaluate the welded area internally using X-ray micro-focus computerized tomography (micro-CT). Cast metal plates (Ti, Co-Cr) and wrought wires (Ti, Co-Cr) were welded using similar metals. The specimens were welded using four joint designs in which the wrought wires and the parent metals were welded directly (two designs) or the wrought wires were welded to the groove of the parent metal from one or both sides (n = 5). The porosity and gap in the welded area were evaluated by micro-CT, and the maximum tensile load of the welded specimens was measured with a universal testing machine. An element analysis was conducted using an electron probe X-ray microanalyzer. The statistical analysis of the results was performed using Bonferroni's multiple comparisons (α = 0.05). The results included that all the specimens fractured at the wrought wire when subjected to tensile testing, although there were specimens that exhibited gaps due to the joint design. The wrought wires were affected by laser irradiation and observed to melt together and onto the filler metal. Both Mo and Sn elements found in the wrought wire were detected in the filler metal of the Ti specimens, and Ni was detected in the filler metal of the Co-Cr specimens. The four joint designs simulating the designs used clinically were confirmed to have adequate joint strength provided by laser welding.
Gurinsky, D.H.
1958-08-26
A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.
1993-09-01
in TIG weldments. The alloying elements used in ULCB steels are; Carbon (C), Manganese (Mn), Molybdenum (Mo), Nickel (Ni), Niobium (Nb), Chromium (Cr...process. 7 C. WELDING PROCESSES 1. Tungsten Inert Gas (TIG) Welding Tungsten Inert Gas (TIG) Welding (or Gas Tungsten Arc Welding ( GTAW )), produces... chromium (Cr), molybdenum (Mo), and sometimes vanadium (V). Reheat cracking occurs in the HAZ during postweld stress relieving, especially in thick
High power laser welding of thick steel plates in a horizontal butt joint configuration
NASA Astrophysics Data System (ADS)
Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.
2016-09-01
In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.
Influence of low nickel (0.09 wt%) content on microstructure and toughness of P91 steel welds
NASA Astrophysics Data System (ADS)
Arivazhagan, B.; Vasudevan, M.; Kamaraj, M.
2015-05-01
Modified 9Cr-1Mo (P91) steel is widely used as a high temperature structural material in the fabrication of power plant components. Alloying elements significantly influences the microstructure and mechanical properties of P91 steel weldments. The alloying elements manganese and nickel significantly influence the lower critical phase transformation temperature (AC1) as well as tempering response of welds. In the existing published information there was wide spread use of high Mn+Ni filler wire. In the present study, weldment preparation was completed using GTA filler wire having low Nickel content (Mn+Ni of 0.58 wt% including nickel content of 0.09 wt%). Microstructure and mechanical properties characterization was done. There is a requirement on minimum toughness of 47 Joules for P91 steel tempered welds at room temperature. Microstructural observation revealed that the GTA welds have low δ-ferrite content (<0.5%) in the martensite matrix. In the as-weld condition, the toughness was 28 Joules whereas after PWHT at 760 °C-2 h it was 115 Joules. In the present study, toughness of low nickel weld was higher due to low δ-ferrite content (<0.5%), multipass grain refinement and weld metal deposition of single pass per layer of weldment.
Conduit purging device and method
NASA Technical Reports Server (NTRS)
Wilks, Michael T. (Inventor)
2011-01-01
A device for purging gas comprises a conduit assembly defining an interior volume. The conduit assembly comprises a first conduit portion having an open first end and an open second end and a second conduit portion having an open first end and a closed second end. The open second end of the first conduit portion is disposed proximate to the open first end of the second conduit portion to define a weld region. The device further comprises a supply element supplying a gas to the interior volume at a substantially constant rate and a vent element venting the gas from the interior volume at a rate that maintains the gas in the interior volume within a pressure range suitable to hold a weld bead in the weld region in equilibrium during formation of a weld to join the first conduit portion and the second conduit portion.
CRADA Final Report: Weld Predictor App
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billings, Jay Jay
Welding is an important manufacturing process used in a broad range of industries and market sectors, including automotive, aerospace, heavy manufacturing, medical, and defense. During welded fabrication, high localized heat input and subsequent rapid cooling result in the creation of residual stresses and distortion. These residual stresses can significantly affect the fatigue resistance, cracking behavior, and load-carrying capacity of welded structures during service. Further, additional fitting and tacking time is often required to fit distorted subassemblies together, resulting in non-value added cost. Using trial-and-error methods to determine which welding parameters, welding sequences, and fixture designs will most effectively reduce distortionmore » is a time-consuming and expensive process. For complex structures with many welds, this approach can take several months. For this reason, efficient and accurate methods of mitigating distortion are in-demand across all industries where welding is used. Analytical and computational methods and commercial software tools have been developed to predict welding-induced residual stresses and distortion. Welding process parameters, fixtures, and tooling can be optimized to reduce the HAZ softening and minimize weld residual stress and distortion, improving performance and reducing design, fabrication and testing costs. However, weld modeling technology tools are currently accessible only to engineers and designers with a background in finite element analysis (FEA) who work with large manufacturers, research institutes, and universities with access to high-performance computing (HPC) resources. Small and medium enterprises (SMEs) in the US do not typically have the human and computational resources needed to adopt and utilize weld modeling technology. To allow an engineer with no background in FEA and SMEs to gain access to this important design tool, EWI and the Ohio Supercomputer Center (OSC) developed the online weld application software tool “WeldPredictor” ( https://eweldpredictor.ewi.org ). About 1400 users have tested this application. This project marked the beginning of development on the next version of WeldPredictor that addresses many outstanding features of the original, including 3D models, allow more material hardening laws, model material phase transformation, and uses open source finite element solvers to quickly solve problems (as opposed to expensive commercial tools).« less
Weld analysis and control system
NASA Technical Reports Server (NTRS)
Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)
1994-01-01
The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.
[Spectra and thermal analysis of the arc in activating flux plasma arc welding].
Chai, Guo-Ming; Zhu, Yi-Feng
2010-04-01
In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.
An inelastic analysis of a welded aluminum joint
NASA Astrophysics Data System (ADS)
Vaughan, Robert E.; Schonberg, William P.
1995-02-01
Butt weld joints are most commonly designed into pressure vessels by using weld material properties that are determined from a tensile test. These properties are provided to the stress analyst in the form of a stress vs strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of multiple pass aluminum 2219-T87 butt welds. The weld specimens are analyzed using classical plasticity theory to provide a basis for modeling the inelastic properties in a finite element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of currently available numerical prediction methods.
1998-06-01
transformation ( CCT ) diagram Figure 2.2. The microstructures that develop are determined by the cooling rate, alloying element and oxygen content of the weld...TIME Figure 2.2 CCT Diagram for the weld metal of low-carbon, low-alloy steels [From Ref. 2] To assist material scientists in microstructure
NASA Astrophysics Data System (ADS)
Cherepanov, A. N.; Orishich, A. M.; Pugacheva, N. B.; Shapeev, V. P.
2015-03-01
Results of an experimental study of the structure, the phase composition, and the mechanical properties of laser-welded joints of 3-mm thick titanium and 12Kh18N10T steel sheets obtained with the use of intermediate inserts and nanopowdered modifying additives are reported. It is shown that that such parameters as the speed of welding, the radiation power, and the laser-beam focal spot position all exert a substantial influence on the welding-bath process and on the seam structure formed. In terms of chemical composition, most uniform seams with the best mechanical strength are formed at a 1-m/min traverse speed of laser and 2.35-kW laser power, with the focus having been positioned at the lower surface of the sheets. Under all other conditions being identical, uplift of the focus to workpiece surface or to a higher position results in unsteady steel melting, in a decreased depth and reduced degree of the diffusion-induced mixing of elements, and in an interpolate connection formed according to the soldering mechanism in the root portion of the seam. The seam material is an over-saturated copper-based solid solution of alloying elements with homogeneously distributed intermetallic disperse particles (Ti(Fe, Cr)2 and TiCu3) contained in this alloy. Brittle fracture areas exhibiting cleavage and quasi-cleavage facets correspond to coarse Ti(Fe, Cr)2 intermetallic particles or to diffusion zones primarily occurring at the interface with the titanium alloy. The reported data and the conclusions drawn from the numerical calculations of the thermophysical processes of welding of 3-mm thick titanium and steel sheets through an intermediate copper insert are in qualitative agreement with the experimental data. The latter agreement points to adequacy of the numerical description of the melting processes of contacting materials versus welding conditions and focal-spot position in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgardt, P.; Heiple, C.R.
1985-01-01
Good penetration and poor penetration steels have different responses to changes in temperature distribution on the weld pool surface. Penetration of 304 SS was varied using S and Se dopants. The weld parameter investigated was the electrode tip angle. Results of bead-on-plate GTA welds show that there is a difference in response of weld pool shape to tip angle depending on penetration: Low penetration base metal showed no dependence, intermediate penetration steel showed a small linear decrease of weld depth-to-width ratio (d/w) with tip angle, while high penetration steel showed an increase of d/w up to a maximum at aboutmore » 50/sup 0/, followed by a decrease in d/w. (DLC)« less
Weld Nugget Temperature Control in Thermal Stir Welding
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2014-01-01
A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).
Chao, Yonglie; Du, Li; Yang, Ling
2005-05-01
Information regarding the merits and problems associated with connecting a keeper to a dowel and coping using a laser welding technique has not been explored extensively in the dental literature. This in vitro study compared the surface characteristics, microstructure, and magnetic retentive forces for a dowel and coping-keeper mechanism fabricated using a laser welding process and a cast-to casting technique. Five cast-to and 6 laser-welded dowel and coping-keeper specimens were tested. Using 5 freestanding keepers as the control group, the surface characteristics and microstructures of the specimens were examined by means of stereomicroscopy, metallographic microscopy, and scanning electron microscopy (SEM). Energy-dispersive spectroscopic (EDS) microanalysis with SEM provided elemental concentration information for the test specimens. The vertical magnetic retentive forces (N) of the 3 groups were measured using a universal testing machine. The results were statistically compared using 1-way analysis of variance and the Newman-Keuls multiple range test (alpha =.05). The laser-welded dowel-keeper generally maintained its original surface smoothness as well as the original microstructure. Elements diffused readily through the fusion zone. The surface of the cast dowel-keeper became rough with the formation of an oxide layer, the microstructure changed, and there was only limited elemental diffusion in the fusion zone. The average vertical magnetic retentive force of the laser-welded group, the cast group, and the control group were 4.2 +/- 0.2 N, 3.8 +/- 0.3 N, and 5.6 +/- 0.3 N, respectively. Statistically significant differences in vertical magnetic retentive force were found between the control group and both the laser-welded and cast groups (P <.01). Compared with the cast dowel-keepers, the average vertical magnetic retentive force of the laser-welded dowel-keepers was significantly higher (P <.05). The laser welding technique had less influence on the surface characteristics, the microstructure, and the magnetic retentive forces of keepers relative to techniques that incorporate a keeper at the time of cast dowel and coping fabrication.
Hardening Potential of an Al-Cu-Li Friction Stir Weld
NASA Astrophysics Data System (ADS)
Ivanov, Rosen; Boselli, Julien; Denzer, Diana; Larouche, Daniel; Gauvin, Raynald; Brochu, Mathieu
The evolution of the microstructure during friction stir welding of a third generation AA2199 Al-Li alloy has been described and related to the mechanical properties of welds. The coupling of electron microscopy and micro-hardness have helped generate an understanding of the relationship between grain structure, precipitate density and morphology behind the observed changes in mechanical properties during post weld artificial ageing. The ability of welds to recover hardness and strength during post weld heat treatment was linked to the limited formation of large scale precipitates which act as sinks for alloying elements. Welds obtained with high tool rotation speed (within parameters studied) showed ultimate tensile strength levels of about 93% of the base metal, an elongation of 6% at fracture, and hardness values ranging between 120-140 HV in the stir zone, thermo-mechanically affected zone, and heat affected zone upon post weld heat treatment.
Plasma Chamber Design and Fabrication Activities
NASA Astrophysics Data System (ADS)
Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.
2006-10-01
A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.
Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Nithin, Abeyram M.
2016-05-01
Friction taper plug welding a variant of friction welding is useful in welding of similar and dissimilar materials. It could be used for joining of composites to metals in sophisticated aerospace applications. In the present work numerical simulation of friction taper plug welding process is carried out using finite element based software. Graphite reinforced AA6063 is modelled using the software ANSYS 15.0 and temperature distribution is predicted. Effect of friction time on temperature distribution is numerically investigated. When the friction time is increased to 30 seconds, the tapered part of plug gets detached and fills the hole in the AA6063 plate perfectly.
Heat Sink Welding for Preventing Hot Cracking in Alloy 2195 Intersection Welds: A Feasibility Study
NASA Technical Reports Server (NTRS)
Yang, Yu-Ping; Dong, Pingsha; Rogers, Patrick
2000-01-01
Two concepts, stationary cooling and trailing cooling, were proposed to prevent weld intersection cracking. Finite element analysis was used to demonstrate the potential effectiveness of those two concepts. Both stationary and trailing heat sink setups were proposed for preventing intersection cracking. The cooling media could be liquid nitrogen, or pressured air knife. Welding experiments on the small test panel with the localized heat sink confirmed the feasibility of using such a stationary cooling technique. The required cooling was achieved in this test panel. Systematic welding experiments should be conducted in the future to validate and refine the heat sink technique for preventing intersection cracking.
Patterns of residual stresses due to welding
NASA Technical Reports Server (NTRS)
Botros, B. M.
1983-01-01
Residual stresses caused by welding result from the nonuniform rate of cooling and the restrained thermal contraction or non-uniform plastic deformation. From the zone of extremely high temperature at the weld, heat flows into both the adjoining cool body and the surrounding atmosphere. The weld metal solidifies under very rapid cooling. The plasticity of the hot metal allows adjustment initially, but as the structure cools the rigidity of the surrounding cold metal inhibits further contraction. The zone is compressed and the weld is put under tensile stresses of high magnitude. The danger of cracking in these structural elements is great. Change in specific volume is caused by the change in temperature.
Formation of A Non-detachable Welded Titanium-aluminium Compound by Laser Action
NASA Astrophysics Data System (ADS)
Murzin, Serguei P.
2018-01-01
Progressive in the welding of dissimilar materials is the use of laser technology. With the use of the ROFIN StarWeld Manual Performance laser, an aluminium alloy AK4 and a titanium alloy VT5-1 were welded. Processing regimes have been determined, the realization of which during melting of materials in the zone of thermal influence makes it possible to obtain a homogeneous structure without voids and shells, which indicates a potential sufficiently high serviceability of the welded joint. To create the required power density distribution in the cross section of the laser beam, it is expedient to use diffractive optical elements.
Influence of the Strength Mismatch of a Narrow Gap Welded Joint of SA508 on the Plastic η Factor
NASA Astrophysics Data System (ADS)
Koo, J. M.; Huh, Y.; Seok, C. S.
2012-11-01
In this article, the influence of the strength mismatch of a narrow gap welded joint of SA508 on the η factor was evaluated. The η factor is the principal parameter that determines the plastic portion of the J-integral. The specimens for tensile and hardness tests were collected from piping with narrow gap welding and the stress-strain curve and hardness were obtained from those. From these results, the Ramberg-Osgood (R-O) constant was obtained. Also, the finite element analysis was performed with variations in the strength mismatch and the weld width. The η factor equation considering the strength mismatch and the weld width of a narrow gap welded joint was suggested.
Thermo-mechanical modeling of the gas-tungsten-arc (GTA) welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, D.B.
1980-01-18
A fundamental study of gas-tungsten-arc (GTA) welding was undertaken. This was initiated with a review of the GTA welding process which lead to the decision to focus experimental and analytical efforts on stationary welds on a pure material. Pure nickel was selected for the test material. Temperature, strain, and distortion measurements were made during the formation of spot welds on circular plates. Transient thermal data were obtained with thermocouples, a radiation pyrometer, and from motion pictures. Local strain was observed qualitatively from Moire interference fringe patterns. Distortion during welding was measured with displacement gages and residual distortion with a profilometer.more » Experimental measurements are compared with predictions of thermal and mechanical finite element codes.« less
NASA Technical Reports Server (NTRS)
Bayless, E. O.; Lawless, K. G.; Kurgan, C.; Nunes, A. C.; Graham, B. F.; Hoffman, D.; Jones, C. S.; Shepard, R.
1993-01-01
Fully automated variable-polarity plasma arc VPPA welding system developed at Marshall Space Flight Center. System eliminates defects caused by human error. Integrates many sensors with mathematical model of the weld and computer-controlled welding equipment. Sensors provide real-time information on geometry of weld bead, location of weld joint, and wire-feed entry. Mathematical model relates geometry of weld to critical parameters of welding process.
Finite element modeling of residual stresses in electroslag butt welds
DOT National Transportation Integrated Search
2000-03-01
Shop fabricated electroslag (ES) welds used in bridge construction have had a history of low toughness in the fusion and heat affected zones. In addition, conventional inspection of ES weldments under shop fabrication conditions fail to consistently ...
Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.
Effects of Sealing Run Welding with Defocused Laser Beam on the Quality of T-joint Fillet Weld
NASA Astrophysics Data System (ADS)
Unt, Anna; Poutiainen, Ilkka; Salminen, Antti
Fillet weld is the predominant weld type used for connecting different elements e.g. in shipbuilding, offshore and bridge structures. One of prevalent research questions is the structural integrity of the welded joint. Post weld improvement techniques are being actively researched, as high stress areas like an incomplete penetration on the root side or fluctuations in penetration depth cannot be avoided. Development of laser and laser-arc hybrid welding processes have greatly contributed to increase of production capacity and reduction of heat-induced distortions by producing single pass full penetration welds in thin- and medium thickness structural steel parts. Present study addresses the issue of how to improve the quality of the fillet welds by welding the sealing run on the root side with defocused laser beam. Welds having incomplete or excessive penetration were produced with several beam angles and laser beam spot sizes on surface. As a conclusion, significant decrease or even complete elimination of the seam irregularities, which act as the failure starting points during service, is achieved.
Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe
NASA Astrophysics Data System (ADS)
Obeid, Obeid; Alfano, Giulio; Bahai, Hamid
2017-08-01
The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.
NASA Astrophysics Data System (ADS)
Gusev, A. I.; Kozyrev, N. A.; Usoltsev, A. A.; Kryukov, R. E.; Osetkovsky, I. V.
2017-09-01
The effect of the introduction of vanadium and cobalt into the charge of the powder surfacing wire of Fe-C-Si-Mn-Cr-Mo-Ni system is studied. In the laboratory conditions, the samples of flux cored wires were produced. The surfacing made by the prepared wire was produced under the flux AN-26C, on the plates of steel St3 in 6 layers with the help of ASAW-1250 welding tractor. Reduction of carbon content in the deposited layer to 0.19-0.2% with simultaneous change in the content of chromium, nickel, molybdenum and other elements present in it contributes to the enlargement of the martensite needles and the increase in the size of the former austenite grain. The obtained dependences of hardness of the deposited layer and its wear resistance on the mass fraction of elements, included in the composition of powder wires of the proposed system, can be used to predict the hardness of the welded layer and its wear resistance under different operating conditions for mining equipment and coal mining equipment.
NASA Astrophysics Data System (ADS)
Srikanth, A.; Manikandan, M.
2018-02-01
The present study investigates the microstructure and mechanical properties of joints fabricated by Continuous and pulsed current gas tungsten arc welded alloy 600. Welding was done by autogenous mode. The macro examination was carried out to evaluate the welding defects in the weld joints. Optical and Scanning Electron Microscope (SEM) were performed to assess the microstructural changes in the fusion zone. Energy Dispersive Spectroscopy (EDS) analysis was carried to evaluate the microsegregation of alloying elements in the fusion zone. The tensile test was conducted to assess the strength of the weld joints. The results show that no welding defects were observed in the fusion zones of Continuous and Pulsed current Gas Tungsten Arc Welding. The refined microstructure was found in the pulsed current compared to continuous current mode. Microsegregation was not noticed in the weld grain boundary of continuous and pulsed current mode. The pulsed current shows improved mechanical properties compared to the continuous current mode.
Effect of welding on creep damage evolution in P91B steel
NASA Astrophysics Data System (ADS)
Baral, J.; Swaminathan, J.; Chakrabarti, D.; Ghosh, R. N.
2017-07-01
Study of creep behavior of base metal (without weld) and welded specimens of P91B steel over a range of temperatures (600-650 °C) and stresses (50-180 MPa) showed similar values of minimum creep-rates for both specimens at higher stress regime (>100 MPa) whilst, significantly higher creep rates in the case of welded specimens at lower stress regime. Considering that welded specimen is comprised of two distinct structural regimes, i.e. weld affected zone and base metal, a method has been proposed for estimating the material parameters describing creep behavior of those regimes. Stress-strain distribution across welded specimen predicted from finite element analysis based on material parameters revealed preferential accumulation of stress and creep strain at the interface between weld zone and base metal. This is in-line with the experimental finding that creep rupture preferentially occurs at inter-critical heat affected zone in welded specimens owing to ferrite-martensite structure with coarse Cr23C6 particles.
Current Welding Consumables Research in the U. S. Navy
1993-03-01
experimental alloy system has a lower C content than the MIL-120S wire and uses no chromium . These modifications are intended to improve resistance to hydrogen...120S system. Molybdemm is reportedly a more potent strengthener than chromium [Enis and Telford, 1%8], but has a less detrimental effect on hydrogen...carbon steel through the control of certain alloying elements such as manganese, chromium , and primarily carbon (Linnert, 1965]. This system can
Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser
NASA Astrophysics Data System (ADS)
Kim, Taewon; Suga, Yasuo; Koike, Takashi
TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.
Tsujino, Jiromaru; Hongoh, Misugi; Yoshikuni, Masafumi; Hashii, Hidekazu; Ueoka, Tetsugi
2004-04-01
The welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems that are driven at only the fundamental-resonance frequency vibration were compared, and also those of the welding systems that were driven at the fundamental and several higher resonance frequencies simultaneously were studied. At high frequency, welding characteristics can be improved due to the larger vibration loss of plastic materials. For welding of rather thin or small specimens, as the fundamental frequency of these welding systems is higher and the numbers of driven higher frequencies are driven simultaneously, larger welded area and weld strength were obtained.
NASA Technical Reports Server (NTRS)
Nishioka, Owen S.
1997-01-01
Defects that develop in welds during the fabrication process are frequently manifested as embedded flaws from lack of fusion or lack of penetration. Fracture analyses of welded structures must be able to assess the effect of such defects on the structural integrity of weldments; however, the transferability of R-curves measured in laboratory specimens to defective structural welds has not been fully examined. In the current study, the fracture behavior of an overmatched butt weld containing a simulated buried, lack-of-penetration defect is studied. A specimen designed to simulate pressure vessel butt welds is considered; namely, a center crack panel specimen, of 1.25 inch by 1.25 inch cross section, loaded in tension. The stress-relieved double-V weld has a yield strength 50% higher than that of the plate material, and displays upper shelf fracture behavior at room temperature. Specimens are precracked, loaded monotonically while load-CMOD measurements are made, then stopped and heat tinted to mark the extent of ductile crack growth. These measurements are compared to predictions made using finite element analysis of the specimens using the fracture mechanics code Warp3D, which models void growth using the Gurson-Tvergaard dilitant plasticity formulation within fixed sized computational cells ahead of the crack front. Calibrating data for the finite element analyses, namely cell size and initial material porosities are obtained by matching computational predictions to experimental results from tests of welded compact tension specimens. The R-curves measured in compact tension specimens are compared to those obtained from multi-specimen weld tests, and conclusions as to the transferability of R-curves is discussed.
NASA Astrophysics Data System (ADS)
Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey
2018-02-01
Ultrasonic guided waves (GWs), e.g. Lamb waves, have been proven effective in the detection of defects such as corrosion, cracking, delamination, and debonding in both composite and metallic structures. They are a significant tool employed in structural health monitoring. In this study, the ability of ultrasonic GWs to assess the quality of friction stir welding (FSW) was investigated. Four friction stir welded AZ31B magnesium plates processed with different welding parameters and a non-welded plate were used. The fundamental symmetric (S0) Lamb wave mode was excited using piezoelectric wafers (PZTs). Further, the S0 mode was separated using the "Improved complete ensemble empirical mode decomposition with adaptive noise (Improved CEEMDAN)" technique. A damage index (DI) was defined based on the variation in the amplitude of the captured wave signals in order to detect the presence and asses the severity of damage resulting from the welding process. As well, computed tomography (CT) scanning was used as a non-destructive testing (NDT) technique to assess the actual weld quality and validate predictions based on the GW approach. The findings were further confirmed using finite element analysis (FEA). To model the actual damage profile in the welds, "Mimics" software was used for the 3D reconstruction of the CT scans. The built 3D models were later used for evaluation of damage volume and for FEA. The damage volumes were correlated to the damage indices computed from both experimental and numerical data. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the friction stir welded joints. This methodology has great potential as a future classification method of FSW quality.
NASA Technical Reports Server (NTRS)
Arcella, F. G.
1974-01-01
Arc cast W, CVD W, CVD Re, and powder metallurgy Re materials were hot isostatically pressure welded to ten different refractory metals and alloys (Cb, Cb-1Zr, Ta, Ta-10W, T-111, ASTAR-811C, W-25Re, Mo-50Re, W-30Re-20Mo, ect.) and thermally aged at 10 to the minus 8th power torr at 1200, 1500, 1630, 1800, and 2000 C for 100 to 2000 hours. Electron beam microprobe analysis was used to characterize the interdiffusion zone width of each couple system as a function of age time and temperature. Extrapolations of interdiffusion zone thickness to 10,000 hours were made. Classic interdiffusion analysis was performed for several of the systems by Boltzmann-Matano analysis. A method of inhibiting Kirkendall voids from forming during thermal ageing of dissimilar metal junctions was devised and experimentally demonstrated. An electron beam weld study of Cb-1Zr to Re and W-25Re demonstrated the limited acceptability of these welds.
Design of cylindrical pipe automatic welding control system based on STM32
NASA Astrophysics Data System (ADS)
Chen, Shuaishuai; Shen, Weicong
2018-04-01
The development of modern economy makes the demand for pipeline construction and construction rapidly increasing, and the pipeline welding has become an important link in pipeline construction. At present, there are still a large number of using of manual welding methods at home and abroad, and field pipe welding especially lacks miniature and portable automatic welding equipment. An automated welding system consists of a control system, which consisting of a lower computer control panel and a host computer operating interface, as well as automatic welding machine mechanisms and welding power systems in coordination with the control system. In this paper, a new control system of automatic pipe welding based on the control panel of the lower computer and the interface of the host computer is proposed, which has many advantages over the traditional automatic welding machine.
Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Dongxiao; Yu, Xinghua; Zhang, Wei
Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field,more » non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the experimental result reveals that the typical post-buttering heat treatment for residual stress relief may not be adequate to completely eliminate the residual plastic strains in the buttering layer.« less
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Chun; Chang, Tao-Chih; Lin, Dong-Yih; Chen, Ming-Che; Wu, Weite
2007-10-01
The purpose of this study is to investigate the precipitation characteristics of σ phase in the fusion zone of stainless steel welds at various welding passes during a tungsten are welding (GTAW) process. The morphology, quantity, and chemical composition of the δ-ferrite and σ phase were analyzed using optical microscopy (OM), a ferritscope (FS), a X-ray diffractometer (XRD), scanning electron microscopy (SEM), an electron probe micro-analyzer (EPMA), and a wavelength dispersive spectrometer (WDS), respectively. Massive δ-ferrite was observed in the fusion zone of the first pass welds during welding of dissimilar stainless steels. The σ phase precipitated at the inner δ-ferrite particles and decreased δ-ferrite content during the third pass welding. The σ and δ phases can be stabilized by Si element, which promoted the phase transformation of σ→ϱ+λ2 in the fusion zone of the third pass welds. It was found that the σ phase was a Fe-Cr-Si intermetallic compound found in the fusion zone of the third pass welds during multi-pass welding.
Zambrow, J.; Hausner, H.
1957-09-24
A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.
Welding technology transfer task/laser based weld joint tracking system for compressor girth welds
NASA Technical Reports Server (NTRS)
Looney, Alan
1991-01-01
Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.
NASA Astrophysics Data System (ADS)
Devrient, M.; Da, X.; Frick, T.; Schmidt, M.
Laser transmission welding is a well known joining technology for thermoplastics. Because of the needs of lightweight, cost effective and green production thermoplastics are usually filled with glass fibers. These lead to higher absorption and more scattering within the upper joining partner with a negative influence on the welding process. Here an experimental method for the characterization of the scattering behavior of semi crystalline thermoplastics filled with short glass fibers and a finite element model of the welding process capable to consider scattering as well as an analytical model are introduced. The experimental data is used for the numerical and analytical investigation of laser transmission welding under consideration of scattering. The scattering effects of several thermoplastics onto the calculated temperature fields as well as weld seam geometries are quantified.
Eddy current inspection of weld defects in tubing
NASA Technical Reports Server (NTRS)
Katragadda, G.; Lord, W.
1992-01-01
An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.
Computerized adaptive control weld skate with CCTV weld guidance project
NASA Technical Reports Server (NTRS)
Wall, W. A.
1976-01-01
This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.
NASA Technical Reports Server (NTRS)
Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)
2002-01-01
Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.
Fan, Tianteng; Fang, Shona C; Cavallari, Jennifer M; Barnett, Ian J; Wang, Zhaoxi; Su, Li; Byun, Hyang-Min; Lin, Xihong; Baccarelli, Andrea A; Christiani, David C
2014-12-16
In occupational settings, boilermakers are exposed to high levels of metallic fine particulate matter (PM2.5) generated during the welding process. The effect of welding PM2.5 on heart rate variability (HRV) has been described, but the relationship between PM2.5, DNA methylation, and HRV is not known. In this repeated-measures panel study, we recorded resting HRV and measured DNA methylation levels in transposable elements Alu and long interspersed nuclear element-1 (LINE-1) in peripheral blood leukocytes under ambient conditions (pre-shift) and right after a welding task (post-shift) among 66 welders. We also monitored personal PM2.5 level in the ambient environment and during the welding procedure. The concentration of welding PM2.5 was significantly higher than background levels in the union hall (0.43 mg/m3 vs. 0.11 mg/m3, p < 0.0001). The natural log of transformed power in the high frequency range (ln HF) had a significantly negative association with PM2.5 exposure (β = -0.76, p = 0.035). pNN10 and pNN20 also had a negative association with PM2.5 exposure (β = -0.16%, p = 0.006 and β = -0.13%, p = 0.030, respectively). PM2.5 was positively associated with LINE-1 methylation [β = 0.79%, 5-methylcytosince (%mC), p = 0.013]; adjusted for covariates. LINE-1 methylation did not show an independent association with HRV. Acute decline of HRV was observed following exposure to welding PM2.5 and evidence for an epigenetic response of transposable elements to short-term exposure to high-level metal-rich particulates was reported.
Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality
NASA Astrophysics Data System (ADS)
Liu, Bo
2017-03-01
Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli
2017-02-01
The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared to the ferrite, the pitting corrosion occurred at the ferrite and austenite interface or within the austenite.
ERIC Educational Resources Information Center
Hamlin, Larry
This document is a student manual for a general mechanical repair course. Following a list of common essential elements of trade and industrial education, the manual is divided into three sections. The first section, on minor automotive maintenance, contains 13 units: automotive shop safety; engine principles; fuel system operation and repair;…
Concurrent ultrasonic weld evaluation system
Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.
1987-01-01
A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.
Concurrent ultrasonic weld evaluation system
Hood, D.W.; Johnson, J.A.; Smartt, H.B.
1985-09-04
A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.
Concurrent ultrasonic weld evaluation system
Hood, D.W.; Johnson, J.A.; Smartt, H.B.
1987-12-15
A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.
NASA Technical Reports Server (NTRS)
Powell, Bradley W.; Burroughs, Ivan A.
1994-01-01
Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.
Friction Stir Welding: Standards and Specifications in Today's U.S. Manufacturing and Fabrication
NASA Technical Reports Server (NTRS)
Ding, Robert Jeffrey
2008-01-01
New welding and technology advancements are reflected in the friction stir welding (FSW) specifications used in the manufacturing sector. A lack of publicly available specifications as one of the reasons that the FSW process has not propagate through the manufacturing sectors. FSW specifications are an integral supporting document to the legal agreement written between two entities for deliverable items. Understanding the process and supporting specifications is essential for a successful FSW manufacturing operation. This viewgraph presentation provides an overview of current FSW standards in the industry and discusses elements common to weld specifications.
NASA Astrophysics Data System (ADS)
Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.
2015-11-01
The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.
Thermal Modeling of Al-Al and Al-Steel Friction Stir Spot Welding
NASA Astrophysics Data System (ADS)
Jedrasiak, P.; Shercliff, H. R.; Reilly, A.; McShane, G. J.; Chen, Y. C.; Wang, L.; Robson, J.; Prangnell, P.
2016-09-01
This paper presents a finite element thermal model for similar and dissimilar alloy friction stir spot welding (FSSW). The model is calibrated and validated using instrumented lap joints in Al-Al and Al-Fe automotive sheet alloys. The model successfully predicts the thermal histories for a range of process conditions. The resulting temperature histories are used to predict the growth of intermetallic phases at the interface in Al-Fe welds. Temperature predictions were used to study the evolution of hardness of a precipitation-hardened aluminum alloy during post-weld aging after FSSW.
Numerical Modeling of Electrode Degradation During Resistance Spot Welding Using CuCrZr Electrodes
NASA Astrophysics Data System (ADS)
Gauthier, Elise; Carron, Denis; Rogeon, Philippe; Pilvin, Philippe; Pouvreau, Cédric; Lety, Thomas; Primaux, François
2014-05-01
Resistance spot welding is a technique widely used by the automotive industry to assemble thin steel sheets. The cyclic thermo-mechanical loading associated with the accumulation of weld spots progressively deteriorates the electrodes. This study addresses the development of a comprehensive multi-physical model that describes the sequential deterioration. Welding tests achieved on uncoated and Zn-coated steel sheets are analyzed. Finite element analysis is performed using an electrical-thermal-metallurgical model. A numerical experimental design is carried out to highlight the main process parameters and boundary conditions which affect electrode degradation.
NASA Astrophysics Data System (ADS)
Hemmer, H.; Grong, Ø.; Klokkehaug, S.
2000-03-01
In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.
Analysis And Control System For Automated Welding
NASA Technical Reports Server (NTRS)
Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne
1994-01-01
Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.
Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding
NASA Astrophysics Data System (ADS)
Wu, Weite; Tsai, C. H.
1999-02-01
The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential (Δ T). These characteristics correlate with greater hot cracking susceptibility of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundies.
Features of residual stresses in duplex stainless steel butt welds
NASA Astrophysics Data System (ADS)
Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong
2018-04-01
Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.
MODELING OF HIGH SPEED FRICTION STIR SPOT WELDING USING A LAGRANGIAN FINITE ELEMENT APPROACH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Michael; Karki, U.; Woodward, C.
2013-09-03
Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that aremore » too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the Forge® software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel.« less
NASA Astrophysics Data System (ADS)
Kadoi, Kota; Shinozaki, Kenji
2017-12-01
The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.
NASA Astrophysics Data System (ADS)
Śledziewski, Krzysztof
2018-01-01
Material fatigue it is one of the most frequent causes of steel bridge failures, particularly the bridges already existing. Thus, the procedure of fatigue life assessment is one of the most relevant procedures in a comprehensive assessment of load-carrying capacity and service life of the structure. A reliable assessment of the fatigue life is predominantly decisive for estimation of the remaining service life. Hitherto, calculation methods of welded joints took into account only stresses occurring in cross sections of whole elements and did not take into account stress concentration occurring in the vicinity of the weld, caused by geometrical aspects of the detail. At present, use of the Finite Element Analysis, makes possible looking for more accurate approach to the fatigue design of steel structures. The method of geometrical stresses is just such approach which is based on definition of stresses which take into account geometry of the detail. The study presents fatigue assessment of a representative type of welded joint in welded bridge structures. The testing covered longitudinal attachments. The main analyses were carried out on the basis of FEM and the method of local stresses, so-called "hot-spot" stresses. The obtained values of stresses were compared with the values obtained in accordance with the method of nominal stress.
The algorithm of verification of welding process for plastic pipes
NASA Astrophysics Data System (ADS)
Rzasinski, R.
2017-08-01
The study analyzes the process of butt welding of PE pipes in terms of proper selection of connector parameters. The process was oriented to the elements performed as a series of types of pipes. Polymeric materials commonly referred to as polymers or plastics, synthetic materials are produced from oil products in the polyreaction compounds of low molecular weight, called monomers. During the polyreactions monomers combine to build a macromolecule material monomer named with the prefix poly polypropylene, polyethylene or polyurethane, creating particles in solid state on the order of 0,2 to 0,4 mm. Finished products from polymers of virtually any shape and size are obtained by compression molding, injection molding, extrusion, laminating, centrifugal casting, etc. Weld can only be a thermoplastic that softens at an elevated temperature, and thus can be connected via a clamp. Depending on the source and method of supplying heat include the following welding processes: welding contact, radiant welding, friction welding, dielectric welding, ultrasonic welding. The analysis will be welding contact. In connection with the development of new generation of polyethylene, and the production of pipes with increasing dimensions (diameter, wall thickness) is important to select the correct process.
NASA Astrophysics Data System (ADS)
Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.
2017-10-01
Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.
Adaptive weld control for high-integrity welding applications
NASA Technical Reports Server (NTRS)
Powell, Bradley W.
1993-01-01
An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.
Real time computer controlled weld skate
NASA Technical Reports Server (NTRS)
Wall, W. A., Jr.
1977-01-01
A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.
NASA Astrophysics Data System (ADS)
Zareie Rajani, H. R.; Phillion, A. B.
2015-06-01
A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.
[Study on the arc spectral information for welding quality diagnosis].
Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun
2009-03-01
Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.
SLI Complex Curvature Friction Stir Weld Risk Reduction Program
NASA Technical Reports Server (NTRS)
Hartley, Paula J.; Schneider, Jules; Jones, Chip; Lawless, Kirby; Russell, Carolyn
2003-01-01
The Space Launch Initiative Program (SLI) in conjunction with the National Center for Advanced Manufacturing (NCAM) will demonstrate the ability to produce large-scale complex curvature hardware using the self-reacting friction stir welding process. This multi-phased risk reduction program includes friction stir welding process development and manufacture of a 22-ft diameter quarter dome using a conventional tooling approach; it culminates in a 27.5-ft diameter quarter dome demonstration performed on a 5-axis Universal Weld System. The design, fabrication, and installation of the Universal Weld System is made possible through a collaboration between the State of Louisiana, NASA, and the University of New Orleans. The Universal Weld System, manufactured by MTS Systems Corporation, will be installed at the Michoud Assembly Facility in New Orleans, Louisiana, and will be capable of manufacturing domes up to 30 ft in diameter. All welding will be accomplished using the Adaptable Adjustable Pin Tool (AdAPT) weld head and controller manufactured by MTS. Weld parameters will be developed for an aluminum alloy in gauges ranging from 0.320 to 0.400 in. thick. Weld quality will be verified through radiography, mechanical property testing at ambient and LN2 temperatures, and metallurgical analysis. The AdAPT weld head will then be mounted on a 22-ft diameter dome tool, which will be modified to include a welding track and drive system for moving the AdAPT weld head along the weld joint. This tool will then be used to manufacture a 22-ft diameter dome of an aluminum alloy, with 0.320-in. constant thickness joints, consisting of three individual gore panels. Finally, the 27.5-ft diameter quarter dome will be welded on the Universal Weld System. The quarter dome will consist of three individual gore panels with weld lands tapering from 0.320 to 0.360 in. in thickness. With the demonstration of these welds, the ability to manufacture large diameter domes using the friction stir weld process in conjunction with a universal weld system provides a low risk approach to the fabrication of aluminum tanks for future launch vehicle applications.
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.
A simplified model for TIG-dressing numerical simulation
NASA Astrophysics Data System (ADS)
Ferro, P.; Berto, F.; James, M. N.
2017-04-01
Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.
Friction Stir Weld System for Welding and Weld Repair
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)
2001-01-01
A friction stir weld system for welding and weld repair has a base foundation unit connected to a hydraulically controlled elevation platform and a hydraulically adjustable pin tool. The base foundation unit may be fixably connected to a horizontal surface or may be connected to a mobile support in order to provide mobility to the friction stir welding system. The elevation platform may be utilized to raise and lower the adjustable pin tool about a particular axis. Additional components which may be necessary for the friction stir welding process include back plate tooling, fixturing and/or a roller mechanism.
Technological parameters of welding of branch saddles to polyethylene pipes at low temperatures
NASA Astrophysics Data System (ADS)
Starostin, N. P.; Vasilieva, M. A.
2017-12-01
The present paper outlines a procedure for determination of dynamics of the temperature field during the welding of the branch saddle to the polyethylene gas pipeline at ambient temperatures below the normative. The analysis is accomplished by the finite element method with the heat of the phase transition taken into account. Methods of the visualization of data sets reveal the possibility of controlling the thermal process by preheating and thermal insulation during welding of the branch saddle to the pipe at low temperatures and the possibility of obtaining the dynamics of the temperature field at which a high-quality welded joint is formed.
Quality status display for a vibration welding process
Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn
2017-03-28
A system includes a host machine and a status projector. The host machine is in electrical communication with a collection of sensors and with a welding controller that generates control signals for controlling the welding horn. The host machine is configured to execute a method to thereby process the sensory and control signals, as well as predict a quality status of a weld that is formed using the welding horn, including identifying any suspect welds. The host machine then activates the status projector to illuminate the suspect welds. This may occur directly on the welds using a laser projector, or on a surface of the work piece in proximity to the welds. The system and method may be used in the ultrasonic welding of battery tabs of a multi-cell battery pack in a particular embodiment. The welding horn and welding controller may also be part of the system.
2014-06-01
DC,Tech. Rep. CG-D-05–00, 2000. [16] S. Kou, Welding Metallurgy , 2nd edition, Hoboken: Wiley Interscience, 2003. [17] C. Poe, “Stress intensity...continuous aluminum superstructure welded to the deck. The shape of the superstructure created numerous stress concentration areas. Of the greatest concern...study as it will help provide a conservative estimate. In marine applications almost all stiffening members are attached by welding . Unlike a
Structural analysis of a reflux pool-boiler solar receiver
NASA Astrophysics Data System (ADS)
Hoffman, E. L.; Stone, C. M.
1991-06-01
Coupled thermal-structural finite element calculations of a reflux pool-boiler solar receiver were performed to characterize the operating stresses and to address issues affecting the service life of the receiver. Analyses performed using shell elements provided information for receiver material selection and design optimization. Calculations based on linear elastic fracture mechanics principles were performed using continuum elements to assess the vulnerability of a seam-weld to fatigue crack growth. All calculations were performed using ABAQUS, a general purpose finite element code, and elements specifically formulated for coupled thermal-structural analysis. Two materials were evaluated: 316L SS and Haynes 230 alloys. The receiver response was simulated for a combination of structural and thermal loads that represent the startup and operating conditions of the receiver. For both materials, maximum stresses in the receiver developed shortly after startup due to uneven temperature distribution across the receiver surface. The largest effective stress was near yield in the 316L SS receiver and below 39 percent of yield in the Haynes 230 receiver. The calculations demonstrated that stress reductions of over 25 percent could be obtained by reducing the aft dome thickness to one closer to the absorber. The fatigue calculations demonstrated that the stress distribution near the seam-weld notch depends primarily on the structural load created by internal pressurization of the receiver rather than the thermal, indicating that the thermal loads can be neglected when assessing the stress intensity near the seam-weld notch. The stress intensity factor, computed using the J-integral method and crack opening-displacement field equations, was significantly below the fatigue threshold for most steels. The calculations indicated that the weld notch was always loaded in compression, a condition which is not conducive to fatigue crack growth.
Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.
Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel
NASA Astrophysics Data System (ADS)
Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon
2018-05-01
The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.
Mechanical strength of welding zones produced by material extrusion additive manufacturing.
Davis, Chelsea S; Hillgartner, Kaitlyn E; Han, Seung Hoon; Seppala, Jonathan E
2017-08-01
As more manufacturing processes and research institutions adopt customized manufacturing as a key element in their design strategies and finished products, the resulting mechanical properties of parts produced through additive manufacturing (AM) must be characterized and understood. In material extrusion (MatEx), the most recently extruded polymer filament must bond to the previously extruded filament via polymer diffusion to form a "weld". The strength of the weld limits the performance of the manufactured part and is controlled through processing conditions. Under-standing the role of processing conditions, specifically extruder velocity and extruder temperature, on the overall strength of the weld will allow optimization of MatEx-AM parts. Here, the fracture toughness of a single weld is determined through a facile "trouser tear" Mode III fracture experiment. The actual weld thickness is observed directly by optical microscopy characterization of cross sections of MatEx-AM samples. Representative data of weld strength as a function of printing parameters on a commercial 3D printer demonstrates the robustness of the method.
NASA Astrophysics Data System (ADS)
Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten
2012-04-01
The influence of the carbon black on temperature distribution and weld profile, during laser transmission welding of polymers, is investigated in the present research work. A transient numerical model, based on conduction mode heat transfer, is developed to analyze the process. The heat input to the model is considered to be the volumetric Gaussian heat source. The computation of temperature field during welding is carried out for polycarbonates having different proportion of carbon black in polymer matrix. The temperature dependent material properties of polycarbonate are taken into account for modeling. The finite element code ANSYS ® is employed to obtain the numerical results. The numerically computed results of weld pool dimensions are compared with the experimental results. The comparison shows a fair agreement between them, which gives confidence to use the developed model for intended investigation with acceptable accuracy. The results obtained have revealed that the carbon black has considerable influence on the temperature field distribution and the formation of the weld pool geometry.
Antonini, James M; Keane, Michael; Chen, Bean T; Stone, Samuel; Roberts, Jenny R; Schwegler-Berry, Diane; Andrews, Ronnee N; Frazer, David G; Sriram, Krishnan
2011-12-01
The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m³ (3 h/day × 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile.
Experimental and Numerical Study on the Strength of Aluminum Extrusion Welding.
Bingöl, Sedat; Bozacı, Atilla
2015-07-17
The quality of extrusion welding in the extruded hollow shapes is influenced significantly by the pressure and effective stress under which the material is being joined inside the welding chamber. However, extrusion welding was not accounted for in the past by the developers of finite element software packages. In this study, the strength of hollow extrusion profile with seam weld produced at different ram speeds was investigated experimentally and numerically. The experiments were performed on an extruded hollow aluminum profile which was suitable to obtain the tensile tests specimens from its seam weld's region at both parallel to extrusion direction and perpendicular to extrusion direction. A new numerical modeling approach, which was recently proposed in literature, was used for numerical analyses of the study. The simulation results performed at different ram speeds were compared with the experimental results, and a good agreement was obtained.
Interface modification based ultrashort laser microwelding between SiC and fused silica.
Zhang, Guodong; Bai, Jing; Zhao, Wei; Zhou, Kaiming; Cheng, Guanghua
2017-02-06
It is a big challenge to weld two materials with large differences in coefficients of thermal expansion and melting points. Here we report that the welding between fused silica (softening point, 1720°C) and SiC wafer (melting point, 3100°C) is achieved with a near infrared femtosecond laser at 800 nm. Elements are observed to have a spatial distribution gradient within the cross section of welding line, revealing that mixing and inter-diffusion of substances have occurred during laser irradiation. This is attributed to the femtosecond laser induced local phase transition and volume expansion. Through optimizing the welding parameters, pulse energy and interval of the welding lines, a shear joining strength as high as 15.1 MPa is achieved. In addition, the influence mechanism of the laser ablation on welding quality of the sample without pre-optical contact is carefully studied by measuring the laser induced interface modification.
NASA Astrophysics Data System (ADS)
Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.
2013-05-01
An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.
A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun
2013-04-15
In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residualmore » hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ► It is a new process for the forming of GH909 alloy via laser welding. ► The forming mechanism of laser welding defects in GH909 has been studied. ► It may be a means to improve the efficiency of aircraft engine production.« less
Method for enhanced control of welding processes
Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin
2000-01-01
Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.
NASA Astrophysics Data System (ADS)
Nguyen Van Do, Vuong
2018-04-01
In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.
Liang, Wei; Murakawa, Hidekazu
2014-01-01
Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856
Liang, Wei; Murakawa, Hidekazu
2014-01-01
Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.
Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.
Lei, Yucheng; Chang, Hongxia; Guo, Xiaokai; Li, Tianqing; Xiao, Longren
2017-11-01
Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2kHz ultrasonic device was deployed in liquid LBE at 550°C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance. Copyright © 2017. Published by Elsevier B.V.
A laser-based vision system for weld quality inspection.
Huang, Wei; Kovacevic, Radovan
2011-01-01
Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved.
A Laser-Based Vision System for Weld Quality Inspection
Huang, Wei; Kovacevic, Radovan
2011-01-01
Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved. PMID:22344308
Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, W.; Tsai, C.H.
1999-02-01
The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential ({Delta} T). These characteristics correlate with greater hot cracking susceptibilitymore » of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundaries.« less
Finite element based simulation on friction stud welding of metal matrix composites to steel
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Tharmaraj, R.; Velu, P. Shenbaga; Kumar, R.
2016-05-01
Friction welding is a solid state joining technique used for joining similar and dissimilar materials with high integrity. This new technique is being successfully applied to the aerospace, automobile, and ship building industries, and is attracting more and more research interest. The quality of Friction Stud Welded joints depends on the frictional heat generated at the interface. Hence, thermal analysis on friction stud welding of stainless steel (AISI 304) and aluminium silicon carbide (AlSiC) combination is carried out in the present work. In this study, numerical simulation is carried out using ANSYS software and the temperature profiles are predicted at various increments of time. The developed numerical model is found to be adequate to predict temperature distribution of friction stud weld aluminium silicon carbide/stainless steel joints.
NASA Astrophysics Data System (ADS)
Boller, C.; Pudovikov, S.; Bulavinov, A.
2012-05-01
Austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, the material is qualified to meet the design criteria of high quality in safety related applications. For example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance, is made of this material. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The "Sampling Phased Array" technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with fast image reconstruction techniques based on synthetic focusing algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priori, a novel phase adjustment technique called "Reverse Phase Matching" is implemented. By taking into account the anisotropy and inhomogeneity of the weld structure, a ray tracing algorithm for modeling the acoustic wave propagation and calculating the sound propagation time is applied. This technique can be utilized for 2D and 3D real time image reconstruction. The "Gradient Constant Descent Method" (GECDM), an iterative algorithm, is implemented, which is essential for examination of inhomogeneous anisotropic media having unknown properties (elastic constants). The Sampling Phased Array technique with Reverse Phase Matching extended by GECDM-technique determines unknown elastic constants and provides reliable and efficient quantitative flaw detection in the austenitic welds. The validation of ray-tracing algorithm and GECDM-method is performed by number of experiments on test specimens with artificial as well as natural material flaws. A mechanized system for ultrasonic testing of stainless steel and dissimilar welds is developed. The system works on both conventional and Sampling Phased Array techniques. The new frontend ultrasonic unit with optical data link allows the 3D visualization of the inspection results in real time.
Possibilities in optical monitoring of laser welding process
NASA Astrophysics Data System (ADS)
Horník, Petr; Mrňa, Libor; Pavelka, Jan
2016-11-01
Laser welding is a modern, widely used but still not really common method of welding. With increasing demands on the quality of the welds, it is usual to apply automated machine welding and with on-line monitoring of the welding process. The resulting quality of the weld is largely affected by the behavior of keyhole. However, its direct observation during the welding process is practically impossible and it is necessary to use indirect methods. At ISI we have developed optical methods of monitoring the process. Most advanced is an analysis of radiation of laser-induced plasma plume forming in the keyhole where changes in the frequency of the plasma bursts are monitored and evaluated using Fourier and autocorrelation analysis. Another solution, robust and suitable for industry, is based on the observation of the keyhole inlet opening through a coaxial camera mounted in the welding head and the subsequent image processing by computer vision methods. A high-speed camera is used to understand the dynamics of the plasma plume. Through optical spectroscopy of the plume, we can study the excitation of elements in a material. It is also beneficial to monitor the gas flow of shielding gas using schlieren method.
NASA Astrophysics Data System (ADS)
Gao, Xiangdong; You, Deyong; Katayama, Seiji
2015-07-01
Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.
NASA Astrophysics Data System (ADS)
Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan
2017-11-01
This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.
Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.
Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan
2016-07-01
Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition in olfactory mucosa on particle size implies that the occupation deposition of welding fume manganese can be expected to vary with welding method. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Prediction of guided wave scattering by defects in rails using numerical modelling
NASA Astrophysics Data System (ADS)
Long, Craig S.; Loveday, Philip W.
2014-02-01
A guided wave based monitoring system for welded freight rail, has previously been developed. The current arrangement consists of alternating transmit and receive stations positioned roughly 1 km apart, and is designed to reliably detect complete breaks in a rail. Current research efforts are focused on extending this system to include a pulse-echo mode of operation in order to detect, locate, monitor and possibly characterize damage, before a complete break occurs. For monitoring and inspection applications, it is beneficial to be able to distinguish between scattering defects which do not represent damage (such as welds) and cracks which could result in rail breaks. In this paper we investigate the complex interaction between selected propagating modes and various weld and crack geometries in an attempt to relate scattering behaviour to defect geometry. An efficient hybrid method is employed which models the volume containing the defect with conventional solid finite elements, while the semi-infinite incoming and outgoing waveguides are accounted for using the SAFE method. Four candidate modes, suitable for long range propagation, are identified and evaluated. A weighted average reflection coefficient is used as a measure to quantify mode conversion between these four modes, and results are represented graphically in the form of reflection maps. The results show that it should be possible to distinguish between a large crack in the crown of the rail and a weld. We also show that there may be difficulties associated with reliably identifying cracks in the web as well as cracks in the crown which occur at a thermite weld. We suspect that it will be difficult to detect damage in the foot of the rail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit
2013-11-26
A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize themore » mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.« less
On-line welding quality inspection system for steel pipe based on machine vision
NASA Astrophysics Data System (ADS)
Yang, Yang
2017-05-01
In recent years, high frequency welding has been widely used in production because of its advantages of simplicity, reliability and high quality. In the production process, how to effectively control the weld penetration welding, ensure full penetration, weld uniform, so as to ensure the welding quality is to solve the problem of the present stage, it is an important research field in the field of welding technology. In this paper, based on the study of some methods of welding inspection, a set of on-line welding quality inspection system based on machine vision is designed.
Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia
2017-01-01
Recently, amorphous alloys have attracted many researchers’ attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil. PMID:28772886
Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia
2017-05-12
Recently, amorphous alloys have attracted many researchers' attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil.
[Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].
Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou
2014-04-01
Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA.
Araque, Oscar; Arzola, Nelson; Hernández, Edgar
2018-04-12
This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.
Arzola, Nelson; Hernández, Edgar
2018-01-01
This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe. PMID:29649117
NASA Astrophysics Data System (ADS)
Boyko, Y. S.
2002-01-01
Provision of high airtightness of joints of pipe- lines of pneumohydraulic systems (PHS) operating under high pressure, is an important task for designing and operation of launch vehicles. In the process of assembly and tests of PHS of launch vehicles, it was found that detachable flange joints do not lose their airtightness after removal of fastening elements, even in conditions of standard loads. The task of this work is in studying a phenomenon connected with initiation of the observed effect of adhesion and also stresses in the zone of contact at drawing- up the flange detachable joints with a plastic gasket. Investigations have shown that density of the joint is kept due to cold welding, as the created conditions are helpful for that process. As a result of the investigations performed, we have developed a mathematic model which is based on application of the theory of metal bonds; that theory explains the essence of the effect observed. Basic factors which provide optimum mode of cold welding, are effort which can cause microplastic deformation and form maximum contact, and also quality of processing the material of the surfaces joined. Strength of all- metal joint depends on factual area of contact. So, surface processing quality defines a configuration of microbulges which come into contact not simultaneously, and their stressed state is different, and it influences the character of dependence of the contact area on loading. Results of calculations by the mathematic model are expressed by dependencies of factual area of contact and a single diameter of the contact spot on the load applied which compresses the materials with various physical properties, and on the surface processing quality. The mathematic model allows to explain the common character of the cold welding process in detachable flange joints with the plastic gasket, to determine the nature and the character of acting forces, to define kinetics and the mechanism of formation of cold welding of detachable joints. It also helps to analyze the state of airtightness and to metal welding technology in the plastic state at drawing- up of detachable flange joints with a plastic gasket and to review cold welding as a positive phenomenon.
Influence of control parameters on the joint tracking performance of a coaxial weld vision system
NASA Technical Reports Server (NTRS)
Gangl, K. J.; Weeks, J. L.
1985-01-01
The first phase of a series of evaluations of a vision-based welding control sensor for the Space Shuttle Main Engine Robotic Welding System is described. The robotic welding system is presently under development at the Marshall Space Flight Center. This evaluation determines the standard control response parameters necessary for proper trajectory of the welding torch along the joint.
Automatic welding systems for large ship hulls
NASA Astrophysics Data System (ADS)
Arregi, B.; Granados, S.; Hascoet, JY.; Hamilton, K.; Alonso, M.; Ares, E.
2012-04-01
Welding processes represents about 40% of the total production time in shipbuilding. Although most of the indoor welding work is automated, outdoor operations still require the involvement of numerous operators. To automate hull welding operations is a priority in large shipyards. The objective of the present work is to develop a comprehensive welding system capable of working with several welding layers in an automated way. There are several difficulties for the seam tracking automation of the welding process. The proposed solution is the development of a welding machine capable of moving autonomously along the welding seam, controlling both the position of the torch and the welding parameters to adjust the thickness of the weld bead to the actual gap between the hull plates.
Development of automatic pre-tracking system for fillet weld based on laser trigonometry
NASA Astrophysics Data System (ADS)
Shen, Xiaoqin; Yu, Fusheng
2005-01-01
In this paper, an automatic fillet weld pre-tracking system for welding the work piece of lorry back boards with several bend in haul automobile is developed basing on laser trigonometry. The optical measuring head based on laser-PSD trigonometry is used as position sensor. It is placed in front of the traveling direction of welding wire to get the distances from welding wire to the two side boards of the welding lines, upper board and bottom board of the fillet weld respectively. A chip of AT89S52 is used as the micro controller in this system. The AC servomotors, ball-screws and straight guide rails constitute the sliding table to take welding wire move. The laser-PSD sensors pass through the vertical board, upper board and bottom board of the fillet weld when welding wire moves and then get the distance. The laser-PSD sensors output the analog signals. After A/D conversion, the digital signal is input into AT89S52 and calculated. Then the information of the position and lateral deviation of the welding wire when welding a certain position are gotten to control welding wires. So the weld pre-tracking for welding the work piece with long distance and large bend in haul automobile is realized. The position information is input into EEPROM to be saved for short time after handled by AT89S52. The information is as the welding position information as well as the speed adjusting data of the welding wire when it welds the several bend of the work piece. The practice indicates that this system has high pre-tracking precision, good anti-disturb ability, excellent reliability, easy operating ability and good adaptability to the field of production.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Shen, Wenfei; Zhang, Liwen; Xia, Yingnan; Li, Ruiqin
2017-04-01
A gamma prime ( γ') precipitation ( 35% in volume)-hardened powder metallurgy (P/M) superalloy FGH96 was welded using inertia friction welding (IFW). The microstructure and γ' distributions in the joints in two conditions, hot isostatic pressed state and solution-treated and aged state, were characterized. The recrystallization of grains, the dissolution and re-precipitation of γ' in the joints were discussed in terms of the temperature evolutions which were calculated by finite element model analysis. Regardless of the initial states, fully recrystallized fine grain structure formed at welded zone. Meanwhile, very fine γ' precipitations were re-precipitated at the welded zone. These recrystallized grain structure and fine re-precipitated γ' resulted in increasing hardness of IFW joint while making the hardness dependent on the microstructure and γ' precipitation.
Closed circuit TV system automatically guides welding arc
NASA Technical Reports Server (NTRS)
Stephans, D. L.; Wall, W. A., Jr.
1968-01-01
Closed circuit television /CCTV/ system automatically guides a welding torch to position the welding arc accurately along weld seams. Digital counting and logic techniques incorporated in the control circuitry, ensure performance reliability.
Space Fabrication Demonstration System
NASA Technical Reports Server (NTRS)
1977-01-01
Progress on fabrication facility (beam builder) support structure control, clamp/weld block, and welding and truss cut off is discussed. The brace attachment design was changed and the design of the weld mechanism was modified which achieved the following system benefits: (1) simplified weld electrode life; (2) reduced weld power requirements; and (3) simplified brace attachment mechanisms. Static and fatigue characteristics of spot welded 2024T3 aluminum joints are evaluated.
Development of Low Cost Filler Materials for Welding High Strength Steels.
1984-04-29
solid wire form for use in GMAW and GTAW welding of HY-130, Linde 140S and Airco AXI40. As can be seen from Table 2, they achieve their properties with...as pure powder and ferroalloys, 16 2 ’ Transfer efficiencies of elements (e.g. Nickel, Chromium and Molybdenum) from the electrode to weld metal then...chemical compositions of the deposits (as shown in Table 5) was "lean" in carbon, nickel, manganese and molybdenum but "rich" in chromium , compared to
Cold Plasma Welding System for Surgical Skin Closure: In Vivo Porcine Feasibility Assessment.
Harats, Moti; Lam, Amnon; Maller, Michael; Kornhaber, Rachel; Haik, Josef
2016-09-29
Cold plasma skin welding is a novel technology that bonds skin edges through soldering without the use of synthetic materials or conventional wound approximation methods such as sutures, staples, or skin adhesives. The cold plasma welding system uses a biological solder applied to the edges of a skin incision, followed by the application of cold plasma energy. The objectives of this study were to assess the feasibility of a cold plasma welding system in approximating and fixating skin incisions compared with conventional methods and to evaluate and define optimal plasma welding parameters and histopathological tissue response in a porcine model. The cold plasma welding system (BioWeld1 System, IonMed Ltd, Yokneam, Israel) was used on porcine skin incisions using variable energy parameters. Wound healing was compared macroscopically and histologically to incisions approximated with sutures. When compared to sutured skin closure, cold plasma welding in specific system parameters demonstrated comparable and favorable wound healing results histopathologically as well as macroscopically. No evidence of epidermal damage, thermal or otherwise, was encountered in the specified parameters. Notably, bleeding, infection, and wound dehiscence were not detected at incision sites. Skin incisions welded at extreme energy parameters presented second-degree burns. Implementation of cold plasma welding has been shown to be feasible for skin closure. Initial in vivo results suggest cold plasma welding might provide equal, if not better, healing results than traditional methods of closure.
ERIC Educational Resources Information Center
Hamlin, Larry
This document contains the competency test package for three sections of a general mechanical repair course: minor automotive maintenance, small engine mechanics, and welding. Following a list of the common essential elements for trade and industrial education, competency tests for the three sections are provided. Each test includes unit name,…
Code of Federal Regulations, 2011 CFR
2011-01-01
... performance and safety during reactor operation. Also, in all cases precise control of processes, procedures... performance. (a) Items that are considered especially designed or prepared for the fabrication of fuel... pellets; (2) Automatic welding machines especially designed or prepared for welding end caps onto the fuel...
Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.
Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang
2017-11-01
Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain fragmentation in a pure aluminum TIG weld during an ultrasonic-assisted TIG welding process. Copyright © 2017 Elsevier B.V. All rights reserved.
Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T.
2016-01-01
Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr6+). Elemental manganese, nickel, chromium, iron emissions per unit length of weld and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered and analyzed by inductively-coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr6+. GMAW processes used were Surface Tension Transfer™, Regulated Metal Deposition™, Cold Metal Transfer™, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr6+ ranged from 50 to 7800 μg/min, and Cr6+ generation rates per g electrode ranged from 1 to 270μg/g. Elemental Cr generation rates spanned 13 to 330μg/g. Manganese emission rates ranged from 50 to 300μg/g. Nickel emission rates ranged from 4 to140 μg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as 5 times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this study can substantially reduce fume, Cr6+, manganese and costs relative to SMAW, the most commonly used welding process, and several have exceptional capabilities for reducing emissions. PMID:26267301
Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T
2016-01-01
Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this study can substantially reduce fume, Cr(6+), manganese and costs relative to SMAW, the most commonly used welding process, and several have exceptional capabilities for reducing emissions.
1981-05-01
made to provide mounting bosses for the closed loop conveyor chute . Ten small round bosses were welded onto the housing to provide this support...became necessary to depart from previous closed loop feeder designs . The original feed system consisted of a series of conveyor elements in a flexible...The flexible chuting has been replaced with rigid chuting forming a loop around the gun housing. This design affords the maximum stiffness and hence
NASA Astrophysics Data System (ADS)
Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong
2017-09-01
The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire are investigated for nuclear power plants. Experimental results indicate that the incomplete fusion forms as the deposited metals do not completely cover the groove during multipass laser welding. The dendritic morphologies are observed on the inner surface of the porosity in the fusion zone. Many small cellular are found in the zones near the fusion boundary. With solidification preceding, cellular gradually turn into columnar dendrites and symmetrical columnar dendrites are exhibited in the weld center of the fusion zone. The fine equiaxed grains form and columnar dendrites disappear in the remelted zone of two passes. The dendrite arm spacing in the fusion zone becomes widened with increasing welding heat input. Nb-rich carbides/carbonitrides are preferentially precipitated in the fusion zone of multipass laser welded joints. In respect to high cooling rate during multipass laser welding, element segregation could be insufficient to achieve the component of Laves phase.
NASA Astrophysics Data System (ADS)
Rezaei Ashtiani, Hamid Reza; Zarandooz, Roozbeh
2015-09-01
A 2D axisymmetric electro-thermo-mechanical finite element (FE) model is developed to investigate the effect of current intensity, welding time, and electrode tip diameter on temperature distributions and nugget size in resistance spot welding (RSW) process of Inconel 625 superalloy sheets using ABAQUS commercial software package. The coupled electro-thermal analysis and uncoupled thermal-mechanical analysis are used for modeling process. In order to improve accuracy of simulation, material properties including physical, thermal, and mechanical properties have been considered to be temperature dependent. The thickness and diameter of computed weld nuggets are compared with experimental results and good agreement is observed. So, FE model developed in this paper provides prediction of quality and shape of the weld nuggets and temperature distributions with variation of each process parameter, suitably. Utilizing this FE model assists in adjusting RSW parameters, so that expensive experimental process can be avoided. The results show that increasing welding time and current intensity lead to an increase in the nugget size and electrode indentation, whereas increasing electrode tip diameter decreases nugget size and electrode indentation.
Effects of Welding Parameters on Mechanical Properties in Electron Beam Welded CuCrZr Alloy Plates
NASA Astrophysics Data System (ADS)
Jaypuria, Sanjib; Doshi, Nirav; Pratihar, Dilip Kumar
2018-03-01
CuCrZr alloys are attractive structural materials for plasma-facing components (PFC) and heat sink element in the International Thermonuclear Experimental Reactor (ITER) fusion reactors. This material has gained so much attention because of its high thermal conductivity and fracture toughness, high resistance to radiation damage and stability at elevated temperatures. The objective of this work is to study the effects of electron beam welding parameters on the mechanical strength of the butt welded CuCrZr joint. Taguchi method is used as the design of experiments to optimize the input parameters, such as accelerating voltage, beam current, welding speed, oscillation amplitude and frequency. The joint strength and ductility are the desired responses, which are measured through ultimate tensile strength and percent elongation, respectively. Accelerating voltage and welding speed are found to have significant influence on the strength. A combination of low amplitude and high-frequency oscillation is suggested for the higher joint strength and ductility. There is a close agreement between Taguchi predicted results and experimental ones. Fractographic analysis of joint and weld zone analysis are carried out to study the failure behaviour and microstructural variation in the weld zone, respectively.
Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia
2017-01-01
To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results. PMID:28772383
Real-time monitoring of the laser hot-wire welding process
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan
2014-04-01
The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.D.; Liu, L.M.; Shen, Y.
2008-01-15
Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{submore » 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.« less
Laser Indirect Shock Welding of Fine Wire to Metal Sheet.
Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia
2017-09-12
The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.
NASA Astrophysics Data System (ADS)
Pugacheva, N. B.; Cherepanov, A. N.; Orishich, A. M.; Malikov, A. G.; Drozdov, V. O.; Mali, V. I.; Senaeva, E. I.
2017-10-01
Production of welded bimetallic structures of titanium and steel using a laser beam is a very urgent and important task in the shipbuilding, airspace and power engineering. Laser welding using an intermediate insert is one of the ways to solve this problem. In this paper, we present the results of experimental studies of formation of the structure and properties of composite insert, obtained by explosion welding, after its application at laser welding steel with titanium. A study of a four-layer composite insert obtained by explosion welding showed that it has no brittle intermetallic phases and defects in the form of cracks and pores. The boundaries between the plates to be welded in the composite insert have a characteristic wavy structure with narrow zones of mutual diffusion penetration of elements of the adjacent metals. It is established that the strength of the composite insert is comparable with the maximum strength of Grade 4 alloy, and the destruction of the product during the tensile tests in most cases occurred along the weakest component of the composite insert, i.e. the copper layer, whose strength was significantly increased due to the hardening that took place in the explosion welding.
Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia
2017-01-01
To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results.
NASA Astrophysics Data System (ADS)
Ghosh, Nabendu; Kumar, Pradip; Nandi, Goutam
2016-10-01
Welding input process parameters play a very significant role in determining the quality of the welded joint. Only by properly controlling every element of the process can product quality be controlled. For better quality of MIG welding of Ferritic stainless steel AISI 409, precise control of process parameters, parametric optimization of the process parameters, prediction and control of the desired responses (quality indices) etc., continued and elaborate experiments, analysis and modeling are needed. A data of knowledge - base may thus be generated which may be utilized by the practicing engineers and technicians to produce good quality weld more precisely, reliably and predictively. In the present work, X-ray radiographic test has been conducted in order to detect surface and sub-surface defects of weld specimens made of Ferritic stainless steel. The quality of the weld has been evaluated in terms of yield strength, ultimate tensile strength and percentage of elongation of the welded specimens. The observed data have been interpreted, discussed and analyzed by considering ultimate tensile strength ,yield strength and percentage elongation combined with use of Grey-Taguchi methodology.
Study of weld quality real-time monitoring system for auto-body assembly
NASA Astrophysics Data System (ADS)
Xu, Jun; Li, Yong-Bing; Chen, Guan-Long
2005-12-01
Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.
Demonstration of a Large-Scale Tank Assembly via Circumferential Friction Stir Welds
NASA Technical Reports Server (NTRS)
Jones, Clyde S.; Adams, Glynn; Colligan, Kevin
2000-01-01
A collaborative effort between NASA/Marshall Space Flight Center and the Michoud Unit of Lockheed Martin Space Systems Company was undertaken to demonstrate assembly of a large-scale aluminum tank using circumferential friction stir welds. The hardware used to complete this demonstration was fabricated as a study of near-net- shape technologies. The tooling used to complete this demonstration was originally designed for assembly of a tank using fusion weld processes. This presentation describes the modifications and additions that were made to the existing fusion welding tools required to accommodate circumferential friction stir welding, as well as the process used to assemble the tank. The tooling modifications include design, fabrication and installation of several components. The most significant components include a friction stir weld unit with adjustable pin length capabilities, a continuous internal anvil for 'open' circumferential welds, a continuous closeout anvil, clamping systems, an external reaction system and the control system required to conduct the friction stir welds and integrate the operation of the tool. The demonstration was intended as a development task. The experience gained during each circumferential weld was applied to improve subsequent welds. Both constant and tapered thickness 14-foot diameter circumferential welds were successfully demonstrated.
Robotic Welding and Inspection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. B. Smartt; D. P. Pace; E. D. Larsen
2008-06-01
This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
NASA Astrophysics Data System (ADS)
Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhang, Hongfeng; Shen, Zongbao; Li, Jianwen; Qian, Qing; Liu, Huixia
2016-11-01
A novel laser shock synchronous welding and forming method is introduced, which utilizes laser-induced shock waves to accelerate the flyer plate towards the base plate to achieve the joining of dissimilar metals and forming in a specific shape of mold. The samples were obtained with different laser energies and standoff distances. The surface morphology and roughness of the samples were greatly affected by the laser energy and standoff distances. Fittability was investigated to examine the forming accuracy. The results showed that the samples replicate the mold features well. Straight and wavy interfaces with un-bonded regions in the center were observed through metallographic analysis. Moreover, Energy Disperse Spectroscopy analysis was conducted on the welding interface, and the results indicated that a short-distance elemental diffusion emerged in the welding interface. The nanoindentation hardness of the welding regions was measured to evaluate the welding interface. In addition, the Smoothed Particle Hydrodynamics method was employed to simulate the welding and forming process. It was shown that different standoff distances significantly affected the size of the welding regions and interface waveform characteristics. The numerical analysis results indicated that the opposite shear stress direction and effective plastic strain above a certain threshold are essential to successfully obtain welding and forming workpiece.
Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong
2018-01-01
Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743
Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong
2018-01-22
Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less
Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding
NASA Astrophysics Data System (ADS)
Shim, J. Y.; Kim, I. S.; Lee, K. J.; Kang, B. Y.
2011-12-01
Recently, there has been a trend in the automotive industry to focus on the improvement of lightweight materials, such as aluminum and magnesium because the welding of dissimilar metals causes many welding defects. Magnetic pulse welding (MPW), one of the solid state welding technologies, uses electromagnetic force from current discharged through a working coil which develops a repulsive force between the induced currents flowing parallel and in the opposite direction in the tube to be welded. The objective of this paper is to develop a numerical model for analysis of the interaction between the outer pipe and the working coil using a finite element method (FEM) in the MPW process. Four Maxwell equations are solved using a general electromagnetic mechanics computer program, ANSYS/EMAG code. Experiments were also carried out with a W-MPW60 machine manufactured by WELMATE CO., LTD. with the Al1070 and SM45C for Al pipe and steel bar respectively. The calculated and measured results were compared to verify the proposed model.
Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT
NASA Astrophysics Data System (ADS)
Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang
2016-05-01
Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marya, S.K.
1996-06-01
Gas Tungsten Arc Welding (GTAW) is the most common technique employed in the fabrication of rolled thin tubes. One of the major manufacturing problems concerns the stability of weld fusion zone on materials from different casts, notwithstanding stringent monitoring of the process parameters -- current, voltage and travel speed. These parameters determine the theoretical weld heat and are expected to control the instantaneous mass of melt. According to the data compiled by Sahoo et al., oxygen is known to reduce the surface tension of most of the metals. However, investigations on the role of minor changes in concentrations of elementsmore » like sulphur, oxygen, selenium, bismuth, aluminium, and titanium in steels have very often attributed the cast to cast variations to different temperature gradients of surface tension over the weldpool. To the author`s knowledge, no reported work so far has revealed changing weld profiles in autogeneous mechanized GTA welds on titanium due to minor composition changes.« less
NASA Astrophysics Data System (ADS)
Maltin, Charles A.; Galloway, Alexander M.; Mweemba, Martin
2014-07-01
Microstructural evolution of Inconel 625 and Inconel 686CPT filler metals, used for the fusion welding of clad carbon steel linepipe, has been investigated and compared. The effects of iron dilution from the linepipe parent material on the elemental segregation potential of the filler metal chemistry have been considered. The results obtained provide significant evidence to support the view that, in Inconel 686CPT weld metal, the segregation of tungsten is a function of the level of iron dilution from the parent material. The data presented indicate that the incoherent phase precipitated in the Inconel 686CPT weld metal has a morphology that is dependent on tungsten enrichment and, therefore, iron dilution. Furthermore, in the same weld metal, a continuous network of finer precipitates was observed. The Charpy impact toughness of each filler metal was evaluated, and the results highlighted the superior impact toughness of the Inconel 625 weld metal over that of Inconel 686CPT.
NASA Astrophysics Data System (ADS)
Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.
2016-02-01
In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.
Automatic programming of arc welding robots
NASA Astrophysics Data System (ADS)
Padmanabhan, Srikanth
Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described. A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding.
Investigation on size tolerance of pore defect of girth weld pipe.
Li, Yan; Shuai, Jian; Xu, Kui
2018-01-01
Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects.
Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S
2018-01-15
Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Investigation on size tolerance of pore defect of girth weld pipe
Shuai, Jian; Xu, Kui
2018-01-01
Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects. PMID:29364986
NASA Astrophysics Data System (ADS)
Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing
2016-03-01
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.
NASA Astrophysics Data System (ADS)
Cherepanov, A. N.; Orishich, A. M.; Ovcharenko, V. E.; Malikov, A. G.; Drozdov, V. O.; Pshenichnikov, A. P.
2017-10-01
The paper presents the results of numerical and experimental studies of the process of obtaining a permanent joint of two plates of heterogeneous metals that cannot be welded in the usual way: alloy Grade 4 and steel AISI 321 using a laser beam and an intermediate composite insert. The composite insert was obtained by explosion welding of four thin plates of titanium (Grade 4), niobium, copper, and steel (AISI 321). The insert was placed between the welded plates of titanium and steel, and the steel plate was welded with the steel part of the insert, and the titanium plate was welded with the titanium part of the insert. The plates were welded using a CO2 laser. The connection of metals with the help of explosion is carried out without their melting, so the formation of the brittle intermetallics does not occur in most cases. This ensures the greatest strength of the joints as compared to the joints obtained by other welding methods. To analyze the distribution of thermal fields in the composite insert and welded plates, a numerical study was conducted of the laser welding of steel and titanium plates with the corresponding parts of the insert. The purpose of the study was to determine the rational parameters of welding (laser beam power, speed of its movement, size and position of the focal spot), at which there was no complete melting of the steel and titanium parts of the insert during through penetration of the welded plates. The experimental part of the work is devoted to analysis of formation of the internal boundaries and microstructure of the composite insert and the strength of the permanent joint. It is shown that as a result of the explosion welding, weld seams of different wavelike configuration are formed. The most pronounced wavelike boundary is observed in the steel-copper connection, since these materials have a face-centered cubic lattice and are easily subjected to plastic deformation. At the contact boundaries of the plates, transition diffusion zones with different widths (from 5 to 40 μm) and element concentrations are formed. The hardness in the boundary diffusion zones is higher than in the connected metals, which is due to the diffusion interaction of the materials adjacent to each other. It has been established that the tensile strength of the composite insert is comparable to the maximum strength of Grade 4 alloy (456-511 MPa), and the failure in most cases occurred over the least durable component of the composite material, which is the copper plate, whose strength was significantly increased by cold hardening during explosion welding and diffusion of elements of the contacting plates.
Passively damped vibration welding system and method
Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao
2013-04-02
A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.
Closed circuit TV system monitors welding operations
NASA Technical Reports Server (NTRS)
Gilman, M.
1967-01-01
TV camera system that has a special vidicon tube with a gradient density filter is used in remote monitoring of TIG welding of stainless steel. The welding operations involve complex assembly welding tools and skates in areas of limited accessibility.
Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication
NASA Technical Reports Server (NTRS)
Jones, C. S.; Gangl, K. J.
1986-01-01
In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.
Study of issues in difficult-to-weld thick materials by hybrid laser arc welding
NASA Astrophysics Data System (ADS)
Mazar Atabaki, Mehdi
There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well. The heat and mass transfer and the issues in joining of dissimilar alloys by the hybrid laser/arc welding process (HLAW) were explicitly explained in details. A finite element model was developed to simulate the heat transfer in HLAW of the aluminum alloys. Two double-ellipsoidal heat source models were considered to describe the heat input of the gas metal arc welding and laser welding processes. An experimental procedure was also developed for joining thick advanced high strength steel plates by using the HLAW, by taking into consideration different butt joint configurations. The geometry of the weld groove was optimized according to the requirements of ballistic test, where the length of the softened heat affected zone should be less than 15.9 mm measured from the weld centerline. Since the main issue in HLAW of the AHSS was the formation of the pores, the possible mechanisms of the pores formation and their mitigation methods during the welding process were investigated. Mitigation methods were proposed to reduce the pores inside in the weld area and the influence of each method on the process stability was investigated by an on-line monitoring system of the HLAW process. The groove angle was optimized for the welding process based on the allowed amount of heat input along the TRICLADRTM interface generated by an explosive welding. The weld was fractured in the heat affected zone of the aluminum side in the tensile test. The microharness was shown that the temperature variation caused minor softening in the heat affected zone satisfying the requirement that the width of the softened heat affected zone in the steel side falls within 15.9 mm far away from the weld centerline. The microstructure analysis showed the presence of tempered martensite at the vicinity of the weld area, which it was a cause of softening in the heat affected zone.
Thermal Stir Welding Development at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ding, Robert J.
2008-01-01
Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.
Improving fatigue performance of rail thermite welds
NASA Astrophysics Data System (ADS)
Jezzini-Aouad, M.; Flahaut, P.; Hariri, S.; Winiar, L.
2010-06-01
Rail transport development offers economic and ecological interests. Nevertheless, it requires heavy investments in rolling material and infrastructure. To be competitive, this transportation means must rely on safe and reliable infrastructure, which requires optimization of all implemented techniques and structure. Rail thermite (or aluminothermic) welding is widely used within the railway industry for in-track welding during re-rail and defect replacement. The process provides numerous advantages against other welding technology commonly used. Obviously, future demands on train traffic are heavier axle loads, higher train speeds and increased traffic density. Thus, a new enhanced weld should be developed to prevent accidents due to fracture of welds and to lower maintenance costs. In order to improve such assembly process, a detailed metallurgical study coupled to a thermomechanical modelling of the phenomena involved in the thermite welding process is carried out. Obtained data enables us to develop a new improved thermite weld (type A). This joint is made by modifying the routinely specified procedure (type B) used in a railway rail by a standard gap alumino-thermic weld. Joints of type A and B are tested and compared. Based on experimental temperature measurements, a finite element analysis is used to calculate the thermal residual stresses induced. In the vicinity of the weld, the residual stress patterns depend on the thermal conditions during welding as it also shown by litterature [1, 2]. In parallel, X-Ray diffraction has been used to map the residual stress field that is generated in welded rail of types A and B. Their effect on fatigue crack growth in rail welds is studied. An experimental study based on fatigue tests of rails welded by conventional and improved processes adjudicates on the new advances and results will be shown.
Multi-mode ultrasonic welding control and optimization
Tang, Jason C.H.; Cai, Wayne W
2013-05-28
A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.
Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering
David, Stan A.; Chen, Jian; Feng, Zhili; ...
2017-12-02
A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less
NASA Astrophysics Data System (ADS)
Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
The present work aims to improve corrosion resistance and mechanical behavior of the welds with suitable post weld heat treatment i.e. direct aging and solutionizing treatments (980STA, 1080STA). Gas tungsten arc welding (GTAW) has been performed on Inconel 718 (IN718) nickel based super alloy plates with 3mm thickness. The structural –property relationship of the post weld heat treated samples is judged by correlating the microstructural changes with observed mechanical behavior and pitting corrosion resistance of the welds As-recevied, direct aging (DA), 980STA,1080STA were studied. Welds were characterized for microstructure changes with scanning electron microscopy (SEM) and optical microscopy (OM).Vickers micro- hardness tester was used to measure the hardness of the weldments. Potential-dynamic polarization testing was carried out to study the pitting corrosion resistance in 3.5%NaCl (Sodium chloride) solution at 30°C.Results of the present study established that post weld heat treatments resulted in promoting the element segregation diffusion and resolve them from brittle laves particles in the matrix. Increased precipitation of strengthening phases lead to a significant increase in fusion zone hardness of 1080STA post weld heat treated condition compared to as welded, direct aged, 980STA conditions. Due to significant changes in the microstructural behavior of 1080STA condition resulted in superior pitting corrosion resistance than 980STA, direct aged and as- recevied conditions of IN718 GTA welds
Intelligent Weld Manufacturing: Role of Integrated Computational Welding Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Stan A.; Chen, Jian; Feng, Zhili
A master welder uses his sensory perceptions to evaluate the process and connect them with his/her knowledge base to take the necessary corrective measures with his/her acquired skills to make a good weld. All these actions must take place in real time. Success depends on intuition and skills, and the procedure is labor-intensive and frequently unreliable. The solution is intelligent weld manufacturing. The ultimate goal of intelligent weld manufacturing would involve sensing and control of heat source position, weld temperature, weld penetration, defect formation and ultimately control of microstructure and properties. This involves a solution to a problem (welding) withmore » many highly coupled and nonlinear variables. The trend is to use an emerging tool known as intelligent control. This approach enables the user to choose a desirable end factor such as properties, defect control, or productivity to derive the selection of process parameters such as current, voltage, or speed to provide for appropriate control of the process. Important elements of intelligent manufacturing are sensing and control theory and design, process modeling, and artificial intelligence. Significant progress has been made in all these areas. Integrated computational welding engineering (ICWE) is an emerging field that will aid in the realization of intelligent weld manufacturing. The paper will discuss the progress in process modeling, microstructure, properties, and process control and automation and the importance of ICWE. Also, control and automation strategies for friction stir welding will be discussed.« less
Weld residual stresses and plastic deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybicki, E.; Shiratori, M.
1989-01-01
Residual stresses due to welding can play a primary role in the performance of piping systems and pressure vessels. The stresses are high, in the range of the yield stress of the material, and can influence the fatigue and fracture behavior as well as component service life. Thus, it is important to have an understanding of weld residual stresses. The papers in this section address the important topic of residual stresses and failure analysis. The paper by Boyles reviews computer simulation in the prediction and analysis of fatigue, fracture, and creep of welded structures. The growing use of expert systemsmore » for these purposes is also covered. Karisson, et al, determine the deformations and stresses during the butt-welding of a pipe. The determination of residual deformations and stresses is also presented. Oddy, Goldak, and McDill propose a method to incorporate transformation plasticity in a finite element program. A three-dimensional analysis of a short longitudinal pipe weld in a typical pressure vessel steel is presented. Chaaban, Morin, Ma, and Bazergui study the influence of ligament thickness, strain hardening, expansion sequence, and level of applied expansion pressure on the interference fit in a model of a tube-to-tubesheet joint in a heat exchanger. This section contains papers dealing with models for plastic deformation. Imatani, Teraura, and Inoue formulate a viscoplastic constitutive model based on an anisotropic yield criterion. Comparisons with experimental results obtained using thin walled tubular specimens made from SUS 304 stainless steel show that the present yield criterion adequately accounts for prior deformation history. Niitsu, Horiguchi, and Ikegami investigate the plastic behavior of S25C mild steel tubular specimens subjected to combined axial and torsional loading at both constant and variable temperatures.« less
Automatic Control Of Length Of Welding Arc
NASA Technical Reports Server (NTRS)
Iceland, William F.
1991-01-01
Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.
Development of a CCTV system for welder training and monitoring of Space Shuttle Main Engine welds
NASA Technical Reports Server (NTRS)
Gordon, S. S.; Flanigan, L. A.; Dyer, G. E.
1987-01-01
A Weld Operator's Remote Monitoring System (WORMS) for remote viewing of manual and automatic GTA welds has been developed for use in Space Shuttle Main Engine (SSME) manufacturing. This system utilizes fiberoptics to transmit images from a receiving lens to a small closed-circuit television (CCTV) camera. The camera converts the image to an electronic signal, which is sent to a videotape recorder (VTR) and a monitor. The overall intent of this system is to provide a clearer, more detailed view of welds than is available by direct observation. This system has six primary areas of application: (1) welder training; (2) viewing of joint penetration; (3) viewing visually inaccessible welds; (4) quality control and quality assurance; (5) remote joint tracking and adjustment of variables in machine welds; and (6) welding research and development. This paper describes WORMS and how it applies to each application listed.
Automated GMA welding of austenitic stainless steel pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahash, G.J.
1996-12-31
The study focused on reducing weld cycle times of rotatable subassemblies (spools) using automated welding equipment. A unique automatic Gas Metal Arc Welding (GMAW) system was used to produce a series of pipe to pipe welds on 141 mm (5 in.) schedule 80 seamless stainless steel pipe. After manual tack welding, the adaptive control system welded the root pass of the argon gas backed open vee groove circumferential butt joints in the IG rotated position with short circuiting transfer GMAW. The fill and cover passes were welded automatically with spray transfer GMAW. Automatic welding cycle times were found to bemore » 50--80 percent shorter than the current techniques of roll welding with Shielded Metal Arc Welding and manual Gas Tungsten Arc Welding. Weld costs ({Brit_pounds}/m), including amortization, for the various systems were compared. The cost of automated GMA welds was virtually equivalent to the most competitive methods while depositing 75% more filler metal per year. Also investigated were metallurgical effects generated by weld thermal cycling, and the associated effects on mechanical properties of the weld joint. Mechanical properties of the welds met or exceeded those of the base metal. Sensitization of the pipe did not occur in the heat affected zone (HAZ), based on the absence of evidence of intergranular attack in modified Strauss corrosion tests and despite the fact of interpass temperatures well above recommended maximums. Cooling rates of 3--5 C/s in the heat affected zone of the four pass welds were measured by thermocouple technique and found to be within the non-sensitizing range for this alloy.« less
Volume gratings and welding of glass/plastic by femtosecond laser direct writing
NASA Astrophysics Data System (ADS)
Watanabe, Wataru
2018-01-01
Femtosecond laser direct writing is used to fabricate diffractive optical elements in three dimensions and to weld glass and/or plastic. In this paper, we review volume gratings in plastics and welding of glass/plastic by femtosecond laser direct writing. Volume gratings were embedded inside polymethyl methacrylate (PMMA) by femtosecond laser pulses. The diffraction efficiency of the gratings increased after fabrication and reached the maximum. After an initial slow decrease within first several days after the fabrication, the efficiency increased again. This phenomena was called regeneration of the grating. We also demonstrate welding of PMMA by dendrite pattern using femtosecond laser pulses. Laser pulses are focused at the interface of two PMMA substrates with an air gap and melted materials in laser-irradiated region spread within a gap of the substrates and dendrite morphology of melted PMMA was observed outside the laser irradiated area. Finally, we show welding of glass/plastic and metal.
NASA Astrophysics Data System (ADS)
Tattoli, F.; Pierron, F.; Rotinat, R.; Casavola, C.; Pappalettere, C.
2011-01-01
One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto—plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.
10-kW-class YAG laser application for heavy components
NASA Astrophysics Data System (ADS)
Ishide, Takashi; Tsubota, S.; Nayama, Michisuke; Shimokusu, Yoshiaki; Nagashima, Tadashi; Okimura, K.
2000-02-01
The authors have put the YAG laser of the kW class to practical use for repair welding of nuclear power plant steam generator heat exchanger tubes, all-position welding of pipings, etc. This paper describes following developed methods and systems of high power YAG laser processing. First, we apply the 6 kW to 10 kW YAG lasers for welding and cutting in heavy components. The beam guide systems we have used are optical fibers which core diameter is 0.6 mm to 0.8 mm and its length is 200 m as standard one. Using these system, we can get the 1 pass penetration of 15 mm to 20 mm and multi pass welding for more thick plates. Cutting of 100 mm thickness plate data also described for dismantling of nuclear power plants. In these systems we carried out the in-process monitoring by using CCD camera image processing and monitoring fiber which placed coaxial to the YAG optical lens system. In- process monitoring by the monitoring fiber, we measured the light intensity from welding area. Further, we have developed new hybrid welding with the TIG electrode at the center of lens for high power. The hybrid welding with TIG-YAG system aims lightening of welding groove allowances and welding of high quality. Through these techniques we have applied 7 kW class YAG laser for welding in the components of nuclear power plants.
ERIC Educational Resources Information Center
Hamlin, Larry
This document contains a curriculum guide and lesson plans for a general mechanical repair course with three sections: minor automotive maintenance, small engine repair, and welding. The curriculum guide begins with a matrix that relates the lesson plans to essential elements of math, science, language arts, and social studies and to Texas…
Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R
2009-12-01
Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.
Sensors control gas metal arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siewert, T.A.; Madigan, R.B.; Quinn, T.P.
1997-04-01
The response time of a trained welder from the time a weld problem is identified to the time action is taken is about one second--especially after a long, uneventful period of welding. This is acceptable for manual welding because it is close to the time it takes for the weld pool to solidify. If human response time were any slower, manual welding would not be possible. However, human response time is too slow to respond to some weld events, such as melting of the contact tube in gas metal arc welding (GMAW), and only automated intelligent control systems can reactmore » fast enough to correct or avoid these problems. Control systems incorporate welding knowledge that enables intelligent decisions to be made about weld quality and, ultimately, to keep welding parameters in the range where only high-quality welds are produced. This article discusses the correlation of electrical signals with contact-tube wear, changes in shielding gas, changes in arc length, and other weld process data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einerson, C.J.; Smartt, H.B.; Johnson, J.A.
1992-01-01
A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less
NASA Astrophysics Data System (ADS)
Dwi Cahyono, Bagus; Ainur, Chandra
2018-04-01
The development of science and technology has a direct impact on the preparation of qualified workers, including the preparation of vocational high school graduates. Law Number 20 the Year 2003 on National Education System explains that the purpose of vocational education is to prepare learners to be ready to work in certain fields. One of the learning materials in Vocational High School is welding and detecting welding defects. Introduction of welding and detecting welding defects, one way that can be done is by ultrasonic testing will be very difficult if only capitalize the book only. Therefore this study aims to adopt ultrasonic testing in a computer system. This system is called Delphi Program-based Ultrasonic Testing Expert System. This system is used to determine the classification and type of welding defects of the welded defect indicator knew. In addition to the system, there is a brief explanation of the notion of ultrasonic testing, calibration procedures and inspection procedures ultrasonic testing. In this system, ultrasonic input data testing that shows defects entered into the computer manually. This system is built using Delphi 7 software and Into Set Up Compiler as an installer. The method used in this research is Research and Development (R & D), with the following stages: (1) preliminary research; (2) manufacture of software design; (3) materials collection; (4) early product development; (5) validation of instructional media experts; (6) product analysis and revision; (8) media trials in learning; And (9) result of end product of instructional media. The result of the research shows that: (1) the result of feasibility test according to ultrasonic material testing expert that the system is feasible to be used as instructional media in welding material subject and welding defect detection in vocational education environment, because it contains an explanation about detection method of welding defect using method Ultrasonic testing in detail; (2) feasibility test results according to media experts, that this system has a very attractive visual, user friendly, compatible with windows and Linux and media size that is not too large; And (3) result of test by using data of indication of welding defect in PT PAL Surabaya, obtained classification data of welding defect in accordance with calculation of welding defect classification.
Automated data acquisition technology development:Automated modeling and control development
NASA Technical Reports Server (NTRS)
Romine, Peter L.
1995-01-01
This report documents the completion of, and improvements made to, the software developed for automated data acquisition and automated modeling and control development on the Texas Micro rackmounted PC's. This research was initiated because a need was identified by the Metal Processing Branch of NASA Marshall Space Flight Center for a mobile data acquisition and data analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC based system was chosen. The Welding Measurement System (WMS), is a dedicated instrument strickly for use of data acquisition and data analysis. In addition to the data acquisition functions described in this thesis, WMS also supports many functions associated with process control. The hardware and software requirements for an automated acquisition system for welding process parameters, welding equipment checkout, and welding process modeling were determined in 1992. From these recommendations, NASA purchased the necessary hardware and software. The new welding acquisition system is designed to collect welding parameter data and perform analysis to determine the voltage versus current arc-length relationship for VPPA welding. Once the results of this analysis are obtained, they can then be used to develop a RAIL function to control welding startup and shutdown without torch crashing.
NASA Astrophysics Data System (ADS)
1982-01-01
Robotic welding has been of interest to industrial firms because it offers higher productivity at lower cost than manual welding. There are some systems with automated arc guidance available, but they have disadvantages, such as limitations on types of materials or types of seams that can be welded; susceptibility to stray electrical signals; restricted field of view; or tendency to contaminate the weld seam. Wanting to overcome these disadvantages, Marshall Space Flight Center, aided by Hayes International Corporation, developed system that uses closed-circuit TV signals for automatic guidance of the welding torch. NASA granted license to Combined Technologies, Inc. for commercial application of the technology. They developed a refined and improved arc guidance system. CTI in turn, licensed the Merrick Corporation, also of Nashville, for marketing and manufacturing of the new system, called the CT2 Optical Trucker. CT2 is a non-contracting system that offers adaptability to broader range of welding jobs and provides greater reliability in high speed operation. It is extremely accurate and can travel at high speed of up to 150 inches per minute.
Adjustable Bracket For Entry Of Welding Wire
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.; Gutow, David A.
1993-01-01
Wire-entry bracket on welding torch in robotic welding system provides for adjustment of angle of entry of welding wire over range of plus or minus 30 degrees from nominal entry angle. Wire positioned so it does not hide weld joint in view of through-the-torch computer-vision system part of robot-controlling and -monitoring system. Swiveling bracket also used on nonvision torch on which wire-feed-through tube interferes with workpiece. Angle simply changed to one giving sufficient clearance.
Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.
1983-03-31
evaluated on the Narrow Gap welding system. By using the combinational qas shielding assembly, it is now possible to reduce the gas flow rates to a value...AD-A145 496 DESIGN CONSTRUCTION DEMONSTRATION AND DE IVER OF AN AUTOMATED NARROW GAP WELDING SYSTEM(U) CRC AUTOMATIC WELDING CO HODSTON SX 31 MAR 83...STANDARDS-963 - A CRC REPORT NO. NAV A/W 7 0PHASE 3 REPORT ON SDESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF AN AUTOMATED NARROW GAP WELDING
A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.
Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi
2009-01-01
Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.
A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing
Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi
2009-01-01
Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990
Quality improvement of polymer parts by laser welding
NASA Astrophysics Data System (ADS)
Puetz, Heidrun; Treusch, Hans-Georg; Welz, M.; Petring, Dirk; Beyer, Eckhard; Herziger, Gerd
1994-09-01
The growing significance of laser technology in industrial manufacturing is also observed in case of plastic industry. Laser cutting and marking are established processes. Laser beam welding is successfully practiced in processes like joining foils or winding reinforced prepregs. Laser radiation and its significant advantages of contactless and local heating could even be an alternative to conventional welding processes using heating elements, vibration or ultrasonic waves as energy sources. Developments in the field of laser diodes increase the interest in laser technology for material processing because in the near future they will represent an inexpensive energy source.
Last, G.A.
1960-07-19
A process is given for enclosing the uranium core of a nuclear fuel element by placing the core in an aluminum cup and closing the open end of the cup over the core. As the metal of the cup is brought together in a weld over the center of the end of the core, it is extruded inwardly as internal projection into a central recess in the core and outwardly as an external projection. Thus oxide inclusions in the weld of the cup are spread out into the internal and external projections and do not interfere with the integrity of the weld.
Development Of Advanced Welding Control System
NASA Technical Reports Server (NTRS)
1990-01-01
Report describes development of next-generation control system for variable-polarity plasma arc (VPPA) welding. When fully developed, system expected to incorporate advanced sensors and adaptive control of position of and current in welding torch.
Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy
NASA Astrophysics Data System (ADS)
Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.
2007-03-01
Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.
NASA Technical Reports Server (NTRS)
Miller, F. R.
1972-01-01
Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.
Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation
NASA Astrophysics Data System (ADS)
Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred
2005-08-01
In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.
Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys
NASA Astrophysics Data System (ADS)
Malikov, A. G.; Orishich, A. M.
2017-01-01
The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.
Manganese speciation of laboratory-generated welding fumes
Andrews, Ronnee N.; Keane, Michael; Hanley, Kevin W.; Feng, H. Amy; Ashley, Kevin
2015-01-01
The objective of this laboratory study was to identify and measure manganese (Mn) fractions in chamber-generated welding fumes (WF) and to evaluate and compare the results from a sequential extraction procedure for Mn fractions with that of an acid digestion procedure for measurement of total, elemental Mn. To prepare Mn-containing particulate matter from representative welding processes, a welding system was operated in short circuit gas metal arc welding (GMAW) mode using both stainless steel (SS) and mild carbon steel (MCS) and also with flux cored arc welding (FCAW) and shielded metal arc welding (SMAW) using MCS. Generated WF samples were collected onto polycarbonate filters before homogenization, weighing and storage in scintillation vials. The extraction procedure consisted of four sequential steps to measure various Mn fractions based upon selective solubility: (1) soluble Mn dissolved in 0.01 M ammonium acetate; (2) Mn (0,II) dissolved in 25 % (v/v) acetic acid; (3) Mn (III,IV) dissolved in 0.5% (w/v) hydroxylamine hydrochloride in 25% (v/v) acetic acid; and (4) insoluble Mn extracted with concentrated hydrochloric and nitric acids. After sample treatment, the four fractions were analyzed for Mn by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). WF from GMAW and FCAW showed similar distributions of Mn species, with the largest concentrations of Mn detected in the Mn (0,II) and insoluble Mn fractions. On the other hand, the majority of the Mn content of SMAW fume was detected as Mn (III,IV). Although the concentration of Mn measured from summation of the four sequential steps was statistically significantly different from that measured from the hot block dissolution method for total Mn, the difference is small enough to be of no practical importance for industrial hygiene air samples, and either method may be used for Mn measurement. The sequential extraction method provides valuable information about the oxidation state of Mn in samples and allows for comparison to results from previous work and from total Mn dissolution methods. PMID:26345630
Antonini, James M; Roberts, Jenny R; Stone, Samuel; Chen, Bean T; Schwegler-Berry, Diane; Chapman, Rebecca; Zeidler-Erdely, Patti C; Andrews, Ronnee N; Frazer, David G
2011-05-01
Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs.
Manganese speciation of laboratory-generated welding fumes.
Andrews, Ronnee N; Keane, Michael; Hanley, Kevin W; Feng, H Amy; Ashley, Kevin
The objective of this laboratory study was to identify and measure manganese (Mn) fractions in chamber-generated welding fumes (WF) and to evaluate and compare the results from a sequential extraction procedure for Mn fractions with that of an acid digestion procedure for measurement of total, elemental Mn. To prepare Mn-containing particulate matter from representative welding processes, a welding system was operated in short circuit gas metal arc welding (GMAW) mode using both stainless steel (SS) and mild carbon steel (MCS) and also with flux cored arc welding (FCAW) and shielded metal arc welding (SMAW) using MCS. Generated WF samples were collected onto polycarbonate filters before homogenization, weighing and storage in scintillation vials. The extraction procedure consisted of four sequential steps to measure various Mn fractions based upon selective solubility: (1) soluble Mn dissolved in 0.01 M ammonium acetate; (2) Mn (0,II) dissolved in 25 % (v/v) acetic acid; (3) Mn (III,IV) dissolved in 0.5% (w/v) hydroxylamine hydrochloride in 25% (v/v) acetic acid; and (4) insoluble Mn extracted with concentrated hydrochloric and nitric acids. After sample treatment, the four fractions were analyzed for Mn by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). WF from GMAW and FCAW showed similar distributions of Mn species, with the largest concentrations of Mn detected in the Mn (0,II) and insoluble Mn fractions. On the other hand, the majority of the Mn content of SMAW fume was detected as Mn (III,IV). Although the concentration of Mn measured from summation of the four sequential steps was statistically significantly different from that measured from the hot block dissolution method for total Mn, the difference is small enough to be of no practical importance for industrial hygiene air samples, and either method may be used for Mn measurement. The sequential extraction method provides valuable information about the oxidation state of Mn in samples and allows for comparison to results from previous work and from total Mn dissolution methods.
Development of an intelligent system for cooling rate and fill control in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einerson, C.J.; Smartt, H.B.; Johnson, J.A.
1992-09-01
A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less
Programmable Automated Welding System (PAWS)
NASA Technical Reports Server (NTRS)
Kline, Martin D.
1994-01-01
An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.
High-strength laser welding of aluminum-lithium scandium-doped alloys
NASA Astrophysics Data System (ADS)
Malikov, A. G.; Ivanova, M. Yu.
2016-11-01
The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.
Optically controlled welding system
NASA Technical Reports Server (NTRS)
Gordon, Stephen S. (Inventor)
1988-01-01
An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.
Welding at the Kennedy Space Center.
NASA Technical Reports Server (NTRS)
Clautice, W. E.
1973-01-01
Brief description of the nature of the mechanical equipment at a space launch complex from a welding viewpoint. including an identification of the major welding applications used in the construction of this complex. The role played by welding in the ground support equipment is noted, including the welded structures and systems required in the vehicle assembly building, the mobile launchers, transporters, mobile service structure, launch pad and launch site, the propellants system, the pneumatics system, and the environmental control system. The welding processes used at the Kennedy Space Center are reviewed, and a particularly detailed account is given of the design and fabrication of the liquid hydrogen and liquid oxygen storage spheres and piping. Finally, the various methods of testing and inspecting the storage spheres are cited.
Implementation of an Outer Can Welding System for Savannah River Site FB-Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, S.R.
2003-03-27
This paper details three phases of testing to confirm use of a Gas Tungsten Arc (GTA) system for closure welding the 3013 outer container used for stabilization/storage of plutonium metals and oxides. The outer container/lid closure joint was originally designed for laser welding, but for this application, the gas tungsten arc (GTA) welding process has been adapted. The testing progressed in three phases: (1) system checkout to evaluate system components for operational readiness, (2) troubleshooting to evaluate high weld failure rates and develop corrective techniques, and (3) pre-installation acceptance testing.
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-01-01
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer’s formation. PMID:28793708
NASA Astrophysics Data System (ADS)
Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza
2018-04-01
The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.
Laser Indirect Shock Welding of Fine Wire to Metal Sheet
Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia
2017-01-01
The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent. PMID:28895900
NASA Astrophysics Data System (ADS)
Chtourou, Rim; Haugou, Gregory; Leconte, Nicolas; Zouari, Bassem; Chaari, Fahmi; Markiewicz, Eric
2015-09-01
Resistance Spot Welding (RSW) of multiple sheets with multiple materials are increasingly realized in the automotive industry. The mechanical strength of such new generation of spot welded assemblies is not that much dealt with. This is true in particular for experiments dedicated to investigate the mechanical strength of spot weld made by multi sheets of different grades, and their macro modeling in structural computations. Indeed, the most published studies are limited to two sheet assemblies. Therefore, in the first part of this work an advanced experimental set-up with a reduced mass is proposed to characterize the quasi-static and dynamic mechanical behavior and rupture of spot weld made by several sheets of different grades. The proposed device is based on Arcan test, the plates contribution in the global response is, thus, reduced. Loading modes I/II are, therefore, combined and well controlled. In the second part a simplified spot weld connector element (macroscopic modeling) is proposed to describe the nonlinear response and rupture of this new generation of spot welded assemblies. The weld connector model involves several parameters to be set. The remaining parameters are finally identified through a reverse engineering approach using mechanical responses of experimental tests presented in the first part of this work.
Nguyen, Quoc Manh; Huang, Shyh-Chour
2015-12-02
Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.
NASA Astrophysics Data System (ADS)
Pandey, C.; Mahapatra, M. M.
2016-06-01
The new generation super critical thermal power plants are required to operate at enhanced thermal efficiency of over 50% to reduce the fuel consumption and environmental pollution. Creep strength-enhanced ferritic steels, commonly known as Cr-Mo alloys such as P91 (X10CrMoVNb 9-1) are such material of choice for the next generation power plants. The operating requirement of these next generation power plants is that steam temperature of around 650 °C is maintained. For such high-temperature application, creep strength of material is the primary consideration together with adequate weld heat-affected zone (HAZ) toughness. Present work deals with the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ. The impact toughness of HAZ for conventional weld groove design and narrow weld groove design has been evaluated experimentally in as-welded and at different post-weld heat treatment conditions. Fractography of the impact toughness specimens of base metal, weld fusion zone, and HAZ was carried out using scanning electron microscope. The effects of heat treatment schemes on the percentage of element present at the fracture surface were also studied.
On-orbit NDE: A novel approach to tube weld inspection
NASA Technical Reports Server (NTRS)
Michaels, Kerry; Hughes, Greg
1994-01-01
The challenge of fabrication and repair of structures in space must be met if we are to utilize and maintain long-duration space facilities. Welding techniques have been demonstrated to provide the most reliable means to accomplish this task. Over the past few years, methods have been developed to perform orbital tube welding employing space-based welding technology pioneered by the former Soviet Union. Welding can result in the formation of defects, which threaten the structural integrity of the welded joint. Implementation of welding on-orbit, therefore, must also include methods to evaluate the quality and integrity of the welded joints. To achieve this goal, the development of an on-orbit tube weld inspection system, utilizing alternating current field measurement (ACFM) technology, has been under taken. This paper describes the development of the ACFM on-orbit tube weld inspection tool. Topics discussed include: requirements for on-orbit NDE, basic theory of ACFM, its advantages over other NDE methods for on-orbit applications, and the ACFM NDE system design. System operation and trial inspection results are also discussed. Future work with this technology is also considered.
Hybrid Laser-Arc Welding of the High-Strength Shipbuilding Steels: Equipment and Technology
NASA Astrophysics Data System (ADS)
Turichin, G.; Kuznetsov, M.; Tsibulskiy, I.; Firsova, A.
Hybrid laser-arc welding (HLAW) allows getting weld joints with thickness up to 35 mm for one pass, provide good quality formation of joints, minimal thermal deformations, the productivity in 10 times more in comparison with arc welding. In addition, replacement arc welding to the HLAW allows economizing filler materials, shielding gas and consumable electricity more than 4 times. Therefore, HLAW is actually technology for basic engineering branches and especially for shipbuilding. The Institute of Laser and Welding Technologies (ILWT) developed laser and hybrid laser-arc welding technologies for different type of steels and alloys including high-strength shipbuilding steels. Also ILWT produced portal and robotic systems for HLAW process realization. Portal system for hybrid laser-arc welding of panels with dimensions 6x6 m using at the manufacturing of flat curvilinear sections in the shipbuilding is depicted in the article. Results of experimental researches of the hybrid laser-arc welding parameters influence on the formation and mechanical properties of weld joint are described at the publication also. Experimental part was made with using of the portal system.
Programmable Positioner For Spot Welding
NASA Technical Reports Server (NTRS)
Roden, William A.
1989-01-01
Welding station mechanized by installing preset indexing system and gear drive. Mechanism includes a low-cost, versatile, single-axis motion control and motor drive to provide fully-automatic weld sequencing and spot-to-spot spacing. Welding station relieves operator of some difficult, tedious tasks and increases both productivity and quality of welds. Results in welds of higher quality and greater accuracy, fewer weld defects, and faster welding operation.
Fatigue evaluation of socket welded piping in nuclear power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchio, R.S.
1996-12-01
Fatigue failures in piping systems occur, almost without exception, at the welded connections. In nuclear power plant systems, such failures occur predominantly at the socket welds of small diameter piping ad fillet attachment welds under high-cycle vibratory conditions. Nearly all socket weld fatigue failures are identified by leaks which, though not high in volume, generally are costly due to attendant radiological contamination. Such fatigue cracking was recently identified in the 3/4 in. diameter recirculation and relief piping socket welds from the reactor coolant system (RCS) charging pumps at a nuclear power plant. Consequently, a fatigue evaluation was performed to determinemore » the cause of cracking and provide an acceptable repair. Socket weld fatigue life was evaluated using S-N type fatigue life curves for welded structures developed by AASHTO and the assessment of an effective cyclic stress range adjacent to each socket weld. Based on the calculated effective tress ranges and assignment of the socket weld details to the appropriate AASHTO S-N curves, the socket weld fatigue lives were calculated and found to be in excellent agreement with the accumulated cyclic life to-date.« less
Control of arc length during gas metal arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madigan, R.B.; Quinn, T.P.
1994-12-31
An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementingmore » a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.« less
NASA Astrophysics Data System (ADS)
Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.
2017-09-01
Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, B.
1994-12-31
This paper describes an elastic-plastic fracture mechanics (EPFM) study of shallow weld-toe cracks. Two limiting crack configurations, plane strain edge crack and semi-circular surface crack in fillet welded T-butt plate joint, were analyzed using the finite element method. Crack depth ranging from 2 to 40% of plate thickness were considered. The elastic-plastic analysis, assuming power-law hardening relationship and Mises yield criterion, was based on incremental plasticity theory. Tension and bending loads applied were monotonically increased to a level causing relatively large scale yielding at the crack tip. Effects of weld-notch geometry and ductile material modeling on prediction of fracture mechanicsmore » characterizing parameter were assessed. It was found that the weld-notch effect reduces and the effect of material modeling increases as crack depth increases. Material modeling is less important than geometric modeling in analysis of very shallow cracks but is more important for relatively deeper cracks, e.g. crack depth more than 20% of thickness. The effect of material modeling can be assessed using a simplified structural model. Weld magnification factors derived assuming linear elastic conditions can be applied to EPFM characterization.« less
Numerical analysis of the heat transfer and fluid flow in the butt-fusion welding process
NASA Astrophysics Data System (ADS)
Yoo, Jae Hyun; Choi, Sunwoong; Nam, Jaewook; Ahn, Kyung Hyun; Oh, Ju Seok
2017-02-01
Butt-fusion welding is an effective process for welding polymeric pipes. The process can be simplified into two stages. In heat soak stage, the pipe is heated using a hot plate contacted with one end of the pipe. In jointing stage, a pair of heated pipes is compressed against one another so that the melt regions become welded. In previous works, the jointing stage that is highly related to the welding quality was neglected. However, in this study, a finite element simulation is conducted including the jointing stage. The heat and momentum transfer are considered altogether. A new numerical scheme to describe the melt flow and pipe deformation for the butt-fusion welding process is introduced. High density polyethylene (HDPE) is used for the material. Flow via thermal expansion of the heat soak stage, and squeezing and fountain flow of the jointing stage are well reproduced. It is also observed that curling beads are formed and encounter the pipe body. The unique contribution of this study is its capability of directly observing the flow behaviors that occur during the jointing stage and relating them to welding quality.
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Nguyen Van Do, Vuong; Chang, Kyong-Ho; Jeon, Jun-Tai; Um, Tae-Hwan
2018-04-01
The present study attempts to characterize the relevance of welding residual stresses to the hysteretic behaviour of a girth-welded circular stainless steel tube under cyclic mechanical loadings. Finite element (FE) thermal simulation of the girth butt welding process is first performed to identify the weld-induced residual stresses by using the one-way coupled three-dimensional (3-D) thermo-mechanical FE analysis method. 3-D elastic-plastic FE analysis equipped with the cyclic plasticity constitutive model capable of describing the cyclic response is next carried out to scrutinize the effects that the residual stresses have on the hysteretic performance of the girth-welded steel tube exposed to cyclic axial loading, which takes the residual stresses and plastic strains calculated from the preceding thermo-mechanical analysis as the initial condition. The analytical results demonstrate that the residual stresses bring about premature yielding and deterioration of the load carrying capacity in the elastic and the transition load ranges, whilst the residual stress effect is wiped out quickly in the plastic load domain since the residual stresses are nearly wholly relaxed after application of the cyclic plastic loading.
NASA Astrophysics Data System (ADS)
Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.
2011-04-01
Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.
Lobel, B; Eyal, O; Kariv, N; Katzir, A
2000-01-01
Laser welding of tissues is a method of closure of surgical incisions that, in principle, may have advantages over conventional closure methods. It is a noncontact technique that introduces no foreign body, the closure is continuous and watertight, and the procedure is faster and requires less skill to master. However, in practice, there have been difficulties in obtaining strong and reliable welding. We assumed that the quality of the weld depends on the ability to monitor and control the surface temperature of the welded zone during the procedure. Our objective was to develop a "smart" fiberoptic laser system for controlled temperature welding. We have developed a welding system based on a CO(2) laser and on infrared transmitting AgClBr fibers. This fiberoptic system plays a double role: transmitting laser power for tissue heating and noncontact (radiometric) temperature monitoring and control. The "true" temperature of the heated tissue was determined by using an improved calibration method. We carried out long-studies of CO(2) laser welding of urinary bladders in various animal models. Cystotomies were performed on the animals, and complete closure of the bladder was obtained with a surface temperature of 55 +/- 5 degrees C at the welding site. In early experiments on 31 rats, the success rate was 73%. In later experiments with 10 rabbits and 3 cats, there was an 80% and a 100% success rate, respectively. The success rate in these preliminary experiments and the quality of the weld, as determined histologically, demonstrate that temperature controlled CO(2) laser welding can produce effective welding of tissues. The fiberoptic system can be adapted for endoscopic laser welding. Copyright 2000 Wiley-Liss, Inc.
Prevalence and association of welding related systemic and respiratory symptoms in welders
El-Zein, M; Malo, J; Infante-Rivard, C; Gautrin, D
2003-01-01
Background: The prevalence of welding related respiratory symptoms coexisting with welding related systemic symptoms in welders is unknown. Aims: To determine in a sample of welders the prevalence of coexisting welding related systemic symptoms indicative of metal fume fever (MFF) and welding related respiratory symptoms suggestive of occupational asthma (OA), and the strength and significance of any association between these two groups of symptoms. Methods: A respiratory symptoms questionnaire, a systemic symptoms questionnaire, and a questionnaire on occupational history were administered by telephone to 351 of a sample of 441 welders (79.6%) from two cities in Québec, Canada. Results: The co-occurrence of possible MFF (defined as having at least two symptoms of fever, feelings of flu, general malaise, chills, dry cough, metallic taste, and shortness of breath, occurring at the beginning of the working week, 3–10 hours after exposure to welding fumes) together with welding related respiratory symptoms suggestive of OA (defined as having at least two welding related symptoms of cough, wheezing, and chest tightness) was 5.8%. These two groups of symptoms were significantly associated (χ2 = 18.9, p < 0.001). Conclusion: There is a strong association between welding related MFF and welding related respiratory symptoms suggestive of OA. As such, MFF could be viewed as a pre-marker of welding related OA, a hypothesis that requires further investigation. PMID:12937186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, N.M.; Johnson, J.A.; Larsen, E.D.
1992-01-01
In-process ultrasonic sensing of welding allows detection of weld defects in real time. A noncontacting ultrasonic system is being developed to operate in a production environment. The principal components are a pulsed laser for ultrasound generation and an electromagnetic acoustic transducer (EMAT) for ultrasound reception. A PC-based data acquisition system determines the quality of the weld on a pass-by-pass basis. The laser/EMAT system interrogates the area in the weld volume where defects are most likely to occur. This area of interest is identified by computer calculations on a pass-by-pass basis using weld planning information provided by the off-line programmer. Themore » absence of a signal above the threshold level in the computer-calculated time interval indicates a disruption of the sound path by a defect. The ultrasonic sensor system then provides an input signal to the weld controller about the defect condition. 8 refs.« less
Position detectors, methods of detecting position, and methods of providing positional detectors
Weinberg, David M.; Harding, L. Dean; Larsen, Eric D.
2002-01-01
Position detectors, welding system position detectors, methods of detecting various positions, and methods of providing position detectors are described. In one embodiment, a welding system positional detector includes a base that is configured to engage and be moved along a curved surface of a welding work piece. At least one position detection apparatus is provided and is connected with the base and configured to measure angular position of the detector relative to a reference vector. In another embodiment, a welding system positional detector includes a weld head and at least one inclinometer mounted on the weld head. The one inclinometer is configured to develop positional data relative to a reference vector and the position of the weld head on a non-planar weldable work piece.
Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M
2016-03-01
It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded samples which were kept in the cell culture medium for 18 months, it was determined that the Fe, Ni and Cr ion concentration released to the cell culture medium from the laser welded test sample was less than that of the main material. Copyright © 2015 Elsevier B.V. All rights reserved.
Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes.
Pinto-Lopera, Jesús Emilio; S T Motta, José Mauricio; Absi Alfaro, Sadek Crisostomo
2016-09-15
Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW) using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch's t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system.
FSW of Aluminum Tailor Welded Blanks across Machine Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair
2015-02-16
Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearingmore » compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.« less
Residual Stress Analysis in Welded Component.
NASA Astrophysics Data System (ADS)
Rouhi, Shahab; Yoshida, Sanichiro; Miura, Fumiya; Sasaki, Tomohiro
Due to local heating, thermal stresses occur during welding; and residual stress and distortion result remain welding. Welding distortion has negative effects on the accuracy of assembly, exterior appearance, and various strengths of the welded structures. Up to date, a lot of experiments and numerical analysis have been developed to assess residual stress. However, quantitative estimation of residual stress based on experiment may involve massive uncertainties and complexity of the measurement process. To comprehensively understand this phenomena, it is necessary to do further researches by means of both experiment and numerical simulation. In this research, we conduct Finite Element Analysis (FEA) for a simple butt-welded metal plate specimen. Thermal input and resultant expansion are modeled with a thermal expansion FEA module and the resultant constitutive response of the material is modeled with a continuous mechanic FEA module. The residual stress is modeled based on permanent deformation occurring during the heating phase of the material. Experiments have also been carried out to compare with the FEA results. Numerical and experimental results show qualitative agreement. The present work was supported by the Louisiana Board of Regents (LEQSF(2016-17)-RD-C-13).
NASA Astrophysics Data System (ADS)
Hai Nguyen, Thanh; Thanh Quang, Quang; Luat Tran, Cong; Loc Nguyen, Huu
2017-10-01
Ultrasonic welding has been applied for joining thermoplastic components due to their advantages such as clean, fast and reliable. The basic principle is to use the mechanical energy of ultrasonic frequency vibration to produce the molten pool at the interface of the joined components under high pressure to create solid-state welding joints. Depending on the specific application, the ultrasonic horn is designed to generate suitable amplitudes on the surface of the welding zone. Uniformity of the amplitudes can be a challenge as the welding area increases. Therefore, design a welding horn in order to obtain the uniform amplitudes at the large area is significant difficult. This work presents a method for obtaining the uniform amplitudes at the working surface of the stepped wide-blade horn. Finite element method is used to analyze the amplitude distribution at the horn surface of 250 × 34 mm2 with working frequency of 15 kHz and aluminum alloy 7075. The uniformity of amplitude is obtained by changing the shape of the horn.
NASA Astrophysics Data System (ADS)
Unfried-Silgado, Jimy; Ramirez, Antonio J.
2014-03-01
This work aims the numerical modeling and characterization of as-welded microstructure of Ni-Cr-Fe alloys with additions of Nb, Mo and Hf as a key to understand their proven resistance to ductility-dip cracking. Part I deals with as-welded structure modeling, using experimental alloying ranges and Calphad methodology. Model calculates kinetic phase transformations and partitioning of elements during weld solidification using a cooling rate of 100 K.s-1, considering their consequences on solidification mode for each alloy. Calculated structures were compared with experimental observations on as-welded structures, exhibiting good agreement. Numerical calculations estimate an increase by three times of mass fraction of primary carbides precipitation, a substantial reduction of mass fraction of M23C6 precipitates and topologically closed packed phases (TCP), a homogeneously intradendritic distribution, and a slight increase of interdendritic Molybdenum distribution in these alloys. Incidences of metallurgical characteristics of modeled as-welded structures on desirable characteristics of Ni-based alloys resistant to DDC are discussed here.
Study on ductility dip cracking susceptibility in Filler Metal 82 during welding
NASA Astrophysics Data System (ADS)
Chen, Jing-Qing; Lu, Hao; Cui, Wei
2011-06-01
In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion, and stress corrosion, which has been widely used in nuclear power plants. However, the companion FM82 has been shown to be susceptible to DDC in welding process. To resolve the problem, this work is mainly focused on evaluating DDC susceptibility in FM82 in welding process. First of all, Strain to Fracture (STF) test is used to achieve the DDC criterion under simple stress state, and the formation mechanism of DDC was explained. Real welding is a process with complex stress state. Later, to get the DDC susceptibility under complex stress state, models about multi-pass welding were built up by means of finite element method. According to numerical simulation results, relationship of deformation and temperature history is achieved. Moreover, susceptible locations and moments could be determined associated with STF results. The simulation results fairly agree with welding experiment from another research.
Microstructural investigation of hardfacing weld deposit obtained from CrB paste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kr. Ray, S.; Sarker, B.; Kr. Bhattacharya, S.
Hardfacing weld deposits are used as a protective layer on engineering components and tools subjected to different modes of wear. Cheaper iron-based alloys with chromium and carbon or relatively expensive alloys with some niobium or titanium have long been used as standard hardfacing materials. In recent years boron has substituted the costlier alloying elements and the newly developed Fe-B-C alloys have shown encouraging results. The microstructure of the welded hardfacing deposit is one of the most important factors that determine its performance. The amount, size, distribution and hardness of the individual constituents play important roles in imparting the desired properties.more » Recently Colomonoy sweat on paste containing fine CrB particles (of about 12 {mu}m average size) suspended in an organic binder has been marketed as the new generation hardfacing material. A thin coating of the paste is applied on the component surface, allowed to dry and welded. The welded deposit has been found to offer good wear resistance in many industrial applications. This paper reports the microstructural investigation of the welded deposit obtained from this paste.« less
A comparison of LBW and GTAW processes in miniature closure welds
NASA Astrophysics Data System (ADS)
Knorovsky, G. A.; Fuerschbach, P. W.; Gianoulakis, S. E.; Burchett, S. N.
When small electronic components with glass-to-metal seals are closure welded, the residual stresses that develop in the glass are of concern. If these stresses exceed allowable tensile levels' the resulting weld-induced seal failure may cause the entire component to be scrapped or reworked at a substantial cost. Conventional wisdom says the best welding process for these applications is that which provides the least heat input, and so in that respect, Laser Beam Welding (LBW) provides less heat input than Gas Tungsten Arc Welding (GTAW), however, other concerns, such as weld fit-up, part variability, and material weldability, can modify the final choice of a welding process. In this paper, we compare the characteristic levels of heat input and the residual stresses generated in glass seals for two processes (as calculated by a 3D Finite Element Analysis) as a function of heat input and travel speed, and contrast some of the other manufacturing decisions that must be made in choosing a production process. The geometry chosen is that of a standing edge corner weld in a cylindrical container about 20 mm diameter by 35 mm tall. Four metal pins are glassed into the part lid. The stresses calculated from the resulting from continuous wave CO2 LBW are compared with those resulting from GTAW. The total energy required by the laser weld is significantly less than that needed for the equivalent size GTA weld. The energy input requirements for a given size weld is inversely proportional to the travel speed, but approaches a saturation level as the travel speed increases. LBW travel speeds ranging from 10 mm/s to 50 mm/s were examined.
NASA Astrophysics Data System (ADS)
Fricke, Wolfgang; Zacke, Sonja
2014-06-01
During ship design, welding-induced distortions are roughly estimated as a function of the size of the component as well as the welding process and residual stresses are assumed to be locally in the range of the yield stress. Existing welding simulation methods are very complex and time-consuming and therefore not applicable to large structures like ships. Simplified methods for the estimation of welding effects were and still are subject of several research projects, but mostly concerning smaller structures. The main goal of this paper is the application of a multi-layer welding simulation to the block joint of a ship structure. When welding block joints, high constraints occur due to the ship structure which are assumed to result in accordingly high residual stresses. Constraints measured during construction were realized in a test plant for small-scale welding specimens in order to investigate their and other effects on the residual stresses. Associated welding simulations were successfully performed with fine-mesh finite element models. Further analyses showed that a courser mesh was also able to reproduce the welding-induced reaction forces and hence the residual stresses after some calibration. Based on the coarse modeling it was possible to perform the welding simulation at a block joint in order to investigate the influence of the resulting residual stresses on the behavior of the real structure, showing quite interesting stress distributions. Finally it is discussed whether smaller and idealized models of definite areas of the block joint can be used to achieve the same results offering possibilities to consider residual stresses in the design process.
NASA Astrophysics Data System (ADS)
Lu, Yaqing; Hui, Hu; Gong, Jianguo
2018-05-01
Austenitic stainless steel is widely used in pressure vessels for the storage and transportation of liquid gases such as liquid nitrogen, liquid oxygen, and liquid hydrogen. Cryogenic pressure vessel manufacturing uses cold stretching technology, which relies heavily on welding joint performance, to construct lightweight and thin-walled vessels. Residual stress from welding is a primary factor in cases of austenitic stainless steel pressure vessel failure. In this paper, on the basis of Visual Environment 10.0 finite element simulation technology, the residual stress resulting from different welding strength matching coefficients (0.8, 1, 1.2, 1.4) for two S30408 plates welded with three-pass butt welds is calculated according to thermal elastoplastic theory. In addition, the stress field was calculated under a loading as high as 410 MPa and after the load was released. Path 1 was set to analyze stress along the welding line, and path 2 was set to analyze stress normal to the welding line. The welding strength matching coefficient strongly affected both the longitudinal residual stress (center of path 1) and the transverse residual stress (both ends of path 1) after the welding was completed. However, the coefficient had little effect on the longitudinal and transverse residual stress of path 2. Under the loading of 410 MPa, the longitudinal and transverse stress decreased and the stress distribution, with different welding strength matching coefficients, was less diverse. After the load was released, longitudinal and transverse stress distribution for both path 1 and path 2 decreased to a low level. Cold stretching could reduce the effect of residual stress to various degrees. Transverse strain along the stretching direction was also taken into consideration. The experimental results validated the reliability of the partial simulation.
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Grain refinement control in TIG arc welding
NASA Technical Reports Server (NTRS)
Iceland, W. F.; Whiffen, E. L. (Inventor)
1975-01-01
A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The worldwide semisubmersible drilling rig fleet is approaching retirement. But replacement is not an attractive option even though dayrates are reaching record highs. In 1991, Schlumberger Sedco Forex managers decided that an alternative might exist if regulators and insurers could be convinced to extend rig life expectancy through restoration. Sedco Forex chose their No. 704 semisubmersible, an 18-year North Sea veteran, to test their process. The first step was to determine what required restoration, meaning fatigue life analysis of each weld on the huge vessel. If inspected, the task would be unacceptably time-consuming and of questionable accuracy. Instead a suitemore » of computer programs modeled the stress seen by each weld, statistically estimated the sea states seen by the rig throughout its North Sea service and calibrated a beam-element model on which to run their computer simulations. The elastic stiffness of the structure and detailed stress analysis of each weld was performed with ANSYS, a commercially available finite-element analysis program. The use of computer codes to evaluate service life extension is described.« less
A high-performance magnetic shield with large length-to-diameter ratio.
Dickerson, Susannah; Hogan, Jason M; Johnson, David M S; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-wey; Kasevich, Mark A
2012-06-01
We have demonstrated a 100-fold improvement in the magnetic field uniformity on the axis of a large aspect ratio, cylindrical, mumetal magnetic shield by reducing discontinuities in the material of the shield through the welding and re-annealing of a segmented shield. The three-layer shield reduces Earth's magnetic field along an 8 m region to 420 μG (rms) in the axial direction, and 460 and 730 μG (rms) in the two transverse directions. Each cylindrical shield is a continuous welded tube which has been annealed after manufacture and degaussed in the apparatus. We present both experiments and finite element analysis that show the importance of uniform shield material for large aspect ratio shields, favoring a welded design over a segmented design. In addition, we present finite element results demonstrating the smoothing of spatial variations in the applied magnetic field by cylindrical magnetic shields. Such homogenization is a potentially useful feature for precision atom interferometric measurements.
Optically controlled welding system
NASA Technical Reports Server (NTRS)
Gordon, Stephen S. (Inventor)
1989-01-01
An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.
Theory research of seam recognition and welding torch pose control based on machine vision
NASA Astrophysics Data System (ADS)
Long, Qiang; Zhai, Peng; Liu, Miao; He, Kai; Wang, Chunyang
2017-03-01
At present, the automation requirement of the welding become higher, so a method of the welding information extraction by vision sensor is proposed in this paper, and the simulation with the MATLAB has been conducted. Besides, in order to improve the quality of robot automatic welding, an information retrieval method for welding torch pose control by visual sensor is attempted. Considering the demands of welding technology and engineering habits, the relative coordinate systems and variables are strictly defined, and established the mathematical model of the welding pose, and verified its feasibility by using the MATLAB simulation in the paper, these works lay a foundation for the development of welding off-line programming system with high precision and quality.
Welding process modelling and control
NASA Technical Reports Server (NTRS)
Romine, Peter L.; Adenwala, Jinen A.
1993-01-01
The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.
Heavy-section welding with very high power laser beams: the challenge
NASA Astrophysics Data System (ADS)
Goussain, Jean-Claude; Becker, Ahim; Chehaibou, A.; Leca, P.
1997-08-01
The 45 kW CO2 laser system of Institut de Soudure was used to evaluate and explore the possibilities offered by the high power laser beams for welding different materials in various thickness and in different welding positions. Stainless steels, low carbon steels, aluminum and titanium alloys were studied. Butt joints in 10 to 35 mm thick plates were achieved and evaluated by radiographic, metallurgical and mechanical tests. Gaps and alignment tolerances were determined with and without filler wire in order to obtain acceptable welds concerning the weld geometry, the aspect on front and end root sides. The main problem raised by heavy section welding concerns weld porosity in the weld which increases drastically with the thickness of the weld. Indications are given on their origin and the way to proceed in order to better control them. Lastly some large parts, recently welded on the system, are presented and discussed before drawing some conclusions on the prospects of very high power laser welding.
Ultrasonic sensing of GMAW: Laser/EMAT defect detection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, N.M.; Johnson, J.A.; Larsen, E.D.
1992-08-01
In-process ultrasonic sensing of welding allows detection of weld defects in real time. A noncontacting ultrasonic system is being developed to operate in a production environment. The principal components are a pulsed laser for ultrasound generation and an electromagnetic acoustic transducer (EMAT) for ultrasound reception. A PC-based data acquisition system determines the quality of the weld on a pass-by-pass basis. The laser/EMAT system interrogates the area in the weld volume where defects are most likely to occur. This area of interest is identified by computer calculations on a pass-by-pass basis using weld planning information provided by the off-line programmer. Themore » absence of a signal above the threshold level in the computer-calculated time interval indicates a disruption of the sound path by a defect. The ultrasonic sensor system then provides an input signal to the weld controller about the defect condition. 8 refs.« less
All-weld-metal design for AWS E10018M, E11018M and E12018M type electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surian, E.S.; Vedia, L.A. de
This paper presents the results of a research program conducted to design the all-weld metal deposited with AWS A5.5-81 E10018M, E11018M and E12018M SMAW-type electrodes. The role that different alloying elements such as manganese, carbon and chromium play on the tensile properties, hardness and toughness as well as on the microstructure was studied. Criteria for selecting the weld metal composition leading to optimum combination of tensile strength and toughness are suggested. The effect of the variation of heat input, within the requirements of the AWS standard, on the mentioned properties was also analyzed. It was found that the E11018M andmore » E12018M all-weld-metal tensile properties are very sensitive to variations in heat input. For certain values of chemical composition, welding parameter ranges suitable to guarantee the fulfillment of AWS requirements were determined.« less
Influence of Solute Content and Solidification Parameters on Grain Refinement of Aluminum Weld Metal
NASA Astrophysics Data System (ADS)
Schempp, Philipp; Cross, Carl Edward; Pittner, Andreas; Rethmeier, Michael
2013-07-01
Grain refinement provides an important possibility to enhance the mechanical properties ( e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape ( CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size.
Literature Review: Weldability of Iridium DOP-26 Alloy for General Purpose Heat Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgardt, Paul; Pierce, Stanley W.
The basic purpose of this paper is to provide a literature review relative to fabrication of the General Purpose Heat Source (GPHS) that is used to provide electrical power for deep space missions of NASA. The particular fabrication operation to be addressed here is arc welding of the GPHS encapsulation. A considerable effort was made to optimize the fabrication of the fuel pellets and of other elements of the encapsulation; that work will not be directly addressed in this paper. This report consists of three basic sections: 1) a brief description of the GPHS will be provided as background informationmore » for the reader; 2) mechanical properties and the optimization thereof as relevant to welding will be discussed; 3) a review of the arc welding process development and optimization will be presented. Since the welding equipment must be upgraded for future production, some discussion of the historical establishment of relevant welding variables and possible changes thereto will also be discussed.« less
Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes
Pinto-Lopera, Jesús Emilio; S. T. Motta, José Mauricio; Absi Alfaro, Sadek Crisostomo
2016-01-01
Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW) using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch’s t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system. PMID:27649198
Picosecond laser welding of similar and dissimilar materials.
Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P
2014-07-01
We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld.
Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol
2013-07-01
Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defectsmore » or precursors to defects and correct when possible during the weld process.« less
Towards real time diagnostics of Hybrid Welding Laser/GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.
2014-02-18
Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defectsmore » or precursors to defects and correct when possible during the weld process.« less
Towards real time diagnostics of Hybrid Welding Laser/GMAW
NASA Astrophysics Data System (ADS)
McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.
2014-02-01
Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.
Process control of laser conduction welding by thermal imaging measurement with a color camera.
Bardin, Fabrice; Morgan, Stephen; Williams, Stewart; McBride, Roy; Moore, Andrew J; Jones, Julian D C; Hand, Duncan P
2005-11-10
Conduction welding offers an alternative to keyhole welding. Compared with keyhole welding, it is an intrinsically stable process because vaporization phenomena are minimal. However, as with keyhole welding, an on-line process-monitoring system is advantageous for quality assurance to maintain the required penetration depth, which in conduction welding is more sensitive to changes in heat sinking. The maximum penetration is obtained when the surface temperature is just below the boiling point, and so we normally wish to maintain the temperature at this level. We describe a two-color optical system that we have developed for real-time temperature profile measurement of the conduction weld pool. The key feature of the system is the use of a complementary metal-oxide semiconductor standard color camera leading to a simplified low-cost optical setup. We present and discuss the real-time temperature measurement and control performance of the system when a defocused beam from a high power Nd:YAG laser is used on 5 mm thick stainless steel workpieces.
NASA Astrophysics Data System (ADS)
Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.
2009-07-01
Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.
Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samayoa, Jose
2010-05-12
Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber laser’s exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.
Automatic control system of high precision welding of workpieces in mechanical engineering
NASA Astrophysics Data System (ADS)
Kuznetsov, I. N.; Zvezdin, V. V.; Israfilov, I. H.; Portnov, S. M.
2014-12-01
In this paper, based on the conducted patent research, the system of laser welding control with different geometry of weld and shapes of parts is developed. The method of monitoring the position of the spot of laser radiation in relation to the curved weld is worked out; it is based on the tracking the edges of the welded parts by low-power laser radiation reflected from the surface of the parts. It allows to make the positioning of the focus of laser radiation in relation to the juncture of the welded parts automatically.
NASA Astrophysics Data System (ADS)
Malikov, A. G.; Golyshev, A. A.; Ivanova, M. Yu.
2017-10-01
Today, aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from lithium admixture. Various technologies of fusible welding of these alloys are being developed. Serious demands are imposed to the welded joints of aluminum alloys in respect to their strength characteristics. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint. The effect of scandium on the micro-and macro-structure has been studied as well as the strength characteristics of the welded joint. It has been found that scandium under in the laser welding process increases the welded joint elasticity for the system Al-Mg-Li, aluminum alloy 1420 by 20 %, and almost doubles the same for the system Al-Cu-Li, aluminum alloy 1441.
NASA Astrophysics Data System (ADS)
Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi
2018-04-01
When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.
NASA Astrophysics Data System (ADS)
Dermanaki Farahani, Rouhollah; Janier, Mathieu; Dubé, Martine
2018-03-01
In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film’s electrical resistivity from 9.4 × 103 down to 3.1 × 10-4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors’ resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens’ cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.
NASA Astrophysics Data System (ADS)
Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi
2018-06-01
When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.
Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper
NASA Astrophysics Data System (ADS)
Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.
1996-08-01
Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.
Residual stresses in welded plates
NASA Technical Reports Server (NTRS)
Bernstein, Edward L.
1994-01-01
The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.
Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, G.; Yalavarthy, H. V.; He, T.; Yen, C.-F.; Cheeseman, B. A.
2010-07-01
A concise yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided. This is followed by a computational investigation in which FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum alloy, AA5083-H131, is modeled using a fully coupled thermo-mechanical finite-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work-piece material behavior during the FSW process. Specifically, competition and interactions between plastic-deformation and dynamic-recrystallization processes are considered to properly account for the material-microstructure evolution in the weld nugget zone. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results.
The Determination of Metals in Welding Fume by X-RaySpectrometry
NASA Astrophysics Data System (ADS)
Kuznetsova, O. V.; Begunova, L. A.; Romanenko, S. V.; Solodsky, S. A.
2018-01-01
Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Respiratory effects seen in full-time welders have included bronchitis, airway irritation, lung function changes, and a possible increase in the incidence of lung cancer. The metal concentration in the air of the working area have been determined using the photometric method of analysis, which involves the stage of decomposition of the sample material before analysis. However, losses of the analyzed elements are possible when the sample is decomposed. The X-ray fluorescence method of analysis has the advantage of being nondestructive. The investigations shown the data of photometric determination of metals in welding aerosols is 1.5÷2 times lower than the results of X-ray fluorescence analysis.
Analysis of thermomechanical states in single-pass GMAW surfaced steel element
NASA Astrophysics Data System (ADS)
Winczek, Jerzy; Gawronska, Elzbieta; Murcinkova, Zuzana; Hatala, Michal; Pavlenko, Slavko; Makles, Krzysztof
2017-03-01
In the paper the model of temperature field, phase changes and stress states calculation during single-pass arc weld surfacing have been presented. In temperature field solution the temperature changes caused by the heat of weld and by electric arc have been taken into consideration. Kinetics of phase changes during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while progress of phase transformations during cooling has been determined on the basis of time-temperature-transformation (TTT) - welding diagram. The analysis of stress state has been presented for S235 steel flat assuming planar section hypothesis and using integral equations of stress equilibrium. It has enabled a clear interpretation of influence of temperature field and phase transformation on stresses caused by surfacing using Gas Metal Arc Welding (GMAW) method.
NASA Astrophysics Data System (ADS)
Echer, L.; Marczak, R. J.
2018-02-01
The objective of the present work is to introduce a methodology capable of modelling welded components for structural stress analysis. The modelling technique was based on the recommendations of the International Institute of Welding; however, some geometrical features of the weld fillet were used as design parameters in an optimization problem. Namely, the weld leg length and thickness of the shell elements representing the weld fillet were optimized in such a way that the first natural frequencies were not changed significantly when compared to a reference result. Sequential linear programming was performed for T-joint structures corresponding to two different structural details: with and without full penetration weld fillets. Both structural details were tested in scenarios of various plate thicknesses and depths. Once the optimal parameters were found, a modelling procedure was proposed for T-shaped components. Furthermore, the proposed modelling technique was extended for overlapped welded joints. The results obtained were compared to well-established methodologies presented in standards and in the literature. The comparisons included results for natural frequencies, total mass and structural stress. By these comparisons, it was observed that some established practices produce significant errors in the overall stiffness and inertia. The methodology proposed herein does not share this issue and can be easily extended to other types of structure.
Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models
NASA Astrophysics Data System (ADS)
Sommer, Silke
2010-06-01
This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.
WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.D. Sudan
2000-06-22
The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to themore » Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.« less
A novel pulsed gas metal arc welding system with direct droplet transfer close-loop control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q.; Li, P.; Zhang, L.
1994-12-31
In pulsed gas metal arc welding (GMAW), a predominant parameter that has to be monitored and controlled in real time for maintaining process stability and ensuring weld quality, is droplet transfer. Based on the close correlation between droplet transfer and arc light radiant flux in GMAW of steel and aluminum, a direct closed-loop droplet transfer control system for pulsed GMAW with arc light sensor has been developed. By sensing the droplet transfer directly via the arc light signal, a pulsed GMAW process with real and exact one-pulse, one-droplet transfer has been achieved. The novel pulsed GMAW machine consists of threemore » parts: a sensing system, a controlling system, and a welding power system. The software used in this control system is capable of data sampling and processing, parameter matching, optimum parameter restoring, and resetting. A novel arc light sensing system has been developed. The sensor is small enough to be clamped to a semiautomatic welding torch. Based on thissensingn system, a closed-loop droplet transfer control system of GMAW of steel and aluminum has been built and a commercial prototype has been made. The system is capable of keeping one-pulse, one-droplet transfer against external interferences. The welding process with this control system has been proved to be stable, quiet, with no spatter, and provide good weld formation.« less
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
1985-01-01
The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.
Trilateral Design and Test Code for Military Bridging and Gap-Crossing Equipment
2005-05-01
Property data should be provided for individual lamina and for the ( laminat - ed) composite . The required lamina properties are identified in...Resistance Welding ....... a Brazing ......................... X Machining ..................... a Chemical Composition : Element... Machining .................. b Chemical Composition : Element % Si .................................. 0.2 max Fe
PWSCC Assessment by Using Extended Finite Element Method
NASA Astrophysics Data System (ADS)
Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk
2015-12-01
The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.
Antonini, James M; Afshari, Aliakbar A; Stone, Sam; Chen, Bean; Schwegler-Berry, Diane; Fletcher, W Gary; Goldsmith, W Travis; Vandestouwe, Kurt H; McKinney, Walter; Castranova, Vincent; Frazer, David G
2006-04-01
Respiratory effects observed in welders have included lung function changes, metal fume fever, bronchitis, and a possible increase in the incidence of lung cancer. Many questions remain unanswered regarding the causality and possible underlying mechanisms associated with the potential toxic effects of welding fume inhalation. The objective of the present study was to construct a completely automated, computer-controlled welding fume generation and inhalation exposure system to simulate real workplace exposures. The system comprised a programmable six-axis robotic welding arm, a water-cooled arc welding torch, and a wire feeder that supplied the wire to the torch at a programmed rate. For the initial studies, gas metal arc welding was performed using a stainless steel electrode. A flexible trunk was attached to the robotic arm of the welder and was used to collect and transport fume from the vicinity of the arc to the animal exposure chamber. Undiluted fume concentrations consistently ranged from 90-150 mg/m(3) in the animal chamber during welding. Temperature and humidity remained constant in the chamber during the welding operation. The welding particles were composed of (from highest to lowest concentration) iron, chromium, manganese, and nickel as measured by inductively coupled plasma atomic emission spectroscopy. Size distribution analysis indicated the mass median aerodynamic diameter of the generated particles to be approximately 0.24 microm with a geometric standard deviation (sigma(g)) of 1.39. As determined by transmission and scanning electron microscopy, the generated aerosols were mostly arranged as chain-like agglomerates of primary particles. Characterization of the laboratory-generated welding aerosol has indicated that particle morphology, size, and chemical composition are comparable to stainless steel welding fume generated in other studies. With the development of this novel system, it will be possible to establish an animal model using controlled welding exposures from automated gas metal arc and flux-cored arc welding processes to investigate how welding fumes affect health.
Weld pool oscillation during pulsed GTA welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aendenroomer, A.J.R.; Ouden, G. den
1996-12-31
This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Undermore » these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.« less
Laser-GMA Hybrid Pipe Welding System
2007-11-01
Experimental Results.................................................................................................34 Autogenous Laser Welds...APPENDIX B. Training Manual – Overview of System Components and Software...................... APPENDIX C. NASSCO...17. Autogenous laser welds in different joint configurations (10 mm thick mild steel, 5 mm land
Metallurgy and deformation of electron beam welded similar titanium alloys
NASA Astrophysics Data System (ADS)
Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.
2012-04-01
Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.
Effect of Preheating on the Inertia Friction Welding of the Dissimilar Superalloys Mar-M247 and LSHR
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Mahaffey, D. W.; Semiatin, S. L.
2016-12-01
Differences in the elevated temperature mechanical properties of cast Mar-M247 and forged LSHR make it difficult to produce sound joints of these alloys by inertia friction welding (IFW). While extensive plastic upset occurs on the LSHR side, only a small upset is typically developed on the Mar-M247 side. The limited plastic flow of Mar-M247 thus restricts the extent of "self-cleaning" and mechanical mixing of the mating surfaces, so that defects remain at the bond line after welding. In the present work, the effect of local preheating of Mar-M247 immediately prior to IFW on the welding behavior of Mar-M247/LSHR couples was determined. An increase in the preheat temperature enhanced the plastic flow of Mar-M247 during IFW, which resulted in extensive mechanical mixing with LSHR at the weld interface, the formation of extensive flash on both the Mar-M247 and LSHR sides, and a sound bond. Performed in parallel with the experimental work, finite-element-method (FEM) simulations showed that higher temperatures are achieved within the preheated sample during IFW relative to its non-preheated counterpart, and plastic flow is thus facilitated within it. Microstructure and post-weld mechanical properties of the welded samples were also established.
Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David
2013-01-01
Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be greatly influenced by these factors. Furthermore, the results also confirmed the hypothesis that smaller particles generate more ROS activity and should be evaluated carefully for risk assessment.
A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model
NASA Astrophysics Data System (ADS)
Jiang, Yongyue; Li, Li; Zhao, Zhijiang
2017-11-01
Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.
NASA Astrophysics Data System (ADS)
Zou, Yanbiao; Chen, Tao
2018-06-01
To address the problem of low welding precision caused by the poor real-time tracking performance of common welding robots, a novel seam tracking system with excellent real-time tracking performance and high accuracy is designed based on the morphological image processing method and continuous convolution operator tracker (CCOT) object tracking algorithm. The system consists of a six-axis welding robot, a line laser sensor, and an industrial computer. This work also studies the measurement principle involved in the designed system. Through the CCOT algorithm, the weld feature points are determined in real time from the noise image during the welding process, and the 3D coordinate values of these points are obtained according to the measurement principle to control the movement of the robot and the torch in real time. Experimental results show that the sensor has a frequency of 50 Hz. The welding torch runs smoothly with a strong arc light and splash interference. Tracking error can reach ±0.2 mm, and the minimal distance between the laser stripe and the welding molten pool can reach 15 mm, which can significantly fulfill actual welding requirements.
Versatile Friction Stir Welding/Friction Plug Welding System
NASA Technical Reports Server (NTRS)
Carter, Robert
2006-01-01
A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.
Container weld identification using portable laser scanners
NASA Astrophysics Data System (ADS)
Taddei, Pierluigi; Boström, Gunnar; Puig, David; Kravtchenko, Victor; Sequeira, Vítor
2015-03-01
Identification and integrity verification of sealed containers for security applications can be obtained by employing noninvasive portable optical systems. We present a portable laser range imaging system capable of identifying welds, a byproduct of a container's physical sealing, with micrometer accuracy. It is based on the assumption that each weld has a unique three-dimensional (3-D) structure which cannot be copied or forged. We process the 3-D surface to generate a normalized depth map which is invariant to mechanical alignment errors and that is used to build compact signatures representing the weld. A weld is identified by performing cross correlations of its signature against a set of known signatures. The system has been tested on realistic datasets, containing hundreds of welds, yielding no false positives or false negatives and thus showing the robustness of the system and the validity of the chosen signature.
Discontinuity Detection in the Shield Metal Arc Welding Process.
Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros
2017-05-10
This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors-a microphone and piezoelectric-that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system's high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries.
NASA Astrophysics Data System (ADS)
Gao, Xiangdong; Chen, Yuquan; You, Deyong; Xiao, Zhenlin; Chen, Xiaohui
2017-02-01
An approach for seam tracking of micro gap weld whose width is less than 0.1 mm based on magneto optical (MO) imaging technique during butt-joint laser welding of steel plates is investigated. Kalman filtering(KF) technology with radial basis function(RBF) neural network for weld detection by an MO sensor was applied to track the weld center position. Because the laser welding system process noises and the MO sensor measurement noises were colored noises, the estimation accuracy of traditional KF for seam tracking was degraded by the system model with extreme nonlinearities and could not be solved by the linear state-space model. Also, the statistics characteristics of noises could not be accurately obtained in actual welding. Thus, a RBF neural network was applied to the KF technique to compensate for the weld tracking errors. The neural network can restrain divergence filter and improve the system robustness. In comparison of traditional KF algorithm, the RBF with KF was not only more effectively in improving the weld tracking accuracy but also reduced noise disturbance. Experimental results showed that magneto optical imaging technique could be applied to detect micro gap weld accurately, which provides a novel approach for micro gap seam tracking.
A vision-based weld quality evaluation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, R.J.; Cook, G.E.; Strauss, A.M.
1996-12-31
Inspection of the appearance of weld beads is an integral part of the overall welding process. Lack of satisfactory appearance in itself may be sufficient grounds for part rejection or the lack of satisfactory appearance may be used as an indirect indicator of more substantive problems such as poor fusion or subsurface cracks. In all cases the inspection process tends to be both time and labor intensive. The present research uses a video system and appropriate image capture and processing to determine the quality of the weld based upon surface appearance. This relative quality rating was compared to similar ratingsmore » performed by human inspectors and was found to give very good correlation. The system was implemented for the Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes.« less
Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.
2009-04-07
A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.
FOIL ELEMENT FOR NUCLEAR REACTOR
Noland, R.A.; Walker, D.E.; Spinrad, B.I.
1963-07-16
A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)
Numerical simulation of X90 UOE pipe forming process
NASA Astrophysics Data System (ADS)
Zou, Tianxia; Ren, Qiang; Peng, Yinghong; Li, Dayong; Tang, Ding; Han, Jianzeng; Li, Xinwen; Wang, Xiaoxiu
2013-12-01
The UOE process is an important technique to manufacture large-diameter welding pipes which are increasingly applied in oil pipelines and offshore platforms. The forming process of UOE mainly consists of five successive operations: crimping, U-forming, O-forming, welding and mechanical expansion, through which a blank is formed into a pipe in a UOE pipe mill. The blank with an appropriate edge bevel is bent into a cylindrical shape by crimping (C-forming), U-forming and O-forming successively. After the O-forming, there is an open-seam between two ends of the plate. Then, the blank is welded by automatic four-electrode submerged arc welding technique. Subsequently, the welded pipe is expanded with a mechanical expander to get a high precision circular shape. The multiple operations in the UOE mill make it difficult to control the quality of the formed pipe. Therefore, process design mainly relies on experience in practical production. In this study, the UOE forming of an API X90 pipe is studied by using finite element simulation. The mechanical properties tests are performed on the API X90 pipeline steel blank. A two-dimensional finite element model under the hypothesis of plane strain condition is developed to simulate the UOE process according to data coming from the workshop. A kinematic hardening model is used in the simulation to take the Bauschinger effect into account. The deformation characteristics of the blank during the forming processes are analyzed. The simulation results show a significant coherence in the geometric configurations comparing with the practical manufacturing.
Friction Stir Welding of Large Scale Cryogenic Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Russell, Carolyn; Ding, R. Jeffrey
1998-01-01
The Marshall Space Flight Center (MSFC) has established a facility for the joining of large-scale aluminum cryogenic propellant tanks using the friction stir welding process. Longitudinal welds, approximately five meters in length, have been made by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and travel system will be described in this presentation along with process controls and real-time data acquisition developed for this application. The approach to retrofitting other large welding tools at MSFC with the friction stir welding process will also be discussed.
Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N
2004-04-01
Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration.
Information flow analysis and Petri-net-based modeling for welding flexible manufacturing cell
NASA Astrophysics Data System (ADS)
Qiu, T.; Chen, Shanben; Wang, Y. T.; Wu, Lin
2000-10-01
Due to the development of advanced manufacturing technology and the introduction of Smart-Manufacturing notion in the field of modern industrial production, welding flexible manufacturing system (WFMS) using robot technology has become the inevitable developing direction on welding automation. In WFMS process, the flexibility for different welding products and the realizing on corresponding welding parameters control are the guarantees for welding quality. Based on a new intelligent arc-welding flexible manufacturing cell (WFMC), the system structure and control policies are studied in this paper. Aiming at the different information flows among every subsystem and central monitoring computer in this WFMC, Petri net theory is introduced into the process of welding manufacturing. With its help, a discrete control model of WFMC has been constructed, in which the system status is regarded as place and the control process is regarded as transition. Moreover, grounded on automation Petri net principle, the judging and utilizing of information obtained from welding sensors are imported into net structure, which extends the traditional Petri net concepts. The control model and policies researched in this paper have established foundation for further intelligent real-time control on WFMC and WFMS.
NASA Astrophysics Data System (ADS)
Cai, Zhiqiang; Dai, Hongbin; Fu, Xibin
2018-06-01
In view of the special needs of the water supply and drainage system of swimming pool in gymnasium, the correlation of high density polyethylene (HDPE) pipe and the temperature field distribution during welding was investigated. It showed that the temperature field distribution has significant influence on the quality of welding. Moreover, the mechanical properties of the welded joint were analyzed by the bending test of the weld joint, and the micro-structure of the welded joint was evaluated by scanning electron microscope (SEM). The one-dimensional unsteady heat transfer model of polyethylene pipe welding joints was established by MARC. The temperature field distribution during welding process was simulated, and the temperature field changes during welding were also detected and compared by the thermo-couple temperature automatic acquisition system. Results indicated that the temperature of the end surface of the pipe does not reach the maximum value, when it is at the end of welding heating. Instead, it reaches the maximum value at 300 sand latent heat occurs during the welding process. It concludes that the weld quality is the highest when the welding pressure is 0.2 MPa, and the heating temperature of HDPE heat fusion welding is in the range of 210 °C-230 °C.
Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.
Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A
2016-04-01
The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during stud welding simulations, but further development is needed before field deployment is possible. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Reduction of Biomechanical and Welding Fume Exposures in Stud Welding
Fethke, Nathan B.; Peters, Thomas M.; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A.
2016-01-01
The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18min) when using conventional methods were high (18.2mg m−3 for bare beam; 65.7mg m−3 for through deck), with estimated mass concentrations of iron (7.8mg m−3 for bare beam; 15.8mg m−3 for through deck), zinc (0.2mg m−3 for bare beam; 15.8mg m−3 for through deck), and manganese (0.9mg m−3 for bare beam; 1.5mg m−3 for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17nm) through deck conditions (34±34nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during stud welding simulations, but further development is needed before field deployment is possible. PMID:26602453
Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes
Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng
2017-01-01
Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed. PMID:28335425
Optimal slot dimension for skirt support structure of coke drums
NASA Astrophysics Data System (ADS)
Wang, Edward; Xia, Zihui
2018-03-01
The skirt-to-shell junction weld on coke drums is susceptible to fatigue failure due to severe thermal cyclic stresses. One method to decrease junction stress is to add slots near the top of the skirt, thereby reducing the local stiffness close to the weld. The most common skirt slot design is thin relative to its circumferential spacing. A new slot design, which is significantly wider, is proposed. In this study, thermal-mechanical elastoplastic 3-D finite element models of coke drums are created to analyze the effect of different skirt designs on the stress/strain field near the shell-to-skirt junction weld, as well as any other critical stress locations in the overall skirt design. The results confirm that the inclusion of the conventional slot design effectively reduces stress in the junction weld. However, it has also been found that the critical stress location migrates from the shell-to-skirt junction weld to the slot ends. A method is used to estimate the fatigue life near the critical areas of each skirt slot design. It is found that wider skirt slots provide a significant improvement on fatigue life in the weld and slot area.
Linear Mathematical Model for Seam Tracking with an Arc Sensor in P-GMAW Processes.
Liu, Wenji; Li, Liangyu; Hong, Ying; Yue, Jianfeng
2017-03-14
Arc sensors have been used in seam tracking and widely studied since the 80s and commercial arc sensing products for T and V shaped grooves have been developed. However, it is difficult to use these arc sensors in narrow gap welding because the arc stability and sensing accuracy are not satisfactory. Pulse gas melting arc welding (P-GMAW) has been successfully applied in narrow gap welding and all position welding processes, so it is worthwhile to research P-GMAW arc sensing technology. In this paper, we derived a linear mathematical P-GMAW model for arc sensing, and the assumptions for the model are verified through experiments and finite element methods. Finally, the linear characteristics of the mathematical model were investigated. In torch height changing experiments, uphill experiments, and groove angle changing experiments the P-GMAW arc signals all satisfied the linear rules. In addition, the faster the welding speed, the higher the arc signal sensitivities; the smaller the groove angle, the greater the arc sensitivities. The arc signal variation rate needs to be modified according to the welding power, groove angles, and weaving or rotate speed.
Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.
Chen, Kunkun; Zhang, Yansong; Wang, Hongze
2017-03-01
Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi
2016-06-01
Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.
Pulsed ultrasonic stir welding system
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2013-01-01
An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.
Bladder welding in rats using controlled temperature CO2 laser system.
Lobik, L; Ravid, A; Nissenkorn, I; Kariv, N; Bernheim, J; Katzir, A
1999-05-01
Laser tissue welding has potential advantages over conventional suture closure of surgical wounds. It is a noncontact technique that introduces no foreign body and limits the possibility of infections and complications. The closure could be immediately watertight and the procedure may be less traumatic, faster and easier. In spite of these positives laser welding has not yet been approved for wide use. The problem in the clinical implementation of this technique arises from the difficulty in defining the conditions under which a highly reliable weld is formed. We have assumed that the successful welding of tissues depends on the ability to monitor and control the surface temperature during the procedure, thereby avoiding underheating or overheating. The purpose of this work was to develop a laser system for reliable welding of urinary tract tissues under good temperature control. We have developed a "smart" laser system that is capable of a dual role: transmitting CO2 laser power for tissue heating, and noncontact (radiometric) temperature monitoring and control. Bladder opening (cystotomy) was performed in 38 rats. Thirty-three animals underwent laser welding. In 5 rats (control group) the bladder wound was closed with one layer of continuous 6-0 dexon sutures. Reliable welding was obtained when the surface temperature was kept at 71 + 5C. Quality of weld was controlled immediately after operation. The rats were sacrificed on days 2, 10 and 30 for histological study. Bladder closure using the laser welding system was successful in 31/33 (94%) animals. Histological examination revealed an excellent welding and healing of the tissue. Efficiency of laser welding of urinary bladder in rats was confirmed by high survival rate and quality of scar that was demonstrated by clinical and histological examinations. In the future, optimal laser welding conditions will be studied in larger animals, using CO2 lasers and other lasers, with deeper radiation penetration into tissues.
On the Prediction of Hot Tearing in Al-to-Steel Welding by Friction Melt Bonding
NASA Astrophysics Data System (ADS)
Jimenez-Mena, N.; Jacques, P. J.; Drezet, J. M.; Simar, A.
2018-07-01
Aluminum alloy AA6061 was welded to dual-phase steel 980 (DP980) by the friction melt bonding (FMB) process. Hot tears have been suppressed by controlling the thermomechanical cycle. In particular, the welding speed and the thermal conductivity of the backing plate have been optimized. A finite-element thermomechanical model coupled with the Rappaz-Drezet-Gremaud (RDG) criterion has been used to explain these experimental observations. The hot tear susceptibility has been reduced with large thermal gradients and with the formation of a cellular microstructure. Both effects are favored by a backing plate made of a material with high thermal conductivity, such as copper.
On the Prediction of Hot Tearing in Al-to-Steel Welding by Friction Melt Bonding
NASA Astrophysics Data System (ADS)
Jimenez-Mena, N.; Jacques, P. J.; Drezet, J. M.; Simar, A.
2018-04-01
Aluminum alloy AA6061 was welded to dual-phase steel 980 (DP980) by the friction melt bonding (FMB) process. Hot tears have been suppressed by controlling the thermomechanical cycle. In particular, the welding speed and the thermal conductivity of the backing plate have been optimized. A finite-element thermomechanical model coupled with the Rappaz-Drezet-Gremaud (RDG) criterion has been used to explain these experimental observations. The hot tear susceptibility has been reduced with large thermal gradients and with the formation of a cellular microstructure. Both effects are favored by a backing plate made of a material with high thermal conductivity, such as copper.
Weldability of a high entropy CrMnFeCoNi alloy
Wu, Zhenggang; David, Stan A.; Feng, Zhili; ...
2016-07-19
We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less
NASA Astrophysics Data System (ADS)
Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei; Huang, YongAn
2017-09-01
Our study aims at developing an effective quality monitoring system in small scale resistance spot welding of titanium alloy. The measured electrical signals were interpreted in combination with the nugget development. Features were extracted from the dynamic resistance and electrode voltage curve. A higher welding current generally indicated a lower overall dynamic resistance level. A larger electrode voltage peak and higher change rate of electrode voltage could be detected under a smaller electrode force or higher welding current condition. Variation of the extracted features and weld quality was found more sensitive to the change of welding current than electrode force. Different neural network model were proposed for weld quality prediction. The back propagation neural network was more proper in failure load estimation. The probabilistic neural network model was more appropriate to be applied in quality level classification. A real-time and on-line weld quality monitoring system may be developed by taking advantages of both methods.
Robotic and automatic welding development at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Jones, C. S.; Jackson, M. E.; Flanigan, L. A.
1988-01-01
Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.
Sensor Control of Robot Arc Welding
NASA Technical Reports Server (NTRS)
Sias, F. R., Jr.
1983-01-01
The potential for using computer vision as sensory feedback for robot gas-tungsten arc welding is investigated. The basic parameters that must be controlled while directing the movement of an arc welding torch are defined. The actions of a human welder are examined to aid in determining the sensory information that would permit a robot to make reproducible high strength welds. Special constraints imposed by both robot hardware and software are considered. Several sensory modalities that would potentially improve weld quality are examined. Special emphasis is directed to the use of computer vision for controlling gas-tungsten arc welding. Vendors of available automated seam tracking arc welding systems and of computer vision systems are surveyed. An assessment is made of the state of the art and the problems that must be solved in order to apply computer vision to robot controlled arc welding on the Space Shuttle Main Engine.
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Roberts, Scott N. (Inventor)
2017-01-01
Systems and methods in accordance with embodiments of the invention fabricate objects including metallic glass-based materials using ultrasonic welding. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: ultrasonically welding at least one ribbon to a surface; where at least one ribbon that is ultrasonically welded to a surface has a thickness of less than approximately 150.mu.m; and where at least one ribbon that is ultrasonically welded to a surface includes a metallic glass-based material.
Welding torch trajectory generation for hull joining using autonomous welding mobile robot
NASA Astrophysics Data System (ADS)
Hascoet, J. Y.; Hamilton, K.; Carabin, G.; Rauch, M.; Alonso, M.; Ares, E.
2012-04-01
Shipbuilding processes involve highly dangerous manual welding operations. Welding of ship hulls presents a hazardous environment for workers. This paper describes a new robotic system, developed by the SHIPWELD consortium, that moves autonomously on the hull and automatically executes the required welding processes. Specific focus is placed on the trajectory control of such a system and forms the basis for the discussion in this paper. It includes a description of the robotic hardware design as well as some methodology used to establish the torch trajectory control.
Weld monitor and failure detector for nuclear reactor system
Sutton, Jr., Harry G.
1987-01-01
Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.
Oxy-Fuel Cutting/Welding. Welding Module 3. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching a four-unit module in oxy-fuel cutting and welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: oxyacetylene welding, oxyacetylene…
Basic Welding Skills. Welding Module 1. Instructor's Guide.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This guide is intended to assist vocational educators in teaching a six-unit module in basic welding skills. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: the welding profession, personal safety,…
Classification of weld defect based on information fusion technology for radiographic testing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less
Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying
2016-03-01
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.
Analytical simulation of weld effects in creep range
NASA Technical Reports Server (NTRS)
Dhalla, A. K.
1985-01-01
The inelastic analysis procedure used to investigate the effect of welding on the creep rupture strength of a typical Liquid Metal Fast Breeder Reactor (LMFBR) nozzle is discussed. The current study is part of an overall experimental and analytical investigation to verify the inelastic analysis procedure now being used to design LMFBR structural components operating at elevated temperatures. Two important weld effects included in the numerical analysis are: (1) the residual stress introduced in the fabrication process; and (2) the time-independent and the time-dependent material property variations. Finite element inelastic analysis was performed on a CRAY-1S computer using the ABAQUS program with the constitutive equations developed for the design of LMFBR structural components. The predicted peak weld residual stresses relax by as much as 40% during elevated temperature operation, and their effect on creep-rupture cracking of the nozzle is considered of secondary importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan
ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders priormore » to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.« less
Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool
NASA Technical Reports Server (NTRS)
Adams, Glynn; Venable, Richard; Lawless, Kirby
2003-01-01
Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.
NASA Astrophysics Data System (ADS)
Wang, Yonghui; Hu, Shengsun; Shen, Junqi
2015-10-01
This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.
Antonini, James M; Leonard, Stephen S; Roberts, Jenny R; Solano-Lopez, Claudia; Young, Shih-Houng; Shi, Xianglin; Taylor, Michael D
2005-11-01
Questions exist concerning the potential carcinogenic effects after welding fume exposure. Welding processes that use stainless steel (SS) materials can produce fumes that may contain metals (e.g., Cr, Ni) known to be carcinogenic to humans. The objective was to determine the effect of in vitro and in vivo welding fume treatment on free radical generation, DNA damage, cytotoxicity and apoptosis induction, all factors possibly involved with the pathogenesis of lung cancer. SS welding fume was collected during manual metal arc welding (MMA). Elemental analysis indicated that the MMA-SS sample was highly soluble in water, and a majority (87%) of the soluble metal was Cr. Using electron spin resonance (ESR), the SS welding fume had the ability to produce the biologically reactive hydroxyl radical (*OH), likely as a result of the reduction of Cr(VI) to Cr(V). In vitro treatment with the MMA-SS sample caused a concentration-dependent increase in DNA damage and lung macrophage death. In addition, a time-dependent increase in the number of apoptotic cells in lung tissue was observed after in vivo treatment with the welding fume. In summary, a soluble MMA-SS welding fume was found to generate reactive oxygen species and cause DNA damage, lung macrophage cytotoxicity and in vivo lung cell apoptosis. These responses have been shown to be involved in various toxicological and carcinogenic processes. The effects observed appear to be related to the soluble component of the MMA-SS sample that is predominately Cr. A more comprehensive in vivo animal study is ongoing in the laboratory that is continuing these experiments to try to elucidate the potential mechanisms that may be involved with welding fume-induced lung disease.
Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium
NASA Astrophysics Data System (ADS)
Malikov, A. G.
2017-12-01
At present, the aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from the lithium admixture. Various technologies of fusible welding of these alloys are being developed. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint after thermomechanical treatment. The effect of scandium on the micro- and macrostructure is studied along with strength characteristics of the welded joint. It is found that thermomechanical treatment allows us to obtain the strength of the welded joint 0.89 for the Al-Mg-Li system and 0.99 for the Al-Cu-Li system with the welded joint modified by scandium in comparison with the base alloy after treatment.
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Stir Friction Welding Used in Ares I Upper Stage Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
Evaluation of occupational exposure to toxic metals released in the process of aluminum welding.
Matczak, Wanda; Gromiec, Jan
2002-04-01
The objective of this study was to evaluate occupational exposure to welding fumes and its elements on aluminum welders in Polish industry. The study included 52 MIG/Al fume samples and 18 TIG/Al samples in 3 plants. Air samples were collected in the breathing zone of welders (total and respirable dust). Dust concentration was determined gravimetrically, and the elements in the collected dust were determined by AAS. Mean time-weighted average (TWA) concentrations of the welding dusts/fumes and their components in the breathing zone obtained for different welding processes were, in mg/m3: MIG/Al fumes mean 6.0 (0.8-17.8), Al 2.1 (0.1-7.7), Mg 0.2 (< 0.1-0.9), Mn 0.014 (0.002-0.049), Cu 0.011 (0.002-0.092), Zn 0.016 (0.002-0.14), Pb 0.009 (0.005-0.025), Cr 0.003 (0.002-0.007), and TIG/Al fumes 0.7 (0.3-1.4), Al 0.17 (0.07-0.50). A correlation has been found between the concentration of the main components and the fume/dust concentrations in MIG/Al and TIG/Al fumes. Mean percentages of the individual components in MIG/Al fumes/dusts were Al: 30 (9-56) percent; Mg: 3 (1-5.6) percent; Mn: 0.2 (0.1-0.3) percent; Cu: 0.2 (< 0.1-1.8) percent; Zn: 0.2 (< 0.1-0.8) percent; Pb: 0.2 (< 0.1-1) percent; Cr: < 0.1 percent. The proportion of the respirable fraction in the fumes and their constituents varied between 10 percent and 100 percent. The results showed that MIG/Al fumes concentration was 1.2 times higher than the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV), and the index of the combined exposure to the determined agents was 2.3 (0.4-8.0), mostly because of high Al2O3 contribution. The background concentrations of the components (ca. 5-10 times lower than those in the breathing zone of the welders) did not exceed the Polish MAC value. The elemental composition of total and respirable fume/dust may differ considerably depending on welding methods, the nature of welding-related operations, and work environment conditions.
Farahani, Rouhollah Dermanaki; Janier, Mathieu; Dubé, Martine
2018-03-23
In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film's electrical resistivity from 9.4 × 10 3 down to 3.1 × 10 -4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors' resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens' cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.
NASA Astrophysics Data System (ADS)
Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar
2017-09-01
Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.
Embedded spectroscopic fiber sensor for on-line arc-welding analysis.
Mirapeix, Jesús; Cobo, Adolfo; Quintela, Antonio; López-Higuera, José-Miguel
2007-06-01
A new fiber sensor system designed for spectroscopic analysis and on-line quality assurance of arc-welding processes is presented here. Although several different approaches have been considered for the optical capture of plasma emission in arc-welding processes, they tend to be invasive and make use of optical devices such as collimators or photodiodes. The solution proposed here is based on the arrangement of an optical fiber, which is used at the same time as the optical capturing device and also to deliver the optical information to a spectrometer, embedded within an arc-welding torch. It will be demonstrated that, by using the shielding gas as a protection for the fiber end, the plasma light emission is efficiently collected, forming a sensor system completely transparent and noninvasive for the welding operator. The feasibility of the proposed sensor designed to be used as the input optics of a welding quality-assurance system based on plasma spectroscopy will be demonstrated by means of several welding tests.
The kinetics of composite particle formation during mechanical alloying
NASA Technical Reports Server (NTRS)
Aikin, B. J. M.; Courtney, T. H.
1993-01-01
The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.
Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints
NASA Astrophysics Data System (ADS)
Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent
2016-10-01
In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.
Automatic visual monitoring of welding procedure in stainless steel kegs
NASA Astrophysics Data System (ADS)
Leo, Marco; Del Coco, Marco; Carcagnì, Pierluigi; Spagnolo, Paolo; Mazzeo, Pier Luigi; Distante, Cosimo; Zecca, Raffaele
2018-05-01
In this paper a system for automatic visual monitoring of welding process, in dry stainless steel kegs for food storage, is proposed. In the considered manufacturing process the upper and lower skirts are welded to the vessel by means of Tungsten Inert Gas (TIG) welding. During the process several problems can arise: 1) residuals on the bottom 2) darker weld 3) excessive/poor penetration and 4) outgrowths. The proposed system deals with all the four aforementioned problems and its inspection performances have been evaluated by using a large set of kegs demonstrating both the reliability in terms of defect detection and the suitability to be introduced in the manufacturing system in terms of computational costs.
Viewing Welds By Computer Tomography
NASA Technical Reports Server (NTRS)
Pascua, Antonio G.; Roy, Jagatjit
1990-01-01
Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.
The Light Plane Calibration Method of the Laser Welding Vision Monitoring System
NASA Astrophysics Data System (ADS)
Wang, B. G.; Wu, M. H.; Jia, W. P.
2018-03-01
According to the aerospace and automobile industry, the sheet steels are the very important parts. In the recent years, laser welding technique had been used to weld the sheet steel part. The seam width between the two parts is usually less than 0.1mm. Because the error of the fixture fixed can’t be eliminated, the welding parts quality can be greatly affected. In order to improve the welding quality, the line structured light is employed in the vision monitoring system to plan the welding path before welding. In order to improve the weld precision, the vision system is located on Z axis of the computer numerical control (CNC) tool. The planar pattern is placed on the X-Y plane of the CNC tool, and the structured light is projected on the planar pattern. The vision system stay at three different positions along the Z axis of the CNC tool, and the camera shoot the image of the planar pattern at every position. Using the calculated the sub-pixel center line of the structure light, the world coordinate of the center light line can be calculated. Thus, the structured light plane can be calculated by fitting the structured light line. Experiment result shows the effective of the proposed method.
Welding of hermetic connectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hieber, D.E.
1976-08-01
Certain systems use hermetically-sealed multipin connectors welded into a stainless steel support ring. Failure of these hermetic seals during welding continues to be a problem, and similar problems are anticipated on advanced systems. Since the assembly is expensive, and the detection, prevention, and repair of hermetic seal failures is costly, development of an improved welding process is important. Extended service life also requires a lower system leak rate, thus causing an increased need for maintaining the hermetic seal without supplemental epoxy sealing and repair. Experience shows that up to 70 percent of the 10-pin SA1810-2 connectors have gross leaks (greatermore » than 0.003 mm/sup 3//s Standard Temperature and Pressure (STP)) after being welded using established welding processes and without using the epoxy pre-seal process. Acceptable leak rates of less than 0.00001 mm/sup 3//s STP were achieved from 20 SA1810-2 10-pin connectors using heat sinks and an intermittent gas-tungsten-arc (GTA) weld technique. The process developed consists of using a massive copper heat sink with silicon thermal joint compound to maintain control of temperature in the hermetic seal area and using a 12-segment GTA weld with compressed argon gas cooling between weld segments. The process and techniques developed are considered acceptable for welding the SA1810 family of connectors.« less
NASA Astrophysics Data System (ADS)
Potrakhov, N. N.; Potrakhov, E. N.; Usachev, E. Y.; Gnedin, M. M.; Voroschuk, D. V.; Shavrina, I. M.
2017-07-01
The article presents the design of a specialized X-ray machine to perform circumferential weld inspections various structural elements of air and space technology. Shows the main specifications of the device and describes a particular application of the apparatus. The results of the use of the device in conditions of real production on one of the local engine companies in the aircraft and space industry.
Wire-Guide Manipulator For Automated Welding
NASA Technical Reports Server (NTRS)
Morris, Tim; White, Kevin; Gordon, Steve; Emerich, Dave; Richardson, Dave; Faulkner, Mike; Stafford, Dave; Mccutcheon, Kim; Neal, Ken; Milly, Pete
1994-01-01
Compact motor drive positions guide for welding filler wire. Drive part of automated wire feeder in partly or fully automated welding system. Drive unit contains three parallel subunits. Rotations of lead screws in three subunits coordinated to obtain desired motions in three degrees of freedom. Suitable for both variable-polarity plasma arc welding and gas/tungsten arc welding.
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-03-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
NASA Astrophysics Data System (ADS)
Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen
2017-09-01
This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.
2013-05-01
A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, A.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.
2013-06-01
A conventional gas metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient, thermal-mechanical finite-element procedure. To achieve two-way thermal-mechanical coupling, the work of plastic deformation resulting from potentially high thermal stresses is allowed to be dissipated in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature dependent. Heat losses from the deposited filler-metal are accounted for by considering conduction to the adjoining workpieces as well as natural convection and radiation to the surroundings. The newly constructed GMAW process model is then applied, in conjunction with the basic material physical-metallurgy, to a prototypical high-hardness armor martensitic steel (MIL A46100). The main outcome of this procedure is the prediction of the spatial distribution of various crystalline phases within the weld and the heat-affected zone regions, as a function of the GMAW process parameters. The newly developed GMAW process model is validated by comparing its predictions with available open-literature experimental and computational data.
Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, P.; Rahman, S.; Wilkowski, G.
1997-04-01
This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from amore » full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.« less
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-05-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
Markert, Agnieszka; Baumann, Ralf; Gerhards, Benjamin; Gube, Monika; Kossack, Veronika; Kraus, Thomas; Brand, Peter
2016-02-01
Recently, it has been shown that exposure to welding fumes containing both zinc and copper leads to asymptomatic systemic inflammation in humans as shown by an increase of blood C-reactive protein. In the present study, it was investigated which metal is responsible for this effect. Fifteen healthy male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc. For each exposure blood C-reactive protein increased. Copper- and zinc-containing welding fumes are able to induce systemic inflammation.
NASA Astrophysics Data System (ADS)
Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu
2017-03-01
In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.
NASA Astrophysics Data System (ADS)
Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.
2014-03-01
A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.
Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire
NASA Technical Reports Server (NTRS)
Russell, Carolyn; Bjorkman, Gerry; McCool, Carolyn (Technical Monitor)
2000-01-01
A viewgraph presentation outlines NASA Marshall Space Flight Center, Lockheed Martin Michoud Space Systems, and McCook Metals' development an aluminum-copper weld filler wire for fusion welding 2195 aluminum lithium. The aluminum-copper based weld filler wire has been identified as B218, which is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The Super Lightweight External Tank for the NASA Space Shuttle Program consists of 2195 welded with 4043 aluminum-silicon weld filler wire. The B218 filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties. An initial characterization of the B218 weld filler wire was performed consisting of initial weld and repair weld evaluation comparing B218 and 4043. The testing involved room temperature and cryogenic tensile testing along with fracture toughness testing. B218 weld filler wire proved to produce enhanced initial and repair weld tensile and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding 2195 and other aluminum lithium alloys over 4043.
Friction Stir Welding Development
NASA Technical Reports Server (NTRS)
Romine, Peter L.
1998-01-01
The research of this summer was a continuation of work started during the previous summer faculty fellowship period. The Friction Stir Welding process (FSW) patented by The Welding Institute (TWI), in Great Britain, has become a popular topic at the Marshall Space Flight Center over the past year. Last year it was considered a novel approach to welding but few people took it very seriously as a near term solution. However, due to continued problems with cracks in the new aluminum-lithium space shuttle external tank (ET), the friction stir process is being mobilized at full speed in an effort to mature this process for the potential manufacture of flight hardware. It is now the goal of NASA and Lockheed-Martin Corporation (LMC) to demonstrate a full-scale friction stir welding system capable of welding ET size barrel sections. The objectives this summer were: (1) Implementation and validation of the rotating dynamometer on the MSFC FSW system; (2) Collection of data for FSW process modeling efforts; (3) Specification development for FSW implementation on the vertical weld tool; (4) Controls and user interface development for the adjustable pin tool; and (5) Development of an instrumentation system for the planishing process. The projects started this summer will lead to a full scale friction stir welding system that is expected to produce a friction stir welded shuttle external tank type barrel section. The success of this could lead to the implementation of the friction stir process for manufacturing future shuttle external tanks.
NASA Astrophysics Data System (ADS)
Alharthi, Nabeel H.
The automotive industry developments focused on increasing fuel efficiency are accomplished by weight reduction of vehicles, which consequently results in less negative environmental impact. Usage of low density materials such as Magnesium alloys is an approach to replace heavier structural components. One of the challenges in deformation processing of Magnesium is its low formability attributed to the hexagonal close packed (hcp) crystal structure. The extrusion process is one of the most promising forming processes for Magnesium because it applies a hydrostatic compression state of stress during deformation resulting in improved workability. Many researchers have attempted to fully understand solid state bonding during deformation in different structural materials such as Aluminum, Copper and other metals and alloys. There is a lack of sufficient understanding of the extrusion welding in these materials as well as very limited knowledge on this subject for hollow profiles made from Magnesium alloys. The weld integrity and the characteristic of the welding microstructure are generally unknown. In this dissertation three related research projects are investigated by using different tools such as microstructure characterization, mechanical testing, thermo-mechanical physical simulation and finite element numerical modeling. Project 1: Microstructure characterization supported by mechanical testing of the extrusion welding regions in Magnesium alloy AM30 extrudate. The microstructure characterization was conducted using Light Optical Microscopy (LOM), in addition to LOM the electron backscattered diffraction (EBSD) technique was implemented to characterize in depth the deformed and welded microstructure. Project 2: Finite element numerical simulation of AM30 extrudate to model different process parameters and their influence on localized state variables such as strain, strain rate, temperature and normal pressure within the weld zone. Project 3: Physical simulation of the extrusion welding by using Gleeble 3500 thermo-mechanical simulator to create deformation welds in Magnesium alloy AM30 samples in compression test under various temperatures and strain rates conditions. Based on the obtained results from the performed research projects and literature review, a new qualitative criterion of extrusion welding has been introduced as contribution to the field. The criterion and its analysis have provided better understanding of material response to processing parameters and assisted in selecting the processing windows for good practices in the extrusion process. In addition, the new approach contributed to better understanding and evaluating the quality of the solid state bonding of Mg alloy. Accordingly, the criteria help to avoiding formation of potential mechanical and metallurgical imperfections.
Discontinuity Detection in the Shield Metal Arc Welding Process
Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros
2017-01-01
This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors—a microphone and piezoelectric—that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system’s high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries. PMID:28489045
Reed Valve Regulates Welding Back-Purge Pressure
NASA Technical Reports Server (NTRS)
Coby, J. Ben, Jr.; Weeks, Jack L.
1991-01-01
Simple modification yields welds of better quality. Reed valve halves fluctuations in pressure in back-purge chamber attached to workpiece undergoing keyhole plasma arc welding. Identical to one used in fuel system of two-cycle gasoline engine. Backbead smoother, and weld penetrates more uniformly.
Integration of NASA-sponsored studies on aluminum welding
NASA Technical Reports Server (NTRS)
Masubuchi, K.
1972-01-01
The results are presented of numerous studies relating to aluminum alloy welding. The subjects covered include: (1) effects of porosity on weld joint performance, (2) sources of porosity, (3) weld thermal effects, (4) residual stresses and distortion, and (5) manufacturing process system control.
Certification of a weld produced by friction stir welding
Obaditch, Chris; Grant, Glenn J
2013-10-01
Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.
NASA Astrophysics Data System (ADS)
Annin, B. D.; Fomin, V. M.; Karpov, E. V.; Malikov, A. G.; Orishich, A. M.
2017-09-01
Results of experimental investigations of welded joints of high-strength aluminum-lithium alloys of the Al-Cu-Li and Al-Mg-Li systems are reported. The welded joints are obtained by means of laser welding and are subjected to various types of processing for obtaining high-strength welded joints. A microstructural analysis is performed. The phase composition and mechanical properties of the welded joints before and after heat treatment are studied. It is found that combined heat treatment of the welded joint (annealing, quenching, and artificial ageing) increases the joint strength, but appreciably decreases the alloy strength outside the region thermally affected by the welding process.
The effect of heat sinks in GTA microwelding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knorovsky, G.A.; Burchett, S.N.
1989-01-01
When miniature devices containing glass-to-metal seals are closure welded it is accepted practice to incorporate thermal heat sinks into the fixturing. This is intended to assure that the heat from gas tungsten arc (GTA) welding will not cause thermal stress-induced cracking of the seals and loss of hermeticity. The design of these heat sinks has never been systematically studied; instead only ''engineering horse sense'' has been applied. This practice has been successful in the past; however, the component being GTA welded have become smaller and more complex (i.e., more pins) and glass cracking problems are being encountered. The technology ofmore » producing glass seal-containing lids (called ''headers'') has benefited from finite element analyses in deciding how to optimally dimension pin-to-glass seal diameter ratios and glass-to-metal thickness ratios in order to minimize thermal stresses locked in during manufacture. It appeared likely that an analysts of the stresses generated by welding would also be beneficial. Recently, computer speed and code capabilities have increased to the point where finite element analysis of a close simulation of real hardware can be made, including the effect of external heat sinks. The work reported here involves an analysis (with some supporting experimental data) of a miniature thermal battery which encountered glass cracking problems. In the course of the analysis various heat sink practices were examined. Among other findings, through-thickness thermal gradients in a header with a heat sink were found to equal in-plane thermal gradients in a header without any heat sinking at the glass seal positions. Also noted were significant variations due to relatively minor changes in the weld preparation geometry. A summary of good practice for heat sinking will be presented. 4 refs., 6 figs., 2 tabs.« less
Vibration welding system with thin film sensor
Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou
2014-03-18
A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.
Technology of welding aluminum alloys-IV
NASA Technical Reports Server (NTRS)
Ginez, R.; Lewis, J. R.; Millett, A. U.; Saenger, K. A.; Skelly, J. K.; Standiford, V. E.; Whiteman, J. O.
1978-01-01
Skate-weld carriage and track assembly were developed for controlled fusion welding on compound-curvature surfaces. Unlike fixed-position carriage used for vertical, horizontal, and circumferential welding, carriage has suspension system that permits angular positioning of weld head on carriage. It also has carriage-and-drive track mechanism capable of traveling over compound curvatures. Carriage is designed with universal mounting platform so that slim tools, weld heads, or X-ray units can be interchanged without need for realinement.
Development and Verification of a Weld Simulation Capability for VAST
2012-06-01
midsurface -aligned and not contain any offsets (i.e., thickness is symmetric on either side of the midsurface ). Furthermore, for a given element...both above and below the midsurface – i.e., NT /2 elements representing half the thickness both above and below (Figure 35). This operation is easy for
Research on Kinematic Trajectory Simulation System of KUKA Arc Welding Robot System
NASA Astrophysics Data System (ADS)
Hu, Min
2017-10-01
In this paper, the simulation trajectory simulation of KUKA arc welding robot system is realized by means of VC platform. It is used to realize the teaching of professional training of welding robot in middle school. It provides teaching resources for the combination of work and study and integration teaching, which enriches the content of course teaching.
Yu, I J; Kim, K J; Chang, H K; Song, K S; Han, K T; Han, J H; Maeng, S H; Chung, Y H; Park, S H; Chung, K H; Han, J S; Chung, H K
2000-07-27
In order to investigate occupational diseases related to welding fume exposure, such as nasal septum perforation, pneumoconiosis and manganese intoxication, we built a welding fume exposure system that included a welding fume generator, exposure chamber and fume collector. The fume concentrations in the exposure chamber were monitored every 15 min during a 2-h exposure. Fume (mg/m(3)) concentrations of major metals, including Fe, Mn, Cr, and Ni were found to be consistently maintained. An acute inhalation toxicity study was conducted by exposing male Sprague-Dawley rats to the welding fumes generated in this apparatus by stainless steel arc welding. The rats were exposed in the inhalation chamber to a welding fume with a concentration of 62 mg/m(3) total suspended particulates for 4 h. Animals were sacrificed at 4 h and at 1, 3, 7, 10, and 14 days after exposure. Histopathological examinations were conducted on the animals' upper respiratory tracts, including the nasal pathway and the conducting airway, and on the gas exchange region including the alveolar ducts, alveolar sacs, and alveoli. Diameters of fume particles varied from 0.02 to 0.81 microm and were distributed log normally, with a mean diameter of 0.1 microm and geometric standard deviation of 1.42. Rats exposed to the welding fume for 4 h did not show any significant respiratory system toxicity. The mean particle diameter of 0.1 microm resulted in little adsorption of the welding fume particles in the upper respiratory tract. Particle adsorption took place principally in the lower respiratory tracts, including bronchioles, alveolar ducts, alveolar sacs, and alveoli.
1997-01-01
Cr-Mo quenched and tempered (Q&T) steel . Both A723 Grade 1 and Grade 2 compositions were evaluated to determine the effects of strength, composition ...15] Craig, B., "Limitations of Alloying to Improve the Threshold for Hydrogen Stress Cracking of Steels ", Hydrogen Effects on Material Behavior ...considered are as follows: 1. Hydrogen mass transfer in steels and welded joints: analytical equipment; effect of element composition of weld metal and
NASA Astrophysics Data System (ADS)
Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic
2014-03-01
The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.
Electrical potential difference during laser welding
NASA Astrophysics Data System (ADS)
Zohm, H.; Ambrosy, G.; Lackner, K.
2015-01-01
We present a new model for the generation of thermoelectric currents during laser welding, taking into account sheath effects at both contact points as well as the potential drop within the quasi-neutral plasma generated by the laser. We show that the model is in good agreement with experimentally measured electric potential difference between the hot and the cold parts of the welded workpiece. In particular, all three elements of the model are needed to correctly reproduce the sign of the measured voltage difference. The mechanism proposed relies on the temperature dependence of the electron flux from the plasma to the workpiece and hence does not need thermoemission from the workpiece surface to explain the experimentally observed sign and magnitude of the potential drop.
Prediction of Microstructure in HAZ of Welds
NASA Astrophysics Data System (ADS)
Khurana, S. P.; Yancey, R.; Jung, G.
2004-06-01
A modeling technique for predicting microstructure in the heat-affected zone (HAZ) of the hypoeutectoid steels is presented. This technique aims at predicting the phase fractions of ferrite, pearlite, bainite and martensite present in the HAZ after the cool down of a weld. The austenite formation kinetics and austenite decomposition kinetics are calculated using the transient temperature profile. The thermal profile in the weld and the HAZ is calculated by finite-element analysis (FEA). Two kinds of austenite decomposition models are included. The final phase fractions are predicted with the help of a continuous cooling transformation (CCT) diagram of the material. In the calculation of phase fractions either the experimental CCT diagram or the mathematically calculated CCT diagram can be used.
NASA Astrophysics Data System (ADS)
Subashini, L.; Vasudevan, M.
2012-02-01
Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.
Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds
NASA Astrophysics Data System (ADS)
Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.
2009-10-01
The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.
Technology of welding aluminum alloys-I
NASA Technical Reports Server (NTRS)
Harrison, J. R.; Korb, L. J.; Oleksiak, C. E.
1978-01-01
Systems approach to high-quality aluminum welding uses square-butt joints, kept away from sharp contour changes. Intersecting welds are configured for T-type intersections rather than crossovers. Differences in panel thickness are accommodated with transition step areas where thickness increases or decreases within weld, but never at intersection.
Instructional Guidelines. Welding.
ERIC Educational Resources Information Center
Fordyce, H. L.; Doshier, Dale
Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…
Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding
NASA Astrophysics Data System (ADS)
Luo, Masiyang; Shin, Yung C.
2015-01-01
In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.
Application of TRIZ Methodology in Diffusion Welding System Optimization
NASA Astrophysics Data System (ADS)
Ravinder Reddy, N.; Satyanarayana, V. V.; Prashanthi, M.; Suguna, N.
2017-12-01
Welding is tremendously used in metal joining processes in the manufacturing process. In recent years, diffusion welding method has significantly increased the quality of a weld. Nevertheless, diffusion welding has some extent short research and application progress. Therefore, diffusion welding has a lack of relevant information, concerned with the joining of thick and thin materials with or without interlayers, on welding design such as fixture, parameters selection and integrated design. This article intends to combine innovative methods in the application of diffusion welding design. This will help to decrease trial and error or failure risks in the welding process being guided by the theory of inventive problem solving (TRIZ) design method. This article hopes to provide welding design personnel with innovative design ideas under research and for practical application.
Hot-pressed production and laser properties of ZnSe:Fe2+
NASA Astrophysics Data System (ADS)
Avetisov, R. I.; Balabanov, S. S.; Firsov, K. N.; Gavrishchuk, E. M.; Gladilin, A. A.; Ikonnikov, V. B.; Kalinushkin, V. P.; Kazantsev, S. Yu.; Kononov, I. G.; Zykova, M. P.; Mozhevitina, E. N.; Khomyakov, A. V.; Savin, D. V.; Timofeeva, N. A.; Uvarov, O. V.; Avetissov, I. Ch.
2018-06-01
A new approach for fabrication of laser elements in form of plates based on ZnSe:Fe2+ with undoped faces, combining the advantages of hot pressing and diffusion techniques has been proposed. CVD-ZnSe was used as a host material. 1 μm Fe film was deposited by electron-beam technique on one side of the polished CVD-ZnSe plate (20 mm in diameter and 2 mm in thickness). The elements were stacked in contact by iron surfaces, placed in a hot press-mold die, heated under vacuum to 1000 °C, exposed during 60 min with the application of 25 MPa uniaxial pressure. The iron film was dissolved in ZnSe matrix and elements welded together. The samples were subjected to hot isostatic pressing (HIP) during 29 h at 100 MPa argon pressure and 1300 °C. The influence of sintering and HIP processing conditions on local morphology and properties of the interface of welded elements was studied by SEM, TEM and optical microscopy. For all composite elements the lasing was obtained at a pumping by HF-laser at RT with high efficiency around 40%. The proposed technique removes restrictions on the size of laser elements and appears to be very promising for the management of the distribution profile of the doping component.
Infrared Thermography For Welding
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.; Lucky, Brian D.; Spiegel, Lyle B.; Hudyma, Russell M.
1992-01-01
Infrared imaging and image-data-processing system shows temperatures of joint during welding and provides data from which rates of heating and cooling determined. Information used to control welding parameters to ensure reliable joints, in materials which microstructures and associated metallurgical and mechanical properties depend strongly on rates of heating and cooling. Applicable to variety of processes, including tungsten/inert-gas welding; plasma, laser, and resistance welding; cutting; and brazing.
Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy
NASA Technical Reports Server (NTRS)
McGill, Preston; Burkholder, Jonathan
2012-01-01
Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.
Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems
NASA Technical Reports Server (NTRS)
Henon, B. K.
1985-01-01
Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.