NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.
2017-10-01
We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.
DOT National Transportation Integrated Search
2010-02-01
A finite element model for analysis of mass concrete was developed in this study. To validate the developed model, large concrete blocks made with four different mixes of concrete, typical of use in mass concrete applications in Florida, were made an...
Elemental mass spectroscopy of remote surfaces from laser-induced plasmas
NASA Technical Reports Server (NTRS)
Situ, W.; DeYoung, R. J.
1994-01-01
The elemental mass analysis of laser-produced ions from Al, Cu, Ge, Ag, and a lunar simulant target when irradiated by a 400-mJ, 8-ns, Nd: YAG laser at 1 x 10(exp 9) W/cm(exp 2), is reported. Ions traveled down a 11.1-m evacuated tube to an ion-trap 1-m time-of-flight (TOF) mass spectrometer where an elemental mass spectrum was recorded. The amount of target material removed per laser pulse and the ionization fraction were measured. The ion spatial distribution was measured at 11.1-m distance and found to be near a fourth-power cosine distribution. These results indicate the ability to mass analyze a surface over a distance of many kilometers for lunar and asteroid surface elemental mass analysis by a remote satellite or lunar rover.
Guideline on Isotope Dilution Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaffney, Amy
Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. Thismore » method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.« less
Inorganic trace analysis by mass spectrometry
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine; Dietze, Hans-Joachim
1998-10-01
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.
Wolf, Ruth E.; Adams, Monique
2015-01-01
Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.
The determination of elements in herbal teas and medicinal plant formulations and their tisanes.
Pohl, Pawel; Dzimitrowicz, Anna; Jedryczko, Dominika; Szymczycha-Madeja, Anna; Welna, Maja; Jamroz, Piotr
2016-10-25
Elemental analysis of herbal teas and their tisanes is aimed at assessing their quality and safety in reference to specific food safety regulations and evaluating their nutritional value. This survey is dedicated to atomic spectroscopy and mass spectrometry element detection methods and sample preparation procedures used in elemental analysis of herbal teas and medicinal plant formulations. Referring to original works from the last 15 years, particular attention has been paid to tisane preparation, sample matrix decomposition, calibration and quality assurance of results in elemental analysis of herbal teas by different atomic and mass spectrometry methods. In addition, possible sources of elements in herbal teas and medicinal plant formulations have been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.
2016-08-01
The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.
Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.
Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J
1996-06-01
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.
CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS
This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...
NASA Astrophysics Data System (ADS)
Devès, Guillaume; Cohen-Bouhacina, Touria; Ortega, Richard
2004-10-01
We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm).
Miller, C.M.; Nogar, N.S.
1982-09-02
Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.
NASA Astrophysics Data System (ADS)
Fu, Liang; Shi, Shu-Yun; Chen, Xiao-Qing
2017-07-01
The concentration of twelve trace elements in the water decoction of medicine food homology plants (MFHP) was determined by inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). Water decoctions of MFHP were analyzed directly using the MS/MS mode after acidification by 1% (v/v) nitric acid. The polyatomic interferences were eliminated by oxygen mass shift, oxygen on-mass, and ammonia mass shift. The accuracy of the method was verified by analysis of standard reference materials. This method was utilized to investigate the water decoction composition of 16 common Chinese MFHPs. The trace elements in the water decoctions of different MFHPs presented significantly different dissolution ratios. The dissolution ratio of V was the lowest (4.21%-14.86%), whereas Zn showed the highest dissolution ratio (24.87%-86.80%). In addition, the dissolution ratio of heavy metallic elements in most MFHP was equal to or was lower than 30%. Therefore, consumption of MHFP decoction could decrease the heavy metal intake associated with MFHP use and reduce the risk of heavy metal poisoning.
NASA Astrophysics Data System (ADS)
Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor
2014-10-01
A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.
Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su
2016-12-01
This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oropeza, D.
2016-12-01
A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.
Elemental analysis of size-fractionated particulate matter sampled in Göteborg, Sweden
NASA Astrophysics Data System (ADS)
Wagner, Annemarie; Boman, Johan; Gatari, Michael J.
2008-12-01
The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Göteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 µm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.
NASA Astrophysics Data System (ADS)
Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.
2003-11-01
Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Tyler; Kuznetsov, Ilya; Willingham, David
The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less
Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A
2008-01-01
Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.
Isotopic Analysis and Evolved Gases
NASA Technical Reports Server (NTRS)
Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry
1996-01-01
Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.
Heringer, Rodrigo D; Ranville, James F
2018-05-25
Single particle inductively coupled plasma mass spectrometry (spICP-MS) was investigated as a screening-level technique for the analysis and characterization of inorganic gunshot residue (IGSR) nanoparticles. spICP-MS works with undigested samples whereby nanoparticles (NPs) in a suspension are individually atomized and ionized as they reach the plasma, each resulting in a pulse of analyte ions that can be quantified. The method is rapid, and signals from hundreds of NPs can be collected in 1-2min per sample. The technique is quantitative for NP mass and number concentration when only one element (single element mode) is measured using a quadrupole MS. Likewise, a qualitative elemental fingerprint can be obtained for individual NPs when peak-hopping between two elements (dual element mode). For this proof of concept study, each shooter's hand was sampled with ultrapure water or swab to obtain NPs suspensions. Measurements of antimony, barium, and lead were performed using both analysis modes. With no sample preparation and fully automated sample introduction, it is possible to analyze more than 100 samples in a day. Results show that this technique opens a new perspective for future research on GSR sample identification and characterization and can complement SEM/EDX analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
ARO - Terrestrial Research Program, Methodologies and Protocols for Characterization of Geomaterials
2015-05-14
of ice involves melting, digestion, and analysis using inductively coupled plasma – mass spectrometry (ICPMS). ICP-MS analysis established elemental...4] have distinct chemical compositions. Knowledge of the chemical composition of the mineral assemblage present in a rock is critical to...activation analysis (INAA), to inductively-coupled plasma analysis and mass spectrometry (ICP & ICP-MS), mass spectrometry (MS), and laser-ablation
Matsuda, Fumio; Shinbo, Yoko; Oikawa, Akira; Hirai, Masami Yokota; Fiehn, Oliver; Kanaya, Shigehiko; Saito, Kazuki
2009-01-01
Background In metabolomics researches using mass spectrometry (MS), systematic searching of high-resolution mass data against compound databases is often the first step of metabolite annotation to determine elemental compositions possessing similar theoretical mass numbers. However, incorrect hits derived from errors in mass analyses will be included in the results of elemental composition searches. To assess the quality of peak annotation information, a novel methodology for false discovery rates (FDR) evaluation is presented in this study. Based on the FDR analyses, several aspects of an elemental composition search, including setting a threshold, estimating FDR, and the types of elemental composition databases most reliable for searching are discussed. Methodology/Principal Findings The FDR can be determined from one measured value (i.e., the hit rate for search queries) and four parameters determined by Monte Carlo simulation. The results indicate that relatively high FDR values (30–50%) were obtained when searching time-of-flight (TOF)/MS data using the KNApSAcK and KEGG databases. In addition, searches against large all-in-one databases (e.g., PubChem) always produced unacceptable results (FDR >70%). The estimated FDRs suggest that the quality of search results can be improved not only by performing more accurate mass analysis but also by modifying the properties of the compound database. A theoretical analysis indicates that FDR could be improved by using compound database with smaller but higher completeness entries. Conclusions/Significance High accuracy mass analysis, such as Fourier transform (FT)-MS, is needed for reliable annotation (FDR <10%). In addition, a small, customized compound database is preferable for high-quality annotation of metabolome data. PMID:19847304
Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J
2007-01-01
Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.
Hendriks, Lyndsey; Gundlach-Graham, Alexander; Günther, Detlef
2018-04-25
Due to the rapid development of nanotechnologies, engineered nanomaterials (ENMs) and nanoparticles (ENPs) are becoming a part of everyday life: nanotechnologies are quickly migrating from laboratory benches to store shelves and industrial processes. As the use of ENPs continues to expand, their release into the environment is unavoidable; however, understanding the mechanisms and degree of ENP release is only possible through direct detection of these nanospecies in relevant matrices and at realistic concentrations. Key analytical requirements for quantitative detection of ENPs include high sensitivity to detect small particles at low total mass concentrations and the need to separate signals of ENPs from a background of dissolved elemental species and natural nanoparticles (NNPs). To this end, an emerging method called single-particle inductively coupled plasma mass spectrometry (sp-ICPMS) has demonstrated great potential for the characterization of inorganic nanoparticles (NPs) at environmentally relevant concentrations. Here, we comment on the capabilities of modern sp-ICPMS analysis with particular focus on the measurement possibilities offered by ICP-time-of-flight mass spectrometry (ICP-TOFMS). ICP-TOFMS delivers complete elemental mass spectra for individual NPs, which allows for high-throughput, untargeted quantitative analysis of dispersed NPs in natural matrices. Moreover, the multi-element detection capabilities of ICP-TOFMS enable new NP-analysis strategies, including online calibration via microdroplets for accurate NP mass quantification and matrix compensation.
Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS
NASA Technical Reports Server (NTRS)
Jenner, Frances E.; Arevalo, Ricardo D., Jr.
2016-01-01
Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).
Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong
2016-10-18
Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.
USDA-ARS?s Scientific Manuscript database
An optimized single run evaluation that would accurately determine the elemental composition of as many compounds present in an extract would greatly aid in the evaluation of plant tissues. For phytochemicals, we have used accurate mass analysis to quickly characterize the potential chemical formula...
ERIC Educational Resources Information Center
Schwarz, Gunnar; Burger, Marcel; Guex, Kevin; Gundlach-Graham, Alexander; Ka¨ser, Debora; Koch, Joachim; Velicsanyi, Peter; Wu, Chung-Che; Gu¨nther, Detlef; Hattendorf, Bodo
2016-01-01
A public demonstration of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) for fast and sensitive qualitative elemental analysis of solid everyday objects is described. This demonstration served as a showcase model for modern instrumentation (and for elemental analysis, in particular) to the public. Several steps were made to…
DETERMINATION OF ELEMENTAL COMPOSITIONS BY HIGH RESOLUTION MASS SPECTROMETRY WITHOUT MASS CALIBRANTS
Widely applicable mass calibrants, including perfluorokerosene, are available for gas-phase introduction of analytes ionized by electron impact (EI) prior to analysis using high resolution mass spectrometry. Unfortunately, no all-purpose calibrants are available for recently dev...
Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D.; Baranov, Vladimir I.; Nitz, Mark; Winnik, Mitchell A.
2008-01-01
Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping. PMID:19122859
Characterization Of Nuclear Materials Using Time-Of-Flight ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A
2006-01-01
The investigation of illicit trafficking of nuclear materials, nuclear safeguards analysis, and non-proliferation control requires sensitive and isotope-selective detection methods to gain crucial nuclear forensic information like isotope 'fingerprints' and multi-element signatures. The advantage of time-of-flight (TOF) mass spectrometry - quasi-simultaneous multi-mass analysis - combined with an inductively coupled plasma (ICP) ion source provides an analytical instrument with multi-element and multi-isotope capability and good detection limits. A TOF-ICP-MS system thus appears to be an advantageous choice for the investigation and characterization of nuclear materials. We present here results using a GBC OptiMass 8000 time-of-flight ICP-MS for the isotope screening ofmore » solid samples by laser ablation and the multi-element determination of impurities in uranium ore concentrates using matrix matched standards. A laser ablation system (New Wave Research, UP 213) coupled to the TOF-ICP-MS instrument has been used to optimize the system for analysis of non-radioactive metal samples of natural isotopic composition for a variety of elements including Cu, Sr, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, and Pb in pure metals, alloys, and glasses to explore precision, accuracy, and detection limits. Similar methods were then applied to measure uranium. When the laser system is optimized, no mass bias correction is required. Precision and accuracy for the determination of the isotopic composition is typically 1 - 3% for elemental concentrations of as little as 50 ppm in the matrix, with no requirement for sample preparation. The laser ablation precision and accuracy are within ~10x of the instrumental limits for liquid analysis (0.1%). We have investigated the capabilities of the TOF-ICP-MS for the analysis of impurities in uranium matrices. Matrix matching has been used to develop calibration curves for a range of impurities (alkaline, earth-alkaline, transition metals, and rare earth elements). These calibration curves have been used to measure impurities in a number of uranium samples. The results from the TOF-ICP-MS will be compared with other mass spectrometric methods.« less
Probing the Allende meteorite with a miniature laser-ablation mass analyser for space application
NASA Astrophysics Data System (ADS)
Neuland, M. B.; Meyer, S.; Mezger, K.; Riedo, A.; Tulej, M.; Wurz, P.
2014-10-01
We measured the elemental composition on a sample of Allende meteorite with a miniature laser ablation mass spectrometer. This laser mass spectrometer (LMS) has been designed and built at the University of Bern in the Department of Space Research and Planetary Sciences with the objective of using such an instrument on a space mission. Utilising the meteorite Allende as the test sample in this study, it is demonstrated that the instrument allows the in situ determination of the elemental composition and thus mineralogy and petrology of untreated rocky samples, particularly on planetary surfaces. In total, 138 measurements of elemental compositions have been carried out on an Allende sample. The mass spectrometric data are evaluated and correlated with an optical image. It is demonstrated that by illustrating the measured elements in the form of mineralogical maps, LMS can serve as an element imaging instrument with a very high spatial resolution of μm scale. The detailed analysis also includes a mineralogical evaluation and an investigation of the volatile element content of Allende. All findings are in good agreement with published data and underline the high sensitivity, accuracy and capability of LMS as a mass analyser for space exploration.
Garbarino, John R.; Struzeski, Tedmund M.
1998-01-01
Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) can be used to determine 26 elements in whole-water digests. Both methods have distinct advantages and disadvantages--ICP-OES is capable of analyzing samples with higher elemental concentrations without dilution, however, ICP-MS is more sensitive and capable of determining much lower elemental concentrations. Both techniques gave accurate results for spike recoveries, digested standard reference-water samples, and whole-water digests. Average spike recoveries in whole-water digests were 100 plus/minus 10 percent, although recoveries for digests with high dissolved-solid concentrations were lower for selected elements by ICP-MS. Results for standard reference-water samples were generally within 1 standard deviation of hte most probable values. Statistical analysis of the results from 43 whole-water digest indicated that there was no significant difference among ICP-OES, ICP-MS, and former official methods of analysis for 24 of the 26 elements evaluated.
Lichte, F.E.
1995-01-01
A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.
NASA Astrophysics Data System (ADS)
Walaszek, Damian; Senn, Marianne; Wichser, Adrian; Faller, Markus; Wagner, Barbara; Bulska, Ewa; Ulrich, Andrea
2014-09-01
This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail.
ON CRITICAL MASS ANALYSIS OF JRR-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-01-01
The critica mass of the JRR-2 was found to be 15 fuel elements, instead of 8 as expected, when the reactor reached criticaity. The critica mass was analyzed by AMF and JAERI a few years ago, but afterwards some modifications have been made of the stucture for the reinforcement, for example, during the construction. The critical mass is recalculated perfectly and the difference bctween 15 and S fuel elements is discussed. The deviation of the critical mass is mainly caused by the effects of control rods, fuel elcments, grid-plate, etc., in the reflector; only heavy water or light water wasmore » conaidered as the reflector in the previous calculation. A simple method is used to calculate the critical mass. The effective multiplication factor for the core with 15 fuel elements is obtained about 2% higher than the experimental value. This difference is also discussed in detail. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellin, M. J.; Veryovkin, I. V.; Levine, J.
2010-01-01
There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.
Finite-element analysis of dynamic fracture
NASA Technical Reports Server (NTRS)
Aberson, J. A.; Anderson, J. M.; King, W. W.
1976-01-01
Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.
Analysis and sizing of Mars aerobrake structure
NASA Technical Reports Server (NTRS)
Raju, I. S.; Craft, W. J.
1993-01-01
A cone-sphere aeroshell structure for aerobraking into Martian atmosphere is studied. Using this structural configuration, a space frame load-bearing structure is proposed. To generate this structure efficiently and to perform a variety of studies of several configurations, a mesh generator that utilizes only a few configurational parameters is developed. A finite element analysis program that analyzes space frame structures was developed. A sizing algorithm that arrives at a minimum mass configuration was developed and integrated into the finite element analysis program. A typical 135-ft-diam aerobrake configuration was analyzed and sized. The minimum mass obtained in this study using high modulus graphite/epoxy composite material members is compared with the masses obtained from two other aerobrake structures using lightweight erectable tetrahedral truss and part-spherical truss configurations. Excellent agreement for the minimum mass was obtained with the three different aerobrake structures. Also, the minimum mass using the present structure was obtained when the supports were not at the base but at about 75 percent of the base diameter.
2016-12-01
masses collide, they form a supercritical mass . Criticality refers to the neutron population within the system. A critical system is one that can...Spectrometry, no. 242, pp. 161–168, 2005. [9] S. Raeder, “Trace analysis of actinides in the environment by means of resonance ionization mass ...first ionization potential of actinide elements by resonance ionization mass spectrometry.” Spectrochimica Acta part B: Atomic Spectroscopy. vol. 52
Ion microprobe mass analysis of lunar samples. Lunar sample program
NASA Technical Reports Server (NTRS)
Anderson, C. A.; Hinthorne, J. R.
1971-01-01
Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.
Petroleomics: the next grand challenge for chemical analysis.
Marshall, Alan G; Rodgers, Ryan P
2004-01-01
Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry has recently revealed that petroleum crude oil contains heteroatom-containing (N,O,S) organic components having more than 20,000 distinct elemental compositions (C(c)H(h)N(n)O(o)S(s)). It is therefore now possible to contemplate the ultimate characterization of all of the chemical constituents of petroleum, along with their interactions and reactivity, a concept we denote as "petroleomics". Such knowledge has already proved capable of distinguishing petroleum and its distillates according to their geochemical origin and maturity, distillation cut, extraction method, catalytic processing, etc. The key features that have opened up this new field have been (a) ultrahigh-resolution FT-ICR mass analysis, specifically, the capability to resolve species differing in elemental composition by C(3) vs SH(4) (i.e., 0.0034 Da); (b) higher magnetic field to cover the whole mass range at once; (c) dynamic range extension by external mass filtering; and (d) plots of Kendrick mass defect vs nominal Kendrick mass as a means for sorting different compound "classes" (i.e., numbers of N, O, and S atoms), "types" (rings plus double bonds), and alkylation ((-CH(2))(n)) distributions, thereby extending to >900 Da the upper limit for unique assignment of elemental composition based on accurate mass measurement. The same methods are also being applied successfully to analysis of humic and fulvic acids, coals, and other complex natural mixtures, often without prior or on-line chromatographic separation.
NASA Astrophysics Data System (ADS)
Shaltout, Abdallah A.; Hassan, Salwa K.; Karydas, Andreas G.; Zaki, Z. I.; Mostafa, Nasser Y.; Kregsamer, Peter; Wobrauschek, Peter; Streli, Christina
2018-07-01
Fine aerosol particles with aerodynamic diameter equal or <2.5 μm (PM2.5) have been collected from industrial and residential areas of Greater Cairo, Egypt during two different seasons namely; autumn 2014 and winter 2014/2015. Energy dispersive X-ray fluorescence (EDXRF) analysis utilizing polarization geometry and three different secondary targets (CaF2, Ge, and Mo) was employed for the quantitative analysis of eighteen (18) elements in PM2.5 samples. Light elements like Na and Mg was possible to be quantified, whereas detection limits in the range of few ng m-3 were attained for the most of the detected elements. Although, the average mass concentrations of the PM2.5 collected from the residential area (27 ± 7 μg m-3) is close to the annual mean limit value, a significant number of the collected samples (33%) presented higher average mass concentrations. For the industrial location, the average mass concentration is equal to 55 ± 19 μg m-3, exceeded twofold the annual mean limit value of the European Commission. Remarkably high elemental concentrations were determined for the most of the detected elements from the industrial area samples, clearly indicating the significant influence of anthropogenic activities. The present optimized EDXRF analysis offered significantly improved analytical range and limits of detection with respect to previous similar studies, thus enhancing our knowledge and understanding on the contribution of different pollution sources.
Aptamer-facilitated mass cytometry.
Mironov, Gleb G; Bouzekri, Alexandre; Watson, Jessica; Loboda, Olga; Ornatsky, Olga; Berezovski, Maxim V
2018-05-01
Mass cytometry is a novel cell-by-cell analysis technique, which uses elemental tags instead of fluorophores. Sample cells undergo rapid ionization in inductively coupled plasma and the ionized elemental tags are then analyzed by means of time-of-flight mass spectrometry. Benefits of the mass cytometry approach are in no need for compensation, the high number of detection channels (up to 100) and low background noise. In this work, we applied a biotinylated aptamer against human PTK7 receptor for characterization of positive (human acute lymphoblastic leukemia) and negative (human Burkitt's lymphoma) cells by a mass cytometry instrument. Our proof of principal experiments showed that biotinylated aptamers in conjunction with metal-labeled neutravidin can be successfully utilized for mass cytometry experiments at par with commercially available antibodies. Graphical abstract Biotinylated aptamers in conjunction with metal-labeled neutravidin bind to cell biomarkers, and then injected into the inductively coupled plasma (ICP) source, where cells are vaporized, atomized, and ionized in the plasma for subsequent mass spectrometry (MS) analysis of lanthanide metals.
Laser Induced Breakdown Spectroscopy (LIBS)
2010-03-31
mass spectrometry and laser induced breakdown spectroscopy, Spe T Trejos, A Flores and JR. Almirall, Micro-spectrochemical analysis of document paper...and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy, Spectrochimica Acta Part B...abstracts): 1. *Schenk, E.R. “Elemental analysis of unprocessed cotton by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser
Structural Configuration Analysis of Crew Exploration Vehicle Concepts
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
2006-01-01
Structural configuration modeling and finite element analysis of crew exploration vehicle (CEV) concepts are presented. In the structural configuration design approach, parametric solid models of the pressurized shell and tanks are developed. The CEV internal cabin pressure is same as in the International Space Station (ISS) to enable docking with the ISS without an intermediate airlock. Effects of this internal pressure load on the stress distribution, factor of safety, mass and deflections are investigated. Uniform 7 mm thick skin shell, 5 mm thick shell with ribs and frames, and isogrid skin construction options are investigated. From this limited study, the isogrid construction appears to provide most strength/mass ratio. Initial finite element analysis results on the service module tanks are also presented. These rapid finite element analyses, stress and factor of safety distribution results are presented as a part of lessons learned and to build up a structural mass estimation and sizing database for future technology support. This rapid structural analysis process may also facilitate better definition of the vehicles and components for rapid prototyping. However, these structural analysis results are highly conceptual and exploratory in nature and do not reflect current configuration designs being conducted at the program level by NASA and industry.
Metabolomics and Trace Element Analysis of Camel Tear by GC-MS and ICP-MS.
Ahamad, Syed Rizwan; Raish, Mohammad; Yaqoob, Syed Hilal; Khan, Altaf; Shakeel, Faiyaz
2017-06-01
Camel tear metabolomics and elemental analysis are useful in getting the information regarding the components responsible for maintaining the protective system that allows living in the desert and dry regions. The aim of this study was to correlate that the camel tears can be used as artificial tears for the evaluation of dryness in the eye. Eye biomarkers of camel tears were analyzed by gas chromatography-mass spectroscopy (GC-MS) and inductively coupled plasma mass spectroscopy (ICP-MS). The major compounds detected in camel tears by GC-MS were alanine, valine, leucine, norvaline, glycine, cadaverine, urea, ribitol, sugars, and higher fatty acids like octadecanoic acid and hexadecanoic acid. GC-MS analysis of camel tears also finds several products of metabolites and its associated metabolic participants. ICP-MS analysis showed the presence of different concentration of elemental composition in the camel tears.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.
An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capablemore » of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.« less
Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef
2017-03-01
Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge ( m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.
Eigenvalue computations with the QUAD4 consistent-mass matrix
NASA Technical Reports Server (NTRS)
Butler, Thomas A.
1990-01-01
The NASTRAN user has the option of using either a lumped-mass matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell finite element. At the Sixteenth NASTRAN Users' Colloquium (1988), Melvyn Marcus and associates of the David Taylor Research Center summarized a study comparing the results of the QUAD4 element with results of other NASTRAN shell elements for a cylindrical-shell modal analysis. Results of this study, in which both the lumped-and consistent-mass matrix formulations were used, implied that the consistent-mass matrix yielded poor results. In an effort to further evaluate the consistent-mass matrix, a study was performed using both a cylindrical-shell geometry and a flat-plate geometry. Modal parameters were extracted for several modes for both geometries leading to some significant conclusions. First, there do not appear to be any fundamental errors associated with the consistent-mass matrix. However, its accuracy is quite different for the two different geometries studied. The consistent-mass matrix yields better results for the flat-plate geometry and the lumped-mass matrix seems to be the better choice for cylindrical-shell geometries.
2003-01-01
PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS...SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS
NASA Astrophysics Data System (ADS)
Tulej, Marek; Wiesendanger, Reto; Neuland, Maike; Meyer, Stefan; Wurz, Peter; Neubeck, Anna; Ivarsson, Magnus; Riedo, Valentine; Moreno-Garcia, Pavel; Riedo, Andreas; Knopp, Gregor
2017-04-01
Investigation of elemental and isotope compositions of planetary solids with high spatial resolution are of considerable interest to current space research. Planetary materials are typically highly heterogenous and such studies can deliver detailed chemical information of individual sample components with the sizes down to a few micrometres. The results of such investigations can yield mineralogical surface context including mineralogy of individual grains or the elemental composition of of other objects embedded in the sample surface such as micro-sized fossils. The identification of bio-relevant material can follow by the detection of bio-relevant elements and their isotope fractionation effects [1, 2]. For chemical analysis of heterogenous solid surfaces we have combined a miniature laser ablation mass spectrometer (LMS) (mass resolution (m/Dm) 400-600; dynamic range 105-108) with in situ microscope-camera system (spatial resolution ˜2um, depth 10 um). The microscope helps to find the micrometre-sized solids across the surface sample for the direct mass spectrometric analysis by the LMS instrument. The LMS instrument combines an fs-laser ion source and a miniature reflectron-type time-of-flight mass spectrometer. The mass spectrometric analysis of the selected on the sample surface objects followed after ablation, atomisation and ionisation of the sample by a focussed laser radiation (775 nm, 180 fs, 1 kHz; the spot size of ˜20 um) [4, 5, 6]. Mass spectra of almost all elements (isotopes) present in the investigated location are measured instantaneously. A number of heterogenous rock samples containing micrometre-sized fossils and mineralogical grains were investigated with high selectivity and sensitivity. Chemical analyses of filamentous structures observed in carbonate veins (in harzburgite) and amygdales in pillow basalt lava can be well characterised chemically yielding elemental and isotope composition of these objects [7, 8]. The investigation can be prepared with high selectivity since the host composition is typically readily different comparing to that of the analysed objects. In depth chemical analysis (chemical profiling) is found in particularly helpful allowing relatively easy isolation of the chemical composition of the host from the investigated objects [6]. Hence, both he chemical analysis of the environment and microstructures can be derived. Analysis of the isotope compositions can be measured with high level of confidence, nevertheless, presence of cluster of similar masses can make sometimes this analysis difficult. Based on this work, we are confident that similar studies can be conducted in situ planetary surfaces delivering important chemical context and evidences on bio-relevant processes. [1] Summons et al., Astrobiology, 11, 157, 2011. [2] Wurz et al., Sol. Sys. Res. 46, 408, 2012. [3] Riedo et al., J. Anal. Atom. Spectrom. 28, 1256, 2013. [4] Riedo et al., J. Mass Spectrom.48, 1, 2013. [5] Tulej et al., Geostand. Geoanal. Res., 38, 423, 2014. [6] Grimaudo et al., Anal. Chem. 87, 2041, 2015 [7] Tulej et al., Astrobiology, 15, 1, 2015. [8] Neubeck et al., Int. J. Astrobiology, 15, 133, 2016.
Ubukata, Masaaki; Jobst, Karl J; Reiner, Eric J; Reichenbach, Stephen E; Tao, Qingping; Hang, Jiliang; Wu, Zhanpin; Dane, A John; Cody, Robert B
2015-05-22
Comprehensive two-dimensional gas chromatography (GC×GC) and high-resolution mass spectrometry (HRMS) offer the best possible separation of their respective techniques. Recent commercialization of combined GC×GC-HRMS systems offers new possibilities for the analysis of complex mixtures. However, such experiments yield enormous data sets that require new informatics tools to facilitate the interpretation of the rich information content. This study reports on the analysis of dust obtained from an electronics recycling facility by using GC×GC in combination with a new high-resolution time-of-flight (TOF) mass spectrometer. New software tools for (non-traditional) Kendrick mass defect analysis were developed in this research and greatly aided in the identification of compounds containing chlorine and bromine, elements that feature in most persistent organic pollutants (POPs). In essence, the mass defect plot serves as a visual aid from which halogenated compounds are recognizable on the basis of their mass defect and isotope patterns. Mass chromatograms were generated based on specific ions identified in the plots as well as region of the plot predominantly occupied by halogenated contaminants. Tentative identification was aided by database searches, complementary electron-capture negative ionization experiments and elemental composition determinations from the exact mass data. These included known and emerging flame retardants, such as polybrominated diphenyl ethers (PBDEs), hexabromobenzene, tetrabromo bisphenol A and tris (1-chloro-2-propyl) phosphate (TCPP), as well as other legacy contaminants such as polychlorinated biphenyls (PCBs) and polychlorinated terphenyls (PCTs). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.
2016-04-01
Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.
After a dispersive event, rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A Direct Analysis in Real Time (DART)® ion source interfaced to a JEOL AccuTOF® mass spectrometer provided exact masses accurate to ...
Space Operations Center system analysis. Volume 3, book 1: SOC system definition report, revision A
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station program and its elements are described. A work breakdown structure is presented and elements for the habitat and service modules, docking tunnel and airlock modules defined. The basis for the element's design is given. Mass estimates for the elements are presented in the work breakdown structure.
Design of an elemental analysis system for CELSS research
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.
1987-01-01
The results of experiments conducted with higher plants in tightly sealed growth chambers provide definite evidence that the physical closure of a chamber has significant effects on many aspects of a plant's biology. One of these effects is seen in the change in rates of uptake, distribution, and re-release or nutrient elements by the plant (mass balance). Experimental data indicates that these rates are different from those recorded for plants grown in open field agriculture, or in open growth chambers. Since higher plants are a crucial component of a controlled ecological life support system (CELSS), it is important that the consequences of these rate differences be understood with regard to the growth and yield of the plants. A description of a system for elemental analysis which can be used to monitor the mass balance of nutrient elements in CELSS experiments is given. Additionally, data on the uptake of nutrient elements by higher plants grown in a growth chamber is presented.
2016-01-01
EXTRACTION AND ANALYSIS OF SULFUR MUSTARD (HD) FROM VARIOUS FOOD MATRICES BY GAS CHROMATOGRAPHY–MASS...Sulfur Mustard (HD) from Various Food Matrices by Gas Chromatography–Mass Spectrometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...spectrometry was used to analyze sulfur mustard (HD) in various food matrices. The development of a solid-phase extraction method using a normal
Garbarino, John R.; Taylor, Howard E.
1987-01-01
Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.
Hondrogiannis, Ellen M; Ehrlinger, Erin; Poplaski, Alyssa; Lisle, Meredith
2013-11-27
A total of 11 elements found in 25 vanilla samples from Uganda, Madagascar, Indonesia, and Papua New Guinea were measured by laser ablation-inductively coupled plasma-time-of-flight-mass spectrometry (LA-ICP-TOF-MS) for the purpose of collecting data that could be used to discriminate among the origins. Pellets were prepared of the samples, and elemental concentrations were obtained on the basis of external calibration curves created using five National Institute of Standards and Technology (NIST) standards and one Chinese standard with (13)C internal standardization. These curves were validated using NIST 1573a (tomato leaves) as a check standard. Discriminant analysis was used to successfully classify the vanilla samples by their origin. Our method illustrates the feasibility of using LA-ICP-TOF-MS with an external calibration curve for high-throughput screening of spice screening analysis.
NASA Astrophysics Data System (ADS)
Kebukawa, Y.; Aoki, J.; Ito, M.; Kawai, Y.; Okada, T.; Matsumoto, J.; Yano, H.; Yurimoto, H.; Terada, K.; Toyoda, M.; Yabuta, H.; Nakamura, R.; Cottin, H.; Grand, N.; Mori, O.
2017-12-01
The Solar Power Sail (SPS) mission is one of candidates for the upcoming strategic middle-class space exploration to demonstrate the first outer Solar System journey of Japan. The mission concept includes in-situ sampling analysis of the surface and subsurface (up to 1 m) materials of a Jupiter Trojan asteroid using high resolution mass spectrometry (HRMS). The candidates for the HRMS are multi-turn time-of-flight mass spectrometer (MULTUM) type and Cosmorbitrap type. We plan to analyze isotopic and elemental compositions of volatile materials from organic matter, hydrated minerals, and ice (if any), in order to understand origin and evolution of the Jupiter Trojan asteroids. It will provide insights into planet formation/migration theories, evolution and distribution of volatiles in the Solar System, and missing link between asteroids and comets on evolutional. The HRMS system allows to measure H, N, C, O isotopic compositions and elemental compositions of molecules prepared by various pre-MS procedures including stepwise heating up to 600ºC, gas chromatography (GC), and high-temperature pyrolysis with catalyst to decompose the samples into simple gaseous molecules (e.g., H2, CO, and N2) for isotopic ratio analysis. The required mass resolution should be at least 30,000 for analyzing isotopic ratios for simple gaseous molecules. For elemental compositions, mass accuracy of 10 ppm is required to determine elemental compositions for molecules with m/z up to 300 (as well as compound specific isotopic compositions for smaller molecules). Our planned analytical sequences consist of three runs for both surface and subsurface samples. In addition, `sniff mode' which simply introduces environmental gaseous molecules into a HRMS will be done by the system.
A simple modification to the Elemental Analyzer coupled to Isotope Ratio Mass-Spectrometer (EA-IRMS) setup is described. This modification allows the users to measure nitrous oxide (N2O) and carbon dioxide (CO2) by injecting the gases directly into an online injector placed befor...
Hu, Eric M; Zhang, Andrew; Silverman, Stuart G; Pedrosa, Ivan; Wang, Zhen J; Smith, Andrew D; Chandarana, Hersh; Doshi, Ankur; Shinagare, Atul B; Remer, Erick M; Kaffenberger, Samuel D; Miller, David C; Davenport, Matthew S
2018-04-17
To determine the need for a standardized renal mass reporting template by analyzing reports of indeterminate renal masses and comparing their contents to stated preferences of radiologists and urologists. The host IRB waived regulatory oversight for this multi-institutional HIPAA-compliant quality improvement effort. CT and MRI reports created to characterize an indeterminate renal mass were analyzed from 6 community (median: 17 reports/site) and 6 academic (median: 23 reports/site) United States practices. Report contents were compared to a published national survey of stated preferences by academic radiologists and urologists from 9 institutions. Descriptive statistics and Chi-square tests were calculated. Of 319 reports, 85% (271; 192 CT, 79 MRI) reported a possibly malignant mass (236 solid, 35 cystic). Some essential elements were commonly described: size (99% [269/271]), mass type (solid vs. cystic; 99% [268/271]), enhancement (presence vs. absence; 92% [248/271]). Other essential elements had incomplete penetrance: the presence or absence of fat in solid masses (14% [34/236]), size comparisons when available (79% [111/140]), Bosniak classification for cystic masses (54% [19/35]). Preferred but non-essential elements generally were described in less than half of reports. Nephrometry scores usually were not included for local therapy candidates (12% [30/257]). Academic practices were significantly more likely than community practices to include mass characterization details, probability of malignancy, and staging. Community practices were significantly more likely to include management recommendations. Renal mass reporting elements considered essential or preferred often are omitted in radiology reports. Variation exists across radiologists and practice settings. A standardized template may mitigate these inconsistencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bank, Tracy L.; Roth, Elliot A.; Tinker, Phillip
2016-04-17
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is used to measure the concentrations of rare earth elements (REE) in certified standard reference materials including shale and coal. The instrument used in this study is a Perkin Elmer Nexion 300D ICP-MS. The goal of the study is to identify sample preparation and operating conditions that optimized recovery of each element of concern. Additionally, the precision and accuracy of the technique are summarized and the drawbacks and limitations of the method are outlined.
Development and applications of a flat triangular element for thin laminated shells
NASA Astrophysics Data System (ADS)
Mohan, P.
Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the updated Lagrangian formulation of the flat shell element and have been validated using standard examples in the literature involving deformation-dependent pressure loads. The element can be used to obtain the nonlinear response of the tent structure under wind and snow loads. (Abstract shortened by UMI.)
Xiong, Xiaohong; Jiang, Tao; Zhou, Runzhi; Wang, Shangxian; Zou, Wei; Zhu, Zhiqiang
2016-05-01
Microwave plasma torch (MPT) is a simple and low power-consumption ambient ion source. And the MPT Mass spectra of many metal elements usually exhibit some novel features different from their inductively coupled plasma (ICP) mass spectra, which may be helpful for metal element analysis. Here, we presented the results about the MPT mass spectra of copper and molybdenum elements by a linear ion trap mass spectrometer (LTQ). The generated copper or molybdenum contained ions in plasma were characterized further in collision-induced dissociated (CID) experiments. These researches built a novel, direct and sensitive method for the direct analysis of trace levels of copper and molybdenum in aqueous liquids. Quantitative results showed that the limit of detection (LOD) by using MS(2) procedure was estimated to be 0.265 µg/l (ppb) for copper and 0.497 µg/l for molybdenum. The linear dynamics ranges cover at least 2 orders of magnitude and the analysis of a single aqueous sample can be completed in 5-6 min with a reasonable semi-quantitative sense. Two practical aqueous samples, milk and urine, were also analyzed qualitatively with reasonable recovery rates and RSD. These experimental data demonstrated that the MPT MS is able to turn into a promising and hopeful tool in field analysis of copper and molybdenum ions in water and some aqueous media, and can be applied in many fields, such as environmental controlling, hydrogeology, and water quality inspection. Moreover, MPT MS could also be used as the supplement of ICP-MS for the rapid and in-situ analysis of metal ions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Development of a curved pipe capability for the NASTRAN finite element program
NASA Technical Reports Server (NTRS)
Jeter, J. W., Jr.
1977-01-01
A curved pipe element capability for the NASTRAN structural analysis program is developed using the NASTRAN dummy element feature. A description is given of the theory involved in the subroutines which describe stiffness, mass, thermal and enforced deformation loads, and force and stress recovery for the curved pipe element. Incorporation of these subroutines into NASTRAN is discussed. Test problems are proposed. Instructions on use of the new element capability are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, Matthew J.; Kellogg, Cyndi M.; Parker, Cyrena M.
Ammonium bifluoride (ABF, NH4F·HF) is a well-known reagent for converting metal oxides to fluorides and for its applications in breaking down minerals and ores in order to extract useful components. It has been more recently applied to the decomposition of inorganic matrices prior to elemental analysis. Herein, a sample decomposition method that employs molten ABF sample treatment in the initial step is systematically evaluated across a range of inorganic sample types: glass, quartz, zircon, soil, and pitchblende ore. Method performance is evaluated across the two variables: duration of molten ABF treatment and ABF reagent mass to sample mass ratio. Themore » degree of solubilization of these sample classes are compared to the fluoride stoichiometry that is theoretically necessary to enact complete fluorination of the sample types. Finally, the sample decomposition method is performed on several soil and pitchblende ore standard reference materials, after which elemental constituent analysis is performed by ICP-OES and ICP-MS. Elemental recoveries are compared to the certified values; results indicate good to excellent recoveries across a range of alkaline earth, rare earth, transition metal, and actinide elements.« less
Trace element measurement for assessment of dog food safety.
De Nadai Fernandes, Elisabete A; Elias, Camila; Bacchi, Márcio Arruda; Bode, Peter
2018-01-01
The quality of dog diets depends on adequate ingredients capable of providing optimal nutrition and free of contaminants, for promoting long-term health. Trace elements in 95 samples of dry food for dog puppies (n = 32) and adults (n = 63) of various brands were measured using instrumental neutron activation analysis (INAA). The mass fractions of most elements were within the permissible limits for dogs. Aluminum, antimony, and uranium presented fairly high levels in some samples, which may imply health risks. Aluminum mass fractions ranged from <21 to 11,900 mg/kg, in same brand, super-premium dog food. Antimony mass fractions ranged up to 5.14 mg/kg, with the highest values measured in six samples of dog food from the same producer. The mass fractions of uranium was found up to 4 mg/kg in commercial brands from five different producers.
Mass Efficiency Considerations for Thermally Insulated Structural Skin of an Aerospace Vehicle
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2012-01-01
An approximate equation was derived to predict the mass of insulation required to limit the maximum temperature reached by an insulated structure subjected to a transient heating pulse. In the course of the derivation two figures of merit were identified. One figure of merit correlates to the effectiveness of the heat capacity of the underlying structural material in reducing the amount of required insulation. The second figure of merit provides an indicator of the mass efficiency of the insulator material. An iterative, one dimensional finite element analysis was used to size the external insulation required to protect the structure at a single location on the Space Shuttle Orbiter and a reusable launch vehicle. Required insulation masses were calculated for a range of different materials for both structure and insulator. The required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10 to 20 percent over the range of parameters studied. Finite element results closely followed the trends indicated by both figures of merit.
Zhang, Guoying; Zhao, Yanxin; Liu, Fengjun; Ling, Jianya; Lin, Jianqiang; Zhang, Changkai
2013-01-01
In this study, a total of 20 elements (essential, non-essential and toxic): lithium (Li), sodium (Na), potassium (K), gallium (Ga), magnesium (Mg), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), vanadium (V), chromium (Cr), nickel (Ni), cobalt (Co), molybdenum (Mo), selenium (Se), barium (Ba), tin (Sn), arsenic (As), lead (Pb) cadmium (Cd) and mercury (Hg) in natural and cultured Cordyceps kyushuensis have been determined by means of inductively coupled plasma mass spectrometry (ICP-MS). Cultured stroma, natural stroma and natural worm were digested by microwave-assisted method before analysis. The proposed ICP-MS method was validated by analyzing a certified reference material (CRM) GBW10015 (spinach). The results of one-way analysis of variance (ANOVA) revealed that the element concentrations in the three kinds of samples were significantly different (p<0.05). Except for Mg, Zn, Cu, the values of other elemental contents were the highest in the stroma of natural C. kyushuensis. In comparison with the worm, the concentrations of determined elements in wild stroma were higher. The remarkable difference of elemental contents between cultured and natural stroma may be caused by distinct growing environment. This finding highlighted the usefulness of ICP-MS elemental analysis and enhanced the value of C. kyushuensis as a candidate for nourishing food based on its composition. Copyright © 2012 Elsevier B.V. All rights reserved.
Introducing Graduate Students to High-Resolution Mass Spectrometry (HRMS) Using a Hands-On Approach
ERIC Educational Resources Information Center
Stock, Naomi L.
2017-01-01
High-resolution mass spectrometry (HRMS) features both high resolution and high mass accuracy and is a powerful tool for the analysis and quantitation of compounds, determination of elemental compositions, and identification of unknowns. A hands-on laboratory experiment for upper-level undergraduate and graduate students to investigate HRMS is…
Morelli, J.J.; Hercules, D.M.; Lyons, P.C.; Palmer, C.A.; Fletcher, J.D.
1988-01-01
The variation in relative elemental concentrations among a series of coal macerals belonging to the vitrinite maceral group was determined using laser micro mass spectrometry (LAMMS). Variations in Ba, Cr, Ga, Sr, Ti, and V concentrations among the coals were determined using the LAMM A-1000 instrument. LAMMS analysis is not limited to these elements; their selection illustrates the application of the technique. Ba, Cr, Ga, Sr, Ti, and V have minimal site-to-site variance in the vitrinite macerals of the studied coals as measured by LAMMS. The LAMMS data were compared with bulk elemental data obtained by instrumental neutron activation analysis (INAA) and D. C. arc optical emission spectroscopy (DCAS) in order to determine the reliability of the LAMMS data. The complex nature of the ionization phenomena in LAMMS and the lack of standards characterized on a microscale makes obtaining quantitative elemental data within the ionization microvolume difficult; however, we demonstrate that the relative variation of an element among vitrinites from different coal beds in the eastern United States can be observed using LAMMS in a "bulk" mode by accumulating signal intensities over several microareas of each vitrinite. Our studies indicate gross changes (greater than a factor of 2 to 5 depending on the element) can be monitored when the elemental concentration is significantly above the detection limit. "Bulk" mode analysis was conducted to evaluate the accuracy of future elemental LAMMS microanalyses. The primary advantage of LAMMS is the inherent spatial resolution, ~ 20 ??m for coal. Two different vitrite bands in the Lower Bakerstown coal bed (CLB-1) were analyzed. The analysis did not establish any certain concentration differences in Ba, Cr, Ga, Sr, Ti, and V between the two bands. ?? 1988 Springer-Verlag.
Origin and distribution of trace elements in high-elevation precipitation in southern China.
Zhou, Jie; Wang, Yan; Yue, Taixing; Li, Yuhua; Wai, Ka-Ming; Wang, Wenxing
2012-09-01
During a 2009 investigation of the transport and deposition of trace elements in southern China, 37 event-based precipitation samples were collected at an observatory on Mount Heng, China (1,269 m asl). Concentrations of trace elements were analyzed using inductively coupled plasma-mass spectrometry and the wet deposition fluxes were established. A combination of techniques including enrichment factor analysis, principal component analysis, and back trajectory models were used to identify pollutant sources. Trace element concentrations at Mount Heng were among the highest with respect to measured values reported elsewhere. All elements were of non-marine origin. The elements Pb, As, Cu, Se, and Cd were anthropogenic, while Fe, Cr, V, Ba, Mn, and Ni were of mixed crustal/anthropogenic origin. The crustal and anthropogenic contributions of trace elements were 12.8 % (0.9 ~ 17.4 %) and 87.2 % (82.6 ~ 99.1 %), with the maximum crustal fraction being 17.4 % for Fe. Coal combustion, soil and road dust, metallurgical processes, and industrial activities contributed to the element composition. Summit precipitation events were primarily distant in origin. Medium- to long-range transport of trace elements from the Yangtze River Delta and northern China played an important role in wet deposition at Mount Heng, while air masses from south or southeast of the station were generally low in trace element concentrations.
Becker, J S; Boulyga, S F
2001-07-01
This paper describes an analytical procedure for determining the stoichiometry of BaxSr1-xTiO3 perovskite layers using inductively coupled plasma mass spectrometry (ICP-MS). The analytical results of mass spectrometry measurements are compared to those of X-ray fluorescence analysis (XRF). The performance and the limits of solid-state mass spectrometry analytical methods for the surface analysis of thin BaxSr1-xTiO3 perovskite layers sputtered neutral mass spectrometry (SNMS)--are investigated and discussed.
Yan, Xiaowen; Yang, Limin; Wang, Qiuquan
2013-07-01
Much progress has been made in identification of the proteins in proteomes, and quantification of these proteins has attracted much interest. In addition to popular tandem mass spectrometric methods based on soft ionization, inductively coupled plasma mass spectrometry (ICPMS), a typical example of mass spectrometry based on hard ionization, usually used for analysis of elements, has unique advantages in absolute quantification of proteins by determination of an element with a definite stoichiometry in a protein or attached to the protein. In this Trends article, we briefly describe state-of-the-art ICPMS-based methods for quantification of proteins, emphasizing protein-labeling and element-tagging strategies developed on the basis of chemically selective reactions and/or biospecific interactions. Recent progress from protein to cell quantification by use of ICPMS is also discussed, and the possibilities and challenges of ICPMS-based protein quantification for universal, selective, or targeted quantification of proteins and cells in a biological sample are also discussed critically. We believe ICPMS-based protein quantification will become ever more important in targeted quantitative proteomics and bioanalysis in the near future.
NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.
2011-01-01
Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.
Low-Metallicity Lead Stars: Comparison between Theory and Observations
NASA Astrophysics Data System (ADS)
Bisterzo, S.; Gallino, R.; Straniero, O.; Aoki, W.; Ryan, S.; Beers, T. C.
2006-07-01
We compare AGB theoretical models with spectroscopic abundances of a sample of very metal-poor, C-rich, s-rich and lead-rich stars observed at high-resolution spectroscopy. Fits are obtained for AGB models with different 13C-pocket efficiencies and initial masses. The two intrinsic indicators, [hs/ls] and [Pb/hs] versus [Fe/H], are analyzed. An extended analysis of all the observed elements is made, outlining apparent discrepancies for a few elements. The analysis of C and N abundances strengthen the need of a strong cool bottom process occurring during the AGB. A significant number of these stars are both s-enriched and r-enriched. For them, the envelope abundances are predicted by mass transfer from the more massive AGB companion in a binary system from a parental cloud already enriched in r-elements.
Wang, ZiMian; Heymsfield, Steven B; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N
2010-01-01
Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated RST value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the RST concept depends on the mass of each major element in the human body. The DXA RST values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA RST value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body 40K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the RST values. The DXA RST values were strongly associated with the RST values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted RST to systematically exceed the DXA-measured RST (mean ± SD, 1.389 ± 0.024 versus 1.341 ± 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 ± 12.0% versus 24.9 ± 11.1%, r = 0.983, P < 0.001). DXA RST evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat. PMID:20393230
In situ mass analysis of particles by surface ionization mass spectrometry
NASA Technical Reports Server (NTRS)
Lassiter, W. S.; Moen, A. L.
1974-01-01
A qualitative study of the application of surface ionization and mass spectrometry to the in situ detection and constituent analysis of atmospheric particles was conducted. The technique consists of mass analysis of ions formed as a result of impingement of a stream of particles on a hot filament where, it is presumed, surface ionization takes place. Laboratory air particles containing K, Ca, and possibly hydrocarbons were detected. Other known particles such as Al2O3, Pb(NO3)2, and Cr2O3 were analyzed by detecting the respective metal atoms making up the particles. In some cases, mass numbers indicative of compounds making up the particles were detected showing surface ionization of particles sometimes leads to chemical analysis as well as to elemental analysis. Individual particles were detected, and it was shown that the technique is sensitive to Al2O3 particles with a mass of a few nanograms.
Stability of numerical integration techniques for transient rotor dynamics
NASA Technical Reports Server (NTRS)
Kascak, A. F.
1977-01-01
A finite element model of a rotor bearing system was analyzed to determine the stability limits of the forward, backward, and centered Euler; Runge-Kutta; Milne; and Adams numerical integration techniques. The analysis concludes that the highest frequency mode determines the maximum time step for a stable solution. Thus, the number of mass elements should be minimized. Increasing the damping can sometimes cause numerical instability. For a uniform shaft, with 10 mass elements, operating at approximately the first critical speed, the maximum time step for the Runge-Kutta, Milne, and Adams methods is that which corresponds to approximately 1 degree of shaft movement. This is independent of rotor dimensions.
NASA Astrophysics Data System (ADS)
Moloi, K.; Chimidza, S.; Lindgren, E. Selin; Viksna, A.; Standzenieks, P.
Absorption of sunlight by sub-micron particles is an important factor in calculations of the radiation balance of the earth and thus in climate modelling. Carbon-containing particles are generally considered as the most important in this respect. Major sources of these particles are generally considered to be bio-mass burning and vehicle exhaust. In order to characterise size fractionated particulate matter in a rural village in Botswana with respect to light absorption and elemental content experiments were performed, in which simultaneous sampling was made with a dichotomous impactor and a laboratory-made sampler, made compatible with black carbon analysis by reflectometry. The dichotomous impactor was equipped with Teflon filters and the other sampler with glass fibre filters. Energy dispersive X-ray fluorescence was used for elemental analysis of both kinds of filters. It appeared that Teflon filters were the most suitable for the combination of mass-, elemental- and black carbon measurements. The black carbon content in coarse (2.5-10 μm) and fine (<2.5 μm) particles was determined separately and related to elemental content and emission source. The results show that the fine particle fraction in the aerosol has a much higher contribution of black particles than the coarse particle fraction. This observation is valid for the village in Botswana as well as for a typical industrialised city in Sweden, used as a reference location.
Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang
2015-01-01
Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721
Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui
2015-08-01
The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).
Mazdab, F.K.
2009-01-01
Crystals of titanite can be readily grown under ambient pressure from a mixture of CaO, TiO2 and SiO2 in the presence of molten sodium tetraborate. The crystals produced are euhedral and prismatic, lustrous and transparent, and up to 5 mm in length. Titanite obtained by this method contains approximately 4300 ppm Na and 220 ppm B contributed from the flux. In addition to dopant-free material, titanite containing trace alkali and alkaline earth metals (K, Sr, Ba), transition metals (Sc, Cr, Ni, Y, Zr, Nb, Hf and Ta), rare-earth elements (REE), actinides (Th, U) and p-block elements (F, S, Cl, Ge, Sn and Pb) have been prepared using the same procedure. Back-scattered electron (BSE) imaging accompanied by ion-microprobe (SHRIMP-RG) analysis confirms significant incorporation of selected trace-elements at structural sites. Regardless of some zonation, the large size of the crystals and broad regions of chemical homogeneity make these crystals useful as experimental starting material, and as matrix-matched trace-element standards for a variety of microbeam analytical techniques where amorphous titanite glass, heterogeneous natural titanite or a non-titanite standard may be less than satisfactory. Trace-element-doped synthetic crystals can also provide a convenient proxy for a better understanding of trace-element incorporation in natural titanite. Comparisons with igneous, authigenic and high-temperature metasomatic titanite are examined. The use of high-mass-resolution SIMS also demonstrates the analytical challenges inherent to any in situ mass-spectrometry-based analysis of titanite, owing to the production of difficult-to-resolve molecular interferences. These interferences are dominated by Ca-Ca, Ca-Ti and Ti-Ti dimers that are significant in the mass range of 80-100, affecting all isotopes of Sr and Zr, as well as 89Y and 93Nb. Methods do exist for the evaluation of interferences by these dimers and of polyatomic interferences on the LREE.
NASA Technical Reports Server (NTRS)
Lesar, Douglas E.
1992-01-01
The performance of the NASTRAN CQUAD4 membrane and plate element in the analysis of undamped natural vibration modes of thin fiber reinforced composite plates was evaluated. The element provides natural frequency estimates that are comparable in accuracy to alternative formulations, and, in most cases, deviate by less than 10 percent from experimentally measured frequencies. The predictions lie within roughly equal accuracy bounds for the two material types treated (GFRP and CFRP), and for the ply layups considered (unidirectional, cross-ply, and angle-ply). Effective elastic lamina moduli had to be adjusted for fiber volume fraction to attain this level of frequency. The lumped mass option provides more accurate frequencies than the consistent mass option. This evaluation concerned only plates with L/t ratios on the order of 100 to 150. Since the CQUAD4 utilizes first-order corrections for transverse laminate shear stiffness, the element should provide useful frequency estimates for plate-like structures with lower L/t. For plates with L/t below 20, consideration should be given to idealizing with 3-D solid elements. Based on the observation that natural frequencies and mode shapes are predicted with acceptable engineering accuracy, it is concluded that CQUAD4 should be a useful and accurate element for transient shock and steady state vibration analysis of naval ship
Liu, Zhao-Ying; Huang, Ling-Li; Chen, Dong-Mei; Dai, Meng-Hong; Tao, Yan-Fei; Wang, Yu-Lian; Yuan, Zong-Hui
2010-02-01
The application of electrospray ionization hybrid ion trap/time-of-flight mass spectrometry coupled with high-performance liquid chromatography (LC/MS-IT-TOF) in the rapid characterization of in vitro metabolites of quinocetone was developed. Metabolites formed in rat liver microsomes were separated using a VP-ODS column with gradient elution. Multiple scans of metabolites in MS and MS(2) modes and accurate mass measurements were automatically performed simultaneously through data-dependent acquisition in only a 30-min analysis. Most measured mass errors were less than 10 ppm for both protonated molecules and fragment ions using external mass calibration. The elemental compositions of all fragment ions of quinocetone and its metabolites could be rapidly assigned based upon the known compositional elements of protonated molecules. The structure of metabolites were elucidated based on the combination of three techniques: agreement between their proposed structure, the accurate masses, and the elemental composition of ions in their mass spectra; comparison of their changes in accurate molecular masses and fragment ions with those of parent drug or metabolite; and the elemental compositions of lost mass numbers in proposed fragmentation pathways. Twenty-seven phase I metabolites were identified as 11 reduction metabolites, three direct hydroxylation metabolites, and 13 metabolites with a combination of reduction and hydroxylation. All metabolites except the N-oxide reduction metabolite M6 are new metabolites of quinocetone, which were not previously reported. The ability to conduct expected biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurement, all in a single experimental run, is one of the most attractive features of this methodology. The results demonstrate the use of LC/MS-IT-TOF approach appears to be rapid, efficient, and reliable in structural characterization of drug metabolites.
NASA Astrophysics Data System (ADS)
Bai, Wen; Dai, Junwu; Zhou, Huimeng; Yang, Yongqiang; Ning, Xiaoqing
2017-10-01
Porcelain electrical equipment (PEE), such as current transformers, is critical to power supply systems, but its seismic performance during past earthquakes has not been satisfactory. This paper studies the seismic performance of two typical types of PEE and proposes a damping method for PEE based on multiple tuned mass dampers (MTMD). An MTMD damping device involving three mass units, named a triple tuned mass damper (TTMD), is designed and manufactured. Through shake table tests and finite element analysis, the dynamic characteristics of the PEE are studied and the effectiveness of the MTMD damping method is verified. The adverse influence of MTMD redundant mass to damping efficiency is studied and relevant equations are derived. MTMD robustness is verified through adjusting TTMD control frequencies. The damping effectiveness of TTMD, when the peak ground acceleration far exceeds the design value, is studied. Both shake table tests and finite element analysis indicate that MTMD is effective and robust in attenuating PEE seismic responses. TTMD remains effective when the PGA far exceeds the design value and when control deviations are considered.
The Superheavy Elements and Anti-Gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasovski, Petar K.
2004-02-04
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate thesemore » capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.« less
The Superheavy Elements and Anti-Gravity
NASA Astrophysics Data System (ADS)
Anastasovski, Petar K.
2004-02-01
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.
Modeling and Simulation of a Nuclear Fuel Element Test Section
NASA Technical Reports Server (NTRS)
Moran, Robert P.; Emrich, William
2011-01-01
"The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.
NASA Astrophysics Data System (ADS)
Rosen, Amy L.; Hieftje, Gary M.
2004-02-01
To gain an understanding of the function, toxicity and distribution of trace elements, it is necessary to determine not only the presence and concentration of the elements of interest, but also their speciation, by identifying and characterizing the compounds within which each is present. For sensitive detection of compounds containing elements of interest, inductively coupled plasma mass spectrometry (ICP-MS) is a popular method, and for identification of compounds via determination of molecular weight, electrospray ionization mass spectrometry (ESI-MS) is gaining increasing use. ICP-MS and ESI-MS, usually coupled to a separation technique such as chromatography or capillary electrophoresis, have already been applied to a large number of research problems in such diverse fields as environmental chemistry, nutritional science, and bioinorganic chemistry, but a great deal of work remains to be completed. Current areas of research to which ICP-MS and ESI-MS have been applied are discussed, and the existing instrumentation used to solve speciation problems is described.
Andersen, Aaron John Christian; Hansen, Per Juel; Jørgensen, Kevin; Nielsen, Kristian Fog
2016-12-20
Dynamic cluster analysis (DCA) is an automated, unbiased technique which can identify Cl, Br, S, and other A + 2 element containing metabolites in liquid chromatographic high-resolution mass spectrometric data. DCA is based on three features, primarily the previously unutilized A + 1 to A + 2 isotope cluster spacing which is a strong classifier in itself but improved with the addition of the monoisotopic mass, and the well-known A:A+2 intensity ratio. Utilizing only the A + 1 to A + 2 isotope cluster spacing and the monoisotopic mass it was possible to filter a chromatogram for metabolites which contain Cl, Br, and S. Screening simulated isotope patterns of the Antibase Natural Products Database it was determined that the A + 1 to A + 2 isotope cluster spacing can be used to correctly classify 97.4% of molecular formulas containing these elements, only misclassifying a few metabolites which were either over 2800 u or metabolites which contained other A + 2 elements, such as Cu, Ni, Mg, and Zn. It was determined that with an interisotopic mass accuracy of 1 ppm, in a fully automated process, using all three parameters, it is possible to specifically filter a chromatogram for S containing metabolites with monoisotopic masses less than 825 u. Furthermore, it was possible to specifically filter a chromatogram for Cl and Br containing metabolites with monoisotopic masses less than 1613 u. Here DCA is applied on (i) simulated isotope patterns of the Antibase natural products databases, (ii) LC-QTOF data of reference standards, and (iii) LC-QTOF data of crude extracts of 10 strains of laboratory grown cultures of the microalga Prymnesium parvum where it identified known metabolites of the prymnesin series as well as over 20 previously undescribed prymnesin-like molecular features.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
Profiling elements in Puerh tea from Yunnan province, China.
Zhang, Jianyang; Ma, Guicen; Chen, Liyan; Liu, Ting; Liu, Xin; Lu, Chengyin
2017-09-01
Puerh tea, as the most representative Chinese dark tea, has attracted global interest in recent years. Profiling the levels of metal elements in Puerh tea is very important since its presence is related to human health. In this study, 41 elements in 98 Puerh tea samples from Yunnan province, China including Puerh raw tea and Puerh ripe tea were evaluated by microwave digestion combined with inductively coupled plasma mass spectrometry . The content of toxic elements, essential elements and rare earth elements of Puerh tea from different regions was discussed in detail. The concentrations of Ba, Cr, As, Pb, Bi, Fe, Zn, V, Mn, Be, Ag and Tl showed significant differences (p < 0.05) by ANOVA analysis. Principal component analysis and linear discriminant analysis were used to describe the relationship of Puerh tea from different regions. This study provided a comprehensive database for Puerh tea quality control and intake risk assessment.
Concentrations of platinum group elements in 122 U.S. coal samples
Oman, C.L.; Finkelman, R.B.; Tewalt, S.J.
1997-01-01
Analysis of more than 13,000 coal samples by semi-quantitative optical emission spectroscopy (OES) indicates that concentrations of the platinum group elements (iridium, palladium, platinum, osmium, rhodium, and ruthenium) are less than 1 ppm in the ash, the limit of detection for this method of analysis. In order to accurately determine the concentration of the platinum group elements (PGE) in coal, additional data were obtained by inductively coupled plasma mass spectroscopy, an analytical method having part-per-billion (ppb) detection limits for these elements. These data indicate that the PGE in coal occur in concentrations on the order of 1 ppb or less.
Carcinogenicity of Embedded Tungsten Alloys in Mice
2011-03-01
year carcinogenicity (Aim 1) and serial euthanasia (Aim 2) studies were analyzed for metal content using inductively coupled-plasma mass spectrometry...inductively coupled- plasma mass spectrometer (PQ ExCell ICPMS System, ThermoElemental, Franklin, MA) equipped with a Cetac ASX500 Autosampler. High...Metal analysis using inductively coupled-plasma mass spectrometry showed that both the tungsten/nickel/cobalt and tungsten/nickel/iron
Mass preserving registration for heart MR images.
Zhu, Lei; Haker, Steven; Tannenbaum, Allen
2005-01-01
This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm.
Mass Preserving Registration for Heart MR Images
Zhu, Lei; Haker, Steven; Tannenbaum, Allen
2013-01-01
This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm. PMID:16685954
Lee, David C; Varela, Aurore; Kostenuik, Paul J; Ominsky, Michael S; Keaveny, Tony M
2016-08-01
Finite element analysis has not yet been validated for measuring changes in whole-bone strength at the hip or spine in people after treatment with an osteoporosis agent. Toward that end, we assessed the ability of a clinically approved implementation of finite element analysis to correctly quantify treatment effects on vertebral strength, comparing against direct mechanical testing, in cynomolgus monkeys randomly assigned to one of three 16-month-long treatments: sham surgery with vehicle (Sham-Vehicle), ovariectomy with vehicle (OVX-Vehicle), or ovariectomy with denosumab (OVX-DMAb). After treatment, T12 vertebrae were retrieved, scanned with micro-CT, and mechanically tested to measure compressive strength. Blinded to the strength data and treatment codes, the micro-CT images were coarsened and homogenized to create continuum-type finite element models, without explicit porosity. With clinical translation in mind, these models were then analyzed for strength using the U.S. Food and Drug Administration (FDA)-cleared VirtuOst software application (O.N. Diagnostics, Berkeley, CA, USA), developed for analysis of human bones. We found that vertebral strength by finite element analysis was highly correlated (R(2) = 0.97; n = 52) with mechanical testing, independent of treatment (p = 0.12). Further, the size of the treatment effect on strength (ratio of mean OVX-DMAb to mean OVX-Vehicle, as a percentage) was large and did not differ (p = 0.79) between mechanical testing (+57%; 95% CI [26%, 95%]) and finite element analysis (+51% [20%, 88%]). The micro-CT analysis revealed increases in cortical thickness (+45% [19%, 73%]) and trabecular bone volume fraction (+24% [8%, 42%]). These results show that a preestablished clinical finite element analysis implementation-developed for human bone and clinically validated in fracture-outcome studies-correctly quantified the observed treatment effects of denosumab on vertebral strength in cynomolgus monkeys. One implication is that the treatment effects in this study are well explained by the features contained within these finite element models, namely, the bone geometry and mass and the spatial distribution of bone mass. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Building phytochemical mass spec identification protocols and database libraries
USDA-ARS?s Scientific Manuscript database
An optimized single LC-MS evaluation that would accurately determine the elemental composition of as many compounds present in an extract would greatly aid in the evaluation of plant tissues. For phytochemicals, we have used accurate mass analysis to quickly characterize the potential chemical formu...
Boundary element analyses for sound transmission loss of panels.
Zhou, Ran; Crocker, Malcolm J
2010-02-01
The sound transmission characteristics of an aluminum panel and two composite sandwich panels were investigated by using two boundary element analyses. The effect of air loading on the structural behavior of the panels is included in one boundary element analysis, by using a light-fluid approximation for the eigenmode series to evaluate the structural response. In the other boundary element analysis, the air loading is treated as an added mass. The effect of the modal energy loss factor on the sound transmission loss of the panels was investigated. Both boundary element analyses were used to study the sound transmission loss of symmetric sandwich panels excited by a random incidence acoustic field. A classical wave impedance analysis was also used to make sound transmission loss predictions for the two foam-filled honeycomb sandwich panels. Comparisons between predictions of sound transmission loss for the two foam-filled honeycomb sandwich panels excited by a random incidence acoustic field obtained from the wave impedance analysis, the two boundary element analyses, and experimental measurements are presented.
Ceramic Plutonium Target Development for the MASHA Separator for the Synthesis of Element 114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaughnessy, D A; Wilk, P A; Moody, K J
2005-06-29
We are currently developing a Pu ceramic target for the MASHA mass separator. MASHA will use a Pu ceramic target capable of tolerating temperatures up to 2000 C. Reaction products will diffuse out of the target into an ion source, and transported through the separator to a position-sensitive focal-plane detector array for mass identification. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide data for future experiments on chemical properties of the heaviest elements. In this study (Sm,Zr)O{sub 2-x} ceramics are produced and evaluated for studies on the production ofmore » Pb (homolog of element 114) by the reaction of Ca on Sm. This work will provide an initial analysis on the feasibility of using a ZrO{sub 2}-PuO{sub 2} as a target for the production of element 114.« less
Chew, Gina; Walczyk, Thomas
2013-04-02
Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.
The effects of mass and metallicity upon planetary nebula formation
NASA Astrophysics Data System (ADS)
Papp, K. A.; Purton, C. R.; Kwok, S.
1983-05-01
A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.
Qamar, Wajhul; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Abuelizz, Hatem A
2017-08-01
The main objective was to determine the elemental profile of the lung lining fluid of rats which are used as model animals in various experiments. Lung lining fluid elemental constitution obtained after bronchoalveolar lavage fluid (BALF) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine the biological trace elements along with calcium and magnesium. BALF was collected from healthy rats using a tracheal cannula. However, cells in BALF were counted to monitor any underlying inflammatory lung condition. Cell free BALF samples were processed and analyzed for the elements including magnesium (Mg), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), bromine (Br), and iodine (I). In view of this, calcium concentration was the highest (6318.08 ± 3094.3 μg/L) and copper concentration was the lowest (0.89 ± 0.21 μg/L). The detected elements, from high to low concentration, include Ca > Mg > Fe > Br > I > Cr > Ni > Zn > Mn > Se > Cu. Pearson's correlation analysis revealed no significant correlation between cell count and concentration of any of the element detected in BALF. Correlation analysis also revealed significant positive correlation among Fe, I, Cr, Ni, and Mn. Ca was found to be correlated negatively with Cu and positively with Se. Br and Mg found to be positively correlated with each other. Zn remained the only element that was not found to be correlated with any of the elements in the rat BALF.
Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method
NASA Astrophysics Data System (ADS)
Yang, Zailin; Wang, Yao; Hei, Baoping
2013-12-01
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
NASA Technical Reports Server (NTRS)
Zinner, Ernst
1991-01-01
A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.
Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials
NASA Astrophysics Data System (ADS)
Stosch, Heinz-Günter
2016-08-01
Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.
The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode
Yang, Junqing; Zheng, Mei; Liu, Qiuju; Zhu, Meiling; Yang, Chushan; Zhang, Yan; Zhu, Zhiqiang
2017-01-01
Microwave plasma torches (MPTs) can be used as simple and low power-consumption ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some metal elements, the metallic ions exhibit some novel features which are significantly different with those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and may be helpful for metal element analysis. As the representative elements of group IVA, titanium and zirconium are both of importance and value in modern industry, and they have impacts on human health. Here, we first provide a study on the complex anions of titanium and zirconium in water by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex anions were produced in the plasma flame by an aqueous solution flowing through the central tube of the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions in multi-step collision- induced dissociation processes have been explained. Under the optimized conditions, the limit of detection (LOD) using the MS2 (the second tandem mass spectrometry) procedure was estimated to be at the level of 10 μg/L for titanium and 20 μg/L for zirconium with linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0–500 μg/L and 20–200 μg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in many fields, such as environmental control, hydrogeology, and water quality inspection. In addition, MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions. PMID:28954404
The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode.
Yang, Junqing; Zheng, Mei; Liu, Qiuju; Yang, Meiling Zhu Chushan; Zhang, Yan; Zhu, Zhiqiang
2017-09-26
Microwave plasma torches (MPTs) can be used as simple and low power-consumption ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some metal elements, the metallic ions exhibit some novel features which are significantly different with those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and may be helpful for metal element analysis. As the representative elements of group IVA, titanium and zirconium are both of importance and value in modern industry, and they have impacts on human health. Here, we first provide a study on the complex anions of titanium and zirconium in water by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex anions were produced in the plasma flame by an aqueous solution flowing through the central tube of the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions in multi-step collision- induced dissociation processes have been explained. Under the optimized conditions, the limit of detection (LOD) using the MS² (the second tandem mass spectrometry) procedure was estimated to be at the level of 10μg/L for titanium and 20 μg/L for zirconium with linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0-500 μg/L and 20-200 μg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in many fields, such as environmental control, hydrogeology, and water quality inspection. In addition, MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions.
Vicenzi, Edward P.; Eggins, Stephen; Logan, Amelia; Wysoczanski, Richard
2002-01-01
An initial study of the minor element, trace element, and impurities in Corning archeological references glasses have been performed using three microbeam techniques: electron probe microanalysis (EPMA), laser ablation ICP-mass spectrometry (LA ICP-MS), and secondary ion mass spectrometry (SIMS). The EPMA results suggest a significant level of heterogeneity for a number of metals. Conversely, higher precision and a larger sampling volume analysis by LA ICP-MS indicates a high degree of chemical uniformity within all glasses, typically <2 % relative (1 σ). SIMS data reveal that small but measurable quantities of volatile impurities are present in the glasses, including H at roughly the 0.0001 mass fraction level. These glasses show promise for use as secondary standards for minor and trace element analyses of insulating materials such as synthetic ceramics, minerals, and silicate glasses. PMID:27446764
Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2011-01-01
This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.
Moore, Katie L; Lombi, Enzo; Zhao, Fang-Jie; Grovenor, Chris R M
2012-04-01
The ability to locate and quantify elemental distributions in plants is crucial to understanding plant metabolisms, the mechanisms of uptake and transport of minerals and how plants cope with toxic elements or elemental deficiencies. High-resolution secondary ion mass spectrometry (SIMS) is emerging as an important technique for the analysis of biological material at the subcellular scale. This article reviews recent work using the CAMECA NanoSIMS to determine elemental distributions in plants. The NanoSIMS is able to map elemental distributions at high resolution, down to 50 nm, and can detect very low concentrations (milligrams per kilogram) for some elements. It is also capable of mapping almost all elements in the periodic table (from hydrogen to uranium) and can distinguish between stable isotopes, which allows the design of tracer experiments. In this review, particular focus is placed upon studying the same or similar specimens with both the NanoSIMS and a wide range of complementary techniques, showing how the advantages of each technique can be combined to provide a fuller data set to address complex scientific questions. Techniques covered include optical microscopy, synchrotron techniques, including X-ray fluorescence and X-ray absorption spectroscopy, transmission electron microscopy, electron probe microanalysis, particle-induced X-ray emission and inductively coupled plasma mass spectrometry. Some of the challenges associated with sample preparation of plant material for SIMS analysis, the artefacts and limitations of the technique and future trends are also discussed.
Quantitative aspects of inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Bulska, Ewa; Wagner, Barbara
2016-10-01
Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.
Characterizing suspended sediments from the Piracicaba River Basin by means of k0-INAA
NASA Astrophysics Data System (ADS)
França, E. J.; Fernandes, E. A. N.; Cavalca, I. P. O.; Fonseca, F. Y.; Camilli, L.; Rodrigues, V. S.; Bardini Junior, C.; Ferreira, J. R.; Bacchi, M. A.
2010-10-01
The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k0 method ( k0-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k0-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems.
Simple models for rope substructure mechanics: application to electro-mechanical lifts
NASA Astrophysics Data System (ADS)
Herrera, I.; Kaczmarczyk, S.
2016-05-01
Mechanical systems modelled as rigid mass elements connected by tensioned slender structural members such as ropes and cables represent quite common substructures used in lift engineering and hoisting applications. Special interest is devoted by engineers and researchers to the vibratory response of such systems for optimum performance and durability. This paper presents simplified models that can be employed to determine the natural frequencies of systems having substructures of two rigid masses constrained by tensioned rope/cable elements. The exact solution for free un-damped longitudinal displacement response is discussed in the context of simple two-degree-of-freedom models. The results are compared and the influence of characteristics parameters such as the ratio of the average mass of the two rigid masses with respect to the rope mass and the deviation ratio of the two rigid masses with respect to the average mass is analyzed. This analysis gives criteria for the application of such simplified models in complex elevator and hoisting system configurations.
Reprint Of: Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS
NASA Astrophysics Data System (ADS)
Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.
2018-01-01
Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.
Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS
NASA Astrophysics Data System (ADS)
Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.
2017-11-01
Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.
Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen
2015-01-01
A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013
Taylor, Vivien F; Longerich, Henry P; Greenough, John D
2003-02-12
Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.
Wang, Guiqin; Wu, Yangsiqian; Lin, Yangting
2016-02-28
Nearly 99% of the total content of extraterrestrial metals is composed of Fe and Ni, but with greatly variable trace element contents. The accuracy obtained in the inductively coupled plasma mass spectrometry (ICP-MS) analysis of solutions of these samples can be significantly influenced by matrix contents, polyatomic ion interference, and the concentrations of external standard solutions. An ICP-MS instrument (X Series 2) was used to determine 30 standard solutions with different concentrations of trace elements, and different matrix contents. Based on these measurements, the matrix effects were determined. Three iron meteorites were dissolved separately in aqua regia and HNO3. Deviations due to variation of matrix contents in the external standard solutions were evaluated and the analysis results of the two digestion methods for iron meteorites were assessed. Our results show obvious deviations due to unmatched matrix contents in the external standard solutions. Furthermore, discrepancy in the measurement of some elements was found between the sample solutions prepared with aqua regia and HNO3, due to loss of chloride during sample preparation and/or incomplete digestion of highly siderophile elements in iron meteorites. An accurate ICP-MS analysis method for extraterrestrial metal samples has been established using external standard solutions with matched matrix contents and digesting the samples with HNO3 and aqua regia. Using the data from this work, the Mundrabilla iron meteorite previously classified as IAB-ung is reclassified as IAB-MG. Copyright © 2016 John Wiley & Sons, Ltd.
Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Komar, D. R.
2011-01-01
This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.
New mass-spectrometric facility for the analysis of highly radioactive samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warmack, R.J.; Landau, L.; Christie, W.H.
A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained.
Useful ion yields for Cameca IMS 3f and 6f SIMS: Limits on quantitative analysis
Hervig, R.L.; Mazdab, F.K.; Williams, Pat; Guan, Y.; Huss, G.R.; Leshin, L.A.
2006-01-01
The useful yields (ions detected/atom sputtered) of major and trace elements in NIST 610 glass were measured by secondary ion mass spectrometry (SIMS) using Cameca IMS 3f and 6f instruments. Useful yields of positive ions at maximum transmission range from 10-4 to 0.2 and are negatively correlated with ionization potential. We quantified the decrease in useful yields when applying energy filtering or high mass resolution techniques to remove molecular interferences. The useful yields of selected negative ions (O, S, Au) in magnetite and pyrite were also determined. These data allow the analyst to determine if a particular analysis (trace element contents or isotopic ratio) can be achieved, given the amount of sample available and the conditions of the analysis. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine
2002-12-01
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.
Wang, ZiMian; Heymsfield, Steven B; Chen, Zhao; Zhu, Shankuan; Pierson, Richard N
2010-05-07
Dual-energy x-ray absorptiometry (DXA) is widely applied for estimating body fat. The percentage of body mass as fat (%fat) is predicted from a DXA-estimated R(ST) value defined as the ratio of soft tissue attenuation at two photon energies (e.g., 40 keV and 70 keV). Theoretically, the R(ST) concept depends on the mass of each major element in the human body. The DXA R(ST) values, however, have never been fully evaluated by measured human elemental composition. The present investigation evaluated the DXA R(ST) value by the total body mass of 11 major elements and the DXA %fat by the five-component (5C) model, respectively. Six elements (i.e. C, N, Na, P, Cl and Ca) were measured by in vivo neutron activation analysis, and potassium (i.e. K) by whole-body (40)K counting in 27 healthy adults. Models were developed for predicting the total body mass of four additional elements (i.e. H, O, Mg and S). The elemental content of soft tissue, after correction for bone mineral elements, was used to predict the R(ST) values. The DXA R(ST) values were strongly associated with the R(ST) values predicted from elemental content (r = 0.976, P < 0.001), although there was a tendency for the elemental-predicted R(ST) to systematically exceed the DXA-measured R(ST) (mean +/- SD, 1.389 +/- 0.024 versus 1.341 +/- 0.024). DXA-estimated %fat was strongly associated with 5C %fat (24.4 +/- 12.0% versus 24.9 +/- 11.1%, r = 0.983, P < 0.001). DXA R(ST) is evaluated by in vivo elemental composition, and the present study supports the underlying physical concept and accuracy of the DXA method for estimating %fat.
k0-INAA for determining chemical elements in bird feathers
NASA Astrophysics Data System (ADS)
França, Elvis J.; Fernandes, Elisabete A. N.; Fonseca, Felipe Y.; Antunes, Alexsander Z.; Bardini Junior, Claudiney; Bacchi, Márcio A.; Rodrigues, Vanessa S.; Cavalca, Isabel P. O.
2010-10-01
The k0-method instrumental neutron activation analysis ( k0-INAA) was employed for determining chemical elements in bird feathers. A collection was obtained taking into account several bird species from wet ecosystems in diverse regions of Brazil. For comparison reason, feathers were actively sampled in a riparian forest from the Marins Stream, Piracicaba, São Paulo State, using mist nets specific for capturing birds. Biological certified reference materials were used for assessing the quality of analytical procedure. Quantification of chemical elements was performed using the k0-INAA Quantu Software. Sixteen chemical elements, including macro and micronutrients, and trace elements, have been quantified in feathers, in which analytical uncertainties varied from 2% to 40% depending on the chemical element mass fraction. Results indicated high mass fractions of Br (max=7.9 mg kg -1), Co (max=0.47 mg kg -1), Cr (max=68 mg kg -1), Hg (max=2.79 mg kg -1), Sb (max=0.20 mg kg -1), Se (max=1.3 mg kg -1) and Zn (max=192 mg kg -1) in bird feathers, probably associated with the degree of pollution of the areas evaluated. In order to corroborate the use of k0-INAA results in biomonitoring studies using avian community, different factor analysis methods were used to check chemical element source apportionment and locality clustering based on feather chemical composition.
Kalegowda, Yogesh; Harmer, Sarah L
2012-03-20
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of mineral samples are complex, comprised of large mass ranges and many peaks. Consequently, characterization and classification analysis of these systems is challenging. In this study, different chemometric and statistical data evaluation methods, based on monolayer sensitive TOF-SIMS data, have been tested for the characterization and classification of copper-iron sulfide minerals (chalcopyrite, chalcocite, bornite, and pyrite) at different flotation pulp conditions (feed, conditioned feed, and Eh modified). The complex mass spectral data sets were analyzed using the following chemometric and statistical techniques: principal component analysis (PCA); principal component-discriminant functional analysis (PC-DFA); soft independent modeling of class analogy (SIMCA); and k-Nearest Neighbor (k-NN) classification. PCA was found to be an important first step in multivariate analysis, providing insight into both the relative grouping of samples and the elemental/molecular basis for those groupings. For samples exposed to oxidative conditions (at Eh ~430 mV), each technique (PCA, PC-DFA, SIMCA, and k-NN) was found to produce excellent classification. For samples at reductive conditions (at Eh ~ -200 mV SHE), k-NN and SIMCA produced the most accurate classification. Phase identification of particles that contain the same elements but a different crystal structure in a mixed multimetal mineral system has been achieved.
Compact mass spectrometer for plasma discharge ion analysis
Tuszewski, M.G.
1997-07-22
A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.
Compact mass spectrometer for plasma discharge ion analysis
Tuszewski, Michel G.
1997-01-01
A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
Trace geochemistry of lunar material
NASA Technical Reports Server (NTRS)
Morrison, G. H.
1974-01-01
The lunar samples from the Apollo 16 and 17 flights which were analyzed include soil, igneous rock, anorthositic gabbro, orange soil, subfloor basalt, and norite breccia. Up to 57 elements including majors, minors, rare earths and other trace elements were determined in the lunar samples. The analytical techniques used were spark source mass spectrometry and neutron activation analysis. The latter was done either instrumentally or with group radiochemical separations. The differences in abundances of the elements in lunar soils at the various sites are discussed. With regard to the major elements only Si is about the same at all the sites. A detailed analysis which was performed on a sample of the Allende meteorite is summarized.
Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, RB; Bader, R; Lipinski, W
2015-06-01
Thermal transport processes are numerically analyzed for a porous ceria structure undergoing reduction in a novel redox reactor for solar thermochemical fuel production. The cylindrical reactor cavity is formed by an array of annular reactive elements comprising the porous ceria monolith integrated with gas inlet and outlet channels. Two configurations are considered, with the reactor cavity consisting of 10 and 20 reactive elements, respectively. Temperature dependent boundary heat fluxes are obtained on the irradiated cavity wall by solving for the surface radiative exchange using the net radiation method coupled to the heat and mass transfer model of the reactive element.more » Predicted oxygen production rates are in the range 40-60 mu mol s(-1) for the geometries considered. After an initial rise, the average temperature of the reactive element levels off at 1660 and 1680 K for the two geometries, respectively. For the chosen reduction reaction rate model, oxygen release continues after the temperature has leveled off which indicates that the oxygen release reaction is limited by chemical kinetics and/or mass transfer rather than by the heating rate. For a fixed total mass of ceria, the peak oxygen release rate is doubled for the cavity with 20 reactive elements due to lower local oxygen partial pressure. (C) 2015 Elsevier Masson SAS. All rights reserved.« less
Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.« less
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva P.; Hecht, Michael H.; Hurowitz, Joel A.
2012-01-01
A miniaturized instrument for performing chemical and isotopic analysis of rocks has been developed. The rock sample is ablated by a laser and the neutral species produced are analyzed using the JPL-invented miniature mass spectrometer. The direct sampling of neutral ablated material and the simultaneous measurement of all the elemental and isotopic species are the novelties of this method. In this laser ablation-miniature mass spectrometer (LA-MMS) method, the ablated neutral atoms are led into the electron impact ionization source of the MMS, where they are ionized by a 70-eV electron beam. This results in a secondary ion pulse typically 10-100 microsecond wide, compared to the original 5-10-nanosecond laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer and measured in parallel by a modified CCD (charge-coupled device) array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LAMMS offers a more quantitative assessment of elemental composition than techniques that detect laser-ionized species produced directly in the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the laser beam, and the ionization energies of the elements. The measurement of high-precision isotopic ratios and elemental composition of different rock minerals by LAMMS method has been demonstrated. The LA-MMS can be applied for the absolute age determination of rocks. There is no such instrument available presently in a miniaturized version that can be used for NASA space missions. Work is in progress in the laboratory for geochronology of rocks using LA-MMS that is based on K-Ar radiogenic dating technique.
Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P
2013-10-01
One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salcedo, D.; Laskin, Alexander; Shutthanandan, V.
The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measuredmore » ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple point sources, probably industrial, in Mexico City which are variable in time and space, in agreement with previous studies.« less
Vibration analyses of an inclined flat plate subjected to moving loads
NASA Astrophysics Data System (ADS)
Wu, Jia-Jang
2007-01-01
The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect to the local coordinate system, are derived first by using the principle of superposition and the definition of shape functions. Next, the last property matrices of the moving mass element are transformed into the global coordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices of the moving mass element have something to do with the instantaneous position of the moving load, both the property matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal pinned-pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved. Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher moving-load speed.
Silvestre, Daniel Menezes; Nomura, Cassiana Seimi
2013-07-03
The development of methods for direct determinations of Al, Cd, and Pb in rice by SS-GF AAS is presented. Heating program optimization associated with the use of an adequate chemical modifier containing Pd + Mg allowed direct analysis against aqueous calibrations. The obtained LOD values were 114.0, 3.0, and 16.0 μg kg⁻¹ for Al, Cd, and Pb, respectively. Important parameters associated with a solid sampling analysis were investigated, such as minimum and maximum sample mass size and analyte segregation. Seventeen rice samples available in São Paulo City were analyzed, and all of them presented analyte mass fractions less than the maximum allowed by legislation. The influences of rice washing and the cooking procedure were also investigated. The washing procedure diminished the Al and Pb total mass fractions, indicating an exogenous grain contamination. The cooking procedure diminished the Cd total mass fraction. Rice cooking using an aluminum container did not cause a significant increase in the Al mass fraction in the rice, indicating no translocation of this element from container to food. In general, coarse rice presented higher levels of Al when compared to polished or parabolized rice.
NASA Astrophysics Data System (ADS)
Becker, J. Susanne; Zoriy, Miroslav; Przybylski, Michael; Becker, J. Sabine
2007-03-01
The combination of atomic and molecular mass spectrometric methods was applied for characterization and identification of several human proteins from Alzheimer's diseased brain. A brain protein mixture was separated by two-dimensional (2D) gel electrophoresis and the protein spots were fast screened by microlocal analysis using LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) in respect to phosphorus, sulfur, copper, zinc and iron content. Five selected protein spots in 2D gel containing these elements were investigated after tryptic digestion by matrix assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Than element concentrations (P, Cu, Zn and Fe) were determined in three identified human brain proteins by LA-ICP-MS in the 2D gel. Results of structure analysis of human brain proteins by MALDI-FTICR-MS were combined with those of the direct determination of phosphorus, copper, zinc and iron concentrations in protein spots with LA-ICP-MS. From the results of atomic and molecular mass spectrometric techniques the human brain proteins were characterized in respect to their structure, sequence, phosphorylation state and metal content as well.
Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD
NASA Astrophysics Data System (ADS)
Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration
2018-04-01
Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.
Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD.
Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S; Orginos, Kostas; Savage, Martin J; Shanahan, Phiala E; Wagman, Michael L; Winter, Frank
2018-04-13
Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and ^{3}He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m_{π}∼806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.
Savio, Marianela; Ortiz, María S; Almeida, César A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A
2014-09-15
Trace metals have negative effects on the oxidative stability of edible oils and they are important because of possibility for oils characterisation. A single-step procedure for trace elemental analysis of edible oils is presented. To this aim, a solubilisation with tetramethylammonium hydroxide (TMAH) was assayed prior to inductively coupled plasma mass spectrometry detection. Small amounts of TMAH were used, resulting in high elemental concentrations. This method was applied to edible oils commercially available in Argentine. Elements present in small amounts (Cu, Ge, Mn, Mo, Ni, Sb, Sr, Ti, and V) were determined in olive, corn, almond and sunflower oils. The limits of detection were between 0.004 μg g(-1) for Mn and Sr, and 0.32 μg g(-1) for Sb. Principal components analysis was used to correlate the content of trace metals with the type of oils. The two first principal components retained 91.6% of the variability of the system. This is a relatively simple and safe procedure, and could be an attractive alternative for quality control, traceability and routine analysis of edible oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Xuewei; Qu, Xueyin; Zhao, Shengguo; Wang, Jiaqi; Li, Songli; Zheng, Nan
2017-03-01
The objectives of this study were to measure the concentrations of elements in raw milk by inductively coupled plasma-mass spectrometry (ICP-MS) and evaluate differences in element concentrations among animal species and regions of China. Furthermore, drinking water and feed samples were analyzed to investigate whether the element concentrations in raw milk are correlated with those in water and feed. All samples were analyzed by ICP-MS following microwave-assisted acid digestion. The mean recovery of the elements was 98.7 % from milk, 103.7 % from water, and 93.3 % from a certified reference material (cabbage). Principal component analysis results revealed that element concentrations differed among animal species and regions. Correlation analysis showed that trace elements Mn, Fe, Ni, Ga, Se, Sr, Cs, U in water and Co, Ni, Cu, Se, U in feed were significantly correlated with those in milk (p < 0.05). Toxic and potential toxic elements Cr, As, Cd, Tl, Pb in water and Al, Cr, As, Hg, Tl in feed were significantly correlated with those in milk (p < 0.05). Results of correlation analysis revealed that elements in water and feed might contribute to the elements in milk.
NASA Astrophysics Data System (ADS)
Brigitte Neuland, Maike; Riedo, Andreas; Meyer, Stefan; Mezger, Klaus; Tulej, Marek; Wurz, Peter
2013-04-01
The knowledge of the chemical composition of moons, comets, asteroids or other planetary bodies is of particular importance for the investigation of the origin and evolution of the Solar System. For cosmochemistry, the elemental and isotopic composition of the surface material is essential information to investigate origin, differentiation and evolution processes of the body and therefore the history of our Solar System [1]. We show that the use of laser-based mass spectrometers is essential in such research because of their high sensitivity in the ppm range and their capability for quantitative elemental and isotopic analysis. A miniaturised Laser Ablation Time-of-Flight Mass Spectrometer (LMS) was developed in our group to study the elemental composition of solid samples [2]. The instrument's small size and light weight make it suitable for an application on a space mission to determine the elemental composition of a planetary surface for example [3]. Meteorites offer the excellent possibility to study extraterrestrial material in the laboratory. To demonstrate the sensitivity and functionality of the LMS instrument, a sample of the Allende meteorite has been investigated with a high spatial resolution. The LMS measurements allowed investigations of the elemental abundances in the Allende meteorite and detailed studies of the mineralogy and volatility [4]. These approaches can be of considerable interest for in situ investigation of grains and inhomogeneous materials with high sensitivity on a planetary surface. [1] Wurz, P., Whitby, J., Managadze, G., 2009, Laser Mass Spectrometry in Planetary Science, AIP Conf. Proc. CP1144, 70-75. [2] Tulej, M., Riedo, A., Iakovleva, M., Wurz, P., 2012, Int. J. Spec., On Applicability of a Miniaturized Laser Ablation Time of Flight Mass Spectrometer for Trace Element Measurements, article ID 234949. [3] Riedo, A., Bieler, A., Neuland, M., Tulej, M., Wurz, P., 2012, Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in-situ investigations in planetary space research, J. Mass Spectrom., in press. [4] Neuland, M.B., Meyer, S., Mezger, K., Riedo, A., Tulej, M., Wurz, P., Probing the Allende meteorite with a miniature Laser-Ablation Mass Analyser for space application, Planetary and Space Science, Special Issue: Terrestrial Planets II, submitted
Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin
2015-07-01
To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.
Rare earth element abundances in presolar SiC
NASA Astrophysics Data System (ADS)
Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.
2018-01-01
Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Jordana R.; Gill, Gary A.; Kuo, Li-Jung
2016-04-20
Trace element determinations in seawater by inductively coupled plasma mass spectrometry are analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. In this study, we did a comparison for uranium analysis using inductively coupled plasma mass spectrometry (ICP-MS) of Sequim Bay seawater samples and three seawater certified reference materials (SLEW-3, CASS-5 and NASS-6) using seven different analytical approaches. The methods evaluated include: direct analysis, Fe/Pd reductive precipitation, standard addition calibration, online automated dilution using an external calibration with and without matrix matching, and online automated pre-concentration. The methodmore » which produced the most accurate results was the method of standard addition calibration, recovering uranium from a Sequim Bay seawater sample at 101 ± 1.2%. The on-line preconcentration method and the automated dilution with matrix-matched calibration method also performed well. The two least effective methods were the direct analysis and the Fe/Pd reductive precipitation using sodium borohydride« less
Airborne particulate matter and spacecraft internal environments
NASA Technical Reports Server (NTRS)
Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane
1991-01-01
Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.
Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan
2012-01-01
This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431
Development and certification of the new SRM 695 trace elements in multi-nutrient fertilizer
MacKey, E.A.; Cronise, M.P.; Fales, C.N.; Greenberg, R.R.; Leigh, S.D.; Long, S.E.; Marlow, A.F.; Murphy, K.E.; Oflaz, R.; Sieber, J.R.; Rearick, M.S.; Wood, L.J.; Yu, L.L.; Wilson, S.A.; Briggs, P.H.; Brown, Z.A.; Budahn, J.; Kane, P.F.; Hall, W.L.
2007-01-01
During the past seven years, several states within the US have enacted regulations that limit the amounts of selected non-nutritive elements in fertilizers. Internationally, several countries, including Japan, China, and Australia, and the European Union also limit the amount of selected elements in fertilizers. The elements of interest include As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Fertilizer manufacturers and state regulatory authorities, faced with meeting and verifying these limits, need to develop analytical methods for determination of the elements of concern and to validate results obtained using these methods. Until now, there were no certified reference materials available with certified mass fraction values for all elements of interest in a blended, multi-nutrient fertilizer matrix. A new standard reference material (SRM) 695 trace elements in multi-nutrient fertilizer, has been developed to help meet these needs. SRM 695 has recently been issued with certified mass fraction values for seventeen elements, reference values for an additional five elements, and information values for two elements. The certificate of analysis includes an addendum listing percentage recovery for eight of these elements, determined using an acid-extraction inductively-coupled plasma optical-emission spectrometry (ICP-OES) method recently developed and tested by members of the Association of American Plant Food Control Officials. ?? Springer-Verlag 2007.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667
Biology and toxicology of tellurium explored by speciation analysis.
Ogra, Yasumitsu
2017-05-24
Tellurium (Te) is widely used in industry because it has unique physicochemical properties. Although Te is a non-essential element in animals and plants, it is expected to be metabolized to organometallic compounds having a carbon-Te bond in living organisms exposed to inorganic Te compounds. Thus, the speciation and identification of tellurometabolites are expected to contribute to the depiction of the metabolic chart of Te. Speciation by elemental mass spectrometry and identification by molecular mass spectrometry coupled with separation techniques have significantly contributed to the discovery of tellurometabolites in animals and plants. The aim of this mini review is to present recent advances in the biology and toxicology of tellurium as revealed by speciation and identification by molecular mass spectrometry.
Quantitative aspects of inductively coupled plasma mass spectrometry
Wagner, Barbara
2016-01-01
Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644971
USDA-ARS?s Scientific Manuscript database
Microwave digestion followed by analysis using ICP-MS has been shown to be a simple, fast reliable method for the multi-element determination in multivitamin/mineral dietary supplements (MVM). A study of 35 popular MVM dietary supplements revealed that composition and levels varied among products, a...
A Cerenkov-Range analysis of the isotopic composition of cosmic rays with Z from 6 to 26
NASA Technical Reports Server (NTRS)
Fisher, A. J.; Hagen, F. A.; Maehl, R.; Ormes, J. F.
1975-01-01
High-altitude balloon data on the isotopic composition of heavy cosmic rays are reported. The experiment used a Cerenkov detector, arrays of scintillators, and a digitized wire spark chamber. Peaks assigned to the mono-isotopic elements F and Na indicate that an absolute mass scale can be derived from the data. Even-Z elements in the Z range from 12 through 16 are represented mainly by alpha-particle nuclei. Neutron-rich components dominate in the case of neon present. Mass histograms are plotted for C, O, N, Ne, Mg, and Fe.
Application of Foldcore Sandwich Structures in Helicopter Subfloor Energy Absorption Structure
NASA Astrophysics Data System (ADS)
Zhou, H. Z.; Wang, Z. J.
2017-10-01
The intersection element is an important part of the helicopter subfloor structure. The numerical simulation model of the intersection element is established and the crush simulation is conducted. The simulation results agree well with the experiment results. In order to improve the buffering capacity and energy-absorbing capacity, the intersection element is redesigned. The skin and the floor in the intersection element are replaced with foldcore sandwich structures. The new intersection element is studied using the same simulation method as the typical intersection element. The analysis result shows that foldcore can improve the buffering capacity and the energy-absorbing capacity, and reduce the structure mass.
Jantzi, Sarah C; Almirall, José R
2014-01-01
Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.
Azcarate, Silvana M; Savio, Marianela; Smichowski, Patricia; Martinez, Luis D; Camiña, José M; Gil, Raúl A
2015-10-01
A single-step procedure for trace elements analysis of milk samples is presented. Solubilization with small amounts of dymethylformamide (DMF) was assayed prior to inductively coupled plasma mass spectrometry (ICPMS) detection with a high efficiency sample introduction system. All main instrumental conditions were optimized in order to readily introduce the samples without matrix elimination. In order to assess and mitigate matrix effects in the determination of As, Cd, Co, Cu, Eu, Ga, Gd, Ge, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sm, S, Sr, Ta, Tb, V, Zn, and Zr, matrix matching calibration with (103)Rh as internal standard (IS) was performed. The obtained limits of detection were between 0.68 (Tb) and 30 (Zn) μg L(-1). For accuracy verification, certified Skim milk powder reference material (BCR 063R) was employed. The developed method was applied to trace elements analysis of commercially available milks. Principal components analysis was used to correlate the content of trace metals with the kind of milk, obtaining a classification according to adults, baby or baby fortified milks. The outcomes highlight a simple and fast approach that could be trustworthy for routine analysis, quality control and traceability of milks. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparative study of two approaches to model the offshore fish cages
NASA Astrophysics Data System (ADS)
Zhao, Yun-peng; Wang, Xin-xin; Decew, Jud; Tsukrov, Igor; Bai, Xiao-dong; Bi, Chun-wei
2015-06-01
The goal of this paper is to provide a comparative analysis of two commonly used approaches to discretize offshore fish cages: the lumped-mass approach and the finite element technique. Two case studies are chosen to compare predictions of the LMA (lumped-mass approach) and FEA (finite element analysis) based numerical modeling techniques. In both case studies, we consider several loading conditions consisting of different uniform currents and monochromatic waves. We investigate motion of the cage, its deformation, and the resultant tension in the mooring lines. Both model predictions are sufficient close to the experimental data, but for the first experiment, the DUT-FlexSim predictions are slightly more accurate than the ones provided by Aqua-FE™. According to the comparisons, both models can be successfully utilized to the design and analysis of the offshore fish cages provided that an appropriate safety factor is chosen.
Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank
2016-01-01
Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the latest generations of some biological RMs.
Giannopoulos, G; Larcher, M; Casadei, F; Solomos, G
2010-01-15
Terrorist attacks in New York have shocked the world community showing clearly the vulnerability of air transport in such events. However, the terrorist attacks in Madrid and London showed that land mass transport infrastructure is equally vulnerable in case of similar attacks. The fact that there has not been substantial investment in the domain of risk analysis and evaluation of the possible effects due to such events in land mass transportation infrastructure leaves large room for new developments that could eventually fill this gap. In the present work using the finite element code EUROPLEXUS there has been a large effort to perform a complete study of the land mass infrastructure in case of explosion events. This study includes a train station, a metro station and a metro carriage providing thus valuable simulation data for a variety of different situations. For the analysis of these structures it has been necessary to apply a laser scanning method for the acquisition of geometrical data, to improve the simulation capabilities of EUROPLEXUS by adding failure capabilities for specific finite elements, to implement new material models (e.g. glass), and to add new modules that achieve data post-processing for the calculation of fatal and non-fatal injuries risk. The aforementioned improvements are explained in the present work with emphasis in the newly developed risk analysis features of EUROPLEXUS.
Dial, Angela R; Misra, Sambuddha; Landing, William M
2015-04-30
Accurate determination of trace metals has many applications in environmental and life sciences, such as constraining the cycling of essential micronutrients in biological production and employing trace metals as tracers for anthropogenic pollution. Analysis of elements such as Fe, As, Se, and Cd is challenged by the formation of polyatomic mass spectrometric interferences, which are overcome in this study. We utilized an Octopole Collision/Reaction Cell (CRC)-equipped Quadrupole-Inductively Coupled Plasma Mass Spectrometer for the rapid analysis of small volume samples (~250 μL) in a variety of matrices containing HNO3 and/or HCl. Efficient elimination of polyatomic interferences was demonstrated by the use of the CRC in Reaction Mode (RM; H2 gas) and in Collision-Reaction Mode (CRM; H2 and He gas), in addition to hot plasma (RF power 1500 W) and cool plasma (600 W) conditions. It was found that cool plasma conditions with RM achieved the greatest signal sensitivity while maintaining low detection limits (i.e. (56) Fe in 0.44 M HNO3 has a sensitivity of 160,000 counts per second (cps)-per-1 µg L(-1) and a limit of detection (LoD) of 0.86 ng L(-1) ). The average external precision was ≤ ~10% for minor (≤10 µg L(-1) ) elements measured in a 1:100 dilution of NIST 1643e and for iron in rainwater samples under all instrumental operating conditions. An improved method has been demonstrated for the rapid multi-element analysis of trace metals that are challenged by polyatomic mass spectrometric interferences, with a focus on (56) Fe, (75) As, (78) Se and (111) Cd. This method can contribute to aqueous environmental geochemistry and chemical oceanography, as well as other fields such as forensic chemistry, agriculture, food chemistry, and pharmaceutical sciences. Copyright © 2015 John Wiley & Sons, Ltd.
Dynamic analysis of lunar lander during soft landing using explicit finite element method
NASA Astrophysics Data System (ADS)
Zheng, Guang; Nie, Hong; Chen, Jinbao; Chen, Chuanzhi; Lee, Heow Pueh
2018-07-01
In this paper, the soft-landing analysis of a lunar lander spacecraft under three loading case was carried out in ABAQUS, using the Explicit Finite Element method. To ensure the simulation result's accuracy and reliability, the energy and mass balance criteria of the model was presented along with the theory and calculation method, and the results were benchmarked with other software (LS-DYNA) to get a validated model. The results from three loading case showed that the energy and mass of the models were conserved during soft landing, which satisfies the energy and mass balance criteria. The overloading response, structure steady state, and the crushing stroke of this lunar lander all met the design requirements of the lunar lander. The buffer energy-absorbing properties in this model have a good energy-absorbing capability, in which up to 84% of the initial energy could be dissipated. The design parameters of the model could guide the design of future manned landers or larger lunar landers.
Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.
Non-Target Analyses of organic compounds in ice cores using HPLC-ESI-UHRMS
NASA Astrophysics Data System (ADS)
Zuth, Christoph; Müller-Tautges, Christina; Eichler, Anja; Schwikowski, Margit; Hoffmann, Thorsten
2015-04-01
To study the global climatic and environmental changes it is necessary to know the environmental and especially atmospheric conditions of the past. By analysing climate archives, such as for example ice cores, unique environmental information can be obtained. In contrast to the well-established analysis of inorganic species in ice cores, organic compounds have been analysed in ice cores to a much smaller extent. Because of current analytical limitations it has become commonplace to focus on 'total organic carbon' measurements or specific classes of organic molecules, as no analytical methods exist that can provide a broad characterization of the organic material present[1]. On the one hand, it is important to focus on already known atmospheric markers in ice cores and to quantify, where possible, in order to compare them to current conditions. On the other hand, unfortunately a wealth of information is lost when only a small fraction of the organic material is examined. However, recent developments in mass spectrometry in respect to higher mass resolution and mass accuracy enable a new approach to the analysis of complex environmental samples. The qualitative characterization of the complex mixture of water soluble organic carbon (WSOC) in the ice using high-resolution mass spectrometry allows for novel insights concerning the composition and possible sources of aerosol derived WSOC deposited at glacier sites. By performing a non-target analysis of an ice core from the Swiss Alps using previous enrichment by solid-phase extraction (SPE) and high performance liquid chromatography coupled to electrospray ionization and ultra-high resolution mass spectrometry (HPLC-ESI-UHRMS) 475 elemental formulas distributed onto 659 different peaks were detected. The elemental formulas were classified according to their elemental composition into CHO-, CHON-, CHOS-, CHONS-containing compounds and 'others'. Several methods for the analysis of complex data sets of high resolution mass spectrometry were applied to the results of the non-target analysis. By various classifications in Van Krevelen plots[2], amino acids and degradation products of proteins as well as degradation products of lignins have been determined as the main components of the ice core. Furthermore, the majority of WSOC molecular formulas identified in this non-target analysis had molar H/C and O/C ratios similar to mono- and di-carboxylic acids and SOAs[3]. Studies of the carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol showed that a majority of the elemental formulas can be associated with the combustion of biomass as a major source of the WSOC[4]. References: [1] Grannas et al., J. Geophys Res.,2006, 111 [2] Sleighter, RL, Hatcher, PG, J. Mass Spectrom., 2007, 42, 559-574 [3] Wozniak et al., Atmos. Chem. Phys., 2008, 8, 5099-5111 [4] Kroll et al., Nature Chemistry, 2011, 3, 133-139
Omega Design and FEA Based Coriolis Mass Flow Sensor (CMFS) Analysis Using Titanium Material
NASA Astrophysics Data System (ADS)
Patil, Pravin P.; Kumar, Ashwani; Ahmad, Faraz
2018-02-01
The main highlight of this research work is evaluation of resonant frequency for titanium omega type coriolis mass flow sensor. Coriolis mass flow sensor is used for measuring direct mass flow in pipe useful for various industrial applications. It works on the principle of Coriolis effect. Finite Element Analysis (FEA) simulation of omega flow sensor was performed using Ansys 14.5 and Solid Edge, Pro-E was used for modelling of omega tube. Titanium was selected as omega tube material. Experimental setup was prepared for omega tube coriolis flow sensor for performing different test. Experimental setup was used for investigation of different parameters effect on CMFS and validation of simulation results.
IMP: Interactive mass properties program. Volume 1: Program description
NASA Technical Reports Server (NTRS)
Stewart, W. A.
1976-01-01
A method of computing a weights and center of gravity analysis of a flight vehicle using interactive graphical capabilities of the Adage 340 computer is described. The equations used to calculate area, volume, and mass properties are based on elemental surface characteristics. The input/output methods employ the graphic support of the Adage computer. Several interactive program options are available for analyzing the mass properties of a vehicle. These options are explained.
Jaworowski, Cheryl; Susong, David; Heasler, Henry; Mencin, David; Johnson, Wade; Conrey, Rick; Von Stauffenberg, Jennipher
2016-06-01
After drilling the seven PBO boreholes, cuttings were examined and selected for preparation of grain mounts, thin sections, and geochemical analysis. Major ions and trace elements (including rare earth elements) of selected cuttings were determined by x-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS); the ICP-MS provided more precise trace-element analysis than XRF. A preliminary interpretation of the results of geochemical analyses generally shows a correlation between borehole cuttings and previously mapped geology. The geochemical data and borehole stratigraphy presented in this report provide a foundation for future petrologic, geochemical, and geophysical studies.
An inexpensive autosampler for a DART/TOFMS provides mass spectra from analytes absorbed on 76 cotton swab, wipe samples in 7.5 min. A field sample carrier simplifies sample collection and provides swabs nearly ready for analysis to the lab. Applications of the high throughput pr...
Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...
2008-07-01
Mass Spectrometry Data in Workflows for the Discovery of Biomarkets in Breast Cancer PRINCIPAL INVESTIGATOR: Vladimir Fokin, Ph.D... Biomarkets in Breast Cancer 5b. GRANT NUMBER W81XWH-07-1-0447 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Vladimir Fokin, Ph.D
NASA Technical Reports Server (NTRS)
Gloeckler, G.
1977-01-01
An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.
Substructure Versus Property-Level Dispersed Modes Calculation
NASA Technical Reports Server (NTRS)
Stewart, Eric C.; Peck, Jeff A.; Bush, T. Jason; Fulcher, Clay W.
2016-01-01
This paper calculates the effect of perturbed finite element mass and stiffness values on the eigenvectors and eigenvalues of the finite element model. The structure is perturbed in two ways: at the "subelement" level and at the material property level. In the subelement eigenvalue uncertainty analysis the mass and stiffness of each subelement is perturbed by a factor before being assembled into the global matrices. In the property-level eigenvalue uncertainty analysis all material density and stiffness parameters of the structure are perturbed modified prior to the eigenvalue analysis. The eigenvalue and eigenvector dispersions of each analysis (subelement and property-level) are also calculated using an analytical sensitivity approximation. Two structural models are used to compare these methods: a cantilevered beam model, and a model of the Space Launch System. For each structural model it is shown how well the analytical sensitivity modes approximate the exact modes when the uncertainties are applied at the subelement level and at the property level.
Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry
Taylor, Howard E.; Garbarino, John R.
1988-01-01
A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.
Using Principal Component Analysis to Improve Fallout Characterization
2017-03-23
between actinide location and elemental composition in fallout from historic atmospheric nuclear weapons testing. Fifty spherical fallout samples were...mathematical approach to solving the complex system of elemental variables while establishing correlations to actinide incorporation within the fallout...1. The double hump curve for uranium-235 showing the effective fission yield by mass number for thermal neutrons. Reproduced with permission from
NASA Astrophysics Data System (ADS)
Mantas, E.; Remoundaki, E.; Halari, I.; Kassomenos, P.; Theodosi, C.; Hatzikioseyian, A.; Mihalopoulos, N.
2014-09-01
A systematic monitoring of PM2.5 was carried out during a period of three years (from February 2010 to April 2013) at an urban site, at the National Technical University of Athens campus. Two types of 24-h PM2.5 samples have been collected: 271 samples on PTFE and 116 samples on quartz filters. Daily PM2.5 concentrations were determined for both types of samples. Total sulfur, crustal origin elements and elements of a major crustal component (Al, Si, Fe, Ca, K, Mg, Ti) trace elements (Zn, Pb, Cu, Ni, P, V, Cr, Mn) and water soluble ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Ca2+, Mg2+) were determined on the PTFE samples. Organic carbon (OC), elemental carbon (EC) and water soluble ions were determined on the quartz samples. For the mass closure six components were considered: Secondary Inorganic Aerosol (SIA), Organic Matter (OM), Elemental Carbon (EC), Dust, Mineral anthropogenic component (MIN) and Sea Salt (SS). SIA and OM contributed in the mass of PM2.5 almost equally: 30-36% and 30% respectively. EC, SS and MIN accounted for 5, 4 and 3% respectively of the total PM2.5 mass. Dust accounted for about 3-5% in absence of dust transport event and reached a much higher percentage in case of dust transport event. These contributions justify at least 80% of the PM2.5 mass. Source apportionment analysis has been performed by Positive Matrix Factorization. The combination of the PMF results obtained by both data sets lead to the definition of six factors: 1. SO42-, NH4+, OC (industrial/regional sources, secondary aerosol) 2. EC, OC, K and trace metals (traffic and heating by biomass burning, locally emitted aerosol). 3. Ca, EC, OC and trace metals (urban-resuspended road dust reflecting exhaust emissions), 4. Secondary nitrates 5. Na, Cl (marine source) 6. Si, Al, Ti, Ca, Fe (Dust transported from Sahara). These factors reflect not only main sources contributions but also underline the key role of atmospheric dynamics and aerosol ageing processes in this Mediterranean environment.
Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less
Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging
Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...
2016-04-18
Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less
Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method
NASA Technical Reports Server (NTRS)
Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.
1974-01-01
An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.
Elemental composition and size distribution of particulates in Cleveland, Ohio
NASA Technical Reports Server (NTRS)
King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.
1975-01-01
Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.
Elemental composition and size distribution of particulates in Cleveland, Ohio
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.
1975-01-01
Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.
NASA Astrophysics Data System (ADS)
Vinokurov, S. F.; Tarasova, N. P.; Trunova, A. N.; Sychkova, V. A.
2017-07-01
Snow samples from the territory of the Setun River Valley Wildlife Sanctuary are analyzed for the content of rare-earth elements, heavy metals, and other hazardous elements by the inductively coupled plasma mass-spectrometry method. The changes in the concentrations of rare-earth elements, Pt, Pd, and indicator ratios of elements in the solid fractions of snow are revealed. A trend toward a decrease in the content of several elements northeastward of the Moscow Ring Road (MRR) is established. The level of seasonal atmospheric contamination of the area under study is assessed, and a possible source is identified.
Multi-element fingerprinting as a tool in origin authentication of four east China marine species.
Guo, Lipan; Gong, Like; Yu, Yanlei; Zhang, Hong
2013-12-01
The contents of 25 elements in 4 types of commercial marine species from the East China Sea were determined by inductively coupled plasma mass spectrometry and atomic absorption spectrometry. The elemental composition was used to differentiate marine species according to geographical origin by multivariate statistical analysis. The results showed that principal component analysis could distinguish samples from different areas and reveal the elements which played the most important role in origin diversity. The established models by partial least squares discriminant analysis (PLS-DA) and by probabilistic neural network (PNN) can both precisely predict the origin of the marine species. Further study indicated that PLS-DA and PNN were efficacious in regional discrimination. The models from these 2 statistical methods, with an accuracy of 97.92% and 100%, respectively, could both distinguish samples from different areas without the need for species differentiation. © 2013 Institute of Food Technologists®
An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements
NASA Technical Reports Server (NTRS)
Ross, H. Richard
1993-01-01
A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.
Dynamic behavior and deformation analysis of the fish cage system using mass-spring model
NASA Astrophysics Data System (ADS)
Lee, Chun Woo; Lee, Jihoon; Park, Subong
2015-06-01
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.
NASA Technical Reports Server (NTRS)
Burlingame, A. L.; Johanson, G. A.
1972-01-01
Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.
Updating the Finite Element Model of the Aerostructures Test Wing Using Ground Vibration Test Data
NASA Technical Reports Server (NTRS)
Lung, Shun-Fat; Pak, Chan-Gi
2009-01-01
Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the aerostructures test wing (ATW), which was designed and tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.
Updating the Finite Element Model of the Aerostructures Test Wing using Ground Vibration Test Data
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2009-01-01
Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the Aerostructures Test Wing (ATW), which was designed and tested at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.
2014-08-06
the pressure field is uniform across them, but which allow mass flow to be diverted. Series elements have a constant mass flow across the ports...they can be used to calculate the pressure and mass flow after the element from the pressure and mass flow prior to the element, as shown in...the matrix product of each transfer matrix in turn. The final matrix gives no information about the pressures and mass flows within the element
Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen
2015-01-01
A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632
NASA Astrophysics Data System (ADS)
Salma, Imre; Maenhaut, Willy; Zemplén-Papp, Éva; Záray, Gyula
As part of an air pollution project in Budapest, aerosol samples were collected by stacked filter units and cascade impactors at an urban background site, two downtown sites, and within a road tunnel in field campaigns conducted in 1996, 1998 and 1999. Some criteria pollutants were also measured at one of the downtown sites. The aerosol samples were analysed by one or more of the following methods: instrumental neutron activation analysis, particle-induced X-ray emission analysis, a light reflection technique, gravimetry, thermal profiling carbon analysis and capillary electrophoresis. The quantities measured or derived include atmospheric concentrations of elements (from Na to U), of particulate matter, of black and elemental carbon, and total carbonaceous fraction, of some ionic species (e.g., nitrate and sulphate) in the fine ( <2 μm equivalent aerodynamic diameter, EAD) or in both coarse (10- 2 μm EAD) and fine size fractions, atmospheric concentrations of NO, NO 2, SO 2, CO and total suspended particulate matter, and meteorological parameters. The analytical results were used for characterisation of the concentration levels, elemental composition, time trends, enrichment of and relationships among the aerosol species in coarse and fine size fractions, for studying their fine-to-coarse concentration ratios, spatial and temporal variability, for determining detailed elemental mass size distributions, and for examining the extent of chemical mass closure.
High-resolution mass spectrometric analysis of biomass pyrolysis vapors
Christensen, Earl; Evans, Robert J.; Carpenter, Daniel
2017-01-19
Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less
Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry
ERIC Educational Resources Information Center
Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.
2016-01-01
Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…
Wang, Hailong; Wang, Meng; Wang, Bing; Zheng, Lingna; Chen, Hanqing; Chai, Zhifang; Feng, Weiyue
2017-02-01
Cellular heterogeneity is an inherent condition of cell populations, which results from stochastic expression of genes, proteins, and metabolites. The heterogeneity of individual cells can dramatically influence cellular decision-making and cell fate. So far, our knowledge about how the variation of endogenous metals and non-metals in individual eukaryotic cells is limited. In this study, ICP-MS equipped with a high efficiency cell introduction system (HECIS) was developed as a method of single-cell ICP-MS (SC-ICP-MS). The method was applied to the single-cell analysis of Mn, Fe, Co, Cu, Zn, P, and S in human cancer cell lines (HeLa and A549) and normal human bronchial epithelial cell line (16HBE). The analysis showed obvious variation of the masses of Cu, Fe, Zn, and P in individual HeLa cells, and variation of Fe, Zn, and P in individual A549 cells. On the basis of the single-cell data, a multimodal distribution of the elements in the cell population was fitted, which showed marked differences among the various cell lines. Importantly, subpopulations of the elements were found in the cell populations, especially in the HeLa cancer cells. This study demonstrates that SC-ICP-MS is able to unravel the extent of variation of endogenous elements in individual cells, which will help to improve our fundamental understanding of cellular biology and reveal novel insights into human biology and medicine. Graphical abstract The variations of masses and distribution patterns of elements Mn, Fe, Co, Cu, Zn, P, and S in single cells were successfully detected by ICP-MS coupled with a high efficiency cell introduction system (HECIS).
NASA Astrophysics Data System (ADS)
Ivans, Inese I.; Sneden, Christopher; Gallino, Roberto; Cowan, John J.; Preston, George W.
2005-07-01
Employing spectra obtained with the new Keck I HIRES near-UV-sensitive detector, we have performed a comprehensive chemical composition analysis of the binary blue metal-poor star CS 29497-030. Abundances for 29 elements and upper limits for an additional seven have been derived, concentrating on elements largely produced by means of neutron-capture nucleosynthesis. Included in our analysis are the two elements that define the termination point of the slow neutron-capture process, lead and bismuth. We determine an extremely high value of [Pb/Fe]=+3.65+/-0.07 (σ=0.13) from three features, supporting the single-feature result obtained in previous studies. We detect Bi for the first time in a metal-poor star. Our derived Bi/Pb ratio is in accord with those predicted from the most recent FRANEC calculations of the slow neutron-capture process in low-mass asymptotic giant branch (AGB) stars. We find that the neutron-capture elemental abundances of CS 29497-030 are best explained by an AGB model that also includes very significant amounts of pre-enrichment of rapid neutron-capture process material in the protostellar cloud out of which the CS 29497-030 binary system formed. Mass transfer is consistent with the observed [Nb/Zr]~0. Thus, CS 29497-030 is both an r+s and ``extrinsic AGB'' star. Furthermore, we find that the mass of the AGB model can be further constrained by the abundance of the light odd-element Na. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Arslan, Z; Paulson, A J
2002-04-01
The aragonite deposits within the ear bones (otoliths) of teleost fish retain a chemical signal reflecting the life history of fish (similar to rings of trees) and the nature of fish habitats. Otoliths dissolved in acid solutions contain high concentrations of calcium and a variety of proteins. Elimination of matrix salts and organic interferences during preconcentration is essential for accurate determination of trace elements in otolith solutions by inductively coupled plasma-quadrupole mass spectrometry. An iminodiacetate-based chelating resin (Toyopearl AF-Chelate 650 M) has been used for on-line preconcentration and matrix separation for the determination of 31 transition and rare elements. Successful preconcentration of the elements was achieved at pH 5 by on-line buffering, except Mn which required pH 8.8. Sample solutions were loaded on to the column for 1 min at 3.2 mL min(-1), and then eluted directly into the mass spectrometer with 4% v/v nitric acid. This procedure enabled up to 25-fold preconcentration with successful removal of the calcium matrix. The effect of heat-assisted oxidation with concentrated nitric acid was investigated to eliminate the organic matrix. It was found that heating to dryness after dissolution and further mineralization with the acid significantly improved the retention of the transition elements. The method was validated by analysis of a certified reference material produced from saggittal otoliths of emperor snapper ( Lutjanus sebae), and then applied to the determination of trace metal concentrations in juvenile bluefin tuna ( Thunnus thynnus) from the Western Pacific Ocean.
Ahamad, Syed Rizwan; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Qamar, Wajhul; Aljarboa, Suliman
2017-07-01
The aim of the present investigation was to explore the constituents of the Arabian myrrh resin obtained from Commiphora myrrha. The organic and inorganic composition of the myrrh gum resin has been investigated using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analysis executed by ICP-MS reveals the presence of various inorganic elements in significant amount in the myrrh resin. The elements that were found to be present in large amounts include calcium, magnesium, aluminum, phosphorus, chlorine, chromium, bromine and scandium. The important organic constituents identified in the myrrh ethanolic extract include limonene, curzerene, germacrene B, isocericenine, myrcenol, beta selinene, and spathulenol,. The present work complements other myrrh associated investigations done in the past and provides additional data for the future researches.
NASA Astrophysics Data System (ADS)
Muñiz, Rocío; Lobo, Lara; Németh, Katalin; Péter, László; Pereiro, Rosario
2017-09-01
There is still a lack of approaches for quantitative depth-profiling when dealing with glow discharges (GD) coupled to mass spectrometric detection. The purpose of this work is to develop quantification procedures using pulsed GD (PGD) - time of flight mass spectrometry. In particular, research was focused towards the depth profile analysis of Cu/NiCu nanolayers and multilayers electrodeposited on Si wafers. PGDs are characterized by three different regions due to the temporal application of power: prepeak, plateau and afterglow. This last region is the most sensitive and so it is convenient for quantitative analysis of minor components; however, major elements are often saturated, even at 30 W of applied radiofrequency power for these particular samples. For such cases, we have investigated two strategies based on a multimatrix calibration procedure: (i) using the afterglow region for all the sample components except for the major element (Cu) that was analyzed in the plateau, and (ii) using the afterglow region for all the elements measuring the ArCu signal instead of Cu. Seven homogeneous certified reference materials containing Si, Cr, Fe, Co, Ni and Cu have been used for quantification. Quantitative depth profiles obtained with these two strategies for samples containing 3 or 6 multilayers (of a few tens of nanometers each layer) were in agreement with the expected values, both in terms of thickness and composition of the layers.
Laser Time-of-Flight Mass Spectrometry for Space
NASA Technical Reports Server (NTRS)
Brinckerhoff, W. B.; Managadze, G. G.; McEntire, R. W.; Cheng, A. F.; Green, W. J.
2000-01-01
A miniature reflection time-of-flight mass spectrometer for in situ planetary surface analysis is described. The laser ablation mass spectrometer (LAMS) measures the regolith's elemental and isotopic composition without high-voltage source extraction or sample preparation. The compact size (< 2 x 10(exp 3) cubic cm) and low mass (approximately 2 kg) of LAMS, due to its fully coaxial design and two-stage reflectron, fall within the strict resource limitations of landed science missions to solar system bodies. A short-pulse laser focused to a spot with a diameter approximately 30-50 micrometers is used to obtain microscopic surface samples. Assisted by a microimager, LAMS can interactively select and analyze a range of compositional regions (with lateral motion) and with repeated pulses can access unweathered, subsurface materials. The mass resolution is calibrated to distinguish isotopic peaks at unit masses, and detection limits are on resolved to a few ppm. The design and calibration method of a prototype LAMS device is described, which include the development of preliminary relative sensitivity coefficients for major element bulk abundance measurements.
Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Czechowski, Piotr Oskar
2015-05-01
Ambient particulate matter (PM) was sampled in Zabrze (southern Poland) in the heating period of 2009. It was investigated for distribution of its mass and of the masses of its 18 component elements (S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb) among 13 PM size fractions. In the paper, the distribution modality of and the correlations between the ambient concentrations of these elements are discussed and interpreted in terms of the source apportionment of PM emissions. By weight, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb were 10% of coarse and 9% of ultrafine particles. The collective mass of these elements was no more than 3.5 % of the mass of the particles with the aerodynamic diameter D p between 0.4 and 1.0 μm (PM₀.₄₋₁), whose ambient mass concentration was the highest. The PM mass size distribution for the sampling period is bimodal; it has the accumulation and coarse modes. The coarse particles were probably of the mineral/soil origin (characteristic elements: Ca, Fe, Sr, and Ba), being re-suspended polluted soil or road dust (characteristic elements: Ca, Fe, Sr, Ba, S, K, Cr, Cu, Zn, Br, Sb, Pb). The maxima of the density functions (modes) of the concentration distributions with respect to particle size of PM-bound S, Cl, K, Cu, Zn, Ge, Br, Cd, Sb, and Pb within the D p interval from 0.108 to 1.6 μm (accumulation PM particles) indicate the emissions from furnaces and road traffic. The distributions of PM-bound As, Mn, Ba, and Sr concentrations have their modes within D p ≤ 0.108 μm (nucleation PM particles), indicating the emissions from high-temperature processes (industrial sources or car engines). In this work, principal component analysis (PCA) is applied separately to each of the 13 fraction-related sets of the concentrations of the 18 PM-bound elements, and further, the fractions are grouped by their origin using cluster analysis (CA) applied to the 13 fraction-related first principal components (PC1). Four distinct groups of the PM fractions are identified: (PM₁.₆₋₂.₅, PM₂.₅₋₄.₄,), (PM₀.₀₃₋₀.₀₆, PM₀.₁₀₈₋₀.₁₇), (PM₀.₀₆₋₀.₁₀₈, PM₀.₁₇₋₀.₂₆, PM₀.₂₆₋₀.₄, PM₀.₄₋₀.₆₅, PM₀.₆₅₋₁, PM₁₋₁.₆), and (PM₄.₄₋₆.₈, PM₆.₈₋₁₀, PM>₁₀). The PM sources attributed to these groups by using PCA followed by CA are roughly the same as the sources from the apportionment done by analyzing the modality of the mass size distributions.
NASA Astrophysics Data System (ADS)
Benninghoff, L.; von Czarnowski, D.; Denkhaus, E.; Lemke, K.
1997-07-01
For the determination of trace element distributions of more than 20 elements in malignant and normal tissues of the human colon, tissue samples (approx. 400 mg wet weight) were digested with 3 ml of nitric acid (sub-boiled quality) by use of an autoclave system. The accuracy of measurements has been investigated by using certified materials. The analytical results were evaluated by using a spreadsheet program to give an overview of the element distribution in cancerous samples and in normal colon tissues. A further application, cluster analysis of the analytical results, was introduced to demonstrate the possibility of classification for cancer diagnosis. To confirm the results of cluster analysis, multivariate three-way principal component analysis was performed. Additionally, microtome frozen sections (10 μm) were prepared from the same tissue samples to compare the analytical results, i.e. the mass fractions of elements, according to the preparation method and to exclude systematic errors depending on the inhomogeneity of the tissues.
NASA Astrophysics Data System (ADS)
Medvedev, Nickolay S.; Shaverina, Anastasiya V.; Tsygankova, Alphiya R.; Saprykin, Anatoly I.
2018-04-01
The paper presents а comparison of analytical performances of inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) for trace analysis of high purity bismuth and bismuth oxide. Matrix effects in the ICP-MS and ICP-AES methods were studied as a function of Bi concentration, ICP power and nebulizer flow rate. For ICP-MS the strong dependence of the matrix effects versus the atomic mass of analytes was observed. For ICP-AES the minimal matrix effects were achieved for spectral lines of analytes with low excitation potentials. The optimum degree of sample dilution providing minimum values of the limits of detection (LODs) was chosen. Both methods let us to reach LODs from n·10-7 to n·10-4 wt% for more than 50 trace elements. For most elements the LODs of ICP-MS were lower in comparison to ICP-AES. Validation of accuracy of the developed techniques was performed by "added-found" experiments and by comparison of the results of ICP-MS and ICP-AES analysis of high-purity bismuth oxide.
Prompt and delayed NAA techniques for the characterization of specimen bank materials.
Rossbach, M; Stoeppler, M; Byrne, A R
1993-11-01
The combined application of instrumental-, radiochemical- and prompt gamma neutron activation analysis to two spruce shoot materials from the German Environmental Specimen Bank (ESB) resulted in information on 50 elements, covering more than 50% of the total mass. Comparison of the element concentrations in the 'fingerprint' mode clearly indicated a different status of heavy metal pollution at the two distinct collecting sites.
Abuhani, W A; Dasgupta-Schubert, N; Villaseñor, L M; García Avila, D; Suárez, L; Johnston, C; Borjas, S E; Alexander, S A; Landsberger, S; Suárez, M C
2015-01-01
The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to the paleo times when such plant types were ubiquitous, it would mean that the first plants contributed significantly to pedogenesis and the biogeochemical recycling of even the heaviest and radioactive elements. Such plants may potentially be useful for the phytostabilisation of soil moderately contaminated by the NOHRE. Furthermore where applicable, geochronology may require taking into account the influence of the early plants on the NOHRE distributions. Copyright © 2014 Elsevier Ltd. All rights reserved.
A microwave-assisted digestion technique followed by ICPMS (inductively coupled plasma-mass spectrometry) analysis was used to measure concentrations of 43 elements in Hypogymnia physodes samples collected in the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canad...
Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.
2007-01-01
Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.
Palmer, C.A.; Lyons, P.C.
1996-01-01
The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.
Li, Xiaolin; Brownawell, Bruce J.
2009-01-01
A sensitive and robust method of analysis for quaternary ammonium compounds (QACs) in marine sediments is presented. Methods for extraction, sample purification, and HPLC-Time-of-Flight-MS analysis were optimized, providing solutions to problems associated with analysis of QACs, such as dialkyldimethylammonium (DADMAC) and benzalkonium (BAC) compounds experienced previously. Recognized in this study are the exceptionally high positive mass defects characteristic of alkylammonium or protonated alkylamine ions. No alternative and chemically-viable elemental formulas exist within 25.2 mDa when the number of double bond equivalents is low, effectively allowing facile discrimination of this compound class in complex mixtures. Accurate mass measurements of diagnostic collision induced dissociation fragment ions and heavy isotope peaks were obtained and also seen to be uniquely heavy compared to other elemental formulae. In the case of BACs, the ability to resolve masses of alkylamine fragment ions is greater than it is for molecular ions, opening up a wide range of potential applications. The power of utilizing a combination of approaches is illustrated with the identification of non-targeted DADMAC C8:C8 and C8:C10, two widely used biocides previously unreported in environmental samples. Concentrations of QACs in sewage-impacted estuarine sediments (up to 74 μg/g) were higher than concentrations of other organic contaminants measured in the same or nearby samples, suggesting further study is needed. PMID:19739657
Elemental analysis of scorpion venoms.
Al-Asmari, AbdulRahman K; Kunnathodi, Faisal; Al Saadon, Khalid; Idris, Mohammed M
2016-01-01
Scorpion venom is a rich source of biomolecules, which can perturb physiological activity of the host on envenomation and may also have a therapeutic potential. Scorpion venoms produced by the columnar cells of venom gland are complex mixture of mucopolysaccharides, neurotoxic peptides and other components. This study was aimed at cataloguing the elemental composition of venoms obtained from medically important scorpions found in the Arabian peninsula. The global elemental composition of the crude venom obtained from Androctonus bicolor, Androctonus crassicauda and Leiurus quinquestriatus scorpions were estimated using ICP-MS analyzer. The study catalogued several chemical elements present in the scorpion venom using ICP-MS total quant analysis and quantitation of nine elements exclusively using appropriate standards. Fifteen chemical elements including sodium, potassium and calcium were found abundantly in the scorpion venom at PPM concentrations. Thirty six chemical elements of different mass ranges were detected in the venom at PPB level. Quantitative analysis of the venoms revealed copper to be the most abundant element in Androctonus sp. venom but at lower level in Leiurus quinquestriatus venom; whereas zinc and manganese was found at higher levels in Leiurus sp. venom but at lower level in Androctonus sp. venom. These data and the concentrations of other different elements present in the various venoms are likely to increase our understanding of the mechanisms of venom activity and their pharmacological potentials.
Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair
2016-08-01
Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge. Copyright © 2016 Elsevier B.V. All rights reserved.
Study of heavy-ion induced fission for heavy-element synthesis
NASA Astrophysics Data System (ADS)
Nishio, K.; Ikezoe, H.; Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Antalic, S.; Aritomo, Y.; Comas, V. F.; Düllman, Ch. E.; Gorshkov, A.; Graeger, R.; Heinz, S.; Heredia, J. A.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, H.; Mann, R.; Mitsuoka, S.; Nagame, Y.; Nishinaka, I.; Ohtsuki, T.; Popeko, A. G.; Saro, S.; Schädel, M.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A. V.
2014-03-01
Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis, and the values were consistent with those determined from the evaporation residue cross sections.
NASA Astrophysics Data System (ADS)
Sakata, Kenichi
Aplasma-interface is considered the most mysterious part of an inductively coupled plasma mass spectrometer system in terms of understanding its operational mechanism. After a brief explanation of the basic structure of the inductively coupled plasma mass spectrometer and how it works, the plasma-interface is discussed in regard to its complex operation and approaches to investigating its behavior. In particular, the position and shape of the plasma boundary seem to be important to understand the instrument's sensitivity.
Quantification of rare earth elements using laser-induced breakdown spectroscopy
Martin, Madhavi; Martin, Rodger C.; Allman, Steve; ...
2015-10-21
In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages rangingmore » from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.« less
Assessing rare earth elements in quartz rich geological samples.
Santoro, A; Thoss, V; Ribeiro Guevara, S; Urgast, D; Raab, A; Mastrolitti, S; Feldmann, J
2016-01-01
Sodium peroxide (Na2O2) fusion coupled to Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) measurements was used to rapidly screen quartz-rich geological samples for rare earth element (REE) content. The method accuracy was checked with a geological reference material and Instrumental Neutron Activation Analysis (INAA) measurements. The used mass-mode combinations presented accurate results (only exception being (157)Gd in He gas mode) with recovery of the geological reference material QLO-1 between 80% and 98% (lower values for Lu, Nd and Sm) and in general comparable to INAA measurements. Low limits of detection for all elements were achieved, generally below 10 pg g(-1), as well as measurement repeatability below 15%. Overall, the Na2O2/ICP-MS/MS method proved to be a suitable lab-based method to quickly and accurately screen rock samples originating from quartz-rich geological areas for rare earth element content; particularly useful if checking commercial viability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Skytte, Lilian; Rasmussen, Kaare Lund
2013-07-30
Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.
Study of Heavy-ion Induced Fission for Heavy Element Synthesis
NASA Astrophysics Data System (ADS)
Nishio, K.; Ikezoe, H.; Hofmann, S.; Ackermann, D.; Aritomo, Y.; Comas, V. F.; Düllmann, Ch. E.; Heinz, S.; Heredia, J. A.; Heßberger, F. P.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, M.; Mann, R.; Mitsuoka, S.; Nishinaka, I.; Ohtsuki, T.; Saro, S.; Schädel, M.; Popeko, A. G.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A.
2014-05-01
Fission fragment mass distributions were measured in heavy-ion induced fission of 238U. The mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model for the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that sub-barrier energies can be used for heavy element synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Christopher Hysjulien
This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows thatmore » MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.
2010-05-01
Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for themore » fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.« less
Kausar, Rubina; Ahmad, Zulfiqar
2009-10-01
The present study deals with the ground water quality assessment in Kahuta Industrial Triangle Islamabad, Pakistan. The objective of the study was to assess ground water quality against the drinking water standards for various toxic inorganic elements. Representative groundwater samples were collected and analyzed in the Water Quality Laboratory of Pakistan Council of Research in Water Resources (PCRWR) at Islamabad, Pakistan. The samples were run on ICP-MS (Inductively coupled plasma mass spectrometry), which has the capability to separate and quantify 70 elements at a time. One of the finding of study is that ICP-MS is a very good tool to analyze broad range of toxic inorganic elements to the level of parts per billion (ppb). World Health Organization drinking water standards shows that these toxic inorganic elements such as heavy metals even at this concentration level (ppb) are injurious to human health. This analysis indicated pollution of various toxic elements including Selenium. Vertical leachate through industrial waste septic tanks is identified as major cause of groundwater pollution in the Industrial Triangle. Monitoring of the septic tanks and groundwater quality in study area is suggested along with remedial measures.
Shen, Fei; Wu, Jian; Ying, Yibin; Li, Bobin; Jiang, Tao
2013-12-15
Discrimination of Chinese rice wines from three well-known wineries ("Guyuelongshan", "Kuaijishan", and "Pagoda") in China has been carried out according to mineral element contents in this study. Nineteen macro and trace mineral elements (Na, Mg, Al, K, Ca, Mn, Fe, Cu, Zn, V, Cr, Co, Ni, As, Se, Mo, Cd, Ba and Pb) were determined by inductively coupled plasma mass spectrometry (ICP-MS) in 117 samples. Then the experimental data were subjected to analysis of variance (ANOVA) and principal component analysis (PCA) to reveal significant differences and potential patterns between samples. Stepwise linear discriminant analysis (LDA) and partial least square discriminant analysis (PLS-DA) were applied to develop classification models and achieved correct classified rates of 100% and 97.4% for the prediction sample set, respectively. The discrimination could be attributed to different raw materials (mainly water) and elaboration processes employed. The results indicate that the element compositions combined with multivariate analysis can be used as fingerprinting techniques to protect prestigious wineries and enable the authenticity of Chinese rice wine. Copyright © 2013 Elsevier Ltd. All rights reserved.
Large scale intercomparison of aerosol trace element analysis by different analytical methods
NASA Astrophysics Data System (ADS)
Bombelka, E.; Richter, F.-W.; Ries, H.; Wätjen, U.
1984-04-01
The general agreement of PIXE analysis with other methods (INAA, XRF, AAS, OES-ICP, and PhAA) is very good based on the analysis of filter pieces taken from 250 aerosol samples. It is better than 5% for Pb and Zn, better than 10% for V, Cr, and Mn, indicating that the accuracy of PIXE analysis can be within 10%. For elements such as Cd and Sb, difficult to analyze by PIXE because of their low mass content in the sample, the agreement is given mainly by the reproducibility of the method (20% to 30%). Similar agreement is found for sulfur, after taking account of the depth distribution of the aerosol in the filter.
Study of propellant dynamics in a shuttle type launch vehicle
NASA Technical Reports Server (NTRS)
Jones, C. E.; Feng, G. C.
1972-01-01
A method and an associated digital computer program for evaluating the vibrational characteristics of large liquid-filled rigid wall tanks of general shape are presented. A solution procedure was developed in which slosh modes and frequencies are computed for systems mathematically modeled as assemblages of liquid finite elements. To retain sparsity in the assembled system mass and stiffness matrices, a compressible liquid element formulation was incorporated in the program. The approach taken in the liquid finite element formulation is compatible with triangular and quadrilateral structural finite elements so that the analysis of liquid motion can be coupled with flexible tank wall motion at some future time. The liquid element repertoire developed during the course of this study consists of a two-dimensional triangular element and a three-dimensional tetrahedral element.
Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.
Klimasauskas, Edward P.; Miller, Marti L.; Bradley, Dwight C.; Bundtzen, Tom K.; Hudson, Travis L.
2006-01-01
The data consist of major- and minor-element concentrations for rock samples collected during 2005 by the U.S. Geological Survey. Samples were analyzed by fire assay (Au, Pd, Pt), cold vapor atomic absorption spectroscopy (Hg), and the inductively coupled plasma mass spectrometry (ICPMS) 10 and 42 element methods. For details of sample preparation and analytical techniques see USGS Open File Report 02-0223 (Analytical methods for chemical analysis of geologic and other materials, U.S. Geological Survey), available at .
NASA Astrophysics Data System (ADS)
Kang, Dong-Keun; Kim, Chang-Wan; Yang, Hyun-Ik
2017-01-01
In the present study we carried out a dynamic analysis of a CNT-based mass sensor by using a finite element method (FEM)-based nonlinear analysis model of the CNT resonator to elucidate the combined effects of thermal effects and nonlinear oscillation behavior upon the overall mass detection sensitivity. Mass sensors using carbon nanotube (CNT) resonators provide very high sensing performance. Because CNT-based resonators can have high aspect ratios, they can easily exhibit nonlinear oscillation behavior due to large displacements. Also, CNT-based devices may experience high temperatures during their manufacture and operation. These geometrical nonlinearities and temperature changes affect the sensing performance of CNT-based mass sensors. However, it is very hard to find previous literature addressing the detection sensitivity of CNT-based mass sensors including considerations of both these nonlinear behaviors and thermal effects. We modeled the nonlinear equation of motion by using the von Karman nonlinear strain-displacement relation, taking into account the additional axial force associated with the thermal effect. The FEM was employed to solve the nonlinear equation of motion because it can effortlessly handle the more complex geometries and boundary conditions. A doubly clamped CNT resonator actuated by distributed electrostatic force was the configuration subjected to the numerical experiments. Thermal effects upon the fundamental resonance behavior and the shift of resonance frequency due to attached mass, i.e., the mass detection sensitivity, were examined in environments of both high and low (or room) temperature. The fundamental resonance frequency increased with decreasing temperature in the high temperature environment, and increased with increasing temperature in the low temperature environment. The magnitude of the shift in resonance frequency caused by an attached mass represents the sensing performance of a mass sensor, i.e., its mass detection sensitivity, and it can be seen that this shift is affected by the temperature change and the amount of electrostatic force. The thermal effects on the mass detection sensitivity are intensified in the linear oscillation regime and increase with increasing CNT length; this intensification can either improve or worsen the detection sensitivity.
NASA Astrophysics Data System (ADS)
Egger, Philipp; Caracoglia, Luca
2015-09-01
Impact dampers are often used in the field of civil, mechanical and aerospace engineering for reducing structural vibrations. The behavior of this type of passive control device has been investigated for several decades. In this research a distributed-mass impact damper, similar to the "chain damper" used in wind engineering, has been examined and applied to the vibration reduction on a slender line-like structural element (stay-cable). This study is motivated by a practical problem and describes the derivation of a reduced-order model for explaining the behavior, observed during a field experiment on a prototype system. In its simplest form, the dynamics of the apparatus is modeled as a "resilient damper", composed of mass-spring-dashpot secondary elements, attached to the primary structure. Various sources of excitation are analyzed: free vibration, external harmonic force and random excitation. The proposed model is general and potentially applicable to the analysis of several structural systems. The study also shows that the model can adequately describe and explain the experimentally observed behavior.
Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Emmanuel; Davoudi, Zohreh; Detmold, William
Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less
Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD
Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; ...
2018-04-13
Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less
Fifteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1987-01-01
Numerous applications of the NASA Structural Analysis (NASTRAN) computer program, a general purpose finite element code, are discussed. Additional features that can be added to NASTRAN, interactive plotting of NASTRAN data on microcomputers, mass modeling for bars, the design of wind tunnel models, the analysis of ship structures subjected to underwater explosions, and buckling analysis of radio antennas are among the topics discussed.
The vibration characteristics of a coupled helicopter rotor-fuselage by a finite element analysis
NASA Technical Reports Server (NTRS)
Rutkowski, M. J.
1983-01-01
The dynamic coupling between the rotor system and the fuselage of a simplified helicopter model in hover was analytically investigated. Mass, aerodynamic damping, and elastic and centrifugal stiffness matrices are presented for the analytical model; the model is based on a beam finite element, with polynomial mass and stiffness distributions for both the rotor and fuselage representations. For this analytical model, only symmetric fuselage and collective blade degrees of freedom are treated. Real and complex eigen-analyses are carried out to obtain coupled rotor-fuselage natural modes and frequencies as a function of rotor speed. Vibration response results are obtained for the coupled system subjected to a radially uniform, harmonic blade loading. The coupled response results are compared with response results from an uncoupled analysis in which hub loads for an isolated rotor system subjected to the same sinusoidal blade loading as the coupled system are applied to a free-free fuselage.
NASA Technical Reports Server (NTRS)
Maasha, Rumaasha; Towner, Robert L.
2012-01-01
High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons
Kasamatsu, Masaaki; Igawa, Takao; Suzuki, Shinichi; Suzuki, Yasuhiro
2018-01-01
Since fragments of concrete can be evidence of crime, a determination of whether or not they come from the same origin is required. The authors focused on nitric acid-soluble components in the fragments of concrete. As a result of qualitative analysis with ICP-MS, it was confirmed that elements such as Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb were contained in the fragments. After the nitric acid-soluble components in the fragments of concrete were separated by dissolving them in nitric acid, the concentrations of these elements in the dissolved solution were quantitatively determined by ICP-MS. The concentration ratios of nine elements compared to La were used as indicators. By comparing these indicators, it was possible to discriminate between the fragments of concrete.
Falandysz, Jerzy; Sapkota, Atindra; Dryżałowska, Anna; Mędyk, Małgorzata; Feng, Xinbin
2017-06-01
The aim of the study was to characterise the multi-elemental composition and associations between a group of 32 elements and 16 rare earth elements collected by mycelium from growing substrates and accumulated in fruiting bodies of Macrolepiota procera from 16 sites from the lowland areas of Poland. The elements were quantified by inductively coupled plasma quadrupole mass spectrometry using validated method. The correlation matrix obtained from a possible 48 × 16 data matrix has been used to examine if any association exits between 48 elements in mushrooms foraged from 16 sampling localizations by multivariate approach using principal component (PC) analysis. The model could explain up to 93% variability by eight factors for which an eigenvalue value was ≥1. Absolute values of the correlation coefficient were above 0.72 (significance at p < 0.05) for 43 elements. From a point of view by consumer, the absolute content of Cd, Hg, Pb in caps of M. procera collected from background (unpolluted) areas could be considered elevated while sporadic/occasional ingestion of this mushroom is considered safe. The multivariate functional analysis revealed on associated accumulation of many elements in this mushroom. M. procera seem to possess some features of a bio-indicative species for anthropogenic Pb but also for some geogenic metals.
Computing Gravitational Fields of Finite-Sized Bodies
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2005-01-01
A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.
Zeng, Chang-yu; Ding, Ru-xin; Li, Hong-zhong; Zhou, Yong-zhang; Niu, Jia; Zhang, Jie-tang
2015-11-01
Pangxidong composite granitoid pluton located in the southwestern margin of Yunkai massif. The metamorphic grade of this pluton increases from outside to inside, that is, banded-augen granitic gneisses, gneissoid granites and granites distribute in order from edge to core. X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry are conducted to study the geochemical characteristics of the three types of rocks. The result shows that all the three types of rocks are peraluminous rocks and their contents of main elements and rare earth elements change gradually. From granitic gneisses to granites, the contents of Al₂O₃, CaO, MgO, TiO₂, total rare earth elements and light rare earth elements increase, but the contents of SiO₂ and heavy rare earth elements decrease. It is suggested that the phylogenetic relationship exists between granitic gneisses, gneissoid granites and granites during the multi-stage tectonic evolution process. Furthermore, the remelting of metamorphosed supracrustal rocks in Yunkai massif is probably an important cause of granitoid rocks forming. The evolutionary mechanism is probably that SiO₂ and heavy rare earth elements were melt out from the protolith and gradually enriched upward, but Al₂O₃, CaO, MgO, TiO₂ and light rare earth elements enriched downward.
An introduction to mass cytometry: fundamentals and applications.
Tanner, Scott D; Baranov, Vladimir I; Ornatsky, Olga I; Bandura, Dmitry R; George, Thaddeus C
2013-05-01
Mass cytometry addresses the analytical challenges of polychromatic flow cytometry by using metal atoms as tags rather than fluorophores and atomic mass spectrometry as the detector rather than photon optics. The many available enriched stable isotopes of the transition elements can provide up to 100 distinguishable reporting tags, which can be measured simultaneously because of the essential independence of detection provided by the mass spectrometer. We discuss the adaptation of traditional inductively coupled plasma mass spectrometry to cytometry applications. We focus on the generation of cytometry-compatible data and on approaches to unsupervised multivariate clustering analysis. Finally, we provide a high-level review of some recent benchmark reports that highlight the potential for massively multi-parameter mass cytometry.
NASA Astrophysics Data System (ADS)
Ardalan, A.; Safari, A.; Grafarend, E.
2003-04-01
An operational algorithm for computing the ellipsoidal terrain correction based on application of closed form solution of the Newton integral in terms of Cartesian coordinates in the cylindrical equal area map projected surface of a reference ellipsoid has been developed. As the first step the mapping of the points on the surface of a reference ellipsoid onto the cylindrical equal area map projection of a cylinder tangent to a point on the surface of reference ellipsoid closely studied and the map projection formulas are computed. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid is considered and the gravitational potential and the vector of gravitational intensity of these mass elements has been computed via the solution of Newton integral in terms of ellipsoidal coordinates. The geographical cross section areas of the selected ellipsoidal mass elements are transferred into cylindrical equal area map projection and based on the transformed area elements Cartesian mass elements with the same height as that of the ellipsoidal mass elements are constructed. Using the close form solution of the Newton integral in terms of Cartesian coordinates the potential of the Cartesian mass elements are computed and compared with the same results based on the application of the ellipsoidal Newton integral over the ellipsoidal mass elements. The results of the numerical computations show that difference between computed gravitational potential of the ellipsoidal mass elements and Cartesian mass element in the cylindrical equal area map projection is of the order of 1.6 × 10-8m^2/s^2 for a mass element with the cross section size of 10 km × 10 km and the height of 1000 m. For a 1 km × 1 km mass element with the same height, this difference is less than 1.5 × 10-4 m^2}/s^2. The results of the numerical computations indicate that a new method for computing the terrain correction based on the closed form solution of the Newton integral in terms of Cartesian coordinates and with accuracy of ellipsoidal terrain correction has been achieved! In this way one can enjoy the simplicity of the solution of the Newton integral in terms of Cartesian coordinates and at the same time the accuracy of the ellipsoidal terrain correction, which is needed for the modern theory of geoid computations.
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.
2017-08-01
In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.
NASA Astrophysics Data System (ADS)
Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.
2016-02-01
The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.
Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis
Liang, Zhisen; Zhang, Shudi; Li, Xiaoping; Wang, Tongtong; Huang, Yaping; Hang, Wei; Yang, Zhilin; Li, Jianfeng; Tian, Zhongqun
2017-01-01
Spectroscopic methods with nanoscale lateral resolution are becoming essential in the fields of physics, chemistry, geology, biology, and materials science. However, the lateral resolution of laser-based mass spectrometry imaging (MSI) techniques has so far been limited to the microscale. This report presents the development of tip-enhanced ablation and ionization time-of-flight mass spectrometry (TEAI-TOFMS), using a shell-isolated apertureless silver tip. The TEAI-TOFMS results indicate the capability and reproducibility of the system for generating nanosized craters and for acquiring the corresponding mass spectral signals. Multi-elemental analysis of nine inorganic salt residues and MSI of a potassium salt residue pattern at a 50-nm lateral resolution were achieved. These results demonstrate the opportunity for the distribution of chemical compositions at the nanoscale to be visualized. PMID:29226250
NASA Astrophysics Data System (ADS)
Vogl, Jochen; Kipphardt, Heinrich; Richter, Silke; Bremser, Wolfram; del Rocío Arvizu Torres, María; Manzano, Judith Velina Lara; Buzoianu, Mirella; Hill, Sarah; Petrov, Panayot; Goenaga-Infante, Heidi; Sargent, Mike; Fisicaro, Paola; Labarraque, Guillaume; Zhou, Tao; Turk, Gregory C.; Winchester, Michael; Miura, Tsutomu; Methven, Brad; Sturgeon, Ralph; Jährling, Reinhard; Rienitz, Olaf; Mariassy, Michal; Hankova, Zuzana; Sobina, Egor; Ivanovich Krylov, Anatoly; Anatolievich Kustikov, Yuri; Vladimirovich Smirnov, Vadim
2018-04-01
For the first time, an international comparison was conducted on the determination of the purity of a high purity element. Participants were free to choose any analytical approach appropriate for their institute’s applications and services. The material tested was a high purity zinc, which had earlier been assessed for homogeneity and previously used in CCQM-K72 for the determination of six defined metallic impurities. Either a direct metal assay of the Zn mass fraction was undertaken by EDTA titrimetry, or an indirect approach was used wherein all impurities, or at least the major ones, were determined and their sum subtracted from ideal purity of 100%, or 1 kg kg-1. Impurity assessment techniques included glow discharge mass spectrometry, inductively coupled plasma mass spectrometry and carrier gas hot extraction/combustion analysis. Up to 91 elemental impurities covering metals, non-metals and semi-metals/metalloids were quantified. Due to the lack of internal experience or experimental capabilities, some participants contracted external laboratories for specific analytical tasks, mainly for the analysis of non-metals. The reported purity, expressed as zinc mass fraction in the high purity zinc material, showed excellent agreement for all participants, with a relative standard deviation of 0.011%. The calculated reference value, w(Zn) = 0.999 873 kg kg-1, was assigned an asymmetric combined uncertainty of +0.000 025 kg kg-1 and -0.000 028 kg kg-1. Comparability amongst participating metrology institutes is thus demonstrated for the purity determination of high purity metals which have no particular difficulties with their decomposition/dissolution process when solution-based analytical methods are used, or which do not have specific difficulties when direct analysis approaches are used. Nevertheless, further development is required in terms of uncertainty assessment, quantification of non-metals and the determination of purity of less pure elements and/or for those elements suffering difficulties with the decomposition process.
SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olguin, E; Flampouri, S; Lipnharski, I
Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMsmore » using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and out-of-field organ doses.« less
Lott, Michael J; Howa, John D; Chesson, Lesley A; Ehleringer, James R
2015-08-15
Elemental analyzer systems generate N(2) and CO(2) for elemental composition and isotope ratio measurements. As quantitative conversion of nitrogen in some materials (i.e., nitrate salts and nitro-organic compounds) is difficult, this study tests a recently published method - thermal decomposition without the addition of O(2) - for the analysis of these materials. Elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) was used to compare the traditional combustion method (CM) and the thermal decomposition method (TDM), where additional O(2) is eliminated from the reaction. The comparisons used organic and inorganic materials with oxidized and/or reduced nitrogen and included ureas, nitrate salts, ammonium sulfate, nitro esters, and nitramines. Previous TDM applications were limited to nitrate salts and ammonium sulfate. The measurement precision and accuracy were compared to determine the effectiveness of converting materials containing different fractions of oxidized nitrogen into N(2). The δ(13) C(VPDB) values were not meaningfully different when measured via CM or TDM, allowing for the analysis of multiple elements in one sample. For materials containing oxidized nitrogen, (15) N measurements made using thermal decomposition were more precise than those made using combustion. The precision was similar between the methods for materials containing reduced nitrogen. The %N values were closer to theoretical when measured by TDM than by CM. The δ(15) N(AIR) values of purchased nitrate salts and ureas were nearer to the known values when analyzed using thermal decomposition than using combustion. The thermal decomposition method addresses insufficient recovery of nitrogen during elemental analysis in a variety of organic and inorganic materials. Its implementation requires relatively few changes to the elemental analyzer. Using TDM, it is possible to directly calibrate certain organic materials to international nitrate isotope reference materials without off-line preparation. Copyright © 2015 John Wiley & Sons, Ltd.
Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany.
Cyrys, J; Stölzel, M; Heinrich, J; Kreyling, W G; Menzel, N; Wittmaack, K; Tuch, T; Wichmann, H-Erich
2003-04-15
We present the first results of a source apportionment for the urban aerosol in Erfurt, Germany, for the period 1995-1998. The analysis is based on data of particle number concentrations (0.01-2.5 microm; mean 1.8 x 10(4) cm(-3), continuous), the concentration of the ambient gases SO(2), NO, NO(2) and CO (continuous), particle mass less than 2.5 microm (PM(2.5)) and less than 10 microm (PM(10)) (Harvard Impactor sampling, mean PM(2.5) 26.3 micro/m(3), mean PM(10) 38.2 microg/m(3)) and the size fractionated concentrations of 19 elements (impactor sampling 0.05-1.62 microm, PIXE analysis). We determined: (a) the correlations between (i) the 1- and 24-h average concentrations of the gaseous pollutants and the particle number as well as the particle mass concentration and (ii) between the 24-h elemental concentrations; (b) Crustal Enrichment Factors for the PIXE elements using Si as reference element; and (c) the diurnal pattern of the measured pollutants on weekdays and on weekends. The highly correlated PIXE elements Si, Al, Ti and Ca having low enrichment factors were identified as soil elements. The strong correlation of particle number concentrations with NO, which is considered to be typically emitted by traffic, and the striking similarity of their diurnal variation suggest that a sizable fraction of the particle number concentration is associated with emission from vehicles. Besides NO and particle number concentrations other pollutants such as NO(2), CO as well as the elements Zn and Cu were strongly correlated and appear to reflect motor vehicle traffic. Sulfur could be a tracer for coal combustion, however, it was not correlated with any of the quoted elements. Highly correlated elements V and Ni have similar enrichment factors and are considered as tracers for oil combustion.
Sakurai, Nozomu; Ara, Takeshi; Kanaya, Shigehiko; Nakamura, Yukiko; Iijima, Yoko; Enomoto, Mitsuo; Motegi, Takeshi; Aoki, Koh; Suzuki, Hideyuki; Shibata, Daisuke
2013-01-15
High-accuracy mass values detected by high-resolution mass spectrometry analysis enable prediction of elemental compositions, and thus are used for metabolite annotations in metabolomic studies. Here, we report an application of a relational database to significantly improve the rate of elemental composition predictions. By searching a database of pre-calculated elemental compositions with fixed kinds and numbers of atoms, the approach eliminates redundant evaluations of the same formula that occur in repeated calculations with other tools. When our approach is compared with HR2, which is one of the fastest tools available, our database search times were at least 109 times shorter than those of HR2. When a solid-state drive (SSD) was applied, the search time was 488 times shorter at 5 ppm mass tolerance and 1833 times at 0.1 ppm. Even if the search by HR2 was performed with 8 threads in a high-spec Windows 7 PC, the database search times were at least 26 and 115 times shorter without and with the SSD. These improvements were enhanced in a low spec Windows XP PC. We constructed a web service 'MFSearcher' to query the database in a RESTful manner. Available for free at http://webs2.kazusa.or.jp/mfsearcher. The web service is implemented in Java, MySQL, Apache and Tomcat, with all major browsers supported. sakurai@kazusa.or.jp Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Vincevica-Gaile, Zane; Klavins, Maris
2013-12-01
Element content of food is variable and can be influenced by different factors. The aim of the present study was to discover the linkage between macro- and microelement concentrations in food produced in Latvia, and possible impacts of environmental factors. More than 300 fresh food samples such as eggs, cottage cheese, honey, root vegetables, apple juice, apple wine were collected in the time period from 2009 to 2011. Samples were mineralised or analysed directly by appropriate method of quantitative analysis: atomic absorption spectrometry, inductively coupled plasma mass spectrometry or total reflection X-ray fluorescence spectrometry. Statistical analysis of data revealed that food elemental content can be influenced by sitespecific factors such as geographical origin, seasonality, environmental pollution.
A 3-D turbulent flow analysis using finite elements with k-ɛ model
NASA Astrophysics Data System (ADS)
Okuda, H.; Yagawa, G.; Eguchi, Y.
1989-03-01
This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.
Laser ablation-miniature mass spectrometer for elemental and isotopic analysis of rocks.
Sinha, M P; Neidholdt, E L; Hurowitz, J; Sturhahn, W; Beard, B; Hecht, M H
2011-09-01
A laser ablation-miniature mass spectrometer (LA-MMS) for the chemical and isotopic measurement of rocks and minerals is described. In the LA-MMS method, neutral atoms ablated by a pulsed laser are led into an electron impact ionization source, where they are ionized by a 70 eV electron beam. This results in a secondary ion pulse typically 10-100 μs wide, compared to the original 5-10 ns laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer (MMS) and measured in parallel by a modified CCD array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LA-MMS offers a more quantitative assessment of elemental composition than techniques that detect ions directly generated by the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the wavelength of the laser beam, and the not well characterized ionization efficiencies of the elements in the process. The above problems attendant to the direct ion analysis has been minimized in the LA-MMS by analyzing the ablated neutral species after their post-ionization by electron impaction. These neutral species are much more abundant than the directly ablated ions in the ablated vapor plume and are, therefore, expected to be characteristic of the chemical composition of the solid. Also, the electron impact ionization of elements is well studied and their ionization cross sections are known and easy to find in databases. Currently, the LA-MMS limit of detection is 0.4 wt.%. Here we describe LA-MMS elemental composition measurements of various minerals including microcline, lepidolite, anorthoclase, and USGS BCR-2G samples. The measurements of high precision isotopic ratios including (41)K/(39)K (0.077 ± 0.004) and (29)Si/(28)Si (0.052 ± 0.006) in these minerals by LA-MMS are also described. The LA-MMS has been developed as a prototype instrument system for space applications for geochemical and geochronological measurements on the surface of extraterrestrial bodies. © 2011 American Institute of Physics
Very Low Mass Stars with Extremely Low Metallicity in the Milky Way's Halo
NASA Astrophysics Data System (ADS)
Aoki, Wako; Beers, Timothy C.; Takuma, Suda; Honda, Satoshi; Lee, Young Sun
2015-08-01
Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) have yet to be well explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013, AJ, 145, 13). The effective temperatures of these stars are 4500--5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres have obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010, ApJL 723, L201), and the other exhibits low abundances of the alpha-elements and odd-Z elements, suggested to be the signatures of the yields of very massive stars ( >100 solar masses; Aoki et al. 2014, Science 345, 912). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.
Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo
NASA Astrophysics Data System (ADS)
Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun
2016-08-01
Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500-5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.
Mars Sample Return Orbiter Rapid Architecture Study
NASA Astrophysics Data System (ADS)
Godfrey, A.; Johnson, M.; Stroud, C.
2018-04-01
An overview of rapid systems analysis (mass, risk, and schedule) on 1000s of MSRO configurations to understand key technologies and feasible options. Can we generate enough power? Can we aerobrake in time? Are some technology elements just too risky?
Aramendía, Maite; Rello, Luis; Vanhaecke, Frank; Resano, Martín
2012-10-16
Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low μg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 μg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.
2017-01-09
uranium, americium, and thorium were analyzed, along with other transition and rare earth metals, utilizing inductively coupled plasma- mass spectrometry...inductively coupled plasma- mass spectrometry and/or alpha spectrometry, following digestion. For validation of the microwave protocol, radioactive... actinide elements. HF is a hazardous acid to work with and it is highly toxic. In this evaluation and validation, the actinides are of particular
D → π and D → K semileptonic form factors with Nf = 2 + 1 + 1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a lattice determination of the vector and scalar form factors of the D → π(K)lv semileptonic decays, which are relevant for the extraction of the CKM matrix elements |Vcd| and |Vcs| from experimental data. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 +1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. The matrix elements of both vector and scalar currents are determined for a plenty of kinematical conditions in which parent and child mesons are either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum limit the vector and scalar form factors are determined in the whole kinematical region from q2 = 0 up to qmax2 = (MD - Mπ(K))2 accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at high values of q2 where some deviations are visible.
Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China
NASA Astrophysics Data System (ADS)
Tao, Jun; Cheng, Tiantao; Zhang, Renjian; Cao, Junji; Zhu, Lihua; Wang, Qiyuan; Luo, Lei; Zhang, Leiming
2013-07-01
PM2.5 aerosols were sampled in urban Chengdu from April 2009 to January 2010, and their chemical compositions were characterized in detail for elements, water soluble inorganic ions, and carbonaceous matter. The annual average of PM2.5 was 165 μg m-3, which is generally higher than measurements in other Chinese cities, suggesting serious particulate pollution issues in the city. Water soluble ions contributed 43.5% to the annual total PM2.5 mass, carbonaceous aerosols including elemental carbon and organic carbon contributed 32.0%, and trace elements contributed 13.8%. Distinct daily and seasonal variations were observed in the mass concentrations of PM2.5 and its components, reflecting the seasonal variations of different anthropogenic and natural sources. Weakly acidic to neutral particles were found for PM2.5. Major sources of PM2.5 identified from source apportionment analysis included coal combustion, traffic exhaust, biomass burning, soil dust, and construction dust emissions. The low nitrate: sulfate ratio suggested that stationary emissions were more important than vehicle emissions. The reconstructed masses of ammonium sulfate, ammonium nitrate, particulate carbonaceous matter, and fine soil accounted for 79% of the total measured PM2.5 mass; they also accounted for 92% of the total measured particle scattering.
Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo
2009-12-01
A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.
Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard
2008-09-15
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.
NASA Astrophysics Data System (ADS)
Resano, M.; García-Ruiz, E.; Vanhaecke, F.
2005-11-01
In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due to the formation of volatile compounds.
NASA Astrophysics Data System (ADS)
Tulej, Marek; Neubeck, Anna; Ivarsson, Magnus; Brigitte Neuland, Maike; Riedo, Andreas; Wurz, Peter
2015-04-01
Search for signatures of life on other planets is one of the most important goals of current planetary missions. Among various possible biomarkers, which can be investigated in situ on planetary surfaces, the detection of bio-relevant elements in planetary materials is of considerable interest and the abundance of isotopes can be important signatures of past and present bioactivities [1, 2]. We investigate the chemical composition of fossilised biological inclusions embedded in a carbonate host phase by a miniature laser ablation mass spectrometer (LMS) [3]. The LMS instrument combines a laser ablation ion source for ablation, atomisation and ionisation of surface material with a reflectron time-of-flight (TOF) mass spectrometer. LMS delivers mass spectra of almost all elements and their isotopes. In the current setup a fs-laser ablation ion source is applied with high lateral (15 um) and vertical (sub-um) resolution [4, 7] and the mass analyser supports mass resolution of 400-500 (at 56Fe mass peak) and dynamic range of eight orders of magnitude [5, 6]. From the 200 mass spectra recorded at 200 different locations on the carbonate sample surface, five mass spectra were identified which recorded the chemical composition of inclusions; from the other mass spectra the composition of the carbonate host matrix could be determined. The microscopic inspection of the sample surface and correlation with the coordinates of the laser ablation measurements made the confirmation to the location of the inclusion [8]. For the carbonate host matrix, the mass spectrometric analysis yielded the major elements H, C, O, Na, Mg, K and Ca and the trace elements Li, B and Cl. The measurements at the inclusion locations yielded in addition, the detection of F, Si, P, S, Mn, Fe, Ni, Co and Se. For most of the major elements the isotope ratios were found to be conform to the terrestrial values within a few per mills, while for minor and trace elements the determination of isotope ratios were less accurate due to low signal to noise ratios (SNR). The isotope abundances for the lightest isotope of B, S were observed to be larger than terrestrial, which is consistent with isotope fractionation by bio-relevant processes and a salty ocean. The studies demonstrates the current performance of the miniature LMS for in situ investigation of highly heterogeneous samples and its capabilities for the identification of fossilised biological matter. References: [1] Summons et al., Astrobiology, 11, 157, 2011. [2] Wurz et al., Sol. Sys. Res. 46 408, 2012. [3] Rohner et al.,Meas. Sci. Technol., 14, 2159, 2003. [4] Riedo et al., J. Anal. Atom. Spectrom. 28, 1256, 2013. [5] Riedo et al., J. Mass Spectrom.48, 1, 2013. [6] Neuland et al., Planet. Space. Sci. 101, 196, 2014. [7] Grimaudo et al., Anal. Chem. 2014, submitted. [8] Tulej et al. Geostand. Geoanal. Res., 2014; DOI: 10.1111/j.1751-908X.2014.00302.x
Consumables and wastes estimations for the First Lunar Outpost
NASA Technical Reports Server (NTRS)
Theis, Ronald L. A.; Ballin, Mark G.; Evert, Martha F.
1992-01-01
The First Lunar Outpost mission is a design reference mission for the first human return to the moon. This paper describes a set of consumables and waste material estimations made on the basis of the First Lunar Outpost mission scenario developed by the NASA Exploration Programs Office. The study includes the definition of a functional interface framework and a top-level set of consumables and waste materials to be evaluated, the compilation of mass flow information from mission developers supplemented with information from the literature, and the analysis of the resulting mass flow information to gain insight about the possibility of material flow integration between the moon outpost elements. The results of the study of the details of the piloted mission and the habitat are used to identify areas where integration of consumables and wastes across different mission elements could provide possible launch mass savings.
Fusion-fission Study at JAEA for Heavy-element Synthesis
NASA Astrophysics Data System (ADS)
Nishio, K.
Fission fragment mass distributions were measured in the heavy-ion induced fission using 238U target nucleus. The mass distribu- tions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their inci- dent energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that the sub-barrier energies can be used for heavy element synthesis.
In-beam fissio study at JAEA for heavy element synthesis
NASA Astrophysics Data System (ADS)
Nishio, K.; Ikezoe, H.; Hofmann, S.; Ackermann, D.; Aritomo, Y.; Comas, V. F.; Düllmann, Ch. E.; Heinz, S.; Heredia, J. A.; Heßberger, F. P.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, M.; Mann, R.; Mitsuoka, S.; Nishinaka, I.; Ohtsuki, T.; Saro, S.; Schädel, M.; Popeko, A. G.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A.
2013-04-01
Fission fragment mass distributions were measured in the heavy-ion induced fission using 238U target nucleus. The mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that the sub-barrier energies can be used for heavy element synthesis.
Study of new systems concepts for a Titan atmospheric probe
NASA Technical Reports Server (NTRS)
Bernard, Doug; Citron, Todd; Drean, Robert; Lewis, Scott; Lo, Martin; Mccarthy, John; Soderblom, Robert; Steffy, Dave; Vargas, Tina; Wolff, Marty
1986-01-01
Results of a systems concepts study for a Titan Probe were examined. The key tradeoffs performed are described in detail. Mass breakdown of each Probe subsystem or major element were given. The mission analysis performed to determine compliance with the high altitude sampling and descent time requirements are described. The baseline Descent Module design was derived. The element of the Probe System left on the Carrier after separation were described.
The Shock and Vibration Digest. Volume 18, Number 5
1986-05-01
response. 16-1067 Seismic Analysis of Azisym metric Shells R.J. Jospin, E.M. Toledo, R.A. Feijoo Laboratorio de Computacao Cientifica, Rio de ...matrices for tapered beam elements, de - rived by various autbots are reviewed. Tapered member framing has been utilized in a variety of building frames of...sectional shape. Dynamic stiffness and consistent mass matrices [2,22] have been de - rived in explicit form for the beam element of closed box of
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces
NASA Astrophysics Data System (ADS)
Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter
2016-04-01
Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S. Meyer, P. Wurz, N. Thomas, V. Grimaudo, P. Moreno-García, P. Broekmann, A. Neubeck and M. Ivarsson, "CAMAM: A miniature laser ablation ionisation mass spectrometer and microscope-camera system for in situ investigation of the composition and morphology of extraterrestrial materials", Geostand. Geoanal. Res., 2014, 38, 441. [4] A. Riedo, M. Neuland, S. Meyer, M. Tulej and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. [5] A. Riedo, S. Meyer, B. Heredia, M. Neuland, A. Bieler, M. Tulej, I. Leya, M. Iakovleva, K. Mezger and P. Wurz, "Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces", Planet. Space Sci., 2013, 87, 1.
Simplified and refined structural modeling for economical flutter analysis and design
NASA Technical Reports Server (NTRS)
Ricketts, R. H.; Sobieszczanski, J.
1977-01-01
A coordinated use of two finite-element models of different levels of refinement is presented to reduce the computer cost of the repetitive flutter analysis commonly encountered in structural resizing to meet flutter requirements. One model, termed a refined model (RM), represents a high degree of detail needed for strength-sizing and flutter analysis of an airframe. The other model, called a simplified model (SM), has a relatively much smaller number of elements and degrees-of-freedom. A systematic method of deriving an SM from a given RM is described. The method consists of judgmental and numerical operations to make the stiffness and mass of the SM elements equivalent to the corresponding substructures of RM. The structural data are automatically transferred between the two models. The bulk of analysis is performed on the SM with periodical verifications carried out by analysis of the RM. In a numerical example of a supersonic cruise aircraft with an arrow wing, this approach permitted substantial savings in computer costs and acceleration of the job turn-around.
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2012-06-01
Scanning electron microscopy with energy dispersive x-ray spectrometry (SEM/EDS) is a powerful and flexible elemental analysis method that can identify and quantify elements with atomic numbers > 4 (Be) present as major constituents (where the concentration C > 0.1 mass fraction, or 10 weight percent), minor (0.01<= C <= 0.1) and trace (C < 0.01, with a minimum detectable limit of ~+/- 0.0005 - 0.001 under routine measurement conditions, a level which is analyte and matrix dependent ). SEM/EDS can select specimen volumes with linear dimensions from ~ 500 nm to 5 μm depending on composition (masses ranging from ~ 10 pg to 100 pg) and can provide compositional maps that depict lateral elemental distributions. Despite the maturity of SEM/EDS, which has a history of more than 40 years, and the sophistication of modern analytical software, the method is vulnerable to serious shortcomings that can lead to incorrect elemental identifications and quantification errors that significantly exceed reasonable expectations. This paper will describe shortcomings in peak identification procedures, limitations on the accuracy of quantitative analysis due to specimen topography or failures in physical models for matrix corrections, and quantitative artifacts encountered in xray elemental mapping. Effective solutions to these problems are based on understanding the causes and then establishing appropriate measurement science protocols. NIST DTSA II and Lispix are open source analytical software available free at www.nist.gov that can aid the analyst in overcoming significant limitations to SEM/EDS.
FIP effect for minor heavy solar wind ions as seen with SOHO/CELIAS/MTOF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidrich-Meisner, Verena, E-mail: heidrich@physik.uni-kiel.de; Berger, Lars; Wimmer-Schweingruber, Robert F.
A recent paper [Shearer et al., 2014] reported that during solar maximum Ne showed a surprisingly low abundance. This leads to the question whether other elements show the same behavior. The good mass resolution of Mass-Time-Of-Flight (MTOF) as part of the Charge ELement and Isotope Analysis System (CELIAS) on the Solar Helioshperic Observatory (SOHO) allows to investigate the composition of heavy minor elements in different types of solar wind. We restrict this study to slow solar wind, where the characterisation of slow solar wind is taken from Xu and Borovsky, 2014. This classification scheme requires magnet field information. Since SOHOmore » does not carry a magnetometer, we use the Magnetometer (MAG) of the Advanced Composition Explorer (ACE) instead. The Solar Wind Ion Composition Spectrometer (ACE/SWICS) also provides composition data for cross-calibration and charge-state distributions as input for the transmission function of MTOF whenever the two spacecraft can be expected to observe the same type of wind. We illustrate the MTOF’s capability to determine the solar wind abundance compared to the photospheric abundance (called the FIP ratio in the following) for rare elements like Ti or Cr on long-time scales as a proof of concept for our analysis. And in this brief study, measurements with both ACE/SWICS indicate that the observed elements exhibit a (weak) dependence on the solar cycle, whereas the MTOF measurements are inconclusive.« less
Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska
NASA Astrophysics Data System (ADS)
Nattinger, K.; Simpson, W. R.; Huff, D.
2015-12-01
Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this study regarding primary versus possible secondary PM2.5 production processes can help in identifying effective PM2.5 control strategies.
Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments
NASA Technical Reports Server (NTRS)
Schwandt, Craig S.; McKay, Gordon A.
1997-01-01
Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.
NASA Astrophysics Data System (ADS)
Kántor, T.; Maestre, S.; de Loos-Vollebregt, M. T. C.
2005-10-01
In the present work electrothermal vaporization (ETV) was used in both inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (OES) for sample introduction of solution samples. The effect of (Pd + Mg)-nitrate modifier and CaCl 2 matrix/modifier of variable amounts were studied on ETV-ICP-MS signals of Cr, Cu, Fe, Mn and Pb and on ETV-ICP-OES signals of Ag, Cd, Co, Cu, Fe, Ga, Mn and Zn. With the use of matrix-free standard solutions the analytical curves were bent to the signal axes (as expected from earlier studies), which was observed in the 20-800 pg mass range by ICP-MS and in the 1-50 ng mass range by ICP-OES detection. The degree of curvature was, however, different with the use of single element and multi-element standards. When applying the noted chemical modifiers (aerosol carriers) in microgram amounts, linear analytical curves were found in the nearly two orders of magnitude mass ranges. Changes of the CaCl 2 matrix concentration (loaded amount of 2-10 μg Ca) resulted in less than 5% changes in MS signals of 5 elements (each below 1 ng) and OES signals of 22 analytes (each below 15 ng). Exceptions were Pb (ICP-MS) and Cd (ICP-OES), where the sensitivity increase by Pd + Mg modifier was much larger compared to other elements studied. The general conclusions suggest that quantitative analysis with the use of ETV sample introduction requires matrix matching or matrix replacement by appropriate chemical modifier to the specific concentration ranges of analytes. This is a similar requirement to that claimed also by the most commonly used pneumatic nebulization of solutions, if samples with high matrix concentration are concerned.
Speciated Elemental and Isotopic Characterization of Atmospheric Aerosols - Recent Advances
NASA Astrophysics Data System (ADS)
Shafer, M.; Majestic, B.; Schauer, J.
2007-12-01
Detailed elemental, isotopic, and chemical speciation analysis of aerosol particulate matter (PM) can provide valuable information on PM sources, atmospheric processing, and climate forcing. Certain PM sources may best be resolved using trace metal signatures, and elemental and isotopic fingerprints can supplement and enhance molecular maker analysis of PM for source apportionment modeling. In the search for toxicologically relevant components of PM, health studies are increasingly demanding more comprehensive characterization schemes. It is also clear that total metal analysis is at best a poor surrogate for the bioavailable component, and analytical techniques that address the labile component or specific chemical species are needed. Recent sampling and analytical developments advanced by the project team have facilitated comprehensive characterization of even very small masses of atmospheric PM. Historically; this level of detail was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. These advances have enabled the coupling of advanced chemical characterization to vital field sampling approaches that typically supply only very limited PM mass; e.g. (1) particle size-resolved sampling; (2) personal sampler collections; and (3) fine temporal scale sampling. The analytical tools that our research group is applying include: (1) sector field (high-resolution-HR) ICP-MS, (2) liquid waveguide long-path spectrophotometry (LWG-LPS), and (3) synchrotron x-ray absorption spectroscopy (sXAS). When coupled with an efficient and validated solubilization method, the HR-ICP-MS can provide quantitative elemental information on over 50 elements in microgram quantities of PM. The high mass resolution and enhanced signal-to-noise of HR-ICP-MS significantly advance data quality and quantity over that possible with traditional quadrupole ICP-MS. The LWG-LPS system enables an assessment of the soluble/labile components of PM, while simultaneously providing critical oxidation state speciation data. Importantly, the LWG- LPS can be deployed in a semi-real-time configuration to probe fine temporal scale variations in atmospheric processing or sources of PM. The sXAS is providing complementary oxidation state speciation of bulk PM. Using examples from our research; we will illustrate the capabilities and applications of these new methods.
Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan
2017-08-29
In this paper, we described a NH 4 HF 2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH 4 HF 2 at 230 °C for 3 h form ultrafine powders with a typical grain size d 80 < 8.5 μm, and various silicate rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH 4 HF 2 , sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH 4 HF 2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid rocks (45% < SiO 2 < 73%). However, we thought that the NH 4 HF 2 digestion method can be used as a new alternative in LA-ICP-MS for a wider range of geological samples, and will significantly accelerate the application of LA-ICP-MS for the whole-rock analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Provenance establishment of coffee using solution ICP-MS and ICP-AES.
Valentin, Jenna L; Watling, R John
2013-11-01
Statistical interpretation of the concentrations of 59 elements, determined using solution based inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma emission spectroscopy (ICP-AES), was used to establish the provenance of coffee samples from 15 countries across five continents. Data confirmed that the harvest year, degree of ripeness and whether the coffees were green or roasted had little effect on the elemental composition of the coffees. The application of linear discriminant analysis and principal component analysis of the elemental concentrations permitted up to 96.9% correct classification of the coffee samples according to their continent of origin. When samples from each continent were considered separately, up to 100% correct classification of coffee samples into their countries, and plantations of origin was achieved. This research demonstrates the potential of using elemental composition, in combination with statistical classification methods, for accurate provenance establishment of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ordou, N.; Agranovski, I. E.
2017-12-01
Air contamination resulting from bushfires is becoming increasingly important research question, as such disasters frequently occur in many countries. The objectives of this project were focused on physical and chemical characterisations of particulate emission resulting from burning of common representatives of Australian vegetation under controlled laboratory conditions. It was found that leaves are burned mostly with flaming phase and producing black smoke resulting in larger particles compared to white smoke in case of branches and grass, dominated by smouldering phase, producing finer particles. Following elemental analysis determined nine main elements in three different size fractions of particulate matter for each category of burning material, ranging from 14.1 μm to particle sizes below 2.54 μm. Potassium was found to be one of the main biomass markers, and sulphur was the ubiquitous element among the smoke particles followed by less prevalent trace elements like Na, Al, Mg, Zn, Si, Ca, and Fe.
Selih, Vid S; Sala, Martin; Drgan, Viktor
2014-06-15
Inductively coupled plasma mass spectrometry and optical emission were used to determine the multi-element composition of 272 bottled Slovenian wines. To achieve geographical classification of the wines by their elemental composition, principal component analysis (PCA) and counter-propagation artificial neural networks (CPANN) have been used. From 49 elements measured, 19 were used to build the final classification models. CPANN was used for the final predictions because of its superior results. The best model gave 82% correct predictions for external set of the white wine samples. Taking into account the small size of whole Slovenian wine growing regions, we consider the classification results were very good. For the red wines, which were mostly represented from one region, even-sub region classification was possible with great precision. From the level maps of the CPANN model, some of the most important elements for classification were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.
Temperature Control and Numerical Analysis for Mass Concrete Pile Cap of Hai-huang Bridge
NASA Astrophysics Data System (ADS)
Shi, Han; Hao, Yang; Yong-liang, Wang
2018-05-01
In order to study the heat of hydration in massive concrete, this paper takes Hai-huang bridge for engineering background and uses the finite element analysis software of FEA to analyze the heat of hydration effect of the cushion cap. Comparing the measured data with the theory data, the results showed that the concrete crack was controlled effectively and ensure the construction quality by adopted reasonable temperature control measures. The results of the research prove that the measured data was consistent with calculation data, and it proves the accuracy of the finite element analysis. Finally, the study provides certain reference and guiding significance for similar project.
Bhatt, Chet R; Jain, Jinesh C; Goueguel, Christian L; McIntyre, Dustin L; Singh, Jagdish P
2018-01-01
Laser-induced breakdown spectroscopy (LIBS) was used to detect rare earth elements (REEs) in natural geological samples. Low and high intensity emission lines of Ce, La, Nd, Y, Pr, Sm, Eu, Gd, and Dy were identified in the spectra recorded from the samples to claim the presence of these REEs. Multivariate analysis was executed by developing partial least squares regression (PLS-R) models for the quantification of Ce, La, and Nd. Analysis of unknown samples indicated that the prediction results of these samples were found comparable to those obtained by inductively coupled plasma mass spectrometry analysis. Data support that LIBS has potential to quantify REEs in geological minerals/ores.
Badran, M; Morsy, R; Soliman, H; Elnimr, T
2016-01-01
The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Rocket/launcher structural dynamics
NASA Technical Reports Server (NTRS)
Ferragut, N. J.
1976-01-01
The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.
NASA Astrophysics Data System (ADS)
Karaoglu, Kaan; Baran, Talat; Serbest, Kerim; Er, Mustafa; Degirmencioglu, Ismail
2009-03-01
Herein, we report two novel macroacyclic Schiff bases derived from tetranaphthaldehyde derivative compound and their binuclear Mn(II), Ni(II), Cu(II) and Zn(II) complexes. The structures of the compounds have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-Vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The stoichiometries of the complexes derived from mass and elemental analysis correspond to the general formula [M 2L(ClO 4) n](ClO 4) 4-n, (where M is Mn(II), Ni(II), Cu(II), Zn(II) and L represents the Schiff base ligands).
Dynamic Analysis of Geared Rotors by Finite Elements
NASA Technical Reports Server (NTRS)
Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.
1992-01-01
A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.
NASA Astrophysics Data System (ADS)
Tulej, M.; Riedo, A.; Meyer, S.; Iakovleva, M.; Neuland, M.; Wurz, P.
2012-04-01
Detailed knowledge of the elemental and isotopic composition of solar system objects imposes critical constraints on models describing the origin of our solar system and can provide insight to chemical and physical processes taking place during the planetary evolution. So far, the investigation of chemical composition of planetary surfaces could be conducted almost exclusively by remotely controlled spectroscopic instruments from orbiting spacecraft, landers or rovers. With some exceptions, the sensitivity of these techniques is, however, limited and often only abundant elements can be investigated. Nevertheless, the spectroscopic techniques proved to be successful for global chemical mapping of entire planetary objects such as the Moon, Mars and asteroids. A combined afford of the measurements from orbit, landers and rovers can also yield the determination of local mineralogy. New instruments including Laser Induced Breakdown Spectroscopy (LIBS) and Laser Ablation/Ionisation Mass Spectrometer (LIMS), have been recently included for several landed missions. LIBS is thought to improve flexibility of the investigations and offers a well localised chemical probing from distances up to 10-13 m. Since LIMS is a mass spectrometric technique it allows for very sensitive measurements of elements and isotopes. We will demonstrate the results of the current performance tests obtained by application of a miniaturised laser ablation/ionisation mass spectrometer, a LIMS instrument, developed in Bern for the chemical analysis of solids. So far, the only LIMS instrument on a spacecraft is the LAZMA instrument. This spectrometer was a part of the payload for PHOBOS-GRUNT mission and is also currently selected for LUNA-RESURCE and LUNA-GLOB missions to the lunar south poles (Managadze et al., 2011). Our LIMS instrument has the dimensions of 120 x Ø60 mm and with a weight of about 1.5 kg (all electronics included), it is the lightest mass analyser designed for in situ chemical analysis of solid materials on the planetary surfaces (Rohner et al., 2003). Initial laboratory tests that were conducted with an IR laser radiation for the ablation, atomisation and ionisation of the material, indicated a high performance of the instrument in terms of sensitivity, dynamic range and mass resolution (Tulej et al., 2011). After some technical improvements and implementation of a computer-controlled performance optimiser we have achieved further improvements of both, the instrumental sensitivity down to sub-ppm level and reproducibility of the measurements. We will demonstrate the potential of the mass analyser to perform the quantitative elemental analysis of solids with a spatial (vertical, lateral) resolution commensurate with typical grain sizes, and its capabilities for investigation of isotopic patterns with accuracy and precision comparable to that of large analytical laboratory instruments, e.g., TIMS, SIMS, LA-ICP-MS. The results can be of considerable interest for in situ dating or investigation of other fine isotopic fractionation effects including studies of bio-markers.
NASA Astrophysics Data System (ADS)
Ennis, G.; Sievering, H.
1990-06-01
During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.
Multi-spectroscopic analysis of cholesterol gallstone using TOF-SIMS, FTIR and UV-Vis spectroscopy
NASA Astrophysics Data System (ADS)
Jaswal, Brij Bir S.; Kumar, Vinay; Swart, H. C.; Sharma, Jitendra; Rai, Pradeep K.; Singh, Vivek K.
2015-10-01
For the first time, spatial distribution of major and trace elements has been studied in cholesterol gallstones using time-of-flight secondary mass ion mass spectrometry (TOF-SIMS). The TOF-SIMS has been used to study the elemental constituents of the center and surface parts of the gallstone sample. We have classified the gallstone sample using Fourier transform spectroscopy. The detected elements in cholesterol gallstone sample were carbon (C), hydrogen (H), calcium (Ca), sodium (Na), potassium (K), strontium (Sr), copper (Cu), iron (Fe), chromium (Cr), mercury (Hg) and lead (Pb). The detected molecules in the cholesterol gallstone were CH3 +, CO3 +, CaCO3 + and C3H+. Our results revealed that the contents of these elements in cholesterol gallstone were higher in the center part than that in the surface part. In the present paper, we have also presented the UV-Vis spectroscopic studies of the center and surface parts of the gallstone sample which indicated the presence of a higher content of cholesterol in the surface part and bilirubin in the center part.
Miniature Neutron-Alpha Activation Spectrometer
NASA Astrophysics Data System (ADS)
Rhodes, E.; Goldsten, J.
2001-01-01
We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen
2013-08-01
We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1979-01-01
The expected performance of an X-ray detector as an instrument aboard a mission to a comet was evaluated. The functions of the detector are both nondispersive analysis of chemical composition and measurement of mass flow from the comet nucleus. Measurements are to be carried out at a distance from the comet. The approach distances considered are of the order of 1000 km and 100 km. A new type of X-ray detector, a proportional scintillation detector, is considered as an X-ray counter for nondispersive elemental analysis.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
An Integrated Tool for System Analysis of Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.
2012-01-01
The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faessler, Amand; Rodin, V.; Fogli, G. L.
2009-03-01
The variances and covariances associated to the nuclear matrix elements of neutrinoless double beta decay (0{nu}{beta}{beta}) are estimated within the quasiparticle random phase approximation. It is shown that correlated nuclear matrix elements uncertainties play an important role in the comparison of 0{nu}{beta}{beta} decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.
Some methodical peculiarities of analysis of small-mass samples by SRXFA
NASA Astrophysics Data System (ADS)
Kudryashova, A. F.; Tarasov, L. S.; Ulyanov, A. A.; Baryshev, V. B.
1989-10-01
The stability of work of the element analysis station on the storage rings VEPP-3 and VEPP-4 in INP (Novosibirsk, USSR) was demonstrated on the example of three sets of rare element analyses carried out by SRXFA in May 1985, January and May-June 1988. These data show that there are some systematic deviations in the results of measurements of Zr and La contents. SRXFA and INAA data have been compared for the latter element. A false linear correlation on the Rb-Sr plot in one set of analyses has been attributed to an overlapping artificial Sr peak on a Rb peak. The authors proposed sequences of registration of spectra and computer treatment for samples and standards. Such sequences result in better final concentration data.
Cell-Sediment Separation and Elemental Stoichiometries in Extreme Environments
NASA Astrophysics Data System (ADS)
Neveu, M.; Poret-peterson, A. T.; Lee, Z. M.; Anbar, A. D.; Elser, J. J.
2012-12-01
Better understanding of the coupling of major biogeochemical cycles requires knowledge of the cellular elemental composition of key microbes. This is difficult in benthic sediments and mats, because of the contributions of non-living components. We are particularly interested in microbial extremophiles, and therefore sought to determine and interpret bulk and cellular elemental ratios in complex field-collected sediment samples from diverse hot spring ecosystems of Yellowstone National Park (YNP). These samples covered a broad range of temperature, pH, and chemical composition. We also sought to extend stoichiometric analysis to a broader suite of elements, including metals (Fe, Ni, Cu, Zn, Mo, etc.) of biological importance (Sterner and Elser, 2002). To overcome the challenge of rigorously isolating communities from their complex mineral matrices (Havig et al., 2011), we adapted a cell-sediment separation procedure from Amalfitano and Fazi (2008). The method involves chemical (use of a detergent and a chelating agent) and physical methods (stirring, gentle sonication, and gradient centrifugation) to break the microbe-mineral bonds. C and N elemental and isotopic abundances were determined by elemental analysis - isotope ratio - mass spectrometry (EA-IR-MS), while P, Na, Mg, Al, K, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, and Mo contents were determined by inductively coupled plasma - mass spectrometry (ICP-MS). We sought to assess the existence of an "Extended Redfield Ratio" (ERR) for these microbes; that is, to establish the multi-element stoichiometric envelope within which extremophilic microbes must operate. Elemental and isotopic mass balance analyses of cultured E. coli before and after separation showed that our procedure preserved cellular C, N, P, Fe, and trace metal contents: neither loss of these elements (e.g., by cell lysis) nor contamination by reagents were observed. On the other hand, cation-forming elements (Na, Mg, K, Ca), were not conserved. Cell counting by epifluorescence microscopy indicated a cell recovery yield between 6 and 40% in field-collected samples (95% for cultured E. coli). Aluminum, assumed to be non-biological in origin, was used to estimate the extent of mineral contamination of isolated cell communities. These results show that our method is successful at separating microbial cells from sediment collected in extreme environments and preserving them for analysis of a broad suite of elements. Photosynthetic sites yielded much more cell material than hotter, chemosynthetic sites (Cox et al., 2011). We are currently measuring cellular elemental abundances and ratios in samples from relatively low-temperature (25 to 65°C), photosynthetic areas, spanning a wide range of pH (2 to 9.5) and composition. These measurements will be compared to existing datasets on the bulk sediment stoichiometry of these ecosystems, and to previous observations of cellular elemental composition. References: Redfield, A.C. (1934) In Daniel, R.J. [Ed.], James Johnstone Memorial Volume, pp. 176-192, Univ. Press Liverpool. Sterner, R.W., Elser, J.J. (2002) Ecological Stoichiometry Princeton Univ. Press, 441p. Havig, J.R., et al. (2011) JGR 116, G01005. Amalfitano, S., Fazi, S. (2008) J. of Microbiol. Methods 75, 237-243. Cox, A., et al. (2011) Chem. Geol. 280, 344-351.
\\tEPA’s Selected Analytical Methods for Environmental Remediation and Recovery (SAM) lists this method for preparation and analysis of drinking water samples to detect and measure compounds containing arsenic, thallium and vanadium.
FORT HALL SOURCE APPORTIONMENT STUDY (FINAL REPORT)
Air quality monitoring on the Fort Hall Indian Reservation has revealed numerous exceedances of the National Ambient Air Quality Standard (NAAQS) for 24-h averaged PM10 mass. Wind-directional analysis coupled with PM10 measurements have identified the FMC elemental phosphorus p...
NASA Astrophysics Data System (ADS)
Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Brigitte Neuland, Maike; Tulej, Marek; Broekmann, Peter; Wurz, Peter
2015-04-01
Sensitive elemental and isotope analysis of solid samples are of considerable interest in nowadays in situ space research. For context in situ analysis, high spatial resolution is also of substantial importance. While the measurements conducted with high lateral resolution can provide compositional details of the surface of highly heterogeneous materials, depth profiling measurements yield information on compositional details of surface and subsurface. The mass spectrometric analysis with the vertical resolution at sub-µm levels is of special consideration and can deliver important information on processes, which may have modified the surface. Information on space weathering effects can be readily determined when the sample composition of the surface and sub-surface is studied with high vertical resolution. In this contribution we will present vertical depth resolution measurements conducted by our sensitive miniature laser ablation ionization time-of-flight mass spectrometer (160mm x Ø 60mm) designed for in situ space research [1-3]. The mass spectrometer is equipped with a fs-laser system (~190fs pulse width, λ = 775nm), which is used for ablation and ionization of the sample material [2]. Laser radiation is focussed on the target material to a spot size of about 10-20 µm in diameter. Mass spectrometric measurements are conducted with a mass resolution (m/Δm) of about 400-500 (at 56Fe mass peak) and with a superior dynamic range of more than eight orders of magnitude. The depth profiling performance studies were conducted on 10µm thick Cu films that were deposited by an additive-assisted electrochemical procedure on Si-wafers. The presented measurement study will show that the current instrument prototype is able to conduct quantitative chemical (elemental and isotope) analysis of solids with a vertical resolution at sub-nm level. Contaminants, incorporated by using additives (polymers containing e.g. C, N, O, S) and with layer thickness of a few nanometres, can be fully resolved [1]. The current measurement performance, including the sensitivity and the high vertical depth resolution, opens new perspectives for future applications in the laboratory, e.g. measurements of Genesis samples, and new measurement capabilities for in situ space research. References 1)V. Grimaudo, P. Moreno-García, M.B. Neuland, M. Tulej, P. Broekmann, P. Wurz and A. Riedo, "High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer", Anal. Chem., 2015, submitted. 2)A. Riedo, M. Neuland, S. Meyer, M. Tulej, and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 2013, 28, 1256. 3)Tulej et al. CAMAM: A Miniature Laser Ablation Ionisation Mass Spectrometer and Microscope-Camera System for In Situ Investigation of the Composition and Morphology of Extraterrestrial Materials, Geostand. Geoanal. Res., 2014, doi: 10.1111/j.1751-908X.2014.00302.x
Reduced Uncertainties in the Flutter Analysis of the Aerostructures Test Wing
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Lung, Shun-fat
2010-01-01
Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. A test validated finite element model can provide a reliable flutter analysis to define the flutter placard speed to which the aircraft can be flown prior to flight flutter testing. Minimizing the difference between numerical and experimental results is a type of optimization problem. Through the use of the National Aeronautics and Space Administration Dryden Flight Research Center s (Edwards, California, USA) multidisciplinary design, analysis, and optimization tool to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes are matched to the target data and the mass matrix orthogonality is retained. The approach in this study has been applied to minimize the model uncertainties for the structural dynamic model of the aerostructures test wing, which was designed, built, and tested at the National Aeronautics and Space Administration Dryden Flight Research Center. A 25-percent change in flutter speed has been shown after reducing the uncertainties
Reduced Uncertainties in the Flutter Analysis of the Aerostructures Test Wing
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Lung, Shun Fat
2011-01-01
Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. A test validated finite element model can provide a reliable flutter analysis to define the flutter placard speed to which the aircraft can be flown prior to flight flutter testing. Minimizing the difference between numerical and experimental results is a type of optimization problem. Through the use of the National Aeronautics and Space Administration Dryden Flight Research Center's (Edwards, California) multidisciplinary design, analysis, and optimization tool to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes are matched to the target data, and the mass matrix orthogonality is retained. The approach in this study has been applied to minimize the model uncertainties for the structural dynamic model of the aerostructures test wing, which was designed, built, and tested at the National Aeronautics and Space Administration Dryden Flight Research Center. A 25 percent change in flutter speed has been shown after reducing the uncertainties.
Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains
NASA Astrophysics Data System (ADS)
Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.
2004-07-01
Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.
Nuclear Data Sheets for A = 239
Browne, E.; Tuli, J. K.
2014-11-18
Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=239. In general, a relatively small amount of new data on this mass chain has been reported since the previous evaluation in 2003. However, special evaluations, such as ''Database of prompt gamma rays from slow neutron–capture from elemental analysis'' (2007ChZX), have provided additional precise data for levels in 29U. Also, new Coulomb excitation measurements in 239Pu have extended the knowledge of the 1/2[631] rotational band up to Jπ=(55/2+)Jπ=(55/2+), and that of the octupole vibrational band up to Jπ=(53/2-)Jπ=(53/2-). Formore » historical knowledge it is worth mentioning the report on the “Discovery of isotopes of the transuranium elements with 93 <= Z <= 98'' (2013Fr02), where the information for elements Np, Pu, Am, and Cf with mass number A=239 is presented. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r 0) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less
Nuclear Data Sheets for A = 239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli, J. K.
Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=239. In general, a relatively small amount of new data on this mass chain has been reported since the previous evaluation in 2003. However, special evaluations, such as ''Database of prompt gamma rays from slow neutron–capture from elemental analysis'' (2007ChZX), have provided additional precise data for levels in 29U. Also, new Coulomb excitation measurements in 239Pu have extended the knowledge of the 1/2[631] rotational band up to Jπ=(55/2+)Jπ=(55/2+), and that of the octupole vibrational band up to Jπ=(53/2-)Jπ=(53/2-). Formore » historical knowledge it is worth mentioning the report on the “Discovery of isotopes of the transuranium elements with 93 <= Z <= 98'' (2013Fr02), where the information for elements Np, Pu, Am, and Cf with mass number A=239 is presented. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r 0) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less
Game meat authentication through rare earth elements fingerprinting.
Danezis, G P; Pappas, A C; Zoidis, E; Papadomichelakis, G; Hadjigeorgiou, I; Zhang, P; Brusic, V; Georgiou, C A
2017-10-23
Accurate labelling of meat (e.g. wild versus farmed, geographical and genetic origin, organic versus conventional, processing treatment) is important to inform the consumers about the products they buy. Meat and meat products declared as game have higher commercial value making them target to fraudulent labelling practices and replacement with non-game meat. We have developed and validated a new method for authentication of wild rabbit meat using elemental metabolomics approach. Elemental analysis was performed using rapid ultra-trace multi-element measurement by inductively coupled plasma mass spectrometry (ICP-MS). Elemental signatures showed excellent ability to discriminate the wild rabbit from non-wild rabbit meat. Our results demonstrate the usefulness of metabolic markers -rare earth signatures, as well as other trace element signatures for game meat authentication. Copyright © 2017 Elsevier B.V. All rights reserved.
Accelerator-based chemical and elemental analysis of atmospheric aerosols
NASA Astrophysics Data System (ADS)
Mentes, Besim
Aerosol particles have always been present in the atmosphere, arising from natural sources. But it was not until recently when emissions from anthropogenic (man made) sources began to dominate, that atmospheric aerosols came into focus and the aerosol science in the environmental perspective started to grow. These sources emit or produce particles with different elemental and chemical compositions, as well as different sizes of the individual aerosols. The effects of increased pollution of the atmosphere are many, and have different time scales. One of the effects known today is acid rain, which causes problems for vegetation. Pollution is also a direct human health risk, in many cities where traffic driven by combustion engines is forbidden at certain times when the meteorological conditions are unfavourable. Aerosols play an important role in the climate, and may have both direct and indirect effect which cause cooling of the planet surface, in contrast to the so-called greenhouse gases. During this work a technique for chemical and elemental analysis of atmospheric aerosols and an elemental analysis methodology for upper tropospheric aerosols have been developed. The elemental analysis is performed by the ion beam analysis (IBA) techniques, PIXE (elements heavier than Al). PESA (C, N and O), cPESA (H) and pNRA (Mg and Na). The chemical speciation of atmospheric aerosols is obtained by ion beam thermography (IBT). During thermography the sample temperature is stepwise increased and the IBA techniques are used to continuously monitor the elemental concentration. A thermogram is obtained for each element. The vaporisation of the compounds in the sample appears as a concentration decrease in the thermograms at characteristic vaporisation temperatures (CVTs). Different aspects of IBT have been examined in Paper I to IV. The features of IBT are: almost total elemental speciation of the aerosol mass, chemical speciation of the inorganic compounds, carbon content obtained as volatile and non-volatile fractions, analysis of acidic aerosols is possible, aerosols can be size-fractionated using a cascade impactor as collection device, total analysis time for a sample is around 45 min, the sample mass load is from around 1 to 30 μg/cm2. An intercomparison of IBT and ion chromatography (IC) when a DMPS system was used as a reference instrument has been performed (Paper IV). Ions of K, Na, SO4, NO3 and NH4 were determined and quantified by both IBT and IC. The intercomparison showed that the procedure used in IBT does not suffer from any selective losses, especially not from the NO3 and NH4 compounds, which exhibit an appreciable interaction with the gas phase as NH3 and HNO3. An impactor-based aerosol sampler for upper tropospheric conditions has been developed (Paper V). Despite the low aerosol concentration at that altitude the sulphur concentration can be measured, with a detection limit of 1 ng/m 3 for one hour sampling by optimising parameters in the use of PIXE analysis.
DTFM Modeling and Analysis Method for Gossamer Structures
NASA Technical Reports Server (NTRS)
Fang, Hou-Fei; Lou, Michael; Broduer, Steve (Technical Monitor)
2001-01-01
Gossamer systems are mostly composed of support structures formed by highly flexible, long tubular elements and pre-tensioned thin-film membranes. These systems offer order-of-magnitude reductions in mass and launch volume and will revolutionize the architecture and design of space flight systems that require large in-orbit configurations and apertures. A great interest has been generated in recent years to fly gossamer systems on near-term and future space missions. Modeling and analysis requirements for gossamer structures are unique. Simulation of in-space performance issues of gossamer structures, such as inflation deployment of flexible booms, formation and effects of wrinkle in tensioned membranes, synthesis of tubular and membrane elements into a complete structural system, usually cannot be accomplished by using the general-purpose finite-element structural analysis codes. This has led to the need of structural modeling and analysis capabilities specifically suitable for gossamer structures. The Distributed Transfer Function Method (DTFM) can potentially meet this urgent need. Additional information is contained in the original extended abstract.
Canizo, Brenda V; Escudero, Leticia B; Pérez, María B; Pellerano, Roberto G; Wuilloud, Rodolfo G
2018-03-01
The feasibility of the application of chemometric techniques associated with multi-element analysis for the classification of grape seeds according to their provenance vineyard soil was investigated. Grape seed samples from different localities of Mendoza province (Argentina) were evaluated. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-nine elements (Ag, As, Ce, Co, Cs, Cu, Eu, Fe, Ga, Gd, La, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Te, Ti, Tl, Tm, U, V, Y, Zn and Zr). Once the analytical data were collected, supervised pattern recognition techniques such as linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), support vector machine (SVM) and Random Forest (RF) were applied to construct classification/discrimination rules. The results indicated that nonlinear methods, RF and SVM, perform best with up to 98% and 93% accuracy rate, respectively, and therefore are excellent tools for classification of grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elemental analysis and nutritional value of edible Trifolium (clover) species.
Gounden, Thaveshan; Moodley, Roshila; Jonnalagadda, Sreekantha B
2018-04-30
Trifolium species, commonly known as clover species, have a cosmopolitan distribution and, as such, are used in many different traditional systems of medicine and consumed by many communities all over the world. In this study, the elemental distribution and nutritional value of five edible Trifolium species, namely, Trifolium africanum, Trifolium burchellianum, Trifolium repens, Trifolium dubium and Trifolium pratense were investigated to evaluate the potential of these plant species to alleviate malnutrition, thereby contributing toward the fight against food insecurity. Trifolium species were found to be a rich alternate source of essential nutrients with concentrations of elements being in decreasing order of Ca > Mg > Fe > Mn > Zn > Se > Cu > Cr > Pb > Ni > Co > Cd > As and with adequate levels of lipids (4.2 to 8.6%), proteins (35.1 to 45.4%) and carbohydrates (26.7 to 47.0%). Trifolium species were found to be rich in Se (contributing greater than 516% toward its RDA) with T. dubium having a concentration of 0.53 mg 10 g -1 , dry mass, which is higher than Brazil nuts. T. pratense was found to be the most suitable species for human consumption due to it having low levels of toxic metals (As, Cd and Pb) while being rich in macro- and micro-elements, especially Fe (7.84 mg 10 g -1 , dry mass) and Se (0.36 mg 10 g -1 , dry mass).
The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars
NASA Technical Reports Server (NTRS)
Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.
2011-01-01
A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.
Quantitation of absorbed or deposited materials on a substrate that measures energy deposition
Grant, Patrick G.; Bakajin, Olgica; Vogel, John S.; Bench, Graham
2005-01-18
This invention provides a system and method for measuring an energy differential that correlates to quantitative measurement of an amount mass of an applied localized material. Such a system and method remains compatible with other methods of analysis, such as, for example, quantitating the elemental or isotopic content, identifying the material, or using the material in biochemical analysis.
Santos, Vívian Silva; Nardini, Viviani; Cunha, Luís Carlos; Barbosa, Fernando; De Almeida Teixeira, Gustavo Henrique
2014-06-15
The açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) produce similar fruits which are rich in energy, minerals, vitamins and natural compounds with antioxidant and anti-inflammatory properties. Although the drink obtained from these species is similar, it is important to develop tools to establish the identity of the fruit species and growing regions. To assess claims of origin and for other purposes, we use multivariate analysis to investigate the differentiation of açaí and juçara fruits based on rare earth element (REE) content determined by Inductively Coupled Plasma Mass Spectrometry. REE content, in particular Sm, Th, La, Pr, Gd, and especially Ce and Nd varied between species. PCA analysis was not efficient in differentiating açaí from juçara fruit samples. In contrast, LDA analysis permitted a correct differentiation between species with a predictive ability of 83.3%. The methodology that we have applied confirms that REE can be used to differentiate between açaí and juçara fruit samples and to identify their origin. Copyright © 2013 Elsevier Ltd. All rights reserved.
On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.
2001-06-01
Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.
A Detailed Analysis of Aerosols Containing Zn, Pb, and Cl from an Industrial Region of Mexico City
NASA Astrophysics Data System (ADS)
Moffet, R. C.; Desyaterik, Y.; Hopkins, R. J.; Tivanski, A. V.; Gilles, M. K.; Shutthanandan, V.; Molina, L. T.; Gonzalez-Abraham, R.; Johnson, K. S.; Mugica, V.; Molina, M. J.; Laskin, A.; Prather, K. A.
2008-12-01
Measurements in the Northern Mexico City Metropolitan Area during the March, 2006 MILAGRO campaign revealed the frequent appearance of particles with a characteristically high content of internally mixed Zn, Pb, Cl, and P. A detailed analysis of the chemical and physical properties of these particles was performed using a complementary combination of aerosol measurement techniques. Single particles were analyzed using Aerosol Time-of-Flight Mass Spectrometry (ATOFMS) and Computer Controlled Scanning Electron Microscopy/Energy Dispersive X-Ray spectroscopy (CCSEM/EDX). Proton Induced X-Ray Emission (PIXE) analysis of bulk aerosol samples provided time-resolved mass concentrations of individual elements. The PIXE measurements indicated that Zn is more strongly correlated with Cl than with any other element and that Zn concentrations are higher than other non-ferrous transition metals. The Zn- and Pb - containing particles have both spherical and non-spherical morphologies. Many metal rich particles had needle-like structures and were found to be composed of ZnO and/or Zn(NO3)2-6H2O as indicated by scanning transmission x-ray microscopy/near edge X-ray absorption spectroscopy (STXM/NEXAFS). The Zn and Pb rich particles were primarily in the submicron size range and internally mixed with elemental carbon. The unique chemical associations most closely match signatures acquired for garbage incineration.
NASA Astrophysics Data System (ADS)
Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin
2008-03-01
Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.
Czerny, Bogusław; Krupka, Krzysztof; Ożarowski, Marcin; Seremak-Mrozikiewicz, Agnieszka
2014-01-01
Cancer constitutes a major health problem worldwide. Thus, search for reliable and practical markers of the disease process remains the key issue of the diagnostic process. The study aims at linking the trace element status of an organism, assessed by hair analysis, with the occurrence of cancer diseases. Hair samples were collected from 299 patients with cancer diseases confirmed by a histopathological test and from 100 controls. Cancer patients were divided into three groups, depending on cancer type: hormone-dependent cancer, cancer of the alimentary tract, and cancer with high glycolytic activity. Mineral element analysis of hair was performed using an atomic emission spectrophotometer with inductively coupled plasma (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Statistically significantly lower concentrations of selenium, zinc, copper, germanium and boron, iron, and magnesium were observed in the three groups of cancer patients. Disturbance in the axis glucose-insulin and changes in concentrations of heavy metals and toxic elements were also noted. It seems safe to conclude that our results confirmed usefulness of hair element analysis in screening tests for the assessment of the biomarker of various cancer diseases in a female population.
Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki
2018-01-01
The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.
Profiling metals in Cordyceps sinensis by using inductively coupled plasma mass spectrometry.
Wei, Xin; Hu, Hankun; Zheng, Baogeng; Arslan, Zikri; Huang, Hung-Chung; Mao, Weidong; Liu, Yi-Ming
2017-01-28
Cordyceps sinensis ( C. sinensis ) is a natural product that has diverse nutritional and medicinal values. Since the availability of natural C. sinensis becomes limited its authentication and quality control is of high significance. Herein we report on profiling of metals in C. sinensis by using inductively coupled plasma mass spectrometry (ICP-MS). The analysis reveals that C. sinensis contains a wide array of essential elements, including P, Mg, Zn, Cu, Fe, etc. Toxic metals detected are Cd, Pb, and As. In all five samples analyzed Pb contents are below 2.0 ppm. Arsenic level in C. sinensis caterpillar is significantly higher than that in its mycelium and varies from 3.0 to 32 ppm likely due to soil contamination. It's for the first time demonstrated in this work that clustering analysis on the proposed metal profiles consisting of 24 elements is very useful to identify "abnormal" C. sinensis samples, thus adding another dimension to the effective means for authentication and quality assessment of this highly demanded previous natural product.
Bacon, Charles R.; Grove, Marty; Vazquez, Jorge A.; Coble, Matthew A.
2012-01-01
Answers to many questions in Earth science require chemical analysis of minute volumes of minerals, volcanic glass, or biological materials. Secondary Ion Mass Spectrometry (SIMS) is an extremely sensitive analytical method in which a 5–30 micrometer diameter "primary" beam of charged particles (ions) is focused on a region of a solid specimen to sputter secondary ions from 1–5 nanograms of the sample under high vacuum. The elemental abundances and isotopic ratios of these secondary ions are determined with a mass spectrometer. These results can be used for geochronology to determine the age of a region within a crystal thousands to billions of years old or to precisely measure trace abundances of chemical elements at concentrations as low as parts per billion. A partnership of the U.S. Geological Survey and the Stanford University School of Earth Sciences operates a large SIMS instrument, the Sensitive High-Resolution Ion Microprobe with Reverse Geometry (SHRIMP–RG) on the Stanford campus.
Lichte, F.E.; Meier, A.L.; Crock, J.G.
1987-01-01
A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.
Whispering gallery mode resonators for rapid label-free biosensing in small volume droplets.
Wildgen, Sarah M; Dunn, Robert C
2015-03-23
Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection.
A Chandra X-Ray Survey of Ejecta in the Cassiopeia A Supernova Remnant
NASA Technical Reports Server (NTRS)
Hwang, Una; Laming, J. Martin
2011-01-01
We present a survey of the X-ray emitting ejecta in the Cassiopeia A supernova remnant based on an extensive analysis of over 6000 spectral regions extracted on 2.5-10" angular scales using the Chandra 1 Ms observation. We interpret these results in the context of hydrodynamical models for the evolution of the remnant. The distributions of fitted temperature and ionization age are highly peaked and suggest that the ejecta were subjected to multiple secondary shocks. Based on the fitted emission measure and element abundances, and an estimate of the emitting volume, we derive masses for the X-ray emitting ejecta as well as showing the distribution of the mass of various elements over the remnant. The total shocked Fe mass appears to be roughly 0.14 Solar Mass, which accounts for nearly all of the mass expected in Fe ejecta. We find two populations of Fe ejecta, that associated with normal Si-burning and that associated with alpha-rich freeze-out, with a mass ratio of approximately 2:1. Surprisingly, essentially all of this Fe (both components) is well outside the central regions of the SNR, presumably having been ejected by hydrodynamic instabilities during the explosion. We discuss this, and its implications for the neutron star kick.
NASA Technical Reports Server (NTRS)
Thompson, E.
1979-01-01
A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.
RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, N.E.; Holden, N.; Holden,N.E.
2011-07-27
In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotopemore » as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value. For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 {+-} 3 is listed in the half-life column as 7 (3). The criteria to include data in this Table, is to be the same as it has been for over sixty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified. It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to. The atomic mass values have been taken primarily from the 2003 Atomic Mass Table. Mass values for those radioisotopes that do not appear in the 2003 Atomic mass Table have been taken from preliminary data of the Atomic Mass Data Center. Most of the quoted half-lives.« less
The project of the mass separator of atomic nuclei produced in heavy ion induced reactions
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.
2003-05-01
A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.
NASA Astrophysics Data System (ADS)
Ardalan, A. A.; Safari, A.
2004-09-01
An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {λ,ϕ,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10-8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10-4m2/s2. Since 1.5× 10-4 m2/s2 is equivalent to 1.5×10-5m in the vertical direction, it can be concluded that a method for terrain correction (or local gravity field modeling) based on closed-form solution of the Newton integral in terms of Cartesian coordinates of a multi-cylindrical equal-area map projection of the reference ellipsoid has been developed which has the accuracy of terrain correction (or local gravity field modeling) based on the Newton integral in terms of ellipsoidal coordinates.
Multielement analysis of interplanetary dust particles using TOF-SIMS
NASA Technical Reports Server (NTRS)
Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.
1993-01-01
Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.
Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B
2014-10-15
Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.
1973-01-01
Two methods for natural mode vibration analysis are discussed. The first consists of a direct approach based on a finite element representation of the complete structure as an entity. The mass and stiffness matrices for the complete structure are assembled by properly combining the mass and stiffness matrices of the individual elements into which the structure has been divided. The second approach is that of component mode synthesis. This method is based on the concept of synthesizing the natural modes of the complete structure from modes of conveniently difined substructures, or components, into which the structure has been partitioned. In this way the expedient of reducing the system degrees of freedom, and thus the size of the eigenvalue problem, can be introduced by partial modal synthesis.
High-Pressure Oxygen Generation for Outpost EVA Study
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.
2009-01-01
The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.
NASA Astrophysics Data System (ADS)
de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe
2016-04-01
A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.
Characterization of casein and poly-l-arginine multilayer films
NASA Astrophysics Data System (ADS)
Szyk-Warszyńska, Lilianna; Kilan, Katarzyna; Socha, Robert P.
2014-06-01
Thin films containing casein appear to be a promising material for coatings used in the medical area to promote biomineralization. alfa- and beta-casein and poly-L-arginine multilayer films were formed by the layer-by layer technique and their thickness and mass were analyzed by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). We investigated the effect of the type of casein used for the film formation and of the polyethyleneimine anchoring layer on the thickness and mass of adsorbed films. The analysis of the mass of films during their post-treatment with the solutions of various ionic strength and pH provided the information concerning films stability, while the XPS elemental analysis confirmed binding of calcium ions by the casein embedded in the multilayers.
NASA Astrophysics Data System (ADS)
Colone, L.; Hovgaard, M. K.; Glavind, L.; Brincker, R.
2018-07-01
A method for mass change detection on wind turbine blades using natural frequencies is presented. The approach is based on two statistical tests. The first test decides if there is a significant mass change and the second test is a statistical group classification based on Linear Discriminant Analysis. The frequencies are identified by means of Operational Modal Analysis using natural excitation. Based on the assumption of Gaussianity of the frequencies, a multi-class statistical model is developed by combining finite element model sensitivities in 10 classes of change location on the blade, the smallest area being 1/5 of the span. The method is experimentally validated for a full scale wind turbine blade in a test setup and loaded by natural wind. Mass change from natural causes was imitated with sand bags and the algorithm was observed to perform well with an experimental detection rate of 1, localization rate of 0.88 and mass estimation rate of 0.72.
CCQM Pilot Study CCQM-P140: Quantitative surface analysis of multi-element alloy films
NASA Astrophysics Data System (ADS)
Kim, Kyung Joong; Jang, Jong Shik; Kim, An Soon; Suh, Jung Ki; Chung, Yong-Duck; Hodoroaba, Vasile-Dan; Wirth, Thomas; Unger, Wolfgang; Kang, Hee Jae; Popov, Oleg; Popov, Inna; Kuselman, Ilya; Lee, Yeon Hee; Sykes, David E.; Wang, Meiling; Wang, Hai; Ogiwara, Toshiya; Nishio, Mitsuaki; Tanuma, Shigeo; Simons, David; Szakal, Christopher; Osborn, William; Terauchi, Shinya; Ito, Mika; Kurokawa, Akira; Fujimoto, Toshiyuki; Jordaan, Werner; Jeong, Chil Seong; Havelund, Rasmus; Spencer, Steve; Shard, Alex; Streeck, Cornelia; Beckhoff, Burkhard; Eicke, Axel; Terborg, Ralf
2015-01-01
A pilot study for a quantitative surface analysis of multi-element alloy films has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study is to evaluate a protocol for a key comparison to demonstrate the equivalence of measures by National Metrology Institutes (NMIs) and Designated Institutes (DI) for the mole fractions of multi-element alloy films. A Cu(In,Ga)Se2 (CIGS) film with non-uniform depth distribution was chosen as a representative multi-element alloy film. The mole fractions of the reference and the test CIGS films were certified by isotope dilution—inductively coupled plasma/mass spectrometry. A total number counting (TNC) method was used as a method to determine the signal intensities of the constituent elements acquired in SIMS, XPS and AES depth profiling. TNC method is comparable with the certification process because the certified mole fractions are the average values of the films. The mole fractions of the CIGS films were measured by Secondary Ion Mass Spectrometry (SIMS), Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence (XRF) Analysis and Electron Probe Micro Analysis (EPMA) with Energy Dispersive X-ray Spectrometry (EDX). Fifteen laboratories from eight NMIs, one DI, and six non-NMIs participated in this pilot study. The average mole fractions of the reported data showed relative standard deviations from 5.5 % to 6.8 % and average relative expanded uncertainties in the range from 4.52 % to 4.86 % for the four test CIGS specimens. These values are smaller than those in the key comparison CCQM-K67 for the measurement of mole fractions of Fe-Ni alloy films. As one result it can be stated that SIMS, XPS and AES protocols relying on the quantification of CIGS films using the TNC method are mature to be used in a CCQM key comparison. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by CCQM.
Elemental Impurities in Pharmaceutical Excipients.
Li, Gang; Schoneker, Dave; Ulman, Katherine L; Sturm, Jason J; Thackery, Lisa M; Kauffman, John F
2015-12-01
Control of elemental impurities in pharmaceutical materials is currently undergoing a transition from control based on concentrations in components of drug products to control based on permitted daily exposures in drug products. Within the pharmaceutical community, there is uncertainty regarding the impact of these changes on manufactures of drug products. This uncertainty is fueled in part by a lack of publically available information on elemental impurity levels in common pharmaceutical excipients. This paper summarizes a recent survey of elemental impurity levels in common pharmaceutical excipients as well as some drug substances. A widely applicable analytical procedure was developed and was shown to be suitable for analysis of elements that are subject to United States Pharmacopoeia Chapter <232> and International Conference on Harmonization's Q3D Guideline on Elemental Impurities. The procedure utilizes microwave-assisted digestion of pharmaceutical materials and inductively coupled plasma mass spectrometry for quantitative analysis of these elements. The procedure was applied to 190 samples from 31 different excipients and 15 samples from eight drug substances provided through the International Pharmaceutical Excipient Council of the Americas. The results of the survey indicate that, for the materials included in the study, relatively low levels of elemental impurities are present. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.
System Response Manipulation using Arrays of Subordinate Resonators: Theory and Applications
NASA Astrophysics Data System (ADS)
Glean, Aldo A. J.
The dynamic response of a resonant structure can be significantly altered by the attachment of an array of substantially smaller resonators. This dissertation presents the theory governing these subordinate oscillator arrays (SOAs) and explores four major applications of using the arrays. The first application is related to vibration suppression. Numerical optimization was used to obtain SOA properties that minimize the settling time of a primary resonator subjected to an impulse. This minimization was conducted for system characteristics including the overall bandwidth of the array, the ratio of total array mass to primary resonator mass, and distributions of array properties. It is shown that the minimum settling time is a function of bandwidth and added mass within the SOA. The second application introduces a novel method of chemical vapor detection using SOA elements that are functionalized to bond with a specific chemical species. Numerical simulations were used to relate mass adsorbed to changes in the time-domain response of the system. It is shown that increasing the number of sensing elements increases sensitivity and reduces errors in mass predictions due to mass adsorption variability while having fewer sensing elements increases signal-to-noise ratio. The third application is also concerned with chemical vapor detection. Numerical simulation was used to explore the changes in system resonant frequencies and normal mode shapes in response to adsorption of mass on a single array element, in arrays in which each element has a distinct resonant frequency. It is shown that the degree of inter-element coupling is proportional to the ratio of the mass of the elements to the primary resonator mass. Inter-element coupling was also found to increase linearly with decreasing system resonance spacing up to a maximum value that depends on the mass ratio. The final application is an experimental validation of SOA theory by application to an acoustic system. The third resonance of a standing wave tube is transformed into a bandpass response using an array of small Helmholtz resonators. This experimental work demonstrates that the SOA theory can be applied analogous systems.
On the Feynman-Hellmann theorem in quantum field theory and the calculation of matrix elements
Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten; ...
2017-07-12
In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less
Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina
2014-01-01
A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country. PMID:24587756
Popov, Stanko Ilić; Stafilov, Trajče; Sajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina
2014-01-01
A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country.
On the computer analysis of structures and mechanical systems
NASA Technical Reports Server (NTRS)
Bennett, B. E.
1984-01-01
The governing equations for the analysis of open branch-chain mechanical systems are developed in a form suitable for implementation in a general purpose finite element computer program. Lagrange's form of d'Alembert's principle is used to derive the system mass matrix and force vector. The generalized coordinates are selected as the unconstrained relative degrees of freedom giving the position and orientation of each slave link with respect to their master link. Each slave link may have from zero to six degrees of freedom relative to the reference frames of its master link. A strategy for automatic generation of the system mass matrix and force vector is described.
Imaging mass spectrometer with mass tags
Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.
2010-06-01
A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements
Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.
2017-08-25
Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.
Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less
Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements.
Bonamici, Chloë E; Hervig, Richard L; Kinman, William S
2017-09-19
Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. Using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclides generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Furthermore, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.
Dynamic analysis of suspension cable based on vector form intrinsic finite element method
NASA Astrophysics Data System (ADS)
Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun
2017-10-01
A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.
Suzuki, Shigeru
2014-01-01
The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wight, L.; Zaslawsky, M.
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.
Dual-scale Galerkin methods for Darcy flow
NASA Astrophysics Data System (ADS)
Wang, Guoyin; Scovazzi, Guglielmo; Nouveau, Léo; Kees, Christopher E.; Rossi, Simone; Colomés, Oriol; Main, Alex
2018-02-01
The discontinuous Galerkin (DG) method has found widespread application in elliptic problems with rough coefficients, of which the Darcy flow equations are a prototypical example. One of the long-standing issues of DG approximations is the overall computational cost, and many different strategies have been proposed, such as the variational multiscale DG method, the hybridizable DG method, the multiscale DG method, the embedded DG method, and the Enriched Galerkin method. In this work, we propose a mixed dual-scale Galerkin method, in which the degrees-of-freedom of a less computationally expensive coarse-scale approximation are linked to the degrees-of-freedom of a base DG approximation. We show that the proposed approach has always similar or improved accuracy with respect to the base DG method, with a considerable reduction in computational cost. For the specific definition of the coarse-scale space, we consider Raviart-Thomas finite elements for the mass flux and piecewise-linear continuous finite elements for the pressure. We provide a complete analysis of stability and convergence of the proposed method, in addition to a study on its conservation and consistency properties. We also present a battery of numerical tests to verify the results of the analysis, and evaluate a number of possible variations, such as using piecewise-linear continuous finite elements for the coarse-scale mass fluxes.
Can-AMS: The New Accelerator Mass Spectrometry Facility At The University Of Ottawa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieser, W. E.; Zhao, X.-L.; Clark, I. D.
2011-06-01
The Canadian Centre for Accelerator Mass Spectrometry (AMS) at the University of Ottawa will be equipped with a new, 3 MV tandem accelerator with peripheral equipment for the analysis of elements ranging from tritium to the actinides. This facility, along with a wide array of support instrumentation recently funded by the Canada Foundation for Innovation, will be located in a new science building on the downtown campus of the University of Ottawa. In addition to providing the standard AMS measurements on {sup 14}C, {sup 10}Be, {sup 26}Al, {sup 36}Cl and {sup 129}I for earth, environmental, cultural and biomedical sciences, thismore » facility will incorporate the new technologies of anion isobar separation at low energies using RFQ chemical reaction cells for {sup 36}Cl and new heavy element applications, integrated sample combustion and gas ion source for biomedical and environmental {sup 14}C analysis and the use of novel target matrices for expanding the range of applicable elements and simplifying sample preparation, all currently being developed at IsoTrace. This paper will outline the design goals for the new facility, present some details of the new AMS technologies, in particular the Isobar Separator for Anions and discuss the design of the AMS system resulting from these requirements.« less
Trace element contamination in feather and tissue samples from Anna’s hummingbirds
Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.
2017-01-01
Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.
Chemical abundances of primary stars in the Sirius-like binary systems
NASA Astrophysics Data System (ADS)
Kong, X. M.; Zhao, G.; Zhao, J. K.; Shi, J. R.; Kumar, Y. Bharat; Wang, L.; Zhang, J. B.; Wang, Y.; Zhou, Y. T.
2018-05-01
Study of primary stars lying in Sirius-like systems with various masses of white dwarf (WD) companions and orbital separations is one of the key aspects to understand the origin and nature of barium (Ba) stars. In this paper, based on high-resolution and high-S/N spectra, we present systematic analysis of photospheric abundances for 18 FGK primary stars of Sirius-like systems including six giants and 12 dwarfs. Atmospheric parameters, stellar masses, and abundances of 24 elements (C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, and Nd) are determined homogeneously. The abundance patterns in these sample stars show that most of the elements in our sample follow the behaviour of field stars with similar metallicity. As expected, s-process elements in four known Ba giants show overabundance. A weak correlation was found between anomalies of s-process elemental abundance and orbital separation, suggesting that the orbital separation of the binaries could not be the main constraint to differentiate strong Ba stars from mild Ba stars. Our study shows that the large mass (>0.51 M⊙) of a WD companion in a binary system is not a sufficient condition to form a Ba star, even if the separation between the two components is small. Although not sufficient, it seems to be a necessary condition since Ba stars with lower mass WDs in the observed sample were not found. Our results support that [s/Fe] and [hs/ls] ratios of Ba stars are anti-correlated with the metallicity. However, the different levels of s-process overabundance among Ba stars may not be dominated mainly by the metallicity.
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization [MDAO] tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
HQE parameters from unquenched lattice data on pseudoscalar and vector heavy-light meson masses
NASA Astrophysics Data System (ADS)
Gambino, Paolo; Melis, Aurora; Simula, Silvano
2018-03-01
We present a new lattice determination of some of the parameters appearing both in the Operator Product Expansion (OPE) analysis of the inclusive semileptonic B-meson decays and in the Heavy Quark Expansion (HQE) of the pseudoscalar (PS) and vector (V) heavy-light meson masses. We perform a lattice QCD (LQCD) computation of PS and V heavy-light meson masses for heavy-quark masses mh in the range from mcphys to ≃ 4mbphys. We employed the Nf = 2 + 1 + 1 gauge configurations of the European Twisted Mass Collaboration (ETMC) at three values of the lattice spacing a ≃ (0.062,0.082,0.089) fm with pion masses in the range Mπ ≃ (210 - 450) MeV. The heavy-quark mass is simulated directly on the lattice up to ≃ 3mcphys. The interpolation to the physical mbphys is performed using the ETMC ratio method and adopting the kinetic mass scheme. We obtain mbkin (1 GeV) = 4.61(20) GeV (m̅b(m̅b) = 4.26(18) GeV in the MS scheme). The lattice data are analyzed in terms of the HQE and the matrix elements of dimension-4 and dimension-5 operators are extracted with good precision, namely: Λ¯ = 0.552(26) GeV, μπ2 = 0.321(32) GeV2 and μG2(mb) = 0.253(25)GeV2. The data also allow for an estimate of the dimension-6 operator matrix elements.
Toward a Micro Gas Chromatograph/Mass Spectrometer (GC/MS) System
NASA Technical Reports Server (NTRS)
Wiberg, D. V.; Eyre, F. B.; Orient, O.; Chutjian, A.; Garkarian, V.
2001-01-01
Miniature mass filters (e.g., quadrupoles, ion traps) have been the subject of several miniaturization efforts. A project is currently in progress at JPL to develop a miniaturized Gas Chromatograph/Mass Spectrometer (GC/MS) system, incorporating and/or developing miniature system components including turbomolecular pumps, scroll type roughing pump, quadrupole mass filter, gas chromatograph, precision power supply and other electronic components. The preponderance of the system elements will be fabricated using microelectromechanical systems (MEMS) techniques. The quadrupole mass filter will be fabricated using an X-ray lithography technique producing high precision, 5x5 arrays of quadrupoles with pole lengths of about 3 mm and a total volume of 27 cubic mm. The miniature scroll pump will also be fabricated using X-ray lithography producing arrays of scroll stages about 3 mm in diameter. The target detection range for the mass spectrometer is 1 to 300 atomic mass units (AMU) with are solution of 0.5 AMU. This resolution will allow isotopic characterization for geochronology, atmospheric studies and other science efforts dependant on the understanding of isotope ratios of chemical species. This paper will discuss the design approach, the current state-of-the art regarding the system components and the progress toward development of key elements. The full system is anticipated to be small enough in mass, volume and power consumption to allow in situ chemical analysis on highly miniaturized science craft for geochronology, atmospheric characterization and detection of life experiments applicable to outer planet roadmap missions.
Experimental and Theoretical Studies of Long-Period Tilt of Earth’s Crust: Part I. Experimental.
A three-element borehole tiltmeter system was developed and installed at Bedford, Massachusetts for the purpose of measurement and analysis of...crustal tilts. Each borehole unit contains two single-axis tiltmeters with diamagnetically suspended masses and leveling motors adapted for stepwise
Hu, Eric M; Zhang, Andrew; Silverman, Stuart G; Pedrosa, Ivan; Wang, Zhen J; Smith, Andrew D; Chandarana, Hersh; Doshi, Ankur; Shinagare, Atul B; Remer, Erick M; Kaffenberger, Samuel D; Miller, David C; Davenport, Matthew S
2018-05-16
The original version of this article contained an error in author name. The co-author's name was published as Ivan M. Pedrosa, instead it should be Ivan Pedrosa. The original article has been corrected.
Elemental abundances in star-forming regions: results in Lupus and future analysis in Orion .
NASA Astrophysics Data System (ADS)
Biazzo, K.; Frasca, A.; Alcalá, J. M.; Zusi, M.; Covino, E.; Randich, S.; Esposito, M.; Manara, C. F.; Antoniucci, S.; Nisini, B.; Rigliaco, E.; Getman, F.; Spina, L.
We present a recent study in press on lithium, iron, and barium abundance measurements obtained for low-mass (˜ 0.025-1.8 M_⊙) stars in four Lupus clouds and future investigations on chemical content to be performed in the Orion A cloud.
An analysis of the transit times of TrES-1b
NASA Astrophysics Data System (ADS)
Steffen, Jason H.; Agol, Eric
2005-11-01
The presence of a second planet in a known, transiting-planet system will cause the time between transits to vary. These variations can be used to constrain the orbital elements and mass of the perturbing planet. We analyse the set of transit times of the TrES-1 system given in Charbonneau et al. We find no convincing evidence for a second planet in the TrES-1 system from those data. By further analysis, we constrain the mass that a perturbing planet could have as a function of the semi-major axis ratio of the two planets and the eccentricity of the perturbing planet. Near low-order, mean-motion resonances (within ~1 per cent fractional deviation), we find that a secondary planet must generally have a mass comparable to or less than the mass of the Earth - showing that these data are the first to have sensitivity to sub-Earth-mass planets. We compare the sensitivity of this technique to the mass of the perturbing planet with future, high-precision radial velocity measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten
In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less
Gamma Spectroscopy by Artificial Neural Network Coupled with MCNP
NASA Astrophysics Data System (ADS)
Sahiner, Huseyin
While neutron activation analysis is widely used in many areas, sensitivity of the analysis depends on how the analysis is conducted. Even though the sensitivity of the techniques carries error, compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes important when analyzing bio-samples. Artificial neural network is an attractive technique for complex systems. Although there are neural network applications on spectral analysis, training by simulated data to analyze experimental data has not been made. This study offers an improvement on spectral analysis and optimization on neural network for the purpose. The work considers five elements that are considered as trace elements for bio-samples. However, the system is not limited to five elements. The only limitation of the study comes from data library availability on MCNP. A perceptron network was employed to identify five elements from gamma spectra. In quantitative analysis, better results were obtained when the neural fitting tool in MATLAB was used. As a training function, Levenberg-Marquardt algorithm was used with 23 neurons in the hidden layer with 259 gamma spectra in the input. Because the interest of the study deals with five elements, five neurons representing peak counts of five isotopes in the input layer were used. Five output neurons revealed mass information of these elements from irradiated kidney stones. Results showing max error of 17.9% in APA, 24.9% in UA, 28.2% in COM, 27.9% in STRU type showed the success of neural network approach in analyzing gamma spectra. This high error was attributed to Zn that has a very long decay half-life compared to the other elements. The simulation and experiments were made under certain experimental setup (3 hours irradiation, 96 hours decay time, 8 hours counting time). Nevertheless, the approach is subject to be generalized for different setups.
ACTOMP - AUTOCAD TO MASS PROPERTIES
NASA Technical Reports Server (NTRS)
Jones, A.
1994-01-01
AutoCAD to Mass Properties was developed to facilitate quick mass properties calculations of structures having many simple elements in a complex configuration such as trusses or metal sheet containers. Calculating the mass properties of structures of this type can be a tedious and repetitive process, but ACTOMP helps automate the calculations. The structure can be modelled in AutoCAD or a compatible CAD system in a matter of minutes using the 3-Dimensional elements. This model provides all the geometric data necessary to make a mass properties calculation of the structure. ACTOMP reads the geometric data of a drawing from the Drawing Interchange File (DXF) used in AutoCAD. The geometric entities recognized by ACTOMP include POINTs, 3DLINEs, and 3DFACEs. ACTOMP requests mass, linear density, or area density of the elements for each layer, sums all the elements and calculates the total mass, center of mass (CM) and the mass moments of inertia (MOI). AutoCAD utilizes layers to define separate drawing planes. ACTOMP uses layers to differentiate between multiple types of similar elements. For example if a structure is made of various types of beams, modeled as 3DLINEs, each with a different linear density, the beams can be grouped by linear density and each group placed on a separate layer. The program will request the linear density of 3DLINEs for each new layer it finds as it processes the drawing information. The same is true with POINTs and 3DFACEs. By using layers this way a very complex model can be created. POINTs are used for point masses such as bolts, small machine parts, or small electronic boxes. 3DLINEs are used for beams, bars, rods, cables, and other similarly slender elements. 3DFACEs are used for planar elements. 3DFACEs may be created as 3 or 4 Point faces. Some examples of elements that might be modelled using 3DFACEs are plates, sheet metal, fabric, boxes, large diameter hollow cylinders and evenly distributed masses. ACTOMP was written in Microsoft QuickBasic (Version 2.0). It was developed for the IBM PC microcomputer and has been implemented on an IBM PC compatible under DOS 3.21. ACTOMP was developed in 1988 and requires approximately 5K bytes to operate.
Nordløkken, Marit; Berg, Torunn; Flaten, Trond Peder; Steinnes, Eiliv
2015-01-01
Concentrations of essential and non-essential elements in five widespread species of natural boreal vegetation were studied with respect to seasonal variation and contribution from different sources. The plant species included in the study were Betula pubescens, Sorbus aucuparia, Vaccinium myrtillus, Vaccinium uliginosum, Calluna vulgaris and Deschampsia flexuosa. Concentrations of elements essential to plants remained essentially constant or decreased slightly throughout the growing season. Concentrations of most non-essential elements increased or tended to increase on a dry mass basis from June to July as well as from July to September. The increasing trend for these elements was observed for all species except C. vulgaris. Principal component analysis (PCA) of the material indicated a common source for many of the non-essential elements; Sc, Ti, V, Ga, As, Y, Sb, lanthanides, Pb, Bi, and U, i.e. both elements presumably of geogenic origin and elements associated with trans-boundary air pollution. Uptake by plant roots appeared to be the main source of nutrient elements as well as some non-essential elements. Copyright © 2014 Elsevier B.V. All rights reserved.
Online elemental analysis of process gases with ICP-OES: a case study on waste wood combustion.
Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M A; Ludwig, Christian
2012-10-01
A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design, Optimization and Evaluation of Integrally Stiffened Al 7050 Panel with Curved Stiffeners
NASA Technical Reports Server (NTRS)
Slemp, Wesley C. H.; Bird, R. Keith; Kapania, Rakesh K.; Havens, David; Norris, Ashley; Olliffe, Robert
2011-01-01
A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel was optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis tool named EBF3PanelOpt. The panel was designed for a combined compression-shear loading configuration that is a realistic load case for a typical aircraft wing panel. The panel was loaded beyond buckling and strains and out-of-plane displacements were measured. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis and linear elastic finite element analysis of the panel/test-fixture assembly. The numerical results indicated that the panel buckled at the linearly elastic buckling eigenvalue predicted for the panel/test-fixture assembly. The experimental strains prior to buckling compared well with both the linear and nonlinear finite element model.
Tao, Jun; Zhang, Leiming; Cao, Junji; Zhong, Liuju; Chen, Dongsheng; Yang, Yihong; Chen, Duohong; Chen, Laiguo; Zhang, Zhisheng; Wu, Yunfei; Xia, Yunjie; Ye, Siqi; Zhang, Renjian
2017-01-01
Daily PM 2.5 samples were collected at an urban site in Guangzhou in 2014 and at a suburban site in Zhuhai in 2014-2015. Samples were subject to chemical analysis for various chemical components including organic carbon (OC), element carbon (EC), major water-soluble inorganic ions, and trace elements. The annual average PM 2.5 mass concentration was 48±22μgm -3 and 45±25μgm -3 in Guangzhou and Zhuhai, respectively, with the highest seasonal average concentration in winter and the lowest in summer at both sites. Regional transport of pollutants accompanied with different air mass origins arriving at the two sites and pollution sources in between the two cities caused larger seasonal variations in Zhuhai (>a factor of 3.5) than in Guangzhou (17% of PM 2.5 mass concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, M. K.
The purpose of the work proposed for this study is to investigate the behavior and transport mechanisms for cesium-137 in soils collected from contaminated sites with distinct source release scenarios. More specifically, this study aims to determine with which elements and minerals cesium-137 associates in these various environments to more reliably predict its migration in the subsurface. This will be achieved using a state-of-the-art analysis technique available at Lawrence Livermore National Laboratory (LLNL) known as NanoSIMS. Nano-scale secondary ion mass spectrometry, or NanoSIMS, is a destructive surface analysis technique in which positive secondary ions are generated from the surface ofmore » a sample and then quantified based on their mass-to-charge ratio (m/z) using mass spectrometry. The data collected about the secondary ions can then be used to create isotope-specific spatial maps with a resolution of a few hundred nanometers and depth profiles that show the variation of the secondary ion intensity with sputtering time. This should be an ideal technique for locating cesium-137 in a sample, as cesium is an easily ionized element, meaning the yield of secondary cesium (Cs) ions produced should be high and making the identification of cesium-137 straight forward.« less
NASA Astrophysics Data System (ADS)
Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon
2015-10-01
An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lekshmy, R. K., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com; Thara, G. S., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com
A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all themore » complexes.« less
NASA Astrophysics Data System (ADS)
Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.
1983-07-01
The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061
Wood, Jessica L; Steiner, Robert R
2011-06-01
Forensic analysis of pharmaceutical preparations requires a comparative analysis with a standard of the suspected drug in order to identify the active ingredient. Purchasing analytical standards can be expensive or unattainable from the drug manufacturers. Direct Analysis in Real Time (DART™) is a novel, ambient ionization technique, typically coupled with a JEOL AccuTOF™ (accurate mass) mass spectrometer. While a fast and easy technique to perform, a drawback of using DART™ is the lack of component separation of mixtures prior to ionization. Various in-house pharmaceutical preparations were purified using thin-layer chromatography (TLC) and mass spectra were subsequently obtained using the AccuTOF™- DART™ technique. Utilizing TLC prior to sample introduction provides a simple, low-cost solution to acquiring mass spectra of the purified preparation. Each spectrum was compared against an in-house molecular formula list to confirm the accurate mass elemental compositions. Spectra of purified ingredients of known pharmaceuticals were added to an in-house library for use as comparators for casework samples. Resolving isomers from one another can be accomplished using collision-induced dissociation after ionization. Challenges arose when the pharmaceutical preparation required an optimized TLC solvent to achieve proper separation and purity of the standard. Purified spectra were obtained for 91 preparations and included in an in-house drug standard library. Primary standards would only need to be purchased when pharmaceutical preparations not previously encountered are submitted for comparative analysis. TLC prior to DART™ analysis demonstrates a time efficient and cost saving technique for the forensic drug analysis community. Copyright © 2011 John Wiley & Sons, Ltd. Copyright © 2011 John Wiley & Sons, Ltd.
A 3-dimensional mass conserving element for compressible flows
NASA Technical Reports Server (NTRS)
Fix, G.; Suri, M.
1985-01-01
A variety of finite element schemes has been used in the numerical approximation of compressible flows particularly in underwater acoustics. In many instances instabilities have been generated due to the lack of mass conservation. Two- and three-dimensional elements are developed which avoid these problems.
LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; ...
2015-08-19
An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd (x)Sb 2 and T´-La 2CuOmore » 4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.« less
Garbarino, John R.
1999-01-01
The inductively coupled plasma?mass spectrometric (ICP?MS) methods have been expanded to include the determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium in filtered, acidified natural water. Method detection limits for these elements are now 10 to 200 times lower than by former U.S. Geological Survey (USGS) methods, thus providing lower variability at ambient concentrations. The bias and variability of the method was determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries at 5 to 10 times the method detection limit and 75 micrograms per liter in reagent-water, surface-water, and groundwater matrices averaged 93 percent for seven replicates, although selected elemental recoveries in a ground-water matrix with an extremely high iron sulfate concentration were negatively biased by 30 percent. Results for standard reference materials were within 1 standard deviation of the most probable value. Statistical analysis of the results from about 60 filtered, acidified natural-water samples indicated that there was no significant difference between ICP?MS and former USGS official methods of analysis.
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.
1976-01-01
The manner of representing a flight vehicle structure as an assembly of beam, spring, and rigid-body components for vibration analysis is described. The development is couched in terms of a substructures methodology which is based on the finite-element stiffness method. The particular manner of employing beam, spring, and rigid-body components to model such items as wing structures, external stores, pylons supporting engines or external stores, and sprung masses associated with launch vehicle fuel slosh is described by means of several simple qualitative examples. A detailed numerical example consisting of a tilt-rotor VTOL aircraft is included to provide a unified illustration of the procedure for representing a structure as an equivalent system of beams, springs, and rigid bodies, the manner of forming the substructure mass and stiffness matrices, and the mechanics of writing the equations of constraint which enforce deflection compatibility at the junctions of the substructures. Since many structures, or selected components of structures, can be represented in this manner for vibration analysis, the modeling concepts described and their application in the numerical example shown should prove generally useful to the dynamicist.
NASA Astrophysics Data System (ADS)
Carello, M.; Amirth, N.; Airale, A. G.; Monti, M.; Romeo, A.
2017-12-01
Advanced thermoplastic prepreg composite materials stand out with regard to their ability to allow complex designs with high specific strength and stiffness. This makes them an excellent choice for lightweight automotive components to reduce mass and increase fuel efficiency, while maintaining the functionality of traditional thermosetting prepreg (and mechanical characteristics) and with a production cycle time and recyclability suited to mass production manufacturing. Currently, the aerospace and automotive sectors struggle to carry out accurate Finite Elements (FE) component analyses and in some cases are unable to validate the obtained results. In this study, structural Finite Elements Analysis (FEA) has been done on a thermoplastic fiber reinforced component designed and manufactured through an integrated injection molding process, which consists in thermoforming the prepreg laminate and overmolding the other parts. This process is usually referred to as hybrid molding, and has the provision to reinforce the zones subjected to additional stresses with thermoformed themoplastic prepreg as required and overmolded with a shortfiber thermoplastic resin in single process. This paper aims to establish an accurate predictive model on a rational basis and an innovative methodology for the structural analysis of thermoplastic composite components by comparison with the experimental tests results.
NASA Astrophysics Data System (ADS)
Dholariya, Hitesh R.; Patel, Ketan S.; Patel, Jiten C.; Patel, Kanuprasad D.
2013-05-01
A series of Cu(II) complexes containing dicoumarol derivatives and 1, 10-phenanthroline have been synthesized. Structural and spectroscopic properties of ligands were studied on the basis of mass spectra, NMR (1H and 13C) spectra, FT-IR spectrophotometry and elemental analysis, while physico-chemical, spectroscopic and thermal properties of mixed ligand complexes have been studied on the basis of infrared spectra, mass spectra, electronic spectra, powder X-ray diffraction, elemental analysis and thermogravimetric analysis. X-ray diffraction study suggested the suitable octahedral geometry for hexa-coordinated state. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been calculated using Freeman-Carroll method. Ferric-reducing antioxidant power (FRAP) of all complexes were measured. All the compounds were screened for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes and Bacillus subtilis, while antifungal activity against Candida albicans and Aspergillus niger have been carried out. Also compounds against Mycobacterium tuberculosis shows clear enhancement in the anti-tubercular activity upon copper complexation.
Panchal, Mitesh B; Upadhyay, Sanjay H
2014-09-01
The unprecedented dynamic characteristics of nanoelectromechanical systems make them suitable for nanoscale mass sensing applications. Owing to superior biocompatibility, boron nitride nanotubes (BNNTs) are being increasingly used for such applications. In this study, the feasibility of single walled BNNT (SWBNNT)-based bio-sensor has been explored. Molecular structural mechanics-based finite element (FE) modelling approach has been used to analyse the dynamic behaviour of SWBNNT-based biosensors. The application of an SWBNNT-based mass sensing for zeptogram level of mass has been reported. Also, the effect of size of the nanotube in terms of length as well as different chiral atomic structures of SWBNNT has been analysed for their sensitivity analysis. The vibrational behaviour of SWBNNT has been analysed for higher-order modes of vibrations to identify the intermediate landing position of biological object of zeptogram scale. The present molecular structural mechanics-based FE modelling approach is found to be very effectual to incorporate different chiralities of the atomic structures. Also, different boundary conditions can be effectively simulated using the present approach to analyse the dynamic behaviour of the SWBNNT-based mass sensor. The presented study has explored the potential of SWBNNT, as a nanobiosensor having the capability of zeptogram level mass sensing.
Cai, Lei; Chen, Tianlu; Yang, Jinglei; Zhou, Kejun; Yan, Xiaomei; Chen, Wenzhong; Sun, Liya; Li, Linlin; Qin, Shengying; Wang, Peng; Yang, Ping; Cui, Donghong; Burmeister, Margit; He, Lin; Jia, Wei; Wan, Chunling
2015-10-12
Little is known about the trace element profile differences between Schizophrenia patients and healthy controls; previous studies about the association of certain elements with Schizophrenia have obtained conflicting results. To identify these differences in the Han Chinese population, inductively coupled plasma-mass spectrometry was used to quantify the levels of 35 elements in the sera of 111 Schizophrenia patients and 110 healthy participants, which consisted of a training (61/61 for cases/controls included) and a test group including remaining participants. An orthogonal projection to latent structures model was constructed from the training group (R(2)Y = 0.465, Q(2)cum = 0.343) had a sensitivity of 76.0% and a specificity of 71.4% in the test group. Single element analysis indicated that the concentrations of cesium, zinc, and selenium were significantly reduced in patients with Schizophrenia in both the training and test groups. The meta-analysis including 522 cases and 360 controls supported that Zinc was significantly associated with Schizophrenia (standardized mean difference [SMD], -0.81; 95% confidence intervals [CI], -1.46 to -0.16, P = 0.01) in the random-effect model. Information theory analysis indicated that Zinc could play roles independently in Schizophrenia. These results suggest clear element profile differences between patients with Schizophrenia and healthy controls, and reduced Zn level is confirmed in the Schizophrenia patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallimore, David L.
2012-06-13
The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples,more » post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.« less
Fractionation of elements by particle size of ashes ejected from Copahue Volcano, Argentina.
Gómez, Dario; Smichowski, Patricia; Polla, Griselda; Ledesma, Ariel; Resnizky, Sara; Rosa, Susana
2002-12-01
The volcano Copahue, Neuquén province, Argentina has shown infrequent explosive eruptions since the 18th century. Recently, eruptive activity and seismicity were registered in the period July-October, 2000. As a consequence, ash clouds were dispersed by winds and affected Caviahue village located at about 9 km east of the volcano. Samples of deposited particles from this area were collected during this episode for their chemical analysis to determine elements of concern with respect to the health of the local population and its environment. Different techniques were used to evaluate the distribution of elements in four particle size ranges from 36 to 300 microm. X-ray powder diffraction (XRD) was selected to detect major components namely, minerals, silicate glass, fragments of rocks and sulfurs. Major and minor elements (Al, Ca, Cl, Fe, K, Mg, Mn, Na, S, Si and Ti), were detected by energy dispersive X ray analysis (EDAX). Trace element (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, U, V and Zn) content was quantified by inductively coupled plasma-mass spectrometry (ICP-MS). Nuclear activation analysis (NAA) was employed for the determination of Ce, Co, Cs, Eu, Hf, La, Lu, Rb, Sc, Sm, Ta and Yb. An enrichment was observed in the smallest size fraction of volcanic ashes for four elements (As, Cd, Cu and Sb) of particular interest from the environmental and human health point of view.
NASA Technical Reports Server (NTRS)
Panda, Binayak
2009-01-01
Modern analytical tools can yield invaluable results during materials characterization and failure analysis. Scanning electron microscopes (SEMs) provide significant analytical capabilities, including angstrom-level resolution. These systems can be equipped with a silicon drift detector (SDD) for very fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations, chambers that admit large samples, variable pressure for wet samples, and quantitative analysis software to examine phases. Advanced solid-state electronics have also improved surface and bulk analysis instruments: Secondary ion mass spectroscopy (SIMS) can quantitatively determine and map light elements such as hydrogen, lithium, and boron - with their isotopes. Its high sensitivity detects impurities at parts per billion (ppb) levels. X-ray photo-electron spectroscopy (XPS) can determine oxidation states of elements, as well as identifying polymers and measuring film thicknesses on coated composites. This technique is also known as electron spectroscopy for chemical analysis (ESCA). Scanning Auger electron spectroscopy (SAM) combines surface sensitivity, spatial lateral resolution (10 nm), and depth profiling capabilities to describe elemental compositions of near and below surface regions down to the chemical state of an atom.
Distribution of trace elements in sediment and soil from river Vardar Basin, Macedonia/Greece.
Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu
2016-01-01
A systematic study was carried out to investigate the distribution of 59 elements in the sediment and soil samples collected from the river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 28 sampling sites. Analyses were performed by inductively coupled plasma-mass spectrometry. R-mode factor analysis (FA) was used to identify and characterise element associations. Seven associations of elements were determined by the method of multivariate statistics. Every factor (Factors 1-3 and 6 and 7 as geogenic and Factors 4 and 5 as anthropogenic associations of elements) are examined and explained separately. The distribution of various elements showed that there is a presence of anthropogenic elements (Ag, Cd, Cu, Ge, Pb, Sn and Zn) introduced in the river sediments and soils from the mining, metallurgical, industrial and agricultural activities in Vardar River Basin, which covers most of the Republic of Macedonia and Central-northern part of Greece.
In-beam fission study for Heavy Element Synthesis
NASA Astrophysics Data System (ADS)
Nishio, Katsuhisa
2013-12-01
Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.
Trace analysis of high-purity graphite by LA-ICP-MS.
Pickhardt, C; Becker, J S
2001-07-01
Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.
Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019
Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
In Situ Trace Element Analysis of an Allende Type B1 CAI: EK-459-5-1
NASA Technical Reports Server (NTRS)
Jeffcoat, C. R.; Kerekgyarto, A.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.
2014-01-01
Variations in refractory major and trace element composition of calcium, aluminum-rich inclusions (CAIs) provide constraints on physical and chemical conditions and processes in the earliest stages of the Solar System. Previous work indicates that CAIs have experienced complex histories involving, in many cases, multiple episodes of condensation, evaporation, and partial melting. We have analyzed major and trace element abundances in two core to rim transects of the melilite mantle as well as interior major phases of a Type B1 CAI (EK-459-5-1) from Allende by electron probe micro-analyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate the behavior of key trace elements with a primary focus on the REEs Tm and Yb.
Evaluation of nonlinear structural dynamic responses using a fast-running spring-mass formulation
NASA Astrophysics Data System (ADS)
Benjamin, A. S.; Altman, B. S.; Gruda, J. D.
In today's world, accurate finite-element simulations of large nonlinear systems may require meshes composed of hundreds of thousands of degrees of freedom. Even with today's fast computers and the promise of ever-faster ones in the future, central processing unit (CPU) expenditures for such problems could be measured in days. Many contemporary engineering problems, such as those found in risk assessment, probabilistic structural analysis, and structural design optimization, cannot tolerate the cost or turnaround time for such CPU-intensive analyses, because these applications require a large number of cases to be run with different inputs. For many risk assessment applications, analysts would prefer running times to be measurable in minutes. There is therefore a need for approximation methods which can solve such problems far more efficiently than the very detailed methods and yet maintain an acceptable degree of accuracy. For this purpose, we have been working on two methods of approximation: neural networks and spring-mass models. This paper presents our work and results to date for spring-mass modeling and analysis, since we are further along in this area than in the neural network formulation. It describes the physical and numerical models contained in a code we developed called STRESS, which stands for 'Spring-mass Transient Response Evaluation for structural Systems'. The paper also presents results for a demonstration problem, and compares these with results obtained for the same problem using PRONTO3D, a state-of-the-art finite element code which was also developed at Sandia.
Vo, Evanly; Zhuang, Ziqing; Birch, Eileen; Birch, Quinn
2016-01-01
The aim of this study was to apply a direct-reading aerosol instrument method and an elemental carbon (EC) analysis method to measure the mass-based penetration of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) through elastomeric half-mask respirators (EHRs) and filtering facepiece respirators (FFRs). For the direct-reading aerosol instrument method, two scanning mobility particle sizer/aerodynamic particle sizer systems were used to simultaneously determine the upstream (outside respirator) and downstream (inside respirator) test aerosols. For the EC analysis method, upstream and downstream CNTs were collected on filter cassettes and then analyzed using a thermal-optical technique. CNT mass penetrations were found in both methods to be within the associated efficiency requirements for each type and class of the respirator models that were tested. Generally, the penetrations of SWCNTs and MWCNTs had a similar trend with penetration being the highest for the N95 EHRs, followed by N95 FFRs, P100 EHRs, and P100 FFRs. This trend held true for both methods; however, the CNT penetration determined by the direct-reading aerosol instrument method (0.009-1.09% for SWCNTs and 0.005-0.21% for MWCNTs) was greater relative to the penetration values found through EC analysis method (0.007-0.69% for SWCNTs and 0.004-0.13% for MWCNTs). The results of this study illustrate considerations for how the methods can be used to evaluate penetration of morphologically complex materials through FFRs and EHRs.
NASA Astrophysics Data System (ADS)
Almirall, Jose R.; Montero, Shirly; Furton, Kenneth G.
2002-08-01
The importance of glass as evidence of association between a crime event and a suspect has been recognized for some time. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. The physical and chemical properties of glass can be used to differentiate between possible sources and as evidence of association between two fragments of glass thought to originate from the same source. Refractive index (RI) comparisons have been used for this purpose but due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses, even if the glass originates from different sources. Elemental analysis methods such as NAA, XRF, ICP-AES, and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have also been used for the comparison of trace elemental compositions and these techniques have been shown to provide an improvement in the discrimination of glass fragments over RI comparisons alone. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The methodology for solution analysis (digestion procedure) and solid sample analysis (laser ablation) of glass is reported and the analytical results are compared. An isotope dilution method is also reported as a high precision technique for elemental analysis of glass fragments. The optimum sampling parameters for laser ablation, for semi-quantitative analysis and element ratio comparisons are also presented. Finally, the results of a case involving the breaking of 15 vehicle windows in an airport parking lot and the association of a suspect to the breakings by the glass fragments found on his person are also presented.
Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.
Chahrour, Osama; Cobice, Diego; Malone, John
2015-09-10
Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons. Copyright © 2015 Elsevier B.V. All rights reserved.
High Resolution Chemical Study of ALH84001
NASA Technical Reports Server (NTRS)
Conrad, Pamela G.; Douglas, Susanne; Kuhlman, Kimberly R.
2001-01-01
We have studied the chemistry of a sample of the SNC meteorite ALH84001 using an environmental scanning electron microscope (ESEM) with an energy dispersive chemical analytical detector and a focused ion beam secondary ion mass spectrometer (FIB-SIMS). Here we present the chemical data, both spectra and images, from two techniques that do not require sample preparation with a conductive coating, thus eliminating the possibility of preparation-induced textural artifacts. The FIB-SIMS instrument includes a column optimized for SEM with a quadrupole type mass spectrometer. Its spatial and spectral resolution are 20 nm and 0.4 AMU, respectively. The spatial resolution of the ESEM for chemical analysis is about 100 nm. Limits of detection for both instruments are mass dependent. Both the ESEM and the FIB-SIMS instrument revealed contrasting surficial features; crumbled, weathered appearance of the matrix in some regions as well as a rather ubiquitous presence of euhedral halite crystals, often associated with cracks or holes in the surface of the rock. Other halogen elements present in the vicinity of the NaCl crystals include K and Br. In this report, elemental inventories are shown as mass spectra and as X-ray maps.
Analysis of Fluid Gauge Sensor for Zero or Microgravity Conditions using Finite Element Method
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Doiron, Terence a.
2007-01-01
In this paper the Finite Element Method (FEM) is presented for mass/volume gauging of a fluid in a tank subjected to zero or microgravity conditions. In this approach first mutual capacitances between electrodes embedded inside the tank are measured. Assuming the medium properties the mutual capacitances are also estimated using FEM approach. Using proper non-linear optimization the assumed properties are updated by minimizing the mean square error between estimated and measured capacitances values. Numerical results are presented to validate the present approach.
Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model
Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.
2015-01-01
Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.
Petroleomics: Chemistry of the underworld
Marshall, Alan G.; Rodgers, Ryan P.
2008-01-01
Each different molecular elemental composition—e.g., CcHhNnOoSs—has a different exact mass. With sufficiently high mass resolving power (m/Δm50% ≈ 400,000, in which m is molecular mass and Δm50% is the mass spectral peak width at half-maximum peak height) and mass accuracy (<300 ppb) up to ≈800 Da, now routinely available from high-field (≥9.4 T) Fourier transform ion cyclotron resonance mass spectrometry, it is possible to resolve and identify uniquely and simultaneously each of the thousands of elemental compositions from the most complex natural organic mixtures, including petroleum crude oil. It is thus possible to separate and sort petroleum components according to their heteroatom class (NnOoSs), double bond equivalents (DBE = number of rings plus double bonds involving carbon, because each ring or double bond results in a loss of two hydrogen atoms), and carbon number. “Petroleomics” is the characterization of petroleum at the molecular level. From sufficiently complete characterization of the organic composition of petroleum and its products, it should be possible to correlate (and ultimately predict) their properties and behavior. Examples include molecular mass distribution, distillation profile, characterization of specific fractions without prior extraction or wet chemical separation from the original bulk material, biodegradation, maturity, water solubility (and oil:water emulsion behavior), deposits in oil wells and refineries, efficiency and specificity of catalytic hydroprocessing, “heavy ends” (asphaltenes) analysis, corrosion, etc. PMID:18836082
Petroleomics: chemistry of the underworld.
Marshall, Alan G; Rodgers, Ryan P
2008-11-25
Each different molecular elemental composition-e.g., C(c)H(h)N(n)O(o)S(s)-has a different exact mass. With sufficiently high mass resolving power (m/Deltam(50%) approximately 400,000, in which m is molecular mass and Deltam(50%) is the mass spectral peak width at half-maximum peak height) and mass accuracy (<300 ppb) up to approximately 800 Da, now routinely available from high-field (>/=9.4 T) Fourier transform ion cyclotron resonance mass spectrometry, it is possible to resolve and identify uniquely and simultaneously each of the thousands of elemental compositions from the most complex natural organic mixtures, including petroleum crude oil. It is thus possible to separate and sort petroleum components according to their heteroatom class (N(n)O(o)S(s)), double bond equivalents (DBE = number of rings plus double bonds involving carbon, because each ring or double bond results in a loss of two hydrogen atoms), and carbon number. "Petroleomics" is the characterization of petroleum at the molecular level. From sufficiently complete characterization of the organic composition of petroleum and its products, it should be possible to correlate (and ultimately predict) their properties and behavior. Examples include molecular mass distribution, distillation profile, characterization of specific fractions without prior extraction or wet chemical separation from the original bulk material, biodegradation, maturity, water solubility (and oil:water emulsion behavior), deposits in oil wells and refineries, efficiency and specificity of catalytic hydroprocessing, "heavy ends" (asphaltenes) analysis, corrosion, etc.
NASA Astrophysics Data System (ADS)
Mateus, Vinícius Lionel; Monteiro, Isabela Luizi Gonçalves; Rocha, Rafael Christian Chávez; Saint'Pierre, Tatiana Dillenburg; Gioda, Adriana
2013-08-01
Air quality in the metropolitan region of Rio de Janeiro was evaluated by analysis of particulate matter (PM) in industrial (Santa Cruz) and rural (Seropédica) areas. Total suspended particles (TSP) and fine particulate matter (PM2.5) collected in filters over 24 h were quantified and their chemical composition determined. TSP exceeded Brazilian guidelines (80 μg m- 3) in Santa Cruz, while PM2.5 levels exceeded the World Health Organization guidelines (10 μg m- 3) in both locations. Filters were extracted with water and/or HNO3, and the concentrations of 20 elements, mostly metals, were determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP OES). Water soluble inorganic anions were determined by ion chromatography (IC). To estimate the proportion of these elements extracted, a certified reference material (NIST SRM 1648a, Urban Dust) was subjected to the same extraction process. Concordant results were obtained by ICP-MS and ICP OES for most elements. Some elements could not be quantified by both techniques; the most appropriate technique was chosen in each case. The urban dust was also analyzed by the United States Environmental Protection Agency (US EPA) method, which employs a combination of hydrochloric and nitric acids for the extraction, but higher extraction efficiency was obtained when only nitric acid was employed. The US EPA method gave better results only for Sb. In the PM samples, the elements found in the highest average concentrations by ICP were Zn and Al (3-6 μg m- 3). The anions found in the highest average concentrations were SO42 - in PM2.5 (2-4 μg m- 3) and Cl- in TSP (2-6 μg m- 3). Principal component analysis (PCA) in combination with enrichment factors (EF) indicated industrial sources in PM2.5. Analysis of TSP suggested both anthropogenic and natural sources. In conclusion, this work contributes data on air quality, as well as a method for the analysis of PM samples by ICP-MS.
Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas
2017-03-01
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.
Ristić, M; Popović, I; Pocajt, V; Antanasijević, D; Perić-Grujić, A
2011-01-01
Eight selected trace elements, which are generally included in regulations, were analyzed in 23 types of bottled waters. Ten mineral and seven spring bottled waters were from the Serbian market and six mineral bottled waters were obtained in different EU countries. For the purpose of comparison, selected tap waters were also analyzed. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the analysis of trace elements (arsenic, cadmium, copper, manganese, nickel, lead and antimony). Results were compared with the Serbian regulations for bottled water, EU regulations and guideline values set by the World Health Organization for drinking water. With few exceptions, the trace element levels of most bottled waters were below the guideline values. However, a higher content of antimony was observed in waters from polyethylene terephthalate (PET) containers, indicating a potential leaching of this element from the plastic packaging.
This compendium includes descriptions of methods for analyzing metals, pesticides and volatile organic compounds (VOCs) in water. The individual methods covered are these: (1) Method 200.8: determination of trace elements in waters and wastes by inductively coupled plasma-mass s...
Quantitative spectral analysis of the sdB star HD 188112: A helium-core white dwarf progenitor
NASA Astrophysics Data System (ADS)
Latour, M.; Heber, U.; Irrgang, A.; Schaffenroth, V.; Geier, S.; Hillebrandt, W.; Röpke, F. K.; Taubenberger, S.; Kromer, M.; Fink, M.
2016-01-01
Context. HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered a pre-extremely low-mass (ELM) white dwarf (WD). ELM WDs (M ≲ 0.3 M⊙) are He-core objects produced by the evolution of compact binary systems. Aims: We present in this paper a detailed abundance analysis of HD 188112 based on high-resolution Hubble Space Telescope (HST) near- and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. Methods: We use hybrid non-LTE model atmospheres to fit the observed spectral lines, and to derive the abundances of more than a dozen elements and the rotational broadening of metallic lines. Results: We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the previously published values. The system has a period of 0.60658584 days and a WD companion with M ≥ 0.70 M⊙. By assuming a tidally locked rotation combined with the projected rotational velocity (v sin I = 7.9 ± 0.3 km s-1), we constrain the companion mass to be between 0.9 and 1.3 M⊙. We further discuss the future evolution of the system as a potential progenitor of an underluminous type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, and for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE effects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.
NASA Astrophysics Data System (ADS)
Barling, J.; Shiel, A.; Weis, D.
2006-12-01
Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del/amu for measured & mass bias corrected data that disagree outside of error. Either or both values can be incorrect. For samples, unlike experiments, the correct del/amu is not known in advance. Therefore, for sample analyses to be considered accurate, both measured and exponentially corrected del/amu should agree.
Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets
Wildgen, Sarah M.; Dunn, Robert C.
2015-01-01
Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive to the effective refractive index, which changes upon analyte binding to recognition sites on functionalized resonators. The spherical geometry and tens of microns diameter of these resonators provides an efficient target for sensing while their compact size enables detection in limited volumes. Here, we explore conditions leading to rapid analyte detection using WGM resonators as label-free sensors in 10 μL sample droplets. Droplet evaporation leads to potentially useful convective mixing, but also limits the time over which analysis can be completed. We show that active droplet mixing combined with initial binding rate measurements is required for accurate nanomolar protein quantification within the first minute following injection. PMID:25806835
NASA Astrophysics Data System (ADS)
Chen, Ho-Wen; Chen, Wei-Yea; Chang, Cheng-Nan; Chuang, Yen-Hsun; Lin, Yu-Hao
2016-06-01
The recently developed Central Taiwan Science Park (CTSP) in central Taiwan is home to an optoelectronic and semiconductor industrial cluster. Therefore, exploring the elemental compositions and size distributions of airborne particles emitted from the CTSP would help to prevent pollution. This study analyzed size-fractionated metal-rich particle samples collected in upwind and downwind areas of CTSP during Jan. and Oct. 2013 by using micro-orifice uniform deposited impactor (MOUDI). Correlation analysis, hierarchical cluster analysis and particle mass-size distribution analysis are performed to identify the source of metal-rich particle near the CTSP. Analyses of elemental compositions and particle size distributions emitted from the CTSP revealed that the CTSP emits some metals (V, As, In Ga, Cd and Cu) in the ultrafine particles (< 1 μm). The statistical analysis combines with the particle mass-size distribution analysis could provide useful source identification information. In airborne particles with the size of 0.32 μm, Ga could be a useful pollution index for optoelectronic and semiconductor emission in the CTSP. Meanwhile, the ratios of As/Ga concentration at the particle size of 0.32 μm demonstrates that humans near the CTSP would be potentially exposed to GaAs ultrafine particles. That is, metals such as Ga and As and other metals that are not regulated in Taiwan are potentially harmful to human health.
Computing Mass Properties From AutoCAD
NASA Technical Reports Server (NTRS)
Jones, A.
1990-01-01
Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).
Nakabayashi, Ryo; Sawada, Yuji; Yamada, Yutaka; Suzuki, Makoto; Hirai, Masami Yokota; Sakurai, Tetsuya; Saito, Kazuki
2013-02-05
Phytochemicals containing heteroatoms (N, O, S, and halogens) often have biological activities that are beneficial to humans. Although targeted profiling methods for such phytochemicals are expected to contribute to rapid chemical assignments, thus making phytochemical genomics and crop breeding much more efficient, there are few profiling methods for the metabolites. Here, as an ultrahigh performance approach, we propose a practical profiling method for S-containing metabolites (S-omics) using onions (Allium cepa) as a representative species and (12)C- and (13)C-based mass spectrometry (MS) and tandem mass spectrometry (MS/MS) analyses by liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry (LC-FTICR-MS). Use of the ultrahigh quality data from FTICR-MS enabled simplifying the previous methods to determine specific elemental compositions. MS analysis with a resolution of >250,000 full width at half-maximum and a mass accuracy of <1 ppm can distinguish S-containing monoisotopic ions from other ions on the basis of the natural abundance of (32)S and (34)S and the mass differences among the S isotopes. Comprehensive peak picking using the theoretical mass difference (1.99579 Da) between (32)S-containing monoisotopic ions and their (34)S-substituted counterparts led to the assignment of 67 S-containing monoisotopic ions from the (12)C-based MS spectra, which contained 4693 chromatographic ions. The unambiguous elemental composition of 22 ions was identified through comparative analysis of the (12)C- and (13)C-based MS spectra. Finally, of these, six ions were found to be derived from S-alk(en)ylcysteine sulfoxides and glutathione derivatives. This S-atom-driven approach afforded an efficient chemical assignment of S-containing metabolites, suggesting its potential application for screening not only S but also other heteroatom-containing metabolites in MS-based metabolomics.
Standardization approaches in absolute quantitative proteomics with mass spectrometry.
Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo
2017-07-31
Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and elemental) proteomics is provided in this review. © 2017 Wiley Periodicals, Inc.
Kaufmann, A; Walker, S; Mol, G
2016-04-15
Elucidation of the elemental compositions of unknown compounds (e.g., in metabolomics) generally relies on the availability of accurate masses and isotopic ratios. This study focuses on the information provided by the abundance ratio within a product ion pair (monoisotopic versus the first isotopic peak) when isolating and fragmenting the first isotopic ion (first isotopic mass spectrum) of the precursor. This process relies on the capability of the quadrupole within the Q Orbitrap instrument to isolate a very narrow mass window. Selecting only the first isotopic peak (first isotopic mass spectrum) leads to the observation of a unique product ion pair. The lighter ion within such an isotopologue pair is monoisotopic, while the heavier ion contains a single carbon isotope. The observed abundance ratio is governed by the percentage of carbon atoms lost during the fragmentation and can be described by a hypergeometric distribution. The observed carbon isotopologue abundance ratio (product ion isotopologue pattern) gives reliable information regarding the percentage of carbon atoms lost in the fragmentation process. It therefore facilitates the elucidation of the involved precursor and product ions. Unlike conventional isotopic abundances, the product ion isotopologue pattern is hardly affected by isobaric interferences. Furthermore, the appearance of these pairs greatly aids in cleaning up a 'matrix-contaminated' product ion spectrum. The product ion isotopologue pattern is a valuable tool for structural elucidation. It increases confidence in results and permits structural elucidations for heavier ions. This tool is also very useful in elucidating the elemental composition of product ions. Such information is highly valued in the field of multi-residue analysis, where the accurate mass of product ions is required for the confirmation process. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Rui, Wen; Chen, Hongyuan; Tan, Yuzhi; Zhong, Yanmei; Feng, Yifan
2010-05-01
A rapid method for the analysis of the main components of the total glycosides of Ranunculus japonicus (TGOR) was developed using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The separation analysis was performed on a Waters Acquity UPLC system and the accurate mass of molecules and their fragment ions were determined by Q-TOF MS. Twenty compounds, including lactone glycosides, flavonoid glycosides and flavonoid aglycones, were identified and tentatively deduced on the basis of their elemental compositions, MS/MS data and relevant literature. The results demonstrated that lactone glycosides and flavonoids were the main constituents of TGOR. Furthermore, an effective and rapid pattern was established allowing for the comprehensive and systematic characterization of the complex samples.
Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truong, Samson
2014-01-01
Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.
Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truong, Samson
2014-01-01
Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.
Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T; Costa-Fernandez, Jose M; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo
2014-08-11
Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches. Copyright © 2014. Published by Elsevier B.V.
Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee
2018-05-01
To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.
Gross, Cory T; McIntyre, Sally M; Houk, R S
2009-06-15
Solution samples with matrix concentrations above approximately 0.1% generally present difficulties for analysis by inductively coupled plasma mass spectrometry (ICP-MS) because of cone clogging and matrix effects. Flow injection (FI) is coupled to ICP-MS to reduce deposition from samples such as 1% sodium salts (as NaCl) and seawater (approximately 3% dissolved salts). Surprisingly, matrix effects are also less severe during flow injection, at least for some matrix elements on the particular instrument used. Sodium chloride at 1% Na and undiluted seawater cause only 2 to 29% losses of signal for typical analyte elements. A heavy matrix element (Bi) at 0.1% also induces only approximately 14% loss of analyte signal. However, barium causes a much worse matrix effect, that is, approximately 90% signal loss at 5000 ppm Na. Also, matrix effects during FI are much more severe when a grounded metal shield is inserted between the load coil and the torch, which is the most common mode of operation for the particular ICP-MS device used.
Dual Source Time-of-flight Mass Spectrometer and Sample Handling System
NASA Astrophysics Data System (ADS)
Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.
We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging and laser microprobe studies would necessarily precede the pyrolysis step to assure that the grain-scale composition is captured.)
NASA Astrophysics Data System (ADS)
Larsen, Erik H.
1998-02-01
Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the seperation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for reference materials certified for elemental species is stressed.
NASA Astrophysics Data System (ADS)
Kuo, Yi-Jie; Huang, Yung-Kai; Chou, Hsiu-Chu; Pai, Man-Hui; Lee, Ai-Wei; Mai, Fu-Der; Chang, Hung-Ming
2015-08-01
Teeth are the hardest tissue in the body. The growth of teeth is closely regulated by circadian rhythmicity. Considering that sleep deprivation (SD) is a severe condition that disrupts normal circadian rhythmicity, this study was conducted to determine whether calcium expression (the major element participating in teeth constitution), and dental mass would be significantly impaired following SD. Adolescent rats subjected to 3 weeks of SD were processed for energy dispersive spectrum (EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and micro-computed tomography (micro-CT) analyses. The EDS and TOF-SIMS results indicated that high calcium intensity was detected in both the upper and lower incisors of untreated rats. Micro-CT analysis corresponded closely with spectral data in which an enhanced dental mass was calculated in intact animals. However, following SD, both calcium expression and the dental mass were remarkably decreased to nearly half those of the untreated values. Because SD plays a detrimental role in impairing dental structure, establishing satisfactory sleep behavior would therefore serve as a crucial strategy for preventing or improving prevalent dental dysfunctions.
Recent Advances in the Measurement of Arsenic, Cadmium, and Mercury in Rice and Other Foods
Punshon, Tracy
2015-01-01
Trace element analysis of foods is of increasing importance because of raised consumer awareness and the need to evaluate and establish regulatory guidelines for toxic trace metals and metalloids. This paper reviews recent advances in the analysis of trace elements in food, including challenges, state-of-the art methods, and use of spatially resolved techniques for localizing the distribution of As and Hg within rice grains. Total elemental analysis of foods is relatively well-established but the push for ever lower detection limits requires that methods be robust from potential matrix interferences which can be particularly severe for food. Inductively coupled plasma mass spectrometry (ICP-MS) is the method of choice, allowing for multi-element and highly sensitive analyses. For arsenic, speciation analysis is necessary because the inorganic forms are more likely to be subject to regulatory limits. Chromatographic techniques coupled to ICP-MS are most often used for arsenic speciation and a range of methods now exist for a variety of different arsenic species in different food matrices. Speciation and spatial analysis of foods, especially rice, can also be achieved with synchrotron techniques. Sensitive analytical techniques and methodological advances provide robust methods for the assessment of several metals in animal and plant-based foods, in particular for arsenic, cadmium and mercury in rice and arsenic speciation in foodstuffs. PMID:25938012
Analysis of hydrogen isotope mixtures
Villa-Aleman, Eliel
1994-01-01
An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.
Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy
NASA Astrophysics Data System (ADS)
Batanova, V. G.; Sobolev, A. V.; Magnin, V.
2018-01-01
Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample were found to be identical (within internal precision) to reference values, suggesting that achieved precision and accuracy are similar. The spatial resolution of EPMA in a silicate matrix, even at very extreme conditions (accelerating voltage 25 kV), does not exceed 7 - 8 μm and thus is still better than laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) or secondary ion mass spectrometry (SIMS) of similar precision. These make the electron microprobe an indispensable method with applications in experimental petrology, geochemistry and cosmochemistry.
Riggio, Gustavo M; Chow, Judith C; Cropper, Paul M; Wang, Xiaoliang; Yatavelli, Reddy L N; Yang, Xufei; Watson, John G
2018-05-01
A thermal/optical carbon analyzer (TOA), normally used for quantification of organic carbon (OC) and elemental carbon (EC) in PM 2.5 (fine particulate matter) speciation networks, was adapted to direct thermally evolved gases to an electron impact quadrupole mass spectrometer (QMS), creating a TOA-QMS. This approach produces spectra similar to those obtained by the Aerodyne aerosol mass spectrometer (AMS), but the ratios of the mass to charge (m/z) signals differ and must be remeasured using laboratory-generated standards. Linear relationships are found between TOA-QMS signals and ammonium (NH 4 + ), nitrate (NO 3 - ), and sulfate (SO 4 2- ) standards. For ambient samples, however, positive deviations are found for SO 4 2- , compensated by negative deviations for NO 3 - , at higher concentrations. This indicates the utility of mixed-compound standards for calibration or separate calibration curves for low and high ion concentrations. The sum of the QMS signals across all m/z after removal of the NH 4 + , NO 3 - , and SO 4 2- signals was highly correlated with the carbon content of oxalic acid (C₂H₂O₄) standards. For ambient samples, the OC derived from the TOA-QMS method was the same as the OC derived from the standard IMPROVE_A TOA method. This method has the potential to reduce complexity and costs for speciation networks, especially for highly polluted urban areas such as those in Asia and Africa. Ammonium, nitrate, and sulfate can be quantified by the same thermal evolution analysis applied to organic and elemental carbon. This holds the potential to replace multiple parallel filter samples and separate laboratory analyses with a single filter and a single analysis to account for a large portion of the PM 2.5 mass concentration.
García-Sevillano, Miguel Angel; García-Barrera, Tamara; Navarro, Francisco; Gailer, Jürgen; Gómez-Ariza, José Luiz
2014-09-01
The biochemical response of mice (Mus musculus) to acute subcutaneous inorganic-mercury exposure was assessed over a 14-day period by analyzing cytosolic extracts of the liver, the kidneys, and blood plasma. Integrated metallomic and metabolomic approaches using elemental and molecular-mass spectrometry were used to obtain comprehensive insight into the toxicological effects of mercury regarding its distribution and possible perturbation of metabolic pathways. The metallomic approach involved the use of size-exclusion chromatography (SEC) coupled with multiaffinity chromatography inductively coupled plasma-mass spectrometry (ICP-MS) and isotopic-dilution analysis. The metabolomic approach involved the direct infusion of polar and lipophilic tissue extracts into a mass spectrometer (DIMS) in the positive and negative acquisition mode (ESI+and ESI-). The use of SEC-ICP-MS enabled us to detect changes in the metalloproteome in the liver and the kidneys during the exposure period, and revealed that interactions between Hg and endogenous Cu and Zn adversely affected the homeostasis of these essential metals. The detection of an Hg-Se detoxification product in mouse plasma substantiated the known interaction between Hg and Se in mammals. Use of DIMS in conjunction with partial-least-squares discriminant analysis (PLS-DA) uncovered time-dependent changes of endogenous metabolites over time, corroborated by histopathology investigation of specific mouse tissues. The perturbations of endogenous metabolic profiles were explained in terms of the adverse effect of mercury on energy metabolism (e.g. glycolysis, Krebs cycle), the degradation of membrane phospholipids (apoptosis), and increased levels of specific lipids in plasma. In summary, use of an SEC-ICP-MS-based metallomics approach in conjunction with molecular-mass-spectrometry-based metabolomics is revealed as a promising strategy to more comprehensively investigate the toxicological effects of harmful environmental pollutants and xenobiotics.
CAMECA IMS 1300-HR3: The New Generation Ion Microprobe
NASA Astrophysics Data System (ADS)
Peres, P.; Choi, S. Y.; Renaud, L.; Saliot, P.; Larson, D. J.
2016-12-01
The success of secondary ion mass spectrometry (SIMS) in Geo- and Cosmo-chemistry relies on its performance in terms of: 1) very high sensitivity (mandatory for high precision measurements or to achieve low detection limits); 2) a broad mass range of elemental and isotopic species, from low mass (H) to high mass (U and above); 3) in-situ analysis of any solid flat polished surface; and 4) high spatial resolution from tens of microns down to sub-micron scale. The IMS 1300-HR3 (High Reproducibility, High spatial Resolution, High mass Resolution) is the latest generation of CAMECA's large geometry magnetic sector SIMS (or ion microprobe), successor to the internationally recognized IMS 1280-HR. The 1300-HR3delivers unmatched analytical performance for a wide range of applications (stable isotopes, geochronology, trace elements, nuclear safeguards and environmental studies…) due to: • High brightness RF-plasma oxygen ion source with enhanced beam density and current stability, dramatically improving spatial resolution, data reproducibility, and throughput • Automated sample loading system with motorized sample height (Z) adjustment, significantly increasing analysis precision, ease-of-use, and productivity • UV-light microscope for enhanced optical image resolution, together with dedicated software for easy sample navigation (developed by University of Wisconsin, USA) • Low noise 1012Ω resistor Faraday cup preamplifier boards for measuring low signal intensities In addition, improvements in electronics and software have been integrated into the new instrument. In order to meet a growing demand from geochronologists, CAMECA also introduces the KLEORA, which is a fully optimized ion microprobe for advanced mineral dating derived from the IMS 1300-HR3. Instrumental developments as well as data obtained for stable isotope and U-Pb dating applications will be presented in detail.
A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element
Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili
2016-01-01
This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089
Where was the Iron Synthesized in Cassiopeia A?
NASA Technical Reports Server (NTRS)
Hwang, Una; Laming, J. Martin
2003-01-01
We investigate the properties of Fe-rich knots on the east limb of the Cassiopeia A supernova remnant observed with Chandra/AXAF CCD Imaging Spectrometer (ACIS). Using analysis methods developed in a companion paper, we constrain the ejecta density profile and the Lagrangian mass coordinates of the knots from their fitted ionization age and electron temperature. Fe-rich knots which also have strong emission from Si, S, Ar, and Ca are clustered around mass coordinates q approx. equal to 0.35 - 0.4 in the shocked ejecta of 2 solar masses; this places them 0.7 - 0.8 solar masses out from the center (or 2 - 2.1 solar masses, allowing for the mass of a compact object). We also find an Fe clump that is evidently devoid of line emission from lower mass elements, as would be expected for a region that had undergone alpha-rich freeze out. This clump has a similar mass coordinate to the other Fe knots.
NASA Astrophysics Data System (ADS)
Christian, T. J.; Kleiss, B.; Yokelson, R. J.; Holzinger, R.; Crutzen, P. J.; Hao, W. M.; Saharjo, B. H.; Ward, D. E.
2003-12-01
Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.
2012-01-01
A new, low power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min-1), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications; other than removing the electrospray ionization (ESI) source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary andmore » a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra; including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements (EIEs) indicate that sodium concentrations of up to 500 μg mL-1 generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. Whilst solution-based concentrations LOD levels of 0.02 – 2 μg mL-1 3 are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to singlenanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min-1, and gas flow rates <10 mL min-1) are very attractive. While further optimization in the source design is suggested here, it is believed that the LS-APGD ion source may present a practical alternative to inductively-coupled plasma (ICP) sources typically employed in elemental mass spectrometry.« less
von Roepenack-Lahaye, Edda; Degenkolb, Thomas; Zerjeski, Michael; Franz, Mathias; Roth, Udo; Wessjohann, Ludger; Schmidt, Jürgen; Scheel, Dierk; Clemens, Stephan
2004-02-01
Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.
A parallel algorithm for generation and assembly of finite element stiffness and mass matrices
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.
1991-01-01
A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.
Drivelos, Spiros A; Higgins, Kevin; Kalivas, John H; Haroutounian, Serkos A; Georgiou, Constantinos A
2014-12-15
"Fava Santorinis", is a protected designation of origin (PDO) yellow split pea species growing only in the island of Santorini in Greece. Due to its nutritional quality and taste, it has gained a high monetary value. Thus, it is prone to adulteration with other yellow split peas. In order to discriminate "Fava Santorinis" from other yellow split peas, four classification methods utilising rare earth elements (REEs) measured through inductively coupled plasma-mass spectrometry (ICP-MS) are studied. The four classification processes are orthogonal projection analysis (OPA), Mahalanobis distance (MD), partial least squares discriminant analysis (PLS-DA) and k nearest neighbours (KNN). Since it is known that trace elements are often useful to determine geographical origin of food products, we further quantitated for trace elements using ICP-MS. Presented in this paper are results using the four classification processes based on the fusion of the REEs data with the trace element data. Overall, the OPA method was found to perform best with up to 100% accuracy using the fused data. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mundorff, Amy Z; Bartelink, Eric J; Mar-Cash, Elaine
2009-07-01
The World Trade Center (WTC) victim identification effort highlights taphonomic influences on the degradation of DNA from victims of mass fatality incidents. This study uses a subset of the WTC-Human Remains Database to evaluate differential preservation of DNA by skeletal element. Recovery location, sex, and victim type (civilian, firefighter, or plane passenger) do not appear to influence DNA preservation. Results indicate that more intact elements, as well as elements encased in soft tissue, produced slightly higher identification rates than more fragmented remains. DNA identification rates by element type conform to previous findings, with higher rates generally found in denser, weight-bearing bones. However, smaller bones including patellae, metatarsals, and foot phalanges yielded rates comparable to both femora and tibiae. These elements can be easily sampled with a disposable scalpel, and thus reduce potential DNA contamination. These findings have implications for DNA sampling guidelines in future mass fatality incidents.
Scaling and functional morphology in strigiform hind limbs
Madan, Meena A.; Rayfield, Emily J.; Bright, Jen A.
2017-01-01
Strigiformes are an order of raptorial birds consisting exclusively of owls: the Tytonidae (barn owls) and the Strigidae (true owls), united by a suite of adaptations aiding a keen predatory lifestyle, including robust hind limb elements modified for grip strength. To assess variation in hind limb morphology, we analysed how the dimensions of the major hind limb elements in subfossil and modern species scaled with body mass. Comparing hind limb element length, midshaft width, and robusticity index (RI: ratio of midshaft width to maximum length) to body mass revealed that femoral and tibiotarsal width scale with isometry, whilst length scales with negative allometry, and close to elastic similarity in the tibiotarsus. In contrast, tarsometatarsus width shows strong positive allometry with body mass, whilst length shows strong negative allometry. Furthermore, the tarsometatarsi RI scales allometrically to mass0.028, whilst a weak relationship exists in femora (mass0.004) and tibiotarsi (mass0.004). Our results suggest that tarsometatarsi play a more substantial functional role than tibiotarsi and femora. Given the scaling relationship between tarsometatarsal width and robusticity to body mass, it may be possible to infer the body mass of prehistoric owls by analysing tarsometatarsi, an element that is frequently preserved in the fossil record of owls. PMID:28327549
NASA Astrophysics Data System (ADS)
Allaf, M. Athari; Shahriari, M.; Sohrabpour, M.
2004-04-01
A new method using Monte Carlo source simulation of interference reactions in neutron activation analysis experiments has been developed. The neutron spectrum at the sample location has been simulated using the Monte Carlo code MCNP and the contributions of different elements to produce a specified gamma line have been determined. The produced response matrix has been used to measure peak areas and the sample masses of the elements of interest. A number of benchmark experiments have been performed and the calculated results verified against known values. The good agreement obtained between the calculated and known values suggests that this technique may be useful for the elimination of interference reactions in neutron activation analysis.
Late-paleozoic granitoid complexes of the southwest Primorye: geochemistry, age and typification
NASA Astrophysics Data System (ADS)
Veldemar, A. A.; Vovna, G. M.
2017-12-01
The article presents the first data of geochemical studies of the Late Permian granitoids of the Gamov Complex located in the southwestern part of the Voznesenskiy terrane. The purpose of the study was to identify the main geochemical features of the Late Paleozoic granitoids of the southwestern Primorye, which in the future will allow us to draw conclusions about the petrogenesis of these granitoids. Elemental analysis of 20 samples was carried out, conducted statistical and mathematical processing of the data, have been constructed representative diagrams and graphs for this group of rocks. Elemental analysis was performed by atomic emission (ICP-AES) and inductively-coupled-plasma (ICP-MS) mass spectrometry, at the Analytical Center FEGI FEB RAS.
Crashworthiness analysis on alternative square honeycomb structure under axial loading
NASA Astrophysics Data System (ADS)
Li, Meng; Deng, Zongquan; Guo, Hongwei; Liu, Rongqiang; Ding, Beichen
2013-07-01
Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design.
Ripoche, N; Ferchaud-Roucher, V; Krempf, M; Ritz, P
2006-09-01
In doubly labelled water studies, biological sample enrichments are mainly measured using off-line techniques (equilibration followed by dual-inlet introduction) or high-temperature elemental analysis (HT-EA), coupled with an isotope-ratio mass spectrometer (IRMS). Here another continuous-flow method, (CF-EA/IRMS), initially dedicated to water, is tested for plasma and urine analyses. The elemental analyser configuration is adapted for each stable isotope: chromium tube for deuterium reduction and glassy carbon reactor for 18O pyrolysis. Before on-line conversion of water into gas, each matrix is submitted to a short and easy treatment, which is the same for the analysis of the two isotopes. Plasma is passed through centrifugal filters. Urine is cleaned with black carbon and filtered (0.45 microm diameter). Tested between 150 and 300 ppm in these fluids, the D/H ratio response is linear with good repeatability (SD<0.2 ppm) and reproducibility (SD<0.5 ppm). For 18O/16O ratios (from 2000 to 2200 ppm), the same repeatability is obtained with a between-day precision lower than 1.4 ppm. The accuracy on biological samples is validated by comparison to classical dual-inlet methods: 18O analyses give more accurate results. The data show that enriched physiological fluids can be successfully analysed in CF-EA/IRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi
2011-03-01
We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.
ELEMENT MASSES IN THE CRAB NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.
Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii] λ 7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.
Optical High-resolution Spectroscopy of 14 Young α-rich Stars
NASA Astrophysics Data System (ADS)
Matsuno, Tadafumi; Yong, David; Aoki, Wako; Ishigaki, Miho N.
2018-06-01
We report chemical abundances of 14 young α-rich stars including neutron-capture elements based on high-quality optical spectra from HIRES/Keck I and differential line-by-line analysis. From a comparison of the abundance patterns of young α-rich stars to those of nearby bright red giants with a similar metallicity range (‑0.7 < [Fe/H] < ‑0.2), we confirm their high α-element abundances reported by previous studies based on near-infrared spectroscopy. We reveal for the first time low abundances of s-process elements and high abundances of r-process elements. All the abundances are consistent with those seen in the typical α-rich population of the Galactic disk, and no abundance anomalies are found except for Li-enhancement in one object previously reported and mild enhancement of Na in two stars. In particular, the lack of s-process enhancement excludes the hypothesis that mass transfer from asymptotic giant branch stars plays an important role in the formation of young α-rich stars. The high frequency of radial velocity variation (more than 50%) is also confirmed. We argue that mass transfer from low-mass red giants is the likely dominant formation mechanism for young α-rich stars. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Profiling extractable and leachable inorganic impurities in ophthalmic drug containers by ICP-MS.
Solomon, Paige; Nelson, Jenny
2018-03-01
In this study, we investigated the elemental impurities present in the plastic material of ophthalmic eye drop bottles using inductively coupled plasma-mass spectrometry (ICP-MS). Metallic contaminations, especially localized within the small cavity of the eye, can significantly perturb the ocular metallome. The concern is two-fold: first certain elements, for example heavy metals, can be toxic to humans at even trace levels, and second, these contaminations can have adverse reactions with other medicines or enzymatic processes in the eye. The implication of redox-active metals in cataract formation is one such biological consequence. The analysis demonstrated the effect of aggressive storage and transportation conditions on elemental extractable and leachable contamination, and posits that release of these elemental impurities can disrupt metallome equilibrium in the ocular compartment, leading to toxicity and disease.
NASA Astrophysics Data System (ADS)
Bertolesi, Elisa; Milani, Gabriele
2017-07-01
The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.
Nucleon electromagnetic form factors using lattice simulations at the physical point
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, Ch.; Koutsou, G.; Vaquero Aviles-Casco, A.
2017-08-01
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
NASA Astrophysics Data System (ADS)
Roh, Hwasung; Lee, Huseok; Lee, Jong Seh
2013-06-01
In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of fl oor response spectra at certain elevations are also in good agreement.
NASA Astrophysics Data System (ADS)
Srama, Ralf; Postberg, Frank; Henkel, Hartmut; Klopfer, Tobias; Li, Yanwei; Reviol, Rene; Khawaja, Nozair; Klenner, Fabian; Moragas-Klostermeyer, Georg; Nölle, Lenz; Soja, Rachel; Sternovsky, Zoltan; Kempf, Sascha; Trieloff, Mario
2015-04-01
ENIJA was developed to search for the prebiotic molecules and biogenic key compounds like amino acids in the plumes of Saturn's moon Enceladus. ENIJA records time-of-flight mass spectra in the range between 1 and 2000 u produced by high-velocity impacts of individual grains onto a metal target. The spectrometer has a measurement mode for cations or anions formed upon impact, with concurrent determination of the mass of the detected grains. Detection of elemental and molecular species over such a wide mass range permits clear characterization of particle chemistry, simultaneously covering individual ions like H+, C-, O- and complex organics with masses of many hundred u. ENIJA is sensitive to water ice, minerals, metals, organic particles, and mixtures of these components. The instrument is based on the principle of impact ionization and optimized for the analysis of high dust fluxes and number densities as typically occur during Enceladus plume crossings or in cometary comae. The mass resolution is m/dm > 950 for typical plume particles in the size range 0.01 to 100 µm. The instrument mass and peak power is 2.5 kg and 12.5 W, respectively.
Development of a GC/Quadrupole-Orbitrap Mass Spectrometer, Part I: Design and Characterization
2015-01-01
Identification of unknown compounds is of critical importance in GC/MS applications (metabolomics, environmental toxin identification, sports doping, petroleomics, and biofuel analysis, among many others) and remains a technological challenge. Derivation of elemental composition is the first step to determining the identity of an unknown compound by MS, for which high accuracy mass and isotopomer distribution measurements are critical. Here, we report on the development of a dedicated, applications-grade GC/MS employing an Orbitrap mass analyzer, the GC/Quadrupole-Orbitrap. Built from the basis of the benchtop Orbitrap LC/MS, the GC/Quadrupole-Orbitrap maintains the performance characteristics of the Orbitrap, enables quadrupole-based isolation for sensitive analyte detection, and includes numerous analysis modalities to facilitate structural elucidation. We detail the design and construction of the instrument, discuss its key figures-of-merit, and demonstrate its performance for the characterization of unknown compounds and environmental toxins. PMID:25208235
Preliminary System Analysis of In Situ Resource Utilization for Mars Human Exploration
NASA Technical Reports Server (NTRS)
Rapp, Donald; Andringa, Jason; Easter, Robert; Smith, Jeffrey H .; Wilson, Thomas; Clark, D. Larry; Payne, Kevin
2005-01-01
We carried out a system analysis of processes for utilization of Mars resources to support human exploration of Mars by production of propellants from indigenous resources. Seven ISRU processes were analyzed to determine mass. power and propellant storage volume requirements. The major elements of each process include C02 acquisition, chemical conversion, and storage of propellants. Based on a figure of merit (the ratio of the mass of propellants that must be brought from Earth in a non-ISRU mission to the mass of the ISRU system. tanks and feedstocks that must be brought from Earth for a ISRU mission) the most attractive process (by far); is one where indigenous Mars water is accessible and this is processed via Sabatier/Electrolysis to methane and oxygen. These processes are technically relatively mature. Other processes with positive leverage involve reverse water gas shift and solid oxide electrolysis.
Fundamental and Applied Investigations in Atomic Spectrometric Analysis
NASA Astrophysics Data System (ADS)
Wu, Min
Simultaneous laser-excited fluorescence and absorption measurements were performed and the results have revealed that any interference caused by easily ionized elements does not originate from variations in analyte emission (quantum) efficiency. A closely related area, the roles of wet and dry aerosols in the matrix interference are clarified through spatially resolved imaging of the plasma by a charged coupled device camera. To eliminate matrix interference effects practically, various methods have been developed based on the above studies. The use of column pre-concentration with flow injection analysis has been found to provide a simple solution for reducing interference effects and increasing sensitivity of elemental analysis. A novel mini-spray chamber was invented. The new vertical rotary spray chamber combines gravitational, centrifugal, turbulent, and impact droplet segregation mechanisms to achieve a higher efficiency of small-droplet formation in a nebulized sample spray. As a result, it offers also higher sample-transport efficiency, lower memory effects, and improved analytical figures of merit over existing devices. This new device was employed with flow injection analysis to simulate an interface for coupling high performance liquid chromatography (HPLC) to a microwave plasma for chromatographic detection. The detection limits for common metallic elements are in the range of 5-50 mug/mL, and are degraded only twofold when the elements are presented in an organic solvent such as ethanol or methanol. Other sample-introduction schemes have also been investigated to improve sample-introduction technology. The direct coupling of hydride-generation techniques to the helium microwave plasma torch was evaluated for the determination of arsenic, antimony and tin by atomic emission spectrometry. A manually controlled peristaltic pump was modified for computer control and continuous flow injection was evaluated for standard calibration and trace elemental analysis. The present work evaluates the coupling of a novel microwave plasma torch with a quadruple mass spectrometer for the detection of ionic species from different nonmetals. Initial work performed with such a combination is demonstrated to be not only practicable but also promising. Detection limits for the halogens (F, Cl, Br, I) and S are in the range between 10 ng/mL and 1mug/mL. Further improvements have been realized through the use of chemical -vapor generation and by optimization of the plasma and the mass spectrometer. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Schwarz, Jaroslav; Cusack, Michael; Karban, Jindřich; Chalupníčková, Eva; Havránek, Vladimír; Smolík, Jiří; Ždímal, Vladimír
2016-07-01
PM2.5 mass concentrations and chemical compositions sampled over a 13-month period at a Central European rural background site (Košetice) are presented in this work. A comprehensive chemical analysis of PM2.5 was performed, which provided elemental composition (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, and Pb) and the concentration of water-soluble inorganic anions (SO42 -, NO3-. Cl-, NO2-, Br-, and H2PO4-) and cations (Na+, NH4+, K+, Ca2 +, and Mg2 +), elemental and organic carbon (EC and OC), and levoglucosan. Spearman correlation coefficients between individual chemical species and particle number concentrations were calculated for the following six size ranges: 10-25 nm (N10-25), 25-50 nm (N25-50), 50-80 nm (N50-80), 80-150 nm (N80-150), 150-300 nm (N150-300), and 300-800 nm (N300-800). Average concentrations of individual species were comparable with concentrations reported from similar sites across Central Europe. Organic matter (OM) accounted for 45% of the PM2.5 mass (calculated from OC by a factor of 1.6), while the second most common component were secondary aerosols (SO42 -: 19%, NO3-: 14%, NH4+: 10%), which accounted for 43% of the mass. Based on levoglucosan analysis, 31% of OM was attributed to emissions associated with biomass burning (OMBB). EC concentrations, determined using the EUSAAR_2 thermal optical protocol, contributed 4% to PM2.5 mass. A total of 1% of the mass was attributed to a mineral matter source, while the remaining 6% was from an undetermined mass. Seasonal variations showed highest concentrations of NO3- and OMBB in winter, nitrate share in spring, and an increase in percentage of SO42 - and mineral matter in summer. The largest seasonal variation was found for species associated with wood and coal combustion (levoglucosan, K+, Zn, Pb, As), which had clear maxima during winter. Correlation analysis of different size fraction particle number concentrations was used to distinguish the influence of fresh, local aerosol and aged, long-range transport aerosol. The influences of different air masses were also investigated. The lowest concentrations of PM2.5 were recorded under the influence of marine air masses from the NW, which were also marked by increased concentrations of marine aerosol. In contrast, the highest concentrations of PM2.5 and most major chemical components were measured during periods when continental easterly air masses were dominant.
MASPROP- MASS PROPERTIES OF A RIGID STRUCTURE
NASA Technical Reports Server (NTRS)
Hull, R. A.
1994-01-01
The computer program MASPROP was developed to rapidly calculate the mass properties of complex rigid structural systems. This program's basic premise is that complex systems can be adequately described by a combination of basic elementary structural shapes. Thirteen widely used basic structural shapes are available in this program. They are as follows: Discrete Mass, Cylinder, Truncated Cone, Torus, Beam (arbitrary cross section), Circular Rod (arbitrary cross section), Spherical Segment, Sphere, Hemisphere, Parallelepiped, Swept Trapezoidal Panel, Symmetric Trapezoidal Panels, and a Curved Rectangular Panel. MASPROP provides a designer with a simple technique that requires minimal input to calculate the mass properties of a complex rigid structure and should be useful in any situation where one needs to calculate the center of gravity and moments of inertia of a complex structure. Rigid body analysis is used to calculate mass properties. Mass properties are calculated about component axes that have been rotated to be parallel to the system coordinate axes. Then the system center of gravity is calculated and the mass properties are transferred to axes through the system center of gravity by using the parallel axis theorem. System weight, moments of inertia about the system origin, and the products of inertia about the system center of mass are calculated and printed. From the information about the system center of mass the principal axes of the system and the moments of inertia about them are calculated and printed. The only input required is simple geometric data describing the size and location of each element and the respective material density or weight of each element. This program is written in FORTRAN for execution on a CDC 6000 series computer with a central memory requirement of approximately 62K (octal) of 60 bit words. The development of this program was completed in 1978.
Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.
1998-01-01
A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700
[Application of ICP-MS to Identify the Botanic Source of Characteristic Honey in South Yunnan].
Wei, Yue; Chen, Fang; Wang, Yong; Chen, Lan-zhen; Zhang, Xue-wen; Wang, Yan-hui; Wu, Li-ming; Zhou, Qun
2016-01-01
By adopting inductively coupled plasma mass spectrometry (ICP-MS) combined with chemometric analysis technology, 23 kinds of minerals in four kinds of characteristic honey derived from Yunnan province were analyzed. The result showed that 21 kinds of mineral elements, namely Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, Tl and Pb, have significant differences among different varieties of honey. The results of principal component analysis (PCA) showed that the cumulative variance contribution rate of the first four main components reached 77.74%, seven kinds of elements (Mg, Ca, Mn, Co, Sr, Cd, Ba) from the first main component contained most of the honey information. Through the stepwise discriminant analysis, seven kinds of elements (Mg, K, Ca, Cr, Mn, Sr, Pb) were filtered. out and used to establish the discriminant function model, and the correct classification rates of the proposed model reached 90% and 86.7%, respectively, which showed elements contents could be effectively indicators to discriminate the four kinds characteristic honey in southern Yunnan Province. In view of all the honey samples were harvested from apiaries located at south Yunnan Province where have similar climate, soil and other environment conditions, the differences of the mineral elements contents for the honey samples mainly due to their corresponding nectariferous plant. Therefore, it is feasible to identify honey botanical source through the differences of mineral elements.
Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids
NASA Astrophysics Data System (ADS)
Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.
2011-12-01
The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed before chemical purification. Initial results provide an equilibrium 98Mo/95Mo isotope fractionation factor between metal and silicate liquids of -0.18±0.10% (2σ) at 1400°C and 1 GPa. Although the relative mass difference of these Mo isotopes is smaller than for Fe isotopes, this result implies that metal-silicate segregation may have led to mass-dependent stable Mo isotope fractionation, as opposed to Fe isotopes. A possible explanation is that the bonding environment of Mo may counterbalance its relatively small mass separation. At reducing conditions, Mo occurs in 4+ valence state in silicates [4] and thus its bond strength difference between metal and silicate may be more similar to that of Si than Fe. Stable Mo isotopes may thus become an important tool for constraining the conditions of core formation in asteroids and terrestrial planets. [1] Rubie et al. (2011) EPSL 301, 31-42. [2] Shahar et al. (2009) EPSL 288, 228-234. [3] Poitrasson et al. (2009) EPSL 278, 376-385. [4] Farges et al. (2006) Can. Min. 44, 731-753.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, B.; Jura, M.; Zuckerman, B.
2010-02-01
We present Keck/High Resolution Echelle Spectrometer data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of nine elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen, whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at leastmore » the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnesium, silicon, and iron, we find n(Si)/n(Mg) = 0.30 +- 0.11, significantly smaller than the ratio near unity for the bulk Earth, chondrites, the Sun, and nearby stars. This result suggests that differentiation occurred within the parent body.« less
NASA Astrophysics Data System (ADS)
Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G. E.
2002-09-01
Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1°-180°. Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1°-180°, for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance.
Bruderer, Tobias; Varesio, Emmanuel; Hidasi, Anita O; Duchoslav, Eva; Burton, Lyle; Bonner, Ron; Hopfgartner, Gérard
2018-03-01
High-quality mass spectral libraries have become crucial in mass spectrometry-based metabolomics. Here, we investigate a workflow to generate accurate mass discrete and composite spectral libraries for metabolite identification and for SWATH mass spectrometry data processing. Discrete collision energy (5-100 eV) accurate mass spectra were collected for 532 metabolites from the human metabolome database (HMDB) by flow injection analysis and compiled into composite spectra over a large collision energy range (e.g., 10-70 eV). Full scan response factors were also calculated. Software tools based on accurate mass and predictive fragmentation were specially developed and found to be essential for construction and quality control of the spectral library. First, elemental compositions constrained by the elemental composition of the precursor ion were calculated for all fragments. Secondly, all possible fragments were generated from the compound structure and were filtered based on their elemental compositions. From the discrete spectra, it was possible to analyze the specific fragment form at each collision energy and it was found that a relatively large collision energy range (10-70 eV) gives informative MS/MS spectra for library searches. From the composite spectra, it was possible to characterize specific neutral losses as radical losses using in silico fragmentation. Radical losses (generating radical cations) were found to be more prominent than expected. From 532 metabolites, 489 provided a signal in positive mode [M+H] + and 483 in negative mode [M-H] - . MS/MS spectra were obtained for 399 compounds in positive mode and for 462 in negative mode; 329 metabolites generated suitable spectra in both modes. Using the spectral library, LC retention time, response factors to analyze data-independent LC-SWATH-MS data allowed the identification of 39 (positive mode) and 72 (negative mode) metabolites in a plasma pool sample (total 92 metabolites) where 81 previously were reported in HMDB to be found in plasma. Graphical abstract Library generation workflow for LC-SWATH MS, using collision energy spread, accurate mass, and fragment annotation.
Jiang, Jun; Feng, Liang; Li, Jie; Sun, E; Ding, Shu-Min; Jia, Xiao-Bin
2014-04-10
Suet oil (SO) has been used commonly for food and medicine preparation. The determination of its elemental composition has became an important challenge for human safety and health owing to its possible contents of heavy metals or other elements. In this study, ultrawave single reaction chamber microwave digestion (Ultrawave) and inductively coupled plasma-mass spectrometry (ICP-MS) analysis was performed to determine 14 elements (Pb, As, Hg, Cd, Fe, Cu, Mn, Ti, Ni, V, Sr, Na, Ka and Ca) in SO samples. Furthermore, the multielemental content of 18 SO samples, which represented three different sources in China: Qinghai, Anhui and Jiangsu, were evaluated and compared. The optimal ultrawave digestion conditions, namely, the optimal time (35 min), temperature (210 °C) and pressure (90 bar), were screened by Box-Behnken design (BBD). Eighteen samples were successfully classified into three groups by principal component analysis (PCA) according to the contents of 14 elements. The results showed that all SO samples were rich in elements, but with significant differences corresponding to different origins. The outliers and majority of SO could be discriminated by PCA according to the multielemental content profile. The results highlighted that the element distribution was associated with the origins of SO samples. The proposed ultrawave digestion system was quite efficient and convenient, which could be mainly attributed to its high pressure and special high-throughput for the sample digestion procedure. Our established method could be useful for the quality control and standardization of elements in SO samples and products.
Jin, Pengfei; Liang, Xiaoli; Xia, Lufeng; Jahouh, Farid; Wang, Rong; Kuang, Yongmei; Hu, Xin
2016-01-01
Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated. Copyright © 2015 Elsevier GmbH. All rights reserved.
Martelat, Benoit; Isnard, Helene; Vio, Laurent; Dupuis, Erwan; Cornet, Terence; Nonell, Anthony; Chartier, Frederic
2018-06-22
Precise isotopic and elemental characterization of spent nuclear fuel is a major concern for the validation of the neutronic calculation codes and waste management strategy in the nuclear industry. Generally, the elements of interest, particularly U and Pu which are the two major elements present in spent fuel, are purified by ion exchange or extractant resins before off-line measurements by thermal ionization mass spectrometry. The aim of the present work was to develop a new analytical approach based on capillary electrophoresis (CE) hyphenated to a multicollector inductively coupled plasma mass spectrometer (MC-ICPMS) for online isotope ratio measurements. An electrophoretic separation protocol of U, Pu and the fraction containing fission products and minor actinides (Am and Cm) was developed using acetic acid as the electrolyte and complexing agent. The instrumentation for CE was designed to be used in a glove box and a laboratory-built interface was developed for hyphenation with MC-ICPMS. The separation was realized with only a few nL of a solution of spent nuclear fuel and the reproducibilities obtained on the U and Pu isotope ratios were on the order of a few ‰ which is comparable to those obtained by thermal ionization mass spectrometer (TIMS). This innovative protocol allowed a tremendous reduction of the analyte masses from μg to ng and also a drastic reduction of the liquid waste production from mL to μL. In addition, the time of analysis was shorted by at least a factor three. All of these improved parameters are of major interest for nuclear applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talley, Darren G.
2017-04-01
This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code showsmore » good agreement between simulation and actual ACRR operations.« less
Texture zeros and hierarchical masses from flavour (mis)alignment
NASA Astrophysics Data System (ADS)
Hollik, W. G.; Saldana-Salazar, U. J.
2018-03-01
We introduce an unconventional interpretation of the fermion mass matrix elements. As the full rotational freedom of the gauge-kinetic terms renders a set of infinite bases called weak bases, basis-dependent structures as mass matrices are unphysical. Matrix invariants, on the other hand, provide a set of basis-independent objects which are of more relevance. We employ one of these invariants to give a new parametrisation of the mass matrices. By virtue of it, one gains control over its implicit implications on several mass matrix structures. The key element is the trace invariant which resembles the equation of a hypersphere with a radius equal to the Frobenius norm of the mass matrix. With the concepts of alignment or misalignment we can identify texture zeros with certain alignments whereas Froggatt-Nielsen structures in the matrix elements are governed by misalignment. This method allows further insights of traditional approaches to the underlying flavour geometry.
Currently there are no EPA reference sampling methods that have been promulgated for measuring stack emissions of Hg from coal combustion sources, however, EPA Method 29 is most commonly applied. The draft ASTM Ontario Hydro Method for measuring oxidized, elemental, particulate-b...
Currently there are no EPA reference sampling mehtods that have been promulgated for measuring Hg from coal combustion sources. EPA Method 29 is most commonly applied. The ASTM Ontario Hydro Draft Method for measuring oxidized, elemental, particulate-bound and total Hg is now und...
Finite Element Analysis of Fluid-Structure Interaction in a Blast-Resistant Window System (PREPRINT)
2008-03-01
membrane effects that only become significant at large out-of-plane deflection levels ( Ugural 1981). Similarly, the mass of each panel, and therefore the...Forum, 465, 143-150. Ugural A.C. (1981). Stresses in Plates and Shells, McGraw-Hill, New York. 30 TABLE CAPTIONS Table 1. Properties of air (at
Finite Element Analysis of the Effects of Head-Supported Mass on Neck Responses
2006-09-01
supine spine lordosis . To get the correct interaction between the muscles each muscle has to be positioned manually for an upright lordosis . This task...relative to the FE KTH neck model [Brolin et al. 2005] in line with anatomical data from the literature and adjusted to a normal lordosis of a sitting
AOCS Performance and Stability Validation for a 160-m Solar Sail with Control-Structure Interactions
NASA Technical Reports Server (NTRS)
Wie, Bong; Murphy, David
2005-01-01
Future solar sail missions, such as NASA's Solar Polar Imager Vision, will require sails with dimensions on the order of 50-500 m. We are examining a square sail design with moving mass (trim control mass, TCM) and quadrant rotation primary actuators plus pulsed plasma thrusters (PPTs) at the mast tips for backup attitude control. Quadrant rotation is achieved via roll stabilizer bars (RSB) at the mast tips. At these sizes, given the gossamer nature of the sail supporting structures, flexible modes may be low enough to interact with the control system, especially as these actuators are located on the flexible structure itself and not on the rigid core. This paper develops a practical analysis of the flexible interactions using state-space systems and modal data from finite element models of the system. Torsion and bending of the masts during maneuvers could significantly affect the function of the actuators while activation of the membrane modes could adversely affect the thrust vector direction and magnitude. Analysis of the RSB and TCM dynamics for developing high-fidelity simulations is included. For control analysis of the flexible system, standard finite-element models of the flexible sail body are loaded and the modal data is used to create a modal coordinate state-space system. Key parameters include which modes to include, which nodes are of interest for force inputs and displacement outputs, connecting nodes through which external forces and torques are applied from the flex body to the core, any nominal momentum in the system, and any steady rates. The system is linearized about the nominal attitude and rate. The state-space plant can then be analyzed with a state-space controller, and Bode, Nyquist, step and impulse responses generated. The approach is general for any rigid core with a flexible appendage. This paper develops a compensator for a simple two-mass flex system and extrapolates the results to the solar sail. A finite element model of the 20 m solar sail by ATK Space Systems, recently validated in ground tests, is used to demonstrate the sail analysis approach.
Fem Formulation for Heat and Mass Transfer in Porous Medium
NASA Astrophysics Data System (ADS)
Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan
2017-08-01
Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.
NASA Astrophysics Data System (ADS)
Shreedharan, Srisharan; Kulatilake, Pinnaduwa H. S. W.
2016-05-01
An imperative task for successful underground mining is to ensure the stability of underground structures. This is more so for deep excavations which may be under significantly high stresses. In this manuscript, we present stability studies on two tunnels, a horseshoe-shaped and an inverted arch-shaped tunnel, in a deep coal mine in China, performed using the 3DEC distinct element code. The rock mass mechanical property values for the tunnel shapes have been estimated through a back-analysis procedure using available field deformation data. The back-analysis has been carried out through a pseudo-time dependent support installation routine which incorporates the effect of time through a stress-relaxation mechanism. The back-analysis indicates that the rock mass cohesion, tensile strength, uniaxial compressive strength, and elastic modulus values are about 35-45 % of the corresponding intact rock property values. Additionally, the importance of incorporating stress relaxation before support installation has been illustrated through the increased support factor of safety and reduced grout failures. The calibrated models have been analyzed for different supported and unsupported cases to estimate the significance and adequacy of the current supports being used in the mine and to suggest a possible optimization. The effects of supports have been demonstrated using deformations and yield zones around the tunnels, and average factors of safety and grout failures of the supports. The use of longer supports and floor bolting has provided greater stability for the rock masses around the tunnels. Finally, a comparison between the two differently shaped tunnels establishes that the inverted arch tunnel may be more efficient in reducing roof sag and floor heave for the existing geo-mining conditions.
Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang
2013-10-15
A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.
Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars
NASA Technical Reports Server (NTRS)
Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce
2014-01-01
Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability.
Attenuating mass concrete effects in drilled shafts.
DOT National Transportation Integrated Search
2009-09-01
Drilled shafts are large diameter cast in place concrete foundation elements that until recently were not viewed with the same scrutiny as other massive concrete elements when considering mass concrete aspects. This study addressed three aspects of t...
Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellinger, Marco, E-mail: marco.wellinger@gmail.com; Ecole Polytechnique Federale de Lausanne; Wochele, Joerg
2012-10-15
Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. Themore » analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.« less
Plazzi, Federico; Mantovani, Barbara
2017-01-01
Abstract Short interspersed elements (SINEs) are non-autonomous retrotransposons. Although they usually show fast evolutionary rates, in some instances highly conserved domains (HCDs) have been observed in elements with otherwise divergent sequences and from distantly related species. Here, we document the life history of two HCD-SINE families in the elephant shark Callorhinchus milii, one specific to the holocephalan lineage (CmiSINEs) and another one (SacSINE1-CM) with homologous elements in sharks and the coelacanth (SacSINE1s, LmeSINE1s). The analyses of their relationships indicated that these elements share the same 3′-tail, which would have allowed both elements to rise to high copy number by exploiting the C. milii L2-2_CM long interspersed element (LINE) enzymes. Molecular clock analysis on SINE activity in C. milii genome evidenced two replication bursts occurring right after two major events in the holocephalan evolution: the end-Permian mass extinction and the radiation of modern Holocephali. Accordingly, the same analysis on the coelacanth homologous elements, LmeSINE1, identified a replication wave close to the split age of the two extant Latimeria species. The genomic distribution of the studied SINEs pointed out contrasting results: some elements were preferentially sorted out from gene regions, but accumulated in flanking regions, while others appear more conserved within genes. Moreover, data from the C. milii transcriptome suggest that these SINEs could be involved in miRNA biogenesis and may be targets for miRNA-based regulation. PMID:28505260
A comparison of methods for evaluating structure during ship collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, D.J.; Daidola, J.C.
1996-10-01
A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the {open_quotes}Tanker Structural Analysis for Minor Collisions{close_quotes} (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration ismore » given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs.« less
Li, Weifeng; Yin, Zhibin; Cheng, Xiaoling; Hang, Wei; Li, Jianfeng; Huang, Benli
2015-05-05
Pulsed microdischarge employed as source for direct solid analysis was investigated in N2 environment at atmospheric pressure. Compared with direct current (DC) microdischarge, it exhibits advantages with respect to the ablation and emission of the sample. Comprehensive evidence, including voltage-current relationship, current density (j), and electron density (ne), suggests that pulsed microdischarge is in the arc regime while DC microdischarge belongs to glow. Capability in ablating metal samples demonstrates that pulsed microdischarge is a viable option for direct solid sampling because of the enhanced instantaneous energy. Using optical spectrometer, only common emission lines of N2 can be acquired in DC mode, whereas primary atomic and ionic lines of the sample are obtained in the case of pulsed mode. Calculations show a significant difference in N2 vibrational temperatures between DC and pulsed microdischarge. Combined with inductively coupled plasma mass spectrometry (ICPMS), pulsed microdischarge exhibits much better performances in calibration linearity and limits of detection (LOD) than those of DC discharge in direct analysis of samples of different matrices. To improve transmission efficiency, a mixture of Ar and N2 was employed as discharge gas as well as carrier gas in follow-up experiments, facilitating that LODs of most elements reached ng/g.
Bréas, Olivier; Thomas, Freddy; Zeleny, Reinhard; Calderone, Giovanni; Jamin, Eric; Guillou, Claude
2007-01-01
Tetramethylurea (TMU) with a certified D/H ratio is the internal standard for Site-specific Natural Isotope Fractionation measured by Nuclear Magnetic Resonance (SNIF-NMR) analysis of wine ethanol for detection of possible adulterations (Commission Regulation 2676/90). A new batch of a TMU certified reference material (CRM) is currently being prepared. Whereas SNIF-NMR has been employed up to now, Elemental Analysis/Isotope Ratio Mass Spectrometry ((2)H-EA-IRMS) was envisaged as the method of choice for value assignment of the new CRM, as more precise (better repeatable) data might be obtained, resulting in lower uncertainty of the certified value. In order to evaluate the accuracy and intra- and inter-laboratory reproducibility of (2)H-EA-IRMS methods, a laboratory inter-comparison was carried out by analysing TMU and other organic compounds, as well as some waters. The results revealed that experienced laboratories are capable of generating robust and well comparable data, which highlights the emerging potential of IRMS in food authenticity testing. However, a systematic bias between IRMS and SNIF-NMR reference data was observed for TMU; this lack of data consistency rules out the (2)H-IRMS technique for the characterisation measurement of the new TMU CRM.
Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics
NASA Technical Reports Server (NTRS)
Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.
2008-01-01
A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B.
Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for themore » proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.« less
Incorporating concentration dependence in stable isotope mixing models.
Phillips, Donald L; Koch, Paul L
2002-01-01
Stable isotopes are often used as natural labels to quantify the contributions of multiple sources to a mixture. For example, C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source linear mixing model assumes that the proportional contribution of a source to a mixture is the same for both elements (e.g., C, N). This may be a reasonable assumption if the concentrations are similar among all sources. However, one source is often particularly rich or poor in one element (e.g., N), which logically leads to a proportionate increase or decrease in the contribution of that source to the mixture for that element relative to the other element (e.g., C). We have developed a concentration-weighted linear mixing model, which assumes that for each element, a source's contribution is proportional to the contributed mass times the elemental concentration in that source. The model is outlined for two elements and three sources, but can be generalized to n elements and n+1 sources. Sensitivity analyses for C and N in three sources indicated that varying the N concentration of just one source had large and differing effects on the estimated source contributions of mass, C, and N. The same was true for a case study of bears feeding on salmon, moose, and N-poor plants. In this example, the estimated biomass contribution of salmon from the concentration-weighted model was markedly less than the standard model estimate. Application of the model to a captive feeding study of captive mink fed on salmon, lean beef, and C-rich, N-poor beef fat reproduced very closely the known dietary proportions, whereas the standard model failed to yield a set of positive source proportions. Use of this concentration-weighted model is recommended whenever the elemental concentrations vary substantially among the sources, which may occur in a variety of ecological and geochemical applications of stable isotope analysis. Possible examples besides dietary and food web studies include stable isotope analysis of water sources in soils, plants, or water bodies; geological sources for soils or marine systems; decomposition and soil organic matter dynamics, and tracing animal migration patterns. A spreadsheet for performing the calculations for this model is available at http://www.epa.gov/wed/pages/models.htm.
Krachler, M; Irgolic, K J
1999-11-01
The advantages accruing to biochemical and clinical investigations from a method that allows the simultaneous quantification (RSD < or = 10%) of many elements in blood, plasma, and serum at concentrations equal to one-hundredth of the lower limits of the normal ranges are undeniable. The suitability of inductively coupled argon plasma low-resolution quadrupole mass spectrometry (ICP-MS), a simultaneous method with low detection limits, is evaluated for the quantification of inorganic constituents in whole blood, plasma, and serum with consideration of the dilution associated with the mineralization of the samples, of isobaric and polyatomic interferences and of normal ranges. Of the 3 bulk elements, the 3 major electrolytes, the 15 essential elements, the 8 toxic elements, the 4 therapeutic elements, and the 14 elements of potential interest (total of 47 elements) only 7 elements (Ca, Cu, K, Mg, Rb, Sr, Zn) can be simultaneously quantified under these rigorous conditions in serum and only 8 elements (additional element Pb) in whole blood. Quantification of elements in the Seronorm Standards "Whole Blood" and "Serum" showed, that this list of simultaneously determinable elements in these matrices is reasonable. Although this list is disappointingly short, the number of elements determinable simultaneously by ICP-MS is still larger than that by ICP-AES or GFAAS. Improved detectors, more efficient nebulizers, avoidance of interferences, better instrument design, and high-resolution mass spectrometers promise to increase the number of elements that can be determined simultaneously.
NASA Technical Reports Server (NTRS)
Blacic, James D.
1992-01-01
A Teleoperated Lunar Explorer, or TOPLEX, consisting of a lunar lander payload in which a small, instrument-carrying lunar surface rover is robotically landed and teleoperated from Earth to perform extended lunar geoscience and resource evaluation traverses is proposed. The rover vehicle would mass about 100 kg and carry approximately 100 kg of analytic instruments. Four instruments are envisioned: (1) a Laser-Induced Breakdown Spectrometer (LIBS) for geochemical analysis at ranges up to 100 m, capable of operating in three different modes; (2) a combined x-ray fluorescence and x-ray diffraction (XRF/XRD) instrument for elemental and mineralogic analysis of acquired samples; (3) a mass spectrometer system for stepwise heating analysis of gases released from acquired samples; and (4) a geophysical instrument package for subsurface mapping of structures such as lava tubes.
Radiocarbon dating and compositional analysis of pre-Columbian human bones
NASA Astrophysics Data System (ADS)
Andrade, E.; Solís, C.; Canto, C. E.; de Lucio, O. G.; Chavez, E.; Rocha, M. F.; Villanueva, O.; Torreblanca, C. A.
2014-08-01
Analysis of ancient human bones found in "El Cóporo", an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone's black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.
High spatial resolution analysis of ferromanganese concretions by LA-ICP-MS†
Axelsson, Mikael D; Rodushkin, Ilia; Baxter, Douglas C; Ingri, Johan; Öhlander, Björn
2002-01-01
A procedure was developed for the determination of element distributions in cross-sections of ferromanganese concretions using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The effects of carrier flow rates, rf forward power, ablation energy, ablation spot size, repetition rate and number of shots per point on analyte intensity were studied. It is shown that different carrier gas flow rates are required in order to obtain maximum sensitivities for different groups of elements, thus complicating the optimisation of ICP parameters. On the contrary, LA parameters have very similar effects on almost all elements studied, thus providing a common optimum parameter set for the entire mass range. However, for selected LA parameters, the use of compromise conditions was necessary in order to compensate for relatively slow data acquisition by ICP-MS and maintain high spatial resolution without sacrificing the multielemental capabilities of the technique. Possible variations in ablation efficiency were corrected for mathematically using the sum of Fe and Mn intensities. Quantification by external calibration against matrix-matched standards was successfully used for more than 50 elements. These standards, in the form of pressed pellets (no binder), were prepared in-house using ferromanganese concentrates from a deep-sea nodule reference material as well as from shallow-marine concretions varying in size and having different proportions of three major phases: aluminosilicates, Fe- and Mn-oxyhydroxides. Element concentrations in each standard were determined by means of conventional solution nebulisation ICP-MS following acid digestion. Examples of selected inter-element correlations in distribution patterns along the cross-section of a concretion are given.
ERIC Educational Resources Information Center
Celasin, Cenk
2013-01-01
In this qualitative study, musical elements in mass media and internet mostly intended to children and adolescents, were examined in the context of the dimensions of the social development of them in a general approach, through scientific literature and written, audio, visual and audio-visual documents regarding mass media and internet. Purpose of…
NASA Astrophysics Data System (ADS)
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required.
Aerosol characteristics and sources for the Amazon basin during the wet season
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artaxo, P.; Maenhaut, W.; Storms, H.
1990-09-20
Fine (< 2.0 {mu}m) and coarse (2.0 - 15 {mu}m) aerosol fractions were collected using stacked filter units, at three sites under the forest canopy and at three levels of a tower inside the jungle. Particle-induced x-ray emission (PIXE) was used to measure concentrations Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb. Morphological and trace element measurements of individual particles were carried out by automated electron probe x-ray microanalysis. Gravimetric analysis was performed to obtain the fine and coarse aerosol mass concentration. The concentrations ofmore » soil dust related elements (Al, Si, Ti, Fe, Mn) were 5 times larger in the wet season compared to the 1985 ABLE 2A dry season experiment. Biogenic aerosol related elements in the fine fraction showed lower concentrations in the wet season. Fine aerosol mass concentration averaged only 2.1 {plus minus} 0.7 {mu}g m{sup {minus}3}, while the average coarse mass concentration was 6.1 {plus minus} 1.8 {mu}g m{sup {minus}3}. Sulfur concentrations averaged 76 {plus minus} 14 ng m{sup {minus}3} in the fine fraction and 37 {plus minus} 9 ng m{sup {minus}3} in the coarse fraction. Only two factors explained about 90% of the data variability for the fine and coarse aerosol fractions. These were soil dust (represented mainly by Al, Si, Ti, Mn, and Fe) and biogenic aerosol (represented by K, P, Cl, S, Zn, and the aerosol mass concentration). Biogenic particles account for 55-95% of the airborne concentrations and consisted of leaf fragments, pollen grains, fungi, algae, and other types of particles. It is possible that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.« less
Chemical and Physical Weathering of Granites in a Semi-Arid Savanna
NASA Astrophysics Data System (ADS)
Khomo, L.; Hartshorn, A.; Chadwick, O.; Kurtz, A.; Heimsath, A.; Rogers, K.
2005-12-01
The catena concept describes soil properties on hillslopes and implies a hydrological mass redistribution process that has been applied differently in different parts of the Earth. In tectonically active regions, it is mostly used to describe the redistribution of mass by overland flow leading to thickening soil mantles downslope. This application is somewhat different from its initial and still popular usage in tectonically inactive areas of Africa, where it defines long-term soil property differentiation along hillslopes as controlled by internal soil hydrology as opposed to overland flow. Many ecologists have found the "African" catena concept to be useful as an organizing principal for savanna studies, but there has been little recent research on catenas per se in Africa. Elsewhere however, there is a growing body of research that places the concept ever more strongly into a landscape evolution context. Here, we apply these new approaches to catenas in a South African savanna underlain by a heterogeneous suite of Basement granites straddling a gradient in effective precipitation. We constrain the weathering extent of hilly terrains formed on these oldrocks by calculating element losses with solid-phase mass-balance calculations augmented by cosmogenic (26Al/10Be) derived rates of landscape denudation. We test the efficacy of Ti, Zr and Nb as immobile elements to benchmark chemical losses and gains in these semi-arid weathering environments. We also trace and quantify the abundance of the host minerals for these elements (Ti = rutile and ilmenite, Nb = columbite and Zr = zircon and baddleyite) in a variety of rocks in the basement complex. This analysis provides the boundary conditions for assigning immobile elements to parent materials required for the mass balance calculations. We calculate total denudation using the cosmogenic isotopes and then partition it into chemical and physical loss vectors using the mass balance calculations for representative watersheds along the effective precipitation gradient. Preliminary results suggest that these semi-arid landscapes erode at a slow rate and the upper portions of the catenas are highly weathered with a predominance of quartz as existing primary minerals. The catenas appear to be some of the oldest and most highly evolved yet studied.
Lewen, Nancy
2011-06-25
The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lai, Steven H.-Y.
1992-01-01
A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.
NASA Astrophysics Data System (ADS)
George, Freya; Gaidies, Fred
2017-04-01
In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements are strongly enriched in crystal cores, where there is overprinting of the observed internal fabric, and exhibit numerous concentric annuli towards crystal rims. Conversely, the medium rare earth elements (e.g. Gd, Eu and Sm) exhibit bowl-shaped zoning from core to rim, with no annuli, and core and rim compositions of the medium rare earth elements are the same throughout the population within crystals of differing size. Cr exhibits pronounced spiral zoning, and the average Cr content increases towards garnet rims. In all cases, spirals are centered on the geometric core of the crystals. These LA-ICP-MS maps highlight the complexity of garnet growth over a single prograde event, and indicate that there is still much to be learnt from the analysis of garnet using ever-improving analytical methods. We explore the potential causes of the variations in the distribution of trace elements in garnet, and assess how these zoning patterns may be used to refine our understanding of the intricacies of garnet crystallisation and the spatial and temporal degree of trace element equilibration during metamorphism.
NASA Technical Reports Server (NTRS)
Newsom, H. E.; Hagerty, J. J.; Shearer, C. W.
2002-01-01
New SIMS data for mobile elements in Lonar Crater clay minerals are remarkably similar to data for alteration material in the Lafayette Mars meteorite. This work strongly supports the use of terrestrial analogues for Mars, including a new mass balance model for mobile elements through time. Additional information is contained in the original extended abstract.
An interlaboratory comparison study on the measurement of elements in PM10
NASA Astrophysics Data System (ADS)
Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna
2016-01-01
An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.
NASA Astrophysics Data System (ADS)
Gemenetzis, Panagiotis; Moussas, Panagiotis; Arditsoglou, Anastasia; Samara, Constantini
The mass concentration and the elemental composition of PM 2.5 and PM 10 were measured in 40 rooms (mainly offices or mixed office-lab rooms, and photocopying places) of the Aristotle University of Thessaloniki, northern Greece. A total of 27 major, minor and trace elements were determined by ED-XRF analysis. The PM 2.5/PM 10 concentration ratios averaged 0.8±0.2, while the corresponding elemental ratios ranged between 0.4±0.2 and 0.9±0.2. The concentrations of PM 2.5 and PM 10 were significantly higher (by 70% and 50%, respectively) in the smokers' rooms compared to the non-smokers' places. The total elemental concentrations were also higher in the smokers' rooms (11.5 vs 8.2 μg m -3 for PM 2.5, and 10.3 vs 7.6 μg m -3 for PM 2.5-10). Fine particle concentrations (PM 2.5) were found to be quite proportional to smoking strength. On the contrary, the two environments exhibited similar coarse (PM 2.5-10) particle fractions not related to the number of cigarettes smoked. A slight decrease of particle concentrations with increasing the floor level was also observed, particularly for PM 2.5, suggesting that high-level floors are less impacted by near ground-level sources like traffic emissions. Finally, the removal efficiency of air purification systems was evaluated.
APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasselquist, Sten; Holtzman, Jon; Shetrone, Matthew
The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars withmore » [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.« less
APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy
NASA Astrophysics Data System (ADS)
Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado, J. G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Fernández Alvar, Emma; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; García-Hernández, D. A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, Sandro
2017-08-01
The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.
New NIST sediment SRM for inorganic analysis.
Zeisler, Rolf
2004-03-01
NIST maintains a portfolio of more than 1300 standard reference materials (SRM), more than a third of these relating to measurements in the biological and environmental fields. As part of the continuous renewal and replacement efforts, a set of new marine sediments has been recently developed covering organic and inorganic determinations. This paper describes the steps taken in sample preparation, homogeneity assay, and analytical characterization and certification with specific emphasis on SRM 2702 inorganics in marine sediment. Neutron activation analysis showed the SRM to be highly homogeneous, opening the possibility for use with solid sampling techniques. The certificate provides certified mass fraction values for 25 elements, reference values for eight elements, and information values for 11 elements, covering most of the priority pollutants with small uncertainties of only several percent relative. The values were obtained by combining results from different laboratories and techniques using a Bayesian statistical model. An intercomparison carried out in field laboratories with the material before certification illustrates a high commutability of this SRM.
Pristine moon rocks - A 'large' felsite and a metal-rich ferroan anorthosite
NASA Technical Reports Server (NTRS)
Warren, Paul H.; Jerde, Eric A.; Kallemeyn, Gregory W.
1987-01-01
Results of elemental analyses, performed either by instrumental neutron activation analysis (NAA) or radiochemical NAA, of 19 lunar rock samples obtained by the Apollo 15, 17, and 12 missions are presented. Two of the samples are most extraordinary: 'large' (1 g) felsite from Apollo 12 and a pristine ferroan anorthosite from Apollo 15. The felsite is mainly a graphic intergrowth of K-feldspar and a silica phase, with about 6 pct plagioclase and 1 pct each of ferroaugite, ilmenite, and fayalitic olivine. The Fe-metal content of ferroan anorthosite is 1.2 wt pct in the thin section studied (but, based on mass balance for Co and Ni, must have been lower in the chip used for bulk-rock analysis); the measured bulk-rock concentrations of siderophile elements Re, Os, and Ir are far higher than previously observed among pristine lunar anorthosites. These results underscore the uncertainty associated with any attempt to estimate the overall siderophile element contents of the moon's crust.