Science.gov

Sample records for elemental boron powder

  1. Direct determination of trace elements in boron nitride powders by slurry sampling total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Amberger, Martin A.; Höltig, Michael; Broekaert, José A. C.

    2010-02-01

    The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL -1. As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL -1 of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 μg g - 1 for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al 2O 3, powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective samples over a

  2. Neutron detectors comprising boron powder

    SciTech Connect

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  3. Characterization of electrodeposited elemental boron

    SciTech Connect

    Jain, Ashish; Anthonysamy, S. Ananthasivan, K.; Ranganathan, R.; Mittal, Vinit; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2008-07-15

    Elemental boron was produced through electrowinning from potassium fluoroborate dissolved in a mixture of molten potassium fluoride and potassium chloride. The characteristics of the electrodeposited boron (raw boron) as well as the water and acid-leached product (processed boron) were studied. The chemical purity, specific surface area, size distribution of particles and X-ray crystallite size of the boron powders were investigated. The morphology of the deposits was examined using scanning electron microscopy (SEM). The chemical state of the matrix, as well as the impurity phases present in them, was established using X-ray photoelectron spectroscopy (XPS). In order to interpret and understand the results obtained, a thermodynamic analysis was carried out. The gas-phase corrosion in the head space as well as the chemistry behind the leaching process were interpreted using this analysis. The ease of oxidation of these powders in air was investigated using differential thermal analysis (DTA) coupled with thermogravimetry (TG). From the results obtained in this study it was established that elemental boron powder with a purity of 95-99% could be produced using a high temperature molten salt electrowinning process. The major impurities were found to be oxygen, carbon, iron and nickel.

  4. CVD boron on calcium chromate powder

    SciTech Connect

    Coonen, R.M.

    1984-09-01

    This study was an experimental effort to improve the compositional homogeneity of a pyrotechnic mixture of boron and calcium chromate (CaCrO/sub 4/). Boron was deposited onto calcium chromate powders at 350/sup 0/C from a diborane and hydrogen gas mixture at a pressure of 40 torr by Chemical Vapor Deposition (CVD). The B:CaCrO/sub 4/ ratio of the coated powders was analyzed by inductively-coupled plasma spectroscopy and the distribution of the two phases was observed by electron microprobe analysis. The pyrotechnic activity was determined by differential thermal analysis. In addition to varying the composition of the mixture, an attempt was made to vary the boron distribution by coating both sized and unsized CaCrO/sub 4/ powders. Boron was deposited for 2 h onto sized CaCrO/sub 4/ powder, which resulted in a higher weight percentage of boron in comparison to the unsized powder. CVD coated CaCrO/sub 4/ powders began their pyrotechnic activity at an auto ignition temperature that was lower than the auto ignition temperature observed for mechanically blended mixtures. The coating of sized CaCrO/sub 4/ powder improved the uniformity of boron deposition of CaCrO/sub 4/, but it also decreased the pyrotechnic activity.

  5. Neutron detectors comprising ultra-thin layers of boron powder

    SciTech Connect

    Wang, Zhehul; Morris, Christopher

    2013-07-23

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material having a thickness of from about 50 nm to about 250 nm and comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  6. New Ground-State Crystal Structure of Elemental Boron.

    PubMed

    An, Qi; Reddy, K Madhav; Xie, Kelvin Y; Hemker, Kevin J; Goddard, William A

    2016-08-19

    Elemental boron exhibits many polymorphs in nature based mostly on an icosahedral shell motif, involving stabilization of 13 strong multicenter intraicosahedral bonds. It is commonly accepted that the most thermodynamic stable structure of elemental boron at atmospheric pressure is the β rhombohedral boron (β-B). Surprisingly, using high-resolution transmission electron microscopy, we found that pure boron powder contains grains of two different types, the previously identified β-B containing a number of randomly spaced twins and what appears to be a fully transformed twinlike structure. This fully transformed structure, denoted here as τ-B, is based on the Cmcm orthorhombic space group. Quantum mechanics predicts that the newly identified τ-B structure is 13.8  meV/B more stable than β-B. The τ-B structure allows 6% more charge transfer from B_{57} units to nearby B_{12} units, making the net charge 6% closer to the ideal expected from Wade's rules. Thus, we predict the τ-B structure to be the ground state structure for elemental boron at atmospheric pressure. PMID:27588864

  7. New Ground-State Crystal Structure of Elemental Boron

    NASA Astrophysics Data System (ADS)

    An, Qi; Reddy, K. Madhav; Xie, Kelvin Y.; Hemker, Kevin J.; Goddard, William A.

    2016-08-01

    Elemental boron exhibits many polymorphs in nature based mostly on an icosahedral shell motif, involving stabilization of 13 strong multicenter intraicosahedral bonds. It is commonly accepted that the most thermodynamic stable structure of elemental boron at atmospheric pressure is the β rhombohedral boron (β -B ). Surprisingly, using high-resolution transmission electron microscopy, we found that pure boron powder contains grains of two different types, the previously identified β -B containing a number of randomly spaced twins and what appears to be a fully transformed twinlike structure. This fully transformed structure, denoted here as τ -B , is based on the C m c m orthorhombic space group. Quantum mechanics predicts that the newly identified τ -B structure is 13.8 meV /B more stable than β -B . The τ -B structure allows 6% more charge transfer from B57 units to nearby B12 units, making the net charge 6% closer to the ideal expected from Wade's rules. Thus, we predict the τ -B structure to be the ground state structure for elemental boron at atmospheric pressure.

  8. Electroextraction of boron from boron carbide scrap

    SciTech Connect

    Jain, Ashish; Anthonysamy, S.; Ghosh, C.; Ravindran, T.R.; Divakar, R.; Mohandas, E.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  9. Influence of nanocrystalline boron precursor powder on superconductivity in MgB2 bulk.

    PubMed

    Zhang, Yun; Lu, Cheng; Zhou, Sihai; Joo, Jinho

    2009-12-01

    In this report, high-purity nanocrystalline boron powders processed by ball-milling were used as the precursor powders to fabricate MgB2 superconductor. The transport properties and the critical current density in the samples made from ball-milled boron powders and as-supplied boron powders were investigated. It was found that the ball-milled boron powders led to a significant enhancement of the critical current density in MgB2 sintered at 650 degrees C. The reason can be attributed to the small MgB2 grain size caused by the ball-milled boron precursor powders. The resistivity of the samples made from the ball-milled boron powder was lower than that of the sample from as-supplied boron powder. As the sintering temperature increased, both resistivity and upper critical field decreased in the samples using the ball-milled boron powders as a precursor. Poor connectivity and large strain are responsible for the high resistivity.

  10. Double helix boron-10 powder thermal neutron detector

    DOEpatents

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  11. Boron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  12. Shockwave Processing of Composite Boron and Titanium Nitride Powders

    NASA Astrophysics Data System (ADS)

    Beason, Matthew T.; Gunduz, I. Emre; Mukasyan, Alexander S.; Son, Steven F.

    2015-06-01

    Shockwave processing of powders has been shown to initiate reactions between condensed phase reactants. It has been observed that these reactions can occur at very short timescales, resulting in chemical reactions occurring at a high pressure state. These reactions have the potential to produce metastable phases. Kinetic limitations prevent gaseous reactants from being used in this type of synthesis reaction. To overcome this limitation, a solid source of gaseous reactants must be used. An example of this type of reaction is the nitrogen exchange reaction (e.g. B + TiN, B + Si3N4 etc.). In these reactions nitrogen is ``carried'' by a material that can be then reduced by the second reactant. This work explores the possibility of using nitrogen exchange reactions to synthesize the cubic phase of boron nitride (c-BN) through shockwave processing of ball milled mixtures of boron and titanium nitride. The heating from the passage of the shock wave (pore collapse, plastic work, etc.) combined with thermochemical energy from the reaction may provide a means to synthesize c-BN. This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002377. National Defense Science & Engineering Graduate Fellowship (NDSEG), 32 CFR 168a.

  13. Geometrical frustration in an element solid: (beta)-rhombohedral boron

    SciTech Connect

    Ogitsu, T; Gygi, F; Reed, J; Udagawa, M; Motome, Y; Schwegler, E; Galli, G

    2009-05-19

    Although a comprehensive understanding of the basic properties of most elemental solids has been achieved, there are still fundamental, open questions regarding simple substances, e.g. boron. Based on an Ising model that describes the intrinsic defect states in elemental boron, we show that this system is the only known element to exhibit geometrical frustration in its solid form. Interestingly, we find that the peculiar transport properties of boron that have been reported over the past forty years originate from the presence of geometrical frustration.

  14. Ionic high-pressure form of elemental boron.

    PubMed

    Oganov, Artem R; Chen, Jiuhua; Gatti, Carlo; Ma, Yanzhang; Ma, Yanming; Glass, Colin W; Liu, Zhenxian; Yu, Tony; Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2009-02-12

    Boron is an element of fascinating chemical complexity. Controversies have shrouded this element since its discovery was announced in 1808: the new 'element' turned out to be a compound containing less than 60-70% of boron, and it was not until 1909 that 99% pure boron was obtained. And although we now know of at least 16 polymorphs, the stable phase of boron is not yet experimentally established even at ambient conditions. Boron's complexities arise from frustration: situated between metals and insulators in the periodic table, boron has only three valence electrons, which would favour metallicity, but they are sufficiently localized that insulating states emerge. However, this subtle balance between metallic and insulating states is easily shifted by pressure, temperature and impurities. Here we report the results of high-pressure experiments and ab initio evolutionary crystal structure predictions that explore the structural stability of boron under pressure and, strikingly, reveal a partially ionic high-pressure boron phase. This new phase is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell) consisting of icosahedral B(12) clusters and B(2) pairs in a NaCl-type arrangement. We find that the ionicity of the phase affects its electronic bandgap, infrared adsorption and dielectric constants, and that it arises from the different electronic properties of the B(2) pairs and B(12) clusters and the resultant charge transfer between them.

  15. A technique to measure heats of reaction of titanium-boron, aluminim-titanium-boron, and aluminum-titanium-boron-carbon powder blends

    NASA Astrophysics Data System (ADS)

    Baker, Andrew H.

    In this research, a modification to initiation aid ignition in bomb calorimetry that involves systemically blending levels of boron and potassium nitrate initiation aids with a bulk structural energetic elemental power blend is developed. A regression is used to estimate the nominal heat of reaction for the primary reaction. The technique is first applied to the synthesis of TiB 2 as a validation study to see if close proximity to literature values can be achieved. The technique is then applied to two systems of interest, Al-Ti-B, and Al-Ti-B4C. In all three investigations, x-ray diffraction is used to characterize the product phases of the reactions to determine the extent and identity of the product phases and any by-products that may have formed as a result of adding the initiation aid. The experimental data indicates the technique approximates the heat of reaction value for the synthesis of TiB2 from Ti-B powder blends and the formation of TiB2 is supported by volume fraction analysis by x-ray diffraction. Application to the Al-Ti-B and Al-Ti-B4C blends show some correlation with variation of the initiation aid, with x-ray diffraction showing the formation of equilibrium products. However, these blends require further investigation to resolve more complex interactions and rule out extraneous variables.

  16. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  17. Characterization of the distribution of the sintering activator boron in powder metallurgical steels with SIMS.

    PubMed

    Krecar, Dragan; Vassileva, Vassilka; Danninger, Herbert; Hutter, Herbert

    2004-06-01

    Powder metallurgy is a well-established method for manufacturing ferrous precision parts. A very important step is sintering, which can be strongly enhanced by the formation of a liquid phase during the sintering process. Boron activates this process by forming such a liquid phase at about 1200 degrees C. In this work, the sintering of Fe-B was performed under the protective atmospheres of hydrogen, argon or nitrogen. Using different grain sizes of the added ferroboron leads to different formations of pores and to the formation of secondary pores. The effect of boron was investigated by means of Secondary Ion Mass Spectrometry (SIMS) supported by Scanning Electron Microscopy (SEM) and Light Microscopy (LM). To verify the influence of the process parameters on the mechanical properties, the microstructure (pore shape) was examined and impact energy measurements were performed. The concentrations of B in different samples were varied from 0.03-0.6 weight percent (wt%). Higher boron concentrations are detectable by EPMA, whereas the distributions of boron in the samples with interesting overall concentration in the low wt% range are only detectable by means of SIMS. This work shows that the distribution of boron strongly depends on its concentration and the sintering atmosphere used. At low concentration (up to 0.1 wt%) there are boride precipitations; at higher concentration there is a eutectic iron-boron grain boundary network. There is a decrease of the impact energy observed that correlates with the amount of eutectic phase.

  18. Role of boron oxide in growth of boron nitride grains

    SciTech Connect

    Hubacek, Milan; Ueki, Masanori

    1996-12-31

    Grain growth in sintered hexagonal boron nitride ceramics hot-pressed from microcrystalline and crystalline powders was studied. Boron oxide released during sintering, especially from the microcrystalline powder, had a crucial effect on the size and orientation of boron nitride grains and on the mechanical properties of the ceramics. The extraction of boron oxide from the boron nitride grains with elemental boron and subsequent conversion to a refractory suboxide resulted in a substantial rise in the refractoriness, preventing the undesirable growth of boron nitride grains, and reducing their response to the uniaxial effect of the external pressure. The migration mechanism of boron oxide ill hot-pressed boron nitride was also confirmed by measurements of the oxygen distribution ill the ceramics.

  19. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    NASA Technical Reports Server (NTRS)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  20. Structure and luminescence of gadolinium-doped cubic boron nitride powder

    NASA Astrophysics Data System (ADS)

    Leonchik, S. V.; Karotki, A. V.

    2012-09-01

    The structural characteristics and chemical, morphological, and optical properties of cBN and cBN:Gd micropowders are studied by x-ray diffraction, energy-dispersive electron probe microanalysis (x-ray spectral microanalysis), and photoluminescence techniques. Cubic boron nitride (cBN) micropowders were synthesized at high pressures and temperatures from hexagonal boron nitride (hBN) micropowder and Li3N catalyst. cBN:Gd micropowders were synthesized from mixtures of hBN, Li3N, and GdF3 micropowders. A lattice parameter of a~3.615 Å is calculated for both types of powder (cBN and cBN:Gd). The photoluminescence spectra of the cBN:Gd powder are found to contain emission lines attributable to intracenter optical transitions of Gd3+ ions.

  1. Electromagnetic properties and microstructures of in situ MgB2 wires made from three types of boron powders

    NASA Astrophysics Data System (ADS)

    Kodama, Motomune; Kotaki, Hiroshi; Yamamoto, Hiroyuki; Iwane, Tomohiro; Tanaka, Kazuhide; Tanaka, Hideki; Okishiro, Kenji; Okamoto, Kazutaka; Nishijima, Gen; Matsumoto, Akiyoshi; Kumakura, Hiroaki; Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Kishio, Kohji

    2016-10-01

    In powder-in-tube processed MgB2 wires, the choice of boron powder as a starting material crucially affects their performance. In this paper, we prepared in situ MgB2 wires from three types of boron powders in various heat-treatment conditions and investigated their electromagnetic properties and microstructures. Their critical current density, J c, varied over a wide range from sample to sample. The difference in J c is understood to be caused by the effect of changes in the electrical connectivity, K, and intrinsic residual resistivity, ρ 0. Here, K represents the effective cross-sectional area for current, and ρ 0 reflects the degree of the charge carrier scattering caused by lattice defects. It was found that the use of boron powder with a large specific surface area leads to a large degree of lattice defects in MgB2 grains and enhances ρ 0, resulting in improving J c. The boron powder produced by thermal decomposition of B2H6 has a large specific surface area. Hence, this boron powder is the most suitable as a starting material for MgB2. Meanwhile, dry pulverization of low-cost boron powder, which is largely produced by active-metal reduction of B2O3, is also effective to increase its specific surface area without introducing impurities, resulting in the enhancement of J c in the entire magnetic field region. This finding broadens the choice of boron powder and contributes to realizing superconducting applications with excellent balance between performance and cost.

  2. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  3. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    SciTech Connect

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  4. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    SciTech Connect

    Ogitsu, Tadashi; Schwegler, Eric; Galli, Giulia

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been known for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.

  5. Microstructure and superconducting properties of nanocarbon-doped internal Mg diffusion-processed MgB2 wires fabricated using different boron powders

    NASA Astrophysics Data System (ADS)

    Xu, Da; Wang, Dongliang; Li, Chen; Yuan, Pusheng; Zhang, Xianping; Yao, Chao; Dong, Chiheng; Huang, He; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-04-01

    MgB2/Nb/Monel monofilament wires were fabricated using four different boron powders by an internal Mg diffusion (IMD) process. The microstructure, morphology and the critical current density (J c) of the used boron powders and the formative MgB2 layers were analyzed and compared. It was found that the purity and particle size of the boron powder influence the superconducting properties of MgB2 wires; further that the optimized heat-treatment condition also depends on the quality of the boron powder. The highest J c was obtained in the MgB2 layer made using amorphous boron (AB) powder, although a certain amount of voids existed in the superconducting layer. The IMD-processed MgB2 layer fabricated using high-purity boron (HB) powder had also a high J c compared with the powder-in-tube (PIT) process and a few unreacted boron particles remained in it. MgB2 wire fabricated using low-purity boron (LB) powder had a high cost-performance ratio compared with the others, which is expected to allow the fabrication of large-scale and low-cost superconducting wires for practical application. However, the enhancement of the J c was not found in the MgB2 layer manufactured using the ball-milled LB (MLB) powder as expected due to the increased percentage of impurity.

  6. Fabrication and characterization of aluminum nitride/boron nitride nanocomposites by carbothermal reduction and nitridation of aluminum borate powders.

    PubMed

    Kusunose, Takafumi; Sakayanagi, Nobuaki; Sekino, Tohru; Ando, Yoichi

    2008-11-01

    In order to fabricate aluminum nitride/boron nitride (AIN/BN) nanocomposites by pressureless sintering, the present study investigated the synthesis of AIN-BN nanocomposite powders by carbothermal reduction and nitridation of aluminum borate powders. Homogeneous mixtures of alumina (Al2O3), boric acid (H3BO3), and carbon powder were used to synthesize AIN/BN nanocomposite powders containing 10 and 20 vol% BN. Aluminum borate was produced by reacting Al2O3 and B2O3 above 800 degrees C, and AIN and turbostratic BN (t-BN) were produced by reacting aluminum borate with carbon powder and nitrogen gas at 1500 degrees C. Carbothermal reduction followed by nitridation yielded an AIN/BN nanocomposite powder composed of nanosized AIN and t-BN. By pressureless sintering nanocomposite AIN/BN powders containing 5 wt% Y22O3, AIN/BN nanocomposites were obtained without compromising the high thermal conductivity and high hardness.

  7. Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

    NASA Astrophysics Data System (ADS)

    Dvilis, E. S.; Khasanov, O. L.; Gulbin, V. N.; Petyukevich, M. S.; Khasanov, A. O.; Olevsky, E. A.

    2016-03-01

    Spark-plasma sintering (SPS) is used to fabricate fully-dense metal-matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure-temperature-relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.

  8. Two-dimensional finite elements model for boron management in agroforestry sites.

    PubMed

    Tayfur, Gokmen; Tanji, Kenneth K; Baba, Alper

    2010-01-01

    Agroforesty systems, which are recommended as a management option to lower the shallow groundwater level and to reuse saline subsurface drainage waters from the tile-drained croplands in the drainage-impacted areas of Jan Joaquin Valley of California, have resulted in excessive boron buildup in the soil root zone. To assess the efficacy of the long-term impacts of soil boron buildup in agroforesty systems, a mathematical model was developed to simulate non-conservative boron transport. The developed dynamic two-dimensional finite element model simulates water flow and boron transport in saturated-unsaturated soil system, including boron sorption and boron uptake by root-water extraction processes. The simulation of two different observed field data sets by the developed model is satisfactory, with mean absolute error of 1.5 mg/L and relative error of 6.5%. Application of the model to three different soils shows that boron adsorption is higher in silt loam soil than that in sandy loam and clay loam soils. This result agrees with the laboratory experimental observations. The results of the sensitivity analysis indicate that boron uptake by root-water extraction process influences the boron concentration distribution along the root zone. Also, absorption coefficient and maximum adsorptive capacity of a soil for boron are found to be sensitive parameters.

  9. Boron

    MedlinePlus

    ... and muscle coordination. Women sometimes use capsules containing boric acid, the most common form of boron, inside the vagina to treat yeast infections. People also apply boric acid to the skin as an astringent or to ...

  10. High-purity, fine-particle boron nitride powder synthesis at -75 to 750C. Report of investigations/1986

    SciTech Connect

    Kalyoncu, R.S.

    1986-01-01

    Nonoxide ceramics with improved high-temperature properties could substitute for high-temperature alloys and reduce the Nation's dependence on imports of Cr, Co, Ni, and Mn. To meet the objective, the Bureau of Mines conducted research to synthesize ultrafine reactive boron nitride (BN) powders. BN powders were prepared at temperatures ranging from -75 degrees to 750 degrees C. Low-temperature reactions (-75 to 200/sup 0/C) between boron halides and N compounds led to formation of elemento-organic compounds that were thermally decomposed to ultrafine (approximately 100- to 150-A particle size) reactive BN powders. BN powders were also prepared through the reaction of a low-melting inorganic B compound (boric acid, borax) with an organic N compound (carbimide and thiocarbimide) in N/sub 2/ and/or ammonia (NH/sub 3/) atmospheres at temperatures between 500 and 750/sup 0/C. The report is based upon work done under an agreement between the University of Alabama and the Bureau of Mines.

  11. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  12. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  13. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming

    SciTech Connect

    Richard E. Jackson; K.J. Reddy

    2007-09-15

    Coal bed natural gas (CBNG) produced water is usually disposed into nearby constructed disposal ponds. Geochemistry of produced water, particularly trace elements interacting with a semiarid environment, is not clearly understood. The objective of this study was to collect produced water samples at outfalls and corresponding disposal ponds and monitor pH, iron (Fe), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), zinc (Zn), arsenic (As), boron (B), selenium (Se), molybdenum (Mo), cadmium (Cd), and barium (Ba). Outfalls and corresponding disposal ponds were sampled from five different watersheds including Cheyenne River (CHR), Belle Fourche River (BFR), Little Powder River (LPR), Powder River (PR), and Tongue River (TR) within the Powder River Basin (PRB), Wyoming from 2003 to 2005. Paired tests were conducted between CBNG outfalls and corresponding disposal ponds for each watershed. Results suggest that produced water from CBNG outfalls is chemically different from the produced water from corresponding disposal ponds. Most trace metal concentrations in the produced water increased from outfall to disposal pond except for Ba. In disposal ponds, Ba, As, and B concentrations increased from 2003 to 2005. Geochemical modeling predicted precipitation and dissolution reactions as controlling processes for Al, Cu, and Ba concentrations in CBNG produced water. Adsorption and desorption reactions appear to control As, Mo, and B concentrations in CBNG water in disposal ponds. Overall, results of this study will be important to determine beneficial uses (e.g., irrigation, livestock/wildlife water, and aquatic life) for CBNG produced water in the PRB, Wyoming. 18 refs., 4 figs., 3 tabs.

  14. Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth.

    PubMed

    Scorei, Romulus

    2012-02-01

    Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world". PMID:22528885

  15. Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth.

    PubMed

    Scorei, Romulus

    2012-02-01

    Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".

  16. Is Boron a Prebiotic Element? A Mini-review of the Essentiality of Boron for the Appearance of Life on Earth

    NASA Astrophysics Data System (ADS)

    Scorei, Romulus

    2012-02-01

    Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".

  17. Bonding in elemental boron: a view from electronic structure calculations using maximally localized Wannier functions

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi; Gygi, Francois; Reed, John; Schwegler, Eric; Galli, Giulia

    2007-03-01

    Boron exhibits the most complex structure of all elemental solids, with more than 300 atoms per unit cell arranged in interconnecting icosahedra, and some crystallographic positions occupied with a probability of less than one. The precise determination of the ground state geometry of boron---the so-called β-boron structure--has been elusive and its electronic and bonding properties have been difficult to rationalize. Using lattice model Monte Carlo optimization techniques and ab-initio simulations, we have shown that a defective, quasi-ordered β solid is the most stable structure at zero as well as finite T. In the absence of partially occupied sites (POS), the perfect β-boron crystal is unstable; the presence of POS lower its internal energy below that of an ordered α-phase, not mere an entropic effect. We present a picture of the intricate and unique bonding in boron based on maximally localized Wannier (MLWF) functions, which indicates that the presence of POS provides a subtle, yet essential spatial balance between electron deficient and fully saturated bonds. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48.

  18. [The element determination of six samples of petal powders by using XRF spectrometry].

    PubMed

    Mei, Yan; Ma, Mi-Xia; Nie, Zuo-Ren

    2012-07-01

    Elements and contents in three kinds of petal powders of white and red rose, carnation, and butterfly orchis were determined by using XRF technic, and the data for every group were compared and analysed. The results indicated that all powders contain no toxic elements determined but have lots of normal elements and trace elements, such as Fe, Cu, Zn, Mn, Ni, Si, Sr, and Rb. The same sort of powder had approximately equivalent elements but their contents are different, and the element content of the white sort. was higher than the red one.

  19. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    PubMed

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  20. The use of elemental powder mixes in laser-based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Clayton, Rodney Michael

    This study examines the use and functionality of laser depositing alloys from mixes of elemental metallic powders. Through the use of laser-based additive manufacturing (LAM), near net-shaped 3-Dimensional metallic parts can be produced in a layer-by-layer fashion. It is customary for pre-alloyed powders to be used in this process. However, mixes of elemental powders can be used to produce alloys that are formed during the deposition process. This alternative technique requires that the elemental powders adequately mix during deposition for a homogeneous deposit to be produced. Cost savings and versatility are among several of the advantages to using elemental powder mixes in LAM. Representative alloys of 316 and 430 Stainless Steel (SS) and Ti-6Al-4V were produced with elemental powder mixes during this research. These deposits were then compared to deposits of the same material manufactured with pre-alloyed powder. Comparison between the two types of samples included; EDS analysis to examine chemical homogeneity, metallography techniques to compare microstructures, and finally hardness testing to observe mechanical properties. The enthalpy of mixing is also discussed as this can impact the resulting homogeneity of deposits produced with mixes of elemental powders. Some differences were observed between the two types of deposits for 430 SS and Ti-6Al-4V. Results indicate that deposits fabricated with mixes of elemental powders can be produced to an equivalent quality of pre-alloyed powder deposits for 316 SS. This research also proposes potential alloys that could be considered for use in an elemental powder mixing technique.

  1. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  2. Preparation of metal diboride powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  3. Elemental analysis of powders with surface-assisted thin film laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Cheung, Hoi Ching; Zheng, Ronger; Ma, Qianli; Chen, Yanping; Delepine-Gilon, Nicole; Yu, Jin

    2016-10-01

    We have developed in this work a method of elemental analysis of powdered materials with laser-induced breakdown spectroscopy (LIBS). This method requires simple sample preparation. Powders are first mixed into a 75 cSt base oil to obtain a paste which is then smeared onto the polished surface of a solid state substrate, aluminum plate for instance, in the form of a uniform thin film. The prepared sample is ablated by a high energy infrared (IR at 1064 nm) nanosecond laser pulse. The laser beam transmits through the coating layer of the material to be analyzed and induces a strong plasma from the substrate. The initial plasma interacts in turn with the coating layer, leading to the vaporization and excitation of the incorporated powder particles. The subsequent emission from the plasma includes emission lines of the elements contained in the powder, which is preferentially captured by a suitable detection system. The analysis of the recorded spectrum allows the concentration determination of the targeted elements in the powder. We first applied the method on a cellulose powder of 20 μm typical particle size. The powder was spiked with titanium dioxide (TiO2) nanoparticles for Ti concentrations ranging from 25 ppm to 5000 ppm by weight. Calibration graphs were thus built to deduce figures-of-merit parameters such as the coefficient of determination (R2) and the limits of detection and quantification (LoD and LoQ). We optimized especially the choice of reference line for spectrum normalization, which resulted in better analytical performances. In the second step, two sets of powders, the aforementioned cellulose powder and an alumina powder with average particle size of ≤ 10 μm, were spiked with TiO2 nanoparticles. We then assessed the matrix effect between these two different powders for the determination of Ti by comparing their calibration curves. Our results show universal calibration curve in Ti determination in the two tested matrices. The results are

  4. Boron nitrides synthesized directly from the elements at high pressures and temperatures

    SciTech Connect

    Nicol, M.; Yoo, C.S.; Akella, J.; Cynn, H.

    1996-11-01

    We use angle-resolved synchrotron x-ray diffraction, laser sample heating, and diamond-anvil cells to follow in-situ chemical reactions directly between elemental boron and nitrogen. The structures of the solid reaction products vary with pressure. Below 10 GPa, hexagonal BN is the product; cubic or wurzite BN form at higher pressures. Under nitrogen-rich conditions, another hexagonal allotrope occurs which seems to be a new highly transparent, low density h`-BN. No direct reactions occur at ambient temperature even at pressures as high as 50 GPa, implying that a large activation barrier limits the kinetics of these exothermic processes. Laser heating overcomes the large kinetic activation barrier and initiates spontaneous, self-sustaining exothermic reactions even at moderate pressures.

  5. Fabrication of boron articles

    DOEpatents

    Benton, Samuel T.

    1976-01-01

    This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.

  6. Air toxics in coal: Distribution and abundance of selected trace elements in the Powder River Basin

    SciTech Connect

    Crowley, S.S.; Stanton, R.W.

    1994-12-31

    The 1990 Clean Air Act Amendments identified 12 potentially toxic elements, called ``air toxics,`` that may be released during the combustion of coal. The elements identified in the amendments are As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U (radionuclides). In this study, the distribution and concentration of these elements were examined, on a whole-coal basis, in samples from two cores of the Wyodak-Anderson coal bed (Paleocene, Tongue River Member of the Fort Union Formation), in the Powder River Basin of Wyoming. The distribution of these elements in the Wyodak-Anderson coal bed is also compared to the distribution of the same elements in a correlative coal bed, the Anderson-Dietz 1 coal bed in the Powder River Basin of Montana.

  7. Bifunctional air electrodes containing elemental iron powder charging additive

    DOEpatents

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  8. Microwave sintering of boron carbide

    DOEpatents

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  9. Discrete element simulation of powder compaction in cold uniaxial pressing with low pressure

    NASA Astrophysics Data System (ADS)

    Rojek, Jerzy; Nosewicz, Szymon; Jurczak, Kamila; Chmielewski, Marcin; Bochenek, Kamil; Pietrzak, Katarzyna

    2016-11-01

    This paper presents numerical studies of powder compaction in cold uniaxial pressing. The powder compaction in this work is considered as an initial stage of a hot pressing process so it is realized with relatively low pressure (up to 50 MPa). Hence the attention has been focused on the densification mechanisms at this range of pressure and models suitable for these conditions. The discrete element method employing spherical particles has been used in the numerical studies. Numerical simulations have been performed for two different contact models—the elastic Hertz-Mindlin-Deresiewicz model and the plastic Storåkers model. Numerical results have been compared with the results of laboratory tests of the die compaction of the NiAl powder. Comparisons have shown that the discrete element method is capable to represent properly the densification mechanisms by the particle rearrangement and particle deformation.

  10. Formation of microporous NiTi by transient liquid phase sintering of elemental powders.

    PubMed

    Ismail, Muhammad Hussain; Goodall, Russell; Davies, Hywel A; Todd, Iain

    2012-08-01

    Porous metallic structures are attractive for biomedical implant applications as their open porosity simultaneously improves the degree of fixation and decreases the mismatch in stiffness between bone and implant, improving bonding and reducing stress-shielding effects respectively. NiTi alloys exhibit both the shape memory effect and pseudoelasticity, and are of particular interest, though they pose substantial problems in their processing. This is because the shape memory and pseudoelastic behaviours are exceptionally sensitive to the presence of oxygen, and other minor changes in alloy chemistry. Thus in processing careful control of composition and contamination is vital. In this communication, we investigate these issues in a novel technique for producing porous NiTi parts via transient liquid phase sintering following metal injection moulding (MIM) of elemental Ni and Ti powders, and report a new mechanism for pore formation in the powder processing of metallic materials from elemental powders.

  11. Boron and other elements in sporophores of ectomycorrhizal and saprotrophic fungi.

    PubMed

    Lavola, Anu; Aphalo, Pedro J; Lehto, Tarja

    2011-04-01

    Fungi are usually thought not to have a boron (B) requirement. It is not known if mycorrhizas take up B from low concentrations that are common in forest soils, as fungi might also immobilise B. Here, we studied the B concentrations in sporophores of 49 ectomycorrhizal and 10 saprotrophic fungi to assess whether B is translocated in mycelium or not. Additionally, P and metal concentrations were measured for comparison. Variability both within species and between species was very large, as the lowest measured B concentration was 0.01 mg kg(-1) in Amanita muscaria, and the highest was 280 mg kg(-1) in Paxillus involutus. There was no clear difference between saprotrophic and mycorrhizal fungi. The majority of species did not accumulate B at more than 0.01-3 mg kg(-1), but there were some species that consistently had median concentration values higher than 5-6 mg kg(-1) and much higher maximum values, particularly Paxillus involutus, Lactarius necator and several Russula species. Most species increased their B concentration in B fertilised plots, but there were exceptions, particularly Rozites caperatus and Lactarius camphoratus. Boron concentrations did not correlate with those of other elements. In conclusion, B is translocated in the mycelia of most of the studied species. The differences between species may be due to differences in their water use, or carbohydrates used in translocation. It remains to be studied, if B concentrations in mycorrhizas or mycelia in soil are in the same order of magnitude as the larger ones found here, and if this has any effects on the host plants.

  12. Glacial-interglacial Changes in Ocean Carbon Chemistry constrained by Boron Isotopes, Trace Elements, and Modelling

    NASA Astrophysics Data System (ADS)

    Rae, J. W. B.; Adkins, J. F.; Foreman, A. D.; Charles, C.

    2014-12-01

    Deep ocean carbon storage and release is commonly invoked to explain glacial-interglacial CO2 cycles, but records of the carbonate chemistry of the glacial ocean have, until recently, been scarce. Here we present new boron isotope (δ11B) and trace metal data from benthic foraminifera from a suite of 15 cores from the South Atlantic from depths ranging from 1500 to 4000 m. These records show distinct changes in the water column depth structure of these tracers between the last glacial maximum (LGM) and late Holocene. Comparison of these paired trace element and isotope ratios reveals new insights to the shared and individual controls on tracers including Li/Ca, Sr/Ca, U/Ca, Mg/Li and δ11B. We further examine these data using a recently developed tracer fields modelling approach (Lund et al. 2011). This has previously been applied to δ18O data to investigate changes in circulation at the LGM. Here we extend this method to non-conservative isotopic and trace elemental tracers, allowing us to constrain the roles of circulation, the biological pump of organic carbon and CaCO3, and carbonate compensation, in setting deep ocean carbon storage at the LGM. Lund, D. C., J. F. Adkins, and R. Ferrari (2011), Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing, Paleoceanography, 26, PA1213, doi:10.1029/2010PA001938.

  13. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    NASA Technical Reports Server (NTRS)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  14. Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process

    NASA Astrophysics Data System (ADS)

    Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh

    2016-07-01

    Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.

  15. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  16. Homoepitaxial Boron Doped Diamond Anvils as Heating Elements in a Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeffrey; Samudrala, Gopi; Smith, Spencer; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel

    2013-03-01

    Recent advances in designer-diamond technology have allowed for the use of electrically and thermally conducting homoepitaxially-grown layers of boron-doped diamond (grown at 1200 °C with a 2% mixture of CH4 in H, resulting in extremely high doping levels ~ 1020/cm3) to be used as heating elements in a diamond anvil cell (DAC). These diamonds allow for precise control of the temperature inside of the diamond anvil itself, particularly when coupled with a cryostat. Furthermore, the unmatched thermally conducting nature of diamond ensures that no significant lateral gradient in temperature occurs across the culet area. Since a thermocouple can easily be attached anywhere on the diamond surface, we can also measure diamond temperatures directly. With two such heaters, one can raise sample temperatures uniformly, or with any desired gradient along the pressure axis while preserving optical access. In our continuing set of benchmark experiments, we use two newly created matching heater anvils with 500 μm culets to analyze the various fluorescence emission lines of ruby microspheres, which show more complicated behavior than traditional ruby chips. We also report on the temperature dependence of the high-pressure Raman modes of paracetamol (C8H9NO2) up to 20 GPa.

  17. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method

    SciTech Connect

    Herbold, E. B.; Walton, O.; Homel, M. A.

    2015-10-26

    This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulations emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.

  18. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    DOEpatents

    Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  19. Content of trace elements and chromium speciation in Neem powder and tea infusions.

    PubMed

    Novotnik, Breda; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila

    2015-01-01

    Total concentrations of selected trace elements in Neem powder and in Neem tea were determined by inductively coupled plasma mass spectrometry (ICP-MS). The data revealed that despite high total concentrations of the potentially toxic elements Al and Ni in Neem powder, their amounts dissolved in Neem tea were low. Total concentrations of the other toxic elements Pb, As and Cd were also very low and do not represent a health hazard. In contrast, total concentrations of the essential elements Fe, Cu, Zn, Se Mo and Cr in Neem powder were high and also considerable in Neem tea. Consuming one cup of Neem tea (2g per 200 mL of water) covers the recommended daily intakes for Cr and Se and represents an important source of Mo and Cu. Speciation analysis of Cr by high performance liquid chromatography (HPLC) coupled to ICP-MS with the use of enriched Cr isotopic tracers to follow species interconversions during the analytical procedure demonstrated that toxic Cr(VI) was not present either in Neem powder or in Neem tea. Its concentrations were below the limits of detection of the HPLC-ICP-MS procedure applied. The speciation analysis data confirmed that even Cr(VI) was added, it was rapidly reduced by the presence of antioxidants in Neem leaves. By the use of enriched Cr isotopic spike solutions it was also demonstrated that for obtaining reliable analytical data it is essential to apply the extraction procedures which prevent Cr species interconversions, or to correct for species transformation.

  20. Content of trace elements and chromium speciation in Neem powder and tea infusions.

    PubMed

    Novotnik, Breda; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila

    2015-01-01

    Total concentrations of selected trace elements in Neem powder and in Neem tea were determined by inductively coupled plasma mass spectrometry (ICP-MS). The data revealed that despite high total concentrations of the potentially toxic elements Al and Ni in Neem powder, their amounts dissolved in Neem tea were low. Total concentrations of the other toxic elements Pb, As and Cd were also very low and do not represent a health hazard. In contrast, total concentrations of the essential elements Fe, Cu, Zn, Se Mo and Cr in Neem powder were high and also considerable in Neem tea. Consuming one cup of Neem tea (2g per 200 mL of water) covers the recommended daily intakes for Cr and Se and represents an important source of Mo and Cu. Speciation analysis of Cr by high performance liquid chromatography (HPLC) coupled to ICP-MS with the use of enriched Cr isotopic tracers to follow species interconversions during the analytical procedure demonstrated that toxic Cr(VI) was not present either in Neem powder or in Neem tea. Its concentrations were below the limits of detection of the HPLC-ICP-MS procedure applied. The speciation analysis data confirmed that even Cr(VI) was added, it was rapidly reduced by the presence of antioxidants in Neem leaves. By the use of enriched Cr isotopic spike solutions it was also demonstrated that for obtaining reliable analytical data it is essential to apply the extraction procedures which prevent Cr species interconversions, or to correct for species transformation. PMID:26004899

  1. Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique.

    PubMed

    Nugroho, Aris W; Leadbeater, Garry; Davies, Ian J

    2010-12-01

    The authors have conducted a preliminary investigation with regard to the potential to manufacture porous titanium alloys for biomedical applications using toxic-free elemental powders, i.e., Ti, Nb, Ta, Zr, in combination with the pressurised gas bubble entrapment method and in contrast to standard processing routes that generally utilise prealloyed powder containing potentially toxic elements. Elemental powder compacts were either hot isostatic pressed (HIP-ed) at 1000°C and then foamed at 1150°C or else HIP-ed at 1100°C and foamed at 1350°C. Porous α + β alloys containing up to 45 vol% of porosity in the size range 20-200 μm were successfully produced, thus highlighting the potential of this manufacturing route. It was expected that further optimisation of the processing route would allow full development of the preferred β-Ti phase (from the point of view of elastic modulus compatibility between implant and bone) with this being the subject of future work by the authors. PMID:20960037

  2. Boron-substituted 1,3-dienes and heterodienes as key elements in multicomponent processes.

    PubMed

    Eberlin, Ludovic; Tripoteau, Fabien; Carreaux, François; Whiting, Andrew; Carboni, Bertrand

    2014-01-01

    In the last few years, multicomponent reactions involving boron substituted 1,3-dienes have emerged as important tools in synthetic organic chemistry. The most significant recent results and developments obtained in this area are reported in this review.

  3. Removal of boron species by layered double hydroxides: a review.

    PubMed

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.

  4. Removal of boron species by layered double hydroxides: a review.

    PubMed

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants. PMID:23635479

  5. Boron: a frustrated element. Physical properties at ambient conditions and under pressure from ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi; Gygi, Francois; Galli, Giulia

    2004-03-01

    Boron is the only low-Z element in the periodic table whose atomic ground state structure has not yet been fully determined. For example, it is yet unclear whether perfectly pure elemental Boron is stable in an ordered crystalline form and the number of atoms in the unit cell (varying from 315 to about 325) is still the subject of debate. Using ab-initio calculations and supercells with 1260-1280 atoms, we have studied the physical properties of Boron at ambient conditions and under pressure (P). Results about the ionic and electronic structure will be presented, in particular the role of interstitial atoms and the presence of localized states right above the Fermi level will be discussed in detail. The computed equation of state under pressure is in agreement with recent experimental data. At about 120 GPa we observe amorphization, consistent with the results of Ref. [1] at l00 GPa. Amorphization occurs by random deformation of icosahedral units which remain intact; it is accompanied by a delocalization of states near the Fermi level yielding a poorly conducting system. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48. [1] Sanz et al. Phys. Rev. Lett. 89, 245501 (2002)

  6. An elasto-viscoplastic constitutive formulation for dry powder compression analysis using finite elements

    NASA Astrophysics Data System (ADS)

    Mittal, Bhavishya

    The aim of this research was to measure, analyze, model, and predict the rate-dependent mechanical behavior of dry powders undergoing compression in a die. Mechanical properties of two ceramic powders (MZF and alumina) were studied up to 14 MPa using a medium pressure flexible boundary cubical triaxial tester (CTT). The powders were subjected to undrained tests along two stress paths and three compression rates of 0.62, 6.21, and 20.7 MPa/minute. Based on test results from compression and shear stress paths, a new elasto-viscoplastic constitutive model (PSU-EVP) was developed for studying the dry powder compression process. The PSU-EVP model was formulated using the critical state theory, the modified Cam-clay model, and the Adachi and Oka model as the basis. Unlike the modified Cam-clay model, the PSU-EVP model explicitly accounts for the work done in the volumetric compression of pore air or gas during dry powder compression. This key feature of the PSU-EVP model helps in isolating the effect of entrapped pore air (or gas) on the mechanical properties of powders. Based on the PSU-EVP constitutive model back-prediction results and sensitivity analysis, it was concluded that the model gave fairly good results for most CTT test data collected at 0.62 MPa/minute and 6.21 MPa/minute. However, the back-prediction results obtained at 20.7 MPa/minute had high average relative difference values (>20%). Overall, the PSU-EVP model can be considered to be the first step towards the development of a more robust and accurate constitutive model for the predicting stress distributions in a dry powder during compression process. A 3D finite element prediction tool (PSU-FEM v2.0 software) was developed to model the powder compression process in an elastic die. The PSU-FEM v2.0 contained a fast iterative solver based on the multigrid method. The results obtained from the multigrid solver were compared with a conventional Gauss-Siedel iterative method, conjugate gradient, and ABAQUS

  7. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  8. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-02-06

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  9. Rapid Synthesis of a Near-β Titanium Alloy by Blended Elemental Powder Metallurgy (BEPM) with Induction Sintering

    NASA Astrophysics Data System (ADS)

    Jia, Mingtu; Gabbitas, Brian

    2015-10-01

    A near-β Ti-13V-11Cr-3Al alloy was produced by blended elemental powder metallurgy combining warm compaction and induction sintering. Two Ti-13V-11Cr-3Al powder compacts with different oxygen content were manufactured by mixing PREP and HDH Ti powders with Cr and AlV master alloy powders, respectively. The effect of isothermal holding time, at a sintering temperature of 1573 K (1300 °C), on pore characteristics and compositional homogeneity was investigated in this study. Pore coarsening by Ostwald ripening occurred with an increase in the isothermal holding time and Kirkendall voids were produced by a reaction between Ti and Cr. After an isothermal holding time of 10 minutes, the two sintered powder compacts had a homogeneous composition. Ti/AlV and Ti/Cr diffusion couples were used to predict the distribution of alloying elements, and the binary Ti-V, Ti-Al, and Ti-Cr interdiffusion coefficients were consistent with the distribution of alloying elements after isothermal holding. The mechanical properties of sintered powder compacts, prepared using PREP Ti powder as the raw powder, were optimized by sintered density and pore size.

  10. Average bond energies between boron and elements of the fourth, fifth, sixth, and seventh groups of the periodic table

    NASA Technical Reports Server (NTRS)

    Altshuller, Aubrey P

    1955-01-01

    The average bond energies D(gm)(B-Z) for boron-containing molecules have been calculated by the Pauling geometric-mean equation. These calculated bond energies are compared with the average bond energies D(exp)(B-Z) obtained from experimental data. The higher values of D(exp)(B-Z) in comparison with D(gm)(B-Z) when Z is an element in the fifth, sixth, or seventh periodic group may be attributed to resonance stabilization or double-bond character.

  11. Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur.

    PubMed

    Li, Jianxiao; Li, Chunsheng; Yang, Shaorong; An, Yanni; Wu, Wanqing; Jiang, Huanfeng

    2016-09-01

    An efficient and convenient palladium-catalyzed C-H bond oxidative sulfenylation of indoles and related electron-rich heteroarenes with aryl boronic acids and elemental sulfur has been described. This procedure provides a useful and direct approach for the assembly of a wide range of structurally diverse 3-sulfenylheteroarenes with moderate to excellent yields from simple and readily available starting materials. Moreover, this synthetic protocol is suitable for N-protected and unprotected indoles. Notably, the construction of two C-S bonds in one step was also achieved in this transformation. PMID:27500941

  12. Laser synthesis of functional graded filter elements from metal-polymer powder compositions

    NASA Astrophysics Data System (ADS)

    Petrov, Alexei L.; Snarev, A. I.; Shishkovsky, Igor V.; Scherbakov, V. I.

    2002-04-01

    Perspectives of laser synthesis of functional graded materials (FGM) with controlled pores and chemical mixture are discussed. Filter elements from metal-polymer powder compositions were fabricated by the selective laser sintering method. It was shown that physical properties of the composited 3D part can change from layer to layer and have no nature analogy. In particular, permeability and porosity coefficients of synthesized 3D parts were determined depending on laser influence parameters and a polymer quantity. Wide opportunities of preliminary computer modeling of the porous space structure, the forecast filtration characteristics are discussed.

  13. Boron-substituted 1,3-dienes and heterodienes as key elements in multicomponent processes

    PubMed Central

    Eberlin, Ludovic; Tripoteau, Fabien; Carreaux, François

    2014-01-01

    Summary In the last few years, multicomponent reactions involving boron substituted 1,3-dienes have emerged as important tools in synthetic organic chemistry. The most significant recent results and developments obtained in this area are reported in this review. PMID:24605143

  14. Direct consolidation of TiAl-X alloy from elemental powder mixture

    SciTech Connect

    Lee, I.S.; Hwang, S.K.; Park, W.K.; Lee, J.H.; Park, D.H. . Dept. of Metallurgical Engineering); Kim, H.M.; Lee, Y.T. )

    1994-07-01

    Intermetallic compounds based on near [gamma] TiAl composition have drawn research attention due to their high specific strength, creep resistance and oxidation resistance required for elevated temperature application. Of the two approaches which produce the intermetallic compound, ingot metallurgy and powder metallurgy, the latter route has the merit of good room temperature tensile ductility because of the fine grain size. To obtain a full density by the powder metallurgical approach, however, is not always an easy task. Reactive sintering alone, for example, does not yield a full density in this alloy system. Recently, Kim et al. showed that a combination of low temperature extrusion and reactive sintering in a hot isostatic press was a viable route to obtain the full density. An alternative, less expensive way, is presented in this paper. In previous work, the authors reported the production of a full density Ni[sub 3]Al intermetallic compound through a direct hot extrusion of blended elemental powder mixture. In the present work, the authors attempted to extend the method to TiAl-X alloys and obtained a promising result.

  15. Applications of pulsed neutron powder diffraction to actinide elements. [Pu-Al

    SciTech Connect

    Lawson, A.C.; Richardson, J.W.; Mueller, M.H.; Lander, G.H.; Goldstone, J.A.; Williams, A.; Kwei, G.H.; Von Dreele, R.B.; Faber, J. Jr.; Hitterman, R.L.

    1987-11-01

    We have been using the technique of pulsed neutron powder diffraction to study several problems in the physics and chemistry of the actinide elements. In these elements one often encounters very complex structures resulting from polymorphic transformations presumably induced by the presence of 5f-electrons. For example, at least five distinct structures of plutonium metal are found between room temperature and its melting point of 640/sup 0/C, and two of the structures are monoclinc. The determination of the crystal structure of beta-uranium (tetragonal, 30 atoms per unit cell) which has finnaly been shown to be centrosymmetric, after decades of uncertainty is discussed. Some preliminary results on the structure of alpha-plutonium (which confirm Zachariasen's original determination of the monoclinic structure) are presented. Pu-Al alloys were also studied. 12 refs., 18 figs.

  16. Electro-explosive alloying of VT6 alloy surface by boron carbide powder with the subsequent electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Raykov, S. V.; Gromov, V. E.; Ivanov, Yu F.

    2015-11-01

    The formation of electro-explosive alloying zone with the thickness up to 50 μm has been revealed. It has been shown that it has a gradient structure, characterized by the decrease of carbon and boron concentration with the increase of the distance up to the treatment surface. The subsequent electron-beam treatment of alloying zone leads to flattening of alloying surface relief and is accompanied by the formation of a multilevel structure at the depth up to 30 μm, characterized by the interchange of some layers with a different level of alloying, having structure of a submicro- and nanoscale level.

  17. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.

    PubMed

    Liu, Yong; Li, Kaiyang; Wu, Hong; Song, Min; Wang, Wen; Li, Nianfeng; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Ta alloys were sintered using blended elemental powders. A dual structure, consisting of Ti-rich and Ta-rich zones, was formed due to the insufficient diffusion between Ti and Ta powders. The microstructure, mechanical properties and in vitro biological properties of the alloys were studied. Results indicated that the alloys have inhomogenous microstructures and compositions, but the grain structures were continuous from the Ti-rich zone to the Ta-rich zone. The Ta-rich zone exhibited a much finer grain size than the Ti-rich zone. The alloys had a high relative density in the range of 95-98%, with the porosity increasing with the content of Ta due to the increased difficulty in sintering and the formation of Kirkendall pores. The alloys had a good combination of low elastic modulus and high tensile strength. The strength of alloys was almost doubled compared to that of the ingot metallurgy alloys with the same compositions. The low elastic modulus was due to the residual pores and the alloying effect of Ta, while the high tensile strength resulted from the strengthening effects of solid solution, fine grain size and α phase. The alloys had a high biocompatibility due to the addition of Ta, and were suitable for the attachment of cells due to the surface porosity. It was also indicated that PM Ti-(20-30)Ta alloys are promising for biomedical applications after the evaluations of both the mechanical and the biological properties. PMID:26275506

  18. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.

    PubMed

    Liu, Yong; Li, Kaiyang; Wu, Hong; Song, Min; Wang, Wen; Li, Nianfeng; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Ta alloys were sintered using blended elemental powders. A dual structure, consisting of Ti-rich and Ta-rich zones, was formed due to the insufficient diffusion between Ti and Ta powders. The microstructure, mechanical properties and in vitro biological properties of the alloys were studied. Results indicated that the alloys have inhomogenous microstructures and compositions, but the grain structures were continuous from the Ti-rich zone to the Ta-rich zone. The Ta-rich zone exhibited a much finer grain size than the Ti-rich zone. The alloys had a high relative density in the range of 95-98%, with the porosity increasing with the content of Ta due to the increased difficulty in sintering and the formation of Kirkendall pores. The alloys had a good combination of low elastic modulus and high tensile strength. The strength of alloys was almost doubled compared to that of the ingot metallurgy alloys with the same compositions. The low elastic modulus was due to the residual pores and the alloying effect of Ta, while the high tensile strength resulted from the strengthening effects of solid solution, fine grain size and α phase. The alloys had a high biocompatibility due to the addition of Ta, and were suitable for the attachment of cells due to the surface porosity. It was also indicated that PM Ti-(20-30)Ta alloys are promising for biomedical applications after the evaluations of both the mechanical and the biological properties.

  19. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    PubMed Central

    2009-01-01

    In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N) nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS) mechanism was proposed for the growth of the nanotubes. PMID:20596377

  20. Effect of boron particle size on microstructure and superconducting properties of in-situ Cu addition MgB2 multifilamentary wire

    NASA Astrophysics Data System (ADS)

    Hishinuma, Y.; Kikuchi, A.; Shimada, Y.; Hata, S.; Takeuchi, T.; Yamada, S.; Sagara, A.

    2014-05-01

    In previous studies, the secondary (impurity and non-reactive) phase and voids were observed in MgB2 matrix after the heat treatment, and then these are the lowering factors of critical current density (Jc) property. In order to improve Jc property by microstructure control of MgB2 matrix, the fine elemental boron powder as the raw material was carried out using the high-speed vibrated milling with tungsten carbide (WC) jar. The average particle size of metal boron powder was decreased from 1.14 μm to 0.20 μm by the high-speed vibrated milling. The various fine particle boron powders as the function of milling time were also prepared, and in-situ Cu addition MgB2 multifilamentary wires using these fine boron powders were fabricated. Critical transition temperature (Tc) value of Cu addition MgB2 wire using fine boron powder obtained to about 37 K. No change of the Tc property by the different particle sized boron powders was confirmed. In this paper, the comparisons of microstructure and superconducting properties between the different boron particle sizes were investigated.

  1. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  2. A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders

    NASA Astrophysics Data System (ADS)

    Vajpai, S. K.; Dube, R. K.; Chatterjee, P.; Sangal, S.

    2012-07-01

    The current work describes the experimental results related to the successful preparation of fine-grained, Cu-Al-Ni, high-temperature shape-memory alloy (SMA) strips from elemental Cu, Al, and Ni powders via a novel powder metallurgy (P/M) processing approach. This route consists of short time period ball milling of elemental powder mixture, preform preparation from milled powder, sintering of preforms, hot-densification rolling of unsheathed sintered powder preforms under protective atmosphere, and postconsolidation homogenization treatment of the hot-rolled strips. It has been shown that it is possible to prepare chemically homogeneous Cu-Al-Ni SMA strips consisting of equiaxed grains of average size approximately 6 μm via the current processing approach. It also has been shown that fine-grained microstructure in the finished Cu-Al-Ni SMA strips resulted from the pinning effect of nanosized alumina particles present on the grain boundaries. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β1^' } - and γ1^' } -type martensites. The Cu-Al-Ni SMA strips had 677 MPa average fracture strength, coupled with 13 pct average fracture strain. The fractured surfaces of the specimens exhibited primarily dimpled ductile type of fracture, together with some transgranular mode of fracture. The Cu-Al-Ni strips exhibited an almost 100 pct one-way shape recovery after bending followed by unconstrained heating at 1, 2, and 4 pct applied deformation prestrain. The two-way shape-memory strain was found approximately 0.35 pct after 15 training cycles at 4 pct applied training prestrain.

  3. Rapid Quantitative Analyses of Elements on Herb Medicine and Food Powder Using TEA CO2 Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Khumaeni, Ali; Ramli, Muliadi; Idris, Nasrullah; Lee, Yong Inn; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Deguchi, Yoji; Niki, Hideaki; Kagawa, Kiichiro

    2009-03-01

    A novel technique for rapid quantitative analyses of elements on herb medicine and food powder has successfully been developed. In this technique, the powder samples were plugged in a small hole (2 mm in diameter and 3 mm in depth) and covered by a metal mesh. The Transversely Excited Atmospheric (TEA) CO2 laser (1500 mJ, 200 ns) was focused on the powder sample surfaces passing through the metal mesh at atmospheric pressure of nitrogen surrounding gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are subsequently ablated by the laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited. Using this method, a quantitative analysis of the milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.

  4. Reaction phase-forming and mechanical properties of Fe[sub 3]Al produced from elemental powders

    SciTech Connect

    Zhuang, L.Z.; Buekenhout, L. . Lab. for Materials Science); Duszczyk, J. )

    1994-04-01

    The Fe[sub 3]Al-based intermetallics can be produced by several conventional processing routes. However, there are applications where the powder metallurgy (P/M) process offers a better or the only route for producing these materials. A refined microstructure of the P/M products is beneficial for improving mechanical properties of the Fe[sub 3]Al-based intermetallics. Conventional P/M processing routes utilize mostly the prealloyed powders and consolidation is conducted by sintering, hot isostatic pressing (HIP) or hot extrusion. These methods involve generally processing steps and are, therefore, rather expensive. Reactive sintering, as an alternative fabrication method, is one of the novel and attractive processes. It is a method to obtain dense intermetallic compounds and intermetallic matrix composites from elemental powders using a self-sustaining reaction. This process, also known as combustion process, offers advantages over conventional processing methods including the use of less expensive, readily available, and easily compacted elemental powder, lower processing temperatures and shorter processing times, in short, low cost and energy savings. On the other hand, the reaction process of elemental iron-aluminium mixtures has a particular problem, i.e., a high porosity of the products due to extensive swelling. In order to achieve near-full density, the reactive sintering process should be assisted by an external pressure. In this case, reactive sintering is conducted in a HIP unit or a hot press. One should also appreciate that reactive hipping may provide near-net shape components which is important for reducing the cost because most of the intermetallics are hard-to-fabricate materials. This study describes the preparation of a binary Fe[sub 3]Al intermetallic compound by in-situ reaction phase-forming/consolidation from elemental powders, its mechanical properties, and a comparison of these properties with those of conventionally processed materials.

  5. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  6. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  7. [Determination of the content of eight metal elements in enteral nutritional powder (VIVONEX) by microwave digestion-AAS].

    PubMed

    Ding, Rui; Zhou, Chang-Ming; Ji, Hong; Yu, Li; Li, Zhi-Gang; Peng, Tao; Wang, Lin

    2011-11-01

    Enteral nutritional powder (VIVONEX) is mainly used to provide nourishment for critical patients and those patients who have just undergone surgical operation. Microelements included in it exert significant influence on the patients' physical functioning. In the present paper, Enteral nutritional powder was digested with HNO3 by microwave digestion. After that, the content of eight metal elements in it, K, Na, Ca, Mg, Fe, Mn, Cu and Zn, was determined by FAAS. With the good linear correlations of standard curves (r = 0.999 2-0.999 8), the recovery (n = 6) ranging from 97% to 103%, and the RSD (n = 6) from 0.46% to 1.12%, the method can be applied to simultaneous determination of several metal elements in enteral nutritional powder, and offers advantages of low detection limit, high sensitivity, speediness and accuracy. The determination of metal elements in samples by this method gives satisfactory results. Hence, the method helps to guarantee quality control of this kind of medicine, and supplies statistical evidence for the safety of clinical drug use. PMID:22242533

  8. Boron-lithium relationships in rhyolites and associated thermal waters of young silicic calderas, with comments on incompatible element behavior

    SciTech Connect

    Shaw, D.M. ); Sturchio, N.C. )

    1992-10-01

    This study had three goals: (1) to study B distribution in a rhyolitic volcanic sequence already extensively investigated for other elements; (2) to interpret the joint behavior of B and Li during the interaction of such rocks with subsurface waters; and (3) to assess the manner in which water affects the behavior of incompatible elements such as B and Gd. New B, Gd, and Sm analyses have been made on a suite of Yellowstone rhyolites, including fresh and partially devitrified glassy obsidian from surface exposures of several flows, a drill-core of increasing degrees of alteration in the Biscuit Basin Flow, and two drill-cores from other flows. Within the Biscuit Basin Flow, the Sm and Gd concentrations remain rather constant and behave conservatively, independent of alteration. Boron decreases from about 10 to 3 ppm with progressive alteration, and Li increases from about 40 ppm by a factor of 2-3 in the most altered rocks. Obsidians from the Valles and Long Valley calderas show greater Li loss during alteration. All the rhyolitic rocks lose B during aqueous alteration; the waters acquire both B and Li, but proportionately much more B. Natural waters of all kinds, including those from the three calderas, show six orders of magnitude range in aqueous B and Li, with a high degree of linear correlation and an average ratio B/Li essentially constant at 4.0. The linearity mainly expresses processes of dilution and concentration: reactions specific to B or Li engender waters with deviating B/Li.

  9. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders.

    PubMed

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-10-01

    The applicability of irregular prealloyed Ti-6Al-4V powder for the fabrication of titanium products by pressing and sintering and its employment as a master alloy to obtain the Ti-3Al-2.5V alloy was studied. To this end, the starting powders were characterised by dilatometry, differential thermal analysis and XRD. Green samples were obtained by cold uniaxial pressing, and the evolution of the microstructure over the sintering temperature range 900-1400°C was studied. The variation of the final density and mechanical properties with the sintering temperature was considered. Based on the study carried out, it can be stated that more reliable powders are needed to open the titanium market to new applications. A relative density of 95% and diverse microstructural features and mechanical properties equivalent to those of biomedical devices can be obtained by the pressing and sintering route.

  10. Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Peters, Daniel; Pettke, Thomas

    2016-04-01

    An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can

  11. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  12. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  13. Boron Clusters Come of Age

    ERIC Educational Resources Information Center

    Grimes, Russell N.

    2004-01-01

    Boron is the only element other than carbon that can build molecules of unlimited size by covalently boding to itself, a property known as catenation. In contrast to the chains and rings favored by carbon, boron arguably adopts a cluster motif that is reflected in the various forms of the pure element and in the huge area of polyhedral borane…

  14. METHOD OF PREPARING POLONIUM-BORON SOURCES

    DOEpatents

    Birden, J.H.

    1959-08-01

    An improved technique is described for preparation of a polonium-boron neutron source. A selected amount of Po-210 is vaporized into a thin walled nickel container, then the desired amcunt of boron powder is added. After sealing the container, it is heated quickly by induction heating to vaporize the Po-210 and deposit it in the still cool boron powder. The unit is then quickly cooled to prevent revaporization of the Po-210 from the boron. The build-up of neutron emission may be followed by means of a neutron counter in order to terminate the heating at the optimum level of neutron yield.

  15. Analysis of the laser powder bed fusion additive manufacturing process through experimental measurement and finite element modeling

    NASA Astrophysics Data System (ADS)

    Dunbar, Alexander Jay

    The objective in this work is to provide rigourous experimental measurements to aid in the development of laser powder bed fusion (LPBF) additive manufacturing (AM). A specialized enclosed instrumented measurement system is designed to provide in situ experimental measurements of temperature and distortion. Experiments include comparisons of process parameters, materials and LPBF machines. In situ measurements of distortion and temperature made throughout the build process highlight inter-layer distortion effects previously undocumented for laser powder bed fusion. Results from these experiments are also be implemented in the development and validation of finite element models of the powder bed build process. Experimental analysis is extended from small-scale to larger part-scale builds where experimental post-build measurements are used in analysis of distortion profiles. Experimental results provided from this study are utilized in the validation of a finite element model capable of simulating production scale parts. The validated finite element model is then implemented in the analysis of the part to provide information regarding the distortion evolution process. A combination of experimental measurements and simulation results are used to identify the mechanism that results in the measured distortion profile for this geometry. Optimization of support structure primarily focuses on the minimization of material use and scan time, but no information regarding failure criteria for support structure is available. Tensile test samples of LPBF built support structure are designed, built, and tested to provide measurements of mechanical properties of the support structure. Experimental tests show that LPBF built support structure has only 30-40% of the ultimate tensile strength of solid material built in the same machine. Experimental measurement of LPBF built support structure provides clear failure criteria to be utilized in the future design and implementation of

  16. [Ultra-Fine Pressed Powder Pellet Sample Preparation XRF Determination of Multi-Elements and Carbon Dioxide in Carbonate].

    PubMed

    Li, Xiao-li; An, Shu-qing; Xu, Tie-min; Liu, Yi-bo; Zhang, Li-juan; Zeng, Jiang-ping; Wang, Na

    2015-06-01

    The main analysis error of pressed powder pellet of carbonate comes from particle-size effect and mineral effect. So in the article in order to eliminate the particle-size effect, the ultrafine pressed powder pellet sample preparation is used to the determination of multi-elements and carbon-dioxide in carbonate. To prepare the ultrafine powder the FRITSCH planetary Micro Mill machine and tungsten carbide media is utilized. To conquer the conglomeration during the process of grinding, the wet grinding is preferred. The surface morphology of the pellet is more smooth and neat, the Compton scatter effect is reduced with the decrease in particle size. The intensity of the spectral line is varied with the change of the particle size, generally the intensity of the spectral line is increased with the decrease in the particle size. But when the particle size of more than one component of the material is decreased, the intensity of the spectral line may increase for S, Si, Mg, or decrease for Ca, Al, Ti, K, which depend on the respective mass absorption coefficient . The change of the composition of the phase with milling is also researched. The incident depth of respective element is given from theoretical calculation. When the sample is grounded to the particle size of less than the penetration depth of all the analyte, the effect of the particle size on the intensity of the spectral line is much reduced. In the experiment, when grounded the sample to less than 8 μm(d95), the particle-size effect is much eliminated, with the correction method of theoretical α coefficient and the empirical coefficient, 14 major, minor and trace element in the carbonate can be determined accurately. And the precision of the method is much improved with RSD < 2%, except Na2O. Carbon is ultra-light element, the fluorescence yield is low and the interference is serious. With the manual multi-layer crystal PX4, coarse collimator, empirical correction, X-ray spectrometer can be used to

  17. [Ultra-Fine Pressed Powder Pellet Sample Preparation XRF Determination of Multi-Elements and Carbon Dioxide in Carbonate].

    PubMed

    Li, Xiao-li; An, Shu-qing; Xu, Tie-min; Liu, Yi-bo; Zhang, Li-juan; Zeng, Jiang-ping; Wang, Na

    2015-06-01

    The main analysis error of pressed powder pellet of carbonate comes from particle-size effect and mineral effect. So in the article in order to eliminate the particle-size effect, the ultrafine pressed powder pellet sample preparation is used to the determination of multi-elements and carbon-dioxide in carbonate. To prepare the ultrafine powder the FRITSCH planetary Micro Mill machine and tungsten carbide media is utilized. To conquer the conglomeration during the process of grinding, the wet grinding is preferred. The surface morphology of the pellet is more smooth and neat, the Compton scatter effect is reduced with the decrease in particle size. The intensity of the spectral line is varied with the change of the particle size, generally the intensity of the spectral line is increased with the decrease in the particle size. But when the particle size of more than one component of the material is decreased, the intensity of the spectral line may increase for S, Si, Mg, or decrease for Ca, Al, Ti, K, which depend on the respective mass absorption coefficient . The change of the composition of the phase with milling is also researched. The incident depth of respective element is given from theoretical calculation. When the sample is grounded to the particle size of less than the penetration depth of all the analyte, the effect of the particle size on the intensity of the spectral line is much reduced. In the experiment, when grounded the sample to less than 8 μm(d95), the particle-size effect is much eliminated, with the correction method of theoretical α coefficient and the empirical coefficient, 14 major, minor and trace element in the carbonate can be determined accurately. And the precision of the method is much improved with RSD < 2%, except Na2O. Carbon is ultra-light element, the fluorescence yield is low and the interference is serious. With the manual multi-layer crystal PX4, coarse collimator, empirical correction, X-ray spectrometer can be used to

  18. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  19. Boron doping a semiconductor particle

    SciTech Connect

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  20. Boron doping a semiconductor particle

    SciTech Connect

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  1. Electronic conduction in liquid boron

    NASA Astrophysics Data System (ADS)

    Glorieux, B.; Saboungi, M. L.; Enderby, J. E.

    2001-10-01

    The electrical conductivity of levitated liquid elemental boron was measured near the melting point using a contactless electrical conductivity technique. A phase change is clearly detected in the course of laser heating of a 2 mm diameter boron sphere levitated aerodynamically. The value obtained for the electrical conductivity sets liquid boron among the liquid semiconductors and establishes that the semiconducting behavior survives the melting process contradicting an earlier report that a semiconductor-to-metal transition occurs.

  2. A study of galactic cosmic ray propagation models based on the isotopic composition of the elements lithium, beryllium and boron

    NASA Technical Reports Server (NTRS)

    Hinshaw, G. F.; Wiedenbeck, M. E.; Greiner, D. E.

    1982-01-01

    A good test for a cosmic ray propagation model is its ability to predict the abundances of the light secondary nuclei lithium, beryllium, and boron. By using measured isotopic abundances of lithium, beryllium, and boron, Garcia-Munoz et al. (1979) were able to place limits on three important parameters of a leaky box propagation model. The considered parameters include the source spectral parameter, the leakage mean free path, and the characteristic adiabatic energy loss due to solar modulation. The present investigation is concerned with a critical evaluation of the information which can be deduced about these parameters from isotopic composition alone, taking into account the effects of uncertainties in the spallation cross section data.

  3. Boron carbide whiskers produced by vapor deposition

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  4. Determination of trace elements in high purity alumina powder by helium enhanced direct current glow discharge mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jung, Sehoon; Kim, Sunhye; Hinrichs, Joachim

    2016-08-01

    Trace impurities in high purity alumina powder were determined by fast flow direct current glow discharge mass spectrometry (GD-MS). The non-conductive samples were prepared with high purity graphite powder and used as a sample binder and as a secondary cathode. To improve the sensitivity of the GD-MS analysis, helium was introduced as an additional glow discharge gas to argon plasma. The quantification results of the GD-MS measurement were calculated by external calibration with matrix matched certified reference materials. The GD-MS results for the determination of Na, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn and Ga in the alumina samples agreed well with the certified values of a reference material and the results of chemical analysis using wet sample digestion with inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The GD-MS analysis is a rapid analysis technique to determine trace elements in non-conductive alumina to below mg·kg- 1 levels.

  5. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    NASA Technical Reports Server (NTRS)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  6. Polyethylene/Boron Composites for Radiation Shielding Applications

    SciTech Connect

    Harrison, Courtney; Grulke, Eric; Burgett, Eric; Hertel, Nolan

    2008-01-21

    Multifunctional composites made with boron are absorbers of low energy nuetrons, and could be used for structural shielding materials. Polyethylene/boron carbide composites were fabricated using conventional polymer processing techniques, and were evaluated for mechanical and radiation shielding properties. Addition of neat boron carbide (powder and nanoparticles) to an injection molding grade HPDE showed superior mechanical properties compared to neat HDPE. Radiation shielding measurements of a 2 wt% boron carbide composite were improved over those of the neat polyethylene.

  7. Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element.

    PubMed

    Li, Jian; Zhang, Ning; Sun, Qingqing; Bai, Zhanming; Zheng, Jianbin

    2016-10-01

    A novel imprinted silica matrix-poly(aniline boronic acid) hybrid for electrochemical detection of dopamine (DA) was developed. Boronic acid functionalized conducting polymer was electrochemically prepared on Au electrode. The number of covalent binding sites toward DA templates was controlled by potential cycles. A precursory sol solution of ammonium fluorosilicate (as cross-linking monomer) containing DA was spin-coated on the polymer modified electrode. Under NH3 atmosphere, the hydroxyl ions were generated in the solution and catalyzed the hydrolysis of fluorosilicate to form silica matrix. After this aqueous sol-gel process, an inorganic framework around the DA template was formed and the imprinted hybrid for DA was also produced. As revealed by scanning electron microscopy, UV-vis spectroscopy and cyclic voltammetry characterization, DA was embedded in the imprinted hybrid successfully. The affinity and selectivity of the imprinted hybrid were also characterized by cyclic voltammetry. The imprinted hybrid showed higher affinity for DA than that for epinephrine, and little or no affinity for ascorbic acid and uric acid due to the combined effects of covalent interaction, cavities matching and electrostatic repulsion. The imprinted hybrid sensor exhibited a quick response (within 5min) to DA in the concentration range from 0.05 to 500μmolL(-1) with a detection limit of 0.018μmolL(-1). The prepared sensor was also applied to detect DA in real samples with a satisfactory result. PMID:27474321

  8. Boron metasomatism and behaviour of rare earth elements during formation of tourmaline rocks in the eastern Arunta Inlier, central Australia

    NASA Astrophysics Data System (ADS)

    Raith, Johann G.; Riemer, née Schöner, Nina; Meisel, Thomas

    Tourmaline rocks of previously unclear genesis and spatially associated with W- (Cu)-bearing calc-silicate rocks occur in Palaeoproterozoic supracrustal and felsic intrusive rocks in the Bonya Hills in the eastern Arunta Inlier, central Australia. Tourmalinisation of metapelitic host rocks postdates the peak of regional low-pressure metamorphism (M1/D1, 500 °C, 0.2 GPa), and occurred synkinematically between the two main deformation events D1 and D2, coeval with emplacement of Late Strangways ( 1.73 Ga) tourmaline-bearing leucogranites and pegmatites. Tourmaline is classified as schorl to dravite in tourmaline-quartz rocks and surrounding tourmaline-rich alteration zones, and as Fe-rich schorl to foitite in the leucogranites. Boron metasomatism resulted in systematic depletion of K, Li, Rb, Cs, Mn and enrichment of B, and in some samples of Na and Ca, in the tourmaline rocks compared to unaltered metasedimentary host rocks. Whole-rock REE concentrations and patterns of unaltered schist, tourmalinised schist and tourmaline-quartz veins-the latter were the zones of influx of the boron-rich hydrothermal fluid-are comparable to those of post-Archaean shales. Thus, the whole-rock REE patterns of these rocks are mostly controlled by the metapelitic precursor. In contrast, REE concentrations of leucogranitic rocks are low (<=10 times chondritic), and their flat REE patterns with pronounced negative Eu anomalies are typical for fractionated granitic melts coexisting with a fluid phase. REE patterns for tourmalines separated from metapelite-hosted tourmaline-quartz veins and tourmaline-bearing granites are very different from one another but each tourmaline pattern mirrors the REE distribution of its immediate host rock. Tourmalines occurring in tourmaline-quartz veins within tourmalinised metasediments have LREE-enriched (LaN/YbN=6.3-55), shale-like patterns with higher ΣREE (54-108 ppm). In contrast, those formed in evolved leucogranites exhibit flat REE patterns (La

  9. Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Kanaev, Andrei V.; Petitet, Jean-Pierre; Museur, Luc; Marine, Vladimir; Solozhenko, Vladimir L.; Zafiropulos, Vassilis

    2004-10-01

    The effect of the femtosecond and nanosecond UV laser irradiation (below the ablation threshold) on graphitelike hexagonal boron nitride (hBN) has been studied. Experiments were carried out with the compacted powder under high vacuum at room temperature using the excimer KrF laser (248nm). In the nanosecond operation mode, the laser-induced fluorescence spectra are found strongly modified depending on the integrated doze, which is attributed to a progressive enrichment of the surface layer by an elemental boron. A slow sample recovery after the laser irradiation has been observed. On the other hand, in the femtosecond mode, the fluorescence spectra depend on the laser fluence, and the changes are reversible: low-energy fluorescence spectra are restored immediately when the laser energy decreases. This effect can be explained by a material bleaching, which favors a bulk centers emission. The ablation threshold has been determined as 78mJ/cm2 in the femtosecond laser operational mode.

  10. The real structure of crushing products of crystalline β-rhombohedral boron

    NASA Astrophysics Data System (ADS)

    Gabunia, D. L.; Badzagua, T. Sh.; Tsomaya, M. K.; Lezhava, D. T.; Avlokhashvili, D. N.; Maisuradze, N. T.; Dekanosidze, R. N.

    1991-07-01

    It was established, that depending on the methods of crushing to powder of crystalline β-rhombohedral boron different phases can be produced: β-rhombohedral boron and B6O suboxide after pounding, α-tetragonal modification of boron and β-rhombohedral boron with unregular strauture both in volume and in the superficial layers of particles after grinding. All these phases are present in powders produced by combined process (pounding and grinding); their ratio depends on the duration of the process.

  11. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    SciTech Connect

    Tran, Phuoc

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  12. Development of a certified reference material (NMIJ CRM 7512-a) for the determination of trace elements in milk powder.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Miyashita, Shin-ichi; Kuroiwa, Takayoshi; Inagaki, Kazumi; Chiba, Koichi; Hioki, Akiharu

    2013-01-01

    A certified reference material (CRM), NMIJ CRM 7512-a, was developed for the determination of trace elements in milk powder. At least three independent analytical methods were applied to characterize the certified value of each element; all of these analytical methods were based on microwave acid digestions and carried out using different analytical instruments. The certified value was given on a dry-mass basis, where the dry-mass correction factor was obtained by drying the sample at 65°C for 15 to 25 h. The certified values in the units of mass fractions for 13 elements were as follows: Ca, 8.65 (0.38) g kg(-1); Fe, 0.104 (0.007) g kg(-1); K, 8.41 (0.33) g kg(-1); Mg, 0.819 (0.024) g kg(-1); Na, 1.87 (0.09) g kg(-1); P, 5.62 (0.23) g kg(-1); Ba, 0.449 (0.013) mg kg(-1); Cu, 4.66 (0.23) mg kg(-1); Mn, 0.931 (0.032) mg kg(-1); Mo, 0.223 (0.012) mg kg(-1); Rb, 8.93 (0.31) mg kg(-1); Sr, 5.88 (0.20) mg kg(-1); and Zn, 41.3 (1.4) mg kg(-1), where the numbers in the parentheses are the expanded uncertainties with a coverage factor of 2. The expanded uncertainties were estimated considering the contribution of the analytical methods, the method-to-method variance, the sample homogeneity, the dry-mass correction factor, and the concentrations of the standard solutions for calibration. The concentrations of As (2.1 μg kg(-1)), Cd (0.2 μg kg(-1)), Cr (1.3 μg kg(-1)), Pb (0.3 μg kg(-1)), and Y (64 μg kg(-1)) were given as information values for the present CRM.

  13. Reactivity of boron in soild state reaction and sintering for consolidation of boron compounds

    SciTech Connect

    Itoh, Hideaki

    1996-12-31

    Boron compounds such as TiB{sub 2}, B{sub 4}C, B{sub 6}O and cBN are known as super-hard ceramic materials and are used for cutting tools and wear-resistant dies or nozzles. However, these materials are difficult to sinter under normal pressure in the absence of sintering reagents. To achieve full density, fine-grained powders of these boron compounds must be sintered under high pressure and temperature conditions. The use of composite powder consisting of these boron compounds is effective for controlling the microstructure and increasing the toughness of the ceramics. In the present paper, the reactivity of amorphous boron is examined during solid phase synthesis of boron compounds. High pressure sintering behavior of TiB{sub 2}-B{sub 4}C, B{sub 6}O-B{sub 4}C or cBN is also investigated in relation to the sinterability of the synthesized powder, the microstructural control of sintered compact, and improvement of mechanical properties. The role of reactive boron in the formation of boron compounds and mass transport in the sintering process for improved consolidation of boron compounds is discussed.

  14. First-principles studies of boron nanostructures

    NASA Astrophysics Data System (ADS)

    Lau, Kah Chun

    Boron is an 'electron deficient' element which has a rather fascinating chemical versatility. In the solid state, the elemental boron has neither a pure covalent nor a pure metallic character. As a result, its vast structural dimensionality and peculiar bonding features hold a unique place among other elements in the periodic table. In order to understand and properly describe these unusual bonding features, a detailed and systematic theoretical study is needed. In this work, I will show that some of the qualitative features of boron nanostructures, including clusters, sheets and nanotubes can easily be extracted from the results of first principles calculations based on density functional theory. Specifically, the size-dependent evolution of topological structures and bonding characteristics of boron clusters, Bn will be discussed. Based on the scenario observed in the boron clusters, the unique properties of boron sheets and boron nanotubes will be described. Moreover, the ballistic electron transport in single-walled boron nanotube relative to that of single-walled carbon nanotubes will be considered. It is expected that the theoretical results obtained in the present thesis will initiate further studies on boron nanostructures, which will be helpful in understanding, designing and realizing boron-based nanoscale devices.

  15. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1992-04-28

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  16. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.

    1992-01-01

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  17. Boron nutrition and mobility, and its relation to the elemental composition of greenhouse grown root crops I. rutabaga

    SciTech Connect

    Shelp, B.J.; Shattuck, V.I.

    1987-01-01

    The nutrition and mobility of B, and its relation to the elemental composition of two cultivars of rutabaga (Brassica napus ssp. rapifera cv. Laurentian and Wilhelmsberger) plants were investigated in greenhouse experiments. Laurentian exhibited a greater response than Wilhelmsberger to continuing B deficiency as indicated by the severity in the roots of brown heart, of external roughness and elongation and of the decrease in B concentration. Signs of B deficiency were not found when the B contents of the root and young leaves were 27 and 56 ..mu..g and g/sup -1/ DM respectively. Root B levels of 14 and 17-20 ..mu..g f/sup -1/ gave moderate and slight internal signs of brown discoloration. Foliar applications of B partially restored the B concentrations of the roots; however, the mechanisms of movement was unclear. The Mg, Mn and Zn contents of roots were the only elements that consistently increased and accumulated under B deficiency. The relative element composition of the root compared to the mature leaves is consistent with the root being supplied predominantly with nutrients by the phloem.

  18. Method and device to synthesize boron nitride nanotubes and related nanoparticles

    DOEpatents

    Zettl, Alexander K.

    2016-07-19

    Methods and apparatus for producing chemical nanostructures having multiple elements, such as boron and nitride, e.g. boron nitride nanotubes, are disclosed. The method comprises creating a plasma jet, or plume, such as by an arc discharge. The plasma plume is elongated and has a temperature gradient along its length. It extends along its length into a port connector area having ports for introduction of feed materials. The feed materials include the multiple elements, which are introduced separately as fluids or powders at multiple ports along the length of the plasma plume, said ports entering the plasma plume at different temperatures. The method further comprises modifying a temperature at a distal portion of or immediately downstream of said plasma plume; and collecting said chemical nanostructures after said modifying.

  19. Initial boronization of PBX-M using ablation of solid boronized probes

    SciTech Connect

    Kugel, H.W.; Hirooka, Y.; Kaita, R.; Kaye, S.; Khandagle, M. . Inst. of Plasma and Fusion Research); Timberlake, J.; Bell, R.; England, A.; Isler, R.; Okabayashi, M.; Paul, S.; Takahashi, H.; Tighe, W.; von Goeler, S.; Post-Zwicker, A.P. ); Jones, S. )

    1993-05-01

    The initial boronization of PBX-M was performed using the sequential ablation of two types of solid target probes. Probe-1 in a mushroom shape consisted of a 10.7% boronized 2-D C-C composite containing 3.6 g of boron in a B[sub 4]C binder. Probe-2 in a rectangular shape consisted of an 86% boronized graphite felt composite containing 19.5 g of 40 [mu] boron particles. After boronization with Probe-1, the loop voltage during 1 MW neutral beam heated plasmas decreased 27% and volt-sec consumption decreased 20%. Strong peripheral spectral lines from low-Z elements decreased by factors of about 5. The central oxygen density decreased 15--20%. The total radiated power during neutral beam injection decreased by 43%. Probe-2 boronization exhibited improved operating conditions similar to Probe-1, but for some parameters, a smaller percentage change occurred due to the residual boron from the previous boronization using Probe-1. The ablation rates of both probes were consistent with front face temperatures at or slightly above the boron melting point. These results confirm the effectiveness of the solid target boronization (STB) technique as a real-time impurity control method for replenishing boron depositions without the use of hazardous borane compounds.

  20. Initial boronization of PBX-M using ablation of solid boronized probes

    SciTech Connect

    Kugel, H.W.; Hirooka, Y.; Kaita, R.; Kaye, S.; Khandagle, M.; Timberlake, J.; Bell, R.; England, A.; Isler, R.; Okabayashi, M.; Paul, S.; Takahashi, H.; Tighe, W.; von Goeler, S.; Post-Zwicker, A.P.; Jones, S.

    1993-05-01

    The initial boronization of PBX-M was performed using the sequential ablation of two types of solid target probes. Probe-1 in a mushroom shape consisted of a 10.7% boronized 2-D C-C composite containing 3.6 g of boron in a B{sub 4}C binder. Probe-2 in a rectangular shape consisted of an 86% boronized graphite felt composite containing 19.5 g of 40 {mu} boron particles. After boronization with Probe-1, the loop voltage during 1 MW neutral beam heated plasmas decreased 27% and volt-sec consumption decreased 20%. Strong peripheral spectral lines from low-Z elements decreased by factors of about 5. The central oxygen density decreased 15--20%. The total radiated power during neutral beam injection decreased by 43%. Probe-2 boronization exhibited improved operating conditions similar to Probe-1, but for some parameters, a smaller percentage change occurred due to the residual boron from the previous boronization using Probe-1. The ablation rates of both probes were consistent with front face temperatures at or slightly above the boron melting point. These results confirm the effectiveness of the solid target boronization (STB) technique as a real-time impurity control method for replenishing boron depositions without the use of hazardous borane compounds.

  1. Investigation into the relationship between major and minor element contents and particle size and leachability of boron in fly ash from coal fuel thermal power plants.

    PubMed

    Narukawa, Tomohiro; Riley, Kenneth W; French, David H; Takatsu, Akiko; Chiba, Koichi

    2003-10-01

    A basic investigation of boron in discharged fly ash by coal fuel thermal power plants in several worldwide locations was carried out. Eight kinds of fly ash sample were prepared from eight coal fuel thermal power plants. Two of the fly ash samples were used to examine the relationship between the concentration of boron in fly ash and the particle size. When the particle size of fly ash is smaller, there is a possibility that it will be released into the air and spread over a wide area in the environment. However, it has become apparent that fly ash of smaller particle size has a higher concentration of boron and a higher enrichment factor. In other fly ash samples, the boron contents were examined and leaching tests were carried out. There is acidic fly ash as well as alkaline fly ash that contains larger amounts of acidic or basic salts. On alkaline fly ash, when the concentration of boron bound to Fe-Mn oxide is low; it has become apparent that leaching boron is increased in a solution with lower pH of approximately 4 which is nearly the pH of acid rain.

  2. Mineral resource of the month: boron

    USGS Publications Warehouse

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  3. Direct current sputtering of boron from boron/boron mixtures

    DOEpatents

    Timberlake, J.R.; Manos, D.; Nartowitz, E.

    1994-12-13

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.

  4. Modifications of multi-wall carbon nanotubes with B-containing vapor and their effects on the properties of boron carbide matrix nanocomposites.

    PubMed

    Herth, S; Miranda, D; Doremus, R H; Siegel, R W

    2008-06-01

    Multi-wall carbon nanotubes were modified by heating them together with elemental boron powder. B4C crystals grew on the surfaces of the nanotubes, and electron diffraction patterns showed an orientation dependence of the surface B4C and the underlying carbon in the nanotubes. There was no reaction of the nanotubes with solid B2O3 alone. Composites of the modified nanotubes in a B4C matrix showed a small increase of density over sintered B4C.

  5. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.

    PubMed

    Yang, Yanchun; Wang, Gang; Zhao, Wangen; Tian, Qingwen; Huang, Lijian; Pan, Daocheng

    2015-01-14

    Solution deposition approaches play an important role in reducing the manufacturing cost of Cu2ZnSnSe4 (CZTSe) thin film solar cells. Here, we present a novel precursor-based solution approach to fabricate highly efficient CZTSe solar cells. In this approach, low-cost elemental Cu, Zn, Sn, and Se powders were simultaneously dissolved in the solution of thioglycolic acid and ethanolamine, forming a homogeneous CZTSe precursor solution to deposit CZTSe nanocrystal thin films. Based on high-quality CZTSe absorber layer, pure selenide CZTSe solar cell with a photoelectric conversion efficiency of 8.02% has been achieved without antireflection coating.

  6. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.

    PubMed

    Yang, Yanchun; Wang, Gang; Zhao, Wangen; Tian, Qingwen; Huang, Lijian; Pan, Daocheng

    2015-01-14

    Solution deposition approaches play an important role in reducing the manufacturing cost of Cu2ZnSnSe4 (CZTSe) thin film solar cells. Here, we present a novel precursor-based solution approach to fabricate highly efficient CZTSe solar cells. In this approach, low-cost elemental Cu, Zn, Sn, and Se powders were simultaneously dissolved in the solution of thioglycolic acid and ethanolamine, forming a homogeneous CZTSe precursor solution to deposit CZTSe nanocrystal thin films. Based on high-quality CZTSe absorber layer, pure selenide CZTSe solar cell with a photoelectric conversion efficiency of 8.02% has been achieved without antireflection coating. PMID:25494493

  7. Dilatometric Analysis and Microstructural Investigation of the Sintering Mechanisms of Blended Elemental Ti-6Al-4V Powders

    NASA Astrophysics Data System (ADS)

    Kim, Youngmoo; Lee, Junho; Lee, Bin; Ryu, Ho Jin; Hong, Soon Hyung

    2016-09-01

    The densification behavior of mixed Ti and Al/V master alloy powders for Ti-6Al-4V was investigated by a series of dilatometry tests to measure the shrinkage of the samples with the sintering temperature. The corresponding microstructural changes were examined under various sintering conditions with optical microscopy, energy-dispersive spectroscopy, and X-ray diffraction analyses. From these results, the consolidation of the mixed powders was divided into two domains: (i) sintering densification and solute homogenization of Ti and Al/V master alloy particles below 1293 K (1020 °C), and (ii) densification of Ti alloy phases above 1293 K (1020 °C). In the lower temperature region, the inter-diffusion between Ti and Al/V master alloy particles dominated the sintering of the mixed powders because the chemical gradient between two types of particles outweighed the surface energy reduction. Following chemical homogenization, the densification induced the shrinkage of the Ti alloy phases to reduce their surface energies. These tendencies are also supported by the density and grain size variations of the sintered specimens with temperature. The apparent activation energies of the sintering and grain growth for Ti alloy particles are 85.91 ± 6.93 and 37.33 kJ/mol, respectively, similar to or slightly lower than those of pure Ti particles. The difference was attributed to the slower self-diffusion of Ti resulting from the alloying of Al and V into in the Ti matrix.

  8. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  9. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Landingham, Richard L.

    1988-01-01

    A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.

  10. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples.

  11. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples. PMID:24054645

  12. Boron carbide morphology changing under purification

    NASA Astrophysics Data System (ADS)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  13. Boron-copper neutron absorbing material and method of preparation

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry

    1991-01-01

    A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.

  14. Electro-Explosive Doping of VT6 Titanium Alloy Surface by Boron Carbide

    NASA Astrophysics Data System (ADS)

    Kobzareva, T. Yu; Gromov, V. E.; Ivanov, Yu F.; Budovskkh, E. A.; Konovalov, S. V.

    2016-09-01

    The studies carried out in this work target detection of changes in the surface layer of titanium alloy VT6 after electro-explosive alloying (EEA) by boron carbide. EEA of VT6 titanium alloy surface is the plasma alloying formed during the electric explosion of foil with the sample powder of boron carbide. Carbon fibers with weight 140 mg were used as an explosive conductor. Sample powder of boron carbide B4C was placed in the area of explosion on the carbon fibers. It was revealed that EEA of the surface layers of titanium alloy samples VT6 leads to the modification of the layer, thickness of which changes from 10 pm to 50 pm. Heterogeneous distribution of alloying elements was found in the treatment zone by the methods of X-ray microanalysis. A significant difference in their concentration in the identified layers leads to difference in their structural and tribological behaviour. It was revealed that after electro-explosive alloying the microhardness of titanium alloy VT6 significantly increases. Electro-explosive alloying leads to the formation of a structure of submicro- and nano-scale level. It allows strength and tribological properties of the treated surface to be increased.

  15. Dietary boron, brain function, and cognitive performance.

    PubMed Central

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and women. Within-subject designs were used to assess functional responses in all studies. Spectral analysis of electroencephalographic data showed effects of dietary boron in two of the three studies. When the low boron intake was compared to the high intake, there was a significant (p < 0.05) increase in the proportion of low-frequency activity, and a decrease in the proportion of higher-frequency activity, an effect often observed in response to general malnutrition and heavy metal toxicity. Performance (e.g., response time) on various cognitive and psychomotor tasks also showed an effect of dietary boron. When contrasted with the high boron intake, low dietary boron resulted in significantly poorer performance (p < 0.05) on tasks emphasizing manual dexterity (studies II and III); eye-hand coordination (study II); attention (all studies); perception (study III); encoding and short-term memory (all studies); and long-term memory (study I). Collectively, the data from these three studies indicate that boron may play a role in human brain function and cognitive performance, and provide additional evidence that boron is an essential nutrient for humans. PMID:7889884

  16. Structure and bulk modulus of high-strength boron compounds

    SciTech Connect

    Lundstroem, T.

    1997-10-01

    The structures and homogeneity ranges of B{sub 6}O{sub 1-x} and B{sub 12}S{sub 2-x} were studied using Rietveld analysis of powder X ray patterns. The oxygen content of boron suboxide decreases with temperature in the range 1250-1450{degrees}C. Stoichiometric boron suboxide cannot be prepared from amorphous or {alpha}-rh boron and B{sub 2}O{sub 3} at ambient pressure. Significantly higher pressures are required. The boron subsulfide was found to be stable from B{sub 12}S{sub <1} to B{sub 12}S{sub 1.3} at 1400-1600{degrees}C. Semiempirical bulk modulus calculations are reported for hard icosahedral boron-rich compounds and diamond-like tetrahedrally coordinated boron compounds. In connection with this the structure of diamond-like B{sub 2}O is discussed.

  17. Raman Effect in Boron and Boron-Rich Compounds

    NASA Astrophysics Data System (ADS)

    Werheit, Helmut; Filipov, Volodimir

    High-resolution Raman spectra of different allotropes of elemental boron and of some selected representatives of boron-rich solids are presented and discussed. Often, the number of modes exceeds that, which is group theoretically predicted for idealized structures. The reason is intrinsic defects, which are typical for most of these structures. Specific Raman modes in the spectra of different groups of icosahedral structures are attributed to inter-icosahedral and intra-icosahedral B-B vibrations respectively and allow assessing the bonding forces related. Badger's rule is satisfactorily fulfilled across all icosahedral structure groups. - Depending on the penetration depth of the exciting radiation, Raman spectra can be significantly different as shown for boron carbide and lanthanum hexaboride.

  18. Synthesis of nanoscale magnesium diboride powder

    DOE PAGES

    Finnemore, D. K.; Marzik, J. V.

    2015-12-18

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nmmore » to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.« less

  19. Synthesis of nanoscale magnesium diboride powder

    SciTech Connect

    Finnemore, D. K.; Marzik, J. V.

    2015-12-18

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nm to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.

  20. Fluid sources and metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, U.S.A.: Insights from major-element and boron isotopic compositions of tourmaline

    USGS Publications Warehouse

    Trumbull, R.B.; Slack, J.F.; Krienitz, M.-S.; Belkin, H.E.; Wiedenbeck, M.

    2011-01-01

    Tourmaline is a widespread mineral in the Mesoproterozoic Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, where it occurs in both mineralized zones and wallrocks. We report here major-element and B-isotope compositions of tourmaline from stratabound sulfide deposits and their metasedimentary wallrocks, from mineralized and barren pipes of tourmaline breccia, from late barren quartz veins, and from Mesoproterozoic granite. The tourmalines are aluminous, intermediate in the schorl-dravite series, with Fe/(Fe + Mg) values of 0.30 to 0.85, and 10 to 50% X-site vacancies. Compositional zoning is prominent only in tourmaline from breccias and quartz veins; crystal rims are enriched in Mg, Ca and Ti, and depleted in Fe and Al relative to cores. The chemical composition of tourmaline does not correlate with the presence or absence of mineralization. The ??11B values fall into two groups. Isotopically light tourmaline (-21.7 to-7.6%o) occurs in unmineralized samples from wallrocks, late quartz veins and Mesoproterozoic granite, whereas heavy tourmaline (-6.9 to +3.2%o) is spatially associated with mineralization (stratabound and breccia-hosted), and is also found in barren breccia. At an inferred temperature of 300??C, boron in the hydrothermal fluid associated with mineralization had ??11B values of-3 to +7%o. The high end of this range indicates a marine source of the boron. A likely scenario involves leaching of boron principally from marine carbonate beds or B-bearing evaporites in Mesoproterozoic strata of the region. The ??11B values of the isotopically light tourmaline in the sulfide deposits are attributed to recrystallization during Cretaceous metamorphism, superimposed on a light boron component derived from footwall siliciclastic sediments (e.g., marine clays) during Mesoproterozoic mineralization, and possibly a minor component of light boron from a magmatic-hydrothermal fluid. The metal association of Bi-Be-Y-REE in the Blackbird ores suggests some magmatic input

  1. Dietary boron: progress in establishing essential roles in human physiology.

    PubMed

    Hunt, Curtiss D

    2012-06-01

    This review summarizes the progress made in establishing essential roles for boron in human physiology and assesses that progress in view of criteria for essentiality of elements. The evidence to date suggests that humans and at least some higher animals may use boron to support normal biological functions. These include roles in calcium metabolism, bone growth and maintenance, insulin metabolism, and completion of the life cycle. The biochemical mechanisms responsible for these effects are poorly understood but the nature of boron biochemistry suggests further characterization of the cell signaling molecules capable of complexing with boron. Such characterization may provide insights into the biochemical function(s) of boron in humans.

  2. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  3. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  4. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  5. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  6. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.

    PubMed

    Fischer, M; Joguet, D; Robin, G; Peltier, L; Laheurte, P

    2016-05-01

    Ti-Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti-Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti-26 Nbingot.

  7. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.

    PubMed

    Fischer, M; Joguet, D; Robin, G; Peltier, L; Laheurte, P

    2016-05-01

    Ti-Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti-Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti-26 Nbingot. PMID:26952492

  8. An Interface-Enriched eXtended Finite Element-Level Set Simulation of Solutal Melting of Additive Powder Particles during Transient Liquid Phase Bonding

    NASA Astrophysics Data System (ADS)

    Ghoneim, A.; Hunedy, J.; Ojo, O. A.

    2013-02-01

    A new numerical simulation model is developed by using an interface-enriched eXtended Finite Element-Level Set (XFE-LS) method to study the solute-induced melting of additive powder particles (APPs) during transient liquid phase (TLP) bonding. The robust model captures rapidly occurring concurrent interfacial events at multiple propagating liquid-solid interfaces to simulate the melting behavior. In contrast to the critical assumption in analytical models, numerical calculations show that solute-transport into the APPs during the equilibration of the liquid composition is a significant factor that affects the APPs melting behavior. Also, the study shows that the solute-transport dependence of extent of APPs melting is influenced by the kinetics of solid-state solute diffusion within the particles. The understanding generated by the numerical analysis has resulted in the use of interlayer powder mixture that contains base-alloy APPs to produce single crystal TLP joint that has matching crystallographic orientations with single crystal substrate material, at a substantially reduced processing time, which has been previously considered unfeasible.

  9. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source.

    PubMed

    Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin

    2015-12-01

    Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved. PMID:26293494

  10. Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin

    2015-08-01

    Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.

  11. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source.

    PubMed

    Guo, Jing; Pei, Yingli; Zhou, Zhengji; Zhou, Wenhui; Kou, Dongxing; Wu, Sixin

    2015-12-01

    Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an efficiency of 6.4 % was achieved.

  12. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  13. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  14. Methods of forming boron nitride

    DOEpatents

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  15. Boron nitride insulating material

    DOEpatents

    Morgan, Jr., Chester S.; Cavin, O. Burl; McCulloch, Reginald W.; Clark, David L.

    1978-01-01

    High temperature BN-insulated heaters for use as fuel pin simulators in reactor thermal hydraulic test facility studies comprise a cylindrical housing and a concentric heating element disposed within the housing and spaced apart from the housing to define an annular region therebetween. The annular region contains BN for providing electrical resistance and thermal conductivity between the housing and the heating element. The fabrication method of this invention comprises the steps of cold pressing BN powder at a pressure of 20 to 80,000 psig and a dwell time of at least 0.1-3 seconds to provide hollow cylindrical preforms of suitable dimensions for insertion into the annular region, the BN powder having a tap density of about 0.6-1.1 g/cm.sup.3 and an orientation ratio of at least about 100/3.5. The preforms are inserted into the annular region and crushed in place.

  16. Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation

    NASA Astrophysics Data System (ADS)

    Bauer, Gerald; Limbeck, Andreas

    2015-11-01

    Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an attractive alternative to traditional procedures for the analysis of environmental samples (i.e., conventional liquid measurement after sample digestion). However, for accurate quantification, certified reference materials (CRM) are necessary which match the composition of the sample and include all elements of interest at the required concentration levels. The limited availability of appropriate CRMs hampers therefore substantial application. In this work, an LA-ICP-MS procedure allowing for accurate determination of trace element contents in powdered environmental samples is presented. For LA-ICP-MS analysis, the samples are mixed with an internal standard (silver oxide) and a binder (sodium tetra borate) and subsequently pressed to pellets. Quantification is accomplished using a calibration function determined using CRMs with varying matrix composition and analyte content, pre-treated and measured in the same way as the samples. With this approach, matrix-induced ablation differences resulting from varying physical/chemical properties of the individual CRMs could be compensated. Furthermore, ICP-related matrix-effects could be minimized using collision/reaction cell technology. Applicability of the procedure has been demonstrated by assessment of Cd, Cu, Ni, and Zn in four different environmental CRMs (NIST SRM1648a (urban particulate matter), NIST SRM2709 (San Joaquin Soil), BCR144 (sewage sludge), and BCR723 (road dust)). Signal evaluation was performed by alternative use of three CRMs for calculation of the calibration function whereas the remaining fourth CRM acted as unknown sample, resulting in a good agreement between measured and certified values for all elements and reference materials.

  17. Dynamic compaction of boron carbide by a shock wave

    NASA Astrophysics Data System (ADS)

    Buzyurkin, Andrey E.; Kraus, Eugeny I.; Lukyanov, Yaroslav L.

    2016-10-01

    This paper presents experiments on explosive compaction of boron carbide powder and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the boron carbide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  18. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  19. Coal Quality and Major, Minor, and Trace Elements in the Powder River, Green River, and Williston Basins, Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; Trippi, Michael H.; Ellis, Margaret S.; Olson, Carol M.; Sullivan, Jonah E.; Takahashi, Kenneth I.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) and nineteen independent coalbed methane (CBM) gas operators in the Powder River and Green River Basins in Wyoming and the Williston Basin in North Dakota, collected 963 coal samples from 37 core holes (fig. 1; table 1) between 1999 and 2005. The drilling and coring program was in response to the rapid development of CBM, particularly in the Powder River Basin (PRB), and the needs of the RMG BLM for new and more reliable data for CBM resource estimates and reservoir characterization. The USGS and BLM entered into agreements with the gas operators to drill and core Fort Union coal beds, thus supplying core samples for the USGS to analyze and provide the RMG with rapid, real-time results of total gas desorbed, coal quality, and high pressure methane adsorption isotherm data (Stricker and others, 2006). The USGS determined the ultimate composition of all coal core samples; for selected samples analyses also included proximate analysis, calorific value, equilibrium moisture, apparent specific gravity, and forms of sulfur. Analytical procedures followed those of the American Society of Testing Materials (ASTM; 1998). In addition, samples from three wells (129 samples) were analyzed for major, minor, and trace element contents. Ultimate and proximate compositions, calorific value, and forms of sulfur are fundamental parameters in evaluating the economic value of a coal. Determining trace element concentrations, along with total sulfur and ash yield, is also essential to assess the environmental effects of coal use, as is the suitability of the coal for cleaning, gasification, liquefaction, and other treatments. Determination of coal quality in the deeper part (depths greater than 1,000 to 1,200 ft) of the PRB (Rohrbacher and others, 2006; Luppens and others, 2006) is especially important, because these coals are targeted for future

  20. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  1. A reduction boronation route to nanocrystalline titanium diboride

    NASA Astrophysics Data System (ADS)

    Chen, Luyang; Gu, Yunle; Shi, Liang; Yang, Zeheng; Ma, Jianhua; Qian, Yitai

    2004-04-01

    Nanocrystalline titanium diboride (TiB 2) has been prepared through a reduction-boronation route by using Ti powders and BBr 3 as titanium and boron sources, and metallic sodium as reductant at 400 °C. X-ray powder diffraction (XRD) pattern can be indexed as hexagonal TiB 2 with the lattice constants of a=3.028 and c=3.223 Å. Transmission electron microscopy images show particle morphology with average size of 15 nm. Selected area electron diffraction patterns confirm the preparation of the hexagonal TiB 2.

  2. Spectromicroscopy in Boron Neutron Capture Therapy Research

    NASA Astrophysics Data System (ADS)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  3. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  4. Rapid mass-spectrometric determination of boron isotopic distribution in boron carbide.

    PubMed

    Rein, J E; Abernathey, R M

    1972-07-01

    Boron isotopic ratios are measured in boron carbide by thermionic ionization mass spectrometry with no prior chemical separation. A powder blend of boron carbide and sodium hydroxide is prepared, a small portion is transferred to a tantalum filament, the filament is heated to produce sodium borate, and the filament is transferred to the mass spectrometer where the(11)B/(10)B ratio is measured, using the Na(2)BO(2)(+) ion. Variables investigated for their effect on preferential volatilization of (10)B include the sodium hydroxide-boron carbide ratio and the temperature and duration of filament heating. A series of boron carbide pellets containing natural boron, of the type proposed for the control rods of the Fast Flux Test Facility reactor, were analysed with an apparently unbiased result of 4.0560 for the (11)B/(10)B ratio (standard deviation 0.0087). The pellets contained over 3% metal impurities typically found in this material. Time of analysis is 45 min per sample, with one analyst.

  5. Nucleation and Growth of Icosahedral Boron Suboxide Clusters at High Pressure

    NASA Astrophysics Data System (ADS)

    McMillan, Paul F.; Hubert, Hervé; Chizmeshya, Andrew; Petuskey, William T.; Garvie, Lawrence A. J.; Devouard, Bertrand

    1999-10-01

    The stoichiometry of boron suboxide (B6O1-δ) synthesized from mixtures of boron and boron oxide (B2O3) at high pressure lies closer to the nominal composition (δ=0) than materials obtained at atmospheric pressure. The materials obtained in the high pressure syntheses in the presence of molten B2O3 also have a higher degree of crystallinity than for sintered powders. For syntheses at temperatures of 1700-1800°C at pressures between 4 and approximately 5.5 GPa, the well-crystallized particles are dominated by icosahedral multiply-twinned particles up to approximately 40 μm in diameter. This unusual morphology is obtained by Mackay packing, i.e., by assembly of successive shells of icosahedral B12 units around a central icosahedral nucleus to give a multiply twinned particle in which each of the 20 elements has the Roverline3m space group of the rhombohedral α-B structure. We examine the thermodynamic and kinetic factors associated with the development of this morphology during high pressure growth and use ab initio calculations to investigate the energetic driving forces for initiation of the Mackay packing around the central icosahedral nucleus.

  6. Processing and characterization of boron carbide-hafnium diboride ceramics

    NASA Astrophysics Data System (ADS)

    Brown-Shaklee, Harlan James

    Hafnium diboride based ceramics are promising candidate materials for advanced aerospace and nuclear reactor components. The effectiveness of boron carbide and carbon as HfB2 sintering additives was systematically evaluated. In the first stage of the research, boron carbide and carbon additives were found to improve the densification behavior of milled HfB2 powder in part by removing oxides at the HfB2 surface during processing. Boron carbide additives reduced the hot pressing temperature of HfB2 by 150°C compared to carbon, which reduced the hot pressing temperature by ˜50°C. Reduction of oxide impurities alone could not explain the difference in sintering enhancement, however, and other mechanisms of enhancement were evaluated. Boron carbides throughout the homogeneity range were characterized to understand other mechanisms of sintering enhancement in HfB2. Heavily faulted carbon rich and boron rich boron carbides were synthesized for addition to HfB2. The greatest enhancement to densification was observed in samples containing boron- and carbon-rich compositions whereas B6.5 C provided the least enhancement to densification. It is proposed that carbon rich and boron rich boron carbides create boron and hafnium point defects in HfB2, respectively, which facilitate densification. Evaluation of the thermal conductivity (kth) between room temperature and 2000°C suggested that the stoichiometry of the boron carbide additives did not significantly affect kth of HfB2-BxC composites. The improved sinterability and the high kth (˜110 W/m-K at 300K and ˜90 W/m-K at 1000°C ) of HfB2-BxC ceramics make them excellent candidates for isotopically enriched reactor control materials.

  7. Comparison of performance of partial prestressed beam-column subassemblages made of reactive powder concrete and normal concrete materials using finite element models

    NASA Astrophysics Data System (ADS)

    Nurjannah, S. A.; Budiono, B.; Imran, I.; Sugiri, S.

    2016-04-01

    Research on concrete material continues in several countries and had produced a concrete type of Ultra High Performance Concrete (UHPC) which has a better compressive strength, tensile strength, flexural strength, modulus of elasticity, and durability than normal concrete (NC) namely Reactive Powder Concrete (RPC). Researches on structures using RPC material showed that the RPC structures had a better performance than the NC structures in resisting gravity and lateral cyclic loads. In this study, an experiment was conducted to apply combination of constant axial and lateral cyclic loads to a prototype of RPC interior partial prestressed beam-column subassemblage (prototype of BCS-RPC) with a value of Partial Prestressed Ratio (PPR) of 31.72% on the beam. The test results were compared with finite element model of beam-column subassemblage made of RPC by PPR of 31.72% (BCS-RPC-31.72). Furthermore, there was BCS-RPC modeling with PPR of 21.39% (BCS-RPC-21.39) and beam-column subassemblages made of NC materials modeling with a value of PPR at 21.09% (BCS-NC-21.09) and 32.02% (BCS-NC-32.02). The purpose of this study was to determine the performance of the BCS-RPC models compared to the performance of the BCS-NC models with PPR values below and above 25%, which is the maximum limit of permitted PPR. The results showed that all models of BCS-RPC had a better performance than all models of BCS-NC and the BCS-RPC model with PPR above 25% still behaved ductile and was able to dissipate energy well.

  8. Microstructures of rapidly solidified powder and extruded rod of Ni{sub 3}Ge

    SciTech Connect

    Fang, J.; Schulson, E.M.

    1996-07-01

    Rapidly solidified powders and extruded rods of Ni{sub 3}Ge with and without 0.06 at. % boron were characterized using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The powders were generally spherical and exhibited both dendritic and lamellar structures. The increase in lattice parameter per atom fraction of boron, {var_epsilon}, was estimated to be 0.33. Extrusion of the powders produced fine grains of about 2 {micro}m in diameter. The extruded materials were partially recrystallized and showed a minor preference for [111] orientation. Annealing at 950 C resulted in a fully recrystallized structure and a nearly random orientation. The addition of 0.06 at. % boron had no observable effect on the morphology, microstructure, and texture. Precipitates of borides were observed in the annealed boron-doped alloy, suggesting that the solubility of boron in Ni{sup 3}Ge may be below about 0.06 at. %.

  9. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS.

    PubMed

    Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A

    2016-08-15

    In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation. PMID:27260458

  10. NEW ADVANCES IN BORON SOIL CHEMISTRY

    EPA Science Inventory

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  11. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    EPA Science Inventory

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  12. Boron sorption from aqueous solution by hydrotalcite and its preliminary application in geothermal water deboronation.

    PubMed

    Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide

    2013-11-01

    Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.

  13. The structure of boron in boron fibres

    NASA Technical Reports Server (NTRS)

    Bhardwaj, J.; Krawitz, A. D.

    1983-01-01

    The structure of noncrystalline, chemically vapour-deposited boron fibres was investigated by computer modelling the experimentally obtained X-ray diffraction patterns. The diffraction patterns from the models were computed using the Debye scattering equation. The modelling was done utilizing the minimum nearest-neighbour distance, the density of the model, and the broadening and relative intensity of the various peaks as boundary conditions. The results suggest that the fibres consist of a continuous network of randomly oriented regions of local atomic order, about 2 nm in diameter, containing boron atoms arranged in icosahedra. Approximately half of these regions have a tetragonal structure and the remaining half a distorted rhombohedral structure. The model also indicates the presence of many partial icosahedra and loose atoms not associated with any icosahedra. The partial icosahedra and loose atoms indicated in the present model are in agreement with the relaxing sub-units which have been suggested to explain the anelastic behavior of fibre boron and the loosely bound boron atoms which have been postulated to explain the strengthening mechanism in boron fibres during thermal treatment.

  14. Three-dimensional boron particle loaded thermal neutron detector

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  15. Powder sampling.

    PubMed

    Venables, Helena J; Wells, J I

    2002-01-01

    The factors involved when sampling powder mixes have been reviewed. The various methods are evaluated (manual, automatic, and sub-sampling) and the errors incurred are discussed. Certain rules have been applied to various samplers and their suitability for powder mixtures are described. The spinning riffler is apparently the most suitable, while the use of sample thieves should be avoided due to error and bias.

  16. Structure and Bulk Modulus of High-Strength Boron Compounds*1

    NASA Astrophysics Data System (ADS)

    Lundström, Torsten

    1997-10-01

    The structures and homogeneity ranges of B6O1-xand B12S2-xwere studied using Rietveld analysis of powder X ray patterns. The oxygen content of boron suboxide decreases with temperature in the range 1250-1450°C. Stoichiometric boron suboxide cannot be prepared from amorphous orα-rh boron and B2O3at ambient pressure. Significantly higher pressures are required. The boron subsulfide was found to be stable from B12S<1to B12S1.3at 1400-1600°C. Semiempirical bulk modulus calculations are reported for hard icosahedral boron-rich compounds and diamond-like tetrahedrally coordinated boron compounds. In connection with this the structure of diamond-like B2O is discussed.

  17. Boron: elementary challenge for experimenters and theoreticians.

    PubMed

    Albert, Barbara; Hillebrecht, Harald

    2009-01-01

    Many of the fundamental questions regarding the solid-state chemistry of boron are still unsolved, more than 200 years after its discovery. Recently, theoretical work on the existence and stability of known and new modifications of the element combined with high-pressure and high-temperature experiments have revealed new aspects. A lot has also happened over the last few years in the field of reactions between boron and main group elements. Binary compounds such as B(6)O, MgB(2), LiB(1-x), Na(3)B(20), and CaB(6) have caused much excitement, but the electron-precise, colorless boride carbides Li(2)B(12)C(2), LiB(13)C(2), and MgB(12)C(2) as well as the graphite analogue BeB(2)C(2) also deserve special attention. Physical properties such as hardness, superconductivity, neutron scattering length, and thermoelectricity have also made boron-rich compounds attractive to materials research and for applications. The greatest challenges to boron chemistry, however, are still the synthesis of monophasic products in macroscopic quantities and in the form of single crystals, the unequivocal identification and determination of crystal structures, and a thorough understanding of their electronic situation. Linked polyhedra are the dominating structural elements of the boron-rich compounds of the main group elements. In many cases, their structures can be derived from those that have been assigned to modifications of the element. Again, even these require a critical revision and discussion. PMID:19830749

  18. Biological Evaluation of Boronated Unnatural Amino Acids as New Boron Carriers

    PubMed Central

    Kabalka, G.W.; Yao, M.-L.; Marepally, S.R.; Chandra, S.

    2010-01-01

    There is a pressing need for new and more efficient boron delivery agents to tumor cells for use in boron neutron capture therapy (BNCT). A class of boronated unnatural cyclic amino acids has demonstrated a remarkable selectivity toward tumors in animal and cell culture models, far superior to currently used agents in clinical BNCT. One of these amino acids, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC), has shown a tumor to blood ratio of 8 and a tumor to normal brain ratio of nearly 21 in a melanoma bearing mouse model. This work represents further biological characterization of this compound for tumor targeting in an EMT6 murine mammary carcinoma mouse model and a T98G human glioblastoma cell line. Female BALB/c mice bearing EMT6 tumors were injected with the fructose complex form of racemic mixtures of cis- and trans isomers of ABCPC in identical concentrations. Boron concentrations were measured in the tumor, blood, brain, skin, and liver tissues at 1, 3, and 5 hr post injection. These observations revealed a remarkable difference in racemic mixtures of cis and trans isomers in tumor targeting by boron. This implies that further separation of the L and D forms of this compound may enhance tumor targeting to an even higher degree than that provided by the racemic mixtures. Since the uptake measurements were made in homogenized tumor and normal tissues, little is known about the subcellular location of the boron arising from the various isomeric forms of the amino acid. To study subcellular delivery of boron from ABCPC in T98G human glioblastoma cells, we employed secondary ion mass spectrometry (SIMS) based technique of ion microscopy, which is capable of quantitatively imaging isotopic (elemental) gradients in cells and tissues at 500 nm spatial resolution. The T98G cells were exposed to the nutrient medium containing 100 ppm boron equivalent of a mixture of both L and D isomers of ABCPC in the form of a fructose complex for 1 hr. Following this

  19. Method for fabricating boron carbide articles

    DOEpatents

    Ardary, Zane L.; Reynolds, Carl D.

    1980-01-01

    The present invention is directed to the fabrication of boron carbide articles having length-to-diameter or width ratios greater than 2 to 1. The process of the present invention is practiced by the steps comprising hot pressing boron carbide powder into article segments or portions in which the segments have a length-to-diameter or width ratio less than 1.5, aligning a plurality of the initially hot-pressed segments in a hot-pressing die with the end surfaces of the segments placed in intimate contact with one another, and then hot pressing the aligned segments into an article of the desired configuration. The resulting article exhibits essentially uniform density throughout the structure with the bonds between the segments being equivalent in hardness, strength, and density to the remainder of the article.

  20. Growth and characterization of boron doped graphene by Hot Filament Chemical Vapor Deposition Technique (HFCVD)

    NASA Astrophysics Data System (ADS)

    Jafari, A.; Ghoranneviss, M.; Salar Elahi, A.

    2016-03-01

    Large-area boron doped graphene was synthesized on Cu foil (as a catalyst) by Hot Filament Chemical Vapor Deposition (HFCVD) using boron oxide powder and ethanol vapor. To investigate the effect of different boron percentages, grow time and the growth mechanism of boron-doped graphene, scanning electron microscopy (SEM), Raman scattering and X-ray photoelectron spectroscopy (XPS) were applied. Also in this experiment, the I-V characteristic carried out for study of electrical property of graphene with keithley 2361 system. Nucleation of graphene domains with an average domain size of ~20 μm was observed when the growth time is 9 min that has full covered on the Cu surface. The Raman spectroscopy show that the frequency of the 2D band down-shifts with B doping, consistent with the increase of the in-plane lattice constant, and a weakening of the B-C in-plane bond strength relative to that of C-C bond. Also the shifts of the G-band frequencies can be interpreted in terms of the size of the C-C ring and the changes in the electronic structure of graphene in the presence of boron atoms. The study of electrical property shows that by increasing the grow time the conductance increases which this result in agree with SEM images and graphene grain boundary. Also by increasing the boron percentage in gas mixer the conductance decreases since doping graphene with boron creates a band-gap in graphene band structure. The XPS results of B doped graphene confirm the existence of boron in doped graphene, which indicates the boron atoms doped in the graphene lattice are mainly in the form of BC3. The results showed that boron-doped graphene can be successfully synthesized using boron oxide powder and ethanol vapor via a HFCVD method and also chemical boron doping can be change the electrical conductivity of the graphene.

  1. Synthesis of cubic boron nitride from amorphous boron nitride containing oxide impurity using Mg Al alloy catalyst solvent

    NASA Astrophysics Data System (ADS)

    Singhal, S. K.; Park, J. K.

    2004-01-01

    Single crystals of cubic boron nitride (cBN) were synthesized from amorphous boron nitride (aBN) under static high pressures and temperatures (40-50 kb, 1200-1500°C) using Mg-Al alloy catalyst-solvent material. The weight percentage of magnesium in the alloy powder was about 40%. It was found that aBN containing small amount of B 2O 3 as an oxide impurity transforms easily into cBN (in the thermodynamically stable region of cBN) whereas aBN powder without B 2O 3 did not transform into cBN to the same extent under the similar P- T conditions. It appears therefore, that the presence of oxide impurity in aBN powder facilitates the transformation of aBN into cBN although it does not have any catalytic action for aBN-cBN phase transformation.

  2. Boron and strontium isotope ratios and major/trace elements concentrations in tea leaves at four major tea growing gardens in Taiwan.

    PubMed

    Chang, Cheng-Ta; You, Chen-Feng; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Chao, Hung-Chun; Liu, Hou-Chun

    2016-06-01

    Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial sources. This study aims to test whether tea leaf origin can be discriminated using (10)B/(11)B and Sr isotopic composition data, along with concentrations of major/trace elements, in tea specimens collected from major plantation gardens in Taiwan. The tea leaves were digested by microwave and analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The data showed significant variations in (87)Sr/(86)Sr ratios (from 0.70482 to 0.71462), which reflect changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Taitung garden and the least radiogenic ones were from the Hualien garden. The δ (11)B was found to change appreciably (δ (11)B = 0.38-23.73 ‰) which could be due to fertilizers. The maximum δ (11)B was also observed in tea samples from the Hualien garden. Principal component analysis combining (87)Sr/(86)Sr, δ (11)B and major/trace elements results successfully discriminated different sources of major tea gardens in Taiwan, except the Hualien gardens, and this may be due to rather complicated local geological settings. PMID:26254888

  3. Update on human health effects of boron.

    PubMed

    Nielsen, Forrest H

    2014-10-01

    In vitro, animal, and human experiments have shown that boron is a bioactive element in nutritional amounts that beneficially affects bone growth and central nervous system function, alleviates arthritic symptoms, facilitates hormone action and is associated with a reduced risk for some types of cancer. The diverse effects of boron suggest that it influences the formation and/or activity of substances that are involved in numerous biochemical processes. Several findings suggest that this influence is through the formation of boroesters in biomolecules containing cis-hydroxyl groups. These biomolecules include those that contain ribose (e.g., S-adenosylmethionine, diadenosine phosphates, and nicotinamide adenine dinucleotide). In addition, boron may form boroester complexes with phosphoinositides, glycoproteins, and glycolipids that affect cell membrane integrity and function. Both animal and human data indicate that an intake of less than 1.0mg/day inhibits the health benefits of boron. Dietary surveys indicate such an intake is not rare. Thus, increasing boron intake by consuming a diet rich in fruits, vegetables, nuts and pulses should be recognized as a reasonable dietary recommendation to enhance health and well-being.

  4. Chemical disposition of boron in animals and humans.

    PubMed Central

    Moseman, R F

    1994-01-01

    Elemental boron was isolated in 1808. It typically occurs in nature as borates hydrated with varying amounts of water. Important compounds are boric acid and borax. Boron compounds are also used in the production of metals, enamels, and glasses. In trace amounts, boron is essential for the growth of many plants, and is found in animal and human tissues at low concentrations. Poisoning in humans has been reported as the result of accidental ingestion or use of large amounts in the treatment of burns. Boron as boric acid is fairly rapidly absorbed and excreted from the body via urine. The half-life of boric acid in humans is on the order of 1 day. Boron does not appear to accumulate in soft tissues of animals, but does accumulate in bone. Normal levels of boron in soft tissues, urine, and blood generally range from less than 0.05 ppm to no more than 10 ppm. In poisoning incidents, the amount of boric acid in brain and liver tissue has been reported to be as high as 2000 ppm. Recent studies at the National Institute of Environmental Health Sciences have indicated that boron may contribute to reduced fertility in male rodents fed 9000 ppm of boric acid in feed. Within a few days, boron levels in blood and most soft tissues quickly reached a plateau of about 15 ppm. Boron in bone did not appear to plateau, reaching 47 ppm after 7 days on the diet. Cessation of exposure to dietary boron resulted in a rapid drop in bone boron.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889870

  5. Tensile properties and fracture behavior of Ti[sub 52]Al[sub 48] and Ti[sub 50]Al[sub 48]Cr[sub 2] prepared from elemental powders

    SciTech Connect

    Dogan, B.; Wang, G.X.; Dahms, M. )

    1993-10-01

    Titanium aluminide alloys, based on gamma TiAl, are currently of interest because of potential applications in high performance airframe and gas turbines. Their low densities, high melting temperatures, good elevated temperature strength and modulus retention, and environmental resistance favors them for these applications. However, their practical use are largely limited by their poor workability and ductility at temperatures lower than 700 C. Although the ductility has been improved in two phase TiAl alloys by adding alloying elements such as Cr, Mn, Nb and V, and by microstructural control in recent years, the ability to manufacture them still remains a problem. The reactive powder processing method offers a promising alternative to overcome this problem. This method involves cold-extrusion of an elemental powder mixture and reactive sintering. The as-extruded material can easily be machined or reformed into different shapes, since titanium aluminides are not present at this stage. The reactive sintering is conducted as the last step to form the desired titanium aluminides in the finished products. By this route, the poor workability of titanium aluminides can be avoided. In the present paper, a binary alloy Ti[sub 52]Al[sub 48](TiAl) and a ternary alloy Ti[sub 50]Al[sub 48]Cr[sub 2](TiAlCr), prepared in the same way from elemental powders, are investigated. The tensile tests were carried out at room temperature to 900 C in air. The influence of 2 at.% Cr addition on the tensile properties and fracture behavior of the alloys are reported. An emphasis is placed on the correlation between microstructure and deformation, and fracture behavior of the alloys.

  6. Abundance and distribution of boron in the Hauzenberg (Bavaria) granite complex

    SciTech Connect

    Sauerer, A.; Troll, G. )

    1990-01-01

    Hercynian S-type granites from the Hauzenberg igneous complex show a range of boron concentration from 1 to 12 ppm. The whole-rock boron data are not significantly correlated with concentrations of other trace elements (Zr, Rb, Ba, Sr, Ni, V, Co, Cu, Zn, F); neither is boron correlated with the major elements (except with sodium) or with the differentiation index (DI). The boron budget in the rock-forming minerals (plagioclase, alkali feldspar, quartz, biotite, muscovite) of the tourmaline-free granites reveals that the highest concentrations of boron occur in muscovite, whereas the greatest amount of boron is incorporated in plagioclase (57-69%) due to its high modal amount. Boron in plagioclase increases with the extent of of sericitization (obtained by X-ray diffractometry). Muscovite in a pegmatite contains more than 50% of the total boron. The areal distribution of boron within the complex is neither uniform nor random; an increase of boron concentrations from granodioritic to granitic rocks is indicated, whereas the late differentiates are depleted in boron.

  7. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique.

    SciTech Connect

    Arenal, R.; Stephan, O.; Cochon, J.-L.; Loiseau, A.

    2007-12-26

    We present a detailed study of the growth mechanism of single-walled boron nitride nanotubes synthesized by laser vaporization, which is the unique route known to the synthesis of this kind of tube in high quantities. We have performed a nanometric chemical and structural characterization by transmission electron microscopy (high-resolution mode (HRTEM) and electron energy loss spectroscopy) of the synthesis products. Different boron-based compounds and other impurities were identified in the raw synthesis products. The results obtained by the TEM analysis and from the synthesis parameters (temperature, boron, and nitrogen sources) combined with phase diagram analysis to provide identification of the fundamental factors determining the nanotube growth mechanism. Our experiments strongly support a root-growth model that involves the presence of a droplet of boron. This phenomenological model considers the solubility, solidification, and segregation phenomena of the elements present in this boron droplet. In this model, we distinguish three different steps as a function of the temperature: (1) formation of the liquid boron droplet from the decomposition of different boron compounds existing in the hexagonal boron nitride target, (2) reaction of these boron droplets with nitrogen gas present in the vaporization chamber and recombination of these elements to form boron nitride, and (3) incorporation of the nitrogen atoms at the root of the boron particle at active reacting sites that achieves the growth of the tube.

  8. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE PAGES

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8GPa and 600K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10GPa and 300–650K« less

  9. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    NASA Astrophysics Data System (ADS)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-01

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.

  10. Magnesium doping of boron nitride nanotubes

    DOEpatents

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  11. Method for exfoliation of hexagonal boron nitride

    NASA Technical Reports Server (NTRS)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  12. Nanostructured films of Boron suboxide by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Yu, Shengwen; Wang, Guanghou; Yin, Shuangye; Zhang, Yunxiang; Liu, Zhiguo

    2000-04-01

    We have prepared nanofilms of boron suboxide by the method of pulsed laser deposition (PLD) for the first time. Boron powder with purity of 99%+ was mixed with B 2O 3. The mixture was milled and then pressed into a pellet which was heated at 1200°C for one day. The heated pellet was used as the target for the experiment of PLD in preparing nanocluster-based films. Structural studies indicate that nanofilms contain the crystallized nanoclusters of B 6O with six-fold symmetry and icosahedron-like structure, which is the result of long range order packing.

  13. Direct current sputtering of boron from boron/coron mixtures

    DOEpatents

    Timberlake, John R.; Manos, Dennis; Nartowitz, Ed

    1994-01-01

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.

  14. Boron in sillimanite.

    PubMed

    Grew, E S; Hinthorne, J R

    1983-08-01

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite. PMID:17830955

  15. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2013-03-01

    The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic-martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tubes fabricated by powder metallurgy and hot isostatic pressing of melt atomized powders (PM HIP) when compared with the cladding tubes produced by traditional technology were found. Presently, PM HIP is also used in the fabrication of oxide dispersion strengthened (ODS) ferritic-martensitic steels. The high degree of homogeneity of the distribution of carbon and boron as well the high dispersivity of the phase-structure elements in the specimens manufactured via PM HIP were determined by direct autoradiography methods. These results correlate well with the increase of the tensile properties of the specimens produced by PM HIP technology.

  16. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  17. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    NASA Astrophysics Data System (ADS)

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2004-01-01

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 × 10 7 n/cm 2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values.

  18. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Rinaldo, Steven G.

    formation of boron nitride nanotubes (BNNTs). In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and introduce a new method involving injection of boron powder into an induction furnace. In Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor generated in situ, either through the reaction of boron with metal oxides or through the decomposition of metal borides.

  19. Method for removing oxide contamination from titanium diboride powder

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB/sub 2/ powders with a gaseous boron halide, such as BCl/sub 3/, at temperatures in the range of 500 to 800/sup 0/C. The BCl/sub 3/ reacts with the oxides to form volatile species which are removed by the BCl/sub 3/ exit stream.

  20. Method for removing oxide contamination from titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1984-01-01

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.

  1. Physiological roles and transport mechanisms of boron: perspectives from plants.

    PubMed

    Tanaka, Mayuki; Fujiwara, Toru

    2008-07-01

    Boron, an orphan of the periodic table of the elements, is unique not only in its chemical properties but also in its roles in biology. Its requirement in plants was described more than 80 years ago. Understandings of the molecular basis of the requirement and transport have been advanced greatly in the last decade. This article reviews recent findings of boron function and transport in plants and discusses possible implication to other organisms including humans. PMID:17965876

  2. Structure, nonstoichiometry, and geometrical frustration of α -tetragonal boron

    NASA Astrophysics Data System (ADS)

    Uemura, Naoki; Shirai, Koun; Eckert, Hagen; Kunstmann, Jens

    2016-03-01

    Recent discoveries of supposedly pure α -tetragonal boron require to revisit its structure. The system is also interesting with respect to a new type of geometrical frustration in elemental crystals, which was found in β -rhombohedral boron. Based on density functional theory calculations, the present study has resolved the structural and thermodynamic characteristics of pure α -tetragonal boron. Different from β -rhombohedral boron, the conditions for stable covalent bonding (a band gap and completely filled valence bands) are almost fulfilled at a composition B52 with two 4 c interstitial sites occupied. This indicates that the ground state of pure α -tetragonal boron is stoichiometric. However, the covalent condition is not perfectly fulfilled because nonbonding in-gap states exist that cannot be eliminated. The half occupation of the 4 c sites yields a macroscopic amount of residual entropy, which is as large as that of β -rhombohedral boron. Therefore α -tetragonal boron can be classified as an elemental crystal with geometrical frustration. Deviations from stoichiometry can occur only at finite temperatures. Thermodynamic considerations show that deviations δ from the stoichiometric composition (B52 +δ) are small and positive. For the reported high-pressure syntheses conditions δ is predicted to be about 0.1 to 0.2. An important difference between pure and C- or N-containing α -tetragonal boron is found in the occupation of interstitial sites: the pure form prefers to occupy the 4 c sites, whereas in C- or N-containing forms, a mixture of 2 a , 8 h , and 8 i sites are occupied. The present article provides relations of site occupation, δ values, and lattice parameters, which enable us to identify pure α -tetragonal boron and distinguish the pure form from other ones.

  3. Explosively driven low-density foams and powders

    DOEpatents

    Viecelli, James A.; Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.

    2010-05-04

    Hollow RX-08HD cylindrical charges were loaded with boron and PTFE, in the form of low-bulk density powders or powders dispersed in a rigid foam matrix. Each charge was initiated by a Comp B booster at one end, producing a detonation wave propagating down the length of the cylinder, crushing the foam or bulk powder and collapsing the void spaces. The PdV work done in crushing the material heated it to high temperatures, expelling it in a high velocity fluid jet. In the case of boron particles supported in foam, framing camera photos, temperature measurements, and aluminum witness plates suggest that the boron was completely vaporized by the crush wave and that the boron vapor turbulently mixed with and burned in the surrounding air. In the case of PTFE powder, X-ray photoelectron spectroscopy of residues recovered from fragments of a granite target slab suggest that heating was sufficient to dissociate the PTFE to carbon vapor and molecular fluorine which reacted with the quartz and aluminum silicates in the granite to form aluminum oxide and mineral fluoride compounds.

  4. Structure refinement of the boron suboxide B6O by the Rietveld method

    NASA Astrophysics Data System (ADS)

    Bolmgren, H.; Lundström, T.; Okada, S.

    1991-07-01

    The structure of the boron suboxide B6O has been refined by the Rietveld method applied on X-ray powder diffraction data. The samples were prepared by hot pressing amorphous boron and B2O3 and the data was collected with a STOE-diffractometer equipped with a position sensitive detector. The structure belongs to the α-boron family and is closely related to the B13C2-structure. The space group is R3¯m. There are two oxygen atoms in each large hole formed by the icosahedral B12 framework, along the trigonal axis. The interatomic distance between the oxygen atoms is long, 3.06(2) Å. The oxygen atoms are located close to the centre of the boron triangles that are formed by B(1) atoms from three B12 icosahedra. The bonding distance between these boron atoms and the oxygen atom is 1.503(7) Å.

  5. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  6. Boronated liposome development and evaluation

    SciTech Connect

    Hawthorne, M.F.

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  7. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  8. Mineral of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  9. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1993-01-01

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  10. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  11. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  12. Boron uptake, localization, and speciation in marine brown algae.

    PubMed

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus. PMID:26679972

  13. Boron uptake, localization, and speciation in marine brown algae.

    PubMed

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  14. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    SciTech Connect

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  15. Minerals Yearbook 1989: Boron

    SciTech Connect

    Lyday, P.A.

    1990-08-01

    U.S. production and sales of boron minerals and chemicals decreased during the year. Domestically, glass fiber insulation was the largest use for borates, followed by sales to distributors, textile-grade glass fibers, and borosilicate glasses. California was the only domestic source of boron minerals. The United States continued to provide essentially all of its own supply while maintaining a strong position as a source of sodium borate products and boric acid exported to foreign markets. Supplementary U.S. imports of Turkish calcium borate and calcium-sodium borate ores, borax, and boric acid, primarily for various glass uses, continued.

  16. Stimulatory effect of boron and manganese salts on keratinocyte migration.

    PubMed

    Chebassier, Nathalie; Ouijja, El Houssein; Viegas, Isabelle; Dreno, Brigitte

    2004-01-01

    Keratinocyte proliferation and migration are essential for the reconstruction of the cutaneous barrier after skin injury. Interestingly, thermal waters which are rich in trace elements (e.g. boron and manganese), are known to be able to improve wound healing. In order to understand the mechanism of action of this effect, our study investigated the in vitro modulation of keratinocyte migration and proliferation by boron and manganese salts, which are present in high concentrations in a thermal water (Saint Gervais). Our in vitro study demonstrated that incubating keratinocytes for 24 h with boron salts at concentrations between 0.5 and 10 microg/ml or manganese salts at concentrations between 0.1 and 1.5 microg/ml accelerated wound closure compared with control medium (+20%). As this acceleration was not related to an increase in keratinocyte proliferation we suggest that boron and manganese act on wound healing mainly by increasing the migration of keratinocytes.

  17. Atomic structure of amorphous shear bands in boron carbide.

    PubMed

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  18. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  19. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  20. Chemistry and biology of boron.

    PubMed

    Loomis, W D; Durst, R W

    1992-04-01

    Boron is an essential nutrient for certain organisms, notably vascular plants and diatoms. Cyanobacteria require boron for formation of nitrogen-fixing heterocysts and boron may be beneficial to animals. Boron deficiency in plants produces manifold symptoms: many functions have been postulated. Deficiency symptoms first appear at growing points, within hours in root tips and within minutes or seconds in pollen tube tips, and are characterized by cell wall abnormalities. Boron-deficient tissues are brittle or fragile, while plants grown on high boron levels may have unusually flexible or resilient tissues. Borate forms cyclic diesters with appropriate diols or polyols. The most stable are formed with cis-diols on a furanoid ring. Two compounds have this structure physiologically: ribose in ribonucleotides and RNA, and apiose in the plant cell wall. Germanium can substitute for boron in carrot cell cultures. Both boron and germanium are localized primarily in the cell wall. We postulate that borate-apiofuranose ester cross-links are the auxin-sensitive acid-growth link in vascular plants, that the cyanobacterial heterocyst envelope depends on borate cross-linking of mannopyranose and/or galactopyranose residues in a polysaccharide-lipid environment, and that boron in diatoms forms ester cross-links in the polysaccharide cell wall matrix rather than boron-silicon interactions. Complexing of ribonucleotides is probably a factor in boron toxicity. PMID:1605832

  1. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.

    1999-02-16

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.

  2. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.

    1999-01-01

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.

  3. Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.

    PubMed Central

    Blevins, D G; Lukaszewski, K M

    1994-01-01

    Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877

  4. Boron exposure assessment using drinking water and urine in the North of Chile.

    PubMed

    Cortes, S; Reynaga-Delgado, E; Sancha, A M; Ferreccio, C

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3mgL(-1), with a median value of 2.9mgL(-1), while concentrations of boron in bottled water varied from 0.01 to 12.2mgL(-1). Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4mgL(-1), with a median of 4.28mgL(-1) and was found to be correlated with tap water sampled from the homes of the volunteers (r=0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure.

  5. Boron and Compounds

    Integrated Risk Information System (IRIS)

    Boron and Compounds ; CASRN 7440 - 42 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  6. Boron site preference in ternary Ta and Nb boron silicides

    SciTech Connect

    Khan, Atta U.; Nunes, Carlos A.; Coelho, Gilberto C.; Suzuki, Paulo A.; Grytsiv, Andriy; Bourree, Francoise; Rogl, Peter F.

    2012-06-15

    X-ray single crystal (XSC) and neutron powder diffraction data (NPD) were used to elucidate boron site preference for five ternary phases. Ta{sub 3}Si{sub 1-x}B{sub x} (x=0.112(4)) crystallizes with the Ti{sub 3}P-type (space group P4{sub 2}/n) with B-atoms sharing the 8g site with Si atoms. Ta{sub 5}Si{sub 3-x} (x=0.03(1); Cr{sub 5}B{sub 3}- type) crystallizes with space group I4/mcm, exhibiting a small amount of vacancies on the 4a site. Both, Ta{sub 5}(Si{sub 1-x}B{sub x}){sub 3}, x=0.568(3), and Nb{sub 5}(Si{sub 1-x}B{sub x}){sub 3}, x=0.59(2), are part of solid solutions of M{sub 5}Si{sub 3} with Cr{sub 5}B{sub 3}-type into the ternary M-Si-B systems (M=Nb or Ta) with B replacing Si on the 8h site. The D8{sub 8}-phase in the Nb-Si-B system crystallizes with the Ti{sub 5}Ga{sub 4}-type revealing the formula Nb{sub 5}Si{sub 3}B{sub 1-x} (x=0.292(3)) with B partially filling the voids in the 2b site of the Mn{sub 5}Si{sub 3} parent type. - Graphical abstract: The crystal structures of a series of compounds have been solved from X-ray single crystal diffractometry revealing details on the boron incorporation. Highlights: Black-Right-Pointing-Pointer Structure of a series of compounds have been solved by X-ray single crystal diffractometry. Black-Right-Pointing-Pointer Ta{sub 3}(Si{sub 1-x}B{sub x}) (x=0.112) crystallizes with the Ti{sub 3}P-type, B and Si atoms randomly share the 8g site. Black-Right-Pointing-Pointer Structure of Nb{sub 5}Si{sub 3}B{sub 1-x} (x=0.292; Ti{sub 5}Ga{sub 4}-type) was solved from NPD.

  7. Plasma boron and the effects of boron supplementation in males.

    PubMed

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p < 0.01), lean body mass (p < 0.01), and one repetition maximum (RM) squat (p < 0.001) and one RM bench press (p < 0.01). The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  8. Nothing Boring About Boron.

    PubMed

    Pizzorno, Lara

    2015-08-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body's use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD(+)); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin's lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron's beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron-only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis; osteoarthritis (OA

  9. Methods of producing continuous boron carbide fibers

    SciTech Connect

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  10. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin.

    PubMed

    Koç, Cengiz

    2007-02-01

    Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity

  11. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin.

    PubMed

    Koç, Cengiz

    2007-02-01

    Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity

  12. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.

    PubMed

    Sergeeva, Alina P; Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng; Boldyrev, Alexander I

    2014-04-15

    Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center-two-electron (2c-2e) σ bonds on the periphery and delocalized multicenter-two-electron (nc-2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron's electron deficiency and leads to fluxional behavior, which has been observed in B13(+) and B19(-). A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B(-), formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B(-)/C analogy. It is

  13. Boron sorption from aqueous solution by hydrotalcite and its preliminary application in geothermal water deboronation.

    PubMed

    Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide

    2013-11-01

    Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water. PMID:23695854

  14. Boron suboxide: As hard as cubic boron nitride

    NASA Astrophysics Data System (ADS)

    He, Duanwei; Zhao, Yusheng; Daemen, L.; Qian, J.; Shen, T. D.; Zerda, T. W.

    2002-07-01

    The Vickers hardness of boron suboxide single crystals was measured using a diamond indentation method. Under a loading force of 0.98 N, our test gave an average Vickers hardness of 45 GPa. The average fracture toughness was measured as 4.5 MPa m1/2. We also measured the hardness of the cubic boron nitride and sapphire single crystals for comparison. The average measured hardness for boron suboxide was found to be very close to that of cubic boron nitride under the same loading force. Our results suggest that the boron suboxide could be a new superhard material for industrial applications, surpassed in hardness only by diamond and cubic boron nitride.

  15. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  16. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  17. Experimental realization of two-dimensional boron sheets.

    PubMed

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future. PMID:27219700

  18. Experimental realization of two-dimensional boron sheets

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  19. Magnetron sputter deposition of boron and boron carbide

    SciTech Connect

    McKernan, M.A.; Makowiecki, D.; Ramsey, P.; Jankowski, A.

    1991-03-13

    The fabrication of x-ray optical coatings with greater reflectivity required the development of sputter deposition processes for boron and boron carbide. The use of high density boron and boron carbide and a vacuum brazed target design was required to achieve the required sputter process stability and resistance to the thermal stress created by high rate sputtering. The results include a description of the target fabrication procedures and sputter process parameters necessary to fabricate B{sub 4}C{sup (1)} and B{sup (2)} modulated thin film structures. 3 refs., 6 figs.

  20. The role of various boron precursor on superconducting properties of MgB2/Fe

    NASA Astrophysics Data System (ADS)

    Safran, S.; Kılıçarslan, E.; Kılıç, A.; Gencer, A.

    2014-09-01

    The superconducting properties of Fe sheathed MgB2 wire has been studied as a function of precursor B powder particle size. The in situ processed MgB2 samples were prepared by means of conventional solid state reaction method with magnesium powder (99.8%, 325 mesh) and three different types of amorphous boron powders (purity; 98.8%, >95% and 91.9%) from two sources, Pavezyum (Turkish supplier) and Sigma Aldrich. The particle sizes of Turkish boron precursor powder were selected between 300 and 800 nm. The structural and magnetic properties of the prepared samples were investigated by means of the X-ray powder diffraction (XRD) and ac susceptibility measurements. The XRD patterns showed that the diffraction peaks for our samples belong to the main phase of the MgB2 diffraction patterns. The highest critical temperature, Tc = 38.4 K was measured for the MgB2 sample which was fabricated by using the 98.8% B. The critical current density of this sample was extracted from the magnetization measurements and Jc = 5.4 × 105 A cm-2 at 5 K and B = 2 T. We found that the sample made by using the 98.8% boron showed almost 2 times higher Jc than that of obtained from 91.9% B powder.

  1. Ferrocenyl-substituted Schiff base complexes of boron: Synthesis, structural, physico-chemical and biochemical aspects

    NASA Astrophysics Data System (ADS)

    Yadav, Sunita; Singh, R. V.

    2011-01-01

    Biological important complexes of boron(III) derived from 1-acetylferrocenehydrazinecarboxamide (L 1H), 1-acetylferrocenehydrazinecarbothioamide (L 2H) and 1-acetylferrocene carbodithioic acid (L 3H) have been prepared and investigated using a combination of microanalytical analysis, melting point, electronic, IR, 1H NMR and 13C NMR spectral studies, cyclic voltammetry and X-ray powder diffraction studies. Boron isopropoxide interacts with the ligands in 1:1, 1:2 and 1:3 molar ratios (boron:ligand) resulting in the formation of coloured products. On the basis of conductance and spectral evidences, tetrahedral structures for boron(III) complexes have been assigned. The ligands are coordinated to the boron(III) via the azomethine nitrogen atom and the thiolic sulfur atom/enolic oxygen atom. On the basis of X-ray powder diffraction study one of the representative boron complex was found to have orthorhombic lattice, having lattice parameters: a = 9.9700, b = 15.0000 and c = 7.0000. Both the ligands and their complexes have been screened for their biological activity on several pathogenic fungi and bacteria and were found to possess appreciable fungicidal and bactericidal properties. Plant growth regulating activity of one of the ligand and its complexes has also been recorded on gram plant, and results have been discussed.

  2. Ferrocenyl-substituted Schiff base complexes of boron: synthesis, structural, physico-chemical and biochemical aspects.

    PubMed

    Yadav, Sunita; Singh, R V

    2011-01-01

    Biological important complexes of boron(III) derived from 1-acetylferrocenehydrazinecarboxamide (L1H), 1-acetylferrocenehydrazinecarbothioamide (L2H) and 1-acetylferrocene carbodithioic acid (L3H) have been prepared and investigated using a combination of microanalytical analysis, melting point, electronic, IR, 1H NMR and 13C NMR spectral studies, cyclic voltammetry and X-ray powder diffraction studies. Boron isopropoxide interacts with the ligands in 1:1, 1:2 and 1:3 molar ratios (boron:ligand) resulting in the formation of coloured products. On the basis of conductance and spectral evidences, tetrahedral structures for boron(III) complexes have been assigned. The ligands are coordinated to the boron(III) via the azomethine nitrogen atom and the thiolic sulfur atom/enolic oxygen atom. On the basis of X-ray powder diffraction study one of the representative boron complex was found to have orthorhombic lattice, having lattice parameters: a=9.9700, b=15.0000 and c=7.0000. Both the ligands and their complexes have been screened for their biological activity on several pathogenic fungi and bacteria and were found to possess appreciable fungicidal and bactericidal properties. Plant growth regulating activity of one of the ligand and its complexes has also been recorded on gram plant, and results have been discussed.

  3. Segregation of boron and its reaction with oxygen on Rh

    NASA Astrophysics Data System (ADS)

    Kiss, János; Révész, Károly; Solymosi, Frigyes

    The segregation of boron and its reactivity towards oxygen has been investigated by means of AES, XPS, UPS and ELS (in the electronic range) in the temperature range 100-1300 K. The segregation of boron in a Rh foil started from 700 K. The segregated boron produced a peak in XPS for the B(1s) level at 187.8 eV and emissions in UPS at 4.0 and 8.6-9.0 eV for B(2p) and B(2sp 2), respectively. Analysis of the results suggested that the segregated boron on Rh foil mainly forms dimers or islands, instead of isolated monomers, without any significant charge transfer between rhodium and boron. Upon oxygen adsorption the B(1s) and O(1s) levels shifted to higher binding energy (to 191.5 and 532.6 eV, respectively) and a new loss in the EELS was produced at 9.4 eV, demonstrating a strong chemical interaction between oxygen and boron. The interaction occurs at as low as 159 K, as indicated by the development of the 9.4 eV loss feature. It is assumed that boron suboxides are formed in which the BB bond is retained. The cleavage of the BB bonds starts above 400 K and is completed at 750 K, when the 2sp 2 hybrid state at 8.6-9.0 eV in the UPS, due to the BB bond, is no longer detected. Formation of a polymer-like B 2O 3 species is proposed which reacts with elemental boron above 900 K to give B 2O 2.

  4. Large-scale fabrication of boron nitride nanotubes with high purity via solid-state reaction method

    PubMed Central

    2014-01-01

    An effective solid-state reaction method is reported for synthesizing boron nitride nanotubes (BNNTs) in large scale and with high purity by annealing amorphous boron powder and ferric chloride (FeCl3) catalyst in ammonia atmosphere at elevated temperatures. FeCl3 that has rarely been utilized before is introduced not only as a catalyst but also as an efficient transforming agent which converts boron powder into boron chloride (BCl3) vapor in situ. The nanotubes are bamboo in shape and have an average diameter of about 90 nm. The effect of synthetic temperatures on nanotube morphology and yield is investigated. The photoluminescence (PL) measurement shows emission bands of the nanotubes at 354, 423, 467, and 666 nm. A combined growth mechanism of vapor–liquid-solid (VLS) and solid–liquid-solid (SLS) model is proposed for the formation of the BNNTs. PMID:25313303

  5. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    SciTech Connect

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Wang, Lai S.; Boldyrev, Alexander I.

    2014-04-15

    Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B

  6. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B(4)C multilayer.

    PubMed

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B(4)C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 - delta + ibeta close to the boron K edge (approximately 188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B(4)C and various boron oxides.

  7. Fivefold twinned boron carbide nanowires.

    PubMed

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  8. Effect of chemically active media on the structure and properties of cubic boron nitride

    SciTech Connect

    Bogatyreva, G.P.; Maevsky, V.M.; Zusmanov, E.R.; Roitsin, A.V.

    1997-10-01

    Properties of cubic boron nitride (cBN) powders from 2 to 200 mm particle size have been studied before and after chemical treatment. Impurity compositions of the bulk and surface, density, magnetic, electrophysical, physicochemical, and radio-spectroscopic characteristics are considered. Structural changes in samples and the origin of the observed effects are discussed.

  9. Preliminary study of neutron absorption by concrete with boron carbide addition

    NASA Astrophysics Data System (ADS)

    Abdullah, Yusof; Ariffin, Fatin Nabilah Tajul; Hamid, Roszilah; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal; Ahmad, Sahrim; Mohamed, Abdul Aziz

    2014-02-01

    Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.

  10. Preliminary study of neutron absorption by concrete with boron carbide addition

    SciTech Connect

    Abdullah, Yusof Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal; Ariffin, Fatin Nabilah Tajul; Ahmad, Sahrim; Hamid, Roszilah; Mohamed, Abdul Aziz

    2014-02-12

    Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.

  11. PROCESS OF FORMING POWDERED MATERIAL

    DOEpatents

    Glatter, J.; Schaner, B.E.

    1961-07-14

    A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

  12. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  13. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  14. Characterization of Fine Powders

    NASA Astrophysics Data System (ADS)

    Krantz, Matthew; Zhang, Hui; Zhu, Jesse

    Fine powders are used in many applications and across many industries such as powdered paints and pigments, ceramics, petrochemicals, plastics, pharmaceuticals, and bulk and fine chemicals, to name a few. In addition, fine powders must often be handled as a waste by-product, such as ash generated in combustion and gasification processes. In order to correctly design a process and process equipment for application and handling of powders, especially fine powders, it is essential to understand how the powder would behave. Many characterization techniques are available for determining the flow properties of powders; however, care must be taken in selecting the most appropriate technique(s).

  15. Boron isotopic compositions of some boron minerals

    SciTech Connect

    Oi, Takao; Musashi, Masaaki; Ossaka, Tomoko; Kakihana, Hidetake ); Nomura, Masao; Okamoto, Makoto )

    1989-12-01

    Boron minerals that have different structural formulae but are supposed to have the same geologic origin have been collected and analyzed for the {sup 11}B/{sup 10}B isotopic ratio. It has been reconfirmed that minerals of marine origin have higher {sup 11}B/{sup 10}B ratios than those of nonmarine origin. It has been found that the sequence of decreasing {sup 11}B/{sup 10}B values among the minerals with the same geologic origin is; borax, tincal, kernite (Na borates) > ulexite (Na/Ca borate) > colemanite, iyoite, meyerhofferite (Ca borates). This sequence is explainable on the basis of the difference in crystal structure among the minerals. That is, minerals with high BO{sub 3}/BO{sub 4} ratios, (the ratio of the number of the BO{sub 3} triangle units to the number of the BO{sub 4} tetrahedron units in the structural formula of a mineral) have higher {sup 11}B/{sup 10}B ratios.

  16. The role of boron in ductilizing Ni3Al

    NASA Technical Reports Server (NTRS)

    Vedula, K.; Shabel, B. S.; Khadkikar, P. S.

    1987-01-01

    Ductilization of Ni3Al at room temperature by microalloying with boron has been primarily attributed to the increased grain boundary cohesion in the presence of boron. However, another aspect of the role played by boron in ductilizing Ni3Al is revealed when the Hall-Petch relationships for Ni3Al and B-doped Ni3Al are compared. A shallower slope for the B-doped Ni3Al compared to that for Ni3Al indicates a reduced resistance to slip propagation across grain boundaries, and therefore reduced stress concentration at boundaries, in the presence of boron. This comparison of Hall-Petch relationships was carried out by generating data for powder processed B-doped Ni3Al at various grain sizes and by compiling data for Ni3Al from the literature. In addition, the room temperature fracture of B-doped Ni3Al has been shown to initiate along certain grain boundaries. The fracture eventually occurs by transgranular ductile tearing.

  17. Plasma Synthesized Doped Boron Nanopowder for MgB2 Superconductors

    SciTech Connect

    James V. Marzik

    2012-03-26

    Under this program, a process to synthesize nano-sized doped boron powder by a plasma synthesis process was developed and scaled up from 20 gram batches at program start to over 200 grams by program end. Over 75 batches of boron nanopowder were made by RF plasma synthesis. Particle sizes were typically in the 20-200 nm range. The powder was synthesized by the reductive pyrolysis of BCl{sub 3} in hydrogen in an RF plasma. A wide range of process parameters were investigated including plasma power, torch geometry, gas flow rates, and process pressure. The powder-in-tube technique was used to make monofilament and multifilament superconducting wires. MgB{sub 2} wire made with Specialty Materials plasma synthesized boron nanopowder exhibited superconducting properties that significantly exceeded the program goals. Superconducting critical currents, J{sub c}, in excess of 10{sup 5} A cm{sup -2} at magnetic fields of 8 tesla were reproducibly achieved. The upper critical magnetic field in wires fabricated with program boron powder were H{sub c2}(0) = 37 tesla, demonstrating the potential of these materials for high field magnet applications. T{sub c} in carbon-doped MgB{sub 2} powder showed a systematic decrease with increasing carbon precursor gas flows, indicating the plasma synthesis process can give precise control over dopant concentrations. Synthesis rates increased by a factor of 400% over the course of the program, demonstrating the scalability of the powder synthesis process. The plasma synthesis equipment at Specialty Materials has successfully and reproducibly made high quality boron nanopowder for MgB{sub 2} superconductors. Research and development from this program enabled Specialty Materials to successfully scale up the powder synthesis process by a factor of ten and to double the size of its powder pilot plant. Thus far the program has been a technical success. It is anticipated that continued systematic development of plasma processing parameters, dopant

  18. Effective potentials for 6-coordinated boron: Structural geometry approach

    NASA Astrophysics Data System (ADS)

    Zhu, W.-J.; Henley, C. L.

    2000-07-01

    We have built a database of ab initio total energies for elemental boron in over 60 hypothetical crystal structures of varying coordination Z, such that every atom is equivalent. Fitting to each subset with a particular Z, we extract a classical effective potential, written as a sum over coordination shells and dominated by three-atom (bond angle dependent) terms. In the case Z = 6 (lowest in energy and most relevant), the classical potential has a typical error of 0.1 eV/atom, and favors the "inverted-umbrella" environment seen in real boron.

  19. Isotopic composition of cosmic-ray boron and nitrogen

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  20. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  1. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  2. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  3. Boron Abundances in A and B-type Stars

    NASA Technical Reports Server (NTRS)

    Lambert, David L.

    1997-01-01

    Boron abundances in A- and B-type stars may be a successful way to track evolutionary effects in these hot stars. The light elements - Li, Be, and B - are tracers of exposure to temperatures more moderate than those in which the H-burning CN-cycle operates. Thus, any exposure of surface stellar layers to deeper layers will affect these light element abundances. Li and Be are used in this role in investigations of evolutionary processes in cool stars, but are not observable in hotter stars. An investigation of boron, however, is possible through the B II 1362 A resonance line. We have gathered high resolution spectra from the IUE database of A- and B-type stars near 10 solar mass for which nitrogen abundances have been determined. The B II 1362 A line is blended throughout; the temperature range of this program, requiring spectrum syntheses to recover the boron abundances. For no star could we synthesize the 1362 A region using the meteoritic/solar boron abundance of log e (B) = 2.88; a lower boron abundance was necessary which may reflect evolutionary effects (e.g., mass loss or mixing near the main-sequence), the natal composition of the star forming regions, or a systematic error in the analyses (e.g., non-LTE effects). Regardless of the initial boron abundance, and despite the possibility of non-LTE effects, it seems clear that boron is severely depleted in some stars. It may be that the nitrogen and boron abundances are anticorrelated, as would be expected from mixing between the H-burning and outer stellar layers. If, as we suspect, a residue of boron is present in the A-type supergiants, we may exclude a scenario in which mixing occurs continuously between the surface and the deep layers operating the CN-cycle. Further exploitation of the B II 1362 A line as an indicator of the evolutionary status of A- and B-type stars will require a larger stellar sample to be observed with higher signal-to-noise as attainable with the Hubble Space Telescope.

  4. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.

  5. Wedge etching by anodic oxidation and determination of shallow boron profile by ion beam analysis

    NASA Astrophysics Data System (ADS)

    Gyulai, J.; Battistig, G.; Lohner, T.; Hajnal, Z.

    2008-04-01

    Shallow boron implantation is a widely used step in the Si technology. Boron being a light element, standard RBS and channeling is hardly used for investigating its depth distribution and lattice location after implantation and subsequent annealing. An old idea, the pulled anodic oxidation is applied to create bevelled sample surface in order to explore the implanted boron profile. Detailed description of the special sample preparation method is given. RBS and channeling studies in combination with the 11B(p,α)8Be nuclear reaction at around 660 keV were used to measure the total boron concentration step-by-step both on random direction and channeled samples. Boron profiles extracted from step-by-step nuclear reaction measurements is presented.

  6. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  7. Atomically controlled substitutional boron-doping of graphene nanoribbons

    PubMed Central

    Kawai, Shigeki; Saito, Shohei; Osumi, Shinichiro; Yamaguchi, Shigehiro; Foster, Adam S.; Spijker, Peter; Meyer, Ernst

    2015-01-01

    Boron is a unique element in terms of electron deficiency and Lewis acidity. Incorporation of boron atoms into an aromatic carbon framework offers a wide variety of functionality. However, the intrinsic instability of organoboron compounds against moisture and oxygen has delayed the development. Here, we present boron-doped graphene nanoribbons (B-GNRs) of widths of N=7, 14 and 21 by on-surface chemical reactions with an employed organoboron precursor. The location of the boron dopant is well defined in the centre of the B-GNR, corresponding to 4.8 atom%, as programmed. The chemical reactivity of B-GNRs is probed by the adsorption of nitric oxide (NO), which is most effectively trapped by the boron sites, demonstrating the Lewis acid character. Structural properties and the chemical nature of the NO-reacted B-GNR are determined by a combination of scanning tunnelling microscopy, high-resolution atomic force microscopy with a CO tip, and density functional and classical computations. PMID:26302943

  8. METHOD OF COATING SURFACES WITH BORON

    DOEpatents

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  9. Atomization methods for forming magnet powders

    SciTech Connect

    Sellers, C.H.; Branagan, D.J.; Hyde, T.A.

    2000-02-08

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: (a) forming a melt comprising R{sub 2.1}Q{sub 13.9}B{sub 1}, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; (b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and (c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R{sub 2.1}Q{sub 13.9}B{sub 1}.

  10. Atomization methods for forming magnet powders

    DOEpatents

    Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.

    2000-01-01

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

  11. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  12. Cosmis Lithium-Beryllium-Boron Story

    NASA Astrophysics Data System (ADS)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  13. Outside the pH box: Boron isotopes in synthetic calcite precipitated under varying solution chemistry

    NASA Astrophysics Data System (ADS)

    Farmer, J. R.; Uchikawa, J.; Penman, D. E.; Hoenisch, B.; Zeebe, R. E.

    2015-12-01

    Boron isotopic measurements (δ11B) in marine carbonates are a powerful tool for reconstructing past ocean carbon chemistry and the carbon cycle. Boron systematics in marine carbonates are rooted in the equilibrium dissociation of dissolved boron in seawater, but existing evidence from biogenic carbonates (corals, planktic and benthic foraminifers) suggests somewhat variable controls on boron concentration and δ11B. Synthetic precipitation experiments provide an opportunity to study boron systematics without biological interference, and recent studies (e.g., Uchikawa et al., 2015, GCA v150, 171-191) suggest that boron incorporation (measured as B/Ca ratios) into synthetic carbonates varies both with the elemental composition of experimental seawater and precipitation rate. Here we extend the geochemical characterization of synthetic calcite by investigating the influences of changing solution chemistry (pH, [Ca2+], [DIC] and [B]) and precipitation rate on their boron isotopic composition. Our results will be evaluated in the context of carbonate precipitation rates, modes of boron incorporation, and changing seawater chemistry through geologic time.

  14. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    PubMed

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  15. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, M.K.; Akinc, M.

    1999-02-02

    A boron-modified molybdenum silicide material is disclosed having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo{sub 5}Si{sub 3} phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi{sub 2} heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo{sub 5}Si{sub 3} for structural integrity. 7 figs.

  16. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, Mitchell K.; Akinc, Mufit

    1999-02-02

    A boron-modified molybdenum silicide material having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo.sub.5 Si.sub.3 phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi.sub.2 heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo.sub.5 Si.sub.3 for structural integrity.

  17. Synthesis of Cubic Boron Nitride Nanoparticles from Boron Oxide, Melamine and NH3 by Non-Transferred Ar-N2 Thermal Plasma.

    PubMed

    Ko, Eun Ha; Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2015-11-01

    Cubic boron nitride (c-BN) which is has extremely high hardness and thermal conductivity comparable to the diamond was synthesized in nanoparticle form by using non-transferred thermal plasma. The input power of arc plasma was fixed at 13.5 kW and the operating pressure was also fixed at atmospheric pressure. Boron oxide (B2O3) and melamine (C3H6N6) were used as raw materials for the sources of boron and nitrogen. Ammonia gas (NH3) was additionally injected to plasma jet as reactive gas providing additional nitrogen. Decomposed B2O3 and C3H6N6 enhance reactivity for synthesizing c-BN with exothermic reactions between carbon, hydrogen and oxygen. Products were collected from the inner wall of reactor. In X-ray diffraction and scanning electron microscope measurements, the collected powder was confirmed as c-BN nanoparticles which have crystalline size smaller than 150 nm.

  18. T Strip Properties Fabricated by Powder Rolling Method

    NASA Astrophysics Data System (ADS)

    Hong, Jae-Keun; Lee, Chae-Hun; Kim, Jeoung-Han; Yeom, Jong-Taek; Park, Nho-Kwang

    In the present study, the characteristics of the Ti powders fabricated by Hydride-Dehydride (HDH) were analyzed in terms of particle shape, size and size distribution. Ti powders were subjected to roll compaction and their microstructure and green densities were evaluated in terms of particle size, powder morphology, roll gap and rolling speed. Effects of blending elements having different powder sizes on densification properties were analyzed. The strip thickness was proportional to the roll gap up to 0.9 mm and the density of titanium strip was decreased with the increase in roll gap. As the roll speed increased, the strip density and thickness were decreased by using -200 mesh Ti powder. However, the effect of rolling speed for -400 mesh Ti powder was not greater than that of -200 mesh powder. The highest density by 93% was achieved by using -400 mesh Ti powder at 0.1 mm roll gap, however edge cracks and alligator cracks were occurred.

  19. Composite powder particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald S. (Inventor); MacDowell, Louis G. (Inventor)

    2009-01-01

    A liquid coating composition including a coating vehicle and composite powder particles disposed within the coating vehicle. Each composite powder particle may include a magnesium component, a zinc component, and an indium component.

  20. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  1. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    PubMed

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  2. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    PubMed

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  3. Concentrations of arsenic, antimony, and boron in steam and steam condensate at The Geysers, California

    USGS Publications Warehouse

    Smith, C.L.; Ficklin, W.H.; Thompson, J.M.

    1987-01-01

    Studies at The Geysers Geothermal Field, California indicate that under some circumstances elements that are transported in the vapor phase can become enriched in the liquid phase. Waters from two condensate traps (steam traps) on steam lines at The Geysers are enriched with arsenic, antimony, and boron compared to the concentrations of these elements in coexisting steam. Concentrations of boron in condensate-trap waters were as high as 160 mg/L, arsenic as high as 35 mg/L, and antimony as high as 200 ??g/L. Enrichment of arsenic, antimony, and boron is at least partially controlled by the partitioning of these elements into the liquid phase, according to their vapor-liquid distribution coefficients, after they are transported in steam. Several of the elements that are most soluble in steam, including arsenic and antimony, are part of the trace-element suite that characterizes precious-metal epithermal ore deposits. ?? 1987.

  4. Melting of B12P2 boron subphosphide under pressure

    NASA Astrophysics Data System (ADS)

    Solozhenko, Vladimir L.; Mukhanov, Vladimir A.; Sokolov, Petr S.; Le Godec, Yann; Cherednichenko, Kirill A.; Konôpková, Zuzana

    2016-04-01

    Melting of boron subphosphide (B12P2) to 26 GPa has been studied by in situ synchrotron X-ray powder diffraction in a laser-heated diamond anvil cell, and by quenching and electrical resistance measurements in a toroid-type high pressure apparatus. B12P2 melts congruently, and the melting curve has a positive slope of 23(6) K/GPa. No solid-state phase transition was observed up to the melting in the whole pressure range under study.

  5. Nothing Boring About Boron

    PubMed Central

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  6. Regulation of iron transport related genes by boron in the marine bacterium Marinobacter algicola DG893.

    PubMed

    Romano, Ariel; Trimble, Lyndsay; Hobusch, Ashtian R; Schroeder, Kristine J; Amin, Shady A; Hartnett, Andrej D; Barker, Ryan A; Crumbliss, Alvin L; Carrano, Carl J

    2013-08-01

    While there has been extensive interest in the use of boron isotope ratios as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the high (0.4 mM) concentration and the depth-independent (conservative or non-nutrient-like) concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the modern ocean. Here we report that boron affects the expression of a number of protein and genes in the "algal-associated" Gram-negative marine bacterium Marinobacter algicola DG893. Most intriguingly, a number of these proteins and genes are related to iron uptake. In a recent separate publication we have shown that boron regulates one such iron transport related protein, i.e. the periplasmic iron binding protein FbpA via a direct interaction of the metalloid with this protein. Here we show that a number of other iron uptake related genes are also affected by boron but in the opposite way i.e. they are up-regulated. We propose that the differential effect of boron on FbpA expression relative to other iron transport related genes is a result of an interaction between boron and the global iron regulatory protein Fur.

  7. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    PubMed

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  8. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    PubMed Central

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-01-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air. PMID:26831205

  9. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  10. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    PubMed

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-01-01

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air. PMID:26831205

  11. The shocking development of lithium (and boron) in supernovae

    NASA Technical Reports Server (NTRS)

    Dearborn, David S. P.; Schramm, David N.; Steigman, Gary; Truran, James

    1989-01-01

    It is shown that significant amounts of Li-7 and B-11 are produced in Type 2 supernovae. The synthesis of these rare elements occurs as the supernova shock traverses the base of the hydrogen envelope burning He-3 to masses 7 and 11 via alpha capture. The yields in this process are sufficient to account for the difference in lithium abundance observed between Pop 2 and Pop 1 stars. Since lithium (and boron) would, in this manner, be created in the same stars that produce the bulk of the heavy elements, the lithium abundance even in old Pop 1 stars would be high (as observed). The B-11 production may remedy the long-standing problem of the traditional spallation scenario to account for the observed isotopic ratio of boron. Observational consequences of this mechanism are discussed, including the evolution of lithium and boron isotope ratios in the Galaxy and the possible use of the boron yields to constrain the number of blue progenitor Type 2 supernovae.

  12. Boron nitride nanowires synthesis via a simple chemical vapor deposition at 1200 °C

    SciTech Connect

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Khan, Ziaul Raza

    2015-04-24

    A very simple chemical vapor deposition technique is used to synthesize high quality boron nitride nanowires at 1200 °C within a short growth duration of 30 min. FESEM micrograph shows that the as-synthesized boron nitride nanowires have a clear wire like morphology with diameter in the range of ∼20 to 150 nm. HR-TEM confirmed the wire-like structure of boron nitride nanowires, whereas XPS and Raman spectroscopy are used to find out the elemental composition and phase of the synthesized material. The synthesized boron nitride nanowires have potential applications as a sensing element in solid state neutron detector, neutron capture therapy and microelectronic devices with uniform electronic properties.

  13. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    SciTech Connect

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-12-14

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows for surface

  14. Reducing Boron Toxicity by Microbial Sequestration

    SciTech Connect

    Hazen, T.; Phelps, T.J.

    2002-01-01

    While electricity is a clean source of energy, methods of electricity-production, such as the use of coal-fired power plants, often result in significant environmental damage. Coal-fired electrical power plants produce air pollution, while contaminating ground water and soils by build-up of boron, which enters surrounding areas through leachate. Increasingly high levels of boron in soils eventually overcome boron tolerance levels in plants and trees, resulting in toxicity. Formation of insoluble boron precipitates, mediated by mineral-precipitating bacteria, may sequester boron into more stable forms that are less available and toxic to vegetation. Results have provided evidence of microbially-facilitated sequestration of boron into insoluble mineral precipitates. Analyses of water samples taken from ponds with high boron concentrations showed that algae present contained 3-5 times more boron than contained in the water in the samples. Boron sequestration may also be facilitated by the incorporation of boron within algal cells. Experiments examining boron sequestration by algae are in progress. In bacterial experiments with added ferric citrate, the reduction of iron by the bacteria resulted in an ironcarbonate precipitate containing boron. An apparent color change showing the reduction of amorphous iron, as well as the precipitation of boron with iron, was more favorable at higher pH. Analysis of precipitates by X-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectroscopy revealed mineralogical composition and biologicallymediated accumulation of boron precipitates in test-tube experiments.

  15. Boron diffusion in silicon devices

    DOEpatents

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  16. The influence of metal Mg on micro-morphology and crystallinity of spherical hexagonal boron nitride

    SciTech Connect

    Zhang, Ning Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2015-08-15

    Highlights: • The action mechanism of Mg to the synthesis of spherical BN was explored. • The influence of Mg content on the crystallinity of h-BN powders was studied. • Even if not added any template, the spherical h-BN could be prepared. - Abstract: This search used the boric acid and borax as a source of boron, urea as a nitrogen source, Mg as metal catalyst, and thus prepared different micro-morphology and crystallinity hexagonal boron nitride powders under a flowing ammonia atmosphere at a nitriding temperature of 750 °C. The effect of Mg content on the crystallinity and micro-morphology of hexagonal boron nitride powders was studied, and the Mg action mechanism was explored. Without the added surfactant, the graphitization index (GI) was 6.87, and the diameter of the spherical h-BN was bigger. When the added Mg were 0.1 g, 0.3 g, 0.5 g and 0.7 g, the (GI) decreased to 6.04, 5.67, 4.62 and 4.84, respectively. When the Mg content was higher (0.9 g), GI value increased rapidly, and the crystallinity became bad. When the Mg content was 0.5 g, the dispersion of h-BN powders was at its optimum and refinement apparently, and the crystallinity at its highest.

  17. Inelastic properties of boron oxides

    NASA Astrophysics Data System (ADS)

    Tushishvili, M. Ch.; Darsavelidze, G. Sh.; Tsagareishvili, O. A.; Bairamashvili, I. A.; Jobava, J. Sh.

    1991-07-01

    Temperature dependence of internal friction and dynamic shear modulus for boron anhydride (B2O3) and boron suboxide (B6O) have been investigated at frequencies of 1-10 Hz and over the temperature range 80-900 K. Absolute shear modulus for boron suboxide at 80 and 400 K was 0.9 and 0.85 GPa, respectively. Relaxation maximum of internal friction, accompanied with shear modulus defect had activation energy of 0.8 eV, and frequency factor of ˜1.1012 s-1. Measruements of absolute values of boron suboxide shear modulus at various temperatures showed deviations from linear decrease above 670 K. In the internal friction spectrum at temperatures of 410 and 700 K the maxima of origin have been revealed. At temperatures of 595 and 650-700 K an intense maxima of internal friction and shear modulus defects were observed. Many of the relaxation and hysteretic processes have been discussed accounting on the possiblity of formation of point defects (oxygen vacancies, unbonded boron atoms), split dislocations and polysynthetic twins in the (001) rhombohedral planes, lowering down the local symmetry in the boron suboxide crystal structure.

  18. Targeted and non-targeted boron complex formation followed by electrospray Fourier transform ion cyclotron mass spectrometry: a novel approach for identifying boron esters with natural organic matter.

    PubMed

    Gaspar, Andras; Lucio, Marianna; Harir, Mourad; Schmitt-Kopplin, Philippe

    2011-01-01

    The formation of boron esters was investigated in peat-soluble humified materials with a detailed molecular-level description of boron-organic interactions. Thousands of individually baseline separated signals were obtained from the analysis of natural organic matter of peat samples, using Fourier transform ion cyclotron resonance mass spectrometry. This technique offers unsurpassed isotope-specific mass resolution that can lead to precise molecular formula assignments by means of mathematical data analysis and visualisation techniques, such as mass defect (Kendrick) or elemental ratio (van Krevelen) plots. The analysis of potential boron binding structures within the sample of natural organic matter was described based on prior results. Herein, we describe an algorithm that can be used to effectively distinguish and filter complexes through data obtained from boron-enriched systems with highly intricate mass spectra, such as natural organic matter. PMID:21719921

  19. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates

    SciTech Connect

    Vengosh, A. Hebrew Univ., Jerusalem ); Chivas, A.R.; McCulloch, M.T. ); Kolodny, Y.; Starinsky, A. )

    1991-10-01

    The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.

  20. A boron-boron coupling reaction between two ethyl cation analogues

    NASA Astrophysics Data System (ADS)

    Litters, Sebastian; Kaifer, Elisabeth; Enders, Markus; Himmel, Hans-Jörg

    2013-12-01

    The design of larger architectures from smaller molecular building blocks by element-element coupling reactions is one of the key concerns of synthetic chemistry, so a number of strategies were developed for this bottom-up approach. A general scheme is the coupling of two elements with opposing polarity or that of two radicals. Here, we show that a B-B coupling reaction is possible between two boron analogues of the ethyl cation, resulting in the formation of an unprecedented dicationic tetraborane. The bonding properties in the rhomboid B4 core of the product can be described as two B-B units connected by three-centre, two-electron bonds, sharing the short diagonal. Our discovery might lead the way to the long sought-after boron chain polymers with a structure similar to the silicon chains in β-SiB3. Moreover, the reaction is a prime textbook example of the influence of multiple-centre bonding on reactivity.

  1. Polymer quenched prealloyed metal powder

    DOEpatents

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  2. Preparation of boron suboxide nanoparticles and their processing

    NASA Astrophysics Data System (ADS)

    Grabis, J.; Rašmane, Dz; Krbar umiņa, A.; Patmalnieks, A.

    2011-12-01

    Crystalline boron suboxide B6O particles with size in the range of 1.5-2 μm and crystalline size in the range of 32-40 nm were prepared by calcination at 1400 °C for one hour of precursors prepared by wet mixing amorphous boron with water solution of B2O3 followed by evaporation and drying. The XRD analysis showed that formation of B6O started at 1350 °C and well crystallized powder was obtained at 1400 °C at ambient pressure. The synthesis temperature corresponded to the literature data but formation process was three times quicker. Decrease of molar ratio B/B2O3 from 16 to 14 in the precursor mixture reduced nonstoichiometry of prepared B6O although simultaneously it increased admixture of B2O. The characteristic shape of the particles was starlike plates. During the spark plasma sintering process, the densification of boron suboxide started at 1500 °C and fully dense bodies (98%) were fabricated at 1900 °C within five minutes.

  3. Consolidation of cubic and hexagonal boron nitride composites

    SciTech Connect

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; Kuntz, J. D.

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that in some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.

  4. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOEpatents

    Park, Jong-Hee

    2011-11-29

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  5. Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline.

    PubMed

    Lihareva, N; Kosturkova, P; Vakarelska, T

    2000-05-01

    Boron in tourmaline, a high refractory mineral with a high boron content (approximately 3%), can be determined after aqueous leaching of a sodium carbonate-zinc oxide melt. Boron is separated effectively from the major elements of matrix, such as silicon, calcium and magnesium and especially from iron, the main spectral interfering element. Measurements were performed by inductively coupled plasma atomic emission spectrometry. A determination limit of 4 microg/g could be achieved when 200 mg of sample are analyzed with a precision of 5.2% RSD. This method could be applied to the determination of fluorine in the same solution. PMID:11227440

  6. Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline.

    PubMed

    Lihareva, N; Kosturkova, P; Vakarelska, T

    2000-05-01

    Boron in tourmaline, a high refractory mineral with a high boron content (approximately 3%), can be determined after aqueous leaching of a sodium carbonate-zinc oxide melt. Boron is separated effectively from the major elements of matrix, such as silicon, calcium and magnesium and especially from iron, the main spectral interfering element. Measurements were performed by inductively coupled plasma atomic emission spectrometry. A determination limit of 4 microg/g could be achieved when 200 mg of sample are analyzed with a precision of 5.2% RSD. This method could be applied to the determination of fluorine in the same solution.

  7. Boron-10 ABUNCL Prototype Initial Testing

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-12-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results of initial testing of an Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Several configurations of the ABUNCL models, which use 10B-lined proportional counters in place of 3He proportional counters for the neutron detection elements, were previously reported. The ABUNCL tested is of a different design than previously modeled. Initial experimental testing of the as-delivered passive ABUNCL was performed, and modeling will be conducted. Testing of the system reconfigured for active testing will be performed in the near future, followed by testing with nuclear fuel.

  8. The boron connection: Roots (routes), grounds, horizons

    NASA Astrophysics Data System (ADS)

    Zdetsis, Aristides D.

    2012-12-01

    Isoelectronic and isolobal silicon-based analogues to boranes and borane complexes are considered and studied. The framework and the implementation of such isoelectronic and isolobal analogies initially between silicon clusters (cluster dianions) and isovalent boranes, known under the scoptical and synoptical name "boron connection" is critically analyzed and reviewed in considerable depth and breadth, paying special attention to its conceptual simplicity, origin, and originality. It is illustrated that such a concept can be extended to several borane complexes producing analogous silicon based (nano)structures. This is achieved by considering and evaluating several vertical, horizontal and diagonal relationships on the periodical table rooted on Si. It is shown that this type of simple and transparent relationships can lead to far reaching extensions and generalizations of the "boron connection" to encompass structural and electronic relationships between additional simple and mixed clusters based in addition to Si on other group 14 elements. Such clusters include, among others, simple Gen2- and Snn2- dianions and mixed Si-Bi, Ge-Bi and Sn-Bi clusters. Special emphasis is placed on molecular and material engineering and functionalization, in analogy to similar functionalization of borane based molecules and materials. It is illustrated that this enlarged and expanded project is very promising and could be very successful for the design of a practically unlimited number of new group-14-based complexes as well as the rationalization and fictionalization of newly synthesized materials.

  9. Synthesis and photocurrent of amorphous boron nanowires.

    PubMed

    Ge, Liehui; Lei, Sidong; Hart, Amelia H C; Gao, Guanhui; Jafry, Huma; Vajtai, Robert; Ajayan, Pulickel M

    2014-08-22

    Although theoretically feasible, synthesis of boron nanostructures is challenging due to the highly reactive nature, high melting and boiling points of boron. We have developed a thermal vapor transfer approach to synthesizing amorphous boron nanowire using a solid boron source. The amorphous nature and chemical composition of boron nanowires were characterized by high resolution transmission electron microscopy, selected area electron diffraction, and electron energy loss spectroscopy. Optical properties and photoconduction of boron nanowires have not yet been reported. In our investigation, the amorphous boron nanowire showed much better optical and electrical properties than previously reported photo-response of crystalline boron nanobelts. When excited by a blue LED, the photo/dark current ratio (I/I₀) is 1.5 and time constants in the order of tens of seconds. I/I₀ is 1.17 using a green light. PMID:25061013

  10. Boronated porhyrins and methods for their use

    DOEpatents

    Miura, M.; Shelnutt, J.A.; Slatkin, D.N.

    1999-03-02

    The present invention covers boronated porphyrins containing multiple carborane cages which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies such as boron neutron capture therapy and photodynamic therapy. 3 figs.

  11. Boronated porhyrins and methods for their use

    DOEpatents

    Miura, Michiko; Shelnutt, John A.; Slatkin, Daniel N.

    1999-03-02

    The present invention covers boronated porphyrins containing multiple carborane cages which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies such as boron neutron capture therapy and photodynamic therapy.

  12. Boron in Pariette Wetland Sediments, Aquatic Vegetation & Benthic Organisms

    NASA Astrophysics Data System (ADS)

    Vasudeva, P.; Jones, C. P.; Powelson, D.; Jacobson, A. R.

    2015-12-01

    The Pariette Wetlands are comprised of 20 ponds located in Utah's Uintah Basin. Boron concentration in the Pariette Wetlands have been observed to exceed the total maximum daily limit of 750 µg L-1. Considering water flow in and out of the wetlands, boron is accumulating within the wetlands where it is sorbed to sediments and bioconcentrated by wetland plant and macro invertebrates. Since boron is an avian teratogen, an estimate of boron ingestion exposure is warranted. Samples from 3 of the 23 Pariette Wetland ponds with one pond near the inlet, one near the outlet, and one in the middle were collected. Five sampling points were designated along a 100 m transect of each pond. At each sampling point duplicate (or triplicate) samples of water, sediments, benthic organisms and wetland vegetation were collected. The sediments were collected with a KB-corer and divided at depths of 0-2 cm, 2-7 cm, and 7+ cm from the sediment surface. Sample splits were sent to the USU Bug lab for identification of invertebrate species. Whenever this transect was not intercepting vegetation, 2-3 additional sample sites were identified at the pond within stands of representative vegetation where bird nests are located. The plant parts used for boron analyses will include seeds, shoot and roots of vascular plants, as well as algae or duckweeds skimmed from the surface. Samples were processed within 2 days of collection. Water samples filtered through a 0.45 μ membrane filter were analyzed for DOC, pH and ECe. The dried and washed vegetation samples were ground and stored. The benthic organisms and macro invertebrates were netted at the water surface. The dried samples were weighed, ground and stored. Samples were weighed, oven dried and reweighed. For plant and macro-invertebrate samples, a nitric and hydrogen peroxide digestion procedure is used to dissolve environmentally available elements. The Hot Water extraction and DTPA-Sorbitol extraction were compared to estimate wetland plant

  13. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor.

    PubMed

    Yilmaz, A Erdem; Boncukcuoglu, Recep; Yilmaz, M Tolga; Kocakerim, M Muhtar

    2005-01-31

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions.

  14. Multiple feed powder splitter

    SciTech Connect

    Lewis, Gary K.; Less, Richard M.

    2002-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  15. Multiple feed powder splitter

    SciTech Connect

    Lewis, Gary K.; Less, Richard M.

    2001-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  16. Granulation of fine powder

    DOEpatents

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  17. Phosphors containing boron and metals of Group IIIA and IIIB

    DOEpatents

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  18. Beryllium and Boron abundances in population II stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The scientific focus of this program was to undertake UV spectroscopic abundance analyses of extremely metal poor stars with attention to determining abundances of light elements such as beryllium and boron. The abundances are likely to reflect primordial abundances within the early galaxy and help to constrain models for early galactic nucleosynthesis. The general metal abundances of these stars are also important for understanding stellar evolution.

  19. Methods for boron delivery to mammalian tissue

    DOEpatents

    Hawthorne, M. Frederick; Feaks, Debra A.; Shelly, Kenneth J.

    2003-01-01

    Boron neutron capture therapy can be used to destroy tumors. This treatment modality is enhanced by delivering compounds to the tumor site where the compounds have high concentrations of boron, the boron compounds being encapsulated in the bilayer of a liposome or in the bilayer as well as the internal space of the liposomes. Preferred compounds, include carborane units with multiple boron atoms within the carborane cage structure. Liposomes with increased tumor specificity may also be used.

  20. Effect of pretreatment and additives on boron release during pyrolysis and gasification of coal

    SciTech Connect

    Yuuki Mochizuki; Katsuyasu Sugawara; Yukio Enda

    2009-09-15

    Boron is one of the most toxic and highly volatile elements present in coal. As part of a series of studies carried out on coal cleaning to prevent environmental problems and to promote efficient coal utilization processes, the removal of boron by leaching with water and acetic acid has been investigated. The effects of the addition of ash components, that is, SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO on the control of boron release during pyrolysis and gasification were investigated. Here, 20-70% of boron in coal was removed by leaching the coal with water and acetic acid. Boron leached by water and acetic acid was related to the volatiles released from coal in pyrolysis below 1173 K. The addition of ash components such as SiO{sub 2} and Al{sub 2}O{sub 3} was found to be effective in suppressing the release of boron during pyrolysis at temperatures below and above 1173 K, respectively. The addition of CaO to coal was effective in suppressing the release of boron during gasification at 1173 K. 26 refs., 7 figs., 3 tabs.

  1. Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins.

    PubMed

    Yang, F; Mao, J; He, X W; Chen, L X; Zhang, Y K

    2013-06-01

    A novel strategy for preparation of a boronate affinity hybrid monolith was developed using a Cu(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reaction of an alkyne-boronate ligand with an azide-functionalized monolithic intermediate. An azide-functionalized hybrid monolith was first synthesized via a single-step procedure to provide reactive sites for click chemistry; then the alkyne-boronate ligands were covalently immobilized on the azide-functionalized hybrid monolith via an in-column CuAAC reaction to form a boronate affinity hybrid monolith under mild conditions. The boronate affinity monolith was characterized and evaluated by means of elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The boronate affinity hybrid monolith exhibited excellent specificity toward nucleosides and glycoproteins, which were chosen as test cis-diol-containing compounds under neutral conditions. The binding capacity of the monolith for the glycoprotein ovalbumin was 2.36 mg · g(-1) at pH 7.0. The practicability of the boronate affinity hybrid monolithic material was demonstrated by specific capture of the glycoproteins ovalbumin and ovotransferrin from an egg sample.

  2. Cow dung powder poisoning.

    PubMed

    Sherfudeen, Khaja Mohideen; Kaliannan, Senthil Kumar; Dammalapati, Pavan Kumar

    2015-11-01

    Cow dung, which has germicidal property, was used in ancient days to clean living premises in South India. Nowadays, people are using commercially available synthetic cow dung powder. It is locally known as "saani powder" in Tamil Nadu. It is freely available in homes and is sometimes accidentally consumed by children. It is available in two colors - yellow and green. Cow dung powder poisoning is common in districts of Tamil Nadu such as Coimbatore, Tirupur, and Erode. We report two cases of yellow cow dung powder poisoning from our hospital. PMID:26730123

  3. Mineral resource of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  4. Design and fabrication of a boron reinforced intertank skirt

    NASA Technical Reports Server (NTRS)

    Henshaw, J.; Roy, P. A.; Pylypetz, P.

    1974-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiency of a boron reinforced shell, where the medium of reinforcement consists of hollow aluminum extrusions infiltrated with boron epoxy. Studies were completed for the design of a one-half scale minimum weight shell using boron reinforced stringers and boron reinforced rings. Parametric and iterative studies were completed for the design of minimum weight stringers, rings, shells without rings and shells with rings. Computer studies were completed for the final evaluation of a minimum weight shell using highly buckled minimum gage skin. The detail design is described of a practical minimum weight test shell which demonstrates a weight savings of 30% as compared to an all aluminum longitudinal stiffened shell. Sub-element tests were conducted on representative segments of the compression surface at maximum stress and also on segments of the load transfer joint. A 10 foot long, 77 inch diameter shell was fabricated from the design and delivered for further testing.

  5. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  6. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  7. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  8. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  9. BP: synthesis and properties of boron phosphide

    NASA Astrophysics Data System (ADS)

    Woo, Katherine; Lee, Kathleen; Kovnir, Kirill

    2016-07-01

    Cubic boron phosphide, BP, is notorious for its difficult synthesis, thus preventing it from being a widely used material in spite of having numerous favorable technological properties. In the current work, three different methods of synthesis are developed and compared: from the high temperature reaction of elements, Sn flux assisted synthesis, and a solid state metathesis reaction. Structural and optical properties of the products synthesized from the three methods were thoroughly characterized. Solid state metathesis is shown to be the cleanest and most efficient method in terms of reaction temperature and time. Synthesis by Sn flux resulted in a novel Sn-doped BP compound. Undoped BP samples exhibit an optical bandgap of ∼2.2 eV while Sn-doped BP exhibits a significantly smaller bandgap of 1.74 eV. All synthesized samples show high stability in concentrated hydrochloric acid, saturated sodium hydroxide solutions, and fresh aqua regia.

  10. Drinking water health advisory for boron

    SciTech Connect

    Cantilli, R.

    1991-04-01

    The Health Advisory Program, sponsored by the Environmental Protection Agency's Office of Water, has issued its report on the element boron: included are the compounds boric acid and borax(sodium tetraborate). It provides information on the health effects, analytical methodology, and treatment technology that would be useful in dealing with the contamination of drinking water. Health Advisories (HAs) describe nonregulatory concentrations of drinking water contaminants at which adverse health effects would not be anticipated to occur over specific exposure durations. HAs serve as informal technical guidance to assist Federal, State, and local officials responsible for protecting public health when emergency spills or contamination situations occur. They are not legally enforceable Federal Standards and are subject to change as new information becomes available.

  11. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters.

    PubMed

    Del-Campo Marín, Claudia M; Oron, Gideon

    2007-12-01

    Boron (B) is often found in polluted and desalinated waters. Despite its potentially environmental damaging effects, efficient treatments are lacking. The duckweed Lemna gibba has been shown to remove toxic elements from water; however, its applicability to B removal is unknown. In this study, L. gibba was examined for its tolerance to B in water and its B removal efficiency. Duckweed plants were grown in outdoor 12-day batch experiments in nutrient solution containing 0.3-10 mg B L(-1). Plant biomass production was not affected by B over the tested concentrations during the 12-day cultivation period. Boron removal and the bioconcentration factor of B in L. gibba were highest at initial B concentrations below 2 mg L(-1), and decreased as the initial B concentration increased. Boron content in the plants at the end of the experiment ranged between 930 and 1900 mg kg(-1) dry weight, and was comparable to that of wetland plants reported to be good B accumulators. Boron removal by L. gibba may therefore be a suitable option for the treatment of water containing B concentrations below 2 mg L(-1). PMID:17643472

  12. Superplastic behavior of two ultrahigh boron steels

    SciTech Connect

    Jimenez, J.A. ); Gonzalez-Doncel, G.; Ruano, O.A. . Centro Nacional de Investigaciones Metalurgicas); Acosta, P. )

    1994-06-01

    The high-temperature deformation behavior of two ultrahigh boron steels containing 2.2 pct and 4.9 pct B was investigated. Both alloys were processed via powder metallurgy involving gas atomization and hot isostatic pressing (hipping) at various temperatures. After hipping at 700 C, the Fe-2.2 pct B alloy showed a fine microstructure consisting of 1-[mu]m grains and small elongated borides (less than 1 [mu]m). At 1,100 C, a coarser microstructure with rounded borides was formed. This alloy was superplastic at 850 C with stress exponents of about two and tensile elongations as high as 435 pct. The microstructure of the Fe-4.9 pct B alloy was similar to that of the Fe-2.2 pct B alloy showing, in addition, coarse borides. This alloy also showed low stress exponent values but lacked high tensile elongation (less than 65 pct), which was attributed to the presence of stress accumulation at the interface between the matrix and the large borides. A change in the activation energy value at the [alpha]-[gamma] transformation temperature was seen in the Fe-2.2 pct B alloy. The plastic flow data were in agreement with grain boundary sliding and slip creep models.

  13. Thermal conductivity of boron carbides

    NASA Technical Reports Server (NTRS)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  14. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Mir, Showkat H.; Chakraborty, Sudip; Jha, Prakash C.; Wärnâ, John; Soni, Himadri; Jha, Prafulla K.; Ahuja, Rajeev

    2016-08-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of the boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.

  15. Chemoselective Boronic Ester Synthesis by Controlled Speciation**

    PubMed Central

    Fyfe, James W B; Seath, Ciaran P; Watson, Allan J B

    2014-01-01

    Control of boronic acid solution speciation is presented as a new strategy for the chemoselective synthesis of boronic esters. Manipulation of the solution equilibria within a cross-coupling milieu enables the formal homologation of aryl and alkenyl boronic acid pinacol esters. The generation of a new, reactive boronic ester in the presence of an active palladium catalyst also facilitates streamlined iterative catalytic C=C bond formation and provides a method for the controlled oligomerization of sp2-hybridized boronic esters. PMID:25267096

  16. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    SciTech Connect

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yields from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.

  17. Thermionic properties of the molybdenum boron system

    SciTech Connect

    Storms, E.K.

    1980-01-01

    The thermionic work function has been measured as a function of composition within the various two phase regions between Mo and MoB/sub 2/. Values at the low boron and high boron phase boundaries for the various compounds were obtained by extrapolation. The following effective work functions were obtained: Mo/sub 2/B (low boron) = 3.08 eV; Mo/sub 2/B (high boron) = 3.63 eV; ..cap alpha..-MoB (low boron) = 3.38 eV; ..cap alpha..-MoB (high boron) = 4.30 eV; ..beta..-MoB (low boron) = 2.83 eV; ..beta..-MoB (high boron) = 3.92; Mo/sub 2/B/sub 3/ (low boron) = 4.65 eV; Mo/sub 2/B/sub 3/ (high boron) = 3.85 eV; and MoB/sub 2/ (low boron) = 3.52 eV. Because the composition range of these compounds is very narrow, the work function is very sensitive to the composition within the single phase regions.

  18. Structure of boron nitride nanotubes

    SciTech Connect

    Buranova, Yu. S. Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2015-01-15

    The crystallographic structure of boron nitride nanotubes has been investigated. Various defects that may arise during nanotube synthesis are revealed by electron microscopy. Nanotubes with different numbers of walls and different diameters are modeled by molecular dynamics methods. Structural features of single-wall nanotubes are demonstrated. The causes of certain defects in multiwall nanotubes are indicated.

  19. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  20. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  1. Boron trifluoride coatings for plastics

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M.

    1978-01-01

    Tough, durable coatings of boron triflouride can be deposited on plastic optical components to protect them from destructive effects of abrasion, scratching, and environment. Coating material can be applied simultaneously with organic polymers, using plasma glow-discharge methods, or it can be used as base material for other coatings to increase adhesion.

  2. Advanced microstructure of boron carbide.

    PubMed

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  3. Thermoelectric properties of boron carbides

    SciTech Connect

    Aselage, T.; Emin, D.; Wood, C.

    1988-01-01

    Boron carbides are ceramic materials with unusual properties and applications. These refractory materials (T/sub m/ > 2600K) exist as a single phase over a wide range of stoichiometries, from 20 a/o carbon to less than 10 a/o carbon (Bouchacourt and Thevenot 1981). The relatively low density (approx.2.5 g/cm/sup 3/) and exceptional hardness lead to applications in the area of ceramic armor. In addition, /sup 10/B has a large capture cross section for thermal neutrons. This fact, along with the robust nature of the structure in a high radiation environment, leads to the use of boron carbides as nuclear reactor control materials. Because of a combination of unusual high temperature electronic and thermal properties, boron carbides also make efficient very high temperature (p-type) thermoelectrics. In this paper, we shall review the electrical and thermal properties of boron carbides and describe recent progress in understanding these properties. 13 refs., 4 figs.

  4. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  5. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  6. Compaction of Titanium Powders

    NASA Astrophysics Data System (ADS)

    Gerdemann, Stephen J.; Jablonski, Paul D.

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  7. Functionally graded boron carbide

    SciTech Connect

    Petrovic, J.J.; McClellan, K.J.; Kise, C.D.; Hoover, R.C.; Scarborough, W.K.

    1998-12-31

    Lightweight body armor is important for the protection of US soldiers in the field. Here, fabrication techniques were developed for producing graded porosity B{sub 4}C, and for producing aluminum-B{sub 4}C and epoxy-B{sub 4}C functionally graded materials. The key fabrication aspect was obtaining the graded porosity B{sub 4}C. The feasibility of producing graded porosity B{sub 4}C using a grading of carbon densification aid produced from a gradient of furfuryl alcohol carbon precursor was demonstrated. This approach is quite promising, but it was not optimized in the present investigation. Graded porosity B{sub 4}C materials were produced by a layering approach using different size distributions of B{sub 4}C powders in the green state, and then densifying the layered assembly by hot pressing at 1,900 C. The hardness of uninfiltrated graded B{sub 4}C, aluminum infiltrated B{sub 4}C, and epoxy infiltrated B{sub 4}C was observed to be similar.

  8. Efficient FEM simulation of static and free vibration behavior of single walled boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.; Kontoni, Denise-Penelope N.; Georgantzinos, Stylianos K.

    2016-08-01

    This paper describes the static and free vibration behavior of single walled boron nitride nanotubes using a structural mechanics based finite element method. First, depending on the type of nanotube under investigation, its three dimensional nanostructure is developed according to the well-known corresponding positions of boron and nitride atoms as well as boron nitride bonds. Then, appropriate point masses are assigned to the atomic positions of the developed space frame. Next, these point masses are suitably interconnected with two-noded, linear, spring-like, finite elements. In order to simulate effectively the interactions observed between boron and nitride atoms within the nanotube, appropriate potential energy functions are introduced for these finite elements. In this manner, various atomistic models for both armchair and zigzag nanotubes with different aspect ratios are numerically analyzed and their effective elastic modulus as well as their natural frequencies and corresponding mode shapes are obtained. Regarding the free vibration analysis, the computed results reveal bending, breathing and axial modes of vibration depending on the nanotube size and chirality as well as the applied boundary support conditions. The longitudinal stiffness of the boron nitride nanotubes is found also sensitive to their geometric characteristics.

  9. A DEM contact model for history-dependent powder flows

    NASA Astrophysics Data System (ADS)

    Hashibon, Adham; Schubert, Raphael; Breinlinger, Thomas; Kraft, Torsten

    2016-11-01

    Die filling is an important part of the powder handling process chain that greatly influences the characteristic structure and properties of the final part. Predictive modelling and simulation of the die-filling process can greatly contribute to the optimization of the part and the whole production procedure, e.g. by predicting the resulting powder compaction structure as a function of filling process parameters. The rheology of powders can be very difficult to model especially if heterogeneous agglomeration or time-dependent consolidation effects occur. We present a new discrete element contact force model that enables modelling complex powder flow characteristics including direct time-dependent consolidation effects and load history-dependent cohesion to describe the filling process of complex, difficult to handle powders. The model is demonstrated for simple flow and an industrial powder flow.

  10. Beryllium and boron in metal-poor stars

    NASA Astrophysics Data System (ADS)

    Primas, Francesca

    2010-04-01

    Knowledge of lithium, beryllium, and boron abundances in stars of the Galactic halo and disk plays a major role in our understanding of Big Bang nucleosynthesis, cosmic-ray physics, and stellar interiors. 9Be and 10B are believed to originate entirely from spallation reactions in the interstellar medium (ISM) between α-particles and protons and heavy nuclei like carbon, nitrogen, and oxygen (CNO), whereas 11B may have an extra production channel via neutrino-spallation. Beryllium and boron are both observationally challenging, with their main resonant doublets falling respectively at 313 nm and at 250 nm. The advent of 8-10m class telescopes equipped with highly sensitive (in the near-UV/blue) spectrographs has opened up a new era of Be abundance studies. Here, I will review and discuss the most interesting results of recent observational campaigns in terms of formation and evolution of these two light elements.

  11. Boron neutron capture therapy for cancer

    SciTech Connect

    Barth, R.E.; Soloway, A.H. ); Fairchild, R.G. State Univ. of New York, Stony Brook )

    1990-10-01

    Boron neutron capture therapy (BNCT) bring together two components that when kept separate have only minor effects on normal cells. The first component is a stable isotope of boron (boron 10) that can be concentrated in tumor cells. The second is a beam of low-energy neutrons that produces short-range radiation when absorbed, or captured, by the boron. The combination of these two conditions at the site of a tumor releases intense radiation that can destroy malignant tissues. BNCT is based on the nuclear reaction that occurs when boron 10 is irradiated with an absorbs neutrons. The neutrons that it takes up are called thermal, or slow, neutrons. They are of such low energy that they cause little tissue damage as compared with other forms of radiation such as protons, gamma rays and fast neutrons. When an atom of boron 10 captures a neutron, an unstable isotope, boron 11, forms. The boron 11 instantly fissions, yielding lithium 7 nuclei and energetic alpha particles. These heavy particles, which carry 2.79 million electron volts of energy, are a highly lethal form of radiation. If the treatment proceeds as intended, the destructive effects of the capture reaction would occur primarily in those cancer cells that have accumulated boron 10. Normal cells with low concentrations of boron would be spared.

  12. Chronic boron exposure and human semen parameters.

    PubMed

    Robbins, Wendie A; Xun, Lin; Jia, Juan; Kennedy, Nola; Elashoff, David A; Ping, Liu

    2010-04-01

    Boron found as borates in soil, food, and water has important industrial and medical applications. A panel reviewing NTP reproductive toxicants identified boric acid as high priority for occupational studies to determine safe versus adverse reproductive effects. To address this, we collected boron exposure/dose measures in workplace inhalable dust, dietary food/fluids, blood, semen, and urine from boron workers and two comparison worker groups (n=192) over three months and determined correlations between boron and semen parameters (total sperm count, sperm concentration, motility, morphology, DNA breakage, apoptosis and aneuploidy). Blood boron averaged 499.2 ppb for boron workers, 96.1 and 47.9 ppb for workers from high and low environmental boron areas (p<0.0001). Boron concentrated in seminal fluid. No significant correlations were found between blood or urine boron and adverse semen parameters. Exposures did not reach those causing adverse effects published in animal toxicology work but exceeded those previously published for boron occupational groups. PMID:19962437

  13. Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojun; Liu, Weiliang

    2016-09-01

    Boron carbide (B4C)-silicon (Si) composites have been prepared by aqueous tape casting, laminating, and spark plasma sintering (SPS). The influences of silicon (Si) content on the phases, microstructure, sintering properties, and mechanical properties of the obtained B4C-Si composites are studied. The results indicate that the addition of Si powder can act as a sintering aid and contribute to the sintering densification. The addition of Si powder can also act as a second phase and contribute to the toughening for composites. The relative density of B4C-Si composites samples with adding 10 wt.% Si powder prepared by SPS at 1600 °C and 50 MPa for 8 min is up to 98.3%. The bending strength, fracture toughness, and Vickers hardness of the sintered samples are 518.5 MPa, 5.87 MPa m1/2, and 38.9 GPa, respectively. The testing temperature-dependent high-temperature bending strength and fracture toughness can reach a maximum value at 1350 °C. The B4C-Si composites prepared at 1600, 1650, and 1700 °C have good high-temperature mechanical properties. This paper provides a facile low-temperature sintering route for B4C ceramics with improved properties.

  14. Chemistry of trace elements in coalbed methane product water.

    PubMed

    McBeth, Ian; Reddy, Katta J; Skinner, Quentin D

    2003-02-01

    Extraction of methane (natural gas) from coal deposits is facilitated by pumping of aquifer water. Coalbed methane (CBM) product water, produced from pumping ground water, is discharged into associated unlined holding ponds. The objective of this study was to examine the chemistry of trace elements in CBM product water at discharge points and in associated holding ponds across the Powder River Basin, Wyoming. Product water samples from discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. Samples were analyzed for pH, Al (aluminum), As (arsenic), B (boron), Ba (barium), Cr (chromium), Cu (copper), F (fluoride), Fe (iron), Mn (manganese), Mo (molybdenum), Se (selenium), and Zn (zinc). Chemistry of trace element concentrations were modeled with the MINTEQA2 geochemical equilibrium model. Results of this study show that pH of product water for three watersheds increased in holding ponds. For example the pH of CBM product water increased from 7.21 to 8.26 for LPR watershed. Among three watersheds, the CBM product water exhibited relatively less change in trace element concentrations in CHR watershed holding ponds. Concentration of dissolved Al, Fe, As, Se, and F in product water increased in BFR watershed holding ponds. For example, concentration of dissolved Fe increased from 113 to 135 microg/L. Boron, Cu, and Zn concentrations of product water did not change in BFR watershed holding ponds. However, concentration of dissolved Ba, Mn, and Cr in product water decreased in BFR watershed holding ponds. For instance, Ba and Cr concentrations decreased from 445 to 386 microg/L and from 43.6 to 25.1 microg/L, respectively. In the LPR watershed, Al, Fe, As, Se, and F concentrations of product water increased substantially in holding ponds. For example, Fe concentration increased from 192 to 312 microg/L. However, concentration of

  15. Boron in the extreme Pop II star HD 140283

    NASA Astrophysics Data System (ADS)

    Edvardsson, Bengt

    1997-07-01

    Using the HST and ground-based observations we have determined abundances of boron and beryllium in the extreme Pop II dwarf HD140283. These are very useful since different scenarios for the origins of Be and B in the Early Galaxy suggest different abundance ratios between the two elements. From the 2497 Angstrom B I line the boron abundance was found to be log epsilon{B} {=12 + log{N{B}/N{H}}} =0.34 +/- 0.20 {Edvardsson et al. 1994, A&A 290, 176}. Our abundance ratio N{B}/N{Be} 17 and similar results for other stars indicate that these elements were formed by cosmic ray spallation in the Early Galaxy. Other suggested mechanisms include inhomogeneous Big Bang nucleosynthesis, supernova boron production or photoerosion in active galactic nuclei. These mechanisms would give other abundance ratios. We now want to confirm these results by observing the 2089 Angstrom B I line. The line is expected to give an independent check of the boron abundances as well as an opportunity to examine the suitability of the line for future investigations of the ratio between the isotopes 11B/10B in Pop II stars. This isotopic ratio has never been measured in Pop II objects and provides further important information concerning the mechanism of 11B production and the conditions in the Early Galaxy. For comparison, the solar system {meteoritic} 11B/10B suggests that about 40% of the 11B in Pop I objects is not formed by ISM spallation, but probably in Supernovae of Type II.

  16. Talcum powder poisoning

    MedlinePlus

    ... powder As a filler in street drugs, like heroin Other products may also contain talc. ... have developed serious lung damage and cancer. Injecting heroin that contains talc into a vein may lead ...

  17. Gelcasting superalloy powders

    SciTech Connect

    Janney, M.A.

    1995-12-31

    Gelcasting is a process for forming inorganic powders into complex shapes. It was originally developed for ceramic powders. A slurry of powder and a monomer solution is poured in to mold and polymerized in-situ to form gelled parts. Typically, only 2-4 wt % Polymer is used. The process has both aqueous and nonaqueous versions. Gelcasting is a generic process and has been used to produce ceramic parts from over a dozen different ceramic compositions ranging from alumina-based refractories to high-performance silicon nitride. Recently, gelcasting has been applied to forming superalloy powders into complex shapes. This application has posed several challenges not previously encountered in ceramics. In particular, problems were caused by the larger particle size and the higher density of the particles. Additional problems were encountered with binder removal. How these problems were overcome will be described.

  18. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  19. POWDER COAT APPLICATIONS

    EPA Science Inventory

    The report discusses an investigation of critical factors that affect the use of powder coatings on the environment, cost, quality, and production. The investigation involved a small business representative working with the National Defense Center for Environmental Excellence (ND...

  20. Alkylamine-functionalized hexagonal boron nitride nanoplatelets as a novel material for the reduction of friction and wear.

    PubMed

    Kumari, Sangita; Sharma, Om P; Khatri, Om P

    2016-08-17

    Hexagonal boron nitride nanoplatelets (h-BNNPs), which are structurally analogous to graphene, were prepared via the ultrasound-assisted exfoliation of h-BN powder using N-methyl pyrrolidone as the solvent. The alkylamines with variable alkyl chains and electron-rich nitrogen atoms were grafted onto the boron sites of the h-BNNPs based on Lewis acid-base chemistry. The grafting of the alkylamines onto the h-BNNPs was confirmed using FTIR, XPS, TGA and (13)C SSNMR analyses. The crystalline and structural features of the alkylamine-functionalized h-BNNPs were studied using XRD and HRTEM analyses. The TGA and FTIR results revealed a higher grafting of octadecylamine (ODA) on the h-BNNPs compared to trioctylamine (TOA). The cohesive interaction between the alkyl chains grafted onto the h-BNNPs and the hydrocarbon chains of mineral lube base oil facilitates the dispersion of the alkylamine-functionalized h-BNNPs. The TOA-grafted h-BNNPs (h-BNNPs-TOA) exhibited long-term dispersion stability compared to the ODA-grafted h-BNNPs and this was attributed to a higher degree of van der Waals interactions between the octyl chains of the TOA molecules grafted onto the h-BNNPs and the hydrocarbon chains of the mineral lube base oil. The tribo-performance of the h-BNNPs-TOA as an additive to mineral lube base oil was evaluated in terms of the coefficient of friction and wear using ball-on-disc contact geometry. A minute dosing (0.02 mg mL(-1)) of h-BNNPs-TOA significantly improved the lubrication characteristics of the mineral lube base oil and showed a 35 and 25% reduction of friction and wear, respectively. The presence of boron and nitrogen on the worn scar of an aluminium disc, as deduced from elemental mapping, confirmed the formation of a tribo-chemical thin film of h-BN lamellae on the contact interfaces, which not only reduced the friction but also protected the contact interfaces against undesirable wear events. PMID:27484045

  1. Alkylamine-functionalized hexagonal boron nitride nanoplatelets as a novel material for the reduction of friction and wear.

    PubMed

    Kumari, Sangita; Sharma, Om P; Khatri, Om P

    2016-08-17

    Hexagonal boron nitride nanoplatelets (h-BNNPs), which are structurally analogous to graphene, were prepared via the ultrasound-assisted exfoliation of h-BN powder using N-methyl pyrrolidone as the solvent. The alkylamines with variable alkyl chains and electron-rich nitrogen atoms were grafted onto the boron sites of the h-BNNPs based on Lewis acid-base chemistry. The grafting of the alkylamines onto the h-BNNPs was confirmed using FTIR, XPS, TGA and (13)C SSNMR analyses. The crystalline and structural features of the alkylamine-functionalized h-BNNPs were studied using XRD and HRTEM analyses. The TGA and FTIR results revealed a higher grafting of octadecylamine (ODA) on the h-BNNPs compared to trioctylamine (TOA). The cohesive interaction between the alkyl chains grafted onto the h-BNNPs and the hydrocarbon chains of mineral lube base oil facilitates the dispersion of the alkylamine-functionalized h-BNNPs. The TOA-grafted h-BNNPs (h-BNNPs-TOA) exhibited long-term dispersion stability compared to the ODA-grafted h-BNNPs and this was attributed to a higher degree of van der Waals interactions between the octyl chains of the TOA molecules grafted onto the h-BNNPs and the hydrocarbon chains of the mineral lube base oil. The tribo-performance of the h-BNNPs-TOA as an additive to mineral lube base oil was evaluated in terms of the coefficient of friction and wear using ball-on-disc contact geometry. A minute dosing (0.02 mg mL(-1)) of h-BNNPs-TOA significantly improved the lubrication characteristics of the mineral lube base oil and showed a 35 and 25% reduction of friction and wear, respectively. The presence of boron and nitrogen on the worn scar of an aluminium disc, as deduced from elemental mapping, confirmed the formation of a tribo-chemical thin film of h-BN lamellae on the contact interfaces, which not only reduced the friction but also protected the contact interfaces against undesirable wear events.

  2. Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same

    SciTech Connect

    Lavens, T.R.; Corrigan, F.R.; Shott, R.L.; Bovenkerk, H.P.

    1987-06-16

    A method is described for making re-sintered polycrystalline cubic boron nitride (CBN) which comprises: (a) placing sintered substantially catalyst-free boron-rich polycrystalline cubic boron nitride particles in a high pressure/high temperature apparatus, the particles being substantially free of sintering inhibiting impurities; (b) subjecting the boron-rich cubic boron nitride particles to a pressure and a temperature adequate to re-sinter the particles, the temperature being below the CBN reconversion temperature; (c) maintaining the temperature and pressure for a time sufficient to re-sinter the boron-rich cubic boron nitride particles in the apparatus, and (d) recovering the re-sintered polycrystalline cubic boron nitride from the apparatus.

  3. Two-dimensional boron based nanomaterials: electronic, vibrational, Raman, and STM signatures

    NASA Astrophysics Data System (ADS)

    Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav; Meunier, Vincent

    Because boron has only three electrons on its outer shell, planar mono-elemental boron nanostructures are expected to be much more challenging to assemble than their carbon counterparts. Several studies proposed schemes in which boron is stabilized to form flat semiconducting sheets consisting of a hexagonal lattice of boron atoms with partial hexagon filling (PRL 99 115501, ACSNano 6 7443-7453) . Other structures were proposed based on results from an evolutionary algorithm (PRL 112 085502). These structures are metallic and one even features a distorted Dirac cone near the Fermi level. Experimental evidence for 2D boron is still lacking but the recently proposed molecular synthesis of a flat all-boron molecule is a promising route to achieve this goal (Nat.Comms. 5 3113). Our research aims at providing a first-principles based description of these materials' properties to help in their identification. DFT is used to calculate phonon dispersion and associated Raman scattering spectra. We report some marked discrepancy between our findings and results from the recent literature and address the deviation using two methods for phonon dispersion. We also simulated STM images at various bias potentials to reveal the electronic symmetry of each material.

  4. Boron-enhanced diffusion of boron: Physical mechanisms

    NASA Astrophysics Data System (ADS)

    Agarwal, Aditya; Gossmann, H.-J.; Eaglesham, D. J.

    1999-04-01

    Silicon layers containing B in excess of a few atomic percent create a supersaturation of Si self-interstitials in the underlying Si, resulting in enhanced diffusion of B in the substrate [boron-enhanced diffusion (BED)]. The temperature and time dependence of BED is investigated here. Evaporated boron as well as ultralow energy 0.5 keV B-implanted layers were annealed at temperatures from 1100 to 800 °C for times ranging from 3 to 3000 s. Isochronal 10 s anneals reveal that the BED effect increases with increasing temperature up to 1050 °C and then decreases. In contrast, simulations based on interstitial generation via the kick-out mechanism predict a decreasing dependence leading to the conclusion that the kick-out mechanism is not the dominant source of excess interstitials responsible for BED. The diffusivity enhancements from the combined effects of BED and transient-enhanced diffusion, measured in 2×1015cm-2, 0.5 keV B-implanted samples, show a similar temperature dependence as seen for evaporated B, except that the maximum enhancement occurs at 1000 °C. The temperature-dependent behavior of BED supports the hypothesis that the source of excess interstitials is the formation of a silicon boride phase in the high-boron-concentration silicon layer.

  5. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  6. Method for preparing boron-carbide articles

    DOEpatents

    Benton, S.T.; Masters, D.R.

    1975-10-21

    The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.

  7. Prediction of boron carbon nitrogen phase diagram

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  8. A Modified Oxidative Refinement Process for Removing Boron from Molten Silicon Under Enhanced Electromagnetic Force.

    PubMed

    Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Kang, Gi-Hwan; Cho, Churl-Hee

    2015-11-01

    The removal of boron is one of the main challenges in the purification of metallurgical grade silicon destined for low-cost photovoltaic applications. However, boron is very difficult to remove in its elemental form due to its large segregation coefficient in silicon and its low vapor pressure. The removal of boron by slag treatment is today regarded as a highly promising method, but its refining efficiency is relatively low. Also, the reduction of boron by plasma treatment exhibits a high refining efficiency, but the processing cost is high due to the large amount of electricity consumed by the process. In this regard, the use of an oxidizing reactive gas in the refinement process offers some advantages both in terms of low energy consumption and promising refinement rates. Boron can be extracted in various gaseous forms as B(x)O(y) and/or B(x)H(z)O(y) phases, but the vapor pressure of B(x)H(z)O(y) is much greater than that of the other specie at a temperature of 1700 K. The present study reports a modified oxidative refining method designed to enhance the vaporization of boron as B(x)H(z)O(y) by blowing gaseous water onto the silicon melt in a segmented crucible to enhance the electromagnetic force, whereby the processing cost can be dramatically reduced due to the use of a reusable quartz crucible in a graphite crucible. An initial boron content of 13 ppm in the metallurgical grade silicon was significantly decreased to 0.3 ppm by the employment of 1.7SLM Ar + 100 ml/h H2O. Also, a mechanism capable of reducing boron based on thermodynamic considerations is proposed.

  9. Boron and Coumaphos Residues in Hive Materials Following Treatments for the Control of Aethina tumida Murray.

    PubMed

    Valdovinos-Flores, Cesar; Gaspar-Ramírez, Octavio; Heras-Ramírez, María Elena; Lara-Álvarez, Carlos; Dorantes-Ugalde, José Antonio; Saldaña-Loza, Luz María

    2016-01-01

    In the search of alternatives for controlling Aethina tumida Murray, we recently proposed the BAA trap which uses boric acid and an attractant which mimics the process of fermentation caused by Kodamaea ohmeri in the hive. This yeast is excreted in the feces of A. tumida causing the fermentation of pollen and honey of infested hives and releasing compounds that function as aggregation pheromones to A. tumida. Since the boron is the toxic element in boric acid, the aim of this article is to assess the amount of boron residues in honey and beeswax from hives treated with the BAA trap. For this aim, the amount of bioaccumulated boron in products of untreated hives was first determined and then compared with the amount of boron of products from hives treated with the BAA trap in two distinct climatic and soil conditions. The study was conducted in the cities of Padilla, Tamaulipas, and Valladolid, Yucatan (Mexico) from August 2014 to March 2015. The quantity of boron in honey was significantly less in Yucatan than in Tamaulipas; this agrees with the boron deficiency among Luvisol and Leptosol soils found in Yucatan compared to the Vertisol soil found in Tamaulipas. In fact, the honey from Yucatan has lower boron levels than those reported in the literature. The BAA treatment was applied for four months, results show that the BAA trap does not have any residual effect in either honey or wax; i.e., there is no significant difference in boron content before and after treatment. On the other hand, the organophosphate pesticide coumaphos was found in 100% of wax samples and in 64% of honey samples collected from Yucatan. The concentration of coumaphos in honey ranges from 0.005 to 0.040 mg/kg, which are below Maximum Residue Limit (MRL) allowed in the European Union (0.1 mg/kg) but 7.14% of samples exceeded the MRL allowed in Canada (0.02 mg/kg).

  10. A Modified Oxidative Refinement Process for Removing Boron from Molten Silicon Under Enhanced Electromagnetic Force.

    PubMed

    Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Kang, Gi-Hwan; Cho, Churl-Hee

    2015-11-01

    The removal of boron is one of the main challenges in the purification of metallurgical grade silicon destined for low-cost photovoltaic applications. However, boron is very difficult to remove in its elemental form due to its large segregation coefficient in silicon and its low vapor pressure. The removal of boron by slag treatment is today regarded as a highly promising method, but its refining efficiency is relatively low. Also, the reduction of boron by plasma treatment exhibits a high refining efficiency, but the processing cost is high due to the large amount of electricity consumed by the process. In this regard, the use of an oxidizing reactive gas in the refinement process offers some advantages both in terms of low energy consumption and promising refinement rates. Boron can be extracted in various gaseous forms as B(x)O(y) and/or B(x)H(z)O(y) phases, but the vapor pressure of B(x)H(z)O(y) is much greater than that of the other specie at a temperature of 1700 K. The present study reports a modified oxidative refining method designed to enhance the vaporization of boron as B(x)H(z)O(y) by blowing gaseous water onto the silicon melt in a segmented crucible to enhance the electromagnetic force, whereby the processing cost can be dramatically reduced due to the use of a reusable quartz crucible in a graphite crucible. An initial boron content of 13 ppm in the metallurgical grade silicon was significantly decreased to 0.3 ppm by the employment of 1.7SLM Ar + 100 ml/h H2O. Also, a mechanism capable of reducing boron based on thermodynamic considerations is proposed. PMID:26726550

  11. Boron and Coumaphos Residues in Hive Materials Following Treatments for the Control of Aethina tumida Murray

    PubMed Central

    Valdovinos-Flores, Cesar; Gaspar-Ramírez, Octavio; Heras–Ramírez, María Elena; Dorantes-Ugalde, José Antonio; Saldaña-Loza, Luz María

    2016-01-01

    In the search of alternatives for controlling Aethina tumida Murray, we recently proposed the BAA trap which uses boric acid and an attractant which mimics the process of fermentation caused by Kodamaea ohmeri in the hive. This yeast is excreted in the feces of A. tumida causing the fermentation of pollen and honey of infested hives and releasing compounds that function as aggregation pheromones to A. tumida. Since the boron is the toxic element in boric acid, the aim of this article is to assess the amount of boron residues in honey and beeswax from hives treated with the BAA trap. For this aim, the amount of bioaccumulated boron in products of untreated hives was first determined and then compared with the amount of boron of products from hives treated with the BAA trap in two distinct climatic and soil conditions. The study was conducted in the cities of Padilla, Tamaulipas, and Valladolid, Yucatan (Mexico) from August 2014 to March 2015. The quantity of boron in honey was significantly less in Yucatan than in Tamaulipas; this agrees with the boron deficiency among Luvisol and Leptosol soils found in Yucatan compared to the Vertisol soil found in Tamaulipas. In fact, the honey from Yucatan has lower boron levels than those reported in the literature. The BAA treatment was applied for four months, results show that the BAA trap does not have any residual effect in either honey or wax; i.e., there is no significant difference in boron content before and after treatment. On the other hand, the organophosphate pesticide coumaphos was found in 100% of wax samples and in 64% of honey samples collected from Yucatan. The concentration of coumaphos in honey ranges from 0.005 to 0.040 mg/kg, which are below Maximum Residue Limit (MRL) allowed in the European Union (0.1 mg/kg) but 7.14% of samples exceeded the MRL allowed in Canada (0.02 mg/kg). PMID:27092938

  12. Boron and Coumaphos Residues in Hive Materials Following Treatments for the Control of Aethina tumida Murray.

    PubMed

    Valdovinos-Flores, Cesar; Gaspar-Ramírez, Octavio; Heras-Ramírez, María Elena; Lara-Álvarez, Carlos; Dorantes-Ugalde, José Antonio; Saldaña-Loza, Luz María

    2016-01-01

    In the search of alternatives for controlling Aethina tumida Murray, we recently proposed the BAA trap which uses boric acid and an attractant which mimics the process of fermentation caused by Kodamaea ohmeri in the hive. This yeast is excreted in the feces of A. tumida causing the fermentation of pollen and honey of infested hives and releasing compounds that function as aggregation pheromones to A. tumida. Since the boron is the toxic element in boric acid, the aim of this article is to assess the amount of boron residues in honey and beeswax from hives treated with the BAA trap. For this aim, the amount of bioaccumulated boron in products of untreated hives was first determined and then compared with the amount of boron of products from hives treated with the BAA trap in two distinct climatic and soil conditions. The study was conducted in the cities of Padilla, Tamaulipas, and Valladolid, Yucatan (Mexico) from August 2014 to March 2015. The quantity of boron in honey was significantly less in Yucatan than in Tamaulipas; this agrees with the boron deficiency among Luvisol and Leptosol soils found in Yucatan compared to the Vertisol soil found in Tamaulipas. In fact, the honey from Yucatan has lower boron levels than those reported in the literature. The BAA treatment was applied for four months, results show that the BAA trap does not have any residual effect in either honey or wax; i.e., there is no significant difference in boron content before and after treatment. On the other hand, the organophosphate pesticide coumaphos was found in 100% of wax samples and in 64% of honey samples collected from Yucatan. The concentration of coumaphos in honey ranges from 0.005 to 0.040 mg/kg, which are below Maximum Residue Limit (MRL) allowed in the European Union (0.1 mg/kg) but 7.14% of samples exceeded the MRL allowed in Canada (0.02 mg/kg). PMID:27092938

  13. Manufacturing process influence on superconducting properties of MgB2 wires prepared using laboratory made boron

    NASA Astrophysics Data System (ADS)

    Bovone, Gianmarco; Matera, Davide; Bernini, Cristina; Magi, Emanuele; Vignolo, Maurizio

    2015-06-01

    Here we report a systematic study of the superconductive properties of mono-filamentary MgB2-based wires, manufactured with four different techniques. A detailed comparison of the influence of manufacturing technique and final heat treatment on superconducting properties has been given. The boron used was synthesized in laboratory following magnesiothermic reduction of boron oxide, purified thanks to several acid leaching and heat treated at high temperature, to enhance crystalline degree and remove impurities. MgB2 conductors were manufactured using the same B precursor through four different techniques (ex situ, in situ, the MgB4 or ‘mixed’ technique (half ex situ and half in situ), and reactive liquid infiltration (Rli)). Transport critical current density was measured on the best wire for each technique, considering the literature data in order to identify the corresponding best final heat treatment. Magnetic critical current density and critical temperature were investigated at different synthesis/sintering temperatures in order to evaluate their dependence to the applied final heat treatment and the data were compared. Critical current density was evaluated on short wire pieces by magnetic measurement at 5 K in a MPMS 5.5 T Quantum Design SQUID, while critical temperature was measured with a four probe system by drop of resistivity during the cooling process of the sample in a liquid helium dewar. A detailed morphological analysis is given, with void percentage evaluation and analysis of elemental Mg diffusion across the transversal cross section. X-ray diffraction was performed on MgB2 powder extracted removing each metal sheath, in order to investigate the influence of manufacturing process on the MgB2 phase. This study shows that despite the presence of a wide void within the superconducting core (due to the Mg diffusion) in the Rli sample, this manufacturing technique allows wires with higher Jc (105 A cm-2 at 3 T when heat treatment at 700 °C is

  14. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  15. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-05-10

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  16. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  17. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-01-25

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  19. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goval, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-06-07

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  20. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-19

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  1. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-28

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Synthesis, Properties, and Applications Of Boron Nitride

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.

    1993-01-01

    Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.

  3. Boron-10 ABUNCL Active Testing

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  4. Boron clusters in luminescent materials.

    PubMed

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  5. CVD-produced boron filaments

    NASA Technical Reports Server (NTRS)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  6. Boron clusters in luminescent materials.

    PubMed

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.

  7. Major NLTE Corrections to HST Boron Observations?

    NASA Astrophysics Data System (ADS)

    Duncan, Douglas

    1995-07-01

    A theoretical study of NLTE effects in the analysis of HST boron observations indicates that all currently-reported abundances are wrong by factors of 2.5-4X. (A systematic effect much larger than any measurement error). If true, this would force major changes in the modelling of Be and B abundances as products of cosmic ray spallation plus direct production by supernovae in the early galaxy. It would help explain why no simple model of galactic chemical evolution can yet explain the evolution of the light elements Li, Be, and B at the same time as the evolution of heavier elements such as Fe and O. We can test the NLTE prediction by observing the BII line at 1362 Angstrom in the star Procyon, whose BI abundance has been extremely well determined from two groups previous HST observations of the BI 2500Angstrom line. (The repaired GHRS opens the possibility of observing the BII line). Our calculations (see figures) demonstrate we should easily see if large amounts of B are being "hidden" (from BI observations) by being in the form of BII. We will use the star Sirius as a reference for differential analysis. BII was observed in Vega and Sirius by the Copernicus satellite 20 years ago, and our re-analysis of this data (see figure) shows we have an excellent chance of success in the present proposal.

  8. FUEL ELEMENTS FOR NUCLEAR REACTORS

    DOEpatents

    Blainey, A.; Lloyd, H.

    1961-07-11

    A method of sheathing a tubular fuel element for a nuclear reactor is described. A low melting metal core member is centered in a die, a layer of a powdered sheathing substance is placed on the bottom of the die, the tubular fuel element is inserted in the die, the space between the tubular fuel element and the die walls and core member is filled with the same powdered sheathing substance, a layer of the same substance is placed over the fissile material, and the charge within the die is subjected to pressure in the direction of the axis of the fuel element at the sintering temperature of the protective substance.

  9. Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction.

    PubMed

    Kumari, Sangita; Sharma, Om P; Gusain, Rashi; Mungse, Harshal P; Kukrety, Aruna; Kumar, Niranjan; Sugimura, Hiroyuki; Khatri, Om P

    2015-02-18

    Hexagonal boron nitride (h-BN), an isoelectric analogous to graphene multilayer, can easily shear at the contact interfaces and exhibits excellent mechanical strength, higher thermal stability, and resistance toward oxidation, which makes it a promising material for potential lubricant applications. However, the poor dispersibility of h-BN in lube base oil has been a major obstacle. Herein, h-BN powder was exfoliated into h-BN nanoplatelets (h-BNNPs), and then long alkyl chains were chemically grafted, targeting the basal plane defect and edge sites of h-BNNPs. The chemical and structural features of octadecyltriethoxysilane-functionalized h-BNNPs (h-BNNPs-ODTES) were studied by FTIR, XPS, XRD, HRTEM, and TGA analyses. The h-BNNPs-ODTES exhibit long-term dispersion stability in synthetic polyol ester lube base oil because of van der Waals interaction between the octadecyl chains of h-BNNPs-ODTES and alkyl functionalities of polyol ester. Micro- and macrotribology results showed that h-BNNPs-ODTES, as an additive to synthetic polyol ester, significantly reduced both the friction and wear of steel disks. Elemental mapping of the worn area explicitly demonstrates the transfer of h-BNNPs-ODTES on the contact interfaces. Furthermore, insight into the lubrication mechanism for reduction in both friction and wear is deduced based on the experimental results. PMID:25625695

  10. Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction.

    PubMed

    Kumari, Sangita; Sharma, Om P; Gusain, Rashi; Mungse, Harshal P; Kukrety, Aruna; Kumar, Niranjan; Sugimura, Hiroyuki; Khatri, Om P

    2015-02-18

    Hexagonal boron nitride (h-BN), an isoelectric analogous to graphene multilayer, can easily shear at the contact interfaces and exhibits excellent mechanical strength, higher thermal stability, and resistance toward oxidation, which makes it a promising material for potential lubricant applications. However, the poor dispersibility of h-BN in lube base oil has been a major obstacle. Herein, h-BN powder was exfoliated into h-BN nanoplatelets (h-BNNPs), and then long alkyl chains were chemically grafted, targeting the basal plane defect and edge sites of h-BNNPs. The chemical and structural features of octadecyltriethoxysilane-functionalized h-BNNPs (h-BNNPs-ODTES) were studied by FTIR, XPS, XRD, HRTEM, and TGA analyses. The h-BNNPs-ODTES exhibit long-term dispersion stability in synthetic polyol ester lube base oil because of van der Waals interaction between the octadecyl chains of h-BNNPs-ODTES and alkyl functionalities of polyol ester. Micro- and macrotribology results showed that h-BNNPs-ODTES, as an additive to synthetic polyol ester, significantly reduced both the friction and wear of steel disks. Elemental mapping of the worn area explicitly demonstrates the transfer of h-BNNPs-ODTES on the contact interfaces. Furthermore, insight into the lubrication mechanism for reduction in both friction and wear is deduced based on the experimental results.

  11. Conduction mechanism in boron carbide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  12. Making Microscopic Cubes Of Boron

    NASA Technical Reports Server (NTRS)

    Faulkner, Joseph M.

    1993-01-01

    Production of finely divided cubes of boron involves vacuum-deposition technology and requires making of template. Template supports pattern of checkered squares 25 micrometers on side, which are etched 25 micrometers into template material. Template coasted uniformly with paralyene or some similar vacuum coating with low coefficient of adhesion. Intended application to solid rocket fuels, explosives, and pyrotechnics; process used for other applications, from manufacture of pharmaceuticals to processing of nuclear materials.

  13. Boron removal from geothermal waters by electrocoagulation.

    PubMed

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar; Yilmaz, M Tolga; Paluluoğlu, Cihan

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm(2), but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  14. Premixed Combustion Model for Boron Clouds

    NASA Astrophysics Data System (ADS)

    Wang, Mengze; Han, Wang; Chen, Zheng

    2015-11-01

    Boron particle is an ideal additive in solid propellants and fuels due to its very high volumetric heat release. In this study, a premixed combustion model for boron clouds is developed based on a previous combustion model for single boron particle. The flame structure is assumed to be composed of three zones: the preheat zone, the ignition zone, and the reaction zone, and analytical solutions are derived from the governing equations. Consequently the influence of the boron clouds' physical properties on the flame propagation process is investigated.

  15. Epochal trace elements and evolution.

    PubMed

    Pfeiffer, C C; Braverman, E R

    1982-07-01

    The use of some trace elements by plants and animals during the evolutionary process has resulted in epochal changes. Noteworthy is the fact that plants (but not animals) needed boron in order to grow stems and roots as they left the seas and became anchored on land. Iodine is plentiful in sea water but rare on land. Therefore, the iodination of tyrosine provided an iodine transport mechanism which allowed for the metamorphosis and the development of warm bloodedness--a great evolutionary advantage. Zinc from clay was needed for the formation of the first primitive nucleic acids and, later, the presence of zinc in the retina provide the enhanced night vision of the nocturnal predators--a natural advantage. Hence, boron, iodine and zinc can be termed epochal trace elements. Inquiry should be directed towards the possible roles of other trace elements, which may have been epochal in evolution. PMID:7136960

  16. Boronization in DIII-D

    SciTech Connect

    Jackson, G.L.; Burrell, K.H.; DeBoo, J.C.; Greenfield, C.M.; Groebner, R.J.; Hodapp, T.; Kellman, A.G.; Lee, R.; Lippman, S.I.; Phillips, J.; Taylor, T.S.; West, W.P. ); Winter, J. . Inst. fuer Plasmaphysik); Moyer, R. ); Watkins, J. (Sandia National Labs., Livermore,

    1992-05-01

    A thin boron film has been applied to the DIII-D tokamak plasma facing surfaces to reduce impurity influx, particularly oxygen and carbon. A direct result of this surface modification was the observation of a regime of very high energy confinement, VH-mode, with confinement times from 1.5 to 2 times greater than predicted by H-mode scaling relation for the same set of parameters. VH-mode discharges are characterized by low ohmic target densities, low edge neutral pressure, and reduced cycling. These conditions have reduced the collisionality, {nu}*, in the edge region producing a higher edge pressure gradient and a significant bootstrap current, up to 30% of the total current. We will describe the edge plasma properties after boronization including reductions in recycling inferred from measurements of {tau}{sup p}*. In particular we will discuss the edge plasma conditions necessary for access to VH-mode including the boronization process and properties of the deposited film.

  17. Complete titanium substitution by boron in a tetragonal prism: exploring the complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) by experiment and theory.

    PubMed

    Fokwa, Boniface P T; Hermus, Martin

    2011-04-18

    Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides. PMID:21428308

  18. Consolidation of cubic and hexagonal boron nitride composites

    DOE PAGES

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; Kuntz, J. D.

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that inmore » some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.« less

  19. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  20. Rheological profile of boron nitride–ethylene glycol nanofluids

    SciTech Connect

    Żyła, Gaweł; Witek, Adam; Gizowska, Magdalena

    2015-01-07

    The paper presents the complete rheological profile of boron nitride (BN)–ethylene glycol (EG) nanofluids. Nanofluids have been produced by two-step method on the basis of commercially available powder of plate-like grains of nanometrical thickness. Viscoelastic structure has been determined in oscillatory measurements at a constant frequency and temperature. Viscosity and flow curves for these materials have been measured. Studies have shown that the Carreau model can be used for the modeling of dynamic viscosity curves of the material. The samples were tested for the presence of thixotropy. The dependence of viscosity on temperature was also examined. The effect of temperature on the dynamic viscosity of BN-EG nanofluids can be modelled with the use of Vogel-Fulcher-Tammann expression.

  1. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  2. Work function measurement of lanthanum-boron compounds

    NASA Technical Reports Server (NTRS)

    Jacobson, D. L.; Storms, E. K.

    1978-01-01

    The relationship between emission properties and sample composition is studied for lanthanum-boron compounds. Specifically, the La-B system is considered between 1400 and 2100 K and between LaB(4.24) and LaB(29.2) to determine the phase relationship, chemical activity of the compounds, vapor composition, and vaporization rate. The results indicate that: (1) a blue-colored phase near LaB(9) exists between a purple-colored LaB(6) and elemental boron, (2) vaporization is sufficiently more rapid than diffusion so that great compositional differences exist between the surface and the interior, (3) an activation energy lowers the boron vaporization rate from LaB(6), and (4) a steady-state surface composition between LaB(6.04) and LaB(6.07) exists for freely vaporizing materials as a function of interior composition, purity, and temperature. It is noted that the ultimate life of a thermionic diode is governed by electrode vaporization rate whereas efficiency is governed by the electrode work function.

  3. Source of Boron in Curcuma for Burn Symptoms at Leaf Margins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was initiated to investigate the source of boron (B) accumulated in margins of leaves of Curcuma ‘Chiangmai University Pride (‘CMU Pride’). Nutrient elements were analyzed from different rhizome locations before potting, and from whole rhizomes and different leaf locations at harvest af...

  4. Matrix Effects on Boron Containing Materials due to Laser Ablation Molecular Isotopic Spectrometry (LAMIS)

    NASA Astrophysics Data System (ADS)

    Brown, Staci R.; Akpovo, Charlemagne A.; Martinez, Jorge; Ford, Alan; Herbert, Kenley; Johnson, Lewis

    2014-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a spectroscopic technique that is used for the qualitative and quantitative analysis of materials in the liquid, solid, or gas phase. LIBS can also be used for the detection of isotopic shifts in atomic and diatomic species via Laser-Ablation Molecular Isotopic Spectroscopy (LAMIS). However, any additional elements that are entrained into the plasma other than the element of interest, can affect the extent of ablation and quality of spectra and hence, potentially obscure or aid in the relative abundance assessment for a given element. To address the importance of matrix effects, the isotopic analysis of boron obtained from boron oxide (BO) emission originating from different boron-containing compounds, such as boron nitride (BN), boric acid (H3BO3) , and borax (Na2B4O710H2O), via LIBS has been performed here. Each of these materials has different physical properties and elemental composition in order to illustrate possible challenges for the LAMIS method. A calibration-free model similar to that for the original LAMIS work is used to determine properties of the plasma as the matrix is changed. DTRA

  5. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  6. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    SciTech Connect

    Krivezhenko, Dina S. Drobyaz, Ekaterina A. Bataev, Ivan A. Chuchkova, Lyubov V.

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  7. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  8. Boron water quality for the Plynlimon catchments

    NASA Astrophysics Data System (ADS)

    Neal, C.

    Boron concentrations in rainfall, throughfall and stemflow for Spruce stands, mist, streamwater and groundwater are compared with chloride to assess atmospheric sources and catchment input-output balances for the Plynlimon catchments. In rainfall, boron concentration averages about 4.5 μg-B l-1 and approximately two thirds of this comes from anthropogenic sources. In through-fall and stemflow, boron concentrations are approximately a factor of ten times higher than in rainfall. This increase is associated with enhanced scavenging of mist and dry deposition by the trees. As the sampling sites were close to a forest edge, this degree of scavenging is probably far higher than in the centre of the forest. The throughfall and stemflow concentrations of boron show some evidence of periodic variations with time with peak concentrations occurring during the summer months indicating some vegetational cycling. In mist, boron concentrations are almost twenty times higher than in rainfall and anthropogenic sources account for about 86% of this. Within the Plynlimon streams, boron concentrations are about 1.4 to 1.7 times higher than in rainfall. However, after allowance for mist and dry deposition contributions to atmospheric deposition, it seems that, on average, about 30% of the boron input is retained within the catchment. For the forested catchments, felling results in a disruption of the biological cycle and a small increase in boron leaching from the catchment results in the net retention by the catchment being slightly reduced. Despite the net uptake by the catchment, there is clear evidence of a boron component of weathering from the bedrock. This is shown by an increased boron concentration in a stream influenced by a nearby borehole which increased groundwater inputs. The weathering component for boron is also observed in Plynlimon groundwaters as boron concentrations and boron to chloride ratios are higher than for the streams. For these Goundwaters, increases in

  9. Some physical properties of compacted specimens of highly dispersed boron carbide and boron suboxide

    NASA Astrophysics Data System (ADS)

    Tsagareishvili, Otar; Lezhava, David; Tushishvili, Mamuka; Gabunia, Levan; Antadze, Marina; Kekelidze, Luiza; Dzigrashvili, Teimuraz

    2004-02-01

    Structure, shear modulus and internal friction (IF) of compacted specimens of boron carbide and boron suboxide have been investigated. Microtwins and stacking faults were observed along the {100} plane systems of polycrystalline specimens of boron carbide. Electrical conductivity of the specimens was that of p-type. Concentration of holes varied from 10 17 to 10 19 cm -3. The IF was measured in the temperature range 80-300 K. It was shown that the IF of boron carbide and that of boron suboxide were characterized with a set of similar relaxation processes. Mechanisms of the relaxation processes in boron carbide and boron suboxide are discussed in terms of the Hasiguti model of interaction between dislocations and point defects.

  10. High pressure phase transformations of cubic boron nitride from amorphous boron nitride using magnesium boron nitride as the catalyst

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Nover, G.; Will, G.

    1995-07-01

    Results are described of high pressure phase transformations of amorphous boron nitride (aBN) to cubic boron nitride (cBN) using magnesium boron nitride (Mg 3B 2N 4) as a catalyst-solvent. It was observed that amorphous boron nitride undergoes various structural modifications under high pressures and high temperatures leading to the formation of hexagonal, cubic and wurtzitic phases of boron nitride. The minimum pressure at which aBN starts transforming into cBN was found to be 25 kbar at 1800°C. This is the lowest pressure for cBN formation employing the catalyst-solvent process and is reported here for the first time.

  11. Boron: do we know the ground state structure?

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi

    2006-03-01

    Boron is only the fifth element in the periodic table, having a simple electronic configuration, yet, it is known to form one of the most complicated crystal structures, β-rhombohedral structure. Up to date, the best estimate on the number of atoms in its hexagonal unit cell is 320.1, not even an integer number. The key concept to understand its complexity is covalency and electron deficiency: It does not have enough valence electrons to form a simple covalent crystal, like carbon or silicon. Instead it forms a complicated packing of icosahedrons. The structural model of β-boron was developed in the 1960s based on X-ray experiment. Although this model structure captures the most of the structural characteristics of β-boron, it has a crucial pitfall; the number of atoms per cell estimated by X-ray experiment does not agree with the number of atoms estimated by the pycnometric density. In 1988, Slack et al. discovered four more POS, by which the discrepancy in the number of atoms is reconciled [J. of Solid State Chem. 76, 52 (1988)]. There still remains an unanswered question; how are these POS atoms configured? Is it completely random? Or there is some kind of order as it has been suggested in Slack’s paper? A major challenge here is the astronomical number of possible configurations, roughly 150 million even for the irreducible cell. We tackle this problem using ab-initio simulated annealing coupled with a Lattice Model Monte Carlo simulated annealing. Our results reveal that the stable structure, indeed, has a certain type of correlation in its POS configuration. More detail on the structural property and its impact on electronic property of β-boron will be discussed at the presentation. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48.

  12. Conditioning of Boron-Containing Low and Intermediate Level Liquid Radioactive Waste - 12041

    SciTech Connect

    Gorbunova, Olga A.; Kamaeva, Tatiana S.

    2012-07-01

    Improved cementation of low and intermediate level radioactive waste (ILW and LLW) aided by vortex electromagnetic treatment as well as silica addition was investigated. Positive effects including accelerated curing of boron-containing cement waste forms, improve end product quality, decreased product volume and reduced secondary LRW volume from equipment decontamination were established. These results established the possibility of boron-containing LRW cementation without the use of neutralizing alkaline additives that greatly increase the volume of the final product intended for long-term storage (burial). Physical (electromagnetic) treatment in a vortex mixer can change the state of LRW versus chemical treatment. By treating the liquid phase of cement solution only, instead of the whole solution, and using fine powder and nano-particles of ferric oxides instead of separable ferromagnetic cores for the activating agents the positive effect are obtained. VET for 1 to 3 minutes yields boron-containing LRW cemented products of satisfactory quality. Silica addition at 10 % by weight will accelerate curing and solidification and to decrease radionuclide leaching rates from boron-containing cement products. (authors)

  13. Iowa Powder Atomization Technologies

    ScienceCinema

    None

    2016-07-12

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  14. Iowa Powder Atomization Technologies

    SciTech Connect

    2012-01-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  15. Powder towpreg process development

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1991-01-01

    The process for dry powder impregnation of carbon fiber tows being developed at LaRC overcomes many of the difficulties associated with melt, solution, and slurry prepregging. In the process, fluidized powder is deposited on spread tow bundles and fused to the fibers by radiant heating. Impregnated tows have been produced for preform, weaving, and composite materials applications. Design and operating data correlations were developed for scale up of the process to commercial operation. Bench scale single tow experiments at tow speeds up to 50 cm/sec have demonstrated that the process can be controlled to produce weavable towpreg. Samples were woven and molded into preform material of good quality.

  16. The Influence of Surface-Active Agent on the Micro-Morphology and Crystallinity of Spherical Hexagonal Boron Nitride.

    PubMed

    Zhang, Ning; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2015-08-01

    This search used the low-cost boric acid and borax as a source of boron, urea as a nitrogen source, surface-active agent Dodecyl benzenesulfonic acid (SDBS) as a dispersant, and thus prepared different micro-morphology and crystallinity hexagonal boron nitride powders under a flowing ammonia atmosphere at a nitriding temperature of 900 °C. The effect of the surface-active agent (SDBS) content on the crystallinity and micro-morphology of hexagonal boron nitride powders was studied, and the corresponding relationship between micro-morphology and crystallinity was explored. The results showed that under a certain synthetic process (900 °C for 3 h), the surfactant content had affected the crystallinity and micro-morphology of h-BN powders. Without the added surfactant, the graphitization index (GI) was 3.61, and micro-morphology of h-BN powders. was spherical, the distribution of ball diameters was uneven, and there was also significant particle agglomeration, with some particles even exhibiting adhesion, sintering necks, and high sphericity and diameter. When the added SDBS percentages were 2%, 4% and 6%, the graphitization index (GI) decreased to 2.98, 2.58 and 2.41 respectively: the corresponding crystallinity improved significantly. When the surfactant SDBS content was higher (10%), the diameter distribution of the h-BN powders was even, but there was evidence of agglomeration of particles and particle adhesion. The crystallinity decreased when the GI value was increased to 4. When the surfactant SDBS content was 6%, the dispersion of h-BN powders was at its optimum, and the particle size distribution was at its most uniform. Meanwhile the GI value was at its lowest, and the crystallinity at its highest. PMID:26369229

  17. Effect of heat and chemicothermal treatment on the properties of powder hard alloys

    SciTech Connect

    Pirso, Yu.Yu.; Kyubarsepp, Ya.P.

    1987-09-01

    Results of a study are presented on the effect of different forms of heat and chemicothermal treatment on the flexural strength and hydroabrasive wear resistance of powder alloys including tungsten carbide (VK15), chromium carbide (KKhN25), and titanium carbide with a steel binder comprised of 50% TiC and 50% steel Kh15. Treatments included annealing, nitriding, boronizing, and phosphidizing. Results for microhardness and corrosion resistance are briefly discussed.

  18. Porphyrins for boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Gabel, Detlef

    1990-01-01

    Novel compounds for treatment of brain tumors in Boron Neutron Capture Therapy are disclosed. A method for preparing the compounds as well as pharmaceutical compositions containing said compounds are also disclosed. The compounds are water soluble, non-toxic and non-labile boronated porphyrins which show significant uptake and retention in tumors.

  19. Boron Carbides As Thermo-electric Materials

    NASA Technical Reports Server (NTRS)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  20. Ultratough single crystal boron-doped diamond

    SciTech Connect

    Hemley, Russell J; Mao, Ho-Kwang; Yan, Chih-Shiue; Liang, Qi

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  1. Investigations on the system boron-carbon silicon

    NASA Technical Reports Server (NTRS)

    Kieffer, R.; Gugel, E.; Leimer, G.; Ettmayer, P.

    1983-01-01

    The above elements form with each other binary compounds which are very interesting from the point of view of their structure and their chemistry and which are important for technology. The present investigation is concerned with the three-component system and the behavior of the binary compounds occurring in it. Investigations employing various techniques, such as X-ray, chemical analysis, microscopy and fusion experiments showed that no ternary phase exists within the boundary of the ternary system. There is no compound with a higher abrasion capacity than boron carbide. The probable phase field divisions at two isothermic intersections and the fusion isotherms are indicated.

  2. Characterization of boron doped diamond-like carbon film by HRTEM

    NASA Astrophysics Data System (ADS)

    Li, X. J.; He, L. L.; Li, Y. S.; Yang, Q.; Hirose, A.

    2015-12-01

    Boron doped diamond-like carbon (B-DLC) film was synthesized on silicon (1 0 0) wafer by biased target ion beam deposition. High-resolution transmission electron microscopy (HRTEM) is employed to investigate the microstructure of the B-DLC thin film in cross-sectional observation. Many crystalline nanoparticles randomly dispersed and embedded in the amorphous matrix film are observed. Through chemical compositional analysis of the B-DLC film, some amount of O element is confirmed to be contained. And also, some nanoparticles with near zone axes are indexed, which are accordance with B2O phase. Therefore, the contained O element causing the B element oxidized is proposed, resulting in the formation of the nanoparticles. Our work indicates that in the B-DLC film a significant amount of the doped B element exists as boron suboxide nanoparticles.

  3. Design synthesis of a boron/epoxy reinforced metal shear web.

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1972-01-01

    An advanced composite shear web design concept has been developed for the Space Shuttle Orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad, boron/epoxy plate with vertical boron/epoxy reinforced stiffeners. Baseline composite and titanium shear resistant designs are compared; the composite concept is 28% lighter than the titanium web. Element test results show the metal cladding effectively reinforces critical composite load transfer and fastener hole areas making the composite web concept practical for other shear structure applications.-

  4. Stabilization of boron carbide via silicon doping.

    PubMed

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  5. Demystifying Mystery Powders.

    ERIC Educational Resources Information Center

    Kotar, Michael

    1989-01-01

    Describes science activities which use simple chemical tests to distinguish between materials and to determine some of their properties. Explains the water, iodine, heat, acid, baking soda, acid/base indicator, glucose, and sugar tests. Includes activities to enhance chemical testing and a list of suggested powders for use. (RT)

  6. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling.

    PubMed

    Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong

    2012-08-01

    The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation.

  7. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling.

    PubMed

    Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong

    2012-08-01

    The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation. PMID:22578430

  8. Microstructural stability and thermomechanical processing of boron modified beta titanium alloys

    NASA Astrophysics Data System (ADS)

    Cherukuri, Balakrishna

    alloys. Micro-voids were observed at the ends of the TiB needles at high temperature, slow strain rates as a result of decohesion at the TiB/matrix interfaces. At low temperatures and faster strain rates micro voids were also formed due to fracture of TiB needles. Finite element analysis on void formation in TiB containing alloys were in agreement with experimental observations. Microhardness and tensile testing of as-cast + forged and aged Beta21S and Ti5553 alloys with and without boron did not show any significant differences in mechanical properties. The primary benefits of boron modified alloys are in as-cast condition.

  9. Boron enrichment in martian clay.

    PubMed

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  10. Boron enrichment in martian clay.

    PubMed

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  11. Boron Enrichment in Martian Clay

    PubMed Central

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  12. Synergistic methods for the production of high-strength and low-cost boron carbide

    NASA Astrophysics Data System (ADS)

    Wiley, Charles Schenck

    2011-12-01

    Boron carbide (B4C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B4C make it a nearly ideal material for personnel and vehicular armor. B4C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B4C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B4C powders. The boron carbide powder examined in this study was a sub-micron (0.6 mum median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form of phenolic resin, and titanium additives in the form of 32 nm and 0.9 mum TiO2 powders were selected. Parametric studies of

  13. Electrically conductive ceramic powders

    NASA Astrophysics Data System (ADS)

    Lu, Yanxia

    1999-11-01

    Electrically conductive ceramic powders were investigated in this project. There are three ways to produce those materials. The first is doping alkali metal into the titanium dioxides in an inert or reducing atmosphere. The second is reducing un-doped titanium dioxide, forming a non-stoichiometric composition in a hydrogen atmosphere. The third is to coat a conductive layer, reduced titanium dioxide, on an insulating core such as alumina. Highly conductive powders have been produced by all these processes. The conductivity of powder compacts ranged between 10-2 and 10° S/cm. A novel doping process was developed. All samples were doped by a solid-vapor reaction instead of a solid state reaction. Titanium dioxide was doped with alkali metals such as Na or Li in this study. The alkali metal atom contributes an electron to the host material (TiO2), which then creates Ti 3+ ion. The conductivity was enhanced by creating the donor level due to the presence of these Ti3+ ions. The conductivity of those alkali doped titanium oxides was dependent on the doping level and charge mobility. Non-stoichiometric titanium oxides were produced by reduction of titanium dioxide in a hydrogen atmosphere at 800°C to 1000°C for 2 to 6 hours. The reduced titanium oxides showed better stability with respect to conductivity at ambient condition when compared with the Na or Li doped samples. Conductive coatings were prepared by coating titanium precursors on insulating core materials like SiO2, Al2O3 or mica. The titania coating was made by hydrolysis of titanyl sulfate (TiOSO 4) followed by a reduction procedure to form reduced titanium oxide. The reduced titanium oxides are highly conductive. A uniform coating of titanium oxides on alumina cores was successfully produced. The conductivity of coated powder composites was a function of coating quantity and hydrolysis reaction temperature. The conductivity of the powder as a function of structure, composition, temperature, frequency and

  14. High-pressure, high-temperature synthesis of superhard boron suboxide

    SciTech Connect

    Hubert, H.; Garvie, L.A.J.; Leinenweber, K.; Buseck, P.R.; Petuskey, W.T.; McMillan, P.F.

    1996-12-31

    A multianvil device was used to investigate the formation of B{sub x}O phases produced in the 2 to 10 GPa pressure range with temperatures between 1,000 and 1,800 C. Amorphous and crystalline B and BP were oxidized using B{sub 2}O{sub 3} and CrO{sub 3}. Using powder X-ray diffraction and parallel electron energy-loss spectroscopy (PEELS), the authors were unable to detect graphitic or diamond-structured B{sub 2}O, reported in previous studies. The refractory boride B{sub 6}O, which has the {alpha}-rhombohedral boron structure, is the dominant suboxide in the P and T range of the investigation. PEELS with a transmission electron microscope was used to characterize the boron oxides.

  15. Hexagonal boron-nitride nanomesh magnets

    NASA Astrophysics Data System (ADS)

    Ohata, C.; Tagami, R.; Nakanishi, Y.; Iwaki, R.; Nomura, K.; Haruyama, J.

    2016-09-01

    The formation of magnetic and spintronic devices using two-dimensional (2D) atom-thin layers has attracted attention. Ferromagnetisms (FMs) arising from zigzag-type atomic structure of edges of 2D atom-thin materials have been experimentally observed in graphene nanoribbons, hydrogen (H)-terminated graphene nanomeshes (NMs), and few-layer oxygen (O)-terminated black phosphorus NMs. Herein, we report room-temperature edge FM in few-layer hexagonal boron-nitride (hBN) NMs. O-terminated hBNNMs annealed at 500 °C show the largest FM, while it completely disappears in H-terminated hBNNMs. When hBNNMs are annealed at other temperatures, amplitude of the FM significantly decreases. These are highly in contrast to the case of graphene NMs but similar to the cases of black phosphorus NM and suggest that the hybridization of the O atoms with B(N) dangling bonds of zigzag pore edges, formed at the 500 °C annealing, strongly contribute to this edge FM. Room-temperature FM realizable only by exposing hBNNMs into air opens the way for high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.

  16. Boron based two-dimensional crystals: theoretical design, realization proposal and applications.

    PubMed

    Li, Xian-Bin; Xie, Sheng-Yi; Zheng, Hui; Tian, Wei Quan; Sun, Hong-Bo

    2015-12-01

    The successful realization of free-standing graphene and the various applications of its exotic properties have spurred tremendous research interest for two-dimensional (2D) layered materials. Besides graphene, many other 2D materials have been successfully produced by experiment, such as silicene, monolayer MoS2, few-layer black phosphorus and so on. As a neighbor of carbon in the periodic table, element boron is interesting and many researchers have contributed their efforts to realize boron related 2D structures. These structures may be significant both in fundamental science and future technical applications in nanoelectronics and nanodevices. In this review, we summarize the recent developments of 2D boron based materials. The theoretical design, possible experimental realization strategies and their potential technical applications are presented and discussed. Also, the current challenges and prospects of this area are discussed. PMID:26523799

  17. Synthesis, characterization and fluorescence properties of boron difluoride pyridyl-β-diketonate derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Dun-Jia; Kang, Yan-Fang; Xu, Ben-Po; Zheng, Jing; Wei, Xian-Hong

    2013-03-01

    Five pyridyl-β-diketones were synthesized by Claisen condensation of ethyl nicotinate with various aryl methyl ketones in benzene in the presence of sodium amide as the base, and then reacted with boron trifluoride diethyl etherate in dichloromethane to afford some new boron difluoride pyridyl-β-diketonate derivatives. The compounds obtained were characterized using FTIR, 1H NMR, elemental analysis and mass spectrometry. Their optical properties were studied in DMF by UV-vis absorption and fluorescence spectroscopy. The results showed that these boron complexes exhibited intense fluorescence in the blue-green region (420-490 nm) under UV radiation with a relatively high quantum yield. Especially, compounds 4b and 5b displayed much higher quantum yield as compared to compounds 1b, 2b and 3b.

  18. Boron based two-dimensional crystals: theoretical design, realization proposal and applications.

    PubMed

    Li, Xian-Bin; Xie, Sheng-Yi; Zheng, Hui; Tian, Wei Quan; Sun, Hong-Bo

    2015-12-01

    The successful realization of free-standing graphene and the various applications of its exotic properties have spurred tremendous research interest for two-dimensional (2D) layered materials. Besides graphene, many other 2D materials have been successfully produced by experiment, such as silicene, monolayer MoS2, few-layer black phosphorus and so on. As a neighbor of carbon in the periodic table, element boron is interesting and many researchers have contributed their efforts to realize boron related 2D structures. These structures may be significant both in fundamental science and future technical applications in nanoelectronics and nanodevices. In this review, we summarize the recent developments of 2D boron based materials. The theoretical design, possible experimental realization strategies and their potential technical applications are presented and discussed. Also, the current challenges and prospects of this area are discussed.

  19. Boron based two-dimensional crystals: theoretical design, realization proposal and applications

    NASA Astrophysics Data System (ADS)

    Li, Xian-Bin; Xie, Sheng-Yi; Zheng, Hui; Tian, Wei Quan; Sun, Hong-Bo

    2015-11-01

    The successful realization of free-standing graphene and the various applications of its exotic properties have spurred tremendous research interest for two-dimensional (2D) layered materials. Besides graphene, many other 2D materials have been successfully produced by experiment, such as silicene, monolayer MoS2, few-layer black phosphorus and so on. As a neighbor of carbon in the periodic table, element boron is interesting and many researchers have contributed their efforts to realize boron related 2D structures. These structures may be significant both in fundamental science and future technical applications in nanoelectronics and nanodevices. In this review, we summarize the recent developments of 2D boron based materials. The theoretical design, possible experimental realization strategies and their potential technical applications are presented and discussed. Also, the current challenges and prospects of this area are discussed.

  20. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    SciTech Connect

    Zhong, B.; Tang, X.H.; Huang, X.X.; Xia, L.; Zhang, X.D.; Wang, C.J.; Wen, G.W.

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  1. Method for synthesizing powder materials

    DOEpatents

    Buss, R.J.; Ho, P.

    1988-01-21

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  2. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID

  3. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    AM. Alternative powders can be made by blending or re-spheroidizing HDH and CPTi powders. Machine modifications were performed to allow the testing and manufacturing with these low cost alternative powders. A comparison was made between alternative powders and gas atomized powders. Powders were compared in terms of morphology and at the microstructural level. Flowability of different powder blends was also measured. Finally, a comparison of parts fabricated from the multiple powder blends and gas atomized powder was made. It has been demonstrated that powder blending can produce fully dense parts in the Arcam system by utilizing the double melt technique or HIPing the built pars. The double melt technique increased the density of the sample part and modified the microstructure into finer martensitic grains. The HIP process can make a part fully dense regardless of what percentage of HDH powder blending is used. The HIP process yielded the same microstructure, regardless of the grain structure it started with. This research allows for the reduction of costs using titanium powders in the EBM system, but can also be implemented with more costly elements and alloys using other metal AM technologies. This includes niobium, tantalum, and nickel-based superalloys for use in various industries.

  4. Boron Nitride Nanoribbons Becomes Metallic

    SciTech Connect

    Huang, Jingsong; Terrones Maldonado, Humberto; Sumpter, Bobby G; Lopez-Benzanilla, Alejandro

    2011-01-01

    Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on theNedge due to the partial filling of the band derived from the pz orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons.We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.

  5. The interaction of boron with goethite: experiments and CD-MUSIC modeling.

    PubMed

    Goli, Esmaiel; Rahnemaie, Rasoul; Hiemstra, Tjisse; Malakouti, Mohammad Jafar

    2011-03-01

    Boron (B) is an essential element for plants and animals growth that interacts with mineral surfaces regulating its bioavailability and mobility in soils, sediments, and natural ecosystems. The interaction with mineral surfaces is quite important because of a narrow range between boron deficiency and toxicity limits. In this study, the interaction of boric acid with goethite (α-FeOOH) was measured in NaNO(3) background solution as a function of pH, ionic strength, goethite and boron concentration representing as adsorption edges and isotherms. Boron adsorption edges showed a bell-shaped pattern with maximum adsorption around pH 8.50, whereas adsorption isotherms were rather linear. The adsorption data were successfully described with the CD-MUSIC model in combination with the Extended Stern (ES) model. The charge distribution (CD) of inner-sphere boron surface complexes was calculated from the geometry optimized with molecular orbital calculations applying density functional theory (MO/DFT). The CD modeling suggested dominant binding of boric acid as a trigonal inner-sphere complex with minor contributions of a tetrahedral inner-sphere complex (at high pH) and a trigonal outer-sphere complex (at low pH). The interpretation with the CD model is consistent with the spectroscopic observations.

  6. Current data regarding the structure-toxicity relationship of boron-containing compounds.

    PubMed

    Farfán-García, E D; Castillo-Mendieta, N T; Ciprés-Flores, F J; Padilla-Martínez, I I; Trujillo-Ferrara, J G; Soriano-Ursúa, M A

    2016-09-01

    Boron is ubiquitous in nature, being an essential element of diverse cells. As a result, humans have had contact with boron containing compounds (BCCs) for a long time. During the 20th century, BCCs were developed as antiseptics, antibiotics, cosmetics and insecticides. Boric acid was freely used in the nosocomial environment as an antiseptic and sedative salt, leading to the death of patients and an important discovery about its critical toxicology for humans. Since then the many toxicological studies done in relation to BCCs have helped to establish the proper limits of their use. During the last 15 years, there has been a boom of research on the design and use of new, potent and efficient boron containing drugs, finding that the addition of boron to some known drugs increases their affinity and selectivity. This mini-review summarizes two aspects of BCCs: toxicological data found with experimental models, and the scarce but increasing data about the structure-activity relationship for toxicity and therapeutic use. As is the case with boron-free compounds, the biological activity of BCCs is related to their chemical structure. We discuss the use of new technology to discover potent and efficient BCCs for medicinal therapy by avoiding toxic effects. PMID:27329537

  7. The interaction of boron with goethite: experiments and CD-MUSIC modeling.

    PubMed

    Goli, Esmaiel; Rahnemaie, Rasoul; Hiemstra, Tjisse; Malakouti, Mohammad Jafar

    2011-03-01

    Boron (B) is an essential element for plants and animals growth that interacts with mineral surfaces regulating its bioavailability and mobility in soils, sediments, and natural ecosystems. The interaction with mineral surfaces is quite important because of a narrow range between boron deficiency and toxicity limits. In this study, the interaction of boric acid with goethite (α-FeOOH) was measured in NaNO(3) background solution as a function of pH, ionic strength, goethite and boron concentration representing as adsorption edges and isotherms. Boron adsorption edges showed a bell-shaped pattern with maximum adsorption around pH 8.50, whereas adsorption isotherms were rather linear. The adsorption data were successfully described with the CD-MUSIC model in combination with the Extended Stern (ES) model. The charge distribution (CD) of inner-sphere boron surface complexes was calculated from the geometry optimized with molecular orbital calculations applying density functional theory (MO/DFT). The CD modeling suggested dominant binding of boric acid as a trigonal inner-sphere complex with minor contributions of a tetrahedral inner-sphere complex (at high pH) and a trigonal outer-sphere complex (at low pH). The interpretation with the CD model is consistent with the spectroscopic observations. PMID:21185584

  8. Current data regarding the structure-toxicity relationship of boron-containing compounds.

    PubMed

    Farfán-García, E D; Castillo-Mendieta, N T; Ciprés-Flores, F J; Padilla-Martínez, I I; Trujillo-Ferrara, J G; Soriano-Ursúa, M A

    2016-09-01

    Boron is ubiquitous in nature, being an essential element of diverse cells. As a result, humans have had contact with boron containing compounds (BCCs) for a long time. During the 20th century, BCCs were developed as antiseptics, antibiotics, cosmetics and insecticides. Boric acid was freely used in the nosocomial environment as an antiseptic and sedative salt, leading to the death of patients and an important discovery about its critical toxicology for humans. Since then the many toxicological studies done in relation to BCCs have helped to establish the proper limits of their use. During the last 15 years, there has been a boom of research on the design and use of new, potent and efficient boron containing drugs, finding that the addition of boron to some known drugs increases their affinity and selectivity. This mini-review summarizes two aspects of BCCs: toxicological data found with experimental models, and the scarce but increasing data about the structure-activity relationship for toxicity and therapeutic use. As is the case with boron-free compounds, the biological activity of BCCs is related to their chemical structure. We discuss the use of new technology to discover potent and efficient BCCs for medicinal therapy by avoiding toxic effects.

  9. Boron-Loaded Silicone Rubber Scintillators

    SciTech Connect

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  10. Three dimensional aromaticity, elemental boron and stuffed fullerenes

    SciTech Connect

    Jemmis, E.D.

    1994-12-31

    An intriguing aspect of fullerenes is the large empty space within. It has been possible to use this space as a molecular container encapsulating neutral atoms and metal ions. A few atoms do not fill the available space. To stuff fullerenes a systematic chemical binding of atoms or molecules to the endohedral surface is needed.

  11. Vacuum powder injector and method of impregnating fiber with powder

    NASA Technical Reports Server (NTRS)

    Working, Dennis C. (Inventor)

    1993-01-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  12. Boron mullite: Formation and basic characterization

    SciTech Connect

    Lührs, Hanna; Fischer, Reinhard X.; Schneider, Hartmut

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Decrease of B-mullite formation temperature with increasing boron content. ► Decrease of lattice parameters b and c with increasing boron content. ► Significant reduction of thermal expansion (−15%) due to incorporation of boron. ► Decomposition of B-mullite at 1400 °C, long-term stability at 800 °C. -- Abstract: A series of boron doped mullites (B-mullite) was prepared from single-phase gels with initial compositions based on a 1:1 isomorphous substitution of Si by B, starting from a 3:2 mullite composition (Al{sub 4.5}Si{sub 1.5}O{sub 9.75}). A high amount of boron (>10 mol.%) can be incorporated into the crystal structure of mullite where it most likely replaces Si. In situ phase formation of B-mullites was studied with high temperature X-ray diffraction and thermal analysis. A decrease of the formation temperature for B-mullite with increasing boron content was observed. With increasing boron content lattice parameters b and c significantly decrease, while no systematic evolution of a is observed. Long annealing at 1400 °C results in decomposition of B-mullite to boron free mullite and α-alumina. At 800 °C B-mullite appears to be stable over a period of at least 12 days. The mean thermal expansion coefficient was reduced by 15% upon incorporation of boron which makes the material technologically interesting.

  13. Processing polymeric powders

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1989-01-01

    The concept of uniformly and continuously depositing and sinter-fusing nominal 0.1 to 40 microns dimensioned electrostatically charged polymer powder particles onto essentially uniformly spread 5 to 20 micron grounded continuous fiber tow to produce a respoolable thermoplastic composite two-preg was formulated at NASA Langley. The process was reduced to practice under a NASA grant at the University of Akron this spring. The production of tow-preg is called phase 1. The production of ultrafine polymer powders from 5 to 10 percent (wt) polymer solids in solvent is considered. This is phase 0 and is discussed. The production of unitape from multi tow-pregs was also considered. This is phase 2 and is also discussed. And another approach to phase 1, also proposed last summer, was scoped. This is phase 1A and is also discussed.

  14. Advanced powder processing

    SciTech Connect

    Janney, M.A.

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  15. JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos

    2009-06-01

    The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.

  16. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    NASA Astrophysics Data System (ADS)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  17. Boron-10 Lined Proportional Counter Wall Effects

    SciTech Connect

    Siciliano, Edward R.; Kouzes, Richard T.

    2012-05-01

    The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based system in the configuration of a coincidence counter. This report provides information about how variations in proportional counter radius and gas pressure in a typical coincident counter design might affect the observed signal from boron-lined tubes. A discussion comparing tubes to parallel plate counters is also included.

  18. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  19. Crystallization of Beryllium-Boron Metallic Glasses

    SciTech Connect

    Jankowski, A F; Wall, M A; Nieh, T G

    2002-02-14

    Prior studies of evaporation and sputter deposition show that the grain size of pure beryllium can be dramatically refined through the incorporation of metal impurities. Recently, the addition of boron at a concentration greater than 11% is shown to serve as a glassy phase former in sputter deposited beryllium. Presently, thermally induced crystallization of the beryllium-boron metallic glass is reported. The samples are characterized during an in-situ anneal treatment with bright field imaging and electron diffraction using transmission electron microscopy. A nanocrystalline structure evolves from the annealed amorphous phase and the crystallization temperature is affected by the boron concentration.

  20. Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Vogt, Rustin

    Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.

  1. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    PubMed

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  2. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  3. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  4. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and

  5. Boron

    SciTech Connect

    Cozen, L.F. )

    1991-05-01

    This paper reports that borate minerals and refined borates are used extensively for the manufacture of vitreous materials such as insulation and textile fiberglasses, borosilicate glass, and porcelain enamels and frits. In North America, these applications are estimated to account for over 54% of the borate consumption. Other substantial uses are in soaps and detergents, metallurgy, fire retardants, industrial biocides, agriculture, and various miscellaneous applications. Reported domestic borate consumption in 1990 was estimated by the U.S. Bureau of Mines to be 320 000 metric tons B{sub 2}O{sub 3} versus 354 000 metric tons B{sub 2}O{sub 3} in 1989. Consumption is projected to remain essentially static in 1991. Imports were estimated by the Bureau to be 50 000 metric tons B{sub 2}O{sub 3} in 1990. Exports of boric acid and refined borates were approximately 650 000 metric tons of product, a 15 000 metric ton increase from the 1989 level. This increase partially offsets the drop in the 1990 consumption level.

  6. Structural stability and electronic properties of β-tetragonal boron: A first-principles study

    SciTech Connect

    Hayami, Wataru

    2015-01-15

    It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too great to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.

  7. Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders

    NASA Astrophysics Data System (ADS)

    Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li

    2009-09-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  8. Boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Haque, A. M.; Moschini, G.; Valkovic, Vlado; Zafiropoulos, D.

    1995-03-01

    The final goal of any radiotherapy project is to expose the tumor as the target to a lethal dose of ionizing radiation, sparing thereby the surrounding healthy tissues to a maximum extent. Precise treatment is nevertheless essential for cure, since the danger exists that the tumor might re-establish itself if every cancer cell is not destroyed. The conventional therapy treatments existing to date, e.g., surgery, radiation therapy, and chemotherapy, have been successful in curing some kinds of cancers, but still there are many exceptions. In the following, the progress of a promising therapy tool, called the boron neutron capture therapy (BNCT), which has made its dynamic evolution in recent years, is briefly described. The approach towards clinical trials with BNCT is described in detail.

  9. Powder metallurgy bearings for advanced rocket engines

    NASA Technical Reports Server (NTRS)

    Fleck, J. N.; Killman, B. J.; Munson, H.E.

    1985-01-01

    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.

  10. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-27

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  11. Boron-Filled Hybrid Carbon Nanotubes

    PubMed Central

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  12. Boron-Filled Hybrid Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  13. Boron strengthening in FeAl

    SciTech Connect

    Baker, I.; Li, X.; Xiao, H.; Klein, O.; Nelson, C.; Carleton, R.L.; George, E.P.

    1998-11-01

    The effect of boron on the strength of B2-structured FeAl is considered as a function of composition, grain size and temperature. Boron does not affect the concentrations of antisite atoms or vacancies present, with the former increasing and the latter decreasing with increasing deviation from the stoichiometric composition. When vacancies are absent, the strength increase per at. % B per unit lattice strain, {Delta}{sigma}/({Delta}c x {epsilon}) increases with increasing aluminum concentration, but when vacancies are present (>45 at. % Al), {Delta}{sigma}/({Delta}c x {epsilon}) decreases again. Boron increases grain size strengthening in FeAl. B strengthening is roughly independent of temperature up to the yield strength peak but above the point, when diffusion-assisted deformation occurs, boron strengthening increases dramatically.

  14. Boron-deoxidized copper withstands brazing temperatures

    NASA Technical Reports Server (NTRS)

    Schmidt, E. H.

    1966-01-01

    Boron-deoxidized high-conductivity copper is used for fabrication of heat transfer components that are brazed in a hydrogen atmosphere. This copper has high strength and ductility at elevated temperatures and does not exhibit massive intergranular failure.

  15. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  16. Mathematical and statistical analysis of the effect of boron on yield parameters of wheat

    SciTech Connect

    Rawashdeh, Hamzeh; Sala, Florin; Boldea, Marius

    2015-03-10

    The main objective of this research is to investigate the effect of foliar applications of boron at different growth stages on yield and yield parameters of wheat. The contribution of boron in achieving yield parameters is described by second degree polynomial equations, with high statistical confidence (p<0.01; F theoretical < F calculated, according to ANOVA test, for Alfa = 0.05). Regression analysis, based on R{sup 2} values obtained, made it possible to evaluate the particular contribution of boron to the realization of yield parameters. This was lower for spike length (R{sup 2} = 0.812), thousand seeds weight (R{sup 2} = 0.850) and higher in the case of the number of spikelets (R{sup 2} = 0.936) and the number of seeds on a spike (R{sup 2} = 0.960). These results confirm that boron plays an important part in achieving the number of seeds on a spike in the case of wheat, as the contribution of this element to the process of flower fertilization is well-known. In regards to productivity elements, the contribution of macroelements to yield quantity is clear, the contribution of B alone being R{sup 2} = 0.868.

  17. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  18. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  19. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  20. Characterization of Boron Contamination in Fluorine Implantation using Boron Trifluoride as a Source Material

    NASA Astrophysics Data System (ADS)

    Schmeide, Matthias; Kondratenko, Serguei

    2011-01-01

    Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer. The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequent charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation. The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.

  1. Fabrication and characterization of silicon based thermal neutron detector with hot wire chemical vapor deposited boron carbide converter

    NASA Astrophysics Data System (ADS)

    Chaudhari, Pradip; Singh, Arvind; Topkar, Anita; Dusane, Rajiv

    2015-04-01

    In order to utilize the well established silicon detector technology for neutron detection application, a silicon based thermal neutron detector was fabricated by integrating a thin boron carbide layer as a neutron converter with a silicon PIN detector. Hot wire chemical vapor deposition (HWCVD), which is a low cost, low temperature process for deposition of thin films with precise thickness was explored as a technique for direct deposition of a boron carbide layer over the metalized front surface of the detector chip. The presence of B-C bonding and 10B isotope in the boron carbide film were confirmed by Fourier transform infrared spectroscopy and secondary ion mass spectrometry respectively. The deposition of HWCVD boron carbide layer being a low temperature process was observed not to cause degradation of the PIN detector. The response of the detector with 0.2 μm and 0.5 μm thick boron carbide layer was examined in a nuclear reactor. The pulse height spectrum shows evidence of thermal neutron response with signature of (n, α) reaction. The results presented in this article indicate that HWCVD boron carbide deposition technique would be suitable for low cost industrial fabrication of PIN based single element or 1D/2D position sensitive thermal neutron detectors.

  2. The abundance of boron in diffuse interstellar clouds

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam M.

    The origins of the stable isotopes of boron remain uncertain despite much theoretical and observational effort. Spallation reactions between relativistic Galactic cosmic rays (GCR) and interstellar nuclei can adequately account for the production of 10 B and contribute to the cosmic abundance of 11 B. However, an additional source of 11 B synthesis is required to raise the isotopic ratio of 11 B/ 10 B from its GCR spallation value (2.4) to the value measured in carbonaceous chondrites (4.0). The n-process, neutrino-induced spallation in Type II supernovae, is a potentially significant source of 11 B production. Since neutrino-induced spallation does not result in substantial yields for 10 B, this process could naturally explain the enhancement in 11 B/ 10 B over the predictions of standard GCR spallation. Without the n-process, enhanced 11 B production, relative to 10 B, could be attributed to an increased flux of low- energy (5-40 MeV nucleon -1 ) cosmic rays, which are unobservable from Earth due to magnetic shielding by the solar wind. In this thesis, I present a comprehensive survey of boron abundances in diffuse interstellar clouds from Space Telescope Imaging Spectrograph (STIS) observations made with the Hubble Space Telescope in an effort to identify the sources responsible for light element nucleosynthesis. The present sample of 56 Galactic sight lines is the result of a complete search of archival STIS data for the B II l1362 resonance line. Each detection is confirmed by the presence of absorption due to O I l1355, Cu II l1358, and Ga II l1414 (when available) at the same velocity. Like B + , these species represent the dominant ionization stage of their element in neutral diffuse clouds and therefore should coexist. Profile templates based on synthesized absorption profiles of O I, Cu II, and Ga II are fitted to the B II line, yielding the total boron column density along each line of sight. By synthesizing B II profiles with components seen in high

  3. Boronization on NSTX using Deuterated Trimethylboron

    SciTech Connect

    W.R. Blanchard; R.C. Gernhardt; H.W. Kugel; P.H. LaMarche

    2002-01-28

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in the execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described.

  4. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  5. Land Application of Wastes: An Educational Program. Potentially Toxic Elements - Module 11.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    Five elements are identified as being potentially hazardous in this module. These are boron, cadmium, copper, molybdenum, and nickel. The hazards to plants and animals posed by these elements are discussed in some detail. The sources of toxic elements in sewage and the factors that effect the uptake of toxic elements by sewage sludge are also…

  6. Development of magnetic resonance technology for noninvasive boron quantification

    SciTech Connect

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.

  7. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  8. Boron Isotopic Variation in the Subcontinental Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Guild, M. R.; Bell, D. R.; Hervig, R. L.

    2013-12-01

    Boron contents and isotopic compositions (δ11B) of phlogopite mica, amphibole, and selected coexisting anhydrous phases were measured by secondary ion mass spectrometry in mantle xenolith samples from the Kaapvaal Craton of South Africa, in order to better understand processes of volatile element transfer in the mantle. We have documented a wide range of δ11B (>40‰) and B contents (<10ppb to 10's of ppm) in mica from three broad groups identified based on petrographic and compositional criteria, and B geochemistry. The first group, characterized by light δ11B values (-17‰ to -30‰) and low B contents (a few ppb to 100's ppb), consists of mica megacrysts in kimberlite and mica in garnet harzburgites (gt hz) and lherzolites (gt lz) containing variably abundant metasomatic mica, orthopyroxene (opx) and, in some cases, clinopyroxene (cpx). Boron contents and δ11B show a broad positive correlation with modal intensity of metasomatism from gt hz to mica-rich websteritic gt lz. Metasomatic fluids, parental to this group, are proposed to originate in partially-dehydrated subducting oceanic lithosphere, consistent with high LILE/HFSE mineral chemistry. The second group is characterized by relatively B-rich (~1ppm) micas and amphiboles from MARID xenoliths, cpx and gt in cpx-rich peridotite, and (B-poor) subcalcic cpx megacrysts, which all have δ11B of ~-10‰, indistinguishable from primitive mantle estimates. The fluids associated with the second group of samples may have originated in mantle plumes. The third group is heterogeneous showing δ11B values from ~-5 to +15‰ with B contents from 0.5-10 ppm. These samples (all micas) exhibit secondary textures that appear to result from fluid processes associated with kimberlite emplacement. Other analyzed samples (hydrous and anhydrous) may record contact with multiple fluids. The current dataset shows that boron is a useful tracer of fluids in the mantle and can contribute to the understanding of global geochemical

  9. A Novel Method of Boron Delivery Using Sodium Iodide Symporter for Boron Neutron Capture Therapy

    PubMed Central

    KUMAR, Sanath; FREYTAG, Svend O.; BARTON, Kenneth N.; BURMEISTER, Jay; JOINER, Michael C.; SEDGHI, Bijan; MOVSAS, Benjamin; BINNS, Peter J.; KIM, Jae Ho; BROWN, Stephen L.

    2013-01-01

    Boron Neutron Capture Therapy (BNCT) effectiveness depends on the preferential sequestration of boron in cancer cells relative to normal tissue cells. We present a novel strategy for sequestering boron using an adenovirus expressing the sodium iodide symporter (NIS). Human glioma grown subcutaneously in athymic mice and orthotopic rat brain tumors were transfected with NIS using a direct tumor injection of adenovirus. Boron bound as sodium tetrafluoroborate (NaBF4) was administered systemically several days after transfection. Tumors were excised hours later and assessed for boron concentration using inductively coupled plasma atomic emission spectroscopy. In the human glioma transfected with NIS, boron concentration was more than 10 fold higher with 100 mg/kg of NaBF4, compared to tumor not transfected. In the orthotopic tumor model, the presence of NIS conferred almost 4 times the boron concentration in rat tumors transfected with human virus compared with contralateral normal brain not transfected. We conclude that adenovirus expressing NIS has the potential to be used as a novel boron delivery agent and should be explored for future clinical applications. PMID:20921830

  10. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  11. Boron Stress and Boron Tissue Distribution in Arbidopsis thaliana and Pelargonium X Hortorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The micronutrient boron is essential for plant growth and development. Deficient or excessive levels of this micronutrient result in the formation of growth defects that reduce yield in crop plants and result in discarding of horticultural plants. To study the responses of plants to altered boron ...

  12. Boron nitride nanosheets as barrier enhancing fillers in melt processed composites

    NASA Astrophysics Data System (ADS)

    Xie, Shaobo; Istrate, Oana M.; May, Peter; Barwich, Sebastian; Bell, Alan P.; Khan, Umar; Coleman, Jonathan N.

    2015-02-01

    In this work we have used melt-processing to mix liquid-exfoliated boron-nitride nanosheets with PET to produce composites for gas barrier applications. Sonication of h-BN powder, followed by centrifugation-based size-selection, was used to prepare suspensions of nanosheets with aspect ratio >1000. The solvent was removed to give a weakly aggregated powder which could easily be mixed into PET, giving a composite containing well-dispersed nanosheets. These composites showed very good barrier performance with oxygen permeability reductions of 42% by adding just 0.017 vol% nanosheets. At low loading levels the composites were almost completely transparent. At higher loading levels, while some haze was introduced, the permeability fell by ~70% on addition of 3 vol% nanosheets.In this work we have used melt-processing to mix liquid-exfoliated boron-nitride nanosheets with PET to produce composites for gas barrier applications. Sonication of h-BN powder, followed by centrifugation-based size-selection, was used to prepare suspensions of nanosheets with aspect ratio >1000. The solvent was removed to give a weakly aggregated powder which could easily be mixed into PET, giving a composite containing well-dispersed nanosheets. These composites showed very good barrier performance with oxygen permeability reductions of 42% by adding just 0.017 vol% nanosheets. At low loading levels the composites were almost completely transparent. At higher loading levels, while some haze was introduced, the permeability fell by ~70% on addition of 3 vol% nanosheets. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07228f

  13. Parametric Powder Diffraction

    NASA Astrophysics Data System (ADS)

    David, William I. F.; Evans, John S. O.

    The rapidity with which powder diffraction data may be collected, not only at neutron and X-ray synchrotron facilities but also in the laboratory, means that the collection of a single diffraction pattern is now the exception rather than the rule. Many experiments involve the collection of hundreds and perhaps many thousands of datasets where a parameter such as temperature or pressure is varied or where time is the variable and life-cycle, synthesis or decomposition processes are monitored or three-dimensional space is scanned and the three-dimensional internal structure of an object is elucidated. In this paper, the origins of parametric diffraction are discussed and the techniques and challenges of parametric powder diffraction analysis are presented. The first parametric measurements were performed around 50 years ago with the development of a modified Guinier camera but it was the automation afforded by neutron diffraction combined with increases in computer speed and memory that established parametric diffraction on a strong footing initially at the ILL, Grenoble in France. The theoretical parameterisation of quantities such as lattice constants and atomic displacement parameters will be discussed and selected examples of parametric diffraction over the past 20 years will be reviewed that highlight the power of the technique.

  14. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  15. Boron-enhanced diffusion of boron from ultralow-energy ion implantation

    NASA Astrophysics Data System (ADS)

    Agarwal, Aditya; Gossmann, H.-J.; Eaglesham, D. J.; Herner, S. B.; Fiory, A. T.; Haynes, T. E.

    1999-04-01

    We have investigated the diffusion enhancement mechanism of boron-enhanced diffusion (BED), wherein boron diffusivity is enhanced four to five times over the equilibrium diffusivity at 1050 °C in the proximity of a silicon layer containing a high boron concentration. It is demonstrated that BED is driven by excess interstitials injected from the high boron concentration layer during annealing. For evaporated layers, BED is observed above a threshold boron concentration between 1% and 10%, though it appears to be closer to 1% for B-implanted layers. For sub-keV B implants above the threshold, BED dominates over the contribution from transient-enhanced diffusion to junction depth. For 0.5 keV B, this threshold implantation dose lies between 3×1014 and 1×1015 cm-2. It is proposed that the excess interstitials responsible for BED are produced during the formation of a silicon boride phase in the high B concentration layers.

  16. Redistribution of boron in leaves reduces boron toxicity.

    PubMed

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots. PMID:20009556

  17. Polymer powder prepregging: Scoping study

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1988-01-01

    Early on, it was found that NEAT LARC-TPI thermoplastic polyimide powder behaved elastoplastically at pressures to 20 ksi and temperatures to 260 degrees celcius (below MP). At high resin assay, resin powder could be continuously cold-flowed around individual carbon fibers in a metal rolling mill. At low resin assay (2:1, C:TPI), fiber breakage was prohibitive. Thus, although processing of TPI below MP would be quite unique, it appears that the polymer must be melted and flowed to produce low resin assay prepreg. Fiber tow was spread to 75 mm using a venturi slot tunnel. This allowed intimate powder/fiber interaction. Two techniques were examined for getting room temperature powder onto the room temperature fiber surface. Electrostatic powder coating allows the charged powder to cling tenaciously to the fiber, even while heated with a hot air gun to above its melt temperature. A variant of the wet slurry coating process was also explored. The carbon fibers are first wetted with water. Then dry powder is sprinkled onto the wet tow and doctor-rolled between the fibers. The wet structure is then taken onto a heated roll, with hot air guns drying and sinter-melting the powder onto the fiber surfaces. In both cases SEM shows individual fibers coated with powder particles that have melted in place and flowed along the fiber surface via surface tension.

  18. Low velocity boron micro-pellet injector for edge and core impurity transport measurements

    SciTech Connect

    Kugel, H.W.; Gorman, J.; Kaita, R.; Munsat, T.; Stutman, D.

    1999-01-01

    A simple low velocity boron micro-pellet injector has been under development for Current Drive Experiment Upgrade (CDX-U) spherical torus edge and core impurity transport measurements, and wall conditioning. The injector consists of 16 barrels on a rotatable turret. Each barrel can be loaded with boron powder particles of diameters ranging from 1 to 40 {mu}m diameter in amounts ranging from less than 0.25 mg to more than 2 mg. A selected barrel is manually rotated into firing position using a vacuum precision rotary/linear motion feedthrough. A piezoelectric valve gas feed system triggered by CDX-U discharge timing is used to control H{sub 2} or D{sub 2} propellant gas at a cylinder pressure of 5.8{times}10{sup {minus}3thinsp} Pa (40 psi) or less. The injector barrel-to-CDX-U plasma edge distance is 0.47 m. Initial low mass injections of neutral boron beams were performed into CDX-U plasmas at a velocity of 23 m/s. Measurements were obtained with a filtered gated charge coupled device TV camera, bolometry, visible spectroscopy, and ultrasoft x-ray diagnostics. This work is in support of the present CDX-U research program and possible applications on National Spherical Torus Experiment. {copyright} {ital 1999 American Institute of Physics.}

  19. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  20. Low velocity boron micro-pellet injector for edge and core impurity transport measurements

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.; Gorman, J.; Kaita, R.; Munsat, T.; Stutman, D.

    1999-01-01

    A simple low velocity boron micro-pellet injector has been under development for Current Drive Experiment Upgrade (CDX-U) spherical torus edge and core impurity transport measurements, and wall conditioning. The injector consists of 16 barrels on a rotatable turret. Each barrel can be loaded with boron powder particles of diameters ranging from 1 to 40 μm diameter in amounts ranging from less than 0.25 mg to more than 2 mg. A selected barrel is manually rotated into firing position using a vacuum precision rotary/linear motion feedthrough. A piezoelectric valve gas feed system triggered by CDX-U discharge timing is used to control H2 or D2 propellant gas at a cylinder pressure of 5.8×10-3 Pa (40 psi) or less. The injector barrel-to-CDX-U plasma edge distance is 0.47 m. Initial low mass injections of neutral boron beams were performed into CDX-U plasmas at a velocity of 23 m/s. Measurements were obtained with a filtered gated charge coupled device TV camera, bolometry, visible spectroscopy, and ultrasoft x-ray diagnostics. This work is in support of the present CDX-U research program and possible applications on National Spherical Torus Experiment.