Toxic Trace Elements in the Hair of Children with Autism
ERIC Educational Resources Information Center
Fido, Abdullahi; Al-Saad, Samira
2005-01-01
Excess or deficiency of natural trace elements has been implicated in the etiology of autism. This study explores whether concentration levels of toxic metals in the hair of children with autism significantly differ from those of age- and sex-matched healthy controls. In-hair concentration levels of antimony, uranium, arsenic, beryllium, mercury,…
Munyangane, Portia; Mouri, Hassina; Kramers, Jan
2017-10-01
The present investigation was conducted in order to evaluate the occurrence and distribution patterns of some potentially harmful trace elements in the borehole water of the Greater Giyani area, Limpopo, South Africa, and their possible implications on human health. Twenty-nine borehole water samples were collected in the dry season (July/August 2012) and another 27 samples from the same localities in the wet season (March 2013) from the study area. The samples were analysed for trace elements arsenic (As), cadmium (Cd), chromium (Cr), selenium (Se), and lead (Pb) using the inductively coupled plasma mass spectrometry technique. The average concentrations of As, Cd, Cr, Se, and Pb were 11.3, 0.3, 33.1, 7.1, and 6.0 µg/L in the dry season and 11.0, 0.3, 28.3, 4.2, and 6.6 µg/L in the wet season, respectively. There was evidence of seasonal fluctuations in concentrations of all analysed elements except for As, though Cd and Pb displayed low concentrations (<0.2 and <6.0 µg/L, respectively) in almost all sampled boreholes. Se and Cr concentrations slightly exceed the South African National Standard permissible limits for safe drinking water in few boreholes. A total of four boreholes exceeded the water quality guideline for As with two of these boreholes containing five times more As than the prescribed limit. The spatial distribution patterns of elevated As closely correlate with the underlying geology. The findings of this investigation have important implications for human health of the communities drinking from the affected boreholes.
NASA Technical Reports Server (NTRS)
Jones, J. H.; Ross, D. K.; Chabot, N. L.; Keller, L. P.
2016-01-01
The "M-shaped" Ni concentrations across Widmanstatten patterns in iron meteorites, mesosiderites, and ordinary chondrites are commonly used to calculate cooling rates. As Ni-poor kamacite exolves from Ni-rich taenite, Ni concentrations build up at the kamacite-taenite interface because of the sluggish diffusivity of Ni. Quantitative knowledge of experimentally-determined Ni diffusivities, coupled with the shape of the M-profile, have been used to allow calculation of cooling rates that pertained at low temperatures, less than or equal to 500 C. However, determining Ni metallographic cooling rates are challenging, due to the sluggish diffusivity of Ni at low temperatures. There are three potential difficulties in using Ni cooling rates at low temperatures: (i) Ni diffusivities are typically extrapolated from higher-temperature measurements; (ii) Phase changes occur at low temperatures that may be difficult to take into account; and (iii) It appears that Ge in kamacite and taenite has continued to equilibrate (or attempted to equilibrate) at temperatures below those that formed the M-shaped Ni profile. Combining Ni measurements with those of other elements has the potential to provide a way to confirm or challenge Ni-determined cooling rates, as well as provide insight into the partitioning behaviors of elements during the cooling of iron meteorites. Despite these benefits, studies that examine elemental profiles of Ni along with other elements in iron meteorites are limited, often due to the low concentration levels of the other elements and associated analytical challenges. The Butler iron meteorite provides a good opportunity to conduct a multi-element analytical study, due to the higher concentration levels of key elements in addition to Fe and Ni. In this work, we perform combined analysis for six elements in the Butler iron to determine the relative behaviors of these elements during the evolution of iron meteorites, with implications for metallographic cooling rates.
Palmer, C.A.; Lyons, P.C.
1996-01-01
The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.
Ion Traps at the Sun: Implications for Elemental Fractionation
NASA Astrophysics Data System (ADS)
Fleishman, Gregory D.; Musset, Sophie; Bommier, Véronique; Glesener, Lindsay
2018-04-01
Why the tenuous solar outer atmosphere, or corona, is much hotter than the underlying layers remains one of the greatest challenges for solar modeling. Detailed diagnostics of the coronal thermal structure come from extreme ultraviolet (EUV) emission. The EUV emission is produced by heavy ions in various ionization states and depends on the amount of these ions and on plasma temperature and density. Any nonuniformity of the elemental distribution in space or variability in time affects thermal diagnostics of the corona. Here we theoretically predict ionized chemical element concentrations in some areas of the solar atmosphere, where the electric current is directed upward. We then detect these areas observationally, by comparing the electric current density with the EUV brightness in an active region. We found a significant excess in EUV brightness in the areas with positive current density rather than negative. Therefore, we report the observational discovery of substantial concentrations of heavy ions in current-carrying magnetic flux tubes, which might have important implications for the elemental fractionation in the solar corona known as the first ionization potential effect. We call such areas of heavy ion concentration the “ion traps.” These traps hold enhanced ion levels until they are disrupted by a flare, whether large or small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Peng; Hu, Qinhong; Ewing, Robert P.
2012-03-01
Laser ablation with inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to measure elemental concentrations at the 100 {micro}m scale in a 3-dimensional manner in a basalt sample collected from the Hanford 300 Area in south-central Washington State. A modified calibration method was developed to quantify the LA-ICP-MS signal response using a constant-sum mass fraction of eight major elements; the method produced reasonable concentration measurements for both major and trace elements when compared to a standard basalt sample with known concentrations. 3-dimensional maps (stacked 2-D contour layers, each measuring 2100 {micro}m x 2100 {micro}m) show relatively uniform concentration with depth formore » intrinsic elements such as Si, Na, and Sr. However, U and Cu accumulation were observed near the rock surface, consistent with the site's release history of these pollutants. U and Cu show substantial heterogeneity in their concentration distributions in horizontal slices, while the intrinsic elements are essentially uniformly distributed. From measured U concentrations of this work and reported mass fractions, cobbles and gravels were estimated to contain from 0.6% to 7.5% of the contaminant U, implicating the coarse fraction as a long-term release source.« less
Peng, Sheng; Hu, Qinhong; Ewing, Robert P; Liu, Chongxuan; Zachara, John M
2012-02-21
Laser ablation with inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to measure elemental concentrations at the 100-μm scale in a 3-dimensional manner within a basaltic clast sample collected from the Hanford 300 Area in south-central Washington State, United States. A calibration method was developed to quantify the LA-ICP-MS signal response using a constant-sum mass fraction of eight major elements; the method produced reasonable concentration measurements for both major and trace elements when compared to a standard basalt sample with known concentrations. 3-Dimensional maps (stacked 2-D contour layers, each representing 2100 μm × 2100 μm) show relatively uniform concentration with depth for intrinsic elements such as Si, Na, and Sr. However, U and Cu accumulation were observed near the sample surface, consistent with the site's release history of these contaminants. U and Cu show substantial heterogeneity in their concentration distributions within horizontal slices, while the intrinsic elements are essentially uniformly distributed. From these measured U concentrations and published grain size distributions, gravel and cobbles were estimated to contain about 1% of the contaminant U, implicating the coarse fraction as a long-term release source.
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.
2003-01-01
Nearly all photovoltaic solar arrays flown in space have used a planar (non- concentrating) design. However, there have been a few notable exceptions where photovoltaic concentrators have been tested and used as the mission s primary power source. Among these are the success experienced by the SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) concept used to power NASA's Deep Space 1 mission and the problems encountered by the original Boeing 702 reflective trough concentrator design. This presentation will give a brief overview of past photovoltaic concentrator systems that have flown in space, specifically addressing the valuable lessons learned from flight experience, and other viable concentrator concepts that are being proposed for the future. The general trends of this flight experience will be noted and discussed with regard to its implications on terrestrial photovoltaic concentrator designs.
Comparison of trace element concentrations in tissue of common carp and implications for monitoring
Goldstein, R.M.; DeWeese, L.R.
1999-01-01
Common carp (Cyprinus carpio) collected from four sites in the Red River of the North in 1994 were analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), selenium (So), and zinc (Zn). Concentrations differed among liver, muscle, and whole body. Generally, trace element concentrations were the greatest in livers while concentrations in whole bodies were greater than those in muscle for Cd, Cu, Ni, Pb, and Zn, and concentrations in muscle were similar to whole body for As and Se. Concentrations of Cr were lower in liver than either muscle or whole body. Correlations between liver and whole body concentrations were stronger than those between liver and muscle concentrations, but the strongest correlations were between muscle and whole body concentrations. Examination of tissue concentrations by collection sites suggested that, for a general survey, the whole body may be the most effective matrix to analyze.
Environmental implications of material leached from coal.
Moyo, Stanley; Mujuru, Munyaradzi; McCrindle, Rob I; Mokgalaka-Matlala, Ntebogeng
2011-05-01
Samples of coal were collected from different seams at a South African coal mine and comparative leaching experiments were carried out under various pH conditions and times to investigate the leaching behavior and potential environmental impact of possibly hazardous elements such as As, Cd, Co, Cr, Mn, Ni, Pb, Th and U. The calculated leaching intensities, sequential extraction results and cumulative percentages demonstrate that the leaching behavior of the elements is strongly influenced by the pH, the leaching time and the properties and occurrences of the elements. The leached concentrations of As, Cd, Co, Cr, Mn, Ni and Pb exceeded the maximum concentrations recommended by the Environmental Protection Agency (EPA) for surface water.
Friedman, J.D.; Huth, P.C.; Smiley, D.
1990-01-01
Reconnaissance sampling and chemical analysis of water from selected lakes, streams and springs of the northern Shawangunk Mountains in 1987 to 1988 to determine the influence of lithology on trace-metal concentrations in surface water, and to establish a base level of concentration of 27 selected metals by ICP-AES and Hg by cold-vapor AAS methods, for geochemical exploration, ecologic, acid-rain, and climatic-change studies, have yielded trace-metal concentrations greater than detection limits for 10 metallic elements. Eighteen additional metallic elements were also present in trace quantities below the quantitative detection limit. Two distinct geochemical populations are related to source lithology and pH. -from Authors
Graham, G.E.; Kelley, K.D.; Slack, J.F.; Koenig, A.E.
2009-01-01
The Zn-Pb-Ag metallogenic province of the western and central Brooks Range, Alaska, contains two distinct but mineralogically similar deposit types: shale-hosted massive sulphide (SHMS) and smaller vein-breccia occurrences. Recent investigations of the Red Dog and Anarraaq SHMS deposits demonstrated that these deposits are characterized by high trace-element concentrations of As, Ge, Sb and Tl. This paper examines geochemistry of additional SHMS deposits (Drenchwater and Su-Lik) to determine which trace elements are ubiquitously elevated in all SHMS deposits. Data from several vein-breccia occurrences are also presented to see if trace-element concentrations can distinguish SHMS deposits from vein-breccia occurrences. Whole-rock geochemical data indicate that Tl is the most consistently and highly concentrated characteristic trace element in SHMS deposits relative to regional unmineralized rock samples. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and sphalerite indicate that Tl is concentrated in pyrite in SHMS. Stream sediment data from the Drenchwater and Su-Lik SHMS show that high Tl concentrations are more broadly distributed proximal to known or suspected mineralization than As, Sb, Zn and Pb anomalies. This broader distribution of Tl in whole-rock and particularly stream sediment samples increases the footprint of exposed and shallowly buried SHMS mineralization. High Tl concentrations also distinguish SHMS mineralization from the vein-breccia deposits, as the latter lack high concentrations of Tl but can otherwise have similar trace-element signatures to SHMS deposits. ?? 2009 AAG/Geological Society of London.
Kannan, K.; Agusa, T.; Perrotta, E.; Thomas, N.J.; Tanabe, S.
2006-01-01
Infectious diseases have been implicated as a cause of high rates of adult mortality in southern sea otters. Exposure to environmental contaminants can compromise the immuno-competence of animals, predisposing them to infectious diseases. In addition to organic pollutants, certain trace elements can modulate the immune system in marine mammals. Nevertheless, reports of occurrence of trace elements, including toxic heavy metals, in sea otters are not available. In this study, concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of southern sea otters found dead along the central California coast (n = 80) from 1992 to 2002. Hepatic concentrations of trace elements were compared among sea otters that died from infectious diseases (n = 27), those that died from non-infectious causes (n = 26), and otters that died in emaciated condition with no evidence of another cause of death (n = 27). Concentrations of essential elements in sea otters varied within an order of magnitude, whereas concentrations of non-essential elements varied by two to five orders of magnitude. Hepatic concentrations of Cu and Cd were 10- to 100-fold higher in the sea otters in this study than concentrations reported for any other marine mammal species. Concentrations of Mn, Co, Zn, and Cd were elevated in the diseased and emaciated sea otters relative to the non-diseased sea otters. Elevated concentrations of essential elements such as Mn, Zn, and Co in the diseased/emaciated sea otters suggest that induction of synthesis of metallothionein and superoxide dismutase (SOD) enzyme is occurring in these animals, as a means of protecting the cells from oxidative stress-related injuries. Trace element profiles in diseased and emaciated sea otters suggest that oxidative stress mediates the perturbation of essential-element concentrations. Elevated concentrations of toxic metals such as Cd, in addition to several other organic pollutants, may contribute to oxidative stress-meditated effects in sea otters.
Thomas D. Bullen; Scott W. Bailey
2005-01-01
Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources. but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration...
Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.
2009-01-01
Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element concentrations. Strontium and barium were the most frequently detected and usually were present in the highest concentrations. Iron and manganese were the next most commonly detected and next highest in concentrations. Iron concentrations were the most variable with respect to the range of variations (both within local networks and aquifer-wide) and with respect to the disparity between magnitude of concentrations (detections) and the frequency of samples below reporting limits (nondetections). Antimony, beryllium, cadmium, silver, and thallium were detected too infrequently for substantial interpretation of their occurrence or distributions or potential human-health implications. For those elements that were more frequently detected, there are some geographic patterns in their occurrence that primarily reflect climate effects. The highest concentrations of several elements were found in the West-Central glacial framework area (High Plains and northern Plains areas). There are few important patterns for any element in relation to land use, well type, or network type. Shallow land-use (monitor) wells had iron concentrations generally lower than the glacial aquifer system wells overall and much lower than major-aquifer survey wells, which comprise mostly private- and public-supply wells. Unlike those for iron, concentration patterns for manganese were similar among shallow land-use wells and major-aquifer survey wells. An apparent relation between low pH and relatively low concentrations of many elements, except lead, may be more indicative of the relatively low dissolved-solids content in wells in the Northeastern United States that comprise the majority of low pH wells, than of a pH dependent pattern. Iron and manganese have higher concentrations and larger ranges of concentrations especially under more reducing conditions. Dissolved oxygen and well depth were related to iron and manganese concentrations. Redox conditions also affect several trace elements such
Muñoz-Vera, Ana; Peñas Castejón, Jose Matías; García, Gregorio
2016-09-15
The effects of an abandoned mining area, exploited for centuries in the mining district of Cartagena-La Union, result in a continuous supply of heavy metals into the Mar Menor coastal lagoon after rain episodes. As a consequence, concentration of trace elements in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, this study assessed the ability of Rhizostoma pulmo to bioaccumulate trace elements. A total of 57 individuals were sampled at eight different sampling stations during the summer of 2012. Although the concentrations of different analyzed elements (Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sn, and Pb) were moderate, bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content, because of their potential environmental and health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of membrane filtration on dissolved trace element concentrations
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.
Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P
2015-12-01
Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.
Environmental Implications of Excessive Selenium: A Review
A. Dennis Lemly
1997-01-01
Selenium is a trace element that is normally present in surface waters at concentrations of about 0.1 - 0.3 parts-per-billion; Lemly, 1985a. In slightly greater amounts, i. e., l-5 ppb, it can bioaccumulate in aquatic food chains and become a concentrated dietary source of selenium that is highly toxic to fish and wildlife (Lemly and Smith, 1987; Lemly, 1993a). Dietary...
van Netten, C
1999-05-07
The flight crews of aircraft often report symptoms including dizziness, nausea, disorientation, blurred vision and tingling in legs and arms. Many of these incidents have been traced to contamination of cabin air with lubricating oil, as well as hydraulic fluid, constituents. Considering that these air contaminants are often subjected to temperatures in excess of 500 degrees C, a large number of different exposures can be expected. Although the reported symptoms are most consistent with exposures to volatile organic compounds, carbon monoxide, and the organophosphate constituents in these oils and fluids, the involvement of these agents has not been clearly demonstrated. Possible exposure to toxic elements, such as lead, mercury, thallium and others, have not been ruled out. In order to assess the potential of exposure to toxic elements a multi-elemental analysis was done on two hydraulic fluids and three lubricating oils which have been implicated in a number of air quality incidents. A secondary objective was to establish if the multi-elemental concentrations of the fluids tested are different enough to allow such an analysis to be used as a possible method of identifying the source of exposure that might have been present during aircraft air quality incidents. No significant concentrations of toxic elements were identified in any of the oils or hydraulic fluids. The elemental compositions of the samples were different enough to be used for identification purposes and the measurement of only three elements was able to achieve this. Whether these findings have an application, in aircraft air quality incident investigations, needs to be established with further studies.
NASA Astrophysics Data System (ADS)
Olabanji, S. O.; Ige, A. O.; Mazzoli, C.; Ceccato, D.; Ajayi, E. O. B.; De Poli, M.; Moschini, G.
2005-10-01
Accelerator-based technique of PIXE was employed for the determination of the elemental concentration of an industrial mineral, talc. Talc is a very versatile mineral in industries with several applications. Due to this, there is a need to know its constituents to ensure that the workers are not exposed to health risks. Besides, microscopic tests on some talc samples in Nigeria confirm that they fall within the BP British Pharmacopoeia standard for tablet formation. However, for these samples to become a local source of raw material for pharmaceutical grade talc, the precise elemental compositions should be established which is the focus of this work. Proton beam produced by the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy was used for the PIXE measurements. The results which show the concentration of different elements in the talc samples, their health implications and metabolic roles are presented and discussed.
Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya.
Gatari, Michael; Wagner, Annemarie; Boman, Johan
2005-04-01
Air pollution problems in major cities within the developing countries need to be studied. There are scanty measurements from the developing countries on airborne particles despite their adverse implications to human health, visibility and climate. One of the major sources of anthropogenic air pollution is energy production. Energy demand is bound to increase as population increases, especially in major cities of the world. Fine particles, particles with aerodynamic diameter < or = 2.5 microm, are mainly anthropogenic and these particles were collected in the capital cities of Vietnam and Kenya. A cyclone airborne particle collector was used to sample in Hanoi during the months of May to October 2000 and a dichotomous virtual impactor in Nairobi in February 2000. The samples were analysed for elemental content by an energy dispersive X-ray fluorescence (EDXRF) spectrometer. S, Cl, K and Fe exceeded atmospheric concentrations of 100 ng m(-3) at both cities. Atmospheric elemental concentrations in both Hanoi and Nairobi were orders of magnitude higher than their respective rural towns. Traffic, biomass and waste burning emissions were implicated as the main sources of air pollution in Nairobi, while coal combustion and road transport were the major sources in Hanoi. Regional air pollution had a major impact over Hanoi, whereas an influence of that kind was not identified in Nairobi. Pb and other toxic elements had concentration levels below WHO guideline, however, the two cities are threatened by future high levels of air pollution due to the high rate of population growth. Long-term measurements are required in both areas to evaluate if the alarming situation is deteriorating.
Riparian plants on mine runoff in Zimapan, Hidalgo, Mexico: Useful for phytoremediation?
Carmona-Chit, Eréndira; Carrillo-González, Rogelio; González-Chávez, Ma Del Carmen A; Vibrans, Heike; Yáñez-Espinosa, Laura; Delgado-Alvarado, Adriana
2016-09-01
Dispersion and runoff of mine tailings have serious implications for human and ecosystem health in the surroundings of mines. Water, soils and plants were sampled in transects perpendicular to the Santiago stream in Zimapan, Hidalgo, which receives runoff sediments from two acidic and one alkaline mine tailing. Concentrations of potentially toxic elements (PTE) were measured in water, soils (rhizosphere and non-rhizosphere) and plants. Using diethylenetriaminepentaacetic acid (DTPA) extractable concentrations of Cu, Zn, Ni, Cd and Pb in rhizosphere soil, the bioconcentration and translocation factors were calculated. Ruderal annuals formed the principal element of the herbaceous vegetation. Accumulation was the most frequent strategy to deal with high concentrations of Zn, Cu, Ni, Cd and Pb. The order of concentration in plant tissue was Zn>Pb>Cu>Ni>Cd. Most plants contained concentrations of PTE considered as phytotoxic and behaved as metal tolerant species. Rorippa nasturtium-aquaticum accumulated particularly high concentrations of Cu. Parietaria pensylvanica and Commelina diffusa, common tropical weeds, behaved as Zn hyperaccumulators and should be studied further.
Micro-PIXE investigation of bean seeds to assist micronutrient biofortification
NASA Astrophysics Data System (ADS)
Cvitanich, Cristina; Przybyłowicz, Wojciech J.; Mesjasz-Przybyłowicz, Jolanta; Blair, Matthew W.; Astudillo, Carolina; Orłowska, Elżbieta; Jurkiewicz, Anna M.; Jensen, Erik Ø.; Stougaard, Jens
2011-10-01
This study compares the distribution and concentrations of micro- and macronutrients in different bean cultivars with the aim of optimizing the biofortification, a sustainable approach towards improving dietary quality. Micro-PIXE was used to reveal the distribution of Fe, Zn, Mn, Ca, P, S in seeds of common beans (Phaseolus vulgaris) and runner beans (Phaseolus coccineus). Average concentrations of elements in different tissues were obtained using ICP-AES. The highest concentrations of Zn in the studied beans were found in the embryonic axis, but an increased concentration of this element was also detected in the provascular bundles of the cotyledons. The first layer of cells surrounding provascular bundles accumulated high concentrations of Fe, while the next cell layer had an increased concentration of Mn. The analysis showed that the provascular bundles and the first cell layers surrounding them could have a significant role in the storage of important seed micronutrients - Zn, Fe, and Mn. This information has important implications for molecular biology studies aimed at seed biofortification.
Trace elements and electrolytes in human resting mixed saliva after exercise
Chicharro, J. L.; Serrano, V.; Urena, R.; Gutierrez, A. M.; Carvajal, A.; Fernandez-, H; Lucia, A.
1999-01-01
OBJECTIVES: Exercise is known to cause changes in the concentration of salivary components such as amylase, Na, and Cl. The aim of this investigation was to evaluate the effect of physical exercise on the levels of trace elements and electrolytes in whole (mixed) saliva. METHODS: Forty subjects performed a maximal exercise test on a cycle ergometer. Samples of saliva were obtained before and immediately after the exercise test. Sample concentrations of Fe, Mg, Sc, Cr, Mn, Co, Cu, Zn, Se, Sr, Ag, Sb, Cs, and Hg were determined by inductively coupled plasma mass spectrometry and concentrations of Ca and Na by atomic absorption spectrometry. RESULTS: After exercise, Mg and Na levels showed a significant increase (p < 0.05) while Mn levels fell (p < 0.05). Zn/Cu molar ratios were unaffected by exercise. CONCLUSIONS: Intense physical exercise induced changes in the concentrations of only three (Na, Mg, and Mn) of the 16 elements analysed in the saliva samples. Further research is needed to assess the clinical implications of these findings. PMID:10378074
Human Geophagia, Calabash Chalk and Undongo: Mineral Element Nutritional Implications
Abrahams, Peter W.; Davies, Theo C.; Solomon, Abiye O.; Trow, Amanda J.; Wragg, Joanna
2013-01-01
The prime aim of our work is to report and comment on the bioaccessible concentrations – i.e., the soluble content of chemical elements in the gastrointestinal environment that is available for absorption – of a number of essential mineral nutrients and potentially harmful elements (PHEs) associated with the deliberate ingestion of African geophagical materials, namely Calabash chalk and Undongo. The pseudo-total concentrations of 13 mineral nutrients/PHEs were quantified following a nitric-perchloric acid digestion of nine different Calabash chalk samples, and bioaccessible contents of eight of these chemical elements were determined in simulated saliva/gastric and intestinal solutions obtained via use of the Fed ORganic Estimation human Simulation Test (FOREhST) in vitro procedure. The Calabash chalk pseudo-total content of the chemical elements is often below what may be regarded as average for soils/shales, and no concentration is excessively high. The in vitro leachate solutions had concentrations that were often lower than those of the blanks used in our experimental procedure, indicative of effective adsorption: lead, a PHE about which concern has been previously raised in connection with the consumption of Calabash chalk, was one such chemical element where this was evident. However, some concentrations in the leachate solutions are suggestive that Calabash chalk can be a source of chemical elements to humans in bioaccessible form, although generally the materials appear to be only a modest supplier: this applies even to iron, a mineral nutrient that has often been linked to the benefits of geophagia in previous academic literature. Our investigations indicate that at the reported rates of ingestion, Calabash chalk on the whole is not an important source of mineral nutrients or PHEs to humans. Similarly, although Undongo contains elevated pseudo-total concentrations of chromium and nickel, this soil is not a significant source to humans for any of the bioaccessible elements investigated. PMID:23308189
Human geophagia, calabash chalk and undongo: mineral element nutritional implications.
Abrahams, Peter W; Davies, Theo C; Solomon, Abiye O; Trow, Amanda J; Wragg, Joanna
2013-01-01
The prime aim of our work is to report and comment on the bioaccessible concentrations - i.e., the soluble content of chemical elements in the gastrointestinal environment that is available for absorption - of a number of essential mineral nutrients and potentially harmful elements (PHEs) associated with the deliberate ingestion of African geophagical materials, namely Calabash chalk and Undongo. The pseudo-total concentrations of 13 mineral nutrients/PHEs were quantified following a nitric-perchloric acid digestion of nine different Calabash chalk samples, and bioaccessible contents of eight of these chemical elements were determined in simulated saliva/gastric and intestinal solutions obtained via use of the Fed ORganic Estimation human Simulation Test (FOREhST) in vitro procedure. The Calabash chalk pseudo-total content of the chemical elements is often below what may be regarded as average for soils/shales, and no concentration is excessively high. The in vitro leachate solutions had concentrations that were often lower than those of the blanks used in our experimental procedure, indicative of effective adsorption: lead, a PHE about which concern has been previously raised in connection with the consumption of Calabash chalk, was one such chemical element where this was evident. However, some concentrations in the leachate solutions are suggestive that Calabash chalk can be a source of chemical elements to humans in bioaccessible form, although generally the materials appear to be only a modest supplier: this applies even to iron, a mineral nutrient that has often been linked to the benefits of geophagia in previous academic literature. Our investigations indicate that at the reported rates of ingestion, Calabash chalk on the whole is not an important source of mineral nutrients or PHEs to humans. Similarly, although Undongo contains elevated pseudo-total concentrations of chromium and nickel, this soil is not a significant source to humans for any of the bioaccessible elements investigated.
Severson, R.C.; Gough, L.P.
1979-01-01
In order to assess the contribution to plants and soils of certain elements emitted by phosphate processing, we sampled sagebrush, grasses, and A- and C-horizon soils along upwind and downwind transects at Pocatello and Soda Springs, Idaho. Analyses for 70 elements in plants showed that, statistically, the concentration of 7 environmentally important elements, cadmium, chromium, fluorine, selenium, uranium, vanadium, and zinc, were related to emissions from phosphate-processing operations. Two additional elements, lithium and nickel, show probable relationships. The literature on the effects of these elements on plant and animal health is briefly surveyed. Relations between element content in plants and distance from the phosphate-processing operations were stronger at Soda Springs than at Pocatello and, in general, stronger in sagebrush than in the grasses. Analyses for 58 elements in soils showed that, statistically, beryllium, fluorine, iron, lead, lithium, potassium, rubidium, thorium, and zinc were related to emissions only at Pocatello and only in the A horizon. Moreover, six additional elements, copper, mercury, nickel, titanium, uranium, and vanadium, probably are similarly related along the same transect. The approximate amounts of elements added to the soils by the emissions are estimated. In C-horizon soils, no statistically significant relations were observed between element concentrations and distance from the processing sites. At Soda Springs, the nonuniformity of soils at the sampling locations may have obscured the relationship between soil-element content and emissions from phosphate processing.
Video-Taping Dialogs, with Commentary to Teach Cultural Elements.
ERIC Educational Resources Information Center
Taylor, Harvey M.
Description of a project involving the use of the video-tape recorder in a beginning course in Japanese focuses on cultural implications of basic unit dialogues. Instant replay, close-up, and other camera techniques allow students to concentrate on cross-cultural phenomena which are normally not perceived without the use of media. General…
NASA Technical Reports Server (NTRS)
Larimer, John W.; Ganapathy, R.
1987-01-01
The trace element distribution in oldhamite (CaS) extracted from enstatite chondrites was determined by INAA. Prior to extraction, the petrologic setting of the grains was studied microscopically, and their minor element contents determined by microprobe analysis; samples that displayed a wide range of minor element contents were selected for detailed elementary analysis. Those samples of CaS suspected to be more primitive on the basis of their minor element and petrologic siting contain the entire inventory of the host meteorite's light REE (LREE) and Eu, plus 30-50 percent of the heavy-REE inventory. In less primitive samples, the LREE are less enriched although Eu remains highly concentrated. Several other elements, including lithophiles and chalcophiles, are most enriched in the most primitive CaS. It is suggested that oldhamite played a key role in the redistribution of these elements during the metamorphism and evolution of enstatite-rich material.
NASA Astrophysics Data System (ADS)
Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.
2008-12-01
Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.
NASA Astrophysics Data System (ADS)
Vizzini, S.; Di Leonardo, R.; Costa, V.; Tramati, C. D.; Luzzu, F.; Mazzola, A.
2013-12-01
Research into the effects of ocean acidification on marine ecosystems has increasingly focused on natural CO2 vents, although their intrinsic environmental complexity means observations from these areas may not relate exclusively to pH gradients. In order to assess trace element levels and distribution in the Levante Bay (Vulcano Island, NE Sicily, Italy) and its suitability for studying biological effects of pH decline, Ba, Fe and trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V and Zn) in sediment were analysed from 7 transects. Where present, Cymodocea nodosa leaves and epiphytes were also analysed. At the spatial scale of the bay, trace element concentrations in sediments and biota showed wide variability, possibly related to both input from fluid emissions and seawater physico-chemical variables (i.e. pH and Eh), which may considerably affect the solubility and bioavailability of potentially harmful trace elements. According to two pollution indices (MSPI: Marine Sediment Pollution Index and SQG-Q: Sediment Quality Guideline Quotient), the bay can be considered to be affected by low contamination with moderate potential for adverse biological effects, especially in the area between about 150 and 350 m from the primary vent, where localized detrimental effects on biota may occur. Generally, biological samples showed concentrations that were comparable with the lower values of seagrass ranges. The overall results of this study support the complex spatial dynamics of trace elements in the CO2 vent studied, which are constrained by both direct input from the vent and/or biogeochemical processes affecting element precipitation at the sediment-seawater interface. Consequently, great caution should be used when relating biological changes along pH gradients to the unifactorial effect of pH only, as interactions with concurrent, multiple stressors, including trace element enrichments, may occur. This finding has implications for the use of CO2 vents as analogues in ocean acidification research. They should be considered more appropriately as analogues for low pH environments with non-negligible trace element contamination which, in a scenario of continuous increase in anthropogenic pollution, may be very common.
NASA Astrophysics Data System (ADS)
Abraham, J. A.; Grenón, M. S.; Sánchez, H. J.; Valentinuzzi, M. C.; Perez, C. A.
2007-07-01
Hard dental tissues like dentine and cementum with calcified deposits (dental calculi) were studied in several human dental pieces of adult individuals from the same geographic region. A couple of cross cuts were performed at dental root level resulting in a planar slice with calculus and dental tissue exposed for analysis. The elemental content along a linear path crossing the dentine-cementum-tartar interfaces and also all over a surface was measured by X-ray fluorescence microanalysis using synchrotron radiation (μSRXRF). The concentration of elemental traces like K, V, Cu, Zn, As, Br and Sr showed different features on the analyzed regions. The possible connections with the dynamic of mineralization and biological implications are discussed. The concentrations of major elements Ca and P were also determined and the measured Ca/P molar ratio was used to estimate the average composition of calcium phosphate phases in the measured points. A deeper knowledge of the variations of the elemental compositions and the changes of the different phases will help to a better understanding of the scarcely known mechanism of calculus growing.
Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium
Trautwein, Kathleen; Feenders, Christoph; Hulsch, Reiner; Ruppersberg, Hanna S.; Strijkstra, Annemieke; Kant, Mirjam; Vagts, Jannes; Wünsch, Daniel; Michalke, Bernhard; Maczka, Michael; Schulz, Stefan; Hillebrand, Helmut; Blasius, Bernd
2017-01-01
Abstract The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH4+ and PO43−. The unique dataset covers 415 different concentration pairs, corresponding to 207 different molar N:P ratios (from 10−2 to 105). Maximal growth (by growth rate and biomass yield) was observed within a restricted concentration range at N:P ratios (∼50−120) markedly above Redfield. Experimentally determined growth parameters deviated to a large part from model predictions based on Liebig's law of the minimum, thus implicating synergistic co-limitation due to biochemical dependence of resources. Internal elemental ratios of P. inhibens varied with external nutrient supply within physiological constraints, thus adding to the growing evidence that aquatic bacteria can be flexible in their internal elemental composition. Taken together, the findings reported here revealed that P. inhibens is well adapted to fluctuating availability of inorganic N and P, expected to occur in its natural habitat (e.g. colonized algae, coastal areas). Moreover, this study suggests that elemental variability in bacterioplankton needs to be considered in the ecological stoichiometry of the oceans. PMID:28486660
Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium.
Trautwein, Kathleen; Feenders, Christoph; Hulsch, Reiner; Ruppersberg, Hanna S; Strijkstra, Annemieke; Kant, Mirjam; Vagts, Jannes; Wünsch, Daniel; Michalke, Bernhard; Maczka, Michael; Schulz, Stefan; Hillebrand, Helmut; Blasius, Bernd; Rabus, Ralf
2017-05-01
The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH4+ and PO43-. The unique dataset covers 415 different concentration pairs, corresponding to 207 different molar N:P ratios (from 10-2 to 105). Maximal growth (by growth rate and biomass yield) was observed within a restricted concentration range at N:P ratios (∼50-120) markedly above Redfield. Experimentally determined growth parameters deviated to a large part from model predictions based on Liebig's law of the minimum, thus implicating synergistic co-limitation due to biochemical dependence of resources. Internal elemental ratios of P. inhibens varied with external nutrient supply within physiological constraints, thus adding to the growing evidence that aquatic bacteria can be flexible in their internal elemental composition. Taken together, the findings reported here revealed that P. inhibens is well adapted to fluctuating availability of inorganic N and P, expected to occur in its natural habitat (e.g. colonized algae, coastal areas). Moreover, this study suggests that elemental variability in bacterioplankton needs to be considered in the ecological stoichiometry of the oceans. © FEMS 2017.
Perrault, Justin R; Stacy, Nicole I; Lehner, Andreas F; Poor, Savannah K; Buchweitz, John P; Walsh, Catherine J
2017-12-01
Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ndibewu, P P; Mgangira, M B; Cingo, N; McCrindle, R I
2010-01-01
The objective of this study was to (1) measure the concentration of four anions (Cl(-), F(-), [image omitted], and [image omitted]) and nine other elements (Al, Ba, Ca, K, Mg, Mn, Fe, Ni, and Si) in two nontraditional biopolymeric chemical stabilizers (EBCS1 and EBCS2), (2) investigate consequent environmental toxicity risk implications, and (3) create awareness regarding environmental health issues associated with metal concentration levels in enzyme-based chemical stabilizers that are now gaining widespread application in road construction and other concrete materials. Potential ecotoxicity impacts were studied on aqueous extracts of EBCS1 and EBCS2 using two thermodynamic properties models: the Pitzer-Mayorga model (calculation of the electrolyte activity coefficients) and the Millero-Pitzer model (calculation of the ionic activity coefficients). Results showed not only high concentrations of a variety of metal ions and inorganic anions, but also a significant variation between two chemical stabilizing mixtures. The mixture (EBCS2) with the lower pH value was richer in all the cationic and anionic species than (EBCS1). Sulfate (SO(2-)(4)) concentrations were found to be higher in EBCS2 than in EBCS1. There was no correlation between electrolyte activity and presence of the ionic species, which may be linked to a possible high ionic environmental activity. The concentrations of trace metals found (Mn, Fe, and Ni) were low compared to those of earth metals (Ba, Ca, K, and Mg). The metal concentrations were higher in EBCS1 than in EBCS2. Data suggest that specific studies are needed to establish "zero" permissible metal ecotoxicity values for elements and anions in any such strong polyelectrolytic enzyme-based chemical stabilizers.
2013-01-01
Background Anthropogenic activities introduce materials increasing levels of many dangerous substances for the environmental quality and being hazardous to human health. Major attention has been given to those elements able to alter the environment and endanger human health. The airborne particulate matter pollutant is considered one of the most difficult task in environmental chemistry for its complex composition and implications complicating notably the behavior comprehension. So, for investigating deeply the elemental composition we used two nuclear techniques, Neutron Activation Analysis and Photon Activation Analysis, characterized by high sensitivity, precision and accuracy. An important task has been devoted to the investigation of Quality Control (QC) and Quality Assurance (QA) of the methodology used in this study. This study was therefore extended as far back as possible in time (from 1965 until 2000) in order to analyze the trend of airborne concentration of pollutant elements in connection with the industrial and lifestyle growth during the entire period. Results Almost all the elements may be attributed to long-range transport phenomena from other natural and/or anthropogenic sources: this behavior is common to all the periods studied even if a very light decreasing trend can be evidenced from 1970 to 2002. Finally, in order to investigate a retrospective study of elements in PM10 and their evolution in relationship with the natural or anthropogenic origins, we have investigated the Enrichment Factors. The study shows the EF trends for some elements in PM10 during four decades. Conclusions The two nuclear techniques have allowed to reach elevated sensibility/accuracy levels for determining elements at very low concentrations (trace and ultra-trace levels). The element concentrations determined in this study do not basically show a significant level of attention from a toxicological point of view. PMID:24196275
USDA-ARS?s Scientific Manuscript database
Lentils (Lens culinaris L.) are an important protein and carbohydrate food, rich in essential dietary components and trace elements. Selenium (Se) is an essential micronutrient for human health. For adults, 55 µg of daily Se intake is recommended for better health and cancer prevention. Millions of ...
Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E
2012-09-01
Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.
Enamorado, Santiago; Abril, José M; Delgado, Antonio; Más, José L; Polvillo, Oliva; Quintero, José M
2014-02-15
Phosphogypsum (PG) has been usually applied as Ca-amendment to reclaim sodic soils such as those in the marshland area of Lebrija (SW Spain). This work aimed at the effects of PG amendments on the uptake of trace-elements by tomato and its implications for food safety. A completely randomized experiment was performed using a representative soil from Lebrija in a greenhouse involving six replicates and four PG treatments equivalent to 0, 20, 60, and 200 Mg ha(-1). Soil-to-plant transfer factors (TFs) were determined for Be, B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Tl, Pb, Th and U. The highest TF in shoots was observed for Cd (4.0; 1.5 in fruits), its concentration being increased with increasing PG doses due to its content in this metal (2.1 mg Cd kg(-1)PG). Phosphogypsum applying decreased the concentrations of Mn, Co and Cu in shoots; and of B, Cu, Sb, Cs, Ba, Tl and Th in fruits, however enhanced the accumulation of Se in fruits. Although Cd concentrations in tomato were below the maximum allowed levels in control pots (0 Mg PG ha(-1)), PG amendments above 60 Mg ha(-1) exceeded such limits. Copyright © 2013 Elsevier B.V. All rights reserved.
Kim, C.S.; Wilson, K.M.; Rytuba, J.J.
2011-01-01
The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (???250 ??m) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation. ?? 2011 Elsevier Ltd.
Kılıç Altun, Serap; Dinç, Hikmet; Temamoğulları, Füsun Karaçal; Paksoy, Nilgün
2018-01-01
Maternal breast milk is a unique biological matrix that contains essential micronutrients. Potentially heavy metals may also affect infants' health and growth through maternal breast milk. The purpose of this study was to determine and compare the essential elements and heavy metals of maternal breast milk of nursery mothers residing in Şanlıurfa province, Turkey. Maternal breast milk concentrations of sodium, magnesium, phosphorus, potassium, calcium, iron, copper, zinc, arsenic, and lead were analyzed in a random sample of the first time in urban and suburban nursery Turkish mothers ( n : 42). Eight essential elements and two heavy metals were analyzed using ICP-MS after microwave digestion. For bivariate analyses of variables, we use nonparametric Spearman's correlation coefficient test. The mean concentrations of essential elements and heavy metals were as follows: sodium 330 ± 417 mg/L, magnesium 32.6 ± 15.5 mg/L, phosphorus 156 ± 46.2 mg/L, potassium 488 ± 146 mg/L, calcium 193 ± 53.2 mg/L, iron 1.65 ± 1.43 mg/L, copper 0.54 ± 0.46 mg/L, zinc 2.89 ± 3.23 mg/L, arsenic < 1 μ g/L, and lead < 1 μ g/L. Concentrations of heavy metals in maternal breast milk may have the important implication that it is not affected by environmental pollution in this province. This study provides reliable information about maternal breast milk concentrations of nursery mothers residing in Şanlıurfa, Turkey, and also compares the relations between essential elements and socioeconomic conditions, residing areas, and using copper equipment for food preparation of which some have not previously been reported.
2018-01-01
Maternal breast milk is a unique biological matrix that contains essential micronutrients. Potentially heavy metals may also affect infants' health and growth through maternal breast milk. The purpose of this study was to determine and compare the essential elements and heavy metals of maternal breast milk of nursery mothers residing in Şanlıurfa province, Turkey. Maternal breast milk concentrations of sodium, magnesium, phosphorus, potassium, calcium, iron, copper, zinc, arsenic, and lead were analyzed in a random sample of the first time in urban and suburban nursery Turkish mothers (n: 42). Eight essential elements and two heavy metals were analyzed using ICP-MS after microwave digestion. For bivariate analyses of variables, we use nonparametric Spearman's correlation coefficient test. The mean concentrations of essential elements and heavy metals were as follows: sodium 330 ± 417 mg/L, magnesium 32.6 ± 15.5 mg/L, phosphorus 156 ± 46.2 mg/L, potassium 488 ± 146 mg/L, calcium 193 ± 53.2 mg/L, iron 1.65 ± 1.43 mg/L, copper 0.54 ± 0.46 mg/L, zinc 2.89 ± 3.23 mg/L, arsenic < 1 μg/L, and lead < 1 μg/L. Concentrations of heavy metals in maternal breast milk may have the important implication that it is not affected by environmental pollution in this province. This study provides reliable information about maternal breast milk concentrations of nursery mothers residing in Şanlıurfa, Turkey, and also compares the relations between essential elements and socioeconomic conditions, residing areas, and using copper equipment for food preparation of which some have not previously been reported. PMID:29849639
Rosa, Cheryl; Blake, John E; Bratton, Gerald R; Dehn, Larissa-A; Gray, Matthew J; O'Hara, Todd M
2008-07-25
The bowhead whale (Balaena mysticetus) is a species endangered over much of its range that is of great cultural significance and subsistence value to the Inuit of Northern Alaska. This species occupies subarctic and arctic regions presently undergoing significant ecological change and hydrocarbon development. Thus, understanding the health status of the Bering-Chukchi-Beaufort Sea (BCBS) stock of bowhead whales is of importance. In this study, we evaluated the concentrations of six essential and non-essential elements (Zn, tHg, Ag, Se, Cu and Cd) in liver and kidney of bowhead whales (n=64). These tissues were collected from the Inuit subsistence hunt in Barrow, Wainwright and Kaktovik, Alaska between 1983 and 2001. Reference ranges of these elements (including previously reported data from 1983-1997) were developed for this species as part of a health assessment effort, and interpreted using improved aging techniques (aspartic acid racemization and baleen isotopic (13)C methods) to evaluate trends over time with increased statistical power. Interactions between element concentrations and age, sex and harvest season were assessed. Age was found to be of highest significance. Sex and harvest season did not effect the concentrations of these elements, with the exception of renal Se levels, which were significantly higher in fall seasons. In addition, histological evaluation of tissues from whales collected between 1998-2001 was performed. Associations between concentrations of Cd in kidney and liver and scored histopathological changes were evaluated. Liver Cd concentration was strongly associated with the degree of lung fibromuscular hyperplasia (P=0.001) and moderately associated with the degree of renal fibrosis (P=0.03). Renal Cd concentration influenced the degree of lung fibromuscular hyperplasia and renal fibrosis (P=0.01). A significant age effect was found for both pulmonary fibromuscular hyperplasia and renal fibrosis, indicating age may be a causative factor. Improvements in aging techniques and the addition of histological indices help clarify the relationships between elements and the influence of life history parameters on concentrations of these elements and potential impacts on health. These data provide essential baseline input useful for monitoring the effects of arctic ecosystem change as it relates to global climate change and industrial development, as well as help inform epidemiological studies examining the public health implications of heavy metals in subsistence foods.
Thomas, Oliver R B; Ganio, Katherine; Roberts, Blaine R; Swearer, Stephen E
2017-03-22
Otoliths, the biomineralised hearing "ear stones" from the inner ear of fish, grow throughout the lifespan of an individual, with deposition of alternating calciferous and proteinaceous bands occurring daily. Trace element : calcium ratios within daily increments measured by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are often used in fisheries science to reconstruct environmental histories. There is, however, considerable uncertainty as to which elements are interacting with either the proteinaceous or calciferous zones of the otolith, and thus their utility as indicators of environmental change. To answer this, we used size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) of endolymph, the otolith growth medium, to determine the binding interactions for a range of elements. In addition, we used solution ICP-MS to quantify element concentrations in paired otolith and endolymph samples and determined relative enrichment factors for each. We found 12 elements that are present only in the proteinaceous fraction, 6 that are present only in the salt fraction, and 4 that are present in both. These findings have important implications for the reconstruction of environmental histories based on changes in otolith elemental composition: (1) elements occurring only in the salt fraction are most likely to reflect changes in the physico-chemical environment experienced during life; (2) elements occurring only in the proteinaceous fraction are more likely to reflect physiological rather than environmental events; and (3) elements occurring in both the salt and proteinaceous fractions are likely to be informative about both endogenous and exogenous processes, potentially reducing their utility in environmental reconstructions.
Basin Excavation, Lower Crust, Composition, and Bulk Moon Mass balance in Light of a Thin Crust
NASA Technical Reports Server (NTRS)
Jolliff, B. L.; Korotev, R. L.; Ziegler, R. A.
2013-01-01
New lunar gravity results from GRAIL have been interpreted to reflect an overall thin and low-density lunar crust. Accordingly, crustal thickness has been modeled as ranging from 0 to 60 km, with thinnest crust at the locations of Crisium and Moscoviense basins and thickest crust in the central farside highlands. The thin crust has cosmochemical significance, namely in terms of implications for the Moon s bulk composition, especially refractory lithophile elements that are strongly concentrated in the crust. Wieczorek et al. concluded that the bulk Moon need not be enriched compared to Earth in refractory lithophile elements such as Al. Less Al in the crust means less Al has been extracted from the mantle, permitting relatively low bulk lunar mantle Al contents and low pre- and post-crust-extraction values for the mantle (or the upper mantle if only the upper mantle underwent LMO melting). Simple mass-balance calculations using the method of [4] suggests that the same conclusion might hold for Th and the entire suite of refractory lithophile elements that are incompatible in olivine and pyroxene, including the KREEP elements, that are likewise concentrated in the crust.
Natural radioactivity and trace metals in crude oils: implication for health.
Ajayi, T R; Torto, N; Tchokossa, P; Akinlua, A
2009-02-01
Crude oil samples were collected from six different fields in the central Niger Delta in order to determine their natural radioactivity and trace element contents, with the aim of assessing the radiological health implications and environmental health hazard of the metals, and also to provide natural radioactivity baseline data that could be used for more comprehensive future study in this respect. The activity concentrations of the radionuclides were measured using a well, accurately calibrated and shielded vertical cryostat, Canberra coaxial high-purity germanium (HPGe) detector system, and the derived doses were evaluated. The metal concentrations were determined by the graphite furnace atomic absorption spectroscopic (GFAAS) method. The radionuclides identified with reliable regularity belong to the decay series of naturally occurring radionuclides headed by (238)U and (232)Th along with the non-decay series radionuclide, (40)K. The averaged activity concentrations obtained were 10.52 +/- 0.03 Bq kg(-1), 0.80 +/- 0.37 Bq kg(-1) and 0.17 +/- 0.09 Bq kg(-1) for (40)K, (238)U and (232)Th, respectively. The equivalent doses were very low, ranging from 0.0028 to 0.012 mSv year(-1) with a mean value of 0.0070 mSv year(-1). The results obtained were low, and hence, the radioactivity content from the crude oils in the Niger delta oil province of Nigeria do not constitute any health hazard to occupationally exposed workers, the public and the end user. The concentrations of the elements (As, Cd, Co, Fe, Mn, Ni, Se and V) determined ranged from 0.73 to 202.90 ppb with an average of 74.35 ppb for the oil samples analysed. The pattern of occurrence of each element agreed with the earlier studies from other parts of the Niger Delta. It was obvious from this study and previous ones that the Niger Delta oils have low metal contents. However, despite the low concentrations, they could still pose an intrinsic health hazard considering their cumulative effects in the environment. Also, various studies on the impact of oil spillage and activities of oil exploration and production on organisms in the immediate environment suggest this.
A review on the elemental contents of Pakistani medicinal plants: Implications for folk medicines.
Aziz, Muhammad Abdul; Adnan, Muhammad; Begum, Shaheen; Azizullah, Azizullah; Nazir, Ruqia; Iram, Shazia
2016-07-21
Substantially, plants produce chemicals such as primary and secondary metabolites, which have significant applications in modern therapy. Indigenous people mostly rely on traditional medicines derived from medicinal plants. These plants have the capacity to absorb a variety of toxic elements. The ingestion of such plants for medicinal purpose can have imperative side effects. Hence, with regard to the toxicological consideration of medicinal plants, an effort has been made to review the elemental contents of ethno medicinally important plants of Pakistan and to highlight the existing gaps in knowledge of the safety and efficacy of traditional herbal medications. Literature related to the elemental contents of ethno medicinal plants was acquired by utilizing electronic databases. We reviewed only macro-elemental and trace elemental contents of 69 medicinal plant taxa, which are traditionally used in Pakistan for the treatment of sundry ailments, including anemia, jaundice, cancer, piles, diarrhea, dysentery, headache, diabetes, asthma, blood purification, sedative and ulcer. A majority of plants showed elemental contents above the permissible levels as recommended by the World health organization (WHO). As an example, the concentrations of Cadmium (Cd) and Lead (Pb) were reportedly found higher than the WHO permissible levels in 43 and 42 medicinal plants, respectively. More specifically, the concentrations of Pb (54ppm: Silybum marianum) and Cd (5.25ppm: Artemisia herba-alba) were found highest in the Asteraceae family. The reported medicinal plants contain a higher amount of trace and toxic elements. Intake of these plants as traditional medicines may trigger the accumulation of trace and toxic elements in human bodies, which can cause different types of diseases. Thus, a clear understanding about the nature of toxic substances and factors affecting their concentrations in traditional medicines are essential prerequisites for efficacious herbal therapeutics with lesser or no side effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Yuanyuan; Roleda, Michael Y.; Armstrong, Evelyn; Law, Cliff S.; Boyd, Philip W.; Hurd, Catriona L.
2018-01-01
A series of semi-continuous incubation experiments were conducted with the coccolithophore Emiliania huxleyi strain NIWA1108 (Southern Ocean isolate) to examine the effects of five environmental drivers (nitrate and phosphate concentrations, irradiance, temperature, and partial pressure of CO2 (pCO2)) on both the physiological rates and elemental composition of the coccolithophore. Here, we report the alteration of the elemental composition of E. huxleyi in response to the changes in these environmental drivers. A series of dose-response curves for the cellular elemental composition of E. huxleyi were fitted for each of the five drivers across an environmentally representative gradient. The importance of each driver in regulating the elemental composition of E. huxleyi was ranked using a semi-quantitative approach. The percentage variations in elemental composition arising from the change in each driver between present-day and model-projected conditions for the year 2100 were calculated. Temperature was the most important driver controlling both cellular particulate organic and inorganic carbon content, whereas nutrient concentrations were the most important regulator of cellular particulate nitrogen and phosphorus of E. huxleyi. In contrast, elevated pCO2 had the greatest influence on cellular particulate inorganic carbon to organic carbon ratio, resulting in a decrease in the ratio. Our results indicate that the different environmental drivers play specific roles in regulating the elemental composition of E. huxleyi with wide-reaching implications for coccolithophore-related marine biogeochemical cycles, as a consequence of the regulation of E. huxleyi physiological processes.
The Rosiwal Principle and the regolithic distributions of solar-wind elements
NASA Technical Reports Server (NTRS)
Criswell, D. R.
1975-01-01
In situ accumulation of solar elements is studied for the purpose of determining the extent of applicability of the Rosiwal Principle. The Rosiwal Principle states that the grain exposure area is proportional to the fraction of the unit volume occupied by the grains, and the test involves measurement of the relative concentrations of inert gases and reactive elements across sets of lunar fines samples for which mean grain size, sorting, and minimum radius of surface correlation are known. In some cases, the quantity of an element implanted into the lunar fines from the solar wind is found to be surface correlated, and the implications of this relationship are considered. According to the Rosiwal Principle, coarse soils should retain less inert gas than fine soil. The Principle can also be applied to species volatized or sputtered from the lunar surface and redeposited locally.
Kolker, Allan; Engle, Mark A.; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas J.; Krabbenhotft, David P.; Bothner, Michael H.; Tate, Michael T.
2013-01-01
Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.
NASA Technical Reports Server (NTRS)
Nagasawa, H.; Blanchard, D. P.; Jacobs, J. W.; Brannon, J. C.; Philpotts, J. A.; Onuma, N.
1977-01-01
Concentrations of the rare earth elements (REE), Sc, Co, Fe, Zn, Ir, Na, and Cr were determined for mineral separates of the coarseand fine-grained types (group I and II) of the Allende inclusions. These data in combination with other data suggest that the minerals in the coarse-grained inclusions (group I) crystallized in a closed system with respect to refractory elements although a totally molten stage is precluded. The data also indicate that fine-grained (group II) inclusions were formed by condensation from a super-cooled nebular gas; REE-rich clinopyroxene and spinel were formed earlier than REE-poor sodalite and nepheline. In addition, pre-existing Mg isotope anomalies in the coarse-grained inclusions must have been erased during the heating stage.
NASA Astrophysics Data System (ADS)
Freitas, R.; Ramos Pinto, L.; Sampaio, M.; Costa, A.; Silva, M.; Rodrigues, A. M.; Quintino, V.; Figueira, E.
2012-09-01
Organisms living in coastal ecosystems are frequently subjected to anthropogenic pressures such as metals. Metals, especially those not required for metabolic activity (e.g. mercury, lead and cadmium) can be toxic even at quite low concentrations not only to organisms that accumulate them, but also to their consumers. Throughout the world, Ruditapes decussatus and Ruditapes philippinarum have been successfully commercialised for human consumption and for monitoring environmental conditions such as contamination. These two clam species share similar habitats and requirements, successfully competing both in the natural environment and in aquaculture farms. Because differences in metal accumulation may exist between R. decussatus and R. philippinarum, different risks to public health may overcome as well as distinct ecological implications. The effect of depuration on the metal burden and biochemical status of both clams species may also diverge and since the information available is subjective and scarce, the aims of the present study were to: 1) assess the total metal accumulation and intracellular partitioning, at natural conditions, in the two clam species collected at the same site; 2) evaluate the effect of depuration as a mean of reducing the levels of distinct elements, assessing also the effect of depuration time (2 and 7 days); 3) investigate the efficiency of depuration by biochemical status of the two bivalve species, evaluating changes in lipid peroxidation and activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and of glutathione S-transferase (GST). Metal chelation by metallothioneins (MTs) was also determined. The results obtained showed that concentration of elements in clams was low, presenting very similar concentration levels for all elements. The present work further demonstrated that the total element concentration decreased in the shorter depuration period (2 days) and that R. decussatus and R. philippinarum partitioned elements preferentially in the insoluble fraction. The percentage of elements in the soluble fraction was lower in the longer depuration period, reducing the dietary bioavailability of elements and thus the health risk to consumers of depurated bivalves. In general, LPO, CAT, SOD and GSTs showed a decreased from environmental to depuration conditions, revealing that depuration reduces the oxidative stress that organisms were subjected in the environment. The lower MTs production observed in the longer depuration period, although no significantly different from the remaining periods, may be explained by the distinct metal allocation between both soluble and insoluble fractions.
The Buildup of a Scale-free Photospheric Magnetic Network
NASA Astrophysics Data System (ADS)
Thibault, K.; Charbonneau, P.; Crouch, A. D.
2012-10-01
We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.
Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin
2015-02-01
Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.
Implications of human tissue studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathren, R.L.
1986-10-01
Through radiochemical analysis of voluntary tissue donations, the United States Transuranium and Uranium Registries are gaining improved understanding of the distribution and biokinetics of actinide elements in occupationally exposed persons. Evaluation of the first two whole body contributions to the Transuranium Registry revealed an inverse proportionality between actinide concentration and bone ash fraction. The analysis of a whole body with a documented /sup 241/Am deposition indicated a significantly shorter half-time in liver and a greater fraction resident in the skeleton than predicted by existing models. Other studies of the Registries are designed to evaluate in vivo estimates of actinide depositionmore » with those derived from postmortem tissue analysis, compare results of animal experiments with human data, and reviw histopathologic slides for tissue toxicity that might be attributable to exposure to uranium and the transuranic elements. The implications of these recent findings and other work of the Registries are discussed from the standpoint of their potential impact on biokinetic modeling, internal dose assessment, safety standards, and operational health physics practices.« less
NASA Technical Reports Server (NTRS)
Clark, P.; Joerg, S.; Dehon, R.
1994-01-01
Geochemical profiles of surface units, impact, and volcanic features are studied in detail to determine the underlying structure in an area of extensive mare/highland interface, Sinus Amoris. This study region includes and surrounds the northeastern embayment of Mare Tranquillitatis. The concentrations of two major rock-forming elements (Mg and Al), which were derived from the Apollo 15 orbital geochemical measurements, were used in this study. Mapped units and deposits associated with craters in the northwestern part of the region tend to have correlated low Mg and Al concentrations, indicating the presence of Potassium (K)-Rare Earth Elements (REE)-Phosphorus (P) (KREEP)-enriched basalt. Found along the northeastern rim of Tranquillitatis were areas with correlated high Mg and Al concentration, indicating the presence of troctolite. Distinctive west/east and north/south trends were observed in the concentrations of Mg and Al, and, by implication, in the distribution of major rock components on the surface. Evidence for a systematic geochemical transition in highland or basin-forming units may be observed here in the form of distinctive differences in chemistry in otherwise similar units in the western and eastern portions of the study region.
Implications of Competition for Rare Earth Elements (REE) in Africa
2011-03-15
German’s began their North African campaign. They 3 wanted to reach the Saudi Arabian oilfields to keep their military juggernaut from grinding to a...industry is a fairly recent phenomenon as compared to other precious metals such as gold or copper, which has been known and valued for millenniums. The...and include: lanthanum, cerium, praseodymium, and neodymium, which are often found in heavy concentrations ranging from eighty to ninety percent of
Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.
2009-01-01
The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.
Li, Yueyan; Chang, Miao; Ding, Shanshan; Wang, Shiwen; Ni, Dun; Hu, Hongtao
2017-07-01
Fine particulate matter (PM 2.5 ) samples were collected simultaneously every hour in Beijing between April 2014 and April 2015 at five sites. Thirteen trace elements (TEs) in PM 2.5 were analyzed by online X-ray fluorescence (XRF). The annual average PM 2.5 concentrations ranged from 76.8 to 102.7 μg m -3 . TEs accounted for 5.9%-8.7% of the total PM 2.5 mass with Cl, S, K, and Si as the most dominant elements. Spearman correlation coefficients of PM 2.5 or TE concentrations between the background site and other sites showed that PM 2.5 and some element loadings were affected by regional and local sources, whereas Cr, Si, and Ni were attributed to substantial local emissions. Temporal variations of TEs in PM 2.5 were significant and provided information on source profiles. The PM 2.5 concentrations were highest in autumn and lowest in summer. Mn and Cr showed similar variation. Fe, Ca, Si, and Ti tended to show higher concentrations in spring, whereas concentrations of S peaked in summer. Concentrations of Cl, K, Pb, Zn, Cu, and Ni peaked in winter. PM 2.5 and TE median concentrations were higher on Saturdays than on weekdays. The diurnal pattern of PM 2.5 and TE median concentrations yielded similar bimodal patterns. Five dominant sources of PM 2.5 mass were identified via positive matrix factorization (PMF). These sources included the regional and local secondary aerosols, traffic, coal burning, soil dust, and metal processing. Air quality management strategies, including regional environmental coordination and collaboration, reduction in secondary aerosol precursors, restrictive vehicle emission standards, promotion of public transport, and adoption of clean energy, should be strictly implemented. High time-resolution measurements of TEs provided detailed source profiles, which can greatly improve precision in interpreting source apportionment calculations; the PMF analysis of online XRF data is a powerful tool for local air quality management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abraham, Mwesigye R; Susan, Tumwebaze B
2017-02-01
The mining and processing of copper in Kilembe, Western Uganda, from 1956 to 1982 left over 15 Mt of cupriferous and cobaltiferous pyrite dumped within a mountain river valley, in addition to mine water which is pumped to the land surface. This study was conducted to assess the sources and concentrations of heavy metals and trace elements in Kilembe mine catchment water. Multi-element analysis of trace elements from point sources and sinks was conducted which included mine tailings, mine water, mine leachate, Nyamwamba River water, public water sources and domestic water samples using ICP-MS. The study found that mean concentrations (mg kg -1 ) of Co (112), Cu (3320), Ni (131), As (8.6) in mine tailings were significantly higher than world average crust and were being eroded and discharged into water bodies within the catchment. Underground mine water and leachate contained higher mean concentrations (μg L -1 ) of Cu (9470), Co (3430) and Ni (590) compared with background concentrations (μg L -1 ) in un contaminated water of 1.9, 0.21 and 0.67 for Cu, Co and Ni respectively. Over 25% of household water samples exceeded UK drinking water thresholds for Al of 200 μg L -1 , Co exceeded Winsconsin (USA drinking) water thresholds of 40 μg L -1 in 40% of samples while Fe in 42% of samples exceeded UK thresholds of 200 μg L -1 . The study however found that besides mining activities, natural processes of geological weathering also contributed to Al, Fe, and Mn water contamination in a number of public water sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.
Righter, Kevin
2015-09-01
A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.
Jiang, Haifeng; Qin, Dongli; Mou, Zhenbo; Zhao, Jiwei; Tang, Shizhan; Wu, Song; Gao, Lei
2016-06-01
Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10(-)(4), to which more attention should be paid.
Coiner, R.L.; Pope, L.M.; Mehl, H.E.
2010-01-01
An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in stream water at Fort Riley is difficult. The only SVOCs detected in stream-water samples were bis(2-ethylhexyl) phthalate and di-n-butyl phthalate but at concentrations substantially less than the most stringent aquatic-life criteria established by the Kansas Department of Health and Environment. All trace element concentrations in stream-water samples were less than the most stringent aquatic-life criteria. The implication of these stream-water results is that contamination arising from firing-range activities, if it exists, is so small as to be nondetectable with current analytical methods or is not distinguishable from background concentrations for constituents that also are naturally occurring. Overall, the munitions-related constituents analyzed in streambed sediment and stream water, when detected, were at concentrations that were less than regulatory criteria
NASA Astrophysics Data System (ADS)
Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges
2012-07-01
Laser ablation ICP-MS analysis has been applied to many accessory minerals in order to understand better the process by which the rock formed and for provenance discrimination. We have determined trace element concentrations of Fe-oxides in massive sulfides that form Ni-Cu-PGE deposits at the base of the Sudbury Igneous Complex in Canada. The samples represent the crystallization products of fractionating sulfide liquids and consist of early-forming Fe-rich monosulfide solution (MSS) cumulates and residual Cu-rich intermediate solid solution (ISS). This study shows that Fe-oxide geochemistry is a sensitive petrogenetic indicator for the degree of fractionation of the sulfide liquid and provides an insight into the partitioning of elements between sulfide and Fe-oxide phases. In addition, it is useful in determining the provenance of detrital Fe-oxide. In a sulfide melt, all lithophile elements (Cr, Ti, V, Al, Mn, Sc, Nb, Ga, Ge, Ta, Hf, W and Zr) are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming Fe-oxide (titanomagnetite) which crystallized with Fe-rich MSS. Upon the continual crystallization of Fe-oxide from the sulfide liquid, the lithophile elements gradually decrease so that late-forming Fe-oxide (magnetite), which crystallized from the residual Cu-rich liquid, is depleted in these elements. This behavior is in contrast with Fe-oxides that crystallized from a fractionating silicate melt, whereby the concentration of incompatible elements, such as Ti, increases rather than decreases. The behavior of the chalcophile elements in magnetite is largely controlled by the crystallization of the sulfide minerals with only Ni, Co, Zn, Mo, Sn and Pb present above detection limit in magnetite. Nickel, Mo and Co are compatible in Fe-rich MSS and thus the co-crystallizing Fe-oxide is depleted in these elements. In contrast, magnetite that crystallized later from the fractionated liquid with Cu-rich ISS is enriched in Ni, Mo and Co because Fe-rich MSS is absent. The concentrations of Sn and Pb, which are incompatible with Fe-rich MSS, are highest in magnetite that formed from the fractionated Cu-rich liquid. At subsolidus temperatures, ilmenite exsolved from titanomagnetite whereas Al-spinel exsolved from the cores of some magnetite, locally redistributing the trace elements. However, during laser ablation ICP-MS analysis of these Fe-oxides both the magnetite and its exsolution products are ablated so that the analysis represents the original magmatic composition of the Fe-oxide that crystallized from the sulfide melt.
Equine grass sickness in Scotland: A case-control study of environmental geochemical risk factors.
Wylie, C E; Shaw, D J; Fordyce, F M; Lilly, A; Pirie, R S; McGorum, B C
2016-11-01
We hypothesised that the apparent geographical distribution of equine grass sickness (EGS) is partly attributable to suboptimal levels of soil macro- and trace elements in fields where EGS occurs. If proven, altering levels of particular elements could be used to reduce the risk of EGS. To determine whether the geographical distribution of EGS cases in eastern Scotland is associated with the presence or absence of particular environmental chemical elements. Retrospective time-matched case-control study. This study used data for 455 geo-referenced EGS cases and 910 time-matched controls in eastern Scotland, and geo-referenced environmental geochemical data from the British Geological Survey Geochemical Baseline Survey of the Environment stream sediment (G-BASE) and the James Hutton Institute, National Soil Inventory of Scotland (NSIS) datasets. Multivariable statistical analyses identified clusters of three main elements associated with cases from (i) the G-BASE dataset - higher environmental Ti and lower Zn, and (ii) the NSIS dataset - higher environmental Ti and lower Cr. There was also some evidence from univariable analyses for lower Al, Cd, Cu, Ni and Pb and higher Ca, K, Mo, Na and Se environmental concentrations being associated with a case. Results were complicated by a high degree of correlation between most geochemical elements. The work presented here would appear to reflect soil- not horse-level risk factors for EGS, but due to the complexity of the correlations between elements, further work is required to determine whether these associations reflect causality, and consequently whether interventions to alter concentrations of particular elements in soil, or in grazing horses, could potentially reduce the risk of EGS. The effect of chemical elements on the growth of those soil microorganisms implicated in EGS aetiology also warrants further study. © 2015 The The Authors Equine Veterinary Journal © 2015 EVJ Ltd.
Environmental implications of excessive selenium: a review.
Lemly, A D
1997-12-01
Selenium is a naturally occurring trace element that is nutritionally required in small amounts but it can become toxic at concentrations only twice those required. The narrow margin between beneficial and harmful levels has important implications for human activities that increase the amount of selenium in the environment. Two of these activities, disposal of fossil fuel wastes and agricultural irrigation of arid, seleniferous soils, have poisoned fish and wildlife, and threatened public health at several locations in the United States. Research studies of these episodes have generated a data base that clearly illustrates the environmental hazard of excessive selenium. It is strongly bioaccumulated by aquatic organisms and even slight increases in waterborne concentrations can quickly result in toxic effects such as deformed embryos and reproductive failure in wildlife. The selenium data base has been very beneficial in developing hazard assessment procedures and establishing environmentally sound water quality criteria. The two faces of selenium, required nutrient and potent toxin, make it a particularly important trace element in the health of both animals and man. Because of this paradox, environmental selenium in relation to agriculture, fisheries, and wildlife will continue to raise important land and water management issues for decades to come. If these issues are dealt with using prudence and the available environmental selenium data base, adverse impacts to natural resources and public health can be avoided.
NASA Astrophysics Data System (ADS)
González-Garcia, Diego; Petrelli, Maurizio; Behrens, Harald; Vetere, Francesco; Fischer, Lennart A.; Morgavi, Daniele; Perugini, Diego
2018-07-01
The diffusive exchange of 30 trace elements (Cs, Rb, Ba, Sr, Co, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ta, V, Cr, Pb, Th, U, Zr, Hf, Sn and Nb) during the interaction of natural mafic and silicic alkaline melts was experimentally studied at conditions relevant to shallow magmatic systems. In detail, a set of 12 diffusion couple experiments have been performed between natural shoshonitic and rhyolitic melts from the Vulcano Island (Aeolian archipelago, Italy) at a temperature of 1200 °C, pressures from 50 to 500 MPa, and water contents ranging from nominally dry to ca. 2 wt.%. Concentration-distance profiles, measured by Laser Ablation ICP-MS, highlight different behaviours, and trace elements were divided into two groups: (1) elements with normal diffusion profiles (13 elements, mainly low field strength and transition elements), and (2) elements showing uphill diffusion (17 elements including Y, Zr, Nb, Pb and rare earth elements, except Eu). For the elements showing normal diffusion profiles, chemical diffusion coefficients were estimated using a concentration-dependent evaluation method, and values are given at four intermediate compositions (SiO2 equal to 58, 62, 66 and 70 wt.%, respectively). A general coupling of diffusion coefficients to silica diffusivity is observed, and variations in systematics are observed between mafic and silicic compositions. Results show that water plays a decisive role on diffusive rates in the studied conditions, producing an enhancement between 0.4 and 0.7 log units per 1 wt.% of added H2O. Particularly notable is the behaviour of the trivalent-only REEs (La to Nd and Gd to Lu), with strong uphill diffusion minima, diminishing from light to heavy REEs. Modelling of REE profiles by a modified effective binary diffusion model indicates that activity gradients induced by the SiO2 concentration contrast are responsible for their development, inducing a transient partitioning of REEs towards the shoshonitic melt. These results indicate that diffusive fractionation of trace elements is possible during magma mixing events, especially in the more silicic melts, and that the presence of water in such events can lead to enhanced chemical diffusive mixing efficiency, affecting also the estimation of mixing to eruption timescales.
NASA Technical Reports Server (NTRS)
Medard, E.; Martin, A. M.; Righter, K.; Malouta, A.; Lee, C.-T.
2017-01-01
Most siderophile element concentrations in planetary mantles can be explained by metal/ silicate equilibration at high temperature and pressure during core formation. Highly siderophile elements (HSE = Au, Re, and the Pt-group elements), however, usually have higher mantle abundances than predicted by partitioning models, suggesting that their concentrations have been set by late accretion of material that did not equilibrate with the core. The partitioning of HSE at the low oxygen fugacities relevant for core formation is however poorly constrained due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variables like temperature, pressure, and oxygen fugacity. To better understand the relative roles of metal/silicate partitioning and late accretion, we performed a self-consistent set of experiments that parameterizes the influence of oxygen fugacity, temperature and melt composition on the partitioning of Pt, one of the HSE, between metal and silicate melts. The major outcome of this project is the fact that Pt dissolves in an anionic form in silicate melts, causing a dependence of partitioning on oxygen fugacity opposite to that reported in previous studies.
CO2-induced changes in mineral stoichiometry of wheat grains
NASA Astrophysics Data System (ADS)
Broberg, Malin; Pleijel, Håkan; Högy, Petra
2016-04-01
A comprehensive review of experiments with elevated CO2 (eCO2) presenting data on grain mineral concentration in wheat grain was made. Data were collected both from FACE (Free-Air CO2 Enrichment) and OTC (Open-Top Chamber) experiments. Analysis was made i) by deriving response functions for the relative effect on yield and mineral concentration in relation to CO2 concentration, ii) meta-analysis to test the magnitude and significance of observed effects and iii) comparison of the CO2 effect on the accumulation of different minerals in relation to accumulation of biomass and accumulation of N. Data were obtained for the following minerals: N, Zn, Mn, K, Ca, Mg, P, Fe, S, Cr, Cu, Cd and Na. In addition, data for starch, the dominating carbohydrate of wheat grain, were extracted. The responses ranged from near zero effects to strong negative effects of eCO2 on mineral concentration. The order of effect size was the following (from largest to smallest effect) for the different elements: Fe, Ca, S, Zn, Cd, N, Mg, Mn, P, Cu, Cr, K and Na. Particularly strong negative impacts of eCO2 were found in the essential mineral elements Fe, S, Ca, Zn and Mg. Especially Fe, Zn and Mg are nutrients for which deficiency in humans is a problem in todaýs world. The rather large differences in response of different elements indicated that the CO2-induced responses cannot be explained by a simple growth dilution model. Rather, uptake and transport mechanisms may have to be considered in greater detail, as well as the link of different elements with the uptake of nitrogen, the quantitatively dominating mineral nutrient, to explain the observed pattern. No effect of eCO2 on starch concentration could be demonstrated. This substantiates the rejection of a simple dilution model, since one would expect starch concentrations to be elevated in order to explain reduced mineral concentrations by carbohydrate dilution. The concentrations of toxic Cd was negatively affected, in principle a positive environmental effect and possibly as a result of reduced transpiration under eCO2, since uptake and transport of Cd is known to be related to transpiration. For elements with substantial data the response in OTC and FACE exposure systems could be compared and no large differences were observed. Our study shows that eCO2 has a significant effect on the mineral composition of wheat grain. This has strong implications for human nutrition in a world of rising CO2 concentrations. An altered chemical composition of biomass under eCO2 is also of great importance for the biogeochemical cycling of elements in general.
NASA Astrophysics Data System (ADS)
Murruni, L. G.; Solanes, V.; Debray, M.; Kreiner, A. J.; Davidson, J.; Davidson, M.; Vázquez, M.; Ozafrán, M.
Total suspended particulate (TSP) samples have been collected at six stations in the C and B lines of the Buenos Aires underground system and, almost simultaneously, at six ground level sites outside and nearby the corresponding underground stations, in the Oct 2005/Oct 2006 period. All these samples were analyzed for mass and elemental Fe, Cu, and Zn concentrations by using the Particle Induced X-ray Emission (PIXE) technique. Mostly, TSP concentrations were found to be between 152 μg m -3 (25% percentile) and 270 μg m -3 (75% percentile) in the platform of the stations, while those in outside ambient air oscillated from 55 μg m -3 (25% percentile) to 137 μg m -3 (75% percentile). Moreover, experimental results indicate that TSP levels are comparable to those measured for other underground systems worldwide. Statistical results demonstrate that subway TSP levels are about 3 times larger on average than those for urban ambient air. The TSP levels inside stations and outdoors are poorly correlated, indicating that TSP levels in the metro system are mainly influenced by internal sources. Regarding metal concentrations, the most enriched element in TSP samples was Fe, the levels of which ranged from 36 (25% percentile) to 86 μg m -3 (75% percentile) in Line C stations, while in Line B ones they varied between 8 μg m -3 (25% percentile) and 46 μg m -3 (75% percentile). As a comparison, Fe concentrations in ambient air oscillated between 0.7 μg m -3 (25% percentile) and 1.2 μg m -3 (75% percentile). Other enriched elements include Cu and Zn. With regard to their sources, Fe and Cu have been related to processes taking place inside the subway system, while Zn has been associated with outdoor vehicular traffic. Additionally, concerns about possible health implications based on comparisons to various indoor air quality limits and available toxicological information are discussed.
NASA Astrophysics Data System (ADS)
Carpentier, Marion; Sigmarsson, Olgeir; Larsen, Gudrun
2014-05-01
The nature of future eruptions of active volcanoes is hard to predict. Improved understanding of the past volcanic activity is probably the best way to infer future eruptive scenarios. The most active volcano in Iceland, Grímsvötn, last erupted in 2011 with consequences for habitants living close to the volcano and aviation in the North-Atlantic. In an effort to better understand the magmatic system of the volcano, we have investigated the compositions of 23 selected tephra layers representing the last 8 centuries of volcanic activity at Grímsvötn. The tephra was collected in the ablation area of outlet glaciers from Vatnajökull ice cap. The ice-conserved tephra are less prone to alteration than those exposed in soil sections. Major element analyses are indistinguishable and of quartz-normative tholeiite composition, and Sr and Nd isotope ratios are constant. In contrast, both trace element concentrations (Th range from 0.875 ppm to 1.37 ppm and Ni from 28.5 ppm to 56.6 ppm) in the basalts and Pb isotopes show small but significant variations. The high-precision analyses of Pb isotope ratios allow the identification of tephra samples (3 in total) with more radiogenic ratios than the bulk of the samples. The tephra of constant isotope ratios show linear increase in incompatible element concentrations with time. The rate of increasing concentrations permits exploring possible future scenarios assuming that the magmatic system beneath the volcano follows the established historical evolution. Assuming similar future behaviour of the magma system beneath Grímsvötn volcano, the linear increase in e.g. Th concentration suggests that the volcano is likely to principally produce basalts for the next 500-1000 years. Evolution of water concentration will most likely follow those of incompatible elements with consequent increases in explosiveness of future Grímsvötn eruptions.
Xu, Liqiang; Liu, Xiaodong; Nie, Yaguang
2016-05-01
Seabird subfossils were collected on three islands of the Xisha Archipelago, South China Sea. Via elemental analysis, we identified that bird guano was a significant source for heavy metals Cu, Zn, and Hg. Cu and Zn levels in these guano samples are comparable to their levels in wildbird feces, but guano Hg was lower than previously reported. Trophic positions significantly impacted transfer efficiency of heavy metals by seabirds. Despite of a common source, trace elements, as well as stable isotopes (i.e., guano δ(13)C and collagen δ(15)N), showed island-specific characteristics. Bird subfossils on larger island had relatively greater metal concentrations and revealed higher trophic positions. Partition of element and isotope levels among the islands suggested that transfer efficacy of seabirds on different islands was different, and bird species were probably unevenly distributed among the islets. Island area is possibly a driving factor for distributions of seabird species.
Enrichment of trace elements in the clay size fraction of mining soils.
Gomes, Patrícia; Valente, Teresa; Braga, M Amália Sequeira; Grande, J A; de la Torre, M L
2016-04-01
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Ross, D. K.; Righter, M.; Lapen, T. J.
2018-01-01
Cores of differentiated bodies (Earth, Mars, Mercury, Moon, Vesta) contain light elements such as S, C, Si, and O. We have previously measured small effects of Si on Ni and Co, and larger effects on Mo, Ge, Sb, As metal/silicate partitioning. The effect of Si on metal-silicate partitioning has been quantified for many siderophile elements, but there are a few key elements for which the effects are not yet quantified. Here we report new experiments designed to quantify the effect of Si on the partitioning of Bi, Cd, Sn, Ag, and P between metal and silicate melt. The results will be applied to Earth, Mars, Moon, and Vesta, for which we have good constraints on the mantle Bi, Cd, Sn, Ag, and P concentrations from mantle and/or basalt samples.
Ingle, Mary E; Bloom, Michael S; Parsons, Patrick J; Steuerwald, Amy J; Kruger, Pamela; Fujimoto, Victor Y
2017-02-01
A hypothesis-generating pilot study exploring associations between essential trace elements measured in follicular fluid (FF) and urine and in vitro fertilization (IVF) endpoints. We recruited 58 women undergoing IVF between 2007 and 2008, and measured cobalt, chromium, copper, manganese, molybdenum, and zinc in FF (n = 46) and urine (n = 45) by inductively coupled plasma mass spectrometry (ICP-MS). We used multivariable regression models to assess the impact of FF and urine trace elements on IVF outcomes, adjusted for age, body mass index, race, and cigarette smoking. Trace elements were mostly present at lower concentrations in FF than in urine. The average number of oocytes retrieved was positively associated with higher urine cobalt, chromium, copper, and molybdenum concentrations. FF chromium and manganese were negatively associated with the proportion of mature oocytes, yet urine manganese had a positive association. FF zinc was inversely associated with average oocyte fertilization. Urine trace elements were significant positive predictors for the total number of embryos generated. FF copper predicted lower embryo fragmentation while urine copper was associated with higher embryo cell number and urine manganese with higher embryo fragmentation. No associations were detected for implantation, pregnancy, or live birth. Our results suggest the importance of trace elements in both FF and urine for intermediate, although not necessarily clinical, IVF endpoints. The results differed using FF or urine biomarkers of exposure, which may have implications for the design of clinical and epidemiologic investigations. These initial findings will form the basis of a more definitive future study.
Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey; Wieczorek, Mark A.; Neumann, Gregory A.; Nimmo, Francis; Kiefer, Walter S.; Melosh, H. Jay; Phillips, Roger J.; Solomon, Sean C.; Andrews-Hanna, Jeffrey C.; Asmar, Sami W.;
2013-01-01
High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not required
Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction
NASA Technical Reports Server (NTRS)
Moser, D. P.; Nealson, K. H.
1996-01-01
The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino Acids added as a growth stimulant) containing 30 mM lactate and limiting concentrations of elemental sulfur. When mechanisms were provided for the removal of the metabolic end product, H2S, measurable growth was obtained at sulfur concentrations of from 2 to 30 mM. Initial doubling times were ca. 1.5 h and substrate independent over the range of sulfur concentrations tested. In the cultures with the highest sulfur concentrations, cell numbers increased by greater than 400-fold after 48 h, reaching a maximum density of 6.8 x 10(8) cells ml-1. Yields were determined as total cell carbon and ranged from 1.7 to 5.9 g of C mol of S(0) consumed-1 in the presence of the amino acid supplement and from 0.9 to 3.4 g of C mol of S(0-1) in its absence. Several lines of evidence indicate that cell-to-sulfur contact is not required for growth. Approaches for the culture of sulfur-metabolizing bacteria and potential ecological implications of sulfur reduction in Shewanella-like heterotrophs are discussed.
NASA Astrophysics Data System (ADS)
Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.
2017-10-01
Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.
Historical Fluxes of Toxic Trace Elements and Associated Implications in the Salton Sea Basin
NASA Astrophysics Data System (ADS)
Odigie, K. O.; Hardisty, D. S.; Geraci, J. B.; Lyons, T. W.
2017-12-01
The Salton Sea is a polymictic, hypersaline lake that is predominantly sustained by wastewater and agricultural runoff from Mexico and the United States. It is a terminal lake that acts as a net sink for toxicants, which in addition to nutrients and increasing salinity, have dramatically transformed the lake over the past century. However, the impacts of these changes on the cycling and bio-accessibility of toxic elements and compounds and their associated human and environmental health implications are not well understood. This project aims to measure and model the fluxes of toxic elements, including selenium, lead, and mercury, in the lake over temporal and spatial scales by using geochemical data from the analysis of sediment cores, a pervasive salt crust, and the water column. The project also aims to elucidate the bio-accessibility and depositional environments of these elements. Preliminary results highlight two different oxygen concentration regimes in the lake: an increasingly anoxic condition in the bottom of the northern lobe and a seasonally variable oxygen deficiency in the bottom of the southern lobe. The deteriorating conditions at the lake could be exacerbated by a receding shoreline, which has already exposed several square kilometres of lake bed and is expected to continue as future inflows are diverted under the Quantification Settlement Agreement. Continued water conservation by Imperial Valley farmers and the increasing reuse of reclaimed water by Mexico are also expected to contribute to reduced inflows to the lake. Therefore, improved understanding of the cycling of toxic elements and their potential remobilization, including via wind entrainment (dust) associated with lake desiccation, will be valuable in protecting human and environmental health within the Salton Sea basin.
Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.
Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L
2010-05-01
To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.
Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N
2016-07-01
The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ngole-Jeme, Veronica M.; Ekosse, Georges-Ivo E.
2015-01-01
This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil) collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC)) and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having <20% clay content. The soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA) and Chemical Index of Weathering (CIW) being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t). These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils. PMID:26264010
Odumo, O B; Mustapha, A O; Patel, J P; Angeyo, H K
2011-05-01
The results of heavy element profiling of the gold ores and sediments associated with the artisanal gold mining activities of the Migori gold belt of Southwestern Nyanza, Kenya, were reported in this paper. The analysis was made to assess the occupational exposure of the miners as well as to investigate the environmental impact of toxic heavy metals. Gold ores and sediments from the artisanal gold processing were sampled in four artisanal gold mining areas: Osiri A, Osiri B, Mikei and Macalder (Makalda) and analyzed for heavy elemental content using (109)Cd radioisotope excited EDXRF spectrometry technique. Analysis consisted of direct irradiating of sample pellets. The concentrations of major elements detected were: titanium (711.41-10,766.67 mg/kg); cobalt (82.65-1,010.00 mg/kg); zinc (29.90-63,210 mg/kg); arsenic (29.30-8,246.59 mg/kg); gold (14.07-73.48 mg/kg); lead (16.31-14,999.40 mg/kg) and mercury (16.10-149.93 mg/kg). The average concentration of the heavy toxic metals i.e. arsenic, lead, titanium and zinc were found to be above 50 mg/Kg as recommended by World Health Organization. © Springer Science+Business Media, LLC 2011
Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J
2017-02-01
Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Livio, Mario; Truran, James W.
1994-01-01
We reexamine the question of the frequency of occurrence of oxygen-neon-magnesium (ONeMg) degenerate dwarfs in classical nova systems, in light of recent observations which have been interpreted as suggesting that 'neon novae' can be associated with relatively low mass white dwarfs. Determinations of heavy-element concentrations in nova ejecta are reviewed, and possible interpretations of their origin are examined. We conclude that, of the 18 classical novae for which detailed abundance analyses are availble, only two (or possibly three) seem unambiguously to demand the presence of an underlying ONeMg white dwarf: V693 CrA 1981, V1370 Aql 1982, and possibly QU Vul 1984. Three other novae which exhibit significant neon enrichments, relative to their total heavy-element concentrations, are RR Pic 1925, V977, Sco 1989, and LMC 1990 No. 1. This result is entirely consistent with present frequency estimates, and our interpretation of the lower levels of enrichment in other systems explains, in a natural way, the existence of relatively low mass white dwarfs in some of the 'neon' novae.
Implications of Large Elastic Thicknesses for the Composition and Current Thermal State of Mars
NASA Astrophysics Data System (ADS)
Grott, M.; Breuer, D.
2008-12-01
The elastic lithosphere thickness at the Martian north polar cap has recently been constrained using radar sounding data obtained by SHARAD, the shallow radar onboard the Mars Reconnaissance Orbiter. Analysis of the SHARAD radargrams showed that the amount of deflection caused by ice loading at the polar caps is negligible - less than 100 m. Quantitative analysis yielded a lower bound on the elastic lithosphere thickness Te of 300 km, a value twice as large as previous estimates from theoretical considerations and flexure studies. Such large elastic thicknesses are only compatible with the planet's thermal evolution if the planetary interior is relatively cold and this could have direct bearing on the admissible amount of radioactive elements in the Martian interior. On the other hand, if the concentration of heat producing elements in the Martian interior is indeed reduced, the resulting low interior temperatures could possibly inhibit partial mantle melting and magmatism. However, geological evidence suggests that Mars has been volcanically active in the recent past. We have investigated the Martian thermal evolution and identified models which are consistent with a present day elastic thickness in excess of 300 km. We find that a wet mantle rheology is best compatible with the observed elastic thicknesses, but in this case the bulk concentration of heat producing elements in the silicate fraction cannot exceed 50 % of the chondritic concentration if 50 % of the radioacitve elements are concentrated in the crust. Furthermore, due to the efficient cooling of the planet for a wet mantle rheology, recent volcanism can only be explained by hydrous mantle melting. This requires the mantle water content to exceed 1500 ppm and although this is within the range reported for the shergottite parent magmas, it is certainly on the boundary of the plausible parameter range. If a dry mantle rheology is assumed, bulk Mars does not need to be sub-chondritic, but at least 70 % of the radiogenic elements need to be concentrated in the crust to be consistent with the large elastic thicknesses. For a dry mantle, recent volcanism could be driven by decompression melting in the heads of strong mantle plumes which are present in numerical simulations of mantle convection if the viscosity is strongly pressure dependent or endothermic phase transitions are present near the core-mantle boundary.
NASA Technical Reports Server (NTRS)
King, C.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.
2010-01-01
Currently there are several hypotheses for the thermal state of the early Earth. Some hypothesize a shallow magma ocean, or deep magma ocean, or heterogeneous accretion which requires no magma ocean at all. Previous models are unable to account for Ge depletion in Earth's mantle relative to CI chondrites. In this study, the element Ge is used to observe the way siderophile elements partition into the metallic core. The purpose of this research is to provide new data for Ge and to further test these models for Earth's early stages. The partition coefficients (D(sub Ge) = c(sub metal)/c(sub silicate), where D = partition coefficient of Ge and c = concentration of Ge in the metal and silicate, respectively) of siderophile elements were studied by performing series of high pressure, high temperature experiments. They are also dependent on oxygen fugacity, and metal and silicate composition. Ge is a moderately siderophile element found in both the mantle and core, and has yet to be studied systematically at high temperatures. Moreover, previous work has been limited by the low solubility of Ge in silicate melts (less than 100 ppm and close to detection limits for electron microprobe analysis). Reported here are results from 14 experiments studying the partitioning of Ge between silicate and metallic liquids. The Ge concentrations were then analyzed using Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) which is sensitive enough to detect ppm levels of Ge in the silicate melt.
NASA Astrophysics Data System (ADS)
Kontonikas-Charos, Alkis; Ciobanu, Cristiana L.; Cook, Nigel J.; Ehrig, Kathy; Krneta, Sasha; Kamenetsky, Vadim S.
2018-04-01
Rare earth element (REE) fractionation trends in feldspars are reported from Olympic Dam (including Wirrda Well and Phillip's Ridge) and Cape Donington (Port Lincoln), for comparison with two other igneous-hydrothermal terranes within the eastern Gawler Craton: Moonta-Wallaroo and Hillside. The case studies were selected as they represent 1590 Ma Hiltaba Suite and/or 1845 - 1810 Ma Donington Suite granites, and, aside from Cape Donington, are associated with Mesoproterozoic iron-oxide copper gold (IOCG)-type mineralization. Both plagioclase and alkali feldspar were analyzed within selected samples with the purpose of constraining and linking changes in REE concentrations and fractionation trends in feldspars to local and whole-rock textures and geochemistry. Two unique, reproducible fractionation trends were obtained for igneous plagioclase and alkali feldspars, distinguished from one another by light rare earth element enrichment, Eu-anomalies and degrees of fractionation (e.g. La/Lu slopes). Results for hydrothermal albite and K-feldspar indicate that REE concentrations and fractionation trends are generally inherited from igneous predecessors, however in some instances, significant amounts of REE appear to have been lost to the fluid. These results may have critical implications for the formation of world-class IOCG systems, in which widespread alkali metasomatism plays a key role by altering the physical and chemical properties of the host rocks during early stages of IOCG formation, as well as trapping trace elements (including REE).
NASA Astrophysics Data System (ADS)
Samiksha, S.; Raman, R. S.; Singh, A.
2016-12-01
It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2.However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant manufacturer specified MAE is used for this purposes. Recent literature has unequivocally established that MAE shows large spatio-temporal heterogeneities. This is so because MAE depends on emission sources, chemical composition, and mixing state of aerosols. In this study, ambient PM2.5 samples were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected on Teflon, Nylon, and Tissue quartz filter substrates. Punches of quartz fibre filter were analysed for organic and elemental carbon (OC/EC) by a thermal-optical-transmittance/reflectance (TOT-TOR) analyser operating with a 632 nm laser diode. Teflon filters were also used to interdependently measure PM2.5 attenuation (at 370 nm and 800 nm) by transmissometry. Site-specific mass absorption efficiency (MAE) for elemental carbon over the study site will be derived using a combination of measurements from the TOT/TOR analyser and transmissometer. An assessment of site-specific MAE values, its temporal variability and implications to black carbon radiative forcing will be discussed. It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2. However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant manufacturer specified MAE is used for this purposes. Recent literature has unequivocally established that MAE shows large spatio-temporal heterogeneities. This is so because MAE depends on emission sources, chemical composition, and mixing state of aerosols. In this study, ambient PM2.5 samples were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected on Teflon, Nylon, and Tissue quartz filter substrates. Punches of quartz fibre filter were analysed for organic and elemental carbon (OC/EC) by a thermal-optical-transmittance/reflectance (TOT-TOR) analyser operating with a 632 nm laser diode. Teflon filters were also used to interdependently measure PM2.5 attenuation (at 370 nm and 800 nm) by transmissometry. Site-specific mass absorption efficiency (MAE) for elemental carbon over the study site will be derived using a combination of measurements from the TOT/TOR analyser and transmissometer. An assessment of site-specific MAE values, its temporal variability and implications to black carbon radiative forcing will be discussed.
NASA Astrophysics Data System (ADS)
Huang, Y.; Wang, M.; Sun, C.; Yang, G.; Ding, H.
2017-12-01
Based on ICP-ES analysis, concentrations of 6 constant elements and 9 trace elements in five sediment columnar samples collected from Yap-trench by the Jiaolong Submersiblein June, 2016, were determined. According to the distribution of elements, the sources of sediment and the implications on sedimentary environment were investigated through the correlation of elements and the ratios between special elements. The results showed that the carbonate compensation depthwas between 4500m and 5000m, and the depth of 5000m should be an ideal condition for the formation of iron and manganese nodules. Based on the ratios of Fe/Al and Ti/Al, and the correlation of elements, we inferred that Yap-trench sediments were mainly derived from biogenic, terrestrial, volcanic and autogenic source. The values of Ni/Co and V/Cr indicated that the depositional environment belongs to the oxidative environment and might have inflow of the Antarctic bottom oxygen-rich water. The high content of Ca in the 371-Yap-S02 station below 4cm indicated that this area should be no large-scale volcanic eruption, and volcanic material in the sediment may come from the Mariana volcanic arc. The Caroline ridge located in the east of Yap-trench keep sinking due to plate subduction.
NASA Astrophysics Data System (ADS)
Dutkiewicz, A.; Landgrebe, T. C.; Rey, P. F.
2011-12-01
Opal consists of amorphous SiO2.nH2O comprising a network of silica spheres, which in precious opal are of similar size and form an ordered network allowing light to diffract into an array of colors. Common opal, which is often associated with precious opal, lacks this play of color as it is composed of silica spheres of variable sizes. Australia supplies over 95% of the world's precious opal. The opal is almost exclusively located within Cretaceous sedimentary rocks of the Great Artesian Basin, which experienced a major phase of uplift in the Late Cretaceous with subsequent erosion removing a package of sedimentary rock up to 3 km in thickness. Intense weathering resulted in extensive silicification at relatively shallow levels within the Tertiary regolith. However, despite a billion dollar industry and a well-constrained geological history of the basin, the formation of sedimentary opal and its uniqueness to the Australian continent are still very poorly understood. In this study we have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on precious and common opal from key opal mining areas in order to constrain the possible sources of silica fluids involved in opal genesis and to assess whether any major or trace elements could be used to determine the provenance of opal with respect to a particular mining area. A total of 123 spots, each comprising 59 elements, including rare earth elements were analyzed. Globally, volcanic and sedimentary opals can be distinguished on the basis of Ba and Ca concentrations. Although the opals from the Great Artesian Basin are all sedimentary, some show Ba concentrations consistent with volcanic opals suggesting that silica fluids from which they formed were derived from a volcanic province. The most likely source is the Cretaceous volcanic-plutonic province of central Queensland, which supplied vast amounts of volcanogenic material into the Great Artesian Basin. The weathering of feldspars from the volcaniclastic rocks would have provided ample silica-rich fluids for the formation of opal as well as kaolinite, which is abundant within the opal host rocks. Multivariate feature-selection analysis (using a signal-to-noise criterion) of elemental concentrations in opal bands from different locations indicates that the mining region from which the opals originate can best be discriminated using a combination of K, Se and Hf. The best independent provenance discriminators are K, Rb, Ba, Cs and Hf. Precious and common opal can be discriminated using a combination of Th, Hf and Cs with the best independent discriminators being Th, Bi and La. Overall, Th is the best element by which to discriminate between precious and common opals as these are characterized by relatively low and relatively high concentrations of Th, respectively. In general, major and trace element concentrations are significantly higher in common opals than in precious ones. Precious opal color is very difficult to discriminate based on elemental concentrations as it depends on the size and ordering of spheres. However, brown common opal can be distinguished from grey common opal based on concentrations of Pb, Ba and Fe. Opal fingerprinting is therefore possible using just a small number of elements.
Milićević, Tijana; Urošević, Mira Aničić; Relić, Dubravka; Vuković, Gordana; Škrivanj, Sandra; Popović, Aleksandar
2018-06-01
Monitoring of potentially toxic elements in agricultural soil represents the first measure of caution regarding food safety, while research into element bioavailability should be a step forward in understanding the element transportation chain. This study was conducted in the grapevine growing area ("Oplenac Wine Route") for investigating element bioavailability in the soil-grapevine system accompanied by an assessment of the ecological implications and human health risk. Single extraction procedures (CH 3 COOH, Na 2 EDTA, CaCl 2 , NH 4 NO 3 and deionised H 2 O) and digestion were performed to estimate the bioavailability of 22 elements (Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Sr, V and Zn) from the topsoil (0-30 cm) and subsoil (30-60 cm) to the grapevine parts (leaf, skin, pulp and seed) and wine. The extractants were effective comparing to the pseudo-total concentrations in following order Na 2 EDTA ˃ CH 3 COOH ˃ NH 4 NO 3 ˃ CaCl 2 , H 2 O 2 h and 16 h. The most suitable extractants for assessing the bioavailability of the elements from the soil to the grapevine parts were CaCl 2 , NH 4 NO 3 and Na 2 EDTA, but deionised H 2 O could be suitable, as well. The results showed that Ba was the most bioavailable element in the soil-grapevine system. Contamination factor implied a moderate contamination (1 < CF < 3) of the soil. The concentrations of Cr, Ni and Cd in the soil were above the maximum allowed concentrations. According to the biological accumulation coefficient (BAC), the grape seeds and grapevine leaves mostly accumulated Cu and Zn from the soil, respectively. Based on ratio factor (RF > 1), the influence of atmospheric deposition on the aerial grapevine parts (leaves and grape skin) was observed. Nevertheless, low adverse health risk effects (HI < 1 and R ≤ 1 × 10 -6 ) were estimated for farmers and grape and wine consumers. Copyright © 2018 Elsevier B.V. All rights reserved.
Vasilatou, Vasiliki; Diapouli, Evangelia; Abatzoglou, Dimitrios; Bakeas, Evangelos B; Scoullos, Michael; Eleftheriadis, Konstantinos
2017-04-01
The aim of this work is to study the atmospheric concentrations of selected major and trace elements and ions found in PM 2.5 , at a suburban site in Athens, Greece, and discuss on the impact of the different sources. Special focus is given to the influence of Saharan dust episodes. The seasonal variability in the metal and ion concentrations is also examined. The results show that PM 2.5 mass concentrations are significantly influenced by Saharan dust events; it is observed that when the PM 2.5 concentration is higher than 25 μg/m 3 , five out of six times, the air mass crossed North Africa at an altitude within the boundary layer. Fe is found to be the element with the more significant seasonal variability, displaying much higher concentrations during cold period. The frequent Saharan dust intrusions in the cold period of this dataset may explain this result. Mineral dust and secondary aerosol are the main PM 2.5 components (29 and 34%, respectively). During Saharan dust events, the concentration of mineral dust is increased by 35% compared to the days without dust intrusions, while an increase of 68% of the sea salt is also observed. During event days, PM 2.5 concentrations are also increased by 14%. Anthropogenic components do not decrease during those days, while sulfate displays even a slight increase, suggesting enrichment of mineral dust with secondary sulfates. The results indicate that African dust intrusions add a rather significant PM pollution load even in the PM 2.5 fraction, with implication to population exposure and human health.
Fey, David L.; Church, Stan E.
1998-01-01
Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubility. Sediments, fluvial tailings and water from High Ore Creek have been identified as significant contributors to water quality degradation of the Boulder River below Basin, Montana. A study of 42 fluvial tailings cores and 7 stream sediments from High Ore Creek was undertaken to determine the concentrations of environmentally sensitive elements (i.e. Ag, As, Cd, Cu, Pb, Zn) present in these materials, and the mineral phases containing those elements. Two sites of fluvial deposition of mine-waste contaminated sediment on upper High Ore Creek were sampled using a one-inch soil probe. Forty-two core samples were taken producing 247 subsamples. The samples were analyzed by ICP-AES (inductively coupled-plasma atomic emission spectroscopy) using a total mixed-acid digestion. Results of the core analyses show that the elements described above are present at very high concentrations (to 22,000 ppm As, to 460 ppm Ag, to 900 ppm Cd, 4,300 ppm Cu, 46,000ppm Pb, and 50,000 ppm Zn). Seven stream-sediment samples were also analyzed by ICP-AES for total element content and for leachable element content. Results show that the sediment of High Ore Creek has elevated levels of ore-related metals throughout its length, down to the confluence with the Boulder River, and that the metals are, to a significant degree, contained in the leachable phase, namely the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z; Stewart, Arthur J; Gwinn, Dr. Kimberley
Laser-induced breakdown spectroscopy was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by ICP-MS. Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni and Zn) were measured by both techniques at concentrations great enough to reliably compare. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typicallymore » achieved using ICP-MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.« less
Metali, Faizah; Abu Salim, Kamariah; Tennakoon, Kushan; Burslem, David F R P
2015-01-01
Foliar elemental concentrations are predictors of life-history variation and contribute to spatial patterns in biogeochemical cycling. We examined the contributions of habitat association, local soil environment, and elemental interactions to variation in foliar elemental concentrations in tropical trees using methods that account for phylogeny. We sampled top-soils and leaves of 58 tropical trees in heath forest (HF) on nutrient-poor sand and mixed dipterocarp forest (MDF) on nutrient-rich clay soils. A phylogenetic generalized least squares method was used to determine how foliar nutrient and aluminium (Al) concentrations varied in response to habitat distribution, soil chemistry and other elemental concentrations. Foliar nitrogen (N) and Al concentrations were greater for specialists of MDF than for specialists of HF, while foliar calcium (Ca) concentrations showed the opposite trend. Foliar magnesium (Mg) concentrations were lower for generalists than for MDF specialists. Foliar element concentrations were correlated with fine-scale variation in soil chemistry in phylogenetically controlled analyses across species, but there was limited within-species plasticity in foliar elemental concentrations. Among Al accumulators, foliar Al concentration was positively associated with foliar Ca and Mg concentrations, and negatively associated with foliar phosphorus (P) concentrations. The Al-accumulation trait and relationships between foliar elemental and Al concentrations may contribute to species habitat partitioning and ecosystem-level differences in biogeochemical cycles. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Smith, Amanda L.; Benazzi, Stefano; Ledogar, Justin A.; Tamvada, Kelli; Smith, Leslie C. Pryor; Weber, Gerhard W.; Spencer, Mark A.; Dechow, Paul C.; Grosse, Ian R.; Ross, Callum F.; Richmond, Brian G.; Wright, Barth W.; Wang, Qian; Byron, Craig; Slice, Dennis E.; Strait, David S.
2014-01-01
In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences. This study uses geometric morphometric methods (GM) and finite element analysis (FEA) to examine the biomechanical implications of shape variation in chimpanzee crania, thereby providing a comparative context in which to interpret shape-related mechanical variation between hominin species. Six finite element models (FEMs) of chimpanzee crania were constructed from CT scans following shape-space Principal Component Analysis (PCA) of a matrix of 709 Procrustes coordinates (digitized onto 21 specimens) to identify the individuals at the extremes of the first three principal components. The FEMs were assigned the material properties of bone and were loaded and constrained to simulate maximal bites on the P3 and M2. Resulting strains indicate that intraspecific cranial variation in morphology is associated with quantitatively high levels of variation in strain magnitudes, but qualitatively little variation in the distribution of strain concentrations. Thus, interspecific comparisons should include considerations of the spatial patterning of strains rather than focus only their magnitude. PMID:25529239
Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn
2015-01-01
Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334
Geostationary platform study: Advanced ESGP/evolutionary SSF accommodation study
NASA Technical Reports Server (NTRS)
1990-01-01
The implications on the evolutionary space station of accommodating geosynchronous Earth Orbit (GEO) facilities including unmanned satellites and platforms, manned elements, and transportation and servicing vehicles/elements. The latest existing definitions of typical unmanned GEO facilities and transportation and servicing vehicles/elements are utilized. The physical design, functional design, and operations implications at the space station are determined. Various concepts of the space station from past studies are utilized ranging from the IOC Multifunction Space Station to a branched transportation node space station, and the implications of the accommodation the GEO infrastructure of each type are assessed. Where possible, parametric data are provided to show the implications of variations in sizes and quantities of elements, launch rates, crew sizes, etc. The use of advanced automation, robotics equipment, and an efficient mix of manned/automated support for accomplishing necessary activities at the space station are identified and assessed. The products of this study are configuration sketches, resource requirements, trade studies, and parametric data.
NASA Astrophysics Data System (ADS)
Burton-Johnson, Alex; Halpin, Jacqueline; Whittaker, Joanne; Watson, Sally
2017-04-01
Seismic and magnetic geophysical methods have both been employed to produce estimates of heat flux beneath the Antarctic ice sheet. However, both methods use a homogeneous upper crustal model despite the variable concentration of heat producing elements within its composite lithologies. Using geological and geochemical datasets from the Antarctic Peninsula we have developed a new methodology for incorporating upper crustal heat production in heat flux models and have shown the greater variability this introduces in to estimates of crustal heat flux, with implications for glaciological modelling.
Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn
2010-01-01
The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.
Eqani, Syed Ali Musstjab Akber Shah; Kanwal, Ayesha; Bhowmik, Avit Kumar; Sohail, Mohammad; Ullah, Rizwan; Ali, Syeda Maria; Alamdar, Ambreen; Ali, Nadeem; Fasola, Mauro; Shen, Heqing
2016-06-01
This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.
Permafrost stores a globally significant amount of mercury
NASA Astrophysics Data System (ADS)
Schaefer, K. M.; Schuster, P. F.; Antweiler, R.; Aiken, G.; DeWild, J.; Gryziec, J. D.; Gusmeroli, A.; Hugelius, G.; Jafarov, E.; Krabbenhoft, D. P.; Liu, L.; Herman-Mercer, N. M.; Mu, C.; Roth, D. A.; Schaefer, T.; Striegl, R. G.; Wickland, K.; Zhang, T.
2017-12-01
Changing climate in northern regions is causing permafrost to thaw with major implications for the cycling of mercury in arctic and subarctic ecosystems. Permafrost occurs in nearly one quarter of the Earth's Northern Hemisphere. We measured total soil mercury concentration in 588 samples from 13 soil permafrost cores from the interior and the North Slope of Alaska. The median concentration was 47.7±23.4 ng Hg g soil-1 and the median ratio of Hg to carbon was 1.56±0.86 µg Hg g C-1. We estimate Alaskan permafrost stores 56±32 kilotons of mercury and the entire northern hemisphere permafrost land mass stores 773±441 kilotons of mercury. This increases estimates of mercury stored in soils by 60%, making permafrost the second largest reservoir of mercury on the planet. Climate projections indicate extensive permafrost thawing, releasing mercury into the environment through a variety of mechanisms, for example, terrestrial transport via dissolved organic carbon (DOC), gaseous elemental mercury (GEM) evasion, forest fires, atmospheric mixing processes with ozone, and Springtime atmospheric Hg depletion after the polar sunrise. These findings have major implications for terrestrial and aquatic life, the world's fisheries, and ultimately human health.
NASA Astrophysics Data System (ADS)
Salvi, Stefano; Williams-Jones, Anthony E.
1996-06-01
The middle-Proterozoic peralkaline pluton at Strange Lake, Quebec/Labrador, comprises hypersolvus to subsolvus phases which are unusually enriched in Zr, Y, REEs, Nb, Be, and F, as exotic alkali and alkaline-earth silicate minerals. The highest concentrations of these elements are in subsolvus granite, which underwent intense low temperature (≤200°C) hydrothermal alteration involving hematization and the replacement of alkali high-field strength element (HFSE) minerals by calcic equivalents. This alteration is interpreted to have been caused by meteoric or formational waters. High temperature (≥ 350°C) alteration, attributed to orthomagmatic fluids, is evident in other parts of the subsolvus granite by the replacement of arfvedsonite by aegirine. Comparisons of the chemical compositions of fresh and altered rocks indicate that rocks subjected to high temperature alteration were chemically unaffected, except for depletion in Zr, Y, and HREEs. These elements were appreciably enriched in rocks that underwent low temperature alteration. Other elements affected by low temperature alteration include Ca and Mg, which were added and Na, which was removed. Available data on HFSE speciation in aqueous fluids and the chemistry of the pluton, suggest that the HFSEs were transported as fluoride complexes. If this was the case, the low temperature fluid could not have been responsible for HFSE transport, because the high concentration of Ca and low solubility of fluorite would have buffered F - activity to levels too low to permit significant complexation. We propose that HFSE mineralization and accompanying alteration were the result of mixing, in the apical parts of the pluton, of a F-rich, essentially Ca-free orthomagmatic fluid containing significant concentrations of HFSEs, with an externally derived meteoric-dominated fluid, enriched in Ca as a result of interaction with calc-silicate gneisses and gabbros. According to this interpretation, the latter fluid was responsible for the exchange of Ca for alkalis, mainly Na, in HFSE-rich minerals and, by sharply reducing F - activity in the mixed fluid through fluorite precipitation and/or increasing pH, destabilised the HFSE-fluoride complexes, causing deposition of HFSE-bearing minerals. An important implication of this study is that major HFSE enrichment may be restricted to those rare cases where F-rich, Ca-free, metal leaching environments and Ca-rich depositional environments are juxtaposed.
NASA Astrophysics Data System (ADS)
Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.
2017-12-01
High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.
Heavy metals in agricultural soils of the European Union with implications for food safety.
Tóth, G; Hermann, T; Da Silva, M R; Montanarella, L
2016-03-01
Soil plays a central role in food safety as it determines the possible composition of food and feed at the root of the food chain. However, the quality of soil resources as defined by their potential impact on human health by propagation of harmful elements through the food chain has been poorly studied in Europe due to the lack of data of adequate detail and reliability. The European Union's first harmonized topsoil sampling and coherent analytical procedure produced trace element measurements from approximately 22,000 locations. This unique collection of information enables a reliable overview of the concentration of heavy metals, also referred to as metal(loid)s including As, Cd, Cr, Cu, Hg, Pb, Zn, Sb. Co, and Ni. In this article we propose that in some cases (e.g. Hg and Cd) the high concentrations of soil heavy metal attributed to human activity can be detected at a regional level. While the immense majority of European agricultural land can be considered adequately safe for food production, an estimated 6.24% or 137,000km(2) needs local assessment and eventual remediation action. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Lundberg, Laura L.; Crozaz, Ghislaine; Mcsween, Harry Y., Jr.
1990-01-01
Analyses of mineral REE and selected minor and trace elements were carried out on individual grains of pyroxenes, whitlockite, maskelynite, and olivine of the Antarctic shergottite ALHA77005, and the results are used to interpret its parent magma and crystallization history. The results of mineral compositions and textural observations suggest that ALHA77005 is a cumulate with about half cumulus material (olivine + chromite) and half postcumulus phases. Most of the REEs in ALHA77005 reside in whitlockite whose modal concentration is about 1 percent. Mineral REE data support previous suggestions that plagioclase and whitlockite crystallized late, and that low-Ca pyroxene initiated crystallization before high-Ca pyroxene. The REE patterns for the intercumulus liquid, calculated from distribution coefficients for ALHA77005 pyroxene, plagioclase, and whitlockite, are in very good agreement and are similar to that of Shergotty.
Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana
Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia
2015-01-01
Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Ross, D. K.
2017-01-01
Cores of differentiated bodies (Earth, Mars, Mercury, Moon, Vesta) contain light elements such as S, C, Si, and O. We have previously measured small effects of Si on metal-silicate partitioning of Ni and Co [1,2], and larger effects for Mo, Ge, Sb, As [2]. The effect of Si on many siderophile elements could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Bi, Cd, Sn, Ag, and P between metal and silicate melt. The results will be applied to Earth, Mars, Mercury, Moon, and Vesta, for which we have excellent constraints on the mantle Bi, Cd, Sn, Ag, and P concentrations from mantle and/or basalt samples.
Plant uptake of elements in soil and pore water: field observations versus model assumptions.
Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo
2013-09-15
Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Feng; Zhao, Liqiang; Yan, Xiwu; Wang, Yuan
2013-04-02
The Manila clam Ruditapes philippinarum is one of the most important commercial bivalve species consumed in China. Evaluated metal burden in bivalve molluscs can pose potential risks to public health as a result of their frequent consumption. In this study, concentrations of 10 trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As) were determined in samples of the bivalve Ruditapes philippinarum, collected from nine mariculture zones along the coast of China between November and December in 2010, in order to evaluate the status of elemental metal pollution in these areas. Also, a public health risk assessment was untaken to assess the potential risks associated with the consumption of clams. The ranges of concentrations found for Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As in R. philippinarum were 12.1-38.0, 49.5-168.3, 42.0-68.0, 4.19-8.71, 4.76-14.32, 0.41-1.11, 0.94-4.74, 0.32-2.59, 0.03-0.23 and 0.46-11.95 mg·kg(-1) dry weight, respectively. Clear spatial variations were found for Cu, Zn, Cr, Pb, Hg and As, whereas Mn, Se, Ni, and Cd did not show significant spatial variation. Hotspots of trace element contamination in R. philippinarum can be found along the coast of China, from the north to the south, especially in the Bohai and Yellow Seas. Based on a 58.1 kg individual consuming 29 g of bivalve molluscs per day, the values of the estimated daily intake (EDI) of trace elements analyzed were significantly lower than the values of the accepted daily intake (ADI) established by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JFAO/WHO) and the guidelines of the reference does (RfD) established by the United States Environmental Protection Agency (USEPA). Additionally, the risk of trace elements to humans through R. philippinarum consumption was also assessed. The calculated hazard quotients (HQ) of all trace elements were less than 1. Consequently, there was no obvious public risk from the intake of these trace elements through R. philippinarum consumption.
Implications of human tissue studies for radiation protection.
Kathren, R L
1988-08-01
Through radiochemical analysis of voluntary tissue donations, the U.S. Transuranium and Uranium Registries (USTR) are gaining improved understanding of the distribution and biokinetics of actinide elements in occupationally exposed persons. Evaluation of the first two whole-body contributions to the USTR revealed an inverse proportionality between actinide concentration and bone ash. The analysis of a whole body with significant 241Am deposition indicated a significantly shorter half-time in liver and a greater fraction resident in the skeleton than predicted by existing models. Other studies with tissues obtained at autopsy suggest that existing biokinetic models for 238Pu and 241Am and the currently accepted models and limits on intake, which use these models as their basis, may be inaccurately implying that revisions of existing safety standards may be necessary. Other studies of the registries are designed to evaluate in-vivo estimates of actinide deposition with those derived from postmortem tissue analysis, to compare results of animal experiments with human data, and to review histopathologic slides for tissue changes that might be attributable to exposure to transuranic elements. The implications of these recent findings and other work of the registries is discussed from the standpoint of this potential effect on biokinetic modeling, internal dose assessment, and safety standards and operational health physics practices.
Implications of human tissue studies for radiation protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathren, R.L.
1988-08-01
Through radiochemical analysis of voluntary tissue donations, the U.S. Transuranium and Uranium Registries (USTR) are gaining improved understanding of the distribution and biokinetics of actinide elements in occupationally exposed persons. Evaluation of the first two whole-body contributions to the USTR revealed an inverse proportionality between actinide concentration and bone ash. The analysis of a whole body with significant /sup 241/Am deposition indicated a significantly shorter half-time in liver and a greater fraction resident in the skeleton than predicted by existing models. Other studies with tissues obtained at autopsy suggest that existing biokinetic models for /sup 238/Pu and /sup 241/Am andmore » the currently accepted models and limits on intake, which use these models as their basis, may be inaccurately implying that revisions of existing safety standards may be necessary. Other studies of the registries are designed to evaluate in-vivo estimates of actinide deposition with those derived from postmortem tissue analysis, to compare results of animal experiments with human data, and to review histopathologic slides for tissue changes that might be attributable to exposure to transuranic elements. The implications of these recent findings and other work of the registries is discussed from the standpoint of this potential effect on biokinetic modeling, internal dose assessment, and safety standards and operational health physics practices.« less
Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems
Singh, Shweta; Siddiqi, Nikhat J.
2014-01-01
Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144
NASA Astrophysics Data System (ADS)
Ulrich, R. N.; Mergelsberg, S. T.; Dove, P. M.
2016-12-01
Crustacean exoskeletons are a complex biocomposite of organic macromolecules and calcium carbonate minerals. The highly divergent functions and diverse morphologies of these biominerals across taxa raise the question of whether these differences are systematically reflected in exoskeleton composition and structure. Previous studies that investigated element concentrations in exoskeletons used spectroscopic methods. However, the findings were largely inconclusive because of analytical limitations and most studies concluded that magnesium, phosphorus, and other trace elements are mostly contained in the mineral fraction because concentrations in the organic framework could not be resolved. This experimental study was designed to quantify the distributions of Ca, P, Mg, and Sr in the mineral versus organic fractions of exoskeletons from the American Lobster (H. americanus), Dungeness Crab (M. magister), and Red Rock Crab (M. productus). Samples of exoskeleton from 10 body parts were collected in triplicate and dissolved using three procedures specific to extracting the 1) mineral, 2) protein, and 3) chitin phases separately. Chemical analyses of the resulting effluents using ICP-OES show the mineral fraction of the skeleton can contain significant amounts of mineralized Mg and P particularly for body parts associated with a significant difference in mineral structural ordering. The protein fraction contains more Mg and P than expected based on estimates from previous studies (Hild et al., 2008). While the element distributions vary greatly depending on the location, in body parts with thicker cuticle (e.g. claw) the mineral component appears to control overall composition. The findings have implications for paleoenvironmental reconstructions based upon exoskeleton composition. First, the chemical composition of an exoskeleton cannot be assumed constant across the different body parts of an entire organism. This is particularly true when the exoskeleton of the claw is compared to other body parts. We also show a significant fraction of minor and trace elements contained in an exoskeleton are associated with the organic component. Element concentrations obtained from bulk measurements of exoskeletons cannot be assigned to the mineral fraction without imposing a bias on biomineral composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.
Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cdmore » concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.« less
Major and trace element geochemistry and background concentrations for soils in Connecticut
Brown, Craig; Thomas, Margaret A.
2014-01-01
Soil samples were collected throughout Connecticut (CT) to determine the relationship of soil chemistry with the underlying geology and to better understand background concentrations of major and trace elements in soils. Soil samples were collected (1) from the upper 5 cm of surficial soil at 100 sites, (2) from the A horizon at 86 of these sites, and (3) from the deeper horizon, typically the C horizon, at 79 of these sites. The <2-millimeter fraction of each sample was analyzed for 44 elements by methods that yield the total or near-total elemental content. Sample sites were characterized by glacial setting, underlying bedrock geology, and soil type. These spatial data were used with element concentrations in the C-horizon to relate geologic factors to soil chemistry. Concentrations of elements in C-horizon soils varied with grain size in surficial glacial materials and with underlying rock types, as determined using nonparametric statistical procedures. Concentrations of most elements in C-horizon soils showed a positive correlation with silt and (or) clay content and were higher in surficial materials mapped as till, thick till, and (or) fines. Element concentrations in C-horizon soils showed significant differences among the underlying geologic provinces and were highest overlying the Grenville Belt and (or) the Grenville Shelf Sequence Provinces in western CT. These rocks consist mainly of carbonates and the relatively high element concentrations in overlying soils likely result from less influence of dilution by quartz compared to other provinces. Element concentrations in C-horizon soils in CT were compared with those in samples from other New England states overlying similar lithologic bedrock types. The upper range of As concentrations in C-horizon soils overlying the New Hampshire-Maine (NH-ME) Sequence in CT was 15 mg/kg, lower than the upper range of 24 mg/kg in C-horizon soils overlying the same sequence in ME. In CT, U concentration means were significantly higher in C-horizon soils overlying Avalonian granites, and U concentrations ranged as high as 14 mg/kg, compared to those in C-horizon soil samples collected from other New England states, which ranged as high as 6.1 mg/kg in a sample in NH overlying the NH-ME Sequence. Element concentrations in C-horizon soils in CT were compared with those in samples collected from shallower depths. Concentrations of most major elements were highest in C-horizon soil samples, including Al, Ca, Fe, K, Na, and Ti, but element concentrations showed a relatively similar pattern in A-horizon and surficial soil samples among the underlying geologic provinces. Trace element concentrations, including Ba, W, Ga, Ni, Cs, Rb, Sr, Th, Sc, and U, also were higher in C-horizon soil samples than in overlying soil samples. Concentrations of Mg, and several trace elements, including Mn, P, As, Nb, Sn, Be, Bi, Hg, Se, Sb, La, Co, Cr, Pb, V, Y, Cu, Pb, and Zn were highest in some A-horizon or surficial soils, and indicate possible contributions from anthropogenic sources. Because element concentrations in soils above the C horizon are more likely to be affected by anthropogenic factors, concentration ranges in C-horizon soils and their spatially varying geologic associations should be considered when estimating background concentrations of elements in CT soils.
Maret, Terry R.; Skinner, K.D.
2000-01-01
Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; Draper, David S.; McCubbin, Francis M.; Neal, Clive R.; Taylor, G. Jeffrey
2017-01-01
Highly volatile elements [condensation temperatures below about 700 K] and water are highly informative about lunar bulk composition (hence origin), differentiation and magmatic evolution, and the role of impacts in delivering volatiles to the Moon. Fractionation of volatile elements compared to moderately volatile and refractory elements are informative about high-temperature conditions that operated in the proto-lunar disk. Existing data show clearly that the Moon is depleted in volatile elements compared to the bulk silicate Earth. For example, K/Th is 400-700 in the Moon compared to 2800-3000 in Earth. A complicating factor is that the abundances of the highly volatile elements in major lunar lithologies vary by approximately two orders of magnitude. Perhaps most interesting, H2O is not correlated with the concentration of volatile elements, indicating a decoupling of highly volatile elements from the even more volatile H2O. We contend that this decoupling could be a significant tracer of processes operating during lunar formation, differentiation, and bombardment, and the combination of analyzing both volatile elements and water is likely to provide significant insight into lunar geochemical history. This variation and lack of correlation raises the question: what were the relative contributions of crystallization in the magma ocean, subsequent mantle overturn, production of secondary magmas, and addition of volatiles by large impacts in producing this apparently large range in volatile abundances? This current study will produce new partitioning data relevant to the role and distribution of the volatile and non-volatile, yet geochemically significant elements (Co, Ni, Zn, Se, Rb, Sr, Mo, Ag, Cd, In, Sb, Ce, Yb, Tl, Pb, Bi) during the thermal and magmatic evolution of the Moon.
Abnormal chemical element concentrations in lichens of Isle Royale National Park
Bennett, J.P.
1995-01-01
Lichens have been used for many years to monitor changes in deposited airborne chemical elements in many areas, but few studies have focused on areas suspected of experiencing slightly elevated pollution. Detection of subtle patterns of slightly elevated pollutants calls for developing several lines of evidence as opposed to single line studies used in heavily polluted areas. This study of two lichen species, Hypogymnia physodes and Evernia mesomorpha, in Isle Royale National Park, Michigan compares the concentrations and ranks of elements with the concentrations and ranks of the elements in the earth's crust, changes in element concentrations over a nine year period, and the geography of element concentrations in the park. S, Zn, Pb, Cd and Se were elevated in both species and higher in rank compared to the concentrations and ranks in the earth's crust. Toxic elements increased 123% in Hypogymnia and 62% in Evernia over 9 years, compared to increases of 45% and 59% for non-toxic elements in each species, respectively. Geographically, the lichens at certain localities with higher exposures experienced higher than average element concentrations. Finally, tissue concentrations of Mn, S and Se at some localities were above levels known to be either toxic or similar to those found in polluted areas. These four lines of evidence suggest that Isle Royale National Park is experiencing the onset of chronic air pollution stress from a number of sources.
Investigation of element distributions in Luna-16 regolith
NASA Astrophysics Data System (ADS)
Kuznetsov, R. A.; Lure, B. G.; Minevich, V. Ia.; Stiuf, V. I.; Pankratov, V. B.
1981-03-01
The concentrations of 32 elements in fractions of different grain sizes in the samples of the lunar regolith brought back by Luna-16 are determined by means of neutron activation analysis. Four groups of elements are distinguished on the basis of the variations of their concentration with grain size, and concentration variations of the various elements with sample depth are also noted. Chemical leaching of the samples combined with neutron activation also reveals differences in element concentrations in the water soluble, metallic, sulphide, phosphate, rare mineral and rock phases of the samples. In particular, the rare earth elements are observed to be depleted in the regolith with respect to chondritic values, and to be concentrated in the phase extracted with 14 M HNO3.
Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.
2012-01-01
Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).
Griffiths, Alexander M.; Lambelet, Myriam; Little, Susan H.; Stichel, Torben; Wilson, David J.
2016-01-01
The neodymium (Nd) isotopic composition of seawater has been used extensively to reconstruct ocean circulation on a variety of time scales. However, dissolved neodymium concentrations and isotopes do not always behave conservatively, and quantitative deconvolution of this non-conservative component can be used to detect trace metal inputs and isotopic exchange at ocean–sediment interfaces. In order to facilitate such comparisons for historical datasets, we here provide an extended global database for Nd isotopes and concentrations in the context of hydrography and nutrients. Since 2010, combined datasets for a large range of trace elements and isotopes are collected on international GEOTRACES section cruises, alongside classical nutrient and hydrography measurements. Here, we take a first step towards exploiting these datasets by comparing high-resolution Nd sections for the western and eastern North Atlantic in the context of hydrography, nutrients and aluminium (Al) concentrations. Evaluating those data in tracer–tracer space reveals that North Atlantic seawater Nd isotopes and concentrations generally follow the patterns of advection, as do Al concentrations. Deviations from water mass mixing are observed locally, associated with the addition or removal of trace metals in benthic nepheloid layers, exchange with ocean margins (i.e. boundary exchange) and/or exchange with particulate phases (i.e. reversible scavenging). We emphasize that the complexity of some of the new datasets cautions against a quantitative interpretation of individual palaeo Nd isotope records, and indicates the importance of spatial reconstructions for a more balanced approach to deciphering past ocean changes. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035258
Strontium and Trace Metals in the Mississippi River Mixing Zone
NASA Astrophysics Data System (ADS)
Xu, Y.; Marcantonio, F.
2001-12-01
Strontium is generally believed to be a conservative element, i.e., it is assumed that dissolved Sr moves directly from rivers through estuaries to the ocean. More recently, however, detailed sampling of rivers suggests a weak non-conservative behavior for Sr. Here, we present dissolved and suspended load Sr and trace metal data for samples retrieved along salinity transects in the estuarine mixing zone of the Mississippi River. Our cruises took place during times representing high, falling, and low Mississippi River discharge. Sr concentration and isotopic composition were analyzed for both dissolved particulate loads. Selected particle-reactive or redox-sensitive trace metals (Mn, Fe, U, V, Mo, Ti, and Pb) were analyzed simultaneously. In the dissolved load, Sr showed conservative behavior in both high- and low- discharge periods. Non-conservative behavior of Sr predominated during falling discharge in the summer. Significant positive correlations were found between Sr, Mo and Ti. U and V distributions were found to be essentially controlled by mixing of river water and seawater, but with significantly lower riverine concentrations during high-flow stage. Particulate element concentrations can be quite variable and heterogeneous. In this study, strong correlations were found between particulate Mn (and Fe) concentrations and particulate concentrations of Ti, U, V, and Pb. No such correlations with Mn (or Fe) were found for particulate Sr and Mo. There is a vast hypoxic zone along the coast of Louisiana in the Gulf of Mexico that exists during the summer months. Based on the Sr isotope systematics and the relationships between Sr and trace metals, we believe that this eutrophication may contribute to the non-conservative behaviors of Sr and other trace metals. We discuss the potential implications of this hypothesis on the Sr mass balance of present-day and past seawater.
Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States
NASA Astrophysics Data System (ADS)
Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.
2017-12-01
Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.
NASA Astrophysics Data System (ADS)
Schmidt, Alexander; Weyer, Stefan; John, Timm; Brey, Gerhard P.
2009-01-01
The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to contradict this mass balance. All reservoirs of the silicate Earth exhibit subchondritic Nb/Ta ratios, possibly as a result of Nb depletion. In this study a series of nineteen orogenic MORB-type eclogites from different localities was analyzed to determine their HFSE concentrations and to contribute to the question of whether subducted oceanic crust could form a hidden reservoir to account for the mass imbalance of Nb/Ta between BSE and the chondritic reservoir. Concentrations of HFSE were analyzed with isotope dilution (ID) techniques. Additionally, LA-ICPMS analyses of clinopyroxene, garnet and rutile have been performed. Rutile is by far the major host for Nb and Ta in all analyzed eclogites. However, many rutiles revealed zoning in Nb/Ta ratios, with cores being higher than rims. Accordingly, in situ analyses of rutiles have to be evaluated carefully and rutile cores do not necessarily reflect a bulk rock Nb and Ta composition, although over 90% of these elements reside in rutile. The HFSE concentration data in bulk rocks show that the orogenic eclogites have subchondritic Nb/Ta ratios and near chondritic Zr/Hf ratios. The investigated eclogites show neither enrichment of Nb compared to similarly incompatible elements (e.g. La), nor fractionation of Nb/Ta ratios relative to MOR-basalts, the likely precursor of these rocks. This indicates that during the conversion of the oceanic crust to eclogites in most cases, (1) HFSE and REE have similar mobility on average, possibly because both element groups remain in the down going slab, and (2) no significant fractionation of Nb/Ta occurs in subducted oceanic crust. With an average Nb/Ta ratio of 14.2 ± 1.4 (2s.e.), the investigated eclogites cannot balance the differences between BSE and chondrite. Additionally, as their average Nb/Ta is indistinguishable from the Nb/Ta of MORB, they are also an unlikely candidate to balance the potentially small differences in Nb/Ta between the continental crust and the mantle.
Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.
Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila
2015-05-01
Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.
Comparison of screening-level and Monte Carlo approaches for wildlife food web exposure modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastorok, R.; Butcher, M.; LaTier, A.
1995-12-31
The implications of using quantitative uncertainty analysis (e.g., Monte Carlo) and site-specific tissue residue data for wildlife exposure modeling were examined with data on trace elements at the Clark Fork River Superfund Site. Exposure of white-tailed deer, red fox, and American kestrel was evaluated using three approaches. First, a screening-level exposure model was based on conservative estimates of exposure parameters, including estimates of dietary residues derived from bioconcentration factors (BCFs) and soil chemistry. A second model without Monte Carlo was based on site-specific data for tissue residues of trace elements (As, Cd, Cu, Pb, Zn) in key dietary species andmore » plausible assumptions for habitat spatial segmentation and other exposure parameters. Dietary species sampled included dominant grasses (tufted hairgrass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Third, the Monte Carlo analysis was based on the site-specific residue data and assumed or estimated distributions for exposure parameters. Substantial uncertainties are associated with several exposure parameters, especially BCFS, such that exposure and risk may be greatly overestimated in screening-level approaches. The results of the three approaches are compared with respect to realism, practicality, and data gaps. Collection of site-specific data on trace elements concentrations in plants and animals eaten by the target wildlife receptors is a cost-effective way to obtain realistic estimates of exposure. Implications of the results for exposure and risk estimates are discussed relative to use of wildlife exposure modeling and evaluation of remedial actions at Superfund sites.« less
Chaffee, Maurice A.
1986-01-01
Map A shows the locations of all sites where rock samples were collected for this report and the distributions of anomalous concentrations for 12 elements in the 127 rock samples collected. In a similar manner, map B shows the collection sites for 59 samples of minus-60-mesh stream sediment, and 59 samples of nonmagnetic heavy-mineral concentrate derived from stream sediment and also shows the distributions of anomalous concentrations for 13 elements in the stream-sediment samples and 17 elements in the concentrate samples. Map C shows outlines of those drainage basins containing samples of stream sediment and concentrate with anomalous element concentrations and also shows weighted values for each outlined basin based on the number of elements with anomalous concentrations in each stream-sediment and concentrate sample and on the degree to which these concentrations are anomalous in each sample.
Contaminant distribution and accumulation in the surface sediments of Long Island Sound
Mecray, E.L.; Buchholtz ten Brink, Marilyn R.
2000-01-01
The distribution of contaminants in surface sediments has been measured and mapped as part of a U.S. Geological Survey study of the sediment quality and dynamics of Long Island Sound. Surface samples from 219 stations were analyzed for trace (Ag, Ba, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn and Zr) and major (Al, Fe, Mn, Ca, and Ti) elements, grain size, and Clostridium perfringens spores. Principal Components Analysis was used to identify metals that may covary as a function of common sources or geochemistry. The metallic elements generally have higher concentrations in fine-grained deposits, and their transport and depositional patterns mimic those of small particles. Fine-grained particles are remobilized and transported from areas of high bottom energy and deposited in less dynamic regions of the Sound. Metal concentrations in bottom sediments are high in the western part of the Sound and low in the bottom-scoured regions of the eastern Sound. The sediment chemistry was compared to model results (Signell et al., 1998) and maps of sedimentary environments (Knebel et al., 1999) to better understand the processes responsible for contaminant distribution across the Sound. Metal concentrations were normalized to grain-size and the resulting ratios are uniform in the depositional basins of the Sound and show residual signals in the eastern end as well as in some local areas. The preferential transport of fine-grained material from regions of high bottom stress is probably the dominant factor controlling the metal concentrations in different regions of Long Island Sound. This physical redistribution has implications for environmental management in the region.
Accumulation, Release, and Solubility of Arsenic, Molybdenum, and Vanadium in Wetland Sediments
Fox, P.M.; Doner, H.E.
2003-01-01
This study was undertaken to determine the fate of As, Mo, and V (trace elements, TEs) in the sediments of a constructed wetland in use for the remediation of potentially toxic trace element-contaminated agricultural drainwater. After three years of wetland operation, sediment cores were collected to determine changes in TE concentrations as a function of depth and the effects of varying water column depth. All TE concentrations were highest in the top 2 to 4 cm and decreased with depth. Molybdenum accumulated in the wetland sediments, up to levels of 32.5 ?? 4.6, 30.2 ?? 8.9, and 59.3 ?? 26.1 mg kg-1 in the top 1 cm of sediment at water depths of 15, 30, and 60 cm, respectively. In the top 2 cm of sediment, As accumulated (28.2 ?? 3.0 mg kg-1) only at the 60-cm water depth. Below 2 cm, as much as 10 mg kg-1 of As was lost from the sediment at all water depths. In most cases, V concentrations decreased in the sediment. In this wetland system, the lowest redox potentials were found near the sediment surface and increased with depth. Thus, in general As, Mo, and V concentrations in the sediment were highest under more reducing conditions and lowest under more oxidizing conditions. Most of the accumulated Mo (73%) became water soluble on drying of samples. This has important implications for systems undergoing changes in redox status; for instance, if these wetland sediments are dried, potentially large amounts of Mo may be solubilized.
A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth.
Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R; Vande Geest, Jonathan P
2016-01-01
The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues.
A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth
Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R.; Vande Geest, Jonathan P.
2016-01-01
The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues. PMID:27078495
Li, Peimiao; Gao, Xuelu
2014-11-01
One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sandler, A.; Brenner, I. B.; Halicz, L.
1988-02-01
Waters of the northern watershed of Lake Kineret, sampled during the period 1978 1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.
Ebel, J D; Leroux, S J; Robertson, M J; Dempson, J B
2016-11-01
Body-element content was measured for three life stages of wild Atlantic salmon Salmo salar from three distinct Newfoundland populations as individuals crossed between freshwater and marine ecosystems. Life stage explained most of the variation in observed body-element concentration whereas river of capture explained very little variation. Element composition of downstream migrating post-spawn adults (i.e. kelts) and juvenile smolts were similar and the composition of these two life stages strongly differed from adults migrating upstream to spawn. Low variation within life stages and across populations suggests that S. salar may exert rheostatic control of their body-element composition. Additionally, observed differences in trace element concentration between adults and other life stages were probably driven by the high carbon concentration in adults because abundant elements, such as carbon, can strongly influence the observed concentrations of less abundant elements. Thus, understanding variation among individuals in trace elements composition requires the measurement of more abundant elements. Changes in element concentration with ontogeny have important consequences the role of fishes in ecosystem nutrient cycling and should receive further attention. © 2016 The Fisheries Society of the British Isles.
Obstructive Sleep Apnea in Children: Implications for the Developing Central Nervous System
Gozal, David
2008-01-01
Recent increases in our awareness to the high prevalence of sleep disorders in general, and of sleep-disordered breathing among children, in particular, has led to concentrated efforts aiming to understand the pathophysiological mechanisms, clinical manifestations and potential consequences of such conditions. In this review, I will briefly elaborate on some of the pathogenetic elements leading to the occurrence of obstructive sleep apnea (OSA) in children, focus on the psycho-behavioral consequences of pediatric OSA, and review the evidence on the potential mechanisms underlying the close association between CNS morbidity and the episodic hypoxia and sleep fragmentation that characterize OSA. PMID:18555196
Tungsten residence in silicate rocks: implications for interpreting W isotopic compositions
NASA Astrophysics Data System (ADS)
Liu, J.; Pearson, G. D.; Chacko, T.; Luo, Y.
2015-12-01
High-precision measurements of W isotopic ratios have boosted recent exploration of early Earth processes from the small W isotope anomalies observable in some Hadean-Archean rocks. However, before applying W isotopic data to understand the geological processes responsible for the formation of these rocks, it is critical to evaluate whether the rocks' present W contents and isotopic compositions reflect that of the protolith or the effects of secondary W addition/mobilization. To investigate this issue, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases and alteration assemblages within a broad spectrum of rocks using LA-ICP-MS. Isotope dilution whole-rock W concentration measurements are used along with modes calculated from mineral and bulk rock major element data to examine the mass balance for W and other elements. In general, W is positively correlated with Nb, Ta, Ti, Sn, Mo and U, indicating similar geochemical behavior. Within granitic gneisses and amphibolites, biotite, hornblende, titanite and ilmenite control the W budget, while plagioclase and k-feldspar have little effect. For granulites, pyroxenites and eclogites, titanite, rutile, ilmenite, magnetite and sulfide, as well as grain boundary alteration assemblages dominate the W budget, while garnet, clinopyroxene, orthopyroxene and plagioclase have little or no W. Within mantle harzburgites and dunites, major phases such as olivine, clinopyroxene, orthopyroxene and spinel/chromite have very low concentrations of W, Nb, Ta, Sn and Mo. Instead, these elements are concentrated along grain boundaries and within sulfide/mss. Mass balance shows that for granitic gneisses and amphibolites, the rock-forming minerals can adequately account for the whole-rock W budget, whereas for ultramafic rocks such as pyroxenites, eclogites and harzburgites and dunites, significant W is hosted along grain boundaries, indicating that metamorphism and melt/fluid metasomatism can dramatically modify W concentrations in such rocks. Therefore, for rocks that experienced subsequent W enrichments, their W isotopic compositions may not necessarily represent their mantle sources, but could predominantly reflect later inputs, for example from a crustal reservoir that has long existed on Earth.
NASA Technical Reports Server (NTRS)
Kornacki, Alan S.; Fegley, Bruce, Jr.
1986-01-01
The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.
Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu
2006-01-01
An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.
Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.
Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-04-01
Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, C.L.; Adriano, D.C.
Differences in aboveground tissue concentrations of trace elements were assessed for sweetgum (Liquidambar styraciflua L.) and sycamore (Plantanus occidentalis L.) growing on two abandoned coal fly ash basins and a control soil. The wet basin (pH = 5.58) had originally received precipitator ash in an ash-water slurry, while the dry basin (pH = 8.26) had received both precipitator and bottom ash in dry form. In general, trees from the wet basin exhibited elevated trace element concentrations in comparison to the controls, while the dry basin trees exhibited reduced concentrations. On eof the most striking differenced in elemental concentrations among themore » ash basin and control trees was observed for Mn, with the control trees exhibiting concentrations orders of magnitude greater than the ash basin trees. Differences in foliar trace element concentrations among the sites can generally be explained by differences in substrate trace element concentrations and/or substrate pH. While trees from the wet ash basin generally had the highest trace element concentrations, these trees also attained the greatest height and diameter growth, suggesting that the elevated trace element concentrations in the wet basin substrate are not limiting the establishment of these two species. The greater height and diameter growth of the wet basin trees is presumably a result of the greater water-holding capacity of the substrate on this site. Differences in growth and tissue concentrations between sweetgum and sycamore highlight the importance of using more than one species when assessing metal toxicity or deficiency on a given substrate.« less
The influence of biosolids treatment files on the mobility of metal trace elements.
Maisonnave, V; Montrejaud-Vignoles, M; Bonnin, C; Revel, J C; Vignoles, C
2001-01-01
The production of sludge in France is estimated to be about 900,000 metric tons dry matter per year and 60% of this is recycled onto agricultural land. At present, the long term future of this procedure is open to question and among the different arguments being put forward are the levels of metallic trace elements and the risk of accumulation in soils. This study presents the behaviour of metallic trace elements in sludges from three different treatment procedures: thickened liquid sludges, dewatered sludges and dried sludges. These biosolids are mixed with a clay soil and then placed in a temperature and humidity controlled glasshouse. Several containers are seeded with ryegrass and compared with controls. For the three harvests, covering all the amendments studied (including non-amended soil), the differences are not really representative. Absorption by the ryegrass is low in all cases. For the cadmium, the chromium, the nickel and the lead, the roots are 5 to 10 times more concentrated than the leaves. The majority of these elements stay absorbed in the roots, regardless of the amendment used. The addition of the sludges has considerably reduced the uptake of water in ryegrass throughout its growth cycle. Quite apart from their fertilizing qualities, wastewater treatment plant sludges could offer important implications for irrigation.
Love, Milton S.; Saiki, Michael K.; May, Thomas W.; Yee, Julie L.
2013-01-01
elements. Forty-two elements were excluded from statistical comparisons as they (1) consisted of major cations that were unlikely to accumulate to potentially toxic concentrations; (2) were not detected by the analytical procedures; or (3) were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. However, the concentrations of copper, selenium, titanium, and vanadium in Pacific sanddab were unusual because small individuals exhibited either no differences between oil platforms and natural areas or significantly lower concentrations at oil platforms than at natural areas, whereas large individuals exhibited significantly higher concentrations at oil platforms than at natural areas.
Munn, M.D.; Cox, S.E.; Dean, C.J.
1995-01-01
Three species of sportfish--walleye, smallmouth bass, and rainbow trout--were collected from Franklin D. Roosevelt Lake and the upstream reach of the Columbia River within the state of Washington, to determine the concentrations of mercury and other selected trace elements in fish tissue. Concentrations of total mercury in walleye fillets ranged from 0.11 to 0.44 milligram per kilogram, with the higher concentrations in the larger fish. Fillets of smallmouth bass and rainbow trout also contained mercury, but generally at lower concentrations. Other selected trace elements were found in fillet samples, but the concentrations were generally low depending on species and the specific trace element. The trace elements cadmium, copper, lead, and zinc were found in liver tissue of these same species with zinc consistently present in the highest concentration.
Is lithium biologically an important or toxic element to living organisms? An overview.
Shahzad, Babar; Mughal, Mudassar Niaz; Tanveer, Mohsin; Gupta, Dorin; Abbas, Ghazanfar
2017-01-01
Industrialized world is exposing living organisms to different chemicals and metals such as lithium (Li). Due to their use in common household items to industrial applications, it is imperative to examine their bioavailability. Lithium belongs to the group IA and also has wider uses such as in batteries, air conditioners to atomic reactors. Lithium occurs naturally in soil and water, mostly at low concentrations, and enters the food chain. It is not one of the essential minerals though various studies indicate that low levels of Li have beneficial effects on living organisms, whereas high levels expose them to toxicity and related detrimental effects. This review suggests that Li could be biologically important to living organism depending upon its concentration/exposure. Little is known about its biological importance and molecular understanding of its accumulation and mode of action, which might have future implications for Li's long-term effects on living organisms.
Gough, L.P.; Severson, R.C.; Jackson, L.L.
1994-01-01
Baseline element concentrations are given for Spanish moss (Tillandsia usneoides), loblolly pine (Pinus taeda), and associated soils. Baseline and variability data for ash, Al, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Sr, Th, Ti, V, Y, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration among and within 0.5 km grid cells are given for each of the media. In general, only a few elements in Spanish moss showed statistically significant landscape patterns, whereas several elements in loblolly pine and in soils exhibited differences among sampling grids. Significant differences in the concentration of three elements in Spanish moss and eight elements (including total S) in loblolly pine were observed between two sampling dates (November and June); however, the absolute amount of these differences was small. Except for perhaps Ni and Pb concentrations in Spanish moss, element levels in all sample media exhibited ranges that indicate natural rather than anthropogenic additions of trace elements.
Discrimination of lichen genera and species using element concentrations
Bennett, James P.
2008-01-01
The importance of organic chemistry in the classification of lichens is well established, but inorganic chemistry has been largely overlooked. Six lichen species were studied over a period of 23 years that were growing in 11 protected areas of the northern Great Lakes ecoregion, which were not greatly influenced by anthropogenic particulates or gaseous air pollutants. The elemental data from these studies were aggregated in order to test the hypothesis that differences among species in tissue element concentrations were large enough to discriminate between taxa faithfully. Concentrations of 16 chemical elements that were found in tissue samples from Cladonia rangiferina, Evernia mesomorpha, Flavopunctelia flaventior, Hypogymnia physodes, Parmelia sulcata, and Punctelia rudecta were analyzed statistically using multivariate discriminant functions and CART analyses, as well as t-tests. Genera and species were clearly separated in element space, and elemental discriminant functions were able to classify 91-100 of the samples correctly into species. At the broadest level, a Zn concentration of 51 ppm in tissues of four of the lichen species effectively discriminated foliose from fruticose species. Similarly, a S concentration of 680 ppm discriminated C. rangiferina and E. mesomorpha, and a Ca concentration of 10 436 ppm discriminated H. physodes from P. sulcata. For the three parmelioid species, a Ca concentration >32 837 ppm discriminated Punctelia rudecta from the other two species, while a Zn concentration of 56 ppm discriminated Parmelia sulcata from F. flaventior. Foliose species also had higher concentrations than did fruticose species of all elements except Na. Elemental signatures for each of the six species were developed using standardized means. Twenty-four mechanisms explaining the differences among species are summarized. Finally, the relationships of four species based on element concentrations, using additive-trees clustering of a Euclidean-distance matrix, produced identical relationships as did analyses based on secondary product chemistry that used additive-trees clustering of a Jaccard similarity matrix. At least for these six species, element composition has taxonomic significance, and may be useful for discriminating other taxa.
Trace-element concentrations in streambed sediment across the conterminous United States
Rice, Karen C.
1999-01-01
Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined: arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.
Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.
2002-01-01
Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R. C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.-Y.; Lasue, J.; Ollila, A.; Rapin, W.; Maurice, S.; Nachon, M.; Le Deit, L.; Lanza, N.; Clegg, S.
2017-03-01
The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantifications of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. These observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.
Analysis with electron microscope of multielement samples using pure element standards
King, Wayne E.
1987-01-01
A method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons, simultaneously measuring the electron dosage and x-ray intensities for each sample of element to determine a "K.sub.AB " value to be used in the equation ##EQU1## where I is intensity and C is concentration for elements A and B, and exposing the multielement sample to determine the concentrations of the elements in the sample.
Identification of the sources of PM10 in a subway tunnel using positive matrix factorization.
Park, Duckshin; Lee, Taejeong; Hwang, Doyeon; Jung, Wonseok; Lee, Yongil; Cho, KiChul; Kim, Dongsool; Lees, Kiyoung
2014-12-01
The level of particulate matter of less than 10 μm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma-atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 μg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 μg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air. Implications: With installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 µg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel.
Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019
Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
Gomez-Gonzalez, Miguel A; Villalobos, Mario; Marco, Jose Francisco; Garcia-Guinea, Javier; Bolea, Eduardo; Laborda, Francisco; Garrido, Fernando
2018-04-01
Mine wastes from abandoned exploitations are sources of high concentrations of hazardous metal(oid)s. Although these contaminants can be attenuated by sorbing to secondary minerals, in this work we identified a mechanism for long-distance dispersion of arsenic and metals through their association to mobile colloids. We characterize the colloids and their sorbed contaminants using spectrometric and physicochemical fractionation techniques. Mechanical action through erosion may release and transport high concentrations of colloid-associated metal(oid)s towards nearby stream waters, promoting their dispersion from the contamination source. Poorly crystalline ferrihydrite acts as the principal As-sorbing mineral, but in this study we find that this nanomineral does not mobilize As independently, rather, it is transported as surface coatings bound to mineral particles, perhaps through electrostatic biding interactions due to opposing surface charges at acidic to circumneutral pH values. This association is very stable and effective in carrying along metal(oid)s in concentrations above regulatory levels. The unlimited source of toxic elements in mine residues causes ongoing, decades-long mobilization of toxic elements into stream waters. The ferrihydrite-clay colloidal composites and their high mobility limit the attenuating role that iron oxides alone show through adsorption of metal(oid)s and their immobilization in situ. This may have important implications for the potential bioavailability of these contaminants, as well as for the use of this water for human consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Germanium and Rare Earth Element accumulation in woody bioenergy crops
NASA Astrophysics Data System (ADS)
Hentschel, Werner
2016-04-01
Germanium and REEs are strategic elements that are used for high tech devices and engineered systems, however these elements are hardly concentrated into mineable ore deposits. Since these elements occur widely dispersed in the earth crust with concentrations of several mgṡkg-1 (Ge 1.6 mgṡkg-1, Nd 25 mgṡkg-1) a new possibility to gain these elements could be phytomining, a technique that uses plants to extract elements from soils via their roots. Since knowledge about accumulating plant species is quite limited we conducted research on the concentrations of strategic elements in wood and leaves of fast growing tree species (Salix spec., Populus spec., Betula pendula, Alnus glutinosa, Fraxinus excelsior, Acer pseudoplatanus). In total 35 study sites were selected in the mining affected area around Freiberg (Saxony, Germany), differing in their species composition and degree of contamination with toxic trace metals (Pb, As, Cd). On each site plant tissues (wood and leaves, respectively) of different species were sampled. In addition soil samples were taken from a soil depth of 0 - 30 cm and 30 - 60 cm. The aim of our work was to investigate correlations between the concentrations of the target elements in plant tissues and soil characteristics like pH, texture, nutrients and concentrations in six operationally defined soil fractions (mobile, acid soluble, oxidizable, amorphic oxides, crystalline oxides, residual or siliceous). Concentrations of elements in soil extracts and plant tissues were measured with ICP-MS. The element Nd was selected as representative for the group of REEs, since this element showed a high correlation with the concentrations of the other REE We found that the concentration of Nd in the leaves (0.31 mgṡkg-1Nd) were several times higher than in herbaceous species (0.05 mgṡkg-1 Nd). The concentration of Ge in leaves were ten times lower than that of Nd whereas in herbaceous species Nd and Ge were in equal magnitude. Within the tree species Populus spec. (0.77 mgṡkg-1) and Salix spec. (0.36 mgṡkg-1) showed by far the highest concentrations of Nd in leaves. Fraxinus excelsior (0.10 mgṡkg-1) and Betula pendula (0.06 mgṡkg-1) feature the lowest concentrations of Nd in leaves. We found significant correlations between the concentration of the target elements in the plant tissue and the concentration of these elements in the first steps of the sequential extraction of the soil samples. These studies have been carried out in the framework of the PhytoGerm project financed by the Federal Ministry of Education and Research, Germany.
Mastalerz, Maria; Souch, C.; Filippelli, G.M.; Dollar, N.L.; Perkins, S.M.
2001-01-01
Cores from the Great Marsh area of the Indiana Dunes National Lakeshore were examined in order to document variations in concentration, type and size of anthropogenic organic matter (AnOM-coal, coke, etc.) and discuss their relationship to the concentration of such trace elements as Pb, Zn, and Mn in the near-surface sediment section. The results indicate that the first appearance of AnOM corresponds to the onset of industrialization in the area. There is also a general relationship between the occurrence of AnOM and Zn, Pb, and Mn. Trace metals were likely transported from the industrial sites to the area of their deposition as sulfur-bearing coatings on small anthropogenic particles. After deposition, these sulfur-bearing compounds reacted with organic matter within the marsh. As a result of bacterial reduction, the pyrite was produced, as suggested by a close relationship between the pyrite and AnOM. Distance from the industrial complex upwind as well as local hydrologic conditions are among the major factors controlling distribution of AnOM and trace elements. At the same distance from the source, types and sizes of AnOM are influenced by the duration and frequency of flooding. ?? 2001 Elsevier Science B.V. All rights reserved.
Chasing Neoproterozoic Atmospheric Oxygen Ghosts
NASA Astrophysics Data System (ADS)
Bjerrum, C. J.; Canfield, D. E.; Dahl, T. W.
2016-12-01
Increasing atmospheric oxygen has been considered a necessary condition for the evolution of animal life for over half a century. While direct proxies for atmospheric oxygen are difficult to obtain, a number of indirect proxies have been giving us a ghost image of rising atmospheric oxygen at the close of the Precambrian. In this context, redox sensitive elements and isotopes represent the hallmark for a significant reduction in anoxic areas of the world ocean, implicating a significant rise of atmospheric oxygen during the Neoproterozoic. Here, we test to what degree redox sensitive elements in ancient marine sediments are proxies of atmospheric oxygen. We model the redox-chemical evolution of the shelf seas and ocean using a combination of 3D high resolution shelf sea models and a simpler global ocean biogeochemical model including climate weathering feedbacks, a free sea level and parameterized icecaps. We find that ecosystem evolution would have resulted in reorganization of the nutrient and redox balance of the shelf-ocean system causing a significant increase in oxygenated areas that permitted a boosting of trace metal concentrations in the remaining anoxic areas. While this reorganization takes place there is limited net change in the modelled atmospheric oxygen, warning us against interpreting changing trace metal concentrations and isotopes as reflecting a rise in atmospheric oxygen.
Trace elements in feed, manure, and manured soils.
Sheppard, S C; Sanipelli, B
2012-01-01
Modern animal feeds often include nutritional mineral supplements, especially elements such as Cu, P, Se, and Zn. Other sources of trace elements also occur in livestock systems, such as pharmaceutical use of As and Zn to control gut flora, Bi in dairy for mastitis control, and Cu as hoof dips. Additionally, potential exists for inadvertent inclusion of trace elements in feeds or manures. There is concern about long-term accumulation of trace elements in manured soil that may even exceed guideline "safe" concentrations. This project measured ∼60 elements in 124 manure samples from broiler, layer, turkey, swine grower, swine nursery, sow, dairy, and beef operations. The corresponding feeds were also analyzed. In general, concentrations in manure were two- to fivefold higher than those in feed: the manure/feed concentration ratios were relatively consistent for all the animal-essential elements and were numerically similar for many of the non-nutrient elements. To confirm the potential for accumulation in soil, total trace element concentrations were measured in the profiles of 10 manured and 10 adjacent unmanured soils. Concentrations of several elements were found to be elevated in the manured soils, with Zn (and P) the most common. One soil from a dairy standing yard had concentrations of B that exceeded soil health guideline concentrations. Given that the Cu/P and Zn/P ratios found in manure were greater than typically reported in harvested crop materials, these elements will accumulate in soil even if manure application rates are managed to prevent accumulation of P in soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Kitowski, Ignacy; Indykiewicz, Piotr; Wiącek, Dariusz; Jakubas, Dariusz
2017-04-01
Eggshells are good bioindicators of environmental contamination, and therefore, the concentrations of 17 trace elements in 87 eggshells of black-headed gulls, Chroicocephalus ridibundus, were determined in five breeding colonies in an area dominated by farmland in northern Poland. The intra-clutch variability in the eggshell concentrations of heavy metals and other elements was also investigated, and the concentrations of the elements showed the following pattern: Ca > Mg > Sr > Fe > Zn > Al > Cr > Se > Mn > Cu > Pb > As > Ni > Mo = V > Sc > Cd. The concentrations of Fe, Al, and Mn decreased with the order in which the eggs were laid, but Sr concentrations increased. In contrast, the concentration of Cu significantly increased with the laying date. The concentrations of all elements significantly differed among the studied colonies; the highest concentration of eight elements was found in the eggshells from the Kusowo colony, which may have resulted from the intensive use of fertilizers, manure, and slurry in the surrounding agricultural region. The concentrations of Mg, Sr, and Zn in the eggshells from Skoki Duże were higher than those of the other studied colonies, which may have occurred because the gulls were nesting in a functioning gravel pit; soil and the parent rock are natural reservoirs of these elements. The observed element levels indicate that the environment where the black-headed gull eggs were formed, i.e., primarily near the breeding colonies, remains in a relatively unpolluted state, which was reflected by the low levels of Cd, Ni, and Pb and the lack of measurable levels of Hg.
Tien, Chien-Jung
2004-04-01
Changes in elemental concentrations of diatoms and river water from the river Erh-Jen were determined using scanning electron microscopy energy-dispersive X-ray microanalysis and inductively coupled plasma mass spectrometry. Relatively large amounts of copper and lead found in both planktonic and epilithic diatoms implied these algae might play an important role in biogeochemical cycles and in the transfer of those elements to higher trophic levels in the aquatic environment. Changes in elemental concentrations within diatom cells were found to vary with other elements within cells and the same or different elements in water. Planktonic and epilithic cells showed different correlation patterns. For epilithic diatoms, negative correlations were found between concentrations of total phosphorus and phosphate in water and those of phosphorus within cells, and between concentrations of lead in water and in cells. Concentrations of chromium and mercury within planktonic cells and those of phosphorus, manganese and lead within epilithic ones were found to be easily influenced by other elements in river water, indicating appearance of the competitive manner on uptake of such elements by algal cells. Relatively high concentration factors (CFs) for cadmium, mercury and lead by diatoms in this study suggested they are good accumulators for these heavy metals. Significant negative corrections were found between the CFs of diatoms and the concentrations of elements in river water.
Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany.
Cyrys, J; Stölzel, M; Heinrich, J; Kreyling, W G; Menzel, N; Wittmaack, K; Tuch, T; Wichmann, H-Erich
2003-04-15
We present the first results of a source apportionment for the urban aerosol in Erfurt, Germany, for the period 1995-1998. The analysis is based on data of particle number concentrations (0.01-2.5 microm; mean 1.8 x 10(4) cm(-3), continuous), the concentration of the ambient gases SO(2), NO, NO(2) and CO (continuous), particle mass less than 2.5 microm (PM(2.5)) and less than 10 microm (PM(10)) (Harvard Impactor sampling, mean PM(2.5) 26.3 micro/m(3), mean PM(10) 38.2 microg/m(3)) and the size fractionated concentrations of 19 elements (impactor sampling 0.05-1.62 microm, PIXE analysis). We determined: (a) the correlations between (i) the 1- and 24-h average concentrations of the gaseous pollutants and the particle number as well as the particle mass concentration and (ii) between the 24-h elemental concentrations; (b) Crustal Enrichment Factors for the PIXE elements using Si as reference element; and (c) the diurnal pattern of the measured pollutants on weekdays and on weekends. The highly correlated PIXE elements Si, Al, Ti and Ca having low enrichment factors were identified as soil elements. The strong correlation of particle number concentrations with NO, which is considered to be typically emitted by traffic, and the striking similarity of their diurnal variation suggest that a sizable fraction of the particle number concentration is associated with emission from vehicles. Besides NO and particle number concentrations other pollutants such as NO(2), CO as well as the elements Zn and Cu were strongly correlated and appear to reflect motor vehicle traffic. Sulfur could be a tracer for coal combustion, however, it was not correlated with any of the quoted elements. Highly correlated elements V and Ni have similar enrichment factors and are considered as tracers for oil combustion.
Major and trace elements in igneous rocks from Apollo 15.
NASA Technical Reports Server (NTRS)
Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.
1973-01-01
The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.
The effect of freezing on reactions with environmental impact.
O'Concubhair, Ruairí; Sodeau, John R
2013-11-19
The knowledge that the freezing process can accelerate certain chemical reactions has been available since the 1960s, particularly in relation to the food industry. However, investigations into such effects on environmentally relevant reactions have only been carried out since the late 1980s. Some 20 years later, the field has matured and scientists have conducted research into various important processes such as the oxidation of nitrite ions to nitrates, sulfites to sulfates, and elemental mercury to inorganic mercury. Field observations mainly carried out in the polar regions have driven this work. For example, researchers have found that both ozone and mercury are removed from the troposphere completely (and almost instantaneously) at the time of Arctic polar sunrise. The monitoring activities suggested that both the phenomena were caused by involvement of bromine (and possibly iodine) chemistry. Scientists investigating the production of interhalide products (bromine and iodine producing interhalides) in frozen aqueous solutions have found that these reactions result in both rate accelerations and unexpected products. Furthermore, these scientists did this research with environmentally relevant concentrations of reagents, thereby suggesting that these reactions could occur in the polar regions. The conversion of elemental mercury to more oxidized forms has also shown that the acceleration of reactions can occur when environmentally relevant concentrations of Hg(0) and oxidants are frozen together in aqueous solutions. These observations, coupled with previous investigations into the effect of freezing on environmental reactions, lead us to conclude that this type of chemistry could potentially play a significant role in the chemical processing of a wide variety of inorganic components in polar regions. More recently, researchers have recognized the implications of these complementary field and laboratory findings toward human health and climate change. In this Account, we focus on the chemical and physical mechanisms that may promote novel chemistry and rate accelerations when water-ice is present. Future prospects will likely concentrate, once again, on the low-temperature chemistry of organic compounds, such as the humic acids, which are known cryospheric contaminants. Furthermore, data on the kinetics and thermodynamics of all types of reaction promoted by the freezing process would provide much assistance in determining their implications to environmental computer models.
Chemical element concentrations in four lichens on a transect entering Voyageurs National Park
Bennett, J.; Wetmore, C.M.
1997-01-01
A three factor transect study was conducted to test the hypothesis that chemical elements from air emissions in the vicinity of International Falls, Minnesota could not be detected in lichens along a 24 km transect reaching into Voyageurs National Park. It was hypothesized that element concentrations in lichens would decline exponentially downwind and would reach background values at a distance before the park boundary. Four species (Cladina rangiferina, Evernia mesomorpha, Hypogymnia physodes, and Parmelia sulcata) were sampled at ten sites for 3 years and 17 chemical elements were measured. The most notable result was a curvilinear geographic trend for many elements, which decreased from International Falls and then increased towards the park. This trend was significant for many anthropogenic elements, including S, Hg, Cd, and Cr, and for all four species. This type of distribution pattern has been observed in Hypogymnia physodes in other studies downwind of a steel mill and an oil refinery. Cladina, a ground-dwelling lichen, generally had lower tissue concentrations of the elements than the three epiphytic species. Tissue concentrations over the 3 years of sampling declined an average of 12%. Sufficient evidence exists to conclude that lichen tissue element concentrations in the vicinity of International Falls may be related to local air emissions, and that an exponential decline of element concentrations downwind of the sources does not apply to this situation.
Heavy metals in cereals and pulses: health implications in Bangladesh.
Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md
2014-11-05
This research was conducted to evaluate the concentration of seven common heavy metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) in cereals and pulses and associated health implications in Bangladesh. USEPA deterministic approaches were followed to assess the carcinogenic risk (CR) and noncarcinogenic risk which was measured by target hazard quotient (THQ) and hazard index (HI). Total THQ values for As and Pb were higher than 1, suggesting that people would experience significant health risks if they ingest As and Pb from cereals and pulses. However, the estimated HI value of 1.7 × 10(1) (>1) elucidates a potential noncarcinogenic risk to the consumers. Also, the estimation showed that the carcinogenic risk of As (5.8 × 10(-3)) and Pb (4.9 × 10(-5)) exceeded the USEPA accepted risk level of 1 × 10(-6). Thus, the carcinogenic risk of As and Pb with nutritional deficiency of essential elements for Bangladeshi people is a matter of concern.
Yang, Feng; Zhao, Liqiang; Yan, Xiwu; Wang, Yuan
2013-01-01
The Manila clam Ruditapes philippinarum is one of the most important commercial bivalve species consumed in China. Evaluated metal burden in bivalve molluscs can pose potential risks to public health as a result of their frequent consumption. In this study, concentrations of 10 trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As) were determined in samples of the bivalve Ruditapes philippinarum, collected from nine mariculture zones along the coast of China between November and December in 2010, in order to evaluate the status of elemental metal pollution in these areas. Also, a public health risk assessment was untaken to assess the potential risks associated with the consumption of clams. The ranges of concentrations found for Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As in R. philippinarum were 12.1–38.0, 49.5–168.3, 42.0–68.0, 4.19–8.71, 4.76–14.32, 0.41–1.11, 0.94–4.74, 0.32–2.59, 0.03–0.23 and 0.46–11.95 mg·kg−1 dry weight, respectively. Clear spatial variations were found for Cu, Zn, Cr, Pb, Hg and As, whereas Mn, Se, Ni, and Cd did not show significant spatial variation. Hotspots of trace element contamination in R. philippinarum can be found along the coast of China, from the north to the south, especially in the Bohai and Yellow Seas. Based on a 58.1 kg individual consuming 29 g of bivalve molluscs per day, the values of the estimated daily intake (EDI) of trace elements analyzed were significantly lower than the values of the accepted daily intake (ADI) established by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JFAO/WHO) and the guidelines of the reference does (RfD) established by the United States Environmental Protection Agency (USEPA). Additionally, the risk of trace elements to humans through R. philippinarum consumption was also assessed. The calculated hazard quotients (HQ) of all trace elements were less than 1. Consequently, there was no obvious public risk from the intake of these trace elements through R. philippinarum consumption. PMID:23549229
Thavamani, Palanisami; Megharaj, Mallavarapu; Krishnamurti, G S R; McFarland, Ross; Naidu, Ravi
2011-01-01
Contaminants in general do not occur as single chemicals but as mixtures at any contaminated site. Gasworks sites are the typical mixed contaminated sites. These sites are not only subjected to PAH contamination but also varying degrees of heavy metal contamination. Bioremediation in these sites is often hindered by the presence of heavy metals. The co-occurrence of PAHs with heavy metals has not been systematically investigated. Metals are reported to inhibit the general soil microbiological processes. The total concentration of soluble metal in the system includes both free metal ion and complexed forms. Within bioavailable fraction, the most toxic form is the free metal species, which was not addressed well so far in gas works site characterisation. This study underpins the science and importance of metal bioavailability and speciation based site characterisation in mixed contaminated sites. In this study a detailed elemental chemistry of the gas works site soils are discussed using different methods. The PAH contamination was contributed by both low and high molecular weight PAHs. The total PAHs concentration ranged from 335 to 8645 mg/kg. Among most toxic metals Pb was found in high concentration ranging from 88 to 671 mg/kg, Cd 8 to 112 mg/kg and Zn varied from 64 to 488 mg/kg. Thermodynamic chemical equilibrium model VMINTEQ (Ver 2.52) was used to calculate the free metal species in gas works site soils. The percentage free metal species showed a different trend compared to total metal concentrations, free Zn species ranged 18-86%, free Cd was 26-87% and Pb showed lowest free metal percentage (0-17%). The bioavailable metal species and its implications to bioremediation have also been discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nicolau, Lídia; Monteiro, Sílvia S; Pereira, Andreia T; Marçalo, Ana; Ferreira, Marisa; Torres, Jordi; Vingada, José; Eira, Catarina
2017-07-01
Pollution is among the most significant threats that endanger sea turtles worldwide. Waters off the Portuguese mainland are acknowledged as important feeding grounds for juvenile loggerheads. However, there is no data on trace element concentrations in marine turtles occurring in these waters. We present the first assessment of trace element concentrations in loggerhead turtles (Caretta caretta) occurring off the coast of mainland Portugal. Also, we compare our results with those from other areas and discuss parameters that may affect element concentrations. Trace element concentrations (As, Cd, Cu, Pb, Mn, Hg, Ni, Se, Zn) were determined in kidney, liver and muscle samples from 38 loggerheads stranded between 2011 and 2013. As was the only element with higher concentrations in muscle (14.78 μg g -1 ww) than in liver or kidney. Considering non-essential elements, Cd presented the highest concentrations in kidney (34.67 μg g -1 ) and liver (5.03 μg g -1 ). Only a weak positive link was found between renal Cd and turtle size. Inter-elemental correlations were observed in both liver and kidney tissues. Hepatic Hg values (0.30 ± 0.03 μg g -1 ) were higher than values reported in loggerheads in the Canary Islands but lower than in Mediterranean loggerheads. Cd concentrations in the present study were only exceeded by values found in turtles from the Pacific. Although many endogenous and exogenous parameters related with complex life cycle changes and wide geographic range may influence trace element accumulation, the concentrations of Cd are probably related to the importance of crustaceans in loggerhead diet in the Portuguese coast. Copyright © 2017 Elsevier Ltd. All rights reserved.
Formation of Hadean granites by melting of igneous crust
NASA Astrophysics Data System (ADS)
Burnham, A. D.; Berry, A. J.
2017-06-01
The oldest known samples of Earth, with ages of up to 4.4 Gyr, are detrital zircon grains in meta-sedimentary rocks of the Jack Hills in Australia. These zircons offer insights into the magmas from which they crystallized, and, by implication, igneous activity and tectonics in the first 500 million years of Earth’s history, the Hadean eon. However, the compositions of these magmas and the relative contributions of igneous and sedimentary components to their sources have not yet been resolved. Here we compare the trace element concentrations of the Jack Hills zircons to those of zircons from the locality where igneous (I-) and sedimentary (S-) type granites were first distinguished. We show that the Hadean zircons crystallized predominantly from I-type magmas formed by melting of a reduced, garnet-bearing igneous crust. Further, we propose that both the phosphorus content of zircon and the ratio of phosphorus to rare earth elements can be used to distinguish between detrital zircon grains from I- and S-type sources. These elemental discriminants provide a new geochemical tool to assess the relative contributions of primeval magmatism and melting of recycled sediments to the continents over geological time.
Concentration of stable elements in food products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montford, M.A.; Shank, K.E.; Hendricks, C.
1980-01-01
Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentrationmore » of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed.« less
Elemental analysis of urinary calculi by laser induced plasma spectroscopy.
Fang, Xiao; Ahmad, S Rafi; Mayo, Mike; Iqbal, Syed
2005-12-01
Laser induced plasma spectroscopy (LIPS) has been applied to analyse and identify elemental constituents of urinary calculi. Measurements on seven different urinary stone samples were conducted and the concentrations of some key elemental species were estimated. The elements detected with the present system were: Calcium, Magnesium, Sodium, Samarium, Potassium and Lead. Absolute concentrations of the species were derived from pre-calibration of the system for each element. Their concentrations were found to be widely different in different samples. It was observed that the samples containing a significant amount of lead have large proportion of calcium. It has been established that LIPS would allow real time clinic measurements of elemental contents and the concentrations in the biomaterials without sample preparation. The technique has the potential for routine clinic applications in urological disorder diagnosis.
Lehoux, Alizée P; Lockwood, Cindy L; Mayes, William M; Stewart, Douglas I; Mortimer, Robert J G; Gruiz, Katalin; Burke, Ian T
2013-10-01
Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m(3) of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5-8.5. This effect was attributed to the reaction of Ca(2+) supplied by the gypsum with OH(-) and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.
NASA Astrophysics Data System (ADS)
Antony Chen, L.-W.; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Mueller, Peter K.; Quinn, John; Butler, William A.
As part of Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, measurements of 24-hr average elemental carbon (EC) aerosol concentration were made at Fort Meade, Maryland, USA, a suburban site within the Baltimore-Washington corridor during July 1999, October 1999, January 2000, April 2000 and July 2000. Carbon monoxide (CO) and sulfur dioxide (SO2) were also measured nearly continuously over the period. Tight correlation between EC and CO in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope varies in different seasons and generally increases with ambient temperature. The temperature dependence of EC/CO ratios suggests that EC source strength peaks in summer. By using the well established emission inventory for CO, and EC/CO ratio found in this study, EC emission over North America is estimated at 0.31±0.12 Tg yr-1, on the low end but in reasonable agreement with prior inventories based on emission factors and fuel consumption.
NASA Astrophysics Data System (ADS)
Chen, L.-W. Antony; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Mueller, Peter K.; Quinn, John; Butler, William A.
2001-05-01
As part of Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, measurements of 24-hr average elemental carbon (EC) aerosol concentration were made at Fort Meade, Maryland, USA, a suburban site within the Baltimore-Washington corridor during July 1999, October 1999, January 2000, April 2000 and July 2000. Carbon monoxide (CO) and sulfur dioxide (SO2) were also measured nearly continuously over the period. Tight correlation between EC and CO in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope varies in different seasons and generally increases with ambient temperature. The temperature dependence of EC/CO ratios suggests that EC source strength peaks in summer. By using the well established emission inventory for CO, and EC/CO ratio found in this study, EC emission over North America is estimated at 0.31+/-0.12Tgyr-1, on the low end but in reasonable agreement with prior inventories based on emission factors and fuel consumption.
Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.
2005-01-01
Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.
PIXE analysis of some Nigerian anti-diabetic medicinal plants (II)
NASA Astrophysics Data System (ADS)
Olabanji, S. O.; Adebajo, A. C.; Omobuwajo, O. R.; Ceccato, D.; Buoso, M. C.; Moschini, G.
2014-01-01
Diabetes mellitus, a metabolic disease characterized by high blood glucose levels (hyperglycemia) due to defects in insulin secretion, or action, or both, is a debilitating disease leading to other complications and death of many people in the world. Some of the medicinal plants implicated in the herbal recipes for the treatment of diabetes in Nigeria have been reported. Additional medicinal plants used for the treatment of diabetes in Nigeria are presented in this work. These medicinal plants are becoming increasingly important and relevant as herbal drugs due to their use as antioxidants, nutraceuticals, food additives and supplements in combating diabetes. Elemental compositions of these anti-diabetic medicinal plants were determined using PIXE technique. The 1.8 MV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (LNL) Legnaro (Padova) Italy was employed for the work. The results show the detection of twenty-one elements which include Mg, P, Ca, K, Mn, Cu, Zn, S, Cr, Co, Ni and V that are implicated in the regulation of insulin and the control of the blood-sugar levels in the human body. The entire plant of Boerhavia diffusa, Securidaca longipedunculata stem, leaves of Peperomia pellucida, Macrosphyra longistyla, Olax subscorpioidea, Phyllanthus muerillanus, Jatropha gossypifolia, Cassia occidentalis, Phyllanthus amarus, and leaf and stem of Murraya koenigii, which have high concentrations of these elements could be recommended as vegetables, nutraceuticals, food additives, supplements and drugs in the control and management of diabetes, if toxicity profiles indicate that they are safe. However, significantly high contents of Al and Si in the entire plant of Bryophyllum pinnatum, and As, Cr, and Cu in Ocimum gratissimum leaf suggest that these plants should be avoided by diabetic patients to prevent complications.
NASA Astrophysics Data System (ADS)
Lopez-Veneroni, D. G.; Vega, E.
2013-05-01
The stable carbon isotope composition of atmospheric particles (PM2.5) was measured at La Merced (MER), a commercial site in the eastern sector, and at Xalostoc (XAL) an industrial site in the NE sector of Mexico City, during three sampling periods in autumn 2003, and spring and autumn 2004. At each site and sampling campaign particle samples were collected daily with minivol samplers during two week periods. Ancillary data included organic and elemental carbon, trace elements and ionic species. This data base was complement with air quality data from the RAMA (Automatic Atmospheric Monitoring Network). In general, particle concentrations, ionic species and some air quality species showed higher concentrations in autumn and lowest values in spring. Moreover, the concentrations of these chemical species were highest at XAL compared to MER. The stable carbon isotope composition of PM2.5 during autumn 2003 and spring 2004 had and average value of -26.04 (± 1.54) ‰ vs. PDB. Differences in the isotopic composition between the two sites were non significant. The average δ13C during these seasons were 1 ‰ lighter relative to data collected previously at these sites during 2000 and 2001, and is consistent with a predominant source of hydrocarbon combustion. In autumn 2004, however, average δ13C at XAL and MER increased to -22.8 (± 0.9) and -20.6 (± 3.1) ‰, respectively. Organic carbon concentrations during this period increased concomitantly at these sites. The shift in the isotopic composition in ambient particles suggests a predominance of soil-derived carbon during this period. The possible causes and implications of this are discussed.
Discrimination of lichen genera and species using element concentrations
Bennett, J.P.
2008-01-01
The importance of organic chemistry in the classification of lichens is well established, but inorganic chemistry has been largely overlooked. Six lichen species were studied over a period of 23 years that were growing in 11 protected areas of the northern Great Lakes ecoregion, which were not greatly influenced by anthropogenic particulates or gaseous air pollutants. The elemental data from these studies were aggregated in order to test the hypothesis that differences among species in tissue element concentrations were large enough to discriminate between taxa faithfully. Concentrations of 16 chemical elements that were found in tissue samples from Cladonia rangiferina, Evernia mesomorpha, Flavopunctelia flaventior, Hypogymnia physodes, Parmelia sulcata, and Punctelia rudecta were analyzed statistically using multivariate discriminant functions and CART analyses, as well as t-tests. Genera and species were clearly separated in element space, and elemental discriminant functions were able to classify 91-100 of the samples correctly into species. At the broadest level, a Zn concentration of 51 ppm in tissues of four of the lichen species effectively discriminated foliose from fruticose species. Similarly, a S concentration of 680 ppm discriminated C. rangiferina and E. mesomorpha, and a Ca concentration of 10 436 ppm discriminated H. physodes from P. sulcata. For the three parmelioid species, a Ca concentration >32 837 ppm discriminated Punctelia rudecta from the other two species, while a Zn concentration of 56 ppm discriminated Parmelia sulcata from F. flaventior. Foliose species also had higher concentrations than did fruticose species of all elements except Na. Elemental signatures for each of the six species were developed using standardized means. Twenty-four mechanisms explaining the differences among species are summarized. Finally, the relationships of four species based on element concentrations, using additive-trees clustering of a Euclidean-distance matrix, produced identical relationships as did analyses based on secondary product chemistry that used additive-trees clustering of a Jaccard similarity matrix. At least for these six species, element composition has taxonomic significance, and may be useful for discriminating other taxa. ?? 2008 British Lichen Society.
Bullen, T.D.; Bailey, S.W.
2005-01-01
Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible alternative explanations of aspects of the observed trends, the chemical buffering capacity of the forest floor-biomass pool limits their effectiveness as causal mechanisms. ?? Springer 2005.
Lyons, P.C.; Palmer, C.A.; Bostick, N.H.; Fletcher, J.D.; Dulong, F.T.; Brown, F.W.; Brown, Z.A.; Krasnow, M.R.; Romankiw, L.A.
1989-01-01
A rank series consisting of twelve vitrinite concentrates and companion whole-coal samples from mined coal beds in the eastern United States, England, and Australia were analyzed for C, H, N, O, ash, and 47 trace and minor elements by standard elemental, instrumental neutron activation analysis (INAA), and direct-current-arc spectrographic (DCAS) techniques. The reflectance of vitrinite, atomic H:C and O:C, and ash-free carbon data were used to determine ranks that range from high-volatile C bituminous coal to meta-anthracite. A van Krevelen (atomic H:C vs. O:C) diagram of the vitrinite concentrates shows a smooth curve having its lowest point at H:C = 0.18 and O:C = 0.01. This improves the van Krevelen diagram by the addition of our vitrinite concentrate from meta-anthracite from the Narragansett basin of New England. Boron content (400-450 ppm) in two Illinois basin vitrinite concentrates was about an order of magnitude higher than B contents in other concentrates analyzed. We attribute this to marine origin or hydrothermal activity. The alkaline-earth elements Ca, Mg and Ba (DCAS) have higher concentrations in our vitrinite concentrates from bituminous coals of the Appalachian basin, than they do in vitrinite concentrates from the marine-roofed bituminous coals of the Illinois basin; therefore, a nonmarine origin for these alkaline-earth elements is postulated for the Appalachian basin coals. An ion-exchange mechanism due to high concentrations of these elements as ions in diagenetic water, but probably not recent ground water, may be responsible for the relatively high values of these elements in Appalachian concentrates. Higher concentrations of Ni and Cr in one of the English vitrinite concentrates and of Zr in the Australian concentrate probably indicate organic association and detrital influence, respectively. ?? 1989.
Some General Laws of Chemical Elements Composition Dynamics in the Hydrosphere
NASA Astrophysics Data System (ADS)
Korzh, V.
2012-12-01
The biophysical oceanic composition is a result of substance migration and transformation on river-sea and ocean- atmosphere boundaries. Chemical composition of oceanic water is a fundamental multi-dimensional constant for our planet. Detailed studies revealed three types of chemical element distribution in the ocean: 1) Conservative: concentration normalized to salinity is constant in space and time; 2) Nutrient-type: element concentration in the surface waters decreases due to the biosphere consumption; and 3) Litho-generative: complex character of distribution of elements, which enter the ocean with the river runoff and interred almost entirely in sediments (Fig. 1). The correlation between the chemical compositions of the river and oceanic water is high (r = 0.94). We conclude that biogeochemical features of each element are determined by the relationship between its average concentration in the ocean and the intensity of its migration through hydrosphere boundary zones. In Fig.1 we show intensities of global migration and average concentrations in the ocean in the coordinates lgC - lg τ, where C is an average element concentration and τ is its residual time in the ocean. Fig. 1 shows a relationship between three main geochemical parameters of the dissolved forms of chemical elements in the hydrosphere: 1) average concentration in the ocean, 2) average concentration in the river runoff and 3) the type of distribution in oceanic water. Using knowledge of two of these parameters, it allows gaining theoretical knowledge of the third. The System covers all chemical elements for the entire range of observed concentrations. It even allows to predict the values of the annual river transport of dissolved Be, C, N, Ge, Tl, Re, to refine such estimates for P, V, Zn, Br, I, and to determine the character of distribution in the ocean for Au and U. Furthermore, the System allowed to estimate natural (unaffected by anthropogenic influence) mean concentrations of elements in the river runoff and use them as ecological reference data. Finally, due to the long response time of the ocean, the mean concentrations of elements and patterns of their distribution in the ocean can be used to determine pre-technogenic concentrations of elements in the river runoff. An example of such studies for the Northern Eurasia Arctic Rivers will be presented at the conference. References Korzh 1974: J. de Recher. Atmos, 8, 653-660. Korzh 2008: J. Ecol., 15, 13-21. Korzh 2012: Water: Chem. & Ecol., No. 1, 56-62; Fig.1. The System of chemical elements distribution in the hydrosphere. Types of distribution in the ocean: 1) conservative; 2) nutrient-type; 3) litho-generative.
Positive anomalous concentrations of Pb in some gabbroic rocks of Afikpo basin southeastern Nigeria.
Onwualu-John, J N
2016-08-01
Gabbroic rocks have intruded the sedimentary sequence at Ameta in Afikpo basin southeastern Nigeria. Petrographic and geochemical features of the rocks were studied in order to evaluate their genetic and geotectonic history. The petrographic results show that the rocks contain plagioclase, olivine, pyroxene, biotite, iron oxide, and traces of quartz in three samples. Major element characteristics show that the rocks are subalkaline. In addition, the rocks have geochemical characteristics similar to basaltic andesites. The trace elements results show inconsistent concentrations of high field strength elements (Zr, Nb, Th, Ta), moderate enrichment of large-ion lithophile elements (Rb, Sr, Ba) and low concentrations of Ni and Cr. Rare earth element results show that the rocks are characterized by enrichment of light rare earth elements, middle rare earth elements enrichment, and depletion of heavy rare earth elements with slight positive europium anomalies. Zinc concentrations are within the normal range in basaltic rocks. There are extremely high concentrations of Pb in three of the rock samples. The high Pb concentrations in some of these rocks could be as a result of last episodes of magmatic crystallization. The rocks intruded the Asu River Group; organic components in the sedimentary sequence probably contain Pb which has been assimilated into the magma at the evolutionary stage of the magma. Weathering of some rocks that contain galena could lead to an increase in the concentration of lead in the gabbroic rocks, especially when the migration and crystallization of magma take place in an aqueous environment. Nevertheless, high concentration of lead is hazardous to health and environment.
Evaluation of trace element status of organic dairy cattle.
Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M
2018-06-01
The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.
Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude.
Pereira, Victor; Carbajales, Paloma; López-Alonso, Marta; Miranda, Marta
2018-02-24
Animal feed has traditionally been supplemented with trace elements at dietary concentrations well above physiological needs. However, environmental concerns have led to calls for better adjustment of mineral supplementation to actual physiological needs and, in this context, consideration of breed-related differences in trace element requirements. The aim of this study was to analyze trace element concentrations in the main breeds used for intensive beef production in northern Spain (Holstein-Friesian [HF], Galician Blonde [GB], and GB × HF cross). Samples of blood, internal organs, and muscle were obtained at slaughter from 10 HF, GB, and GB × HF cross calves in the same feedlot. Overall, trace element concentrations in serum and internal organs were within adequate ranges and did not differ between those of breeds, suggesting that trace mineral supplementation was adequate in all groups. The only exception to this was copper, and hepatic copper concentrations were above adequate levels in all calves. This was particularly evident in the HF calves, and the maximum recommended level for human consumption was exceeded in 90% of these animals. Copper, iron, manganese, selenium, and zinc concentrations in muscle were significantly higher in the HF than those in the GB calves, with intermediate values for the crosses. These breed-related differences in trace element concentrations in the muscle may be related to lower muscle mass and/or higher hepatic activity in the HF (dairy) calves than in GB (beef) calves. As meat is an essential source of highly available trace elements in human diets, breed-related differences in trace element concentrations in meat deserve further investigation.
Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.
2009-01-01
Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.
Overall elemental dry deposition velocities measured around Lake Michigan
NASA Astrophysics Data System (ADS)
Yi, Seung-Muk; Shahin, Usama; Sivadechathep, Jakkris; Sofuoglu, Sait C.; Holsen, Thomas M.
Overall dry deposition velocities of several elements were determined by dividing measured fluxes by measured airborne concentrations in different particle size ranges. The dry deposition measurements were made with a smooth surrogate surface on an automated dry deposition sampler (Eagle II) and the ambient particle concentrations were measured with a dichotomous sampler. These long-term measurements were made in Chicago, IL, South Haven, MI, and Sleeping Bear Dunes, MI, from December 1993 through October 1995 as part of the Lake Michigan Mass Balance Study. In general, the dry deposition fluxes of elements were highly correlated with coarse particle concentrations, slightly less well correlated with total particle concentrations, and least well correlated with fine particle concentrations. The calculated overall dry deposition velocities obtained using coarse particle concentrations varied from approximately 12 cm s -1 for Mg in Chicago to 0.2 cm s -1 for some primarily anthropogenic metals at the more remote sites. The velocities calculated using total particle concentrations were slightly lower. The crustal elements (Mg, Al, and Mn) had higher deposition velocities than anthropogenic elements (V, Cr, Cu, Zn, Mo, Ba and Pb). For crustal elements, overall dry deposition velocities were higher in Chicago than at the other sites.
Environmental implications of high metal content in soils of a titanium mining zone in Kenya.
Maina, David M; Ndirangu, Douglas M; Mangala, Michael M; Boman, Johan; Shepherd, Keith; Gatari, Michael J
2016-11-01
Mining activities contribute to an increase of specific metal contaminants in soils. This may adversely affect plant life and consequently impact on animal and human health. The objective of this study was to obtain the background metal concentrations in soils around the titanium mining in Kwale County for monitoring its environmental impacts. Forty samples were obtained with half from topsoils and the other from subsoils. X-ray fluorescence spectrometry was used to determine the metal content of the soil samples. High concentrations of Ti, Mn, Fe, and Zr were observed where Ti concentrations ranged from 0.47 to 2.8 %; Mn 0.02 to 3.1 %; Fe 0.89 to 3.1 %; and Zr 0.05 to 0.85 %. Using ratios of elemental concentrations in topsoil to subsoil method and enrichment factors concept, the metals were observed to be of geogenic origin with no anthropogenic input. The high concentrations of Mn and Fe may increase their concentration levels in the surrounding agricultural lands through deposition, thereby causing contamination on the land and the cultivated food crops. The latter can cause adverse human health effects. In addition, titanium mining will produce tailings containing low-level titanium concentrations, which will require proper disposal to avoid increasing titanium concentrations in the soils of the region since it has been observed to be phytotoxic to plants at high concentrations. The results of this study will serve as reference while monitoring the environmental impact by the titanium mining activities.
Top-down predictions in the cognitive brain
Kveraga, Kestutis; Ghuman, Avniel S.; Bar, Moshe
2007-01-01
The human brain is not a passive organ simply waiting to be activated by external stimuli. Instead, it is proposed tat the brain continuously employs memory of past experiences to interpret sensory information and predict the immediately relevant future. This review concentrates on visual recognition as the model system for developing and testing ideas about the role and mechanisms of top-down predictions in the brain. We cover relevant behavioral, computational and neural aspects. These ideas are then extended to other domains. The basic elements of this proposal include analogical mapping, associative representations and the generation of predictions. Connections to a host of cognitive processes will be made and implications to several mental disorders will be proposed. PMID:17923222
Leaching of radionuclides from decaying blueberry leaves: Relative rate independent of concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppard, S.C.; Evenden, W.G.
Leaching of radionuclides from decaying vegetation has not been extensively investigated, especially for radionuclides other than {sup 137}Cs. The authors obtained leaves of blueberry (Vaccinium angustifolium {times} V. corymbosum) that contained over 25-fold ranges in Se, Cs, and I concentrations, as well as a small quantity of leaves containing detectable U. All were contaminated by way of root uptake. Leaching took place for a period of 1 yr in the laboratory, using leach water from forest litter. Monthly, measurements were made of the radionuclide contents and decaying leaf dry weights. The data conformed to an exponential decay model with twomore » first-order components. In no case did the relative loss rates vary systematically with the initial tissue radionuclide concentrations. Loss rates decreased in the order Cs > I > U > dry wt. > Se. Because of the low leaching rate of Se relative to the loss of dry weight, decaying litter may actually accumulate elements such as Se. Accumulation of radionuclides in litter could have important implications for lateral transport, recycling, and direct incorporation into edible mushrooms.« less
The System of Chemical Elements Distribution in the Hydrosphere
NASA Astrophysics Data System (ADS)
Korzh, Vyacheslav D.
2013-04-01
The chemical composition of the hydrosphere is a result of substance migration and transformation on lithosphere-river, river-sea, and ocean-atmosphere boundaries. The chemical elements composition of oceanic water is a fundamental multi-dimensional constant for our planet. Detailed studies revealed three types of chemical element distribution in the ocean: 1) Conservative: concentration normalized to salinity is the constant in space and time; 2) Nutrient-type: element concentration in the surface waters decreases due to the biosphere consumption; and 3) Litho-generative: complex character of distribution of elements, which enter the ocean with the river runoff and interred almost entirely in sediments. The correlation between the chemical elements compositions of the river and oceanic water is high (r = 0.94). We conclude that biogeochemical features of each chemical element are determined by the relationship between its average concentration in the ocean and the intensity of its migration through hydrosphere boundary zones. In our presentation, we shall show intensities of global migration and average concentrations in the ocean in the co ordinates lgC - lg [tau], where C is an average element concentration and [tau] is its residence time in the ocean. We have derived a relationship between three main geochemical parameters of the dissolved forms of chemical elements in the hydrosphere: 1) average concentration in the ocean, 2) average concentration in the river runoff and 3) the type of distribution in oceanic water. Using knowledge of two of these parameters, it allows gaining theoretical knowledge of the third. The System covers all chemical elements for the entire range of observed concentrations. It even allows to predict the values of the annual river transport of dissolved Be, C, N, Ge, Tl, Re, to refine such estimates for P, V, Zn, Br, I, and to determine the character of distribution in the ocean for Au and U. Furthermore, the System allowed estimating natural (unaffected by anthropogenic influence) mean concentrations of elements in the river runoff and using them as ecological reference data. Finally, due to the long response time of the ocean, the mean concentrations of elements and patterns of their distribution in the ocean can be used to determine pre-techno-generative concentrations of elements in the river runoff. In our presentation, we shall show several examples of implementation of the System for studying the sediments' transport by the rivers of the Arctic slope of Northern Eurasia. References 1. Korzh V.D. 1974: Some general laws governing the turnover of substance within the ocean-atmosphere-continent-ocean cycle. Journal de Recherches Atmospheriques, 8, 653-660. 2. Korzh V.D. 2008: The general laws in the formation of the element composition of the Hydrosphere and Biosphere. J. Ecologica, 15, 13-21. 3. Korzh V.D. 2012: Determination of general laws of the chemical element composition in Hydrosphere. Water: Chemistry & Ecology, Journal of Water Science and its Practical Application. No. 1, 56-62.
Beam-Forming Concentrating Solar Thermal Array Power Systems
NASA Technical Reports Server (NTRS)
Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)
2016-01-01
The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.
Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L
2015-06-01
We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.
Jacob, Donna L.; Hanson, Mark A.; Herwig, Brian R.; Bowe, Shane E.; Otte, Marinus L.
2015-01-01
We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds. PMID:26074657
Brabets, Timothy P.
2004-01-01
Cape Krusenstern National Monument is located in Northwest Alaska. In 1985, an exchange of lands and interests in lands between the Northwest Alaska Native Association and the United States resulted in a 100-year transportation system easement for 19,747 acres in the monument. A road was then constructed along the easement from the Red Dog Mine, a large zinc concentrate producer and located northeast of the monument, through the monument to the coast and a port facility. Each year approximately 1.3 million tonnes of zinc and lead concentrate are transported from the Red Dog Mine via this access road. Concern about the possible deposition of cadmium, lead, zinc and other trace elements in the monument was the basis of a cooperative project with the National Park Service. Concentrations of dissolved cadmium, dissolved lead, and dissolved zinc from 28 snow samples from a 28 mile by 16 mile grid were below drinking water standards. In the particulate phase, approximately 25 percent of the samples analyzed for these trace elements were higher than the typical range found in Alaska soils. Boxplots of concentrations of these trace elements, both in the dissolved and particulate phase, indicate higher concentrations north of the access road, most likely due to the prevailing southeast wind. The waters of four streams sampled in Cape Krusenstern National Monument are classified as calcium bicarbonate. Trace-element concentrations from these streams were below drinking water standards. Median concentrations of 39 trace elements from streambed sediments collected from 29 sites are similar to the median concentrations of trace elements from the U.S. Geological Survey?s National Water-Quality Assessment database. Statistical differences were noted between trace-element concentrations of cadmium, lead, and zinc at sites along the access road and sites north and south of the access road; concentrations along the access road being higher than north or south of the road. When normalized to 1 percent organic carbon, the concentrations of these trace elements are not expected to be toxic to aquatic life when compared to criteria established by the Canadian government and other recent research.
Williams, Monique; Bozhilov, Krassimir; Ghai, Sanjay; Talbot, Prue
2017-01-01
Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs) and electronic hookahs (EHs), examine the effect of puffing topography on elements in aerosols, and identify the source of the elements. Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy. Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium), thick wire (copper coated with silver), brass clamp (copper, zinc), solder joints (tin, lead), and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum). Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs). These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals.
Ivahnenko, Tamara; Szabo, Zoltan; Hall, G.S.
1996-01-01
Water samples were collected during 1993 from 22 public supply wells screened in the Kirkwood-Cohansey aquifer system; concentrations of 18 trace elements were determined primarily by using inductively coupled plasma-mass spectrometry (ICP-MS) techniques, though graphite furnace atomic adsorption, hydride generation, and cold- vapor flameless atomic adsorption techniques were used for thallium, arsenic, and mercury, respectively, at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL). In addition, laboratory measurements of alkalinity and turbidity were made. The ground-water samples were collected by using ultra-clean sampling protocols developed by the USGS for collecting ground-water samples in areas with water containing low concentrations of trace elements. This technique is based on recently gained experience in sampling surface water for these elements. Field parameters (water temperature, specific conductance, pH, and dissolved-oxygen concentration) were monitored prior to sample collection. Three equipment blanks were collected to ensure that low-level trace-element contamination did not occur during sample collection. One split sample and a commercially- prepared reference standard were submitted to the NWQL o evaluate laboratory precision and accuracy, respectively. Trace-element concentrations in 10 sample splits and one equipment blank were also determined at the Rutgers University Chemistry Department laboratory. Results of the ICP-MS analyses and cold vapor flameless atomic absorption indicated that five trace elements-- cobalt, copper, lead, mercury, and nickel--were detectable in low concentrations (<0.1-29 mg/L) in most of the samples from the 22 wells, and four elements--aluminum, barium, manganese and zinc--were detected in higher concentrations than the other elements (30-710 mg/L for aluminum; 4-180 mg/L for barium, manganese, and zinc). The remaining nine trace elements were present in concentrations consistently lower than the minimum reporting limit. Turbidity was low (less than 1 nephelometric turbidity unit (NTU)), indicating that the trace-element concentrations were present in the dissolved phase and ideally would be reproducible in the absence of highly variable concentrations of particulates. The concentration of lead in one sample exceeded the U.S. Environmental Protection Agency (USEPA) action level of 15 mg/L; concentrations ranged from <1 to 16 mg/L. Mercury was frequently detected; concentrations ranged from <0.1 to 1.1 mg/L but did not exceed the USEPA maximum contaminant level. Results of analyses of the equipment blanks indicated that samples collected by using the new ultra-clean sampling protocols were free of low-level (< 1mg/L) trace-element contamination. The analysis of the split sample sent to the NWQL had a difference of 5 percent or less for all constituents except aluminum, for which the analysis had a difference of 10 percent. Results of ICP-MS analyses of split water samples sent to the Rutgers University Chemistry Department laboratory were, in general, in good agreement (within 10 percent) with those of the NWQL. Results of the analysis of the commercial standard agreed (within 5 percent) with the known concentrations of the trace elements. The quality-assurance data (three blanks, one split sample, and one standard), although not statistically evaluated because of the small data set, indicate that the measured trace-element concentrations are precise and accurate and that the samples were free of contamination at the microgram-per-liter level of contamination.
Analysis with electron microscope of multielement samples using pure element standards
King, W.E.
1986-01-06
This disclosure describes a method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons. Simultaneously the electron dosage and x-ray intensities are measured for each sample of element to determine a ''K/sub AB/'' value to be used in the equation (I/sub A/I/sub B/) = K/sub AB/ (C/sub A//C/sub B/), where I is intensity and C is concentration for elements A and B. The multielement sample is exposed to determine the concentrations of the elements in the sample.
NASA Astrophysics Data System (ADS)
MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.; Crosbie, Ewan; Wang, Hailong; Wang, Zhen; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin
2018-04-01
This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2- and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO42-, NO3-, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.
Weaker Ligands Can Dominate an Odor Blend due to Syntopic Interactions
2013-01-01
Most odors in natural environments are mixtures of several compounds. Perceptually, these can blend into a new “perfume,” or some components may dominate as elements of the mixture. In order to understand such mixture interactions, it is necessary to study the events at the olfactory periphery, down to the level of single-odorant receptor cells. Does a strong ligand present at a low concentration outweigh the effect of weak ligands present at high concentrations? We used the fruit fly receptor dOr22a and a banana-like odor mixture as a model system. We show that an intermediate ligand at an intermediate concentration alone elicits the neuron’s blend response, despite the presence of both weaker ligands at higher concentration, and of better ligands at lower concentration in the mixture. Because all of these components, when given alone, elicited significant responses, this reveals specific mixture processing already at the periphery. By measuring complete dose–response curves we show that these mixture effects can be fully explained by a model of syntopic interaction at a single-receptor binding site. Our data have important implications for how odor mixtures are processed in general, and what preprocessing occurs before the information reaches the brain. PMID:23315042
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.
This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl-, Na+); (ii) an increase of concentration with in-cloud altitude (e.g., NO2-, formate); and (iii) species exhibiting a peakmore » in concentration in the middle of cloud (e.g., non-sea salt SO42-, NO3-, organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.« less
Kroening, Sharon E.; Fallon, James D.; Lee, Kathy E.
2000-01-01
In fish livers, all of the trace elements analyzed were detected except antimony, beryllium, cobalt, and uranium. Trace element concentrations in fish livers generally did not show any pronounced patterns. Ranges for concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were similar to those measured in 20 other NAWQA studies across the United States. Cadmium concentrations in fish livers were moderately correlated to fish length and weight. There were no relations between trace element concentrations in fish livers and streambed sediment.
Herbert, Ellen R.; Boon, Paul; Burgin, Amy J.; ...
2015-10-29
Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale. The causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts. Climate change and anthropogenic modifications to the hydrologic cycle are expected to further increase the extent and severity of wetland salinization. Salinization alters the fundamental physicochemical nature of the soil-water environment, increasing ionic concentrations and altering chemical equilibria and mineral solubility. Increased concentrations of solutes, especially sulfate,more » alter the biogeochemical cycling of major elements including carbon, nitrogen, phosphorus, sulfur, iron, and silica. The effects of salinization on wetland biogeochemistry typically include decreased inorganic nitrogen removal (with implications for water quality and climate regulation), decreased carbon storage (with implications for climate regulation and wetland accretion), and increased generation of toxic sulfides (with implications for nutrient cycling and the health/functioning of wetland biota). Indeed, increased salt and sulfide concentrations induce physiological stress in wetland biota and ultimately can result in large shifts in wetland communities and their associated ecosystem functions. The productivity and composition of freshwater species assemblages will be highly altered, and there is a high potential for the disruption of existing interspecific interactions. Although there is a wealth of information on how salinization impacts individual ecosystem components, relatively few studies have addressed the complex and often non-linear feedbacks that determine ecosystem-scale responses or considered how wetland salinization will affect landscape-level processes. Although the salinization of wetlands may be unavoidable in many cases, these systems may also prove to be a fertile testing ground for broader ecological theories including (but not limited to): investigations into alternative stable states and tipping points, trophic cascades, disturbance-recovery processes, and the role of historical events and landscape context in driving community response to disturbance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbert, Ellen R.; Boon, Paul; Burgin, Amy J.
Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale. The causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts. Climate change and anthropogenic modifications to the hydrologic cycle are expected to further increase the extent and severity of wetland salinization. Salinization alters the fundamental physicochemical nature of the soil-water environment, increasing ionic concentrations and altering chemical equilibria and mineral solubility. Increased concentrations of solutes, especially sulfate,more » alter the biogeochemical cycling of major elements including carbon, nitrogen, phosphorus, sulfur, iron, and silica. The effects of salinization on wetland biogeochemistry typically include decreased inorganic nitrogen removal (with implications for water quality and climate regulation), decreased carbon storage (with implications for climate regulation and wetland accretion), and increased generation of toxic sulfides (with implications for nutrient cycling and the health/functioning of wetland biota). Indeed, increased salt and sulfide concentrations induce physiological stress in wetland biota and ultimately can result in large shifts in wetland communities and their associated ecosystem functions. The productivity and composition of freshwater species assemblages will be highly altered, and there is a high potential for the disruption of existing interspecific interactions. Although there is a wealth of information on how salinization impacts individual ecosystem components, relatively few studies have addressed the complex and often non-linear feedbacks that determine ecosystem-scale responses or considered how wetland salinization will affect landscape-level processes. Although the salinization of wetlands may be unavoidable in many cases, these systems may also prove to be a fertile testing ground for broader ecological theories including (but not limited to): investigations into alternative stable states and tipping points, trophic cascades, disturbance-recovery processes, and the role of historical events and landscape context in driving community response to disturbance.« less
NASA Astrophysics Data System (ADS)
Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Góźdź, S.; Majewska, U.; Pajek, M.
2007-07-01
The total reflection X-ray fluorescence method was applied to study the trace element concentrations in human breast malignant and breast benign neoplasm tissues taken from the women who were patients of Holycross Cancer Centre in Kielce (Poland). These investigations were mainly focused on the development of new possibilities of cancer diagnosis and therapy monitoring. This systematic comparative study was based on relatively large (˜ 100) population studied, namely 26 samples of breast malignant and 68 samples of breast benign neoplasm tissues. The concentrations, being in the range from a few ppb to 0.1%, were determined for thirteen elements (from P to Pb). The results were carefully analysed to investigate the concentration distribution of trace elements in the studied samples. The measurements of concentration of trace elements by total reflection X-ray fluorescence were limited, however, by the detection limit of the method. It was observed that for more than 50% of elements determined, the concentrations were not measured in all samples. These incomplete measurements were treated within the statistical concept called left-random censoring and for the estimation of the mean value and median of censored concentration distributions, the Kaplan-Meier estimator was used. For comparison of concentrations in two populations, the log-rank test was applied, which allows to compare the censored total reflection X-ray fluorescence data. Found statistically significant differences are discussed in more details. It is noted that described data analysis procedures should be the standard tool to analyze the censored concentrations of trace elements analysed by X-ray fluorescence methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payre, Valerie; Fabre, Cecile; Cousin, Agnes
The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantificationsmore » of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.« less
Payre, Valerie; Fabre, Cecile; Cousin, Agnes; ...
2017-03-20
The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantificationsmore » of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.« less
Severson, R.C.; Gough, L.P.; van den Boom, G.
1992-01-01
Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sures, B.; Steiner, W.; Rydlo, M.
1999-11-01
Concentrations of the elements Al, Ag, Ba, ca, Cd, Co, Cr, cu, Fe, Ga, Mg, Mn, Ni, Pb, Sr, Tl, and Zn were analyzed by inductively coupled plasma mass spectrometry in the acanthocephalan Acanthocephalus lucii (Mueller); in its host, Perca fluviatilis (L.), and in the soft tissue of the zebra mussel, Dreissena polymorpha (Pallas). All animals were collected from the same sampling site in a subalpine lake, Mondsee, in Austria. Most of the elements were found at significantly higher concentrations in the acanthocephalan than in different tissues (muscle, liver, and intestinal wall) of its perch host. Only Co was concentratedmore » in the liver of perch to a level that was significantly higher than that found in the parasite. Most of the analyzed elements were also present at significantly higher concentrations in A. lucii than in D. polymorpha. Barium and Cr were the only elements recorded at higher concentrations in the mussel compared with the acanthocephalan. Thus, when comparing the accumulation of elements, the acanthocephalans appear to be even more suitable than the zebra mussels in terms of their use in the detection of metal contamination within aquatic biotopes. Spearman correlation analysis revealed that the concentrations of several elements within the parasites decreased with increasing infrapopulation. Furthermore, the levels of some elements in the perch liver were negatively correlated with the weight of A. lucii in the intestine. Thus, it emerged that not only is there competition for elements between acanthocephalans inside the gut but there is also competition for these elements between the host and the parasites. The elevated element concentrations demonstrated here in the parasitic worm A. lucii provide support for further investigations of these common helminthes and of their accumulation properties.« less
NASA Astrophysics Data System (ADS)
Kachenko, Anthony G.; Siegele, Rainer; Bhatia, Naveen P.; Singh, Balwant; Ionescu, Mihail
2008-04-01
Hybanthus floribundus subsp. floribundus, a rare Australian Ni-hyperaccumulating shrub and Pityrogramma calomelanos var. austroamericana, an Australian naturalized As-hyperaccumulating fern are promising species for use in phytoremediation of contaminated sites. Micro-proton-induced X-ray emission (μ-PIXE) spectroscopy was used to map the elemental distribution of the accumulated metal(loid)s, Ca and K in leaf or pinnule tissues of the two plant species. Samples were prepared by two contrasting specimen preparation techniques: freeze-substitution in tetrahydrofuran (THF) and freeze-drying. The specimens were analysed to compare the suitability of each technique in preserving (i) the spatial elemental distribution and (ii) the tissue structure of the specimens. Further, the μ-PIXE results were compared with concentration of elements in the bulk tissue obtained by ICP-AES analysis. In H. floribundus subsp. floribundus, μ-PIXE analysis revealed Ni, Ca and K concentrations in freeze-dried leaf tissues were at par with bulk tissue concentrations. Elemental distribution maps illustrated that Ni was preferentially localised in the adaxial epidermal tissues (1% DW) and least concentration was found in spongy mesophyll tissues (0.53% DW). Conversely, elemental distribution maps of THF freeze-substituted tissues indicated significantly lower Ni, Ca and K concentrations than freeze-dried specimens and bulk tissue concentrations. Moreover, Ni concentrations were uniform across the whole specimen and no localisation was observed. In P. calomelanos var. austroamericana freeze-dried pinnule tissues, μ-PIXE revealed statistically similar As, Ca and K concentrations as compared to bulk tissue concentrations. Elemental distribution maps showed that As localisation was relatively uniform across the whole specimen. Once again, THF freeze-substituted tissues revealed a significant loss of As compared to freeze-dried specimens and the concentrations obtained by bulk tissue analysis. The results demonstrate that freeze-drying is a suitable sample preparation technique to study elemental distribution of ions in H. floribundus and P. calomelanos plant tissues using μ-PIXE spectroscopy. Furthermore, cellular structure was preserved in samples prepared using this technique.
Burton, Carmen; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.
2016-01-01
Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.
Burton, Carmen A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.
2016-01-01
Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life. PMID:27144270
NASA Astrophysics Data System (ADS)
Boujibar, A.; Fei, Y.; Du, Z.; Righter, K.; Bullock, E. S.
2017-12-01
Inner Solar System materials are known for their depletion in volatile elements, including the moderately volatile alkalis: Na, K, Rb, and Cs. The origin of this depletion is still uncertain, as several processes could have been involved, during the nebular condensation or planetary accretion. Volatile depletion is commonly estimated through comparison of alkali concentrations relatively to those of chondrites, assuming they remain in planetary mantles during core segregation. However, experimental studies show that substantial K can partition into metals that are enriched in sulfur and oxygen. Several models have also suggested that sulfides may have played an important role during episodes of sulfide segregation from a crystallizing magma ocean (sulfide matte) or accretion of S-rich planetary embryos. For Mercury, a sulfide layer could be present between core and mantle, due to immiscibility between Si-rich and S-rich metals. Therefore, here we investigate whether alkali elements (Na, Cs and Rb) could be partly sequestered in planetary cores during their differentiation. We conducted experiments at high pressure and temperature (1 to 5 GPa and up to 1900 °C) to determine partition coefficients of Na, Rb and Cs between metal and silicate. Our results show that pressure, temperature, sulfur and oxygen in metals enhance the partitioning of Na, Rb and Cs into metals, as previously found for K. For all three investigated alkalis (Na, Rb and Cs), we found a maximum partition coefficient of 1 between sulfides containing 13 wt% O and silicate melt. Therefore, S-rich cores or sulfide layers formed due to immiscibility in Fe-S-O systems could have acted as important geochemical reservoirs for alkali elements. Using our experimental data and different assumptions on initial bulk abundances, we evaluate volatile depletion in terrestrial planets, by comparing resulting mantle alkali concentrations after core segregation, with actual concentrations in the Earth's mantle.
Rusk, Brian; Koenig, Alan; Lowers, Heather
2011-01-01
Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.
Baines, Stephen B.; Chen, Xi; Vogt, Stefan; Fisher, Nicholas S.; Twining, Benjamin S.; Landry, Michael R.
2016-01-01
Mesozooplankton production in high-nutrient low-chlorophyll regions of the ocean may be reduced if the trace element concentrations in their food are insufficient to meet growth and metabolic demands. We used elemental microanalysis (SXRF) of single-celled plankton to determine their trace metal contents during a series of semi-Lagrangian drift studies in an HNLC upwelling region, the Costa Rica Dome (CRD). Cells from the surface mixed layer had lower Fe:S but higher Zn:S and Ni:S than those from the subsurface chlorophyll maximum at 22–30 m. Diatom Fe:S values were typically 3-fold higher than those in flagellated cells. The ratios of Zn:C in flagellates and diatoms were generally similar to each other, and to co-occurring mesozooplankton. Estimated Fe:C ratios in flagellates were lower than those in co-occurring mesozooplankton, sometimes by more than 3-fold. In contrast, Fe:C in diatoms was typically similar to that in zooplankton. RNA:DNA ratios in the CRD were low compared with other regions, and were related to total autotrophic biomass and weakly to the discrepancy between Zn:C in flagellated cells and mesozooplankton tissues. Mesozooplankton may have been affected by the trace element content of their food, even though trace metal limitation of phytoplankton was modest at best. PMID:27275029
NASA Technical Reports Server (NTRS)
Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.
2015-01-01
Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.
Nuclear microscopy in Alzheimer's disease
NASA Astrophysics Data System (ADS)
Makjanic, Jagoda; Watt, Frank
1999-04-01
The elemental composition of the two types of brain lesions which characterise Alzheimer's disease (AD) has been the subject of intense scrutiny over the last decade, ever since it was proposed that inorganic trace elements, particularly aluminium, might be implicated in the pathogenesis of the disease. The major evidence for this involvement was the detection of aluminium in the characteristic lesions of the AD brain; neuritic plaques and neurofibrillary tangles (NFTs). Using the powerful combination of Particle-Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM), it is possible to image and analyse structures in brain sections without recourse to chemical staining. Previous results on elemental composition of senile plaques indicated the absence of aluminium at the 15 parts per million level. We have more recently focused on the analysis of neurofibrillary tangles (NFTs), destructive structural defects within neurons. Imaging and analysis of neurons in brain tissue presented a greater challenge due to the small dimensional size compared with the plaques. We describe the methodology and the results of imaging and analysing neurons in brain tissue sections using Nuclear Microscopy. Our results show that aluminium is not present in either neurons or surrounding tissue in unstained sections at the 20 ppm level, but can be observed in stained sections. We also report elemental concentrations showing significant elevations of phosphorus, sulphur, chlorine, iron and zinc.
Yang, Soo In; George, Graham N; Lawrence, John R; Kaminskyj, Susan G W; Dynes, James J; Lai, Barry; Pickering, Ingrid J
2016-10-04
Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se 0 ). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se 0 using the Se L III edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50-700 nm, suggesting Se 0 nanoparticles. The intimate association of Se 0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Soo In; George, Graham N.; Lawrence, John R.
2016-10-04
Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to themore » same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.« less
Element concentrations in soils and other surficial materials of the conterminous United States
Shacklette, Hansford T.; Boerngen, Josephine G.
1984-01-01
Samples of soils or other regoliths, taken at a depth of approximately 20 cm form locations about 80 km apart, throughout the conterminous United States, were analyzed for their content of elements. In this manner, 1,318 sampling sites were chosen, and the results of the sample analyses for 50 elements were plotted on maps. The arithmetic and geometric mean, the geometric deviation, and a histogram showing frequencies of analytical values are given for 47 elements. The lower concentrations of some elements (notable, aluminum, barium, calcium, magnesium, potassium, sodium, and strontium) in most samples of surficial materials from the Eastern United States, and the greater abundance of heavy metals in the same materials of the Western United States, indicates a regional geochemical pattern of the largest scale. The low concentrations of many elements in soils characterize the Atlantic Coastal Plain. Souls of the Pacific Northwest generally have high concentrations of aluminum, cobalt, iron, scandium, and vanadium, but are low in boron. Soils of the Rocky Mountain region tend to have high concentrations of copper, lead, and zinc. High mercury concentrations in surficial materials are characteristic of Gulf Coast sampling sites and the Atlantic coast sites of Connecticut, Massachusetts, and Maine. At the State level, Florida has the most striking geochemical pattern by having soils that are low in concentrations of most elements considered in this study. Some smaller patterns of element abundance can be noted, but the degree of confidence in the validity of these patterns decreases as the patterns become less extensive.
Quantification of multiple elements in dried blood spot samples.
Pedersen, Lise; Andersen-Ranberg, Karen; Hollergaard, Mads; Nybo, Mads
2017-08-01
Dried blood spots (DBS) is a unique matrix that offers advantages compared to conventional blood collection making it increasingly popular in large population studies. We here describe development and validation of a method to determine multiple elements in DBS. Elements were extracted from punches and analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The method was evaluated with quality controls with defined element concentration and blood spiked with elements to assess accuracy and imprecision. DBS element concentrations were compared with concentrations in venous blood. Samples with different hematocrit were spotted onto filter paper to assess hematocrit effect. The established method was precise and accurate for measurement of most elements in DBS. There was a significant but relatively weak correlation between measurement of the elements Mg, K, Fe, Cu, Zn, As and Se in DBS and venous whole blood. Hematocrit influenced the DBS element measurement, especially for K, Fe and Zn. Trace elements can be measured with high accuracy and low imprecision in DBS, but contribution of signal from the filter paper influences measurement of some elements present at low concentrations. Simultaneous measurement of K and Fe in DBS extracts may be used to estimate sample hematocrit. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Transport of trace metals in runoff from soil and pond ash feedlot surfaces
Vogel, J.R.; Gilley, J.E.; Cottrell, G.L.; Woodbury, B.L.; Berry, E.D.; Eigenbert, R.A.
2011-01-01
The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements, and the runoff water-quality effects of feedlot surfaces amended with pond ash are not well defined. For this study, two experimental units (plots) were established in eight feedlot pens. Four of the pens contained unamended soil surfaces, and the remaining four pens had pond-ash amended surfaces. Before each test, unconsolidated surface material was removed from four of the plots for each of the amendment treatments, resulting in eight unamended plots and eight pond-ash amended plots. Concentrations for 23 trace elements were measured in cattle feedlot surface material and in the runoff water from three simulated rainfall events. Trace element concentrations in surface material and runoff did not differ between surface consolidation treatments. Amending the feedlot surface material with pond ash resulted in a significant increase in concentration for 14 of the 17 trace elements. Runoff concentrations for 21 trace elements were affected by pond-ash amendment. Sixteen of 21 trace element concentrations that differed significantly were greater in runoff from unamended soil surfaces. Concentrations in runoff were significantly correlated with concentrations in feedlot surface material for boron, manganese, molybdenum, selenium, and uranium.
Rare Earth Element Concentration of Wyoming Thermal Waters Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quillinan, Scott; Nye, Charles; Neupane, Hari
Updated version of data generated from rare earth element investigation of produced waters. These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production.
Geochemical surveys in the United States in relation to health.
Tourtelot, H.A.
1979-01-01
Geochemical surveys in relation to health may be classified as having one, two or three dimensions. One-dimensional surveys examine relations between concentrations of elements such as Pb in soils and other media and burdens of the same elements in humans, at a given time. The spatial distributions of element concentrations are not investigated. The primary objective of two-dimensional surveys is to map the distributions of element concentrations, commonly according to stratified random sampling designs based on either conceptual landscape units or artificial sampling strata, but systematic sampling intervals have also been used. Political units have defined sample areas that coincide with the units used to accumulate epidemiological data. Element concentrations affected by point sources have also been mapped. Background values, location of natural or technological anomalies and the geographic scale of variation for several elements often are determined. Three-dimensional surveys result when two-dimensional surveys are repeated to detect environmental changes. -Author
Skrobialowski, Stanley C.
2002-01-01
Bed-sediment samples from 21 selected streams in southern Louisiana were collected and analyzed for the presence of trace elements and organic compounds during 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Concentrations of selected trace elements and organic compounds were compared on the basis of sediment-quality criteria, land use, and grain size; concentrations of selected trace elements also were compared with concentrations from previous studies. Concentrations of seven selected trace elements and 21 organic compounds were evaluated with sediment-quality criteria established by the Canadian Council of Ministers of the Environment. Concentrations of selected trace elements and organic compounds were highest at sites draining urban and agricultural areas and may result from cumulative effects of relatively high percentages of fine-grained material, iron, and organic material. Concentrations exceeding sediment-quality criteria for the protection of aquatic life occurred most frequently at Bayou Grosse Tete at Rosedale and Bayou Lafourche below weir at Thibodaux. Exceedance of Interim Sediment Quality Guidelines occurred most frequently for arsenic and chromium. Trace-element concentrations in fine-grained samples were compared with concentrations in bulk samples and were determined to be significantly different, and concentrations were generally higher in finegrained sediment. Shapiro-Wilk, paired t-test, and Wilcoxon rank sum statistical procedures, with an alpha of 0.05, were used to compare concentrations of 21 trace elements, total organic carbon, and total carbon in finegrained and bulk sediment samples for 19 sites. Significant differences were determined between fine-grained and bulk sediment samples for aluminum, barium, beryllium, chromium, copper, iron, lithium, nickel, phosphorus, selenium, titanium, and zinc concentrations. Of 133 paired concentrations, 69 percent were greater in fine-grained samples, and 23 percent were greater in bulk samples. Comparisons with data from previous studies indicate increases by more than 20 percent in concentrations of antimony at Bayou Lafourche below weir at Thibodaux, arsenic and chromium at Tickfaw River at Liverpool, lead at Bayou Lafourche below weir at Thibodaux, and zinc at Bayou Lafourche below weir at Thibodaux and Vermilion River at Perry. Historic comparisons also indicate decreases by more than 20 percent in concentrations of chromium at Bayou des Cannes near Eunice and mercury at Mermentau River at Mermentau.
Concentrations and bioaccessibilities of trace elements in barbecue charcoals.
Sharp, Annabel; Turner, Andrew
2013-11-15
Total and bioaccessible concentrations of trace elements (Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb and Zn) have been measured in charcoals from 15 barbecue products available from UK retailers. Total concentrations (available to boiling aqua regia) were greater in briquetted products (with mean concentrations ranging from 0.16 μg g(-1) for Cd to 3240 μg g(-1) for Al) than in lumpwoods (0.007 μg g(-1) for Cd to 28 μg g(-1) for Fe), presumably because of the use of additives and secondary constituents (e.g. coal) in the former. On ashing, and with the exception of Hg, elemental concentrations increased by factors ranging from about 1.5 to 50, an effect attributed to the combustion of organic components and offset to varying extents by the different volatilities of the elements. Concentrations in the ashed products that were bioaccessible, or available to a physiologically based extraction test (PBET) that simulates, successively, the chemical conditions in the human stomach and intestine, exhibited considerable variation among the elements studied. Overall, however, bioaccessible concentrations relative to corresponding total concentrations were greatest for As, Cu and Ni (attaining 100% in either or both simulated PBET phases in some cases) and lowest for Pb (generally <1% in both phases). A comparison of bioaccessible concentrations in ashed charcoals with estimates of daily dietary intake suggest that Al and As are the trace elements of greatest concern to human health from barbecuing. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hess, Paul C.; Parmentier, E. M.
1995-01-01
Crystallization of the lunar magma ocean creates a chemically stratified Moon consisting of an anorthositic crust and magma ocean cumulates overlying the primitive lunar interior. Within the magma ocean cumulates the last liquids to crystallize form dense, ilmenite-rich cumulates that contain high concentrations of incompatible radioactive elements. The underlying olivine-orthopyroxene cumulates are also stratified with later crystallized, denser, more Fe-rich compositions at the top. This paper explores the chemical and thermal consequences of an internal evolution model accounting for the possible role of these sources of chemical buoyancy. Rayleigh-Taylor instability causes the dense ilmenite-rich cumulate layer and underlying Fe-rich cumulates to sink toward the center of the Moon, forming a dense lunar core. After this overturn, radioactive heating within the ilmenite-rich cumulate core heats the overlying mantle, causing it to melt. In this model, the source region for high-TiO2 mare basalts is a convectively mixed layer above the core-mantle boundary which would contain small and variable amounts of admixed ilmenite and KREEP. This deep high-pressure melting, as required for mare basalts, occurs after a reasonable time interval to explain the onset of mare basalt volcanism if the content of radioactive elements in the core and the chemical density gradients above the core are sufficiently high but within a range of values that might have been present in the Moon. Regardless of details implied by particular model parameters, gravitational overturn driven by the high density of magma ocean Fe-rich cumulates should concentrate high-TiO2 mare basalt sources, and probably a significant fraction of radioactive heating, toward the center of the Moon. This will have important implications for both the thermal evolution of the Moon and for mare basalt genesis.
Concentrations of platinum group elements in 122 U.S. coal samples
Oman, C.L.; Finkelman, R.B.; Tewalt, S.J.
1997-01-01
Analysis of more than 13,000 coal samples by semi-quantitative optical emission spectroscopy (OES) indicates that concentrations of the platinum group elements (iridium, palladium, platinum, osmium, rhodium, and ruthenium) are less than 1 ppm in the ash, the limit of detection for this method of analysis. In order to accurately determine the concentration of the platinum group elements (PGE) in coal, additional data were obtained by inductively coupled plasma mass spectroscopy, an analytical method having part-per-billion (ppb) detection limits for these elements. These data indicate that the PGE in coal occur in concentrations on the order of 1 ppb or less.
Concentrations of trace elements in Great Lakes fishes
Lucas, Henry F.; Edgington, David N.; Colby, Peter J.
1970-01-01
The concentration of 15 trace elements was determined by activation analysis of samples of whole fish and fish livers from three of the Great Lakes: Michigan, Superior, and Erie. The average concentrations of 7 elements in 19 whole fish from 3 species were as follows: uranium, 3 ppb (parts per billion); thorium, 6 ppb; cobalt, 28 ppb; cadmium, 94 ppb; arsenic, 16 ppb; chromium, 1 ppm; and copper, 1.3 ppm. The average concentrations of 8 elements in 40 liver samples from 10 species of fish were as follows: uranium, ~ 2 ppb; thorium, a?? 2 ppb; cobalt, 40 ppb; copper, 9 ppm; zinc, 30 ppm; bromine, 0.4 ppm; arsenic, 30 ppb; and cadmium, 0.4 ppm. Other elements observed in most of the samples were: antimony, 5-100 ppb; gold, 2-5 ppb; lanthanum, 1-20 ppb; rhenium, 0.5-5 ppb; rubidium, 0.06-4 ppm; and selenium, 0.1-2 ppb. Trace element concentrations varied with species and lake. Uranium and thorium varied with species, but not for the same species from different lakes. The levels of copper, cobalt, zinc, and bromine varied little between species and lakes. The concentration of cadmium, arsenic, and chromium varied between species and with species between lakes.
Determination of element levels in human serum: Total reflection X-ray fluorescence applications
NASA Astrophysics Data System (ADS)
Majewska, U.; Łyżwa, P.; Łyżwa, K.; Banaś, D.; Kubala-Kukuś, A.; Wudarczyk-Moćko, J.; Stabrawa, I.; Braziewicz, J.; Pajek, M.; Antczak, G.; Borkowska, B.; Góźdź, S.
2016-08-01
Deficiency or excess of elements could disrupt proper functioning of the human body and could lead to several disorders. Determination of their concentrations in different biological human fluids and tissues should become a routine practice in medical treatment. Therefore the knowledge about appropriate element concentrations in human organism is required. The purpose of this study was to determine the concentration of several elements (P, S, Cl, K, Ca, Cr, Fe, Cu, Zn, Se, Br, Rb, Pb) in human serum and to define the reference values of element concentration. Samples of serum were obtained from 105 normal presumably healthy volunteers (66 women aged between 15 and 78 years old; 39 men aged between 15 and 77 years old). Analysis has been done for the whole studied population and for subgroups by sex and age. It is probably first so a wide study of elemental composition of serum performed in the case of Świętokrzyskie region. Total reflection X-ray fluorescence (TXRF) method was used to perform the elemental analysis. Spectrometer S2 Picofox (Bruker AXS Microanalysis GmbH) was used to identify and measure elemental composition of serum samples. Finally, 1st and 3rd quartiles were accepted as minimum and maximum values of concentration reference range.
Online elemental analysis of process gases with ICP-OES: a case study on waste wood combustion.
Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M A; Ludwig, Christian
2012-10-01
A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium. Copyright © 2012 Elsevier Ltd. All rights reserved.
Arhin, Emmanuel; Zango, Musah S
2017-02-01
Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.
Ryan, Patrick H; Brokamp, Cole; Fan, Zhi-Hua; Rao, M B
2015-12-01
The complex mixture of chemicals and elements that constitute particulate matter (PM*) varies by season and geographic location because source contributors differ over time and place. The composition of PM having an aerodynamic diameter < 2.5 μm (PM2.5) is hypothesized to be responsible, in part, for its toxicity. Epidemiologic studies have identified specific components and sources of PM2.5 that are associated with adverse health outcomes. The majority of these studies use measures of outdoor concentrations obtained from one or a few central monitoring sites as a surrogate for measures of personal exposure. Personal PM2.5 (and its elemental composition), however, may be different from the PM2.5 measured at stationary outdoor sites. The objectives of this study were (1) to describe the relationships between the concentrations of various elements in indoor, outdoor, and personal PM2.5 samples, (2) to identify groups of individuals with similar exposures to mixtures of elements in personal PM2.5 and to examine personal and home characteristics of these groups, and (3) to evaluate whether concentrations of elements from outdoor PM2.5 samples are appropriate surrogates for personal exposure to PM2.5 and its elements and whether indoor PM2.5 concentrations and information about home characteristics improve the prediction of personal exposure. The objectives of the study were addressed using data collected as part of the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. The RIOPA study has previously measured the mass concentrations of PM2.5 and its elemental constituents during 48-hour concurrent indoor, outdoor (directly outside the home), and personal samplings in three urban areas (Los Angeles, California; Houston, Texas; and Elizabeth, New Jersey). The resulting data and information about personal and home characteristics (including air-conditioning use, nearby emission sources, time spent indoors, census-tract geography, air-exchange rates, and other information) for each RIOPA participant were downloaded from the RIOPA study database. We performed three sets of analyses to address the study aims. First, we conducted descriptive analyses to describe the relationships between elemental concentrations in the concurrently gathered indoor, outdoor, and personal air samples. We assessed the correlation between personal exposure and indoor concentrations as well as personal exposure and outdoor concentrations of each element and calculated ratios between them. In addition, we performed principal component analysis (PCA) and calculated principal component scores (PCSs) to examine the heterogeneity of the elemental composition and then tested whether the mixture of elements in indoor, outdoor, and personal PM2.5 was significantly different within each study site and across study sites. Secondly, we performed model-based clustering analysis to group RIOPA participants with similar exposures to mixtures of elements in personal PM2.5. We examined the association between cluster membership and the concentrations of elements in indoor and outdoor PM2.5 samples and personal and home characteristics. Finally, we developed a series of linear regression models and random forest models to examine the association between personal exposure to elements in PM2.5 and (1) outdoor measurements, (2) outdoor and indoor measurements, and (3) outdoor and indoor measurements and home characteristics. As we developed each model, the improvement in prediction of personal exposure when including additional information was assessed. Personal exposures to PM2.5 and to most elements were significantly correlated with both indoor and outdoor concentrations, although concentrations in personal samples frequently exceeded those of indoor and outdoor samples. In general, for most PM2.5 elements indoor concentrations were more highly correlated with personal exposure than were outdoor concentrations. PCA showed that the mixture of elements in indoor, outdoor, and personal PM2.5 varied significantly across sample types within each study site and also across study sites within each sample type. Using model-based clustering, we identified seven clusters of RIOPA participants whose personal PM2.5 samples had similar patterns of elemental composition. Using this approach, subsets of RIOPA participants were identified whose personal exposures to PM2.5 (and its elements) were significantly higher than their indoor and outdoor concentrations (and vice versa). The results of linear and random forest regression models were consistent with our correlation analyses and demonstrated that (1) indoor concentrations were more significantly associated with personal exposure than were outdoor concentrations and (2) participant reports of time spent at their home significantly modified many of the associations between indoor and personal concentrations. In linear regression models, the inclusion of indoor concentrations significantly improved the prediction of personal exposures to Ba, Ca, Cl, Cu, K, Sn, Sr, V, and Zn compared with the use of outdoor elemental concentrations alone. Including additional information on personal and home characteristics improved the prediction for only one element, Pb. Our results support the use of outdoor monitoring sites as surrogates of personal exposure for a limited number of individual elements associated with long-range transport and with a few local or indoor sources. Based on our PCA and clustering analyses, we concluded that the overall elemental composition of PM2.5 obtained at outdoor monitoring sites may not accurately represent the elemental composition of personal PM2.5. Although the data used in these analyses compared outdoor PM2.5 composition collected at the home with indoor and personal samples, our results imply that studies examining the complete elemental composition of PM2.5 should be cautious about using data from central outdoor monitoring sites because of the potential for exposure misclassification. The inclusion of personal and home characteristics only marginally improved the prediction of personal exposure for a small number of elements in PM2.5. We concluded that the additional cost and burden of indoor and personal sampling may be justified for studies examining elements because neither outdoor monitoring nor questionnaire data on home and personal characteristics were able to represent adequately the overall elemental composition of personal PM2.5.
Trace elements in soil and biota in confined disposal facilities for dredged material
Beyer, W.N.; Miller, G.; Simmers, J.W.
1990-01-01
We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata) at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high, concentrations of trace elements in the biota.
Assessing element-specific patterns of bioaccumulation across New England lakes
Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y.
2012-01-01
Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3–5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would improve our capacity to identify consistent patterns of bioaccumulation and drivers of elevated trace element concentrations under naturally high levels of variability. PMID:22356871
Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Gasik, Zuzanna; Frankowski, Marcin; Dąbrowski, Mikołaj; Molisak, Bartłomiej; Kaczmarczyk, Jacek; Gasik, Robert
2017-12-23
The work is designed to uncover the pattern of mutual relation among trace elements and epidemiological data in the degenerated intervertebral disk tissue in humans. Hitherto the reason of the degenerative process is not fully understood. Trace elements are the basic components of the biological compound related both its metabolism as well as environmental exposure. The relation pattern among elements occurs gives new perspective in solving the cause of the disease. We have analysed trace elements content in the 30 intervertebral disc from 22 patients with degenerative disc disease. The concentrations of Al, Cu, Cd, Mo, Ni and Pb were determined with Atomic Absorption Spectrometry. To analyse the multidimentional relation between trace element concentration and epidemiological data the chemometric analysis was applied. The similarity have been shown in occurrence of following pairs: Cd-Mo as well as Mg-Zn. The second pair was correlated with Pb concentration. Pb levels are observed to be competitive to Cu concentration. Cd concentration was related to Zn and Mg deficiency. No single but rather cluster of epidemiological data show observable influence on the TE tissue variance. Zn and Cu was related to the male sex. Operation with orthopedic implants were related to combined Al, Mo and Zn concentration. This is the first chemometric analysis of trace elements in disk tissue. It shows multidimentional relations that are missed by the classical statistic. The analysis shows significant relation. The nature of the relations is the basis for further metabolic and environmental research.
Taylor, Howard E.; Antweiler, Ronald C.; Roth, D.A.; Brinton, T.I.; Peart, D.B.; Healy, D.F.
2001-01-01
Two sampling trips were undertaken in 1994 to determine the distribution of trace elements in the Upper Rio Grande and several of its tributaries. Water discharges decreased in the main stem of the Rio Grande from June to September, whereas dissolved concentrations of trace elements generally increased. This is attributed to dilution of base flow from snowmelt runoff in the June samples. Of the three major mining districts (Creede, Summitville, and Red River) in the Upper Rio Grande drainage basin, only the Creede District appears to impact the Rio Grande in a significant manner, with both waters and sediments having elevated concentrations of some trace elements considerably downriver. For example, dissolved zinc concentrations upriver of Willow Creek, which primarily drains the Creede District, were about 2-3 μg/L; immediately downstream of the Willow Creek confluence, concentrations were above 20 μg/L; and elevated concentrations occurred in the Rio Grande for the next 100 km. The Red River District does not significantly impact the Upper Rio Grande for most trace elements. Because of current water management practices, it is difficult to assess the impact of the Summitville District on the Upper Rio Grande. There are, however, large increases in many dissolved trace element concentrations as the Rio Grande passes through the San Luis Valley, coincident with elevated concentrations of those same trace elements in tributaries. Among these elements are As, B, Cr, Li, Mn, Mo, Ni, Sr, U, and V. None of the trace elements exceeded U.S. EPA primary drinking water standards in either survey, with the exception of cadmium in Willow Creek. Secondary drinking water standards were frequently violated, especially in tributaries draining areas where mining has occurred. Dissolved zinc (in Willow Creek in both June and September) was the only element that exceeded the EPA Water Quality Criteria for aquatic life of 120 μg/L.
Review of rare earth element concentrations in oil shales of the Eocene Green River Formation
Birdwell, Justin E.
2012-01-01
Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.
RARE EARTH ELEMENTS IN FLY ASHES AS POTENTIAL INDICATORS OF ANTHROPOGENIC SOIL CONTAMINATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.
2003-08-01
Studies of rare earth element (REE) content of disposed fly ashes and their potential mobility were neglected for decades because these elements were believed to be environmentally benign. A number of recent studies have now shown that REE may pose a long-term risk to the biosphere. Therefore, there is a critical need to study the REE concentrations in fly ash and their potential mobilization and dispersal upon disposal in the environment. We analyzed the REE content of bulk, size fractionated, and density separated fractions of three fly ash samples derived from combustion of sub bituminous coals from the western Unitedmore » States and found that the concentrations of these elements in bulk ashes were within the range typical of fly ashes derived from coals from the North American continent. The concentrations of light rare earth elements (LREE) such as La, Ce, and Nd, however, tended towards the higher end of the concentration range whereas, the concentrations of middle rare earth elements (MREE) (Sm and Eu) and heavy rare earth elements (HREE) (Lu) were closer to the lower end of the observed range for North American fly ashes. The concentrations of REE did not show any significant enrichment with decreasing particle size, this is typical of nonvolatile lithophilic element behavior during the combustion process. The lithophilic nature of REE was also confirmed by their concentrations in heavy density fractions of these fly ashes being on average about two times more enriched than the concentrations in the light density fractions. Shale normalized average of REE concentrations of fly ashes and coals revealed significant positive anomalies for Eu and Dy. Because of these distinctive positive anomalies of Eu and Dy, we believe that fly ash contamination of soils can be fingerprinted and distinguished from other sources of anthropogenic REE inputs in to the environment.« less
ERIC Educational Resources Information Center
Steiner, Hans-Georg
1988-01-01
Describes two kinds of elements in mathematics: Euclid's and Bourbaki's. Discusses some criticisms on the two concepts of elements from a philosophical, methodological, and didactical point of view. Suggests a complementarist view and several implications for mathematics education. (YP)
NASA Astrophysics Data System (ADS)
Lidman, Fredrik; Boily, Åsa; Laudon, Hjalmar; Köhler, Stephan J.
2017-06-01
Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr) and other parameters such as sulfate and total organic carbon (TOC). The results showed that the concentrations of most investigated elements increased substantially (up to 60 times) as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the solubility of many organophilic elements increases as a result of the higher concentrations of TOC in the riparian zone. Elements with low or modest affinity for organic matter (e.g. Na, Cl, K, Mg and Ca) occurred in similar or lower concentrations in the riparian zone. Despite the elevated concentrations of many elements in riparian soil water and groundwater, no increase in the concentrations in biota could be observed (bilberry leaves and spruce shoots).
Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E
2016-04-01
Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. © 2015 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Huan; Qian, Yu; Cochran, J. Kirk
Here, this article reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 μm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis,more » outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.« less
Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...
2017-01-18
Here, this article reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 μm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis,more » outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.« less
Zhou, Xuewei; Qu, Xueyin; Zhao, Shengguo; Wang, Jiaqi; Li, Songli; Zheng, Nan
2017-03-01
The objectives of this study were to measure the concentrations of elements in raw milk by inductively coupled plasma-mass spectrometry (ICP-MS) and evaluate differences in element concentrations among animal species and regions of China. Furthermore, drinking water and feed samples were analyzed to investigate whether the element concentrations in raw milk are correlated with those in water and feed. All samples were analyzed by ICP-MS following microwave-assisted acid digestion. The mean recovery of the elements was 98.7 % from milk, 103.7 % from water, and 93.3 % from a certified reference material (cabbage). Principal component analysis results revealed that element concentrations differed among animal species and regions. Correlation analysis showed that trace elements Mn, Fe, Ni, Ga, Se, Sr, Cs, U in water and Co, Ni, Cu, Se, U in feed were significantly correlated with those in milk (p < 0.05). Toxic and potential toxic elements Cr, As, Cd, Tl, Pb in water and Al, Cr, As, Hg, Tl in feed were significantly correlated with those in milk (p < 0.05). Results of correlation analysis revealed that elements in water and feed might contribute to the elements in milk.
Williams, Monique; Bozhilov, Krassimir; Ghai, Sanjay; Talbot, Prue
2017-01-01
Objective Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs) and electronic hookahs (EHs), examine the effect of puffing topography on elements in aerosols, and identify the source of the elements. Methods Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy. Results Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium), thick wire (copper coated with silver), brass clamp (copper, zinc), solder joints (tin, lead), and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum). Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs). Conclusion These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals. PMID:28414730
Hassan, Ammar Ali; Brustad, Magritt; Sandanger, Torkjel M
2012-05-01
Meat samples (n = 100) from semi-domesticated reindeer (Rangifer tarandus tarandus L.) were randomly collected from 10 grazing districts distributed over four Norwegian counties in 2008 and 2009. The main aim was to study concentrations and geographical variations in selected toxic elements; cadmium (Cd), lead (Pb), arsenic (As), copper (Cu), nickel (Ni) and vanadium (V) in order to assess the risk associated with reindeer meat consumption. Sample solutions were analysed using an inductively coupled plasma high resolution mass spectrometer (ICP-HRMS), whereas analysis of variance (ANOVA) was used for statistical analyses. Geographical variations in element concentrations were revealed, with As and Cd demonstrating the largest geographical differences. No clear geographical gradient was observed except for the east-west downward gradient for As. The As concentrations were highest in the vicinity of the Russian border, and only Cd was shown to increase with age (p < 0.05). Sex had no significant effect on the concentration of the studied elements. The concentrations of all the studied elements in reindeer meat were generally low and considerably below the maximum levels (ML) available for toxic elements set by the European Commission (EC). Thus, reindeer meat is not likely to be a significant contributor to the human body burden of toxic elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Jaromy; Sun Zaijing; Wells, Doug
2009-03-10
Photon activation analysis detected elements in two NIST standards that did not have reported concentration values. A method is currently being developed to infer these concentrations by using scaling parameters and the appropriate known quantities within the NIST standard itself. Scaling parameters include: threshold, peak and endpoint energies; photo-nuclear cross sections for specific isotopes; Bremstrahlung spectrum; target thickness; and photon flux. Photo-nuclear cross sections and energies from the unknown elements must also be known. With these quantities, the same integral was performed for both the known and unknown elements resulting in an inference of the concentration of the un-reported elementmore » based on the reported value. Since Rb and Mn were elements that were reported in the standards, and because they had well-identified peaks, they were used as the standards of inference to determine concentrations of the unreported elements of As, I, Nb, Y, and Zr. This method was tested by choosing other known elements within the standards and inferring a value based on the stated procedure. The reported value of Mn in the first NIST standard was 403{+-}15 ppm and the reported value of Ca in the second NIST standard was 87000 ppm (no reported uncertainty). The inferred concentrations were 370{+-}23 ppm and 80200{+-}8700 ppm respectively.« less
Hassan, Ammar Ali; Brustad, Magritt; Sandanger, Torkjel M.
2012-01-01
Meat samples (n = 100) from semi-domesticated reindeer (Rangifer tarandus tarandus L.) were randomly collected from 10 grazing districts distributed over four Norwegian counties in 2008 and 2009. The main aim was to study concentrations and geographical variations in selected toxic elements; cadmium (Cd), lead (Pb), arsenic (As), copper (Cu), nickel (Ni) and vanadium (V) in order to assess the risk associated with reindeer meat consumption. Sample solutions were analysed using an inductively coupled plasma high resolution mass spectrometer (ICP-HRMS), whereas analysis of variance (ANOVA) was used for statistical analyses. Geographical variations in element concentrations were revealed, with As and Cd demonstrating the largest geographical differences. No clear geographical gradient was observed except for the east-west downward gradient for As. The As concentrations were highest in the vicinity of the Russian border, and only Cd was shown to increase with age (p < 0.05). Sex had no significant effect on the concentration of the studied elements. The concentrations of all the studied elements in reindeer meat were generally low and considerably below the maximum levels (ML) available for toxic elements set by the European Commission (EC). Thus, reindeer meat is not likely to be a significant contributor to the human body burden of toxic elements. PMID:22754467
Lambing, J.H.
1990-01-01
Water quality sampling was conducted at eight sites on the Clark Fork and selected tributaries from Galen to Missoula, from October 1988 through September 1989. This report presents tabulations and statistical summaries of the water quality data. Included are tabulations of streamflow, onsite water quality, and concentrations of trace elements and suspended sediment for periodic samples. Also included are tables and hydrographs of daily mean values for streamflow, suspended-sediment concentration, and suspended-sediment discharge at three mainstem stations and one tributary. Statistical summaries are presented for periodic water quality data collected from March 1985 through September 1989. Selected data are illustrated by graphs showing median concentrations of trace elements in water, relation of trace-element concentrations to suspended-sediment concentrations, and median concentrations of trace elements in suspended sediment. (USGS)
Lambing, John H.
1989-01-01
Water quality sampling was conducted at eight sites on the Clark Fork and selected tributaries from Galen to Missoula, Mont., from October 1987 through September 1988. This report presents tabulations and statistical summaries of the water quality data. Included in this report are tabulations of streamflow, onsite water quality, and concentrations of trace elements and suspended sediment for periodic samples. Also included are tables and hydrographs of daily mean values for streamflow, suspended-sediment concentration, and suspended-sediment discharge at three mainstream stations and one tributary. Statistical summaries are presented for periodic water quality data collected from March 1985 through September 1988. Selected data are illustrated by graphs showing median concentrations of trace elements in water, relation of trace element concentrations to suspended-sediment concentrations, and median concentrations of trace elements in suspended sediments. (USGS)
Diode and method of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, Jeramy Ray; Wierer, Jr., Jonathan; Kaplar, Robert
2018-03-13
A diode includes a second semiconductor layer over a first semiconductor layer. The diode further includes a third semiconductor layer over the second semiconductor layer, where the third semiconductor layer includes a first semiconductor element over the second semiconductor layer. The third semiconductor layer additionally includes a second semiconductor element over the second semiconductor layer, wherein the second semiconductor element surrounds the first semiconductor element. Further, the third semiconductor layer includes a third semiconductor element over the second semiconductor element. Furthermore, a hole concentration of the second semiconductor element is less than a hole concentration of the first semiconductor element.
Orct, Tatjana; Jurasović, Jasna; Micek, Vedran; Karaica, Dean; Sabolić, Ivan
2017-03-01
Concentrations of macro- and microelements in animal organs indicate the animal health status and represent reference data for animal experiments. Their levels in blood and tissues could be different between sexes, and could be different with and without blood in tissues. To test these hypotheses, in adult female and male rats the concentrations of various elements were measured in whole blood, blood plasma, and tissues from blood-containing (nonperfused) and blood-free liver, kidneys, and brain (perfused in vivo with an elements-free buffer). In these samples, 6 macroelements (Na, Mg, P, S, K, Ca) and 14 microelements (Fe, Mn, Co, Cu, Zn, Se, I, As, Cd, Hg, Pb, Li, B, Sr) were determined by inductively coupled plasma mass spectrometry following nitric acid digestion. In blood and plasma, female- or male-dominant sex differences were observed for 6 and 5 elements, respectively. In nonperfused organs, sex differences were observed for 3 (liver, brain) or 9 (kidneys) elements, whereas in perfused organs, similar differences were detected for 9 elements in the liver, 5 in the kidneys, and none in the brain. In females, perfused organs had significantly lower concentrations of 4, 5, and 2, and higher concentrations of 10, 4, and 7 elements, respectively, in the liver, kidneys, and brain. In males, perfusion caused lower concentrations of 4, 7, and 2, and higher concentrations of 1, 1, and 7 elements, respectively, in the liver, kidneys, and brain. Therefore, the residual blood in organs can significantly influence tissue concentrations of various elements and their sex-dependency. Copyright © 2017 Elsevier GmbH. All rights reserved.
Griffiths, Andrea M; Cook, David M; Eggett, Dennis L; Christensen, Merrill J
2012-06-01
Whether or not all foods marketed to consumers as organic meet specified standards for use of that descriptor, or are nutritionally different from conventional foods, is uncertain. In a retail market study in a Western US metropolitan area, differences in mineral composition between conventional potatoes and those marketed as organic were analysed. Potatoes marketed as organic had more copper and magnesium (p < 0.0001), less iron (p < 0.0001) and sodium (p < 0.02), and the same concentration of calcium, potassium and zinc as conventional potatoes. Comparison of individual mineral concentrations between foodstuffs sold as organic or conventional is unlikely to establish a chemical fingerprint to objectively distinguish between organic and conventional produce, but more sophisticated chemometric analysis of multi-element fingerprints holds promise of doing so. Although statistically significant, these differences would only minimally affect total dietary intake of these minerals and be unlikely to result in measurable health benefits.
Hou, D X; Fukuda, M; Fujii, M; Fuke, Y
2000-12-20
Wasabi is a very popular pungent spice in Japan. This study examined the ability of 6-(methylsufinyl)hexyl isothiocyanate (6-MITC), an active principle of wasabi, to induce the cellular expression of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase (QR) in Hepa 1c1c7 cells. The cells were treated with various concentrations of 6-MITC, and were then assessed for cell growth, QR activity and QR mRNA expression. The induction of QR activity and QR mRNA expression was time- and dose-responsive over a narrow range of 0.1-5 microM, with declining induction at higher concentrations due to cell toxicity. Furthermore, transfection studies demonstrated that the induction of transcription of the QR gene by 6-MITC involved an antioxidant/electrophile-responsive element (ARE/EpRE) activation. Our results suggest a novel mechanism by which dietary wasabi 6-MITC may be implicated in cancer chemoprevention.
NASA Astrophysics Data System (ADS)
Natyanun, S.; Unai, S.; Yu, L. D.; Tippawan, U.; Pussadee, N.
2017-09-01
This study was aimed at understanding elemental concentration distribution in local longan leaf for how the plant was affected by the environment or agricultural operation. The analysis applied the MeV-microbeam particle induced X-ray emission (PIXE) mapping technique using a home-developed tapered glass capillary microbeam system at Chiang Mai University. The microbeam was 2-MeV proton beam in 130 µm in diameter. The studying interest was in the difference in the elemental concentrations distributed between the leaf midrib and lamina areas. The micro proton beam analyzed the leaf sample across the leaf midrib edge to the leaf lamina area for total 9 data requisition spots. The resulting data were colored to form a 1D-map of the elemental concentration distribution. Seven dominant elements, Al, S, Cl, K, Ca, Sc and Fe, were identified, the first six of which were found having higher concentrations in the midrib area than in the lamina area, while the Fe concentration was in an opposite trend to that of the others.
Surface Sediment Geochemistry in and around the Hudson Shelf Valley Offshore of New York
NASA Astrophysics Data System (ADS)
Mecray, E. L.; ten Brink, M. B.; Butman, B.; Denny, J.; Murray, R. W.
2001-05-01
The Hudson Shelf Valley, an ancient submerged portion of the Hudson River, extends across the continental shelf offshore of New York and New Jersey. Between 1959 and 1987, the area near the head of the valley was used for disposal of approximately 1.20 x 108 m3 of dredged material and sewage sludge. The distribution of metal concentrations and sediment characteristics were used to investigate the transport and fate of the sediments and their associated contaminants. Surface (0-2cm) sediments collected at 440 stations throughout the New York Bight between 1993 and 1998 were used to establish the regional distribution of pollutant metals, grain size, organic carbon, and Clostridium perfringens spores. Sediments in the New York Bight are generally sandy, however fine-grained sediments are found in the axis of the Valley. Statistical methods identified common sources and chemical mobility within groups of anthropogenic and naturally-occurring elements. High metal concentrations, fine-grained sediments, and higher organic carbon concentrations co-occur in depo-centers within the Valley. Normalization of the metal concentrations to these factors shows higher metal concentrations on the fine-grained particles in sandy areas of the Bight, particularly along the southern shore of Long Island. These distributions have implications for evaluating the impact of the mass distribution for contaminated metals in different habitats and areas. Decreasing concentrations of pollutants with time are observed, reflecting reduced contaminant loading in the upper region of the Valley; however, concentrations are still above natural background levels.
Pillatzki, Angela E.; Neiger, Regg D.; Chipps, Steven R.; Higgins, Kenneth F.; Thiex, Nancy; Afton, Alan D.
2011-01-01
High concentrations of some hepatic elements might be contributing to the decline of the continental lesser scaup (Aythya affinis) population. We evaluated hepatic element concentrations of male and female lesser scaup collected from the upper Midwest (Iowa, Minnesota, North Dakota, and South Dakota) during the 2003 and 2004 spring migrations. We measured concentrations of 24 elements in livers of 117 lesser scaup. We found that only selenium concentrations were at levels (>3.0 μg/g wet weight [ww)]) proposed to adversely affect reproduction. Approximately 49% of females (n = 61) had individual hepatic concentrations >3.0 μg/g ww selenium (Se). Our observed hepatic concentration of Se was similar to that reported in lesser scaup collected from the mid-continental United States but less than Se concentrations reported from the Great Lakes region. We found that the liver cadmium (Cd) concentration for males was significantly higher than that for females. Gender differences in hepatic Cd concentrations have not been previously reported for lesser scaup, but Cd is known to have negative impacts on male reproduction. Our results indicate that lesser scaup migrating through the upper Midwest in spring have elevated Se levels and that males carry a significantly greater Cd burden than females. Moreover, elemental concentrations might be high enough to affect reproduction in both male and female lesser scaup, but controlled laboratory studies are needed to adequately assess the effects of Se and Cd on lesser scaup reproduction.
Pillatzki, A.E.; Neiger, R.D.; Chipps, S.R.; Higgins, K.F.; Thiex, N.; Afton, A.D.
2011-01-01
High concentrations of some hepatic elements might be contributing to the decline of the continental lesser scaup (Aythya affinis) population. We evaluated hepatic element concentrations of male and female lesser scaup collected from the upper Midwest (Iowa, Minnesota, North Dakota, and South Dakota) during the 2003 and 2004 spring migrations. We measured concentrations of 24 elements in livers of 117 lesser scaup. We found that only selenium concentrations were at levels (>3.0 ??g/g wet weight [ww)]) proposed to adversely affect reproduction. Approximately 49% of females (n = 61) had individual hepatic concentrations >3.0 ??g/g ww selenium (Se). Our observed hepatic concentration of Se was similar to that reported in lesser scaup collected from the mid-continental United States but less than Se concentrations reported from the Great Lakes region. We found that the liver cadmium (Cd) concentration for males was significantly higher than that for females. Gender differences in hepatic Cd concentrations have not been previously reported for lesser scaup, but Cd is known to have negative impacts on male reproduction. Our results indicate that lesser scaup migrating through the upper Midwest in spring have elevated Se levels and that males carry a significantly greater Cd burden than females. Moreover, elemental concentrations might be high enough to affect reproduction in both male and female lesser scaup, but controlled laboratory studies are needed to adequately assess the effects of Se and Cd on lesser scaup reproduction. ?? 2010 Springer Science+Business Media, LLC.
Neutron activation analysis of thermal power plant ash and surrounding area soils.
Al-Masri, M S; Haddad, Kh; Alsomel, N; Sarhil, A
2015-08-01
Elemental concentrations of As, Cd, Co, Cr, Fe, Hg, Mo, Ni, Se, and Zn have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas using instrumental neutron activation analysis. The results showed that all elements were more concentrated in fly ash than in the fly ash; there was a clear increasing trend of the elemental concentrations in the fly ash along the flue gas pathway. The annual emission of elements was estimated. Elemental concentrations were higher inside the campus area than in surrounding areas, and the lowest values were found in natural-gas-fired power plant. In addition, the levels have decreased as the distance from power plant campus increases. However, the levels in the surrounding villages were within the Syrian standard for agriculture soil.
Trace Element Analysis of Biological Samples.
ERIC Educational Resources Information Center
Veillon, Claude
1986-01-01
Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…
Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellinger, Marco, E-mail: marco.wellinger@gmail.com; Ecole Polytechnique Federale de Lausanne; Wochele, Joerg
2012-10-15
Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. Themore » analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.« less
Yenisoy-Karakaş, S; Tuncel, S G
2004-08-15
Lichen samples from different parts of the world have been known to accumulate elements to a greater degree than higher plants, if they are exposed to these elements from the atmosphere or from water and sediments. It has been hypothesized that lichens can be used to monitor air pollution around point and area emission sources. Local variation (variation in substrate, age and morphology of lichen samples) of element concentrations would not be large enough to affect the concentration patterns in large areas. We tested this hypothesis in the Aegean region of Turkey, which is very urbanized and industrialized. No such study has been conducted before in this part of the country. A total of 234 samples of the lichen Xanthoria parietina were collected from a 51,800-km2 area. Samples were washed and analyzed by INAA and ICP-AES for 35 elements. The range of the concentrations for most of the elements on a local scale was an order of magnitude lower than for the element concentrations on a regional scale. The mean local coefficient of variance (CV) was found to be 15, providing that the local variation did not affect the concentration of elements in the sampling region. According to cluster analysis, 8 (As, Hg, Pb, Sb, Fe, Mn, Na and K) elements are indicative of important local pollution locations and their zone of impact in the region. By mapping the concentrations of eight indicative elements in lichen Xanthoria parietina of the Aegean region, it was possible to relate deposition to the existence of known sources of pollution in certain areas. Location of pollution sources such as iron-steel plants, and coal burning in the cities, industrial activity and two important coal-fired power plants generally corresponded with locations of highest element accumulations in the lichens.
Bryan, A L; Hopkins, W A; Parikh, J H; Jackson, B P; Unrine, J M
2012-02-01
Birds attracted to nest around coal ash settling basins may expose their young to contaminants by provisioning them with contaminated food. Diet and tissues of Common Grackle (Quiscalus quiscala) nestlings were analyzed for trace elements to determine if nestlings were accumulating elements via dietary exposure and if feather growth limits elemental accumulation in other tissues. Arsenic, cadmium, and selenium concentrations in ash basin diets were 5× higher than reference diets. Arsenic, cadmium, and selenium concentrations were elevated in feather, liver, and carcass, but only liver Se concentrations approached levels of concern. Approximately 15% of the total body burden of Se, As, and Cd was sequestered in feathers of older (>5 days) nestlings, whereas only 1% of the total body burden of Sr was sequestered in feathers. Feather concentrations of only three elements (As, Se, and Sr) were correlated with liver concentrations, indicating their value as non-lethal indicators of exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fahad, S. M.; Islam, A. F. M. Mahmudul; Ahmed, Mahiuddin; Alam, Md. Rezaul; Alam, Md. Ferdous; Khalik, Md. Farhan; Hossain, Md. Lokman; Abedin, Md. Joynal
2015-01-01
The concentrations of 18 different elements (K, Ca, Fe, Cl, P, Zn, S, Mn, Ti, Cr, Rb, Co, Br, Sr, Ru, Si, Ni, and Cu) were analyzed in five selected vegetables through Proton Induced X-ray Emission (PIXE) technique. The objective of this study was to provide updated information on concentrations of elements in vegetables available in the local markets at Savar subdistrict in Bangladesh. These elements were found in varying concentrations in the studied vegetables. The results also indicated that P, Cl, K, Ca, Mn, Fe, and Zn were found in all vegetables. Overall, K and Ca exhibited the highest concentrations. Cu and Ni exhibited the lowest concentrations in vegetables. The necessity of these elements was also evaluated, based on the established limits of regulatory standards. The findings of this study suggest that the consumption of these vegetables is not completely free of health risks. PMID:26229953
NASA Technical Reports Server (NTRS)
Gillett, Stephen L.
1991-01-01
Despite the conventional wisdom that there are no lunar ores, geochemical considerations suggest that local concentrations of useful rare elements exist on the Moon in spite of its extreme dryness. The Moon underwent protracted igneous activity in its history, and certain magmatic processes can concentrate incompatible elements even if anhydrous. Such processes include: (1) separation of a magma into immiscible liquid phases (depending on composition, these could be silicate-silicate, silicate-oxide, silicate-sulfide, or silicate-salt); (2) cumulate deposits in layered igneous intrusions; and (3) concentrations of rare, refractory, lithophile elements (e.g., Be, Li, Zr) in highly differentiated, silica-rich magmas, as in the lunar granites. Terrestrial mining experience indicates that the single most important characteristic of a potential ore is its concentration of the desire element. The utility of a planet as a resource base is that the welter of interacting processes over geologic time can concentrate rare element automatically. This advantage is squandered if adequate exploration for ores is not first carried out.
Geochemical stratigraphy of two regolith cores from the Central Highlands of the moon
NASA Technical Reports Server (NTRS)
Korotev, R. L.
1991-01-01
High-resolution concentration profiles are presented for 20-22 chemical elements in the under 1-mm grain-size fractions of 60001-7 and 60009/10. Emphasis is placed on the stratigraphic features of the cores, and the fresh results are compared with those of previous petrographic and geochemical studies. For elements associated with major mineral phases, the variations in concentration in both cores exceed that observed in some 40 samples of surface and trench soils. Most of the variation in lithophile element concentrations at depths of 18 to 21 cm results from the mixing of two components - oil that is relatively mafic and rich in incompatible trace elements (ITEs), and coarse-grained anorthosite. The linearity of mixing lines on two-element concentration plots argues that the relative abundances of these various subcomponents are sufficiently uniform from sample to sample and from region to region in the core that the mixture behaves effectively as a single component. Soils at depths of 52-55 cm exhibit very low concentrations of ITEs.
Boxhammer, Tim; Taucher, Jan; Bach, Lennart T; Achterberg, Eric P; Algueró-Muñiz, María; Bellworthy, Jessica; Czerny, Jan; Esposito, Mario; Haunost, Mathias; Hellemann, Dana; Ludwig, Andrea; Yong, Jaw C; Zark, Maren; Riebesell, Ulf; Anderson, Leif G
2018-01-01
Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.
Houghton, J.L.; Shanks, Wayne C.; Seyfried, W.E.
2004-01-01
The Bent Hill massive sulfide deposit and ODP Mound deposit in Middle Valley at the northernmost end of the Juan de Fuca Ridge are two of the largest modern seafloor hydrothermal deposits yet explored. Trace metal concentrations of sulfide minerals, determined by laser-ablation ICP-MS, were used in conjunction with mineral paragenetic studies and thermodynamic calculations to deduce the history of fluid-mineral reactions during sulfide deposition. Detailed analyses of the distribution of metals in sulfides indicate significant shifts in the physical and chemical conditions responsible for the trace element variability observed in these sulfide deposits. Trace elements (Mn, Co, Ni, As, Se, Ag, Cd, Sb, Pb, and Bi) analyzed in a representative suite of 10 thin sections from these deposits suggest differences in conditions and processes of hydrothermal alteration resulting in mass transfer of metals from the center of the deposits to the margins. Enrichments of some trace metals (Pb, Sb, Cd, Ag) in sphalerite at the margins of the deposits are best explained by dissolution/reprecipitation processes consistent with secondary remineralization. Results of reaction-path models clarify mechanisms of mass transfer during remineralization of sulfide deposits due to mixing of hydrothermal fluids with seawater. Model results are consistent with patterns of observed mineral paragenesis and help to identify conditions (pH, redox, temperature) that may be responsible for variations in trace metal concentrations in primary and secondary minerals. Differences in trace metal distributions throughout a single deposit and between nearby deposits at Middle Valley can be linked to the history of metal mobilization within this active hydrothermal system that may have broad implications for sulfide ore formation in other sedimented and unsedimented ridge systems. ?? 2004 Elsevier Ltd.
Wang, Feng; Xu, Shaochun; Zhou, Yi; Wang, Pengmei; Zhang, Xiaomei
2017-06-30
Trace element poisoning remains a great threat to various waterfowl and waterbirds throughout the world. In this study, we determined the trace element exposure of herbivorous whooper swans (Cygnus cygnus) wintering in Swan Lake (Rongcheng), an important swan protection area in northern China. A total of 70 samples including abiotic factors (seawater, sediments), food sources (seagrass, macroalgae), feathers and feces of whooper swans were collected from the marine lagoon during the winters of 2014/2015 and 2015/2016. Concentrations of Cu, Zn, Pb, Cr, Cd, Hg and As were determined to investigate the trace element exposure of whooper swans wintering in the area. Results showed that there was an increasing trend in sediment trace element concentrations, compared with historical data. The trace element concentrations in swan feces most closely resembled those of Zostera marina leaves, especially for Cd and Cr. The Zn and Hg concentrations in the swan feces (49.57 and 0.01mg/kg, respectively) were lower than the minimum values reported in the literature for other waterfowls, waterbirds and terrestrial birds. However, the concentrations of the other five trace elements fell within the lower and mediate range of values reported for birds across the world. These results suggest that the whooper swans wintering in Swan Lake, Rongcheng are not suffering severe trace element exposure; however, with the increasing input of trace elements to the lagoon, severe adverse impacts may occur in the future, and we therefore suggest that the input of trace elements to this area should be curbed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Yongjun; Zheng, Kang; Li, Yantuan
2012-09-01
In order to investigate the relationship between the trace elements and the characteristics of the oysters, we analyzed the trace elements present in the germplasm of oysters from different producing areas in the Jiaozhou Bay. The element fingerprints were established to reflect the elemental characteristics of the oysters. Concentration patterns of the elements were deciphered by principle component analysis (PCA) and hierarchical cluster analysis (HCA). The six regions were discriminated with accuracy using HCA and PCA based on the concentration of 16 trace elements. The elements were viewed as characteristic elements of the oysters and the fingerprints of these elements could be used to distinguish the quality of the oysters.
Justen, Gisele C; Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; Bergamasco, Rosangela
2012-01-01
In this work the analysis of elements concentration in groundwater was performed using the synchrotron radiation total-reflection X-ray fluorescence (SR-TXRF) technique. A set of nine tube-wells with serious risk of contamination was chosen to monitor the mean concentration of elements in groundwater from the North Serra Geral aquifer in Santa Helena, Brazil, during 1 year. Element concentrations were determined applying a SR-TXRF methodology. The accuracy of SR-TXRF technique was validated by analysis of a certified reference material. As the groundwater composition in the North Serra Geral aquifer showed heterogeneity in the spatial distribution of eight major elements, a hierarchical clustering to the data was performed. By a similarity in their compositions, two of the nine wells were grouped in a first cluster, while the other seven were grouped in a second cluster. Calcium was the major element in all wells, with higher Ca concentration in the second cluster than in the first cluster. However, concentrations of Ti, V, Cr in the first cluster are slightly higher than those in the second cluster. The findings of this study within a monitoring program of tube-wells could provide a useful assessment of controls over groundwater composition and support management at regional level.
Trace elements and radon in groundwater across the United States, 1992-2003
Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.
2011-01-01
Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had greater concentrations of As, Ba, Pb, Li, Sr, V, and Zn, than samples from monitoring wells. In humid regions, however, concentrations of most trace elements were greater in monitoring wells than in drinking-water wells; the exceptions were Cu, Pb, Zn, and Rn. Cu, Pb, and Zn are common trace elements in pumps and pipes used in the construction of drinking-water wells, and contamination from these sources may have contributed to their concentrations. Al, Sb, Ba, B, Cr, Co, Fe, Mn, Mo, Ni, Se, Sr, and U concentrations were all greater in monitoring wells than in drinking-water wells in humid regions. Groundwater from wells in agricultural settings had greater concentrations of As, Mo, and U than groundwater from wells in urban settings, possibly owing to greater pH in the agricultural wells. Significantly greater concentrations of B, Cr, Se, Ag, Sr, and V also were found in agricultural wells in dry regions. Groundwater from dry-region urban wells had greater concentrations of Co, Fe, Pb, Li, Mn, and specific conductance than groundwater from agricultural wells. The geologic composition of aquifers and aquifer geochemistry are among the major factors affecting trace-element occurrence. Trace-element concentrations in groundwater were characterized in aquifers from eight major groups based on geologic material, including (1) unconsolidated sand and gravel; (2) glacial unconsolidated sand and gravel; (3) semiconsolidated sand; (4) sandstone; (5) sandstone and carbonate rock; (6) carbonate rock; (7) basaltic and other volcanic rock; and (8) crystalline rock. The majority of groundwater samples and the largest percentages of exceedences of HHBs were in the glacial and nonglacial unconsolidated sand and gravel aquifers; in these aquifers, As, Mn, and U are the most common trace elements exceeding HHBs. Overall, 19 percent of wells (962 of 5,097) exceeded an HHB for at least one trace element. The trace elements with HHBs included in this summary were Sb, As, Ba, Be, B, Cd, Cr,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Samuel M; Barefield, James E; Wiens, Roger C
2008-01-01
The ChemCam instrument on the Mars Science Laboratory (MSL) will include a laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental compositions. The traditional analytical chemistry approach to calibration curves for these data regresses a single diagnostic peak area against concentration for each element. This approach contrasts with a new multivariate method in which elemental concentrations are predicted by step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for each element. The method is tested on LIBS data from igneous and metamorphosed rocks. Between 4 and 13 partial regression coefficients are needed to describemore » each elemental abundance accurately (i.e., with a regression line of R{sup 2} > 0.9995 for the relationship between predicted and measured elemental concentration) for all major and minor elements studied. Validation plots suggest that the method is limited at present by the small data set, and will work best for prediction of concentration when a wide variety of compositions and rock types has been analyzed.« less
Minor element distribution in iron disulfides in coal: a geochemical review
Kolker, Allan
2012-01-01
Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to the environment through coal mining and use, as well as for potential reduction by coal preparation, and for delineating diagenetic compositional changes throughout and after coal formation.
Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars
Clark, B. C.; Arvidson, R. E.; Gellert, Ralf; Morris, R.V.; Ming, D. W.; Richter, L.; Ruff, S.W.; Michalski, J.R.; Farrand, W. H.; Yen, A. S.; Herkenhoff, K. E.; Li, R.; Squyres, S. W.; Schroder, C.; Klingelhofer, G.; Bell, J.F.
2007-01-01
During its exploration of the Columbia Hills, the Mars Exploration Rover "Spirit" encountered several similar samples that are distinctly different from Martian meteorites and known Gusev crater soils, rocks, and sediments. Occurring in a variety of contexts and locations, these "Independence class" samples are rough-textured, iron-poor (equivalent FeO ??? 4 wt%), have high Al/Si ratios, and often contain unexpectedly high concentrations of one or more minor or trace elements (including Cr, Ni, Cu, Sr, and Y). Apart from accessory minerals, the major component common to these samples has a compositional profile of major and minor elements which is similar to the smectite montmorillonite, implicating this mineral, or its compositional equivalent. Infrared thermal emission spectra do not indicate the presence of crystalline smectite. One of these samples was found spatially associated with a ferric sulfate-enriched soil horizon, possibly indicating a genetic relationship between these disparate types of materials. Compared to the nearby Wishstone and Watchtower class rocks, major aqueous alteration involving mineral dissolution and mobilization with consequent depletions of certain elements is implied for this setting and may be undetectable by remote sensing from orbit because of the small scale of the occurrences and obscuration by mantling with soil and dust. Copyright 2007 by the American Geophysical Union.
Majer, Alessandra Pereira; Petti, Mônica Angélica Varella; Corbisier, Thais Navajas; Ribeiro, Andreza Portella; Theophilo, Carolina Yume Sawamura; Ferreira, Paulo Alves de Lima; Figueira, Rubens Cesar Lopes
2014-02-15
Data about the concentration, accumulation and transfer of potentially toxic elements in Antarctic marine food webs are essential for understanding the impacts of these elements, and for monitoring the pollution contribution of scientific stations, mainly in Admiralty Bay due to the 2012 fire in the Brazilian scientific station. Accordingly, the concentration of As, Cd, Cu, Ni, Pb and Zn was measured in eight benthic species collected in the 2005/2006 austral summer and the relationship between concentration and trophic position (indicated by δ(15)N values) was tested. A wide variation in metal content was observed depending on the species and the element. In the studied trophic positions, it was observed bioaccumulation for As, Cd and Pb, which are toxic elements with no biological function. In addition, Cd showed a positive relationship between concentration and trophic level suggesting the possible biomagnification of this element. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ennis, G.; Sievering, H.
1990-06-01
During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.
Wilber, W.G.; Boje, Rita R.
1982-01-01
Streambed materials were collected in October 1979 from 69 watersheds in Southwest Indiana having predominantly forested, agricultural, reclaimed, and unreclaimed mined land use to determine whether concentrations of sorbed and acid-soluble metals and trace elements were affected by land use and surficial geology. Analysis of variance indicated that 10% or more of the total variation in aluminum, arsenic, cobalt, iron, nickel, selenium, and zinc concentrations on streambed materials was accounted for by differences in land use. Concentrations of aluminum, cobalt, iron, nickel, selenium, and zinc on streambed materials smaller than 0.062-millimeter from mined watersheds were significantly greater than the concentrations of these elements on streambed materials from agricultural and forested watersheds. The greater concentrations of these elements on streambed materials are due to (1) their concentrations in mine drainage and their subsequent absorption and (or) copecipitation with the oxides and hydroxides of aluminum and iron and (2) their concentrations in coal and pyritic material in streambed materials. (USGS)
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.
2012-12-01
Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.
NASA Technical Reports Server (NTRS)
King, R. B.; Neustadter, H. E.
1976-01-01
Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.
Phi, Thai Ha; Chinh, Pham Minh; Cuong, Doan Danh; Ly, Luong Thi Mai; Van Thinh, Nguyen; Thai, Phong K
2018-01-01
There is a need to assess the risk of exposure to metals via roadside dust in Vietnam where many people live along the road/highways and are constantly exposed to roadside dust. In this study, we collected dust samples at 55 locations along two major Highways in north-east Vietnam, which passed through different land use areas. Samples were sieved into three different particle sizes and analyzed for concentrations of eight metals using a X-ray fluorescence instrument. The concentrations and environmental indices (EF, I geo ) of metals were used to evaluate the degree of pollution in the samples. Among different land uses, industrial areas could be highly polluted with heavy metals in roadside dust, followed by commerce and power plants. Additionally, the traffic density probably played an important role; higher concentrations were observed in samples from Highway No. 5 where traffic is several times higher than Highway No. 18. According to the risk assessment, Cr poses the highest noncarcinogenic risk even though the health hazard index values of assessed heavy metals in this study were within the acceptable range. Our assessment also found that the risk of exposure to heavy metals through roadside dust is much higher for children than for adults.
Kim, N; Fergusson, J
1993-09-30
The amounts (microgram m-2) and concentrations (microgram g-1) of cadmium, copper, lead and zinc have been measured in house dust in Christchurch, New Zealand. For 120 houses surveyed the geometric mean concentrations of the four metals are 4.24 micrograms g-1, 165 micrograms g-1, 573 micrograms g-1 and 10,400 micrograms g-1, respectively. In addition eleven variables, such as house age, carpet wear and traffic density, were recorded for each property and the results analysed with respect to their effects on the amounts and concentrations of the four elements. The amounts of all the metals were highly correlated with the overall dustiness of the houses, which was found to be predominantly determined by the degree of carpet wear. No one dominant source of cadmium was identified, although several minor sources including carpet wear, galvanized iron roofs and red/orange/yellow coloured carpets were implicated. Petrol lead and lead-based paints were identified as significant sources of lead in house dust. Rubber carpet underlays or backings were identified as a significant source of zinc, with some contribution from galvanized iron roofs. Road traffic and probably the existence of a fire place appear to contribute to the copper levels.
Nordløkken, Marit; Berg, Torunn; Flaten, Trond Peder; Steinnes, Eiliv
2015-01-01
Concentrations of essential and non-essential elements in five widespread species of natural boreal vegetation were studied with respect to seasonal variation and contribution from different sources. The plant species included in the study were Betula pubescens, Sorbus aucuparia, Vaccinium myrtillus, Vaccinium uliginosum, Calluna vulgaris and Deschampsia flexuosa. Concentrations of elements essential to plants remained essentially constant or decreased slightly throughout the growing season. Concentrations of most non-essential elements increased or tended to increase on a dry mass basis from June to July as well as from July to September. The increasing trend for these elements was observed for all species except C. vulgaris. Principal component analysis (PCA) of the material indicated a common source for many of the non-essential elements; Sc, Ti, V, Ga, As, Y, Sb, lanthanides, Pb, Bi, and U, i.e. both elements presumably of geogenic origin and elements associated with trans-boundary air pollution. Uptake by plant roots appeared to be the main source of nutrient elements as well as some non-essential elements. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Liguang; He, Zhenli; Li, Zhigang; Zhang, Songhe; Li, Suli; Wan, Yongshan; Stoffella, Peter J
2016-10-01
Nitrogen (N) is considered as a key element that triggers algal boom in the Indian River Lagoon (IRL), South Florida. Intensive agriculture may have contributed to increased N input into the IRL. Runoff and storm water samples were collected in representative agricultural fields and along waterways that connect lands to the IRL from April 2013 to December 2014. Concentrations of different N species (particulate N, dissolved organic N, dissolved NH4 (+)-N, and NO3 (-)-N) and related water physical-chemical properties were measured. Total N (TN) concentrations generally decreased from agricultural field furrows to discharging point of the waterways but were generally above the US EPA critical level (0.59 mg L(-1)) for surface water. Organic N was the dominant form of dissolved N, followed by NO3 (-)-N, and dissolved NH4 (+)-N. Concentrations and speciation of N in water varied with sites and sampling times but were generally higher in summer and fall and lower in spring and winter, as affected by the seasonality of regional hydrology and agricultural practices. Correlations occurred between N concentration, water physical properties, and rainfall. This information has important implications in the development of best management practices to minimize the impacts of agricultural practice on N loading in the Indian River Lagoon.
Trace element contamination in feather and tissue samples from Anna’s hummingbirds
Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.
2017-01-01
Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.
Wu, Yaketon; Zhang, Huimin; Liu, Guihua; Zhang, Jianqing; Wang, Jizhong; Yu, Yingxin; Lu, Shaoyou
2016-02-01
This study aimed to investigate the levels of trace elements in animal-derived food in Shenzhen, Southern China. The concentrations of 14 trace elements (Cd, Hg, Pb, As, Cr, Cu, Fe, Zn, Mn, Mo, Ni, Co, Se and Ti) in a total of 220 meat samples, collected from the local markets of Shenzhen were determined. Cu, Fe and Zn were the major elements, with concentrations approximately 2-3 orders of magnitude higher than those of other elements. However, the daily intakes of Cu, Fe and Zn merely via the consumption of the meat products were lower than the recommended nutrient intake values provided by the 2013 Chinese Dietary Guide. Among the non-essential trace elements, Cd was accumulated in animal viscera, and the concentration ratios of chicken gizzard/chicken, chicken liver/chicken, pig kidney/pork and pig liver/pork were 41.6, 55.2, 863 and 177, respectively. In addition, high concentrations of As were found in aquatic products, especially in marine fish. The concentration of As in marine fish was slightly higher than the limits recommended by China, USA and Croatia. The health risk assessment of trace elements through the consumption of meat products by adult residents in Shenzhen was evaluated by using the target hazard quotient (THQ) method. The total THQ was greater than 1, implying a potential health risk. Approximately 66% of total THQ values, mainly from As, were from the consumption of aquatic products. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.M.; Danielson, L.
2009-01-01
Shergottites have high S contents (1300 to 4600 ppm; [1]), but it is unclear if they are sulfide saturated or under-saturated. This issue has fundamental implications for determining the long term S budget of the martian surface and atmosphere (from mantle degassing), as well as evolution of the highly siderophile elements (HSE) Au, Pd, Pt, Re, Rh, Ru, Ir, and Os, since concentrations of the latter are controlled by sulfide stability. Resolution of sulfide saturation depends upon temperature, pressure, oxygen fugacity (and FeO), and magma composition [2]. Expressions derived from experimental studies allow prediction of S contents, though so far they are not calibrated for shergottitic liquids [3-5]. We have carried out new experiments designed to test current S saturation models, and then show that existing calibrations are not suitable for high FeO and low Al2O3 compositions characteristic of shergottitic liquids. The new results show that existing models underpredict S contents of sulfide saturated shergottitic liquids by a factor of 2.
Gough, L.P.; Severson, R.C.; Jackson, L.L.
1988-01-01
Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.
Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona
Hinkle, M.E.; Dilbert, C.A.
1984-01-01
Soil samples were collected over the North Silver Bell porphyry copper deposit near Tucson, Arizona. Volatile elements and compounds in gases derived from the soils and metallic elements in the soils were analyzed in order: (1) to see which volatile constituents of the soils might be indicative of the ore body or the alteration zones; and (2) to distinguish the ore and alteration zones by comparison of trace elements in the soil. Plots of analytical data on trace elements in soils indicated a typical distribution pattern for metals around a porphyry copper deposit, with copper, molybdenum, and arsenic concentrations higher over the ore body, and zinc, lead, and silver concentrations higher over the alteration zones. Higher than average concentrations of helium, carbon disulfide, and sulfur dioxide adsorbed on soils were found over the ore body, whereas higher concentrations of carbon dioxide and carbonyl sulfide were found over the alteration zones. ?? 1984.
Rare Earth Element Concentrations in Submarine Hydrothermal Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Andrew; Zierenberg, Robert
Rare earth element concentrations in submarine hydrothermal fluids from Alarcon Rise, East Pacific Rise, REE concentrations in submarine hydrothermal fluids from Pescadero Basin, Gulf of California, and the Cleft vent field, southern Juan de Fuca Ridge. Data are not corrected to zero Mg.
Concentrations of macro- and micro-elements in the milk of pasture-fed thoroughbred mares.
Grace, N D; Pearce, S G; Firth, E C; Fennessy, P F
1999-03-01
To determine the changes in Ca, P, Mg, Na, K, S, Cu, Fe and Zn concentrations of milk during the lactation in pasture-fed Thoroughbred mares and then calculate the dietary mineral requirements of the sucking foal and the lactating mare. Milk was sampled on days 1, 3, 7, 14, 21, 28 and at various times between 55 to 65, 85 to 95 and 135 to 150 days after parturition from 21 pasture-fed mares. The concentrations of macro- and micro-elements in the milk were determined by inductively coupled plasma emission spectrometry. Concentrations (mg/L) of these elements were highest in colostrum (Mg 302, Na 561, K 955, S 1035, Cu 0.76, Fe 0.79 and Zn 5.5) except for Ca (1245) and P (895), which where highest on day 7. The mean milk mineral element concentrations (mg/L) over days 55 to 150 were Ca 843, P 543, Mg 47, Na 120, K 590, S 219, Cu 0.19, Fe 0.34 and Zn 2.1. The mean plasma element concentrations (mg/L) over the same period were Ca 120, P 77.1, Mg 17.0, Na 3110, K 168, S 983, Cu 1.1, Fe 1.5 and Zn 0.49. Concentration gradients between plasma and milk were observed and, in the case of Ca, P, Mg, K and Zn, their concentrations in milk were greater than those in plasma, while a reverse situation was observed for Na, S, Cu and Fe. With the exception of Ca and P, the highest concentrations of mineral elements were observed in the colostrum. The nursing foal should have access to good pasture or creep feed, because the intakes of Ca, P and Cu from milk may be less than optimum to meet the daily mineral element requirements.
USDA-ARS?s Scientific Manuscript database
Small RNAs regulate the genome by guiding transcriptional and post-transcriptional silencing machinery to specific target sequences, including genes and transposable elements (TEs). Although miniature inverted-repeat transposable elements (MITEs) are closely associated with euchromatic genes, the br...
Elder, John F.
2007-01-01
A study of concentrations and distribution of major and trace elements in surficial bottom sediments of Little Rock Lake in northern Wisconsin included examination of spatial variation and grain-size effects. No significant differences with respect to metal distribution in sediments were observed between the two basins of the lake, despite the experimental acidification of one of the basins from pH 6.1 to 4.6. The concentrations of most elements in the lake sediments were generally similar to soil concentrations in the area and were well below sediment quality criteria. Two exceptions were lead and zinc, whose concentrations in July 1990 exceeded the criteria of 50 μg/g and 100 μg/g, respectively, in both littoral and pelagic sediments. Concentrations of some elements, particularly Cu, Pb, and Zn, increased along transects from nearshore to midlake, following a similar gradient of sedimentary organic carbon. In contrast, Mn, Fe, and alkali/alkaline-earth elements were at maximum concentrations in nearshore sediments. These elements are less likely to partition to organic particles, and their distribution is more dependent on mineralogical composition, grain size, and other factors. Element concentrations varied among different sediment grain-size fractions, although a simple inverse relation to grain size was not observed. Fe, Mn, Pb, and Zn were more concentrated in a grain-size range 20–60 tm than in either the very fine or the coarse fractions, possibly because of the aggregation of smaller particles cemented together by organic and Fe/Mn hydrous-oxide coatings.
Lorusso, G; Nishimura, S; Xu, Z Y; Jungclaus, A; Shimizu, Y; Simpson, G S; Söderström, P-A; Watanabe, H; Browne, F; Doornenbal, P; Gey, G; Jung, H S; Meyer, B; Sumikama, T; Taprogge, J; Vajta, Zs; Wu, J; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Kajino, T; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Schury, P; Shibagaki, S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yagi, A; Yoshinaga, K
2015-05-15
The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.
In silico study on the effects of matrix structure in controlled drug release
NASA Astrophysics Data System (ADS)
Villalobos, Rafael; Cordero, Salomón; Maria Vidales, Ana; Domínguez, Armando
2006-07-01
Purpose: To study the effects of drug concentration and spatial distribution of the medicament, in porous solid dosage forms, on the kinetics and total yield of drug release. Methods: Cubic networks are used as models of drug release systems. They were constructed by means of the dual site-bond model framework, which allows a substrate to have adequate geometrical and topological distribution of its pore elements. Drug particles can move inside the networks by following a random walk model with excluded volume interactions between the particles. The drug release time evolution for different drug concentration and different initial drug spatial distribution has been monitored. Results: The numerical results show that in all the studied cases, drug release presents an anomalous behavior, and the consequences of the matrix structural properties, i.e., drug spatial distribution and drug concentration, on the drug release profile have been quantified. Conclusions: The Weibull function provides a simple connection between the model parameters and the microstructure of the drug release device. A critical modeling of drug release from matrix-type delivery systems is important in order to understand the transport mechanisms that are implicated, and to predict the effect of the device design parameters on the release rate.
End-of-life management of corrosive drywall.
Kim, Hwidong; Krause, Max J; Townsend, Timothy
2016-11-01
Recently, gypsum drywall products imported to the United States (US) were found to cause metal corrosion and tarnishing in some homes, often necessitating that this drywall be discarded. Research assessed the potential implications of recycling and landfilling corrosive/imported drywall. Samples of corrosive drywall were collected from homes in Florida, US and these characteristics were assessed relative to domestically-produced drywall purchased from retail outlets. The total and synthetic precipitation leaching procedure (SPLP) leachable heavy metal concentrations were measured and compared to risk-based regulatory thresholds to assess the possible land application risk. In a majority of samples, concentrations were below levels of regulatory concern. The mean concentration of several elements exceeded the thresholds in a few samples for the direct exposure assessment (As) and the groundwater leaching assessment (Al, B, Hg, Mn, Sr and V); but the results did not suggest that corrosive drywall would present a greater risk than domestic drywall. To assess landfilling concerns, the potential for sulfur gases emissions upon disposal was evaluated. Experiments indicated that corrosive drywall would not pose a greater risk of long-term H2S emissions compared to domestic drywall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Muñoz-Vera, Ana; García, Gregorio; García-Sánchez, Antonio
2015-12-01
Coastal lagoons are ecosystems highly vulnerable to human impacts because of their situation between terrestrial and marine environment. Mar Menor coastal lagoon is one of the largest lagoons of the Mediterranean Sea, placed in SE Spain and subjected to major human impacts, in particular the mining of metal sulphides. As a consequence, metal concentration in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, the present study has assessed the ability of Cotylorhiza tuberculata for bioaccumulating metals from sea water. Up to 65 individuals were sampled at 8 different sampling stations during the summer of 2012. Although the concentration values for different elements considered were moderate (Pb: 0.04-29.50 ppm, Zn: 2.27-93.44 ppm, Cd: 0-0.67 ppm, As: 0.56-130.31 ppm) by dry weight of the jellyfish tissues (bell and oral arms combined), bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content because of their potential environmental and health implications.
Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher
2014-02-18
Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from undisturbed, background soils emphasizing the important role of soils in sequestering past and current Hg pollution loads.
NASA Astrophysics Data System (ADS)
Wang, Yong; Xue, Yifeng; Tian, Hezhong; Gao, Jian; Chen, Ying; Zhu, Chuanyong; Liu, Huanjia; Wang, Kun; Hua, Shenbing; Liu, Shuhan; Shao, Panyang
2017-05-01
In order to investigate the effects of the temporary strengthening of air quality assurance controlling measures during the Beijing 2015 IAAF World Championships and the Military Parade Assurance Period (MPAP) in China, we collected daily PM2.5 aerosol samples at three typical sites (urban downtown, suburban and rural background area, respectively) in Beijing and investigated the variations of concentration of the water-soluble ions, elemental constituents, organic carbon (OC) and elemental carbon (EC) in PM2.5 from Aug.15 to Sept.10, 2015. Simultaneously, 1-h high-resolution continuous monitoring results of PM2.5 mass concentration as well as the chemical components which were measured at another online monitoring urban site were incorporated. The concentrations of PM2.5 and other gaseous pollutants (SO2, NO2 and CO) during the parade control period (Aug.20-Sept.3) exhibited a substantially decrease compared with the concentrations during both the non-control (August 15 to August 19 and September 4 to September 10) period and the same period in 2014. According to the CMC results, the major components were identified as secondary inorganic aerosol (SIA, the combination of sulfate, ammonium and nitrate), mineral dust and particular organic matter (POM), which together accounted for more than 80% of PM2.5 in urban and suburban sites. POM is found to account for the largest proportion, and the obviously higher proportion of POM in the urban area revealed the significance contribution from vehicles. Compared with the non-control period, the mass concentrations of SIA and secondary organic carbon (SOC) decreased obviously. However, SIA and SOC are observed to play an important role in contributing to the rapid growth process of PM2.5 under unfavorable meteorological conditions during the control period. In view of the gradual improvement of air quality in Beijing, as well as the contribution of secondary aerosol formations in total PM2.5, effective control of primary gaseous pollutants and volatile organic compounds (VOCs) will be very significant for further lowering the concentration of PM2.5 in Beijing in normal time.
Basheer, Irum; Qureshi, Irfan Zia
2018-01-15
Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017. Published by Elsevier GmbH.
USDA-ARS?s Scientific Manuscript database
The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown un...
NASA Astrophysics Data System (ADS)
Böttcher, Michael E.; Lapham, Laura; Gussone, Nikolaus; Struck, Ulrich; Buhl, Dieter; Immenhauser, Adrian; Moeller, Kirsten; Pretet, Chloé; Nägler, Thomas F.; Dellwig, Olaf; Schnetger, Bernhard; Huckriede, Hermann; Halas, Stan; Samankassou, Elias
2013-04-01
The Holocene Baltic Sea has been switched several times between fresh water and brackish water modes. Modern linear sedimentation rates, based on 210-Pb, 137-Cs, and Hg dating of surface sediments, are between 0.1 and 0.2 mm per year. The change in paleo-environmental conditions caused downcore gradients in the concentrations of dissolved species from modern brackish waters towards fresh paleo-pore waters, interrupted by the brief brackish Yoldia stage. These strong physico-chemical changes had consequences for e.g., microbial activity and further physical and chemical water-solid interactions associated with multiple stable isotope fractionation processes, and, in turn, have strong implications for isotope and trace element partitioning upon early diagenetic mineral (trans)formations. In this communication, we present the results from the first integrated multi-isotope and trace element investigation conducted in this type of salinity-gradient system. It is found that concentrations of conservative elements (e.g., Na, Cl) decrease with depth due to diffusion of ions from brackish waters into underlying fresh waters. This is associated with pronounced depletions in H-2 and O-18 of pore water with depth. Covariations of both isotope systems are close to the meteoric water line as defined by modern Baltic Sea surface waters. A downward increase and decrease of Ca and Mg concentrations, respectively, is associated with decreasing Ca-44 and Mg-26 isotope values. B-11 isotope values decrease in the limnic part of the sediments, too. On the other hand, an increase in Ba concentrations with depth is associated with an increase in Ba-137/134 isotope values. Microbial sulfate reduction and organic matter oxidation lead to an increase in DIC, but a decrease in sulfate concentrations and in C-13 contents of DIC with depth. Suess (1981) was probably the first to propose, that desorption of Ca and Ba from glacial sediments due to downward diffusing ions may be responsible for a downcore increase in pore water concentrations of earth alkaline ions and the formation of authigenic barites. Coupled S-34 and O-18 isotope signals in authigenic barites suggest that they were formed in pre-Yoldia sediments from pore waters strongly depleted in O-18 (as low as -20 per mil vs. VSMOW). In the present communication, we will discuss possible impacts of diagenetic processes on multi-isotope signals in pore waters and authigenic phases. A combination of mixing between brackish and fresh water, ion exchange, precipitation/dissolution, and transport reactions is considered to explain most of the observed isotope variations along the vertical pore water profile. This work was supported by the Leibniz IOW, BONUS+ program, the Universities of Bern, Geneva, Bochum, Münster, and Oldenburg, and the Natural Museum of History, Berlin.
Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...
2018-04-13
This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less
Essential and toxic elements in seaweeds for human consumption.
Desideri, D; Cantaluppi, C; Ceccotto, F; Meli, M A; Roselli, C; Feduzi, L
2016-01-01
Essential elements (K, Ca, P, S, Cl, Mn, Fe, Cu, Zn, Ni, Br, and I) and nonessential or toxic elements (Al, Ti, Si, Rb, Sr, As, Cd, Sn, and Pb) were determined by energy-dispersive polarized x-ray fluorescence spectrometry in 14 seaweeds purchased in local specialty stores in Italy and consumed by humans. The differences in elements between the algae species reached up to 2-4 orders of magnitude. Lithothamnium calcareum showed the highest levels of Ca, Al, Si, Fe, and Ti. Palmaria palmata showed the highest concentrations of K, Rb, and Cl. The highest content of S was in Chondrus crispus. Laminaria digitata contained the highest concentrations of total As, Cd, Sn, Br, and I. The highest concentration of Zn was in Chlorella pyrenoidosa. Ulva lactuca displayed the highest levels of Cu, Ni, Mn, and Pb. Iodine levels ranged from 3.4 in Chlorella pyrenoidosa to 7316 mg/kg(dry) in Laminaria digitata. The nutrimental importance of essential elements was assessed using nutritional requirements. The results showed that the consumption of algae might serve as an important source of the essential elements. Health risk due to the toxic elements present in seaweed was estimated using risk estimators. Total As, Cd, and Pb concentrations ranged from <1 to 67.6, to 7.2 and to 6.7 mg/kg(dry) respectively; therefore, their contribution to total elemental intake does not appear to pose any threat to the consumers, but the concentrations of these elements should be controlled to protect the consumer against potential adverse health risks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Huan; Qian, Yu; Cochran, J. Kirk
This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less
Trace elemental correlation study in malignant and normal breast tissue by PIXE technique
NASA Astrophysics Data System (ADS)
Raju, G. J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G. A. V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P. V. B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka
2006-06-01
Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors.
Trace and minor elements in sphalerite from metamorphosed sulphide deposits
NASA Astrophysics Data System (ADS)
Lockington, Julian A.; Cook, Nigel J.; Ciobanu, Cristiana L.
2014-12-01
Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently constrained.
Liu, Fengjie; Wang, Wen-Xiong
2015-09-01
Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Mouton, M.; Botha, A.; Thornton, M.; Mesjasz-Przybyłowicz, J.; Przybyłowicz, W. J.
2015-11-01
Several studies revealed that anthropogenic activities often cause toxic concentrations of some elements, such as mercury, which bio-accumulate through the marine food chain, impacting negatively on the health of animals in the top trophic levels, such as a variety of marine mammals. Moreover, analysis of cetacean skin has been reported to be a reliable, long-term and mostly non-invasive method to monitor bio-accumulation of chemicals in cetacean populations. Several elements, including trace elements, occur naturally in cetacean skin, although nothing is known about their distribution patterns and little about safe base line concentrations. In May 2009, 42 false killer whales (FKWs) beached and died at Kommetjie in the Western Cape of South Africa. Skin samples of these FKWs were collected and analysed to determine elemental distribution patterns. The concentrations and distribution patterns of the major, as well as detectable trace elements were determined in skin samples from ten randomly selected FKW individuals, using micro-PIXE (particle-induced X-ray emission) analysis. Results revealed differences between the distribution patterns of elements in the skin sections. Fe, for example, was found to be concentrated in the dermal papillae, whereas the highest Zn concentrations occurred in the epidermis and particularly in the epidermal papillae. Since these essential elements mediate factors such as host immunity, from skin integrity to humoral immunity, knowledge of their typical distribution patterns can be of great value in studies of bio-accumulation. This is the first report of micro-PIXE being employed to study elemental distribution in cetacean skin and the resulting elemental distribution maps can serve as reference in future environmental pollution studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu
Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptormore » phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.« less
Broster, Bruce E.; Dickson, M.L.; Parkhill, M.A.
2009-01-01
Thirty-nine elements in humus and till matrix were compared at 109 sites overlying Ag-As-Cu-Mo-Pb-Zn mineralized occurrences in northeastern New Brunswick to assess humus for anomaly identification. Humus element concentrations were not consistently correlative with maximum or minimum concentrations found in the underlying till or bedrock. The humus demonstrated significantly higher mean elemental concentrations than the till for six specific elements: 9 times greater for Mn, 6 times greater for Cd, 5 times greater for Ag and Pb, 3 times greater for Hg, and double the concentration of Zn. Spatial dispersal patterns for these elements were much larger for humus content than that exhibited by the till matrix analysis, but did not delineate a point source. For elements in till, the highest concentrations were commonly found directly overlying the underlying mineralized bedrock source or within one km down-glacier of the source. The complexity of the humus geochemical patterns is attributed to the effects of post-glacial biogenic, down-slope hydrodynamic and solifluction modification of dispersed mineralization in the underlying till, and the greater capacity of humus to adsorb cations and form complexes with some elements, relative to the till matrix. Humus sampling in areas of glaciated terrain is considered to be mostly valuable for reconnaissance exploration as elements can be spatially dispersed over a much larger area than that found in the till or underlying bedrock. ?? 2009 Elsevier B.V. All rights reserved.
Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.
Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P
2005-05-01
Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.
NASA Astrophysics Data System (ADS)
Sanchez, J. L.; Osipowicz, T.; Tang, S. M.; Tay, T. S.; Win, T. T.
1997-07-01
The trace element concentrations found in geological samples can shed light on the formation process. In the case of gemstones, which might be of artificial or natural origin, there is also considerable interest in the development of methods that provide identification of the origin of a sample. For rubies, trace element concentrations present in natural samples were shown previously to be significant indicators of the region of origin [S.M. Tang et al., Appl. Spectr. 42 (1988) 44, and 43 (1989) 219]. Here we report the results of micro-PIXE analyses of trace element (Ti, V, Cr, Fe, Cu and Ga) concentrations of a large set ( n = 130) of natural rough rubies from nine locations in Myanmar (Burma). The resulting concentrations are subjected to statistical analysis. Six of the nine groups form clusters when the data base is evaluated using tree clustering and principal component analysis.
Silva, Bruna Mariáh da S E; Morales, Gundisalvo P; Gutjahr, Ana Lúcia N; Freitas Faial, Kelson do C; Carneiro, Bruno S
2018-03-14
In this study, trace element concentrations were measured in chelipod and gill samples of the crab U. cordatus by induced coupled plasma optical emission spectrometry (ICP OES). The element average concentrations between the structures were statistically compared. Gill concentrations of Cu and Zn were higher in female crabs, while in chelipods, Pb concentrations were higher in males. The concentration of Zn in crabs from Curuçá City were higher than the recommended by health agencies, but the provisional tolerable daily intake value (PTDI), for Zn and Cu, showed only 10 and 23% contribution, respectively. The bioaccumulation factor was higher than 1 for Cu (gills and chelipods) and Zn (only for chelipods), which suggests bioaccumulation for these elements. Further metallomic and oxidative stress analyses are suggested, in order to evaluate possible protein and/or enzymatic biomarkers of toxicity.
Urban impacts on regional carbonaceous aerosols: case study in central Texas.
Barrett, Tate E; Sheesley, Rebecca J
2014-08-01
Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011-August 2012). BT analysis indicates consistent north-south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (< 2.5 microm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 microg m(-3) and OC = 3.0 microg m(-3)) and elevated EC during the winter (0.22 microg m(-3)). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g(-1) and BRC MAE365 = 0.15 m2 g(-1)). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States. Implications: Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to determine climatic and air quality implications of urban outflow to a regional receptor site, representative of the central United States. Results indicate that central Texas organic carbon has mixed urban and rural sources, while elemental carbon is controlled by the transport of urban emissions. Analysis of aerosol absorption showed black carbon as the dominant absorber, with less brown carbon absorption than regional studies in California and the southeastern United States.
Meglia, GE; Johannisson, A; Petersson, L; Waller, K Persson
2001-01-01
Dairy cows are highly susceptible to infectious diseases, like mastitis, during the period around calving. Although factors contributing to increased susceptibility to infection have not been fully elucidated, impaired neutrophil recruitment to the site of infection and changes in the concentrations of some micronutrients related with the function of the immune defence has been implicated. Most of the current information is based on studies outside the Nordic countries where the conditions for dairy cows are different. Therefore, the aim of the study was to evaluate changes in blood concentrations of the vitamins A and E, the minerals calcium (Ca), phosphorous (P), and magnesium (Mg), the electrolytes potassium (K) and sodium (Na) and the trace elements selenium (Se), copper (Cu) and zinc (Zn), as well as changes in total and differential white blood cell counts (WBC) and expression of the adhesion molecules CD62L and CD18 on blood neutrophils in Swedish dairy cows during the period around calving. Blood samples were taken from 10 cows one month before expected calving, at calving and one month after calving. The results were mainly in line with reports from other countries. The concentrations of vitamins A and E, and of Zn, Ca and P decreased significantly at calving, while Se, Cu, and Na increased. Leukocytosis was detected at calving, mainly explained by neutrophilia, but also by monocytosis. The numbers of lymphocytes tended to decrease at the same time. The mean fluorescent intensity (MFI) of CD62L and CD18 molecules on blood neutrophils remained constant over time. The proportion of CD62L+ neutrophils decreased significantly at calving. The animals were fed according to, or above, their requirements. Therefore, changes in blood levels of vitamins, minerals and trace elements were mainly in response to colostrum formation, changes in dry matter intake, and ruminal metabolism around calving. Decreased levels of vitamins A and E, and of Zn at calving might have negative implications for the functions of the immune defence. The lower proportion of CD62L+ neutrophils at calving may result in less migration of blood neutrophils into the tissues, and might contribute to the increased susceptibility to infections at this time. PMID:11455894
NASA Astrophysics Data System (ADS)
Periasamy, V.; Venkateshwarlu, M.
2017-06-01
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgO vs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th-Sc-Zr/10, La-Th-Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V-Ni-Th ∗10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ∗ suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.
Calabrese, Edward J; Iavicoli, Ivo; Calabrese, Vittorio; Cory-Slechta, Deborah A; Giordano, James
2018-05-01
This paper assessed approximately 30 studies, mostly involving occupationally exposed subjects, concerning the extent to which those who developed elemental mercury (Hg)-induced central and/or peripheral neurotoxicities from chronic or acute exposures recover functionality and/or performance. While some recovery occurred in the vast majority of cases, the extent of such recoveries varied considerably by individual and endpoint. Factors accounting for the extensive inter-individual variation in toxicity and recovery were not specifically assessed such as age, gender, diet, environmental enrichment, chelation strategies and dose-rate. While the data indicate that psychomotor endpoints often show substantial and relatively rapid (i.e., 2-6 months) recovery and that neuropsychological endpoints display slower and less complete recovery, generalizations are difficult due to highly variable study designs, use of different endpoints measured between studies, different Hg exposures based on blood/urine concentrations and Hg dose-rates, the poor capacity for replicating findings due to the unpredictable/episodic nature of harmful exposures to elemental Hg, and the inconsistency of the initiation of studies after induced toxicities and the differing periods of follow up during recovery periods. Finally, there is strikingly limited animal model literature on the topic of recovery/reversibility of elemental Hg toxicity, a factor which significantly contributes to the overall marked uncertainties for predicting the rate and magnitude of recovery and the factors that affect it. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Righter, K.; Humayun, M.; Danielson, L.
2007-01-01
One of the most elusive geochemical aspects of the early Earth has been explaining the near chondritic relative abundances of the highly siderophile elements (HSE; Au, Re and the platinum group elements) in Earth's primitive upper mantle (PUM). Perhaps they were delivered to the Earth after core formation, by late addition of carbonaceous chondrite material. However, the recognition that many moderately siderophile elements can be explained by high pressure and temperature (PT) metal-silicate equilibrium, leads to the question whether high PT equilibrium can also explain the HSE concentrations. Answers to this question have been slowed by experimental difficulties (nugget effect and very low solubilities). But two different perspectives have emerged from recent studies. One perspective is that D(M/S) for HSE at high PT are not low enough to explain terrestrial mantle depletions of these elements (for Pd and Pt). A second perspective is D(M/S) are reduced substantially at high PT and even low enough to explain terrestrial mantle depletions (for Au and Pt). Issues complicating interpretation of all experiments include use of MgO- and FeO-free silicate melts, and S-free and FeNi metal-free systems. In addition, conclusions for Pt rest on an interpretation that the tiny metallic nuggets plaguing many such experiments, were formed upon quench. There is not agreement on this issue, and the general question of HSE solubility at high PT remains unresolved
NASA Astrophysics Data System (ADS)
Michelet-Habchi, C.; Barberet, Ph.; Dutta, R. K.; Guiet-Bara, A.; Bara, M.; Moretto, Ph.
2003-09-01
Regulation of vascular tone in the fetal extracorporeal circulation most likely depends on circulating hormones, local paracrine mechanisms and changes in membrane potential of vascular smooth muscle cells (VSMCs) and of vascular endothelial cells (VECs). The membrane potential is a function of the physiological activities of ionic channels (particularly, K + and Ca 2+ channels in these cells). These channels regulate the ionic distribution into these cells. Micro-particle induced X-ray emission (PIXE) analysis was applied to determine the ionic composition of VSMC and of VEC in the placental human allantochorial vessels in a physiological survival medium (Hanks' solution) modified by the addition of acetylcholine (ACh: which opens the calcium-sensitive K + channels, K Ca) and of high concentration of K + (which blocks the voltage-sensitive K + channels, K df). In VSMC (media layer), the addition of ACh induced no modification of the Na, K, Cl, P, S, Mg and Ca concentrations and high K + medium increased significantly the Cl and K concentrations, the other ion concentrations remaining constant. In endothelium (VEC), ACh addition implicated a significant increase of Na and K concentration, and high K + medium, a significant increase in Cl and K concentration. These results indicated the importance of K df, K Ca and K ATP channels in the regulation of K + intracellular distribution in VSMC and VEC and the possible intervention of a Na-K-2Cl cotransport and corroborated the previous electrophysiological data.
Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S
2001-12-01
Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.
Love, Milton S.
2009-01-01
Resource managers are concerned that offshore oil platforms in the Southern California Bight may be contributing to environmental contaminants accumulated by marine fishes. To examine this possibility, 18 kelp bass (Paralabrax clathratus), 80 kelp rockfish (Sebastes atrovirens), and 98 Pacific sanddab (Citharichthys sordidus) were collected from five offshore oil platforms and 10 natural areas during 2005-2006 for whole-body analysis of 63 elements. The natural areas, which served as reference sites, were assumed to be relatively uninfluenced by contaminants originating from platforms. Forty-two elements were excluded from statistical comparisons for one of three reasons: they consisted of major cations that were unlikely to accumulate to potentially toxic concentrations under ambient exposure conditions; they were not detected by the analytical procedures; or they were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these 21 elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. Eight comparisons yielded significant interaction effects between total length (TL) of the fish and the two habitat types (oil platforms and natural areas). This indicated that relations between certain elemental concentrations (i.e., copper, rubidium, selenium, tin, titanium, and vanadium) and habitat type varied by TL of affected fish species. To better understand these interactions, we examined elemental concentrations in very small and very large individuals of affected species. Although significant interactions were detected for rubidium, tin, and selenium in kelp rockfish, the concentrations of these elements did not differ significantly between oil platforms and natural areas over the TL range of sampled fish. However, for selenium, titanium, and vanadium in Pacific sanddab, small individuals (average TL, 13.0 cm) exhibited significantly lower concentrations at oil platforms than at natural areas, whereas large individuals (average TL, 27.5 cm) exhibited higher concentrations at oil platforms than at natural areas. For copper in Pacific sanddab, small individuals did not exhibit differences between oil platforms and natural areas, whereas large individuals exhibited significantly higher concentrations at oil platforms than at natural areas. On the other hand, for tin in Pacific sanddab, small individuals did not exhibit differences between oil platforms and natural areas, whereas large individuals exhibited significantly lower concentrations at oil platforms than at natural areas. Although concentrations of arsenic, cadmium, chromium, lead, mercury, and selenium in fishes from some platforms and natural areas equaled or exceeded literature-based toxicity thresholds for fish and fish-eating wildlife, studies are still needed to document evidence of toxicity from these elements. When estimates of elemental concentrations in skinless fillets were compared to risk-based consumption limits for humans, the concentrations of arsenic, cadmium, mercury, and tin in fish from a mix of oil platforms and natural areas were sufficiently elevated to suggest a need for further study of inorganic arsenic, cadmium, mercury, and tributyltin.
NASA Astrophysics Data System (ADS)
Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.
2012-11-01
This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water. The most plausible explanation is that Ba mobility decreased with increasing aridification due to preferential deposition with clay and Fe-oxide-hydroxide or barite on the watershed of Lake Albert.
NASA Astrophysics Data System (ADS)
Zipfel, J.; Team, A. S.
2004-12-01
The Alpha-Particle X-ray Spectrometers (APXS) are part of the instrument suites of both Mars Exploration Rovers, Spirit and Opportunity, which landed on Mars at Gusev crater and Meridiani Planum in the beginning of 2004. They are in-situ instruments for the determination of major and minor elements of soils, rocks, and outcrops. Soils at these landing sites are chemically characterized by high sulfur and chlorine contents, similar to soils at previous landing sites. Abundances of major and minor elements of all soils are very similar, strongly supporting the concept of global distribution and thorough mixing of soils on Mars. Locally, minor deviations from average soil composition are observed. These are attributed to the addition of local components to "global soil". In one trench at Gusev crater magnesium and sulfur concentrations increase with depth and give direct evidence for magnesium sulfate, possibly formed by weathering of olivine under acidic conditions, and local redistribution processes. Rocks at Gusev crater plains are primitive magnesium-rich basaltic rocks with normative olivine. They are coated to varying degrees with soil/dust and alteration rinds. Highly mobile elements are enriched in these outer layers. Outcrop materials at the base of the Colombia Hill site are possibly basaltic or volcaniclastic rocks. They are chemically highly altered as reflected by very high concentrations of water soluble elements (S, Cl, and Br), observed even after removal of a more than 8 mm thick surface layer. Apparently, the alteration extends to much greater depth. Outcrops at the Opportunity landing site were analyzed in Eagle crater and Endurance crater. These are light-toned sedimentary rocks of siliciclastic materials with up to 40 weight percent of sulfates. Based on mass balance calculations, in addition to Mg-sulfate and jarosite, other sulfates, e.g., Ca- and Al-bearing sulfates must be present. Outcrop rocks in Eagle crater are enriched in bromine relative to chlorine to varying degrees. Rocks in Endurance crater are stratigraphically layered sediments, possibly deposited under aqueous and aeolian conditions. The silicate to sulfate ratio of these units increases with depth. Vein fillings have high bromine concentrations. The chemical composition of rocks, soils and outcrops analyzed at both landing sites provides clear evidence for water-rock interaction and the presence of water over an extended period of time.
Kelley, K.D.; Kelley, D.L.
1992-01-01
A reconnaissance geochemical survey was conducted in the southern Killik River quadrangle, central Brooks Range, northern Alaska. The Brooks Range lies within the zone of continuous permafrost which may partially inhibit chemical weathering and oxidation. The minus 30-mesh and nonmagnetic heavy-mineral concentrate fractions of sediment samples were chosen as the sample media for the survey so that mechanical rather than chemical dispersion patterns would be enhanced. A total of 263 sites were sampled within the southern half of the Killik River quadrangle at an average sample density of approximately one sample per 12 km2. All samples were submitted for multi-element analyses. In the western and central Brooks Range, several known sediment-hosted Zn-Pb-Ag(-Ba) deposits occur within a belt of Paleozoic rocks of the Endicott Mountains allochthon. Exploration for this type of deposit in the Brook Range is difficult, due to the inherently high background values for Ba, Zn and Pb in shale and the common occurrence of metamorphic quartz-calcite veins, many of which contain traces of sulfide minerals. Stream sediments derived from these sources produce numerous geochemical anomalies which are not necessarily associated with significant mineralization. R-mode factor analysis provides a means of distinguishing between element associations related to lithology and those related to possible mineralization. Factor analysis applied to the multi-element data from the southern Killik River quadrangle resulted in the discovery of two additional Zn-Pb-Ag mineral occurrences of considerable areal extent which are 80-100 km east of any previously known deposit. These have been informally named the Kady and Vidlee. Several lithogeochemical element associations, or factors, and three factors which represent sulfide mineralization were identified: Ag-Pb-Zn (galena and sphalerite) and Fe-Ni-Co-Cu (pyrite ?? chalcopyrite) in the concentrate samples and Cd-Zn-Pb-As-Mn in the sediment samples. The distribution of high scores for each individual mineralization factor outlined several relatively large (200-250 km2) geochemically favorable areas. When the distribution of high scores for all three factors were superimposed, samples characterized by high scores for one or both of the concentrate mineralization factors and the mineralization factor in sediments define basin areas of approximately 48 and 64 km2 surrounding Kady and Vidlee, respectively. ?? 1992.
Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments
NASA Technical Reports Server (NTRS)
Schwandt, Craig S.; McKay, Gordon A.
1997-01-01
Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.
Kumakli, Hope; Duncan, A'ja V; McDaniel, Kiara; Mehari, Tsdale F; Stephenson, Jamira; Maple, Lareisha; Crawford, Zaria; Macemore, Calvin L; Babyak, Carol M; Fakayode, Sayo O
2017-05-01
Human scalp hair samples were collected and used to assess exposure to toxic elements and essential elements in the state of North Carolina, USA using accelerated microwave assisted acid digestion and inductively coupled plasma optical emission spectroscopy (ICP-OES). The figures-of-merit of the ICP-OES were appropriate for elemental analysis in scalp hair with detection limits as low as 0.0001 mg/L for Cd, good linearity (R 2 > 0.9978), and percent recoveries that ranged from 96 to 106% for laboratory-fortified-blanks and 88-112% for sample spike recovery study. The concentrations of essential elements in scalp hair were larger than those of toxic elements, with Ca having the highest average concentration (3080 μg/g, s = 14,500, n = 194). Some of the maximum concentrations observed for As (65 μg/g), Ni (331 μg/g), Cd (2.96 μg/g), and Cr (84.6 μg/g) in individual samples were concerning, however. Samples were statistically analyzed to determine the influence of race, gender, smoking habits, or age on the elemental concentrations in scalp hair. Higher concentrations of essential elements were observed in the scalp hair of Caucasians, females, and non-smokers, and the differences were often significant at a 90% confidence level. Several pairs of essential elements, for example Ca-K, Ca-Mg, and Ca-Zn, were strongly correlated in Caucasian hair but uncorrelated in African-American hair. Similarly, essential elements were strongly correlated in female hair but weakly correlated in male hair. Toxic element pairs (As-Cd, As-Se, Pb-As, and Se-Cd) were strongly correlated in the hair of smokers but uncorrelated in that of non-smokers, suggesting that cigarette smoke is a common source of toxic elements in humans. Published by Elsevier Ltd.
Chen, Xue-Bin; Yang, Ping-Heng; Lan, Jia-Cheng; Mo, Xue; Shi, Yang
2014-01-01
Chemical dynamics of Qingmuguan karst groundwater system were continuously monitored during the rainfall events. A series of high-resolution concentrations data on trace elements, such as barium, strontium, iron, manganese, aluminum, and other major elements were acquired. Correlation analysis and analysis of concentration curve were employed to identify the sources and migration path of the trace elements. And the formation process of trace elements in groundwater was discussed with the geological background of underground river basin. Research shows that barium and strontium derived from carbonate dissolution appeared to be stored in features such as fissures and pores. These two ions were recharged into the underground river by diffusion during precipitation, which resulted in small changes in the their concentration. However total iron, total manganese and aluminum derived from soil erosion varied relatively widely with strong response to rainfall, attributing to the migration of total iron and aluminum with overland flow to recharge the subterranean river directly via sinkholes while total manganese via soil-rock porous media. The results showed that concentrations of all the five trace elements were below 1 mg x L(-1), and the highest concentrations of total iron, total manganese and aluminum exceeded the limit of drinking water. To some extent, the concentrations of total iron and aluminum may be an indicator for soil erosion and water quality.
NASA Astrophysics Data System (ADS)
Hu, M.; Lee, C.
2005-12-01
In terms of redox, the marine sediments can be roughly divided into anoxic to suboxic sediments on the margins and oxic sediments in pelagic (open ocean) environments. The relative amounts of anoxic/suboxic sediments being deposited at any given time could be related to biological productivity and/or the efficiency of the ocean circulation system. How the depositional area of anoxic/suboxic deposition has changed through time is thus of concern. One way to track redox conditions is to investigate variations in the concentrations of redox sensitive trace metals. Most studies along these lines have focused on anoxic sediments. However, one problem with using anoxic sediments to study the global oceans is that such sediments are typically deposited in somewhat isolated basins, whose redox conditions may vary from basin to basin. An alternative approach, taken here, is to examine redox-sensitive elemental ratios in oxic pelagic sediments. This is motivated by the fact that pelagic sediments are more likely to reflect average ocean chemistry. In addition, the redox-sensitive metal contents of oxic sediments represent the complement to anoxic sediments. Choosing an appropriate redox-sensitive elemental ratio which eliminates dilution/concentration effects, requires the identification of trace metals that are preferentially precipitated in oxic conditions and those precipitated in more reducing conditions. Overall elemental behaviors were estimated by comparing hydrogenous or authigenic burial fluxes of various trace metals at given pelagic ODP sites to global riverine input fluxes. If the pelagic burial fluxes of a given element are significantly smaller than the riverine input flux, other burial outputs are implied, and it is hypothesized here that this element may precipitate in reducing conditions, such as in oceanic margin. If, on the other hand, the pelagic burial flux is equal to or greater than the riverine input flux, the implication is that oxic pelagic sediments must account for a significant proportion of the burial output of that element. In this case, we assume that this element is oxic-loving. Results of this work reveal that V, Cr, and Co may be particularly redox-sensitive: V and Cr precipitate in reducing environments while Co precipitates in more oxidizing environments. Results of our study, combined with existing data from the literature, show that Cr/Co ratios decrease with depth in DSDP596, 39, 801A, 319, 321, 465A, 577 in the N and S Pacific. After correcting for sedimentation rate, it is shown that the variation of Cr/Co versus time in all of these cores converge, which suggests that the variations in Cr/Co reflect a true variation in seawater composition. This also supported by the lack of sedimentation constrained by Cr/Co and Ce flux. Cr/Co remains low during the Cretaceous but begins to rise at ~25Ma across the entire Pacific. If the Cr/Co and Os/Ir ratio of inputs to the ocean have not changed much, this trend also matches that Os/Ir in the DSDP 596 site in the south Pacific. One interpretation of these results is that there has been a decrease in the area of anoxic/suboxic sedimentation beginning at this time. If correct, the implication is that there was a fundamental change in the redox conditions of the ocean in the mid-Cenozoic. We speculate that this might have been related to mid-Cenozoic global cooling, which may have increased the efficiency of the oceanic circulation system.
Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej
2016-04-01
Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic>citric>acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric>oxalic>acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil. Copyright © 2016 Elsevier B.V. All rights reserved.
Helz, George R; Erickson, Britt E; Vorlicek, Trent P
2014-06-01
In aquatic ecosystems, availabilities of Fe, Mo and Cu potentially limit rates of critical biological processes, including nitrogen fixation, nitrate assimilation and N2O decomposition. During long periods in Earth's history when large parts of the ocean were sulfidic, what prevented these elements' quantitative loss from marine habitats as insoluble sulfide phases? They must have been retained by formation of soluble complexes. Identities of the key ligands are poorly known but probably include thioanions. Here, the first determinations of stability constants for Fe(2+)-[MoS4](2-) complexes in aqueous solution are reported based on measurements of pyrrhotite (hexagonal FeS) solubility under mildly alkaline conditions. Two linear complexes, [FeO(OH)MoS4](3-) and [(Fe2S2)(MoS4)2](4-), best explain the observed solubility variations. Complexes that would be consistent with cuboid cluster structures were less successful, implying that such clusters probably are minor or absent in aqueous solution under the conditions studied. The new data, together with prior data on stabilities of Cu(+)-[MoS4](2-) complexes, are used to explore computationally how competition of Fe(2+) and Cu(+) for [MoS4](2-), as well as competition of [MoS4](2-) and HS(-) for both metals would be resolved in solutions representative of sulfidic natural waters. Thiomolybdate complexes will be most important at sulfide concentrations near the [MoO4](2-)-[MoS4](2-) equivalence point. At lower sulfide concentrations, thiomolybdates are insufficiently stable to be competitive ligands in natural waters and at higher sulfide concentrations HS(-) ligands out-compete thiomolybdates.
Chaâbene, Zayneb; Hakim, Imen Rekik; Rorat, Agnieszka; Elleuch, Amine; Mejdoub, Hafedh; Vandenbulcke, Franck
2018-03-01
Date palm (Phoenix dactylifera) seeds were exposed to different copper (Cu) solutions to examine plant stress responses. Low Cu concentrations (0.02 and 0.2 mM) caused an increase of seed germination, whereas higher Cu amounts (2 mM) significantly inhibited seed germination, delayed hypocotyl elongation, increased seedling mortality, and reduced the germination index by more than 90%. Metal-related toxicity symptoms appeared after 15 d of 2 mM of Cu exposure. Biochemical activities such as amylase activity and redox balance elements were examined to study the relationship between external Cu amount and internal plant response. The present study showed that amylolytic activity was dose- and time-dependent. Likewise, H 2 O 2 production increased after exposure to Cu, which was correlated with thiobarbituric acid reactive substance (TBARS) accumulation. Furthermore at low Cu concentrations, superoxide dismutase (SOD) and catalase (CAT) activities increased, suggesting that date palm seed stimulated its metal homeostasis networks. However, the highest cupric ion amounts increased cell oxidant accumulation and reduced enzyme production. Gene expression level measures of P. dactylifera phytochelatin synthase (Pdpcs) and P. dactylifera metallothionein (Pdmt) encoding genes have been carried out to investigate the implication of PdPCS and PdMT proteins in Cu homeostasis and/or its sequestration. Phoenix dactylifera metallothionein induction reached a peak after 30 d of exposure to 0.2 mM of Cu. However, it was down-regulated in plants exposed to higher Cu concentrations. In the same conditions, Pdpcs was overexpressed during 1 mo of exposure before it decreased thereafter. These observations provide a new insight into date palm cell response to Cu, a metal that can be toxic but that is also an essential element. Environ Toxicol Chem 2018;37:797-806. © 2017 SETAC. © 2017 SETAC.
Jew, A.D.; Kim, C.S.; Rytuba, J.J.; Gustin, M.S.; Brown, Gordon E.
2011-01-01
Mercury in the environment is of prime concern to both ecosystem and human health. Determination of the molecular-level speciation of Hg in soils and mine wastes is important for understanding its sequestration, mobility, and availability for methylation. Extended X-ray absorption fine structure (EXAFS) spectroscopy carried out under ambient P-T conditions has been used in a number of past studies to determine Hg speciation in complex mine wastes and associated soils. However, this approach cannot detect elemental (liquid) mercury in Hg-polluted soils and sediments due to the significant structural disorder of liquid Hg at ambient-temperature. A new sample preparation protocol involving slow cooling through the crystallization temperature of Hg(0) (234 K) results in its transformation to crystalline ??-Hg(0). The presence and proportion of Hg(0), relative to other crystalline Hg-bearing phases, in samples prepared in this way can be quantified by low-temperature (77 K) EXAFS spectroscopy. Using this approach, we have determined the relative concentrations of liquid Hg(0) in Hg mine wastes from several sites in the California Coast Range and have found that they correlate well with measured fluxes of gaseous Hg released during light and dark exposure of the same samples, with higher evasion ratios from samples containing higher concentrations of liquid Hg(0). Two different linear relationships are observed in plots of the ratio of Hg emission under light and dark conditions vs % Hg(0), corresponding to silica-carbonate- and hot springs-type Hg deposits, with the hot springs-type samples exhibiting higher evasion fluxes than silica-carbonate type samples at similar Hg(0) concentrations. Our findings help explain significant differences in Hg evasion data for different mine sites in the California Coast Range. ?? 2011 American Chemical Society.
NASA Astrophysics Data System (ADS)
Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej
2016-04-01
Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.
Selenium deficiency risk predicted to increase under future climate change
Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.
2017-01-01
Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487
Selenium deficiency risk predicted to increase under future climate change.
Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E
2017-03-14
Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.
Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways
Luoma, S.N.; Johns, C.; Fisher, N.S.; Steinberg, N.A.; Oremland, R.S.; Reinfelder, J.R.
1992-01-01
Particulate organo-Se was assimilated with 86% efficiency by the deposit feeding bivalve Macoma balthica, when the clam was fed 75Se-labeled diatoms. Absorption efficiencies of participate elemental Se were 22%, when the animals were fed 75Se-labeled sediments in which elemental Se was precipitated by microbial dissimilatory reduction. Precipitation of elemental Se did not eliminate biological availability of the element. Selenite was taken up from solution slowly by M. balthica (mean concentration factor was 712). Concentrations of selenite high enough to influence Se bioaccumulation by M. balthica did not occur in the oxidized water column of San Francisco Bay. However, 98-99% of the Se observed in M. balthica could be explained by ingestion of the concentrations of participate Se found in the bay. The potential for adverse biological effects occurred at much lower concentrations of environmental Se when food web transfer was considered than when predictions of effects were based upon bioassays with solute forms of the element. Selenium clearly requires a protective criterion based upon particulate concentrations or food web transfer. ?? 1992 American Chemical Society.
Soluble trace elements and total mercury in Arctic Alaskan snow
Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.
1997-01-01
Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.
Usuda, Kan; Kono, Koichi; Dote, Tomotaro; Shimizu, Hiroyasu; Tominaga, Mika; Koizumi, Chisato; Nakase, Emiko; Toshina, Yumi; Iwai, Junko; Kawasaki, Takashi; Akashi, Mitsuya
2002-04-01
In previous article, we showed a log-normal distribution of boron and lithium in human urine. This type of distribution is common in both biological and nonbiological applications. It can be observed when the effects of many independent variables are combined, each of which having any underlying distribution. Although elemental excretion depends on many variables, the one-compartment open model following a first-order process can be used to explain the elimination of elements. The rate of excretion is proportional to the amount present of any given element; that is, the same percentage of an existing element is eliminated per unit time, and the element concentration is represented by a deterministic negative power function of time in the elimination time-course. Sampling is of a stochastic nature, so the dataset of time variables in the elimination phase when the sample was obtained is expected to show Normal distribution. The time variable appears as an exponent of the power function, so a concentration histogram is that of an exponential transformation of Normally distributed time. This is the reason why the element concentration shows a log-normal distribution. The distribution is determined not by the element concentration itself, but by the time variable that defines the pharmacokinetic equation.
De Donato, Carlo; Barca, Donatella; Milazzo, Concetta; Santoro, Raffaella; Giglio, Gianni; Tripepi, Sandro; Sperone, Emilio
2017-06-01
Bioaccumulation of 13 trace elements in the livers of 38 Pelophylax sinkl. hispanicus (Ranidae) and its helminth communities were studied and compared among three sites, each with a different degree of pollution along River Neto (south Italy) during September, 2014. Trace element concentrations in water and liver were measured using inductively coupled plasma mass spectrometry. For most elements, the highest concentration was recorded in the frogs inhabiting the third site, the one with the highest degree of pollution. The trend of trace element concentration in the liver can be represented as follows: Cu > Zn > Mn > Se > Cr. Concentrations of some elements in water and liver samples were significantly different among the three sites and this is evidenced by the bioaccumulation in the frogs. Four species of helminths, all belonging to Nematoda, were found: Rhabdias sp., Oswaldocruzia filiformis (Goeze, 1782), Cosmocerca ornata (Dujarden, 1845), Seuratascaris numidica (Seurat, 1917). The parasite survey presents an important difference of prevalence and average number of helminths in frogs between the three sites. Correlating parasitological and ecotoxicological data showed a strong positive correlation between prevalence and number of parasites with some trace elements such as Mn, Co, Ni, As, Se, and Cd.
NASA Astrophysics Data System (ADS)
Yang, L. A., Jr.
2016-12-01
Trace elements demonstrate apparent seasonal variation in the lamina of speleothems in recent years, providing the possibility of studying the changing seasonality of the earth's climate in the past and attracting much extensive attention. As one of the most significant biological elements, the utilization of biology for phosphorus has a direct impact on the growth of animals and plants on the earth surface. The research revolves around standard recovery test of P drip water samples at HS4 drop site in different periods (four periods in total), and the quantitative analysis of phosphates in drip water samples of HS4 drop site within HeShang Cave, qingjiang river, Hubei province was made, recognizing the orthophosphate seasonal changes in karst system and its response to the environment of the earth's surface. The results manifest that the maximum concentration value of phosphorus in drip water samples from 2005 to 2012 is 12.1μg/L(2007-8-14), and the minimum concentration value is 0.1μg/L(2009-3-16), with the average value of 4.55μg/L. The P concentration in HeShang Cave is in accordance with the exclusively reported P data in Ernesto cave in Italy at present. The phosphorus concentration fluctuates seasonally by and large: high in summer and autumn while low in winter and spring, which has common in similar seasonal cycles with synchronous temperatures and drip water rates, also conforming to local temperature and precipitation changes. Plant productivity (determines the organic quality supplied to soil), microbiological effects (relate to temperature and humidity) and underground water permeability (relate to the precipitation and surrounding rock structure) can have an impact on the concentration of phosphorus in drip water. In winter and spring, organic phosphorus decomposition is slow and the phosphorus entering into the karst water is less as low temperature and less rainfall and weak biological process influence, resulting in the phosphorus concentration in drip water is low. With summer's approaching, temperatures rise and precipitations increase, and biological effects enhance, which cause a distinct elevation of the concentration of phosphorus. The value of phosphorus concentration reaches the peak since the turn of the summer - autumn.
Trace-Element Concentrations in Northwest Africa 032
NASA Technical Reports Server (NTRS)
Korotev, R. L.; Jolliff, B. L.; Wang, A.; Gillis, J. J.; Haskin, L. A.; Fagan, T. J.; Taylor, G. J.; Keil, K.
2001-01-01
Trace-element concentrations (INAA) are presented for four samples of the NWA 032 lunar meteorite. The mare basalt has a moderately high Th concentration (1.9 ppm) and a higher Th/REE ratio than any other known mare basalt. Additional information is contained in the original extended abstract.
Petaloti, Christina; Triantafyllou, Athanasios; Kouimtzis, Themistoklis; Samara, Constantini
2006-12-01
Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000-November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47+/-33 microg m(-3) and 110+/-50 microg m(-3) at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210+/-97 microg m(-3)) exceeding the European standard (150 microg m(-3), 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (P<0.05) seasonal variation for TSP concentrations. Some elements (Cl, As, Pb, Br, Se, S, Cd) exhibited significantly higher concentrations at certain sites during the cold period suggesting more intense emissions from traffic, domestic heating and other combustion sources. On the contrary, concentrations significantly higher in the warm period were found at other sites mainly for crustal elements (Ti, Mn, K, P, Cr, etc.) suggesting stronger influence from soil resuspension and/or fly ash in the warm months. The most enriched elements against local soil or road dust were S, Cl, Cu, As, Se, Br, Cd and Pb, whereas negligible enrichment was found for Ti, Mn, Mg, Al, Si, P, Cr. At most sites, highest concentrations of TSP and elemental components were associated with low- to moderate-speed winds favoring accumulation of emissions from local sources. Influences from the power generation were likely at those sites located closest to the power plants and mining activities.
Composition of water and suspended sediment in streams of urbanized subtropical watersheds in Hawaii
De Carlo, E. H.; Beltran, V.L.; Tomlinson, M.S.
2004-01-01
Urbanization on the small subtropical island of Oahu, Hawaii provides an opportunity to examine how anthropogenic activity affects the composition of material transferred from land to ocean by streams. This paper investigates the variability in concentrations of trace elements (Pb, Zn, Cu, Ba, Co, As, Ni, V and Cr) in streams of watersheds on Oahu, Hawaii. The focus is on water and suspended particulate matter collected from the Ala Wai Canal watershed in Honolulu and also the Kaneohe Stream watershed. As predicted, suspended particulate matter controls most trace element transport. Elements such as Pb, Zn, Cu, Ba and Co exhibit increased concentrations within urbanized portions of the watersheds. Particulate concentrations of these elements vary temporally during storms owing to input of road runoff containing elevated concentrations of elements associated with vehicular traffic and other anthropogenic activities. Enrichments of As in samples from predominantly conservation areas are interpreted as reflecting agricultural use of fertilizers at the boundaries of urban and conservation lands. Particulate Ni, V and Cr exhibit distributions during storm events that suggest a mineralogical control. Principal component analysis of particulate trace element concentrations establishes eigenvalues that account for nearly 80% of the total variance and separates trace elements into 3 factors. Factor 1 includes Pb, Zn, Cu, Ba and Co, interpreted to represent metals with an urban anthropogenic enrichment. Factor 2 includes Ni, V and Cr, elements whose concentrations do not appear to derive from anthropogenic activity and is interpreted to reflect mineralogical control. Another, albeit less significant, anthropogenic factor includes As, Cd and U and is thought to represent agricultural inputs. Samples collected during a storm derived from an offshore low-pressure system suggest that downstream transport of upper watershed material during tradewind-derived rains results in a 2-3-fold dilution of the particulate concentrations of Pb, Zn and Cu in the Ala Wai canal watershed. ?? 2004 Elsevier Ltd. All rights reserved.
The Silicon Concentration in Cat Urine and Its Relationship with Other Elements
TAKAHASHI, Fumihito; MOCHIZUKI, Mariko; YOGO, Takuya; ISHIOKA, Katsumi; YUMOTO, Norio; SAKO, Toshinori; UEDA, Fukiko; TAGAWA, Masahiro; TAZAKI, Hiroyuki
2013-01-01
ABSTRACT To understand the effects of silicon (Si) in the urine with respect to the formation of urinary stones, the distribution of Si in urine was observed. Urine samples from cats with urolithiasis (n=10) and healthy cats (n=15) were used. The concentration of Si in the cats with urolithiasis was significantly higher (P<0.001). A significant correlation (P<0.05) was observed between the concentration of Si and those of other elements, such as calcium, magnesium, phosphorus, potassium and iron, only in the urine of the healthy cats. The distribution of elements in the urine differed between the cats with urolithiasis and the healthy cats. The Si concentration and its relationship with other elements were suggested to be useful biomarkers for urolithiasis in cats. PMID:24334829
Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).
Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas
2017-01-01
The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.
Abuelo, Angel; Hernandez, Joaquín; Alves-Nores, Víctor; Benedito, José L; Castillo, Cristina
2016-12-01
There has been some recent criticism about the reliability of the assays commonly used to measure oxidant status in cattle, because some recent publications suggested that the concentration of different trace elements influences the results of these assays. The aim of this study was to test the correlation in 502 bovine serum samples between the concentration of several trace elements (Br, Co, Cr, Cu, Fe, I, Mn, Mo, Ni, Se, Sr, V and Zn) and markers of oxidant status (reactive oxygen species (ROS) and total serum antioxidant capacity (SAC)). The Oxidative Stress index (OSi) was also calculated as ROS/SAC. Some significant correlations were found, although weak (|ρ| < 0.50). Therefore, the relationships observed might be attributed to the different pro- and antioxidant effect of the different elements rather than to the assays detecting these elements instead of the oxidised molecules or total antioxidant potential, respectively. The OSi was poorly correlated (|ρ| ≤ 0.36) with the concentration of the studied trace elements, and therefore, its use is recommended to assess shifts in the systemic redox balance.
Biological monitoring of welders' exposure to chromium, molybdenum, tungsten and vanadium.
Ellingsen, Dag G; Chashchin, Maxim; Berlinger, Balazs; Fedorov, Vladimir; Chashchin, Valery; Thomassen, Yngvar
2017-05-01
Welders are exposed to a number of metallic elements during work. Bioaccessability, that is important for element uptake, has been little studied. This study addresses bioaccessability and uptake of chromium (Cr), molybdenum (Mo), tungsten (W) and vanadium (V) among welders. Bioaccessability of Cr, Mo, V and W was studied in airborne particulate matter collected by personal sampling of the workroom air among shipyard welders by using the lung lining fluid simulant Hatch solution. Associations between concentrations of Hatch soluble and non-soluble elements (Hatch sol and Hatch non-sol ) and concentrations of the four elements in whole blood, serum, blood cells and urine were studied. Air concentrations of the four elements were low. Only a small fraction of Cr, V and W was Hatch sol , while similar amounts of Mo were Hatch sol and Hatch non-sol . Welders (N=70) had statistically significantly higher concentrations of all four elements in urine and serum when compared to referents (N=74). Highly statistically significant associations were observed between urinary W and Hatch sol W (p<0.001) and serum V and Hatch sol V (p<0.001), in particular when air samples collected the day before collection of biological samples were considered. Associations between Hatch sol elements in air and their biological concentrations were higher than when Hatch non-sol concentrations were considered. Associations were generally higher when air samples collected the day before biological sampling were considered as compared to air samples collected two days before. Copyright © 2017 Elsevier GmbH. All rights reserved.
The three-dimensional distribution of minerals in potato tubers
Subramanian, Nithya K.; White, Philip J.; Broadley, Martin R.; Ramsay, Gavin
2011-01-01
Background and Aims The three-dimensional distributions of mineral elements in potato tubers provide insight into their mechanisms of transport and deposition. Many of these minerals are essential to a healthy human diet, and characterizing their distribution within the potato tuber will guide the effective utilization of this staple foodstuff. Methods The variation in mineral composition within the tuber was determined in three dimensions, after determining the orientation of the harvested tuber in the soil. The freeze-dried tuber samples were analysed for minerals using inductively coupled plasma-mass spectrometry (ICP-MS). Minerals measured included those of nutritional significance to the plant and to human consumers, such as iron, zinc, copper, calcium, magnesium, manganese, phosphorus, potassium and sulphur. Key Results The concentrations of most minerals were higher in the skin than in the flesh of tubers. The potato skin contained about 17 % of total tuber zinc, 34 % of calcium and 55 % of iron. On a fresh weight basis, most minerals were higher in tuber flesh at the stem end than the bud end of the tuber. Potassium, however, displayed a gradient in the opposite direction. The concentrations of phosphorus, copper and calcium decreased from the periphery towards the centre of the tuber. Conclusions The distribution of minerals varies greatly within the potato tuber. Low concentrations of some minerals relative to those in leaves may be due to their low mobility in phloem, whereas high concentrations in the skin may reflect direct uptake from the soil across the periderm. In tuber flesh, different minerals show distinct patterns of distribution in the tuber, several being consistent with phloem unloading in the tuber and limited onward movement. These findings have implications both for understanding directed transport of minerals in plants to stem-derived storage organs and for the dietary implications of different food preparation methods for potato tubers. PMID:21289026
Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis
Wang, W.-X.; Fisher, N.S.; Luoma, S.N.
1996-01-01
Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.
NASA Astrophysics Data System (ADS)
Lambrecht, Glenn; Diamond, Larryn William
2014-09-01
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Trace elements and diabetes: Assessment of levels in tears and serum.
Cancarini, A; Fostinelli, J; Napoli, L; Gilberti, M E; Apostoli, P; Semeraro, F
2017-01-01
Tear film is critical for the well-being and homeostasis of the ocular surface. Although the composition of the tear film is well known, the composition of metallic elements have yet to be analysed. Despite trace elements metabolism has been reported to play a role in the pathogenesis of diabetes mellitus, a metabolic disease that affects several aspects of homeostasis, little is known in the literature regarding concentration and possible variation of metallic elements in tear film. We studied the concentrations of several essential and non-essential metallic elements in the tear fluid and serum of patients with type II diabetes mellitus and a group of non-diabetic controls. Serum and tear fluid were collected from 97 patients: 47 type II diabetic patients and 50 non-diabetic controls. Regarding tear film, there were statistically significant differences in Zinc, Chrome, Cobalt, Manganese, Barium, and Lead between groups; the values of all metallic elements were found to be statistically significant higher in patients with mellitus type II diabetes. Regarding serum values there was a statistically significant difference in Chrome, Cobalt, and Selenium values; the concentrations of Chrome and Cobalt were higher in the control group, while Selenium concentration was higher in diabetic patients. In patients with type II diabetes, metal elements with higher concentrations in tears compared to serum were: Lead, Barium, Manganese, Cobalt, and Chrome. In the control group, the metal elements with the highest concentration in tear film compared to serum were Chrome, Manganese, Barium, and Lead. In this study, we attempted to evaluate the possible effect of a disease, such as diabetes, on the metabolism of metallic elements. Although our evidence was very interesting, it is probably limited in its accuracy due to the fact that individuals in the control group harboured ocular pathologies. This work lays the foundation for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Amato-Lourenco, Luís Fernando; Moreira, Tiana Carla Lopes; de Oliveira Souza, Vanessa Cristina; Barbosa, Fernando; Saiki, Mitiko; Saldiva, Paulo Hilário Nascimento; Mauad, Thais
2016-09-01
Although urban horticulture provides multiple benefits to society, the extent to which these vegetables are contaminated by the absorption of chemical elements derived from atmospheric deposition is unclear. This study was designed to evaluate the influence of air pollution on leafy vegetables in community gardens of Sao Paulo, Brazil. Vegetable seedlings of Brassica oleracea var. acephala (collard greens) and Spinacia oleracea (spinach) obtained in a non-polluted rural area and growing in vessels containing standard uncontaminated soil were exposed for three consecutive periods of 30, 60 and 90 days in 10 community gardens in Sao Paulo and in one control site. The concentrations of 17 chemical elements (traffic-related elements and those essential to plant biology) were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Tillandsia usneoides L. specimens were used as air plant biomonitors. The concentrations of As, Cd, Cr and Pb found in vegetables were compared to the recommended values for consumption. Principal Component Analysis (PCA) was used to cluster the elemental concentrations, and Generalized Linear Models (GLMs) were employed to evaluate the association of the factor scores from each PCA component with variables such as local weather, traffic burden and vertical barriers adjacent to the gardens. We found significant differences in the elemental concentrations of the vegetables in the different community gardens. These differences were related to the overall traffic burden, vertical obstacles and local weather. The Pb and Cd concentrations in both vegetables exceeded the limit values for consumption after 60 days of exposure. A strong correlation was observed between the concentration of traffic-related elements in vegetables and in Tillandsia usneoides L. An exposure response was observed between traffic burden and traffic-derived particles absorbed in the vegetables. Traffic-derived air pollution directly influences the absorption of chemical elements in leafy vegetables, and the levels of these elements may exceed the recommended values for consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Panagopoulos, G.
2009-09-01
The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.
NASA Astrophysics Data System (ADS)
Abrar, M.; Iqbal, T.; Fahad, M.; Andleeb, M.; Farooq, Z.; Afsheen, S.
2018-05-01
In the present work, the laser-induced breakdown spectroscopy technique is applied to explore the concentration of toxic elements present in cosmetic materials. The elemental analysis of chromium (Cr), magnesium (Mg), cadmium (Cd) and lead (Pb) are selected as major elements and manganese (Mn), sodium (Na), potassium (P), sulfur (S), silicon (Si) and titanium (Ti) as minor elements in cosmetic products. In this technique, a plasma plume is generated by using an Nd:YAG Laser of 532 nm wavelength and spectral lines for the respective samples are observed. Four different samples of cosmetic products are selected, i.e. two samples for lipstick and two for eyeshadow. The observed spectral lines of all major and minor elements are used to calculate their concentration in all samples through the intensity ratio method. Among selected lipstick and eyeshadow samples, one sample is branded, and one is collected from the local market. It is observed that chromium, magnesium and lead have strong spectral lines and consequently show high concentration. The calculated concentrations are then compared to permissible limits set by the Food and Drug Administration with regard to the cosmetics industry. The concentration of these toxic elements in selected local cosmetic samples exceeds the safe permissible limit for human use and could lead to serious health problems.
Santos, Erika S; Abreu, Maria Manuela; Saraiva, Jorge A
2016-06-01
This study aimed to: i) evaluate the accumulation and translocation patterns of potentially hazardous elements into the Lavandula pedunculata and their influence in the concentrations of nutrients; and ii) compare some physiological responses associated with oxidative stress (concentration of chlorophylls (Chla, Chlb and total), carotenoids, and total protein) and several components involved in tolerance mechanisms (concentrations of proline and acid-soluble thiols and total/specific activity of catalase (CAT) and superoxide dismutase (SOD)), in plants growing in soils with a multielemental contamination and non-contaminated. Composite samples of soils, developed on mine wastes and/or host rocks, and L. pedunculata (roots and shoots) were collected in São Domingos mine (SE of Portugal) and in a reference area with non-contaminated soils, Corte do Pinto, with the same climatic conditions. São Domingos soils had high total concentrations of several hazardous elements (e.g. As and Pb) but their available fractions were small (mainly <5.8 % of the total). Translocation behaviour of elements was not clear according to the physiological importance of the elements. In general, plant shoots from São Domingos had the highest elements concentrations, but only As, Mn and Zn reached phytotoxic concentrations. Concentration of Chlb in shoots from São Domingos was higher than those from Corte do Pinto. No significant differences were obtained between concentrations of Chla, total protein, proline and acid-soluble thiols in shoots collected in both areas, as well as SOD activity (total and specific) and specific CAT activity. Total CAT activity varied with population being lower in the shoots of the plants from São Domingos, but no correlation was obtained between this enzymatic activity and the concentrations of the studied elements in shoots. Lavandula pedunculata plants are able to survive in soils developed on different mine wastes with multielemental contamination and low fertility showing no symptoms (visible and physiological) of phytotoxicity or deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
U, Th, and K in planetary cores: Implications for volatile elements and heat production
NASA Astrophysics Data System (ADS)
Boujibar, A.; Habermann, M.; Righter, K.; Ross, D. K.; Righter, M.; Chidester, B.; Rapp, J. F.; Danielson, L. R.; Pando, K.; Andreasen, R.
2016-12-01
The accretion of terrestrial planets is known to be accompanied with volatile loss due to strong solar winds produced by the young Sun and due to energetic impacts. It was previously expected that Mercury, the innermost planet is depleted in volatile elements in comparison to other terrestrial planets. These predictions have been recently challenged by the MESSENGER mission to Mercury that detected relatively high K/U and K/Th ratios on Mercury's surface, suggesting a volatile content similar to Earth and Mars. However previous studies showed that Fe-rich metals can incorporate substantial U, Th and K under reducing conditions and with high sulfur contents, which are two conditions relevant to Mercury. In order to quantify the fractionation of these heat-producing elements during core segregation, we determined experimentally their partition coefficients (Dmet/sil) between metal and silicate at varying pressure, temperature, oxygen fugacity and sulfur content. Our data confirm that U, Th, and K become more siderophile with decreasing fO2 and increasing sulfur content, with a stronger effect for U and Th in comparison to K. Hence Mercury's core is likely to have incorporated more U and Th than K, resulting in the elevated K/U and K/Th ratios measured on the surface. The bulk concentrations of U, Th, and K in terrestrial planets (Mercury, Venus, Earth and Mars) are calculated based on geochemical constraints on core-mantle differentiation. Significant amounts of U, Th and K are partitioned into the cores of Mercury, Venus and Earth, but much less into Mars' core. The resulting bulk planet K/U and K/Th correlate with the heliocentric distance, which suggests an overall volatile depletion in the inner Solar System. These results have important implications for internal heat production. The role of impact erosion on the evolution of Th/U ratio will also be addressed.
English, Matthew D; Robertson, Gregory J; Mallory, Mark L
2015-12-15
The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Press, J.; Broughton, J.; Kudela, R. M.
2014-12-01
Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p < 0.001) was chosen as the proxy for SSC values. The numerical models for WCT and the distribution ratio D were applied in MATLAB with terms to account for regional and seasonal effects, and results were used to calculate WCD. The modeled results were assessed against in situ data from the San Francisco Estuary Regional Monitoring Program. Quantile regression was used to evaluate model sensitivity to the distribution of regions, and outliers displaying regional aberrations were removed before robust regression was applied. Statistically significant and highly correlated results for WCT were found for 10 elements, with goodness of fit greater than or equal to that of the original models of seven elements. WCD was successfully modeled for six elements, with goodness of fit for each exceeding that of the original models. Concentrations of Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.
Trace elements in canvasbacks (Aythya valisineria) wintering in Louisiana, USA, 1987-1988
Custer, Thomas W.; Hohman, William L.
1994-01-01
We determined trace element concentrations in livers of canvasbacks (Aythya valisineria) collected at Catahoula Lake and the Mississippi River Delta, Louisiana during, the winter of 1987–1988. Forty percent of canvasbacks wintering at Lake Catahoula had elevated concentrations of lead (>6·7 μg g−1 dry weight) in the liver; 33% had concentrations consistent with lead intoxication (>26·7 μg g−1). Based on the number of canvasbacks that winter at Lake Catahoula and the frequency of lead exposure there, more than 5% of the continental population of canvasbacks may be exposed to lead at Lake Catahoula alone. Lead concentrations in livers differed among months and were higher in males than females, but were not different in adults and immatures. Concentrations of selenium and mercury in livers of females differed among months but not by age or location. Cadmium concentrations in livers differed by age, location and month of collection, but not by sex. Frequencies and concentrations of trace elements not commonly associated with adverse effects on avian species (aluminum, arsenic, copper, iron, magnesium, manganese, nickel, silver, vanadium and zinc) are presented. Except for the elevated concentrations of lead at Catahoula Lake, all trace elements were at background concentrations.
Kannan, K.; Moon, H.-B.; Yun, S.-H.; Agusa, T.; Thomas, N.J.; Tanabe, S.
2008-01-01
Concentrations of organochlorine pesticides (DDTs, HCHs, and chlordanes), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), perfluorinated compounds (PFCs), and 20 trace elements were determined in livers of 3- to 5-year old stranded sea otters collected from the coastal waters of California, Washington, and Alaska (USA) and from Kamchatka (Russia). Concentrations of organochlorine pesticides, PCBs, and PBDEs were high in sea otters collected from the California coast. Concentrations of DDTs were 10-fold higher in California sea otters than in otters from other locations; PCB concentrations were 5-fold higher, and PBDE concentrations were 2-fold higher, in California sea otters than in otters from other locations. Concentrations of PAHs were higher in sea otters from Prince William Sound than in sea otters from other locations. Concentrations of several trace elements were elevated in sea otters collected from California and Prince William Sound. Elevated concentrations of Mn and Zn in sea otters from California and Prince William Sound were indicative of oxidative stress-related injuries in these two populations. Concentrations of all of the target compounds, including trace elements, that were analyzed in sea otters from Kamchatka were lower than those found from the US coastal locations. ?? The Royal Society of Chemistry.
Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua
2017-02-01
To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg -1 and 38.67 μg kg -1 , respectively, and the difference was statistically significant (p < 0.05). The leaf vegetable had the highest rare earth elements concentration (984.24 μg kg -1 and 81.24 μg kg -1 for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg -1 and 24.63 μg kg -1 for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg -1 d -1 and 0.28 μg kg -1 d -1 for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg -1 d -1 ). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of some elements in primary enamel during postnatal mineralization.
Sabel, Nina; Klinberg, Gunilla; Nietzsche, Sandor; Robertson, Agneta; Odelius, Hans; Norén, Jörgen G
2009-01-01
The primary teeth start to mineralize in utero and continue development and maturation during the first year of life.The aim of this study was to investigate the concentrations of some elements, C, F, Na, Mg, Cl, K and Sr, by secondary ion mass spectrometry (SIMS) in human primary incisors at different stages of mineralization.The teeth derived from an autopsy material from children who had died in sudden infant death.The buccal enamel of specimens from the ages 1, 2, 3, 4, 6 and 19 months, respectively, was analyzed. It was evident that posteruptive effects play an important role in composition of the outermost parts of the enamel. Before the tooth erupts, the concentrations of the elements vary with the maturation grade of the mineralization in the enamel. Sodium was the element with the highest concentration of the measured elements and chlorine was the element of lowest concentration.The 19 month old specimen, considered as the only mature and erupted tooth, showed to differ from the other specimens.The concentration of fluorine, in the 19 month old specimen's outermost surface, is readily seen higher compared with the other specimens at this depth zone. In the 19 month old specimen the concentration of carbon is lower. Potassium, sodium and chlorine have higher concentrations, in general, in the 19 month old specimen compared with the immature specimens. The thickness of the enamel during mineralization was calculated from data from SIMS.The thickness of the buccal enamel of primary incisors seemed to be fully developed between 3-4 months after birth, reaching a thickness of 350-400 microm.
Morelli, J.J.; Hercules, D.M.; Lyons, P.C.; Palmer, C.A.; Fletcher, J.D.
1988-01-01
The variation in relative elemental concentrations among a series of coal macerals belonging to the vitrinite maceral group was determined using laser micro mass spectrometry (LAMMS). Variations in Ba, Cr, Ga, Sr, Ti, and V concentrations among the coals were determined using the LAMM A-1000 instrument. LAMMS analysis is not limited to these elements; their selection illustrates the application of the technique. Ba, Cr, Ga, Sr, Ti, and V have minimal site-to-site variance in the vitrinite macerals of the studied coals as measured by LAMMS. The LAMMS data were compared with bulk elemental data obtained by instrumental neutron activation analysis (INAA) and D. C. arc optical emission spectroscopy (DCAS) in order to determine the reliability of the LAMMS data. The complex nature of the ionization phenomena in LAMMS and the lack of standards characterized on a microscale makes obtaining quantitative elemental data within the ionization microvolume difficult; however, we demonstrate that the relative variation of an element among vitrinites from different coal beds in the eastern United States can be observed using LAMMS in a "bulk" mode by accumulating signal intensities over several microareas of each vitrinite. Our studies indicate gross changes (greater than a factor of 2 to 5 depending on the element) can be monitored when the elemental concentration is significantly above the detection limit. "Bulk" mode analysis was conducted to evaluate the accuracy of future elemental LAMMS microanalyses. The primary advantage of LAMMS is the inherent spatial resolution, ~ 20 ??m for coal. Two different vitrite bands in the Lower Bakerstown coal bed (CLB-1) were analyzed. The analysis did not establish any certain concentration differences in Ba, Cr, Ga, Sr, Ti, and V between the two bands. ?? 1988 Springer-Verlag.
Trace elements distributions at Datoko-Shega artisanal mining site, northern Ghana.
Arhin, Emmanuel; Boansi, Apea Ohene; Zango, M S
2016-02-01
Environmental geochemistry classifies elements into essential, non-essential and toxic elements in relationship to human health. To assess the environmental impact of mining at Datoko-Shega area, the distributions and concentrations of trace elements in stream sediments and soil samples were carried out. X-ray fluorescence analytical technique was used to measure the major and trace element concentrations in sediments and modified fire assay absorption spectrometry in soils. The results showed general depletion of major elements except titanium oxide (TiO2) compared to the average crustal concentrations. The retention of TiO2 at the near surface environment probably was due to the intense tropical weathering accompanied by the removal of fine sediments and soil fractions during the harmattan season by the dry north-east trade winds and sheet wash deposits formed after flash floods. The results also showed extreme contamination of selenium (Se), cadmium (Cd) and mercury (Hg), plus strong contaminations of arsenic (As) and chromium (Cr) in addition to moderate contamination of lead (Pb) in the trace element samples relative to crustal averages in the upper continental crust. However Hg, Pb and Cd concentrations tend to be high around the artisanal workings. It was recognised from the analysis of the results that the artisanal mining activity harnessed and introduces some potentially toxic elements such as Hg, Cd and Pb mostly in the artisan mine sites. But the interpretation of the trace element data thus invalidates the elevation of As concentrations to be from the mine operations. It consequently noticed As values in the mine-impacted areas to be similar or sometimes lower than As values in areas outside the mine sites from the stream sediment results.
Hinck, J.E.; Schmitt, C.J.; Ellersieck, Mark R.; Tillitt, D.E.
2008-01-01
Environmental contaminant and biomarker monitoring data from major U.S. river basins were summarized for black bass (Micropterus spp.) and common carp (Cyprinus carpio) sampled over a nine year period. Cumulative frequency distributions revealed taxon differences for many organochlorine residue concentrations, elemental contaminant concentrations, and biomarkers, but few gender differences were evident for chemical concentrations. Concentrations of dacthal, pentachloroanisole, p,p???-DDE, endosulfan sulfate, barium, cadmium, copper, manganese, lead, selenium, vanadium, and zinc were greater in carp than bass, but concentrations of mercury and magnesium were greater in bass. Gender differences were evident in bass for mercury and in carp for zinc, but the differences were small compared to taxon differences. Greater vitellogenin concentrations, 17??-estradiol concentrations, 17??-estradiol/11-ketotestosterone ratios, and percent oocyte atresia in female carp compared to female bass may be related to the sequential spawning of carp. Regression analyses indicated that as much as 78% of biomarker variation was explained by chemical contaminant concentrations. Sites grouped consistently by river basin in the chemical contaminant principal components analysis (PCA) models and were driven by mercury, magnesium, barium, mirex, and oxychlordane. PCA models for the biomarkers did not group the sites by basin for either bass or carp. Statistical analyses and data interpretation were limited by the study design. The implications of these limitations are discussed. Recommendations to be considered during the planning of future monitoring studies include the exclusion of gender- and species-specific sampling for certain chemical contaminants considering analytical methods with appropriate sensitivities; and allowing for the addition of new chemical and biological variables as methods and information needs evolve. ?? The Royal Society of Chemistry.
Perrault, Justin R; Miller, Debra L; Garner, Jeanne; Wyneken, Jeanette
2013-10-01
Leatherback sea turtles (Dermochelys coriacea) are long-distance migrants that travel thousands of km from foraging grounds to breeding and nesting grounds. These extensive journeys are fueled by ingestion of an estimated 300-400 kg of prey/d and likely result in exposure to high concentrations of environmental toxicants (e.g., mercury compounds). Increased bodily concentrations of mercury and its compounds in nesting female turtles may have detrimental effects on reproductive success. Leatherbacks have relatively low reproductive success compared with other sea turtles (global average hatching success ~50-60%). To assess toxicants and necessary nutrients as factors affecting leatherback turtle reproductive success at Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands, we collected blood from nesting female leatherbacks and tissues from their hatchlings (blood from live turtles, liver and yolk sac from dead turtles). We compared the concentrations in those tissues to hatching and emergence success. We found that on SPNWR, hatching and emergence success were more closely related to seasonal factors than to total mercury and selenium concentrations in both nesting females and hatchlings. Selenium concentrations of nesting females were positively correlated with those of their hatchlings. Mercury and selenium in the liver of hatchlings were positively correlated with one another. Turtles with greater remigration intervals tended to have higher blood selenium concentrations, suggesting that selenium accumulates in leatherbacks through time. Through hazard quotients, we found evidence that selenium may be at or above concentrations that may cause physiologic harm to hatchlings. We also found evidence that population level differences exist for these trace elements. The concentrations of mercury and selenium established in this manuscript form a baseline for future toxicant studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Kannan, Kurunthachalam; Agusa, Tetsuro; Evans, Thomas J; Tanabe, Shinsuke
2007-10-01
Concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of polar bears (Ursus maritimus) collected from Northern and Western Alaska from 1993 to 2002 to examine differences in the profiles of trace metals between the Beaufort Sea (Northern Alaska) and the Chukchi Sea (Western Alaska) subpopulations in Alaska. Among the trace elements analyzed, concentrations of Cu (50-290 microg/g, dry wt) in polar bear livers were in the higher range of values that have been reported for marine mammals. Concentrations of Hg in polar bears varied widely, from 3.5 to 99 microg/g dry wt, and the mean concentrations in polar bears were comparable to concentrations reported previously for several other species of marine mammals. Mean concentrations of Pb and Cd were 0.67 and 1.0 microg/g dry wt, respectively; these concentrations were lower than levels reported elsewhere for polar bears from Greenland and Canada. Age- and gender-related variations in the concentrations of trace elements in our polar bears were minimal. Concentrations of Hg decreased slowly in samples collected during 1993-2002, whereas Cd and Pb concentrations were found to be stable or slowly increasing, in the livers of Alaskan polar bears. Concentrations of Ag, Bi, Ba, Cu, and Sn were significantly higher in the Chukchi Sea subpopulation than in the Beaufort Sea subpopulation. Concentrations of Hg were significantly higher in the Beaufort Sea subpopulation than in the Chukchi Sea subpopulation. Differences in the profiles and concentrations of Hg, Ag, Bi, Ba, Cu, and Sn suggest that the sources of exposure to these trace elements between Western and Northern Alaskan polar bears are different, in agreement with findings reported earlier for several organic contaminants.
Clark, Gregory M.; Maret, Terry R.
1998-01-01
Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected in all three bed-sediment samples, ranged from 1.1 micrograms per kilogram dry weight in C.J. Strike Reservoir to 11 micrograms per kilogram dry weight in Brownlee Reservoir at Burnt River. Data from this study, compared with data collected in the upper Snake River Basin from 1992 to 1994, indicates that, in general, organochlorine concentrations in fish tissue and bed sediment increased from the headwaters of the Snake River in Wyoming downstream to Brownlee Reservoir. The largest trace-element concentrations in fish tissue were in liver samples from carp from Brownlee Reservoir at Burnt River and suckers from the Boise River near Twin Springs. Concentrations of most trace elements were larger in livers than in the sport- fish fillets. However, mercury concentrations were generally larger in the sportfish fillets; they ranged from 0.08 microgram per gram wet weight in yellow perch from C.J. Strike Reservoir to 0.32 microgram per gram wet weight in channel catfish from Brownlee Reservoir at Burnt River. None of the trace-element concentrations in fillets exceeded median international standards or U.S. Food and Drug Administration action levels. Large trace-element concentrations in the upper Snake River Basin were reported in liver samples from suckers from headwater streams, probably a result of historical mining and weathering of metal-rich rocks. Concentrations of most trace elements in the bed-sediment samples were largest in Brownlee Reservoir at Mountain Man Lodge. Concentrations of arsenic, cadmium, chromium, copper, nickel, and zinc in bed sediment from the Mountain Man Lodge site exceeded either the threshold effect level or probable effect level established by the Canadian Government for the protection of benthic life. Arsenic, chromium, copper, and nickel concentrations in bed sediment from Brownlee Reservoir at Burnt River and chromium, copper, and nickel in bed sediment from C.J. Strike Reservoir also exceeded the threshold effect level.
Impact of low level radiation on concentrations of some trace elements in radiation workers.
Rostampour, Nima; Almasi, Tinoosh; Rostampour, Masoumeh; Sadeghi, Hamid Reza; Khodamoradi, Ehsan; Razi, Reyhaneh; Derakhsh, Zahra
2018-05-01
Small variations in trace element levels may cause important physiological changes in the human body. This study aims to evaluate five important trace elements in radiation workers. In this study, 44 radiation workers and an equal number of non-radiation workers were selected as the case and control group, respectively. The concentrations of iron, magnesium, zinc, copper, and selenium in the serum of the participants were measured using an Atomic Absorption Spectrometry (AAS). The mean concentrations of iron, magnesium, zinc, copper, and selenium for the case group were 107.3 µg/dl, 2.3 mg/dl, 80.9 µg/dl, 112.6 µg/dl and 216.7 ng/ml, respectively. The results for the control group were 121.9 µg/dl, 2.3 mg/dl, 82.3 µg/dl, 112.8 µg/dl and 225.2 ng/ml, respectively. The mean concentration of iron in the case group was significantly lower than the control group (p-value = 0.012), while the concentrations of other elements in both of the groups were not significantly different. In the case group, except magnesium (p-value = 0.021), no significant relationship was found between age and the elemental concentrations. According to Spearman's test, there was a meaningful statistical correlation between the sex and concentration of iron, Mg, Zn, and Se. Also, the correlation between the concentration of magnesium and the weights of radiation workers was significant (p-value =0.044). © 2018 Old City Publishing, Inc.
Gough, L.P.; Jackson, L.L.; Sacklin, J.A.
1988-01-01
Hypogymnia enteromorpha and Usnea spp. were collected in the Little Bald Hills ultramafic region of Redwood National Park, California, to establish element-concentration norms. Baselines are presented for Ba, Ca, Cu, Mn, Ni, P, Sr, V, and Zn for both lichen species; for Li, Mg, and K for H. enteromorpha; and for Al, Ce, Cr, Co, Fe, Na, and Ti for Usnea. Element concentrations of future collections of this same material can be used to monitor possible air quality changes anticipated from mining activities planned nearby. The variability in the element concentrations was partitioned between geographical distance increments and sample preparation and analysis procedures. In general, most of this variability was found in samples less than a few hundreds of meters apart rather than those at about 1 km apart. Therefore, except for Ba and Co, no large geographical element-concentration trends were observed. Samples of both species contained elevated levels of Ni and Mg, which probably reflect the ultramafic terrain over which they occur.
Determination of sixteen elements and arsenic species in brown, polished and milled rice.
Narukawa, Tomohiro; Matsumoto, Eri; Nishimura, Tsutomu; Hioki, Akiharu
2014-01-01
The concentrations of 16 elements in 10 rice flour samples and the distribution of the elements in the rice grains from which the flour were made were determined by ICP-MS and ICP-OES after microwave-assisted digestion of the samples. Arsenic speciation analysis was carried out by HPLC-ICP-MS following heat-assisted extraction of the sample. The concentrations of inorganic As (As(III) and As(V)), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) and their distribution in the rice grains were determined. Portions of the brown rice were polished/milled to different degrees to yield milled off samples and polished rice samples. All samples were powdered and analyzed for 16 elements and for As species. The recoveries and mass balances for all elements in all samples showed good agreements with the starting materials. As(III), As(V), MMAA and DMAA were detected, and the sums of the concentrations of all species in the extract were 86-105% of the total As concentration in each case.
TSUKANO, Kenji; SUZUKI, Kazuyuki; NODA, Jun; YANAGISAWA, Makio; KAMEDA, Kazunari; SERA, Koichiro; NISHI, Yasunobu; SHIMAMORI, Toshio; MORIMOTO, Yasuyo; YOKOTA, Hiroshi; ASAKAWA, Mitsuhiko
2017-01-01
The purpose of this study was to compare the concentration of trace elements in the plasma of sea turtles that inhabited the suburban (Okinawa Main Island, n=8) and the rural coast (Yaeyama Island, n=57) in Okinawa, Japan. Particle induced X-ray emission allowed detection of 20 trace and major elements. The wild sea turtles in the suburban coast in Okinawa were found to have high concentrations of Pb, Si and Ti in the plasma when compared to the rural area but there were no significant changes in the Al, As and Hg concentrations. These results may help to suggest the status of some elements in a marine environment. Further, monitoring the plasma trace and major element status in sea turtles can be used as a bio-monitoring approach by which specific types of elements found here could indicate effects that are related to human activities. PMID:29070764
Horowitz, A.J.; Elrick, K.A.; Demas, C.R.; Demcheck, D.K.
1991-01-01
Studies have demonstrated the utility of fluvial bed sediment chemical data in assesing local water-quality conditions. However, establishing local background trace element levels can be difficult. Reference to published average concentrations or the use of dated cores are often of little use in small areas of diverse local petrology, geology, land use, or hydrology. An alternative approach entails the construction of a series of sediment-trace element predictive models based on data from environmentally diverse but unaffected areas. Predicted values could provide a measure of local background concentrations and comparison with actual measured concentrations could identify elevated trace elements and affected sites. Such a model set was developed from surface bed sediments collected nationwide in the United States. Tests of the models in a small Louisiana basin indicated that they could be used to establish local trace element background levels, but required recalibration to account for local geochemical conditions outside the range of samples used to generate the nationwide models.
Lim, Hyun Ju; Khan, Zara; Lu, Xi; Perera, T Hiran; Wilems, Thomas S; Ravivarapu, Krishna T; Smith Callahan, Laura A
2018-04-15
Balancing enhancement of neurite extension against loss of matrix support in synthetic hydrogels containing proteolytically degradable and bioactive signaling peptides to optimize tissue formation is difficult. Using a systematic approach, polyethylene glycol hydrogels containing concurrent continuous concentration gradients of the laminin derived bioactive signaling peptide, Ile-Lys-Val-Ala-Val (IKVAV), and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ, were fabricated and characterized. During proteolytic degradation of the concentration gradient hydrogels, the IKVAV and IWGQ cleavage fragment from GPQGIWGQ were found to interact and stabilize the bulk Young's Modulus of the hydrogel. Further testing of discrete samples containing GPQGIWGQ or its cleavage fragments, GPQG and IWGQ, indicates hydrophobic interactions between the peptides are not necessary for mechanical stabilization of the hydrogel, but changes in the concentration ratio between the peptides tethered in the hydrogel and salts and ions in the swelling solution can affect the stabilization. Encapsulation of human induced pluripotent stem cell derived neural stem cells did not reduce the mechanical properties of the hydrogel over a 14 day neural differentiation culture period, and IKVAV was found to maintain concentration dependent effects on neurite extension and mRNA gene expression of neural cytoskeletal markers, similar to previous studies. As a result, this work has significant implications for the analysis of biological studies in matrices, as the material and mechanical properties of the hydrogel may be unexpectedly temporally changing during culture due to interactions between peptide signaling elements, underscoring the need for greater matrix characterization during the degradation and cell culture. Greater emulation of the native extracellular matrix is necessary for tissue formation. To achieve this, matrices are becoming more complex, often including multiple bioactive signaling elements. However, peptide signaling in polyethylene glycol matrices and amino acids interactions between peptides can affect hydrogel material and mechanical properties, but are rarely studied. The current study identifies such an interaction between laminin derived peptide, IKVAV, and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ. Previous studies using these peptides did not identify their interactions' ability to mechanically stabilize the hydrogel during degradation. This work underscores the need for greater matrix characterization and consideration of bioactive signaling element effects temporally on the matrix's material and mechanical properties, as they can contribute to cellular response. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong
2010-03-24
In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.
Otachi, Elick O; Körner, Wilfried; Avenant-Oldewage, Annemariè; Fellner-Frank, Christine; Jirsa, Franz
2014-06-01
This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.
Yanosky, T.M.; Carmichael, J.K.
1993-01-01
Multielement analysis was performed on individual annual rings of trees growing at and near an abandoned wood-preserving plant site in Jackson, Tennessee, that operated from the early 1930's until 1981. Numerous organic compounds associated with the wood-preserving process have been detected in soils, ground water, and surface water within much of the site. Tree-ring investigations were conducted prior to investigations of ground water downgradient from the site to determine if trees preserved an areal and temporal record of contaminant movement into offsite areas. Increment cores were collected from trees on the abandoned plant site, in downgradient areas west and south of the site, and at two locations presumably unaffected by contamination from the site. Multielement analysis by proton-induced X-ray emission was performed on 5 to 15 individual growth rings from each of 34 trees that ranged in age from about 5 to 50 years. Concentrations of 16 elements were evaluated by analyzing average concentrations within the 1987, 1989, and 1990 rings of all trees; analyzing element-concentration trends along entire core radii; and analyzing element correlations between and among trees. Concentrations of some nutrients and trace metals were elevated in the outermost sapwood rings of some trees that grow south and southwest of the most contaminated part of the site; small trees on the main part of the site and larger trees to the west generally contained fewer rings with elevated concentrations, particularly of trace metals. Concentrations of several elements elevated in tree rings also were elevated in water samples collected from the reach of a stream that flows near the southwestern part of the site. Multielement analysis of each ring of a willow growing along the southern boundary of the site detected extremely large concentrations of chromium, nickel, and iron in rings that formed in 1986 and thereafter. Relative increases in the concentrations of these elements also were detected in a silver maple growing next to the willow, but not in another silver maple growing 150 meters farther to the west. An oak growing in the southwestern part of the study area contained large concentrations of calcium and several trace elements, and some trees south of the abandoned site contained large concentrations of phosphorus or potassium. Concentrations of trace metals and nutrients in some trees may be related to wood-preserving activities at the site and possibly to remedial efforts conducted during the early to mid 1980's.However, the possibility cannot be discounted that large concentrations of some elements are from sources other than the wood-preserving facility, or in part from flooding of the South Fork Forked Deer River.
NASA Technical Reports Server (NTRS)
Harrison, W. J.
1981-01-01
An experimental investigation of Ce, Sm and Tm rare earth element (REE) partition coefficients between coexisting garnets (both natural and synthetic) and hydrous liquids shows that Henry's Law may not be obeyed over a range of REE concentrations of geological relevance. Systematic differences between the three REE and the two garnet compositions may be explained in terms of the differences between REE ionic radii and those of the dodecahedral site into which they substitute, substantiating the Harrison and Wood (1980) model of altervalent substitution. Model calculations demonstrate that significant variation can occur in the rare earth contents of melts produced from a garnet lherzolite, if Henry's Law partition coefficients do not apply for the garnet phase.
Incorporating concentration dependence in stable isotope mixing models.
Phillips, Donald L; Koch, Paul L
2002-01-01
Stable isotopes are often used as natural labels to quantify the contributions of multiple sources to a mixture. For example, C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source linear mixing model assumes that the proportional contribution of a source to a mixture is the same for both elements (e.g., C, N). This may be a reasonable assumption if the concentrations are similar among all sources. However, one source is often particularly rich or poor in one element (e.g., N), which logically leads to a proportionate increase or decrease in the contribution of that source to the mixture for that element relative to the other element (e.g., C). We have developed a concentration-weighted linear mixing model, which assumes that for each element, a source's contribution is proportional to the contributed mass times the elemental concentration in that source. The model is outlined for two elements and three sources, but can be generalized to n elements and n+1 sources. Sensitivity analyses for C and N in three sources indicated that varying the N concentration of just one source had large and differing effects on the estimated source contributions of mass, C, and N. The same was true for a case study of bears feeding on salmon, moose, and N-poor plants. In this example, the estimated biomass contribution of salmon from the concentration-weighted model was markedly less than the standard model estimate. Application of the model to a captive feeding study of captive mink fed on salmon, lean beef, and C-rich, N-poor beef fat reproduced very closely the known dietary proportions, whereas the standard model failed to yield a set of positive source proportions. Use of this concentration-weighted model is recommended whenever the elemental concentrations vary substantially among the sources, which may occur in a variety of ecological and geochemical applications of stable isotope analysis. Possible examples besides dietary and food web studies include stable isotope analysis of water sources in soils, plants, or water bodies; geological sources for soils or marine systems; decomposition and soil organic matter dynamics, and tracing animal migration patterns. A spreadsheet for performing the calculations for this model is available at http://www.epa.gov/wed/pages/models.htm.
Spatial variability of trace elements and sources for improved exposure assessment in Barcelona
NASA Astrophysics Data System (ADS)
Minguillón, María Cruz; Cirach, Marta; Hoek, Gerard; Brunekreef, Bert; Tsai, Ming; de Hoogh, Kees; Jedynska, Aleksandra; Kooter, Ingeborg M.; Nieuwenhuijsen, Mark; Querol, Xavier
2014-06-01
Trace and major elements concentrations in PM10 and PM2.5 were measured at 20 sites spread in the Barcelona metropolitan area (1 rural background, 6 urban background, 13 road traffic sites) and at 1 reference site. Three 2-week samples per site and size fraction were collected during 2009 using low volume samplers, adding a total of 120 samples. Collected samples were analysed for elemental composition using Energy Dispersive X-ray fluorescence (XRF). EC, OC, and hopanes and steranes concentrations in PM2.5 were determined. Positive Matrix Factorisation (PMF) model was used for a source apportionment analysis. The work was performed as part of the ESCAPE project. Elements were found in concentrations within the usual range in Spanish urban areas. Mineral elements were measured in higher concentrations during the warm season, due to enhanced resuspension; concentrations of fueloil combustion elements were also higher in summer. Elements in higher concentration at the traffic sites were: Ba, Cr, Cu, Fe, Mn, Mo, Pb, Sn, Zn and Zr. Spatial variations related to non-traffic sources were observed for concentrations of Br, Cl, K, and Na (sea salt origin) and Ni, V and S (shipping emissions), which were higher at the coastal sites, as well as for Zn and Pb, higher at sites closer to industrial facilities. Five common sources for PM10 and PM2.5 were identified by PMF: road traffic (with tracers Ba, Cr, Cu, Fe, Mo and Zn); fueloil combustion (Ni and V); secondary sulphate; industry (Pb and Zn); and mineral source (Al, Ca, Mg, Si, Sr and Ti). A marine aerosol source, a mixture of sea salt with aged anthropogenic aerosols, was found only in PM10. EC, hopanes and steranes concentrations correlate strongly with the PM10 road traffic source contributions, being hence all attributed to the same source. OC may arise from other sources in addition to road traffic and have a high contribution of secondary OC. Significant spatial and temporal variation in the PM2.5 and PM10 elemental composition was found. Spatial patterns differed per element, related to the main source. The identified source contributions can be used in health studies of source-specific particles.
Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system
NASA Astrophysics Data System (ADS)
Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.
2012-12-01
Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic fractions of suspended sediments. Copper is distributed in all but the carbonate fraction of suspended sediments. Vanadium was bound primarily to the oxide and residual fractions with Si, which is probably found as opal-α. In contrast, biofilm sediments had the highest concentrations of Fe, Si, Cd, Al, Zn, Ag, and Ni. Trace metals were sequestered mainly in the organic fraction in decreasing concentrations of: Cu
Becklund, Kristen; Powers, Jennifer; Kinkel, Linda
2016-11-01
Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.
Sun, Xian; Yu, Ri-Qing; Zhang, Mei; Zhang, Xiyang; Chen, Xi; Xiao, Yousheng; Ding, Yulong; Wu, Yuping
2017-12-15
Trace element accumulation in the epidermis of cetaceans has been less studied. This study explored the feasibility of using epidermis as a surrogate tissue to evaluate internal contaminant burdens in Indo-Pacific humpback dolphin (Sousa chinensis). Eleven trace elements were analyzed in the epidermis, muscle and liver tissues from 46 individuals of dolphins stranded along the Pearl River Estuary (PRE) coast between 2007 and 2013. Trace elemental concentrations varied among the three tissues, generally with the highest concentrations found in liver tissues and lowest in the epidermis (except Zn, As, and Pb). Zn concentration in the epidermis was the highest among all tissues, indicating that Zn could be an important element for the epidermis physiology. High concentrations of Hg and Cr in liver were likely due to an excessive intake by dolphins which consumed high Hg and Cr contaminated fishes in the PRE. Hg concentrations in epidermis and muscle tissues were significantly higher in the females than in males. Concentrations of V and Pb in liver, Se and Cd in both muscle and liver, and As and Hg in all tissue samples showed significantly positive relationships with body length. Hepatic Cu concentrations were significantly negatively correlated with the body length. Hg and As concentrations in epidermis showed significantly positive correlations with those in liver tissues. Thus this study proposed that epidermis could be used as a non-invasive monitoring tissue to evaluate Hg and As bioaccumulation in internal tissues of Indo-Pacific humpback dolphins populations. Copyright © 2017 Elsevier B.V. All rights reserved.
Rainwater analysis by synchrotron radiation-total reflection X-ray fluorescence
NASA Astrophysics Data System (ADS)
López, María L.; Ceppi, Sergio A.; Asar, María L.; Bürgesser, Rodrigo E.; Ávila, Eldo E.
2015-11-01
Total reflection X-ray fluorescence analysis excited with synchrotron radiation was used to quantify the elemental concentration of rainwater in Córdoba, Argentina. Standard solutions with gallium as internal standard were prepared for the calibration curves. Rainwater samples of 5 μl were added to an acrylic reflector, allowed to dry, and analyzed for 200 s measuring time. The elemental concentrations of As, Ca, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sr, V, and Zn were determined. The electrical conductivity, pH, and elemental concentrations were compared to data previously reported for the soluble fraction of rainwater at different sites. A factor analysis was performed in order to determine the sources that contributed to the elemental concentration in rainwater. Anthropogenic sources were identified as traffic pollution, vehicular emissions, and metallurgical factories. The quality of rainwater was analyzed by comparing the concentrations of all the elements in rainwater samples with the WHO guideline values for drinking water. The results show the need to control the atmospheric emissions in order to preserve the quality of rainwater. SR-TXRF analysis of chemical composition of rainwater in Córdoba represents the very first contribution in the region to the knowledge of the concentration of trace metals in the soluble fraction of rainwater. These data are scarce, especially in the Southern Hemisphere.
This study characterizes the personal, indoor, and outdoor concentrations of PM2.5 and the major components of PM2.5, including nitrate (NO3-), elemental carbon (EC), and the elements for individuals with chronic obstructive pulmonary disease (COPD) living in Los Angeles, CA. ...
Paul, Angela P.; Paretti, Nicholas V.; MacCoy, Dorene E.; Brasher, Anne M.D.
2012-01-01
As part of the National Water-Quality Assessment Program of the U.S. Geological Survey, this study examines the occurrence of nine trace elements in bed sediment of varying mineralogy and land use and assesses the possible effects of these trace elements on aquatic-macroinvertebrate community structure. Samples of bed sediment and macroinvertebrates were collected from 154 streams at sites representative of undeveloped, agricultural, urban, mined, or mixed land-use areas and 12 intermediate-scale ecoregions within the conterminous western United States, Alaska, and Hawaii from 1992 to 2000. The nine trace elements evaluated during this study—arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), and zinc (Zn)—were selected on the basis of potential ecologic significance and availability of sediment-quality guidelines. At most sites, the occurrence of these trace elements in bed sediment was at concentrations consistent with natural geochemical abundance, and the lowest concentrations were in bed-sediment samples collected from streams in undeveloped and agricultural areas. With the exception of Zn at sampling sites influenced by historic mining-related activities, median concentrations of all nine trace elements in bed sediment collected from sites representative of the five general land-use areas were below concentrations predicted to be harmful to aquatic macroinvertebrates. The highest concentrations of As, Cd, Pb, and Zn were in bed sediment collected from mined areas. Median concentrations of Cu and Ni in bed sediment were similarly enriched in areas of mining, urban, and mixed land use. Concentrations of Cr and Ni appear to originate largely from geologic sources, especially in the western coastal states (California, Oregon, and Washington), Alaska, and Hawaii. In these areas, naturally high concentrations of Cr and Ni can exceed concentrations that may adversely affect aquatic macroinvertebrates. Generally, Hg concentrations were below the sediment-quality guideline for this trace element but appeared elevated in urbanized areas and at sites contaminated by historic mining practices. Lastly, although there was no distinctive pattern in Se concentrations with land use, median bed-sediment concentrations were slightly elevated in urbanized areas.Macroinvertebrate community structure was influenced by topographic, geologic, climatic, and in-stream characteristics. To account for inherent distribution patterns resulting from these influences, samples of macroinvertebrates were stratified by ecoregion to assess the influence of trace elements on community structure. Cumulative toxic units (CTUs) were used to evaluate gradients in trace-element concentrations in mixture. Correlation analyses among the trace elements under different land-use conditions indicate that trace-element mixtures vary among bed sediment and can have a marked influence on CTU composition. Macroinvertebrate response to bed-sediment trace-element exposure was evident only at the most highly contaminated sites, notably at sites classified as contaminated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as a result of historic mining activities. Results of this study agree with the findings of other studies evaluating trace-element exposure to in-stream macroinvertebrate community structure in that generally lower richness metrics and taxa dominance occur in streams where high trace-element enrichment occurs; however, not all streams in all areas have the same characterizing taxa. In the mountain and xeric ecosystems, the mayfly, Baetis sp.; the Diptera, Simulium sp.; caddisflies in the family Hydropsychiidae; midges in the family Orthocladiinae; and the worms belonging to Turbellaria and Naididae all demonstrated resilience to trace-element exposure and, in some cases, possible changes in physical habitat within stream ecosystems. The taxa characteristics within the Ozark Highland ecoregion were different than other ecoregions as evidenced by generally more diverse mayfly populations. In addition, Baetis sp. was common and dominated many of the mayfly populations found in the Rocky Mountain streams within the Mountain Southern Rockies and Mountain Northern Rockies ecoregions; however, within the Ozark Highland ecoregion, Tricorythodes sp. appeared to be more common than Baetis sp.
Coles, J.F.
1996-01-01
Concentrations of organochlorine compounds and trace elements were assayed in fish tissue collected from the Connecticut, Housatonic, and Thames River Basins Study Unit, 1992-94. These data were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the study unit. Ancillary data included are land-use categories by percentage of the sampling-site basins and the size, gender, and age of the individual fish collected for this study. Concentrations of 28 organochlorine compounds in composited whole fish samples were measured at 32 sites, and concentrations of 22 trace elements in composited fish liver samples were measured at 14 of the 32 sites. Most frequently detected organochlorines were DDT related compounds at 31 sites, total PCBs at 28 sites, and chlordane related compounds at 25 sites. Concentrations of total PCBs in fish tissue were generally higher at the large river sites than at the smaller tributary sites. Concentrations of chlordane-related compounds in fish tissue were higher at sites from more urbanized basins than at sites from predominately agriculture and forested basins. Concentrations of the DDT related compounds were undifferentiated among sites comprising different land uses. Trace elements detected at all 14 sites included boron, copper, iron, manganese, molybdenum, selenium, and zinc. Trace elements detected at 10 or more sites included arsenic, mercury, silver, strontium, and vanadium. Antimony, beryllium, and uranium were not detected at any site.
Enrichment and Bioavailability of Trace Elements in Soil in Vicinity of Railways in Japan.
Wang, Zhen; Watanabe, Izumi; Ozaki, Hirozaku; Zhang, Jianqiang
2018-01-01
This study focuses on the concentrations, distribution, pollution levels, and bioavailability of 12 trace elements in soils along 6 different railways in Japan. Three diesel powered railways and three electricity powered railways were chosen as target. Surface soils (< 3 cm) were collected in vicinity of railways for analysis. Digestion and extraction were performed before concentration and bioavailability analysis. Enrichment factor was applied to investigate contamination levels of selected elements. The mean concentrations of Cr, Co, Ni, Cu, Zn, Sn, and Pb in soil samples were higher than soil background value in Japan. Concentrations of trace elements in soils along different railway had different characteristics. Horizontal distribution of Cu, Zn, Cd, Sn, and Pb in soil samples showed obviously downtrend with distance along railways with high frequency. Concentrations of V, Mn, Fe, and Co were higher in soils along railways which pass through city center. According to principal component analysis and cluster analysis, concentrations of Cu, Zn, Sn, and Pb could be considered as the indicators of soil contamination level along electricity powered trains, whereas indicators along diesel powered trains were not clear. Enrichment factor analysis proved that operation of freight trains had impact on pollution level of Cr, Ni, and Cd. Bioavailability of Mn, Co, Zn, and Cd in soil along electricity-powered railways were higher, and bioavailability of Pb in railways located in countryside was lower. Thus, enrichment and bioavailability of trace elements can be indicators of railway-originated trace elements pollution in soil.
Element concentrations in soils and other surficial materials of Alaska
Gough, L.P.; Severson, R.C.; Shacklette, H.T.
1988-01-01
Mean concentrations of 35 elements, ash yields, and pH have been estimated for samples of sils and other unconsolidated surficial materials from 266 collection locations throughout Alaska. These background values can be applied to studies of environmental geochemistry and health, wildlife management, and soil-forming processes in cold climates and to computation of element abundances on a regional or worldwide scale. Limited data for an additoinal eight elements are also presented. Materials were collected using a one-way, three-level, analysis-of-variance samplling design in which collecting procedures were simplified for the convenience of the many volunteer field workers. The sample collectors were asked to avoid locations of known mineral deposits and obvious contamination, to take samples at a depth of about 20 cm where possible, and to take a replicate sample about 100 m distant from the first sample collected. With more than 60 percent of the samples replicated and 14 percent of the samples split for duplicate laboratory analyses, reliable estimates were made of the variability in element concentrations at two geographic scales and of the error associated with sample handling and laboratory procedures. Mean concentrations of most elements in surficial materials from the state of alaska correspond well with those reported in similar materials from the conterminous United STatess. Most element concentrations and ranges in samples of stream and lake sediments from Alaska, however, as reported in the literature, do not correspond well with those found in surficial materials of this study. This lack of correspondence is attributed to (1) a merger of two kinds ofsediments (stream and lake) for calculating means; (2) elimination from the sediment mean calculations of values below the limit of quantitative determination; (3) analytical methods different from those of the surficial materials study; and (4) most importantly, the inherent differences in chemistry of the materials. The distribution of variability in element concentrations o Alaskan surficial-material samples was, for most elements, largely among sampling locations, with only a samll part of the variability occurring between replicate samples at a location. The geochemical uniformity within sampling locations in Alaska is an expression of uniform geochemical cycling processes within small geographic areas. The concentration values for 35 elements in 266 samples were plotted on maps by symbols representing classes of concentration frequency distributions. These plotted symbols form patterns that may or may not be possible to interpret but nevertheless show differences that are observable at several geographical scales. The largest pattern is one generally low concentrations of many elements in materials from arctic and oceanic tundra regions, as contrasted to their often high concentrations in samples from interior and southeastern Alaska. The patttern for sodium isespecially pronounced. Intermediate-sized patterns are shown, for example, by the generally high values for magnesium and low values for silicon in the coastal forest region of southeastern Alaska. Many elements occur at low concentratoins in samples from the Alaskan peninsula and the Aleutian Islands. The degree of confidence in patterns of element abundance is expected to be in direct proportion to the number of samples included in the area. As the patterns become smaller, the probability increases that the patterns are not reproducible.
Trace and Major Element Chemistry Across the Cretaceous/Tertiary Boundary at Stevns Klint
NASA Astrophysics Data System (ADS)
Graup, G.; Spettel, B.
1992-07-01
INAA measurements of samples obtained by high-resolution stratigraphy on a mm scale reveal considerable variations in element concentrations across the boundary with their respective maxima stratified in distinct sublayers (Graup et al., 1992). These results suggest that measurements of bulk boundary samples a few cm thick may be inappropriate as concentration variations and element ratios would be leveled out pretending a single geochemical signal. Having investigated a sample comprising sublayers B, C, and D (Fig. 1), Alvarez et al.(1980) acknowledge that "no information is available on the chemical variations within the boundary." This kind of information is given below and shown in Fig. 1 (sublayers A and B are drafted in double scale). From the main lithologic characteristics of Maastrichtian to Paleocene sediments (Schmitz, 1988; Graup et al., 1992) it is readily deduced that Eh and pH conditions in the marine environment changed from oxic-mildly alkaline with normal carbonate sedimentation (Q-M) to anoxic-(mildly) acid with deposition of pyrite spherules (A3), organic material, and clay minerals in the Fish Clay (A-D), followed by a restoration of oxic-alkaline conditions depositing the Cerithium limestone (E- I). The element distribution across the boundary obviously mirrors these alternating environmental conditions: compounds soluble under acid and reducing conditions like Ca-carbonate and Mn are strongly depleted in the Fish Clay (Fig. 1A), whereas compounds stable and insoluble under these conditions are highly enriched (Fig. 1B). The opposite holds true for the calcareous sediments. Across the boundary, enhanced element concentrations are not evenly distributed but appear to be stratified with maximum concentrations in three distinct sublayers for the following elements: (1) A1 (hard clay): peak concentrations for REE (La 72 ppm) and U (45.5 ppm) as compared to 13 ppm La and 2 ppm U in sublayer A2 immediately above. (2) A3 (pyrite spherules): peak concentrations for Fe, Co, Ni, Au, and all chalcophiles. The trace elements correlate well with Fe across the boundary. (3) B (organic-rich marl): peak concentrations for Ir (87.6 ppb), Re (96 ppb, but 113 ppb in C), and organic carbon (2.3%). Ir correlates well with organic carbon (data from Schmitz, 1988), to a lesser extent with Re, and, possibly, Os, but is not correlated with Ni, Co or Au (Graup et al., 1992). Despite large variations in absolute concentrations and, therefore, also of ratios for elements with differing chemical behaviour, there are some pairs of chemically closely related elements (siderophiles as well as chalco- and lithophiles), the ratios of which remain fairly constant over the whole boundary range. Examples shown in Fig. 1A: Ni/Co (average 7.6/std.dev. 1.2) and La/Yb (12.9/2.4). Although Eh,pH conditions vary widely, these elements are not fractionated from each other because of their closely similar geochemical behaviour. The high concentrations of Ir, Ni, and chalcophile elements making up the K/T geochemical anomaly should be indicative of an external component added to the marine environment. The elements introduced were subsequently precipitated according to their chemical properties and changing Eh,pH conditions resulting in stratification of peak concentrations. The constancy of certain element ratios indicates an extended period of availability for this external component. REFERENCES: Alvarez L.W., Alvarez W., Asaro F., and Michel H.V. (1980) Science 208, 1095-1108. Graup G., Palme H., and Spettel B. (1992) Lunar Planet. Sci.(abstract) 23, 445. Schmitz B. (1988) Geology 16, 1068-1072.
NASA Astrophysics Data System (ADS)
Papaspiropoulos, Giorgos; Martinsson, Bengt G.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Hermann, Markus; Heintzenberg, Jost; Fischer, Herbert; van Velthoven, Peter F. J.
2002-12-01
This study with the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) platform investigates the aerosol elemental concentrations at 9-11 km altitude in the northern hemisphere. Measurements from 31 intercontinental flights over a 2-year period between Germany and Sri Lanka/Maldives in the Indian Ocean are presented. Aerosol samples were collected with an impaction technique and were analyzed for the concentration of 18 elements using particle-induced X-ray emission (PIXE). Additional measurements of particle number concentrations, ozone and carbon monoxide concentrations, and meteorological modeling were included in the interpretation of the aerosol elemental concentrations. Particulate sulphur was found to be by far the most abundant element. Its upper tropospheric concentration increased, on average, by a factor of 2 from the tropics to midlatitudes, with another factor 2 higher concentrations in the lowermost stratosphere over midlatitudes. Correlation patterns and source profiles suggest contributions from crustal sources and biomass burning, but not from meteor ablation. Coinciding latitudinal gradients in particulate sulphur concentrations and emissions suggest that fossil fuel combustion is an important source of the aerosol in the upper troposphere and lowermost stratosphere. The measurements indicate aerosol transport along isentropic surfaces across the tropopause into the lowermost stratosphere. As a result of the prolonged residence time, ageing via oxidation of sulphur dioxide in the lowermost stratosphere was found to be a likely high-altitude, strong source that, along with downward transport of stratospheric air, could explain the vertical gradient of particulate sulphur mass concentration around the extratropical tropopause.
NASA Astrophysics Data System (ADS)
Feldstein, Tamar; Kashman, Yoel; Abelson, Avigdor; Fishelson, Lev; Mokady, Ofer; Bresler, Vladimir; Erel, Yigal
2003-10-01
Concentrations of trace elements and organic pollutants were determined in marine sediments and molluscs from the Mediterranean and Red Sea coasts of Israel. Two bivalve species (Donax trunculus, Pteria aegyptia), two gastropod species (Patella caerulea, Cellana rota) and sediments were sampled at polluted and relatively clean, reference, sites. Along the Mediterranean coast of Israel, sediments and molluscs from Haifa Bay stations were enriched with both organic and trace element contaminants. In the Red Sea, differences between the polluted and reference sites were less pronounced. Bio-concentration factors indicate a significant concentration of Zn, As, Cd, Sn and Pb in animal tissue relative to the concentrations of these elements in the sediments. In contrast, Ce, La and U were not concentrated in molluscs. The trace element results indicate a saturation of the detoxification mechanisms in molluscs from polluted sites. The concentrations of organic pollutants at the same sites are at the lower range of values recorded in other studies. However, synergistic effects between these compounds and between them and metals can lead to acute toxicity.
Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS.
Heitland, Peter; Köster, Helmut D
2006-03-01
The paper provides physicians and clinical chemists with statistical data (concentration ranges, geometric mean values, selected percentiles, etc.) about 30 urinary trace elements in order to determine whether people have trace element deficiencies or have been exposed to higher elemental concentrations. Morning urine samples of 72 children and 87 adults from two geographical areas of Germany were collected and the elements Li, Be, V, Cr, Mn, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, Pt, Au, Pb, Tl, Bi and U were determined by inductively coupled plasma mass spectrometry (ICP-MS) with a new octopole based collision/reaction cell. The urine samples were analysed directly after a simple 1/5 (V/V) dilution with deionised water and nitric acid. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews. The described concentration data down to the ng/l range are very useful for the formulation of reference values. For some elements either new data are described (e.g., for V, Ga, In, Bi, Rh, Mn) or differences to earlier studies were found (e.g., for Be, As). For other elements (e.g., Sb, Se, Mo, Ba, Cu, Zn, Li) our results are in good correlation with previous studies and also complemented with urinary trace element concentrations for children.
The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export
NASA Astrophysics Data System (ADS)
Painter, Stuart C.; Hartman, Susan E.; Kivimäe, Caroline; Salt, Lesley A.; Clargo, Nicola M.; Daniels, Chris J.; Bozec, Yann; Daniels, Lucie; Allen, Stephanie; Hemsley, Victoria S.; Moschonas, Grigorios; Davidson, Keith
2017-12-01
A detailed analysis of the internal stoichiometry of a temperate latitude shelf sea system is presented which reveals strong vertical and horizontal gradients in dissolved nutrient and particulate concentrations and in the elemental stoichiometry of those pools. Such gradients have implications for carbon and nutrient export from coastal waters to the open ocean. The mixed layer inorganic nutrient stoichiometry shifted from balanced N:P in winter, to elevated N:P in spring and to depleted N:P in summer, relative to the Redfield ratio. This pattern suggests increased likelihood of P limitation of fast growing phytoplankton species in spring and of N limitation of slower growing species in summer. However, as only silicate concentrations were below potentially limiting concentrations during summer and autumn the stoichiometric shifts in inorganic nutrient N:P are considered due to phytoplankton nutrient preference patterns rather than nutrient exhaustion. Elevated particulate stoichiometries corroborate non-Redfield optima underlying organic matter synthesis and nutrient uptake. Seasonal variation in the stoichiometry of the inorganic and organic nutrient pools has the potential to influence the efficiency of nutrient export. In summer, when organic nutrient concentrations were at their highest and inorganic nutrient concentrations were at their lowest, the organic nutrient pool was comparatively C poor whilst the inorganic nutrient pool was comparatively C rich. The cross-shelf export of these pools at this time would be associated with different efficiencies regardless of the total magnitude of exchange. In autumn the elemental stoichiometries increased with depth in all pools revealing widespread carbon enrichment of shelf bottom waters with P more intensely recycled than N, N more intensely recycled than C, and Si weakly remineralized relative to C. Offshelf carbon fluxes were most efficient via the inorganic nutrient pool, intermediate for the organic nutrient pool and least efficient for the particulate pool. N loss from the shelf however was most efficient via the dissolved organic nutrient pool. Mass balance calculations suggest that 28% of PO43-, 34% of NO3- and 73% of Si drawdown from the mixed layer fails to reappear in the benthic water column thereby indicating the proportion of the nutrient pools that must be resupplied from the ocean each year to maintain shelf wide productivity. Loss to the neighbouring ocean, the sediments, transference to the dissolved organic nutrient pool and higher trophic levels are considered the most likely fate for these missing nutrients.
Custer, Christine M.; Yang, C.; Crock, J.G.; Shearn-Bochsler, V.; Smith, K.S.; Hageman, P.L.
2009-01-01
Concentrations of 31 metals, metalloids, and other elements were measured in insects and insectivorous bird tissues from three drainages with different geochemistry and mining histories in Summit Co., Colorado, in 2003, 2004, and 2005. In insect samples, all 25 elements that were analyzed in all years increased in both Snake and Deer Creeks in the mining impacted areas compared to areas above and below the mining impacted areas. This distribution of elements was predicted from known or expected sediment contamination resulting from abandoned mine tailings in those drainages. Element concentrations in avian liver tissues were in concordance with levels in insects, that is with concentrations higher in mid-drainage areas where mine tailings were present compared to both upstream and downstream locations; these differences were not always statistically different, however. The lack of statistically significant differences in liver tissues, except for a few elements, was due to relatively small sample sizes and because many of these elements are essential and therefore well regulated by the bird's homeostatic processes. Most elements were at background concentrations in avian liver tissue except for Pb which was elevated at mid-drainage sites to levels where ??-aminolevulinic acid dehydratase activity was inhibited at other mining sites in Colorado. Lead exposure, however, was not at toxic levels. Fecal samples were not a good indication of what elements birds ingested and were potentially exposed to. ?? Springer Science+Business Media B.V. 2008.
Rare Earth Elements in Alberta Oil Sand Process Streams
Roth, Elliot; Bank, Tracy; Howard, Bret; ...
2017-04-05
The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less
Rare Earth Elements in Alberta Oil Sand Process Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Elliot; Bank, Tracy; Howard, Bret
The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less
NASA Astrophysics Data System (ADS)
Findlay, Alyssa J.; Gartman, Amy; MacDonald, Daniel J.; Hanson, Thomas E.; Shaw, Timothy J.; Luther, George W.
2014-10-01
Elemental sulfur is an important intermediate of sulfide oxidation and may be produced via abiotic and biotic pathways. In this study the concentration and size fractionation of elemental sulfur were measured in two different sulfidic marine environments: the Chesapeake Bay and buoyant hydrothermal vent plumes along the Mid-Atlantic Ridge. Nanoparticulate sulfur (<0.2 μm) was found to comprise up to 90% of the total elemental sulfur in anoxic deep waters of the Chesapeake Bay. These data were compared with previous studies of elemental sulfur, and represent one of the few reports of nanoparticulate elemental sulfur in the environment. Additionally, a strain of phototrophic sulfide oxidizing bacteria isolated from the Chesapeake Bay was shown to produce elemental sulfur as a product of sulfide oxidation. Elemental sulfur concentrations are also presented from buoyant hydrothermal vent plumes located along the Mid-Atlantic Ridge. In the Mid-Atlantic Ridge plume, S0 concentrations up to 33 μM were measured in the first meter of rising plumes at three different vent sites, and nanoparticulate S0 was up to 44% of total elemental sulfur present.
Costa, R A; Torres, J; Vingada, J V; Eira, C
2016-07-15
This study presents the first data on trace element and organic pollutant concentrations in the Critically Endangered Balearic shearwater Puffinus mauretanicus collected in 2010 and 2011 in Portugal. Trace element levels were below the threshold levels for adverse effects on birds, despite the Hg concentrations in feathers (4.35μg·g-1ww). No significant differences were detected between individuals from 2010 and 2011 except for Se concentrations in liver, feathers and muscle (higher in 2010) and Ag in liver and muscle (higher in 2011). No significant differences were detected in total concentrations of organochlorine compounds in Balearic shearwaters between years, although PCB congeners -101 and -180 presented higher concentrations in individuals from 2010. The PCB congeners -138, -153 and -180, and 4.4-DDE were detected in all individuals. This study on toxic elements and organic pollutants in wintering Balearic shearwaters provides baseline data from which deviations can be detected in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Elemental concentration analysis in prostate tissues using total reflection X-ray fluorescence
NASA Astrophysics Data System (ADS)
Leitão, R. G.; Palumbo, A.; Souza, P. A. V. R.; Pereira, G. R.; Canellas, C. G. L.; Anjos, M. J.; Nasciutti, L. E.; Lopes, R. T.
2014-02-01
Prostate cancer (PCa) currently represents the second most prevalent malignant neoplasia in men, representing 21% of all cancer cases. Benign Prostate Hyperplasia (BPH) is an illness prevailing in men above the age of 50, close to 90% after the age of 80. The prostate presents a high zinc concentration, about 10-fold higher than any other body tissue. In this work, samples of human prostate tissues with cancer, BPH and normal tissue were analyzed utilizing total reflection X-ray fluorescence spectroscopy using synchrotron radiation technique (SR-TXRF) to investigate the differences in the elemental concentrations in these tissues. SR-TXRF analyses were performed at the X-ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, São Paulo. It was possible to determine the concentrations of the following elements: P, S, K, Ca, Fe, Cu, Zn and Rb. By using Mann-Whitney U test it was observed that almost all elements presented concentrations with significant differences (α=0.05) between the groups studied.
Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert
He, Mingzhu; Song, Xin; Tian, Fuping; Zhang, Ke; Zhang, Zhishan; Chen, Ning; Li, Xinrong
2016-01-01
Desert shrubs, a dominant component of desert ecosystems, need to maintain sufficient levels of nutrients in their different organs to ensure operation of various physiological functions for the purpose of survival and reproduction. In the present study, we analyzed 10 elements in leaves, stems, and roots of 24 dominant shrub species from 52 sites across a temperate desert ecosystem in northwestern China. We found that concentrations of all 10 elements were higher in leaves than in stems and roots, that non-legumes had higher levels of leaf Na and Mg than did legumes, and that Na was more concentrated in C4 leaves than in C3 leaves. Scaling relationships of elements between the photosynthetic organ (leaf) and non-photosynthetic organs (stem and root) were allometric. Results of principal components analysis (PCA) highlighted the important role of the elements responsible for osmoregulation (K and Na) in water utilization of desert shrubs. Soil properties and taxonomy explained most variation of element concentrations in desert shrubs. Desert shrubs may not be particularly susceptible to future change in climate factors, because most elements (including N, P, K, Ca, Mn, Zn, and Cu) associated with photosynthesis, osmoregulation, enzyme activity, and water use efficiency primarily depend on soil conditions. PMID:26818575
Assimilation and regeneration of trace elements by marine copepods
Wang, W.-X.; Reinfelder, J.R.; Lee, B.-G.; Fisher, N.S.
1996-01-01
Assimilation efficiencies (AE) of five trace elements (Am, Cd, Co, Se, and Zn) and carbon by neritic copepods (Acartia tonsa and Temora longicornis) feeding at different food concentrations and on different food types (diatoms, green algae, flagellates, dinoflagellates, and Fe oxides) were measured with radiotracer techniques. Food concentration had little influence on AEs of C, Cd, Co, and Se within a range of 16-800 ?? C liter-1. AEs of Am and Zn were highest at low food concentrations (16-56 ??g C liter-1) but remained relatively constant when food levels exceeded 160 ??g C liter-1. Different algal diets had no major influence on AEs, which generally were in the order Cd > Se > Zn > Co > Am. Metals (Cd, Co, and Zn) were assimilated from Fe oxides with 50% less efficiency than from algal cells. Element regeneration into the dissolved phase was a significant route for the release of ingested elements by copepods and increased with increased food concentration. Element regeneration rates for Cd, Se, and Zn were comparable to the regeneration rates of major nutrients such as P (30-70% daily). Retention half-times of elements in decomposing fecal pellets ranged from 10 d (Am). The efficient assimilation and regeneration of Cd, Se, and Zn can significantly lengthen the residence time of these elements in ocean surface waters.
He, Mingzhu; Song, Xin; Tian, Fuping; Zhang, Ke; Zhang, Zhishan; Chen, Ning; Li, Xinrong
2016-01-28
Desert shrubs, a dominant component of desert ecosystems, need to maintain sufficient levels of nutrients in their different organs to ensure operation of various physiological functions for the purpose of survival and reproduction. In the present study, we analyzed 10 elements in leaves, stems, and roots of 24 dominant shrub species from 52 sites across a temperate desert ecosystem in northwestern China. We found that concentrations of all 10 elements were higher in leaves than in stems and roots, that non-legumes had higher levels of leaf Na and Mg than did legumes, and that Na was more concentrated in C4 leaves than in C3 leaves. Scaling relationships of elements between the photosynthetic organ (leaf) and non-photosynthetic organs (stem and root) were allometric. Results of principal components analysis (PCA) highlighted the important role of the elements responsible for osmoregulation (K and Na) in water utilization of desert shrubs. Soil properties and taxonomy explained most variation of element concentrations in desert shrubs. Desert shrubs may not be particularly susceptible to future change in climate factors, because most elements (including N, P, K, Ca, Mn, Zn, and Cu) associated with photosynthesis, osmoregulation, enzyme activity, and water use efficiency primarily depend on soil conditions.
Concentration of trace elements on branded cigarette in Malaysia
NASA Astrophysics Data System (ADS)
Azman, Muhammad Azfar; Yasir, Muhamad Samudi; Rahman, Irman Abdul; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd
2016-01-01
Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing the neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 1012 n cm-2 s-1. The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO).
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Sheibley, D. W.
1974-01-01
Samples of ASTM type A jet fuel were analyzed for trace-element content by instrumental neutron activation techniques. Forty-nine elements were sought. Only ten, aluminum, gold, indium, lanthanum, titanium, vandium, barium, dysprosium, tellurium, and uranium, were observed at levels above the detection limits encountered; of these only aluminum, titanium, and barium were present at concentrations greater than 0.1 ppm. Estimates of exhaust gas concentrations are made, and the ambient contribution at or near airports is calculated by using the Los Angeles International Airport dispersion model. It is shown that the ambient contribution is about an order of magnitude below typical urban levels for virtually all elements sought.
NASA Technical Reports Server (NTRS)
Fordyce, J. S.; Sheibley, D. W.
1975-01-01
Samples of ASTM type A jet fuel were analyzed for trace element content by instrumental neutron activation techniques. Forty-nine elements were sought. Only ten, aluminum, gold, indium, lanthanum, titanium, vanadium, barium, dysprosium, tellurium, and uranium, were observed at levels above the detection limits encountered; of these only aluminum, titanium, and barium were present at concentrations greater than 0.1 ppm. Estimates of exhaust gas concentrations are made, and the ambient contribution at or near airports is calculated by using the Los Angeles International Airport dispersion model. It is shown that the ambient contribution is about an order of magnitude below typical urban levels for virtually all elements sought.
Alaimo, Maria Grazia; Colombo, Paolo; Firetto, Anna; Trapani, Salvatore; Vizzì, Daniela; Melati, M Rita
2003-01-01
We examined leaf injuries and measured trace element concentrations in vascular plants from an urban ecosystem with distinct stress valences (the city of Palermo), and compared them with samples of the same species from sites where the stress potential is lower. Urban pollution influences macro-, micro- and toxic element concentrations in leaves. Therefore these leaves can be used as markers of the chemical and biological effects of atmospheric pollution. We studied the trace element content in the leaves of two species, oleander and oak, both fairly tolerant plants and good indicators and bio-monitors of pollution contaminants. Samples were collected at various sites in different periods.
Effects of zeolites on cultures of marine micro-algae: A brief review.
Fachini, Adriano; Vasconcelos, Maria Teresa S D
2006-10-01
The cation-exchange capacity of zeolites is well known and has been increasingly explored in different fields with both economic and environmental successes. In aquatic medium with low salinity, zeolites have found multiple applications. However, a review of the literature on the applications of zeolites in salt waters found relatively few articles, including some recently published papers. The purpose of this review is to present the state-of-the-art on applications of using zeolites for amending the trace elemental contents of salt water as well as the implications of this property for promoting marine micro-algal growth. This paper deals with the following features: Sorption capacity of zeolites including 1. application of zeolites in saltwater, 2. the role of silicon and zeolites on cultures of micro-algae, and 3. the role of organically chelated trace metals. The following competing factors have been identified as effects of zeolites on algal growth in salt water: (i) ammonia decrease: growth inhibition reduced; (ii) macro-nutrients increase, mainly silicon: stimulation of silicon-dependent algae; (iii) trace metals increase (desorption from zeolites) or decrease (adsorption): inhibition or stimulation, depending on the nature of the element and its concentration; and, (iv) changes in the chelating organics exudation: inhibition or stimulation of growth, depending on the (a) nature of the complexed element; (b) bioavailability of the complex; and (c) concentration of the elements simultaneously present in inorganic forms. Zeolites have been capable of stimulating the growth of the silicon-demanding marine micro-algae, like diatoms, mainly because they can act as a silicon buffer in seawater. Zeolites can also influence the yield of non-silicon-demanding algae, because the changes they can cause (liberation and adsorption of trace elements) in the composition of the medium. Zeolites have been capable of stimulating the growth of the marine micro-algae. However, the extent of ion exchange between zeolite and seawater, which conditions the effects, will depend on several factors: (1) initial metal concentration in seawater; (2) levels of trace metals in the zeolites (contaminants); (3) characteristics of the zeolites in terms of both ion-exchange capacity and specific affinities for the different cations; (4) quantity of zeolite per litre of solution; (5) pH and (6) response of the organism in terms of liberation of organic ligands. Therefore, a previous investigation in each particular case is recommended, in order to select the zeolitic characteristics and concentrations that will maximize the algal yield. Stimulation of phytoplankton growth can be economically relevant since phytoplankton constitutes the basis of the marine food webs and is required in fish farming nurseries in the marine aquaculture industry. Zeolites are cheap, only small amounts (few milligrams per liter of culture) are required and the addition of some micro-nutrients may be omitted. Therefore, the inclusion of zeolites in algal cultures in aquaculture may have economic advantages.
Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.
2001-01-01
Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium, chromium, copper, lead, and zinc in sediment samples from Dillon Reservoir exceeded the Canadian interim freshwater sediment-quality guidelines. Copper, iron, lithium, nickel, scandium, titanium, and vanadium concentrations in sediment samples decreased over time. Other elements, while no trend was evident, displayed concentration spikes in the down-core profiles, indicating loads entering the reservoir may have been larger than they were in 1997. The highest concentrations of copper, lead, manganese, mercury, and zinc were detected during the late 1970's and early 1980's. Elevated concentrations of trace elements in sediment in Dillon Reservoir likely resulted from historical mining in the drainage area. The downward trend identified for copper, iron, lithium, nickel, scandium, titanium, and vanadium may be due in part to restoration efforts in mining-affected areas and a decrease in active mining in the Dillon Reservoir watershed. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.
Young, Sharon M; Gryder, Laura K; David, Winnie B; Teng, Yuanxin; Gerstenberger, Shawn; Benyshek, Daniel C
2016-08-01
Maternal placentophagy has recently emerged as a rare but increasingly popular practice among women in industrialized countries who often ingest the placenta as a processed, encapsulated supplement, seeking its many purported postpartum health benefits. Little scientific research, however, has evaluated these claims, and concentrations of trace micronutrients/elements in encapsulated placenta have never been examined. Because the placenta retains beneficial micronutrients and potentially harmful toxic elements at parturition, we hypothesized that dehydrated placenta would contain detectable concentrations of these elements. To address this hypothesis, we analyzed 28 placenta samples processed for encapsulation to evaluate the concentration of 14 trace minerals/elements using inductively coupled plasma mass spectrometry. Analysis revealed detectable concentrations of arsenic, cadmium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, rubidium, selenium, strontium, uranium, and zinc. Based on one recommended daily intake of placenta capsules (3300 mg/d), a daily dose of placenta supplements contains approximately 0.018 ± 0.004 mg copper, 2.19 ± 0.533 mg iron, 0.005 ± 0.000 mg selenium, and 0.180 ± 0.018 mg zinc. Based on the recommended dietary allowance (RDA) for lactating women, the recommended daily intake of placenta capsules would provide, on average, 24% RDA for iron, 7.1% RDA for selenium, 1.5% RDA for zinc, and 1.4% RDA for copper. The mean concentrations of potentially harmful elements (arsenic, cadmium, lead, mercury, uranium) were well below established toxicity thresholds. These results indicate that the recommended daily intake of encapsulated placenta may provide only a modest source of some trace micronutrients and a minimal source of toxic elements. Copyright © 2016 Elsevier Inc. All rights reserved.
Heinen, De Carlo E.; Anthony, S.S.
2002-01-01
Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input. ?? 2002 Elsevier Science Ltd. All rights reserved.
Aksoy, Laçine; Sözbilir, Nalan Bayşu
2015-10-01
The study investigated the toxic effects of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) oil seeds on the trace and major elements in kidney, lung, liver, and serum of rats. By the end of 21 days, trace and major element concentrations in kidney, lung, and liver tissues and the serum were measured using inductively coupled plasma-optical emission spectroscopy. We observed that trace and major element levels in kidney, lung, and liver tissues and the serum changed. Especially, important differences were detected in trace and major element concentrations in kidney and lung tissues. In kidney tissue, the concentration differences of calcium, sodium, and zinc (Zn) were found between diesel and biodiesel groups. In lung tissue, the concentration differences of cadmium, lithium, magnesium, manganese, and Zn were found between diesel and biodiesel groups. Among the significant findings, Zn concentration in serum and liver tissue of diesel and biodiesel were different from control (p < 0.05). However, the metal levels of biodiesel group were similar to control group. Due to lesser toxicity of biodiesel, it could be considered as an alternate fuel. © The Author(s) 2013.
Impact of Sahara dust transport on Cape Verde atmospheric element particles.
Almeida-Silva, M; Almeida, S M; Freitas, M C; Pio, C A; Nunes, T; Cardoso, J
2013-01-01
The objectives of this study were to (1) conduct an elemental characterization of airborne particles sampled in Cape Verde and (2) assess the influence of Sahara desert on local suspended particles. Particulate matter (PM(10)) was collected in Praia city (14°94'N; 23°49'W) with a low-volume sampler in order to characterize its chemical composition by k0-INAA. The filter samples were first weighed and subsequently irradiated at the Portuguese Research Reactor. Results showed that PM(10) concentrations in Cape Verde markedly exceeded the health-based air quality standards defined by the European Union (EU), World Health Organization (WHO), and U.S. Environmental Protection Agency (EPA), in part due to the influence of Sahara dust transport. The PM(10) composition was characterized essentially by high concentrations of elements originating from the soil (K, Sm, Co, Fe, Sc, Rb, Cr, Ce, and Ba) and sea (Na), and low concentrations of anthropogenic elements (As, Zn, and Sb). In addition, the high concentrations of PM measured in Cape Verde suggest that health of the population may be less affected compared with other sites where PM(10) concentrations are lower but more enriched with toxic elements.
NASA Astrophysics Data System (ADS)
Perez-Cruz, L.; Urrutia-Fucugauchi, J.; Vazquez-Gutierrez, F.; Carranza-Edwards, A.
2007-12-01
Marine turtles are well known for their navigation ability in the open ocean and fidelity to nesting beaches. Green turtle adult females migrate from foraging areas to island nesting beaches, traveling hundreds or thousands of kilometers each way. The marine turtle breeding in the Galapagos Islands is the Green Sea Turtle (Chelonia mydas agassisi); fairly common throughout the islands but with nesting sites located at Las Bachas (Santa Cruz), Barahona and Quinta Playa (Isabela), Salinas (Baltra), Gardner Bay (Española) and Bartolomé Islet. In order to characterize and to identify the geochemical signature of nesting marine turtle beaches in Galapagos Islands, sedimentological, geochemical and rock magnetic parameters are used. A total of one hundred and twenty sand samples were collected in four beaches to relate compositional characteristics between equivalent areas, these are: Las Bachas, Salinas, Barahona and Quinta Playa. Grain size is evaluated using laser particle analysis (Model Coulter LS 230). Bulk ICP-MS geochemical analysis is performed, following trace elements are analyzed: Al, V, Cr, Co, Ni, Cu, Zn, Cd, Ba, Pb, Fe, Mn, K, Na, Mg, Sr, Ca and Hg; and low-field magnetic susceptibility is measured in all samples at low and high frequencies. Granulometric analysis showed that Barahona and Quinta Playa are characterized for fine grained sands. In contrast, Salinas and Las Bachas exhibit medium to coarse sands. Trace metals concentrations and magnetic susceptibility show different distribution patterns in the beach sands. Calcium is the most abundant element in the samples. In particular, Co, K, and Na show similar concentrations in the four beaches. Las Bachas beach shows highest concentrations of Pb and Hg (maximum values 101.1 and 118.5 mg/kg, respectively), we suggest that the enrichment corresponds to an anthropogenic signal. Salinas beach samples show high concentrations of Fe, V, Cr, Zn, Mn and the highest values of magnetic susceptibility (maximum 932 10-6 SI), we propose, a human activity influence less evident than in Bachas beach that could overlap the contribution of continent source. Quinta Playa sands show the maximum concentration of calcium and also high concentration of Fe and Mg, and relatively high values of magnetic susceptibility. Ca results from marine biogenic carbonates (mainly coral reefs). Barahona also show high concentrations in calcium that could be correlated with the presence of biogenous source around the beach.
Trace elements: implications for nursing.
Hayter, J
1980-01-01
Although most were unknown a few years ago, present evidence indicates that at least 25 trace elements have some pertinence to health. Unlike vitamins, they cannot be synthesized. Some trace elements are now considered important only because of their harmful effects but traces of them may be essential. Zinc is especially important during puberty, pregnancy and menopause and is related to protein metabolism. Both fluoride and cadmium accumulate in the body year after year. Cadmium is positively correlated with several chronic diseases, especially hypertension. It is obtained from smoking and drinking soft water. Silicon, generally associated with silicosis, may be necessary for healthy bone and connective tissue. Chromium, believed to be the glucose tolerance factor, is obtained from brewer's yeast, spices, and whole wheat products. Copper deficiency may be implicated in a wide range of cardiovascular and blood related disorders. Either marginal deficiencies or slight excesses of most trace elements are harmful. Nurses should instruct patients to avoid highly refined foods, fad diets, or synthetic and fabricated foods. A well balanced and varied diet is the best safeguard against trace element excesses or deficiencies.
Dong, Zhiwen; Kang, Shichang; Qin, Dahe; Qin, Xiang; Yan, Fangping; Du, Wentao; Wei, Ting
2017-03-01
An evaluation of glacial meltwater chemistry is needed under recent dramatic glacier melting when water resources might be significantly impacted. This study investigated trace elements variation in the meltwater stream, and its related aquatic environmental information, at the Laohugou (LHG) glacier basin (4260 m a.s.l.) at a remote location in northeast Tibetan Plateau. We focused on the spatial, temporal and diurnal change of trace elements during the glacier ablation period. Results showed evident elements spatial difference on the glacier surface meltwater, as most of the elements showed increased concentration at the terminus compared to higher elevations sites. Dominant elements in the meltwater were Ba, Sr and Cr, whereas elements with high enrichment factors (EFs) were Sb, Ni, Mo and Zn. Temporal change of some trace elements concentration (e.g. Sc, Cu, and Rb) indicated increasing trend with accelerated snow-ice melting, whereas others (e.g. Ni, Zn, and Pb) showed decreasing trend. We find that, trace elements showed evident diurnal change and a peak value of concentration was observed each day at about 15:00-17:00, and the diurnal change was influenced by runoff level and pH. Moreover, EFs calculations revealed that heavy metals were partially originated from regional anthropogenic sources. Overall, the accelerated diurnal and temporal snow-ice melting (with high runoff level) were correlated to increased elemental concentration, pH, EC and elemental change mode, and thus this work is of great importance for evaluating the impacts of accelerated glacier melting to meltwater chemistry and downstream ecosystem in the northeast Tibetan Plateau. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15
Hermosillo, Edyth; Coes, Alissa L.
2017-03-01
Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.
Determination of trace elements in the reproduction systems of some rare animals using pixe
NASA Astrophysics Data System (ADS)
Suqing, Chen; Nengming, Wang; Jianxuan, Chen; Dazhong, Zhang
In order to search for the significance of artificial feeding, reproduction and heredity, trace elements in the reproductive systems of some rare animals, including giant panda, lesser panda, marmot and river deer, have been determined. Typcial X-ray spectra of various samples are given. The elemental contents in ovary and testis of the giant panda and the lesser panda are calculated by means of yttrium as an internal standard. Elemental relative concentrations are calculated from peak areas in the spectra for thick samples. It is found that for the concentration of the elements Cr, Mn, Fe, Ni, Cu, As in the ovary there exist no significant different between the giant panda and the lesser panda. The concentration of Zn, however, shows a remakable difference. The importance of zinc in biological processes is discussed.
NASA Astrophysics Data System (ADS)
Stedman, J. D.; Spyrou, N. M.
1994-12-01
The trace element concentrations in porcine brain samples as determined by particle-induced X-ray emission (PIXE) analysis, instrumental neutron activation analysis (INAA) and particle-induced gamma-ray emission (PIGE) analysis are compared. The matrix composition was determined by Rutherford backscattering (RBS). Al, Si, P, S, Cl, K, Ca, Mn, Fe and Cd were determined by PIXE analysis Na, K, Sc, Fe, Co, Zn, As, Br, Rb, and Cs by INAA and Na, Mg and Fe by PIGE analysis. The bulk elements C, N, O, Na Cl and S were found by RBS analysis. Elemental concentrations are obtained using the comparator method of analysis rather than an absolute method, the validity which is examined by comparing the elemental concentrations obtained in porcine brain using two separate certified reference materials.
Diel cycling of trace elements in streams draining mineralized areas: a review
Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.
2015-01-01
Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.
Total-reflection X-ray fluorescence studies of trace elements in biomedical samples
NASA Astrophysics Data System (ADS)
Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.
2004-08-01
Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.
Yessoufou, Arouna; Ifon, Binessi Edouard; Suanon, Fidèle; Dimon, Biaou; Sun, Qian; Dedjiho, Comlan Achille; Mama, Daouda; Yu, Chang-Ping
2017-11-09
Nowadays, sewage sludge and water bodies are subjected to heavy pollution due to rapid population growth and urbanization. Heavy metal pollution represents one of the main challenges threatening our environment and the ecosystem. The present work aims to evaluate the contamination state of the sewage sludge and lake sediments in the Republic of Benin. Twenty metallic elements including 15 rare earth elements (Eu, Sb, Cs, Nd, Pr, Gd, La, Ce, Tb, Sm, Dy, Ho, Eu, Yb, and Lu) and five precious elements (Ag, Au, Pd, Pt, and Ru) were investigated using inductive plasma-mass spectrometry. Results showed broad range concentrations of the elements. Ce, La, and Nd were present in both sediments and sewage sludge at concentrations ranging 5.80-41.30 mg/kg dry matter (DM), 3.23-15.60 mg/kg DM, and 2.74-19.26 mg/kg DM, respectively. Pr, Sm, Gd, Tb, Dy, Eu, Er, Yb, Cs, Ho, and Tm concentrations were lower (0.02-5.94 mg/kg DM). Among precious elements, Ag was detected at the highest concentration in all sites (0.43-4.72 mg/kg DM), followed by Pd (0.20-0.57 mg/kg DM) and Au (0.01-0.57 mg/kg DM). Ru and Pt concentrations were < 0.20 mg/kg DM in all samples. Pollution indices and enrichment factor indicated a strong to severe enrichment of the elements, mainly Ce and precious elements in both sediments and sewage sludge. This revealed a growing anthropogenic input which was also implied by principal component analysis. The evaluation of pollution loading index (PLI) indicated a moderate to strong contamination (0.12 ≤ PLI ≤ 0.58; 37 ≤ PLI ≤ 114, respectively, for rare earth elements and precious elements), while the degree of contamination indicated a moderate polymetallic contamination for rare earth elements and significant contamination for precious elements.
Horizontal and vertical variability of soil properties in a trace element contaminated area
NASA Astrophysics Data System (ADS)
Burgos, Pilar; Madejón, Engracia; Pérez-de-Mora, Alfredo; Cabrera, Francisco
2008-02-01
The spatial distribution of some soil chemical properties and trace element contents of a plot affected by the Aznalcóllar mine spill were investigated using statistical and geostatistical methods to assess the extent of soil contamination. Total and EDTA-extractable soil trace element concentrations and total S content showed great variability and high coefficients of variation in the three examined depths. Soil in the plot was found to be significantly contaminated by As, Cd, Cu, Pb and Zn within a wide range of pH. Total trace element concentrations at all depths (0-60 cm) were much higher than background values of non-affected soil, indicating that despite the clean-up operations, the concentration of trace elements in the experimental plot was still high. The spatial distribution of the different variables was estimated by kriging to design contour maps. These maps allowed the identification of specific zones with high metal concentrations and low pH values corresponding to spots of residual sludge. Moreover, kriged maps showed distinct spatial distribution and hence different behaviour for the elements considered. This information may be applied to optimise remediation strategies in highly and moderately contaminated areas.
Distribution of elements in individual blood cells in metabolic disorders at the cellular level
NASA Astrophysics Data System (ADS)
Johansson, Erland; Lindh, Ulf
1985-08-01
In comparison with controls neutrophil granulocytes from Rheumatoid arthritis (RA), Infantile Neuronal Ceroid Lipofuscinosis (INCL), Chronic Lymphatic Leukemia (L) and Aplastic Anemia (AA) displayed significant alterations in essential and non-essential elements which might be interpreted as fingerprints of these deseases. The neutrophils from RA patients displayed alterations in the concentrations of iron, calcium, strontium, manganese, zinc and copper. INCL displayed alterations in the concentrations of iron and copper but in the INCL disease the iron concentration was about 2 times higher than in RA. In leukemia, aluminium was observed but not in the controls (< 0.5 μg/ g). The zinc concentration was lowered in leukemia. Aplastic anemia displayed alterations in zirconium, arsenic, molybdenum, iron and zinc. The platelets from RA, INCL, L and AA patients also displayed alterations in the elemental profiles. The platelets from AA patients displayed a unique elemental distribution of arsenic, zirconium and molybdenum. The elemental profiles of the thrombocytes and neutrophils might be used as a complement in the diagnosis of the examined diseases and in therapy the elemental profile might be used to monitor drugs at the cellular level.
Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements
NASA Astrophysics Data System (ADS)
Kato, Yasuhiro; Fujinaga, Koichiro; Nakamura, Kentaro; Takaya, Yutaro; Kitamura, Kenichi; Ohta, Junichiro; Toda, Ryuichi; Nakashima, Takuya; Iwamori, Hikaru
2011-08-01
World demand for rare-earth elements and the metal yttrium--which are crucial for novel electronic equipment and green-energy technologies--is increasing rapidly. Several types of seafloor sediment harbour high concentrations of these elements. However, seafloor sediments have not been regarded as a rare-earth element and yttrium resource, because data on the spatial distribution of these deposits are insufficient. Here, we report measurements of the elemental composition of over 2,000 seafloor sediments, sampled at depth intervals of around one metre, at 78 sites that cover a large part of the Pacific Ocean. We show that deep-sea mud contains high concentrations of rare-earth elements and yttrium at numerous sites throughout the eastern South and central North Pacific. We estimate that an area of just one square kilometre, surrounding one of the sampling sites, could provide one-fifth of the current annual world consumption of these elements. Uptake of rare-earth elements and yttrium by mineral phases such as hydrothermal iron-oxyhydroxides and phillipsite seems to be responsible for their high concentration. We show that rare-earth elements and yttrium are readily recovered from the mud by simple acid leaching, and suggest that deep-sea mud constitutes a highly promising huge resource for these elements.
Muhs, D.R.; Budahn, J.; Avila, A.; Skipp, G.; Freeman, J.; Patterson, D.
2010-01-01
African dust additions explain the origin of terra rossa soils that are common on the carbonate-platform island of Mallorca, Spain. Mineralogical and geochemical analyses indicate that Quaternary carbonate eolianites on Mallorca have a very high purity, usually composed of more than 90% carbonate minerals (calcite, dolomite, and aragonite). In contrast, terra rossa soils developed on these eolianites have lower carbonate contents and contain higher concentrations of quartz and other silicates. Analyses of immobile trace elements indicate that the non-carbonate fractions of the eolianites have distinctive Zr/Hf, La/Yb, Cr/Sc and Th/Ta values that differ from the superjacent terra rossa soils. These observations indicate that even if sufficient dissolution of the eolianite had taken place to create the soils by residual accumulation, immobile element ratios in the soils require an external source. However, Zr/Hf, La/Yb, Cr/Sc and Th/Ta values in the soils fall within the range of values for these element ratios in African dust collected on Barbados and mainland Spain. We conclude that the silicate fractions of terra rossa soils on Mallorca are derived mainly, though not wholly, from far-traveled African dust, and this process may explain the origin of other terra rossa soils found in southern Europe. ?? 2010.
Anomalous REE patterns in unequilibrated enstatite chondrites: Evidence and implications
NASA Technical Reports Server (NTRS)
Crozaz, Ghislaine; Hsu, Weibiao
1993-01-01
We present here a study of Rare Earth Element (REE) microdistributions in unequilibrated enstatite chondrites (EOC's). Although the whole rock REE contents are similar in both unequilibrated and equilibrated chondrites, the host minerals of these refractory elements are different. In the least equilibrated ordinary chondrites (UOC's), the REE reside mainly in glass whereas, in their more equilibrated counterparts, the bulk of the REE is in calcium phosphate, a metamorphic mineral that formed by oxidation of phosphorous originally contained in metal. In the smaller group of enstatite (E) chondrites, calcium phosphate is absent and the phase that contains the highest REE concentrations is a minor mineral, CaS (oldhamite), which contains approximately 50 percent of the total Ca present. In E chondrites, elements typically considered to be lithophiles (such as Ca and Mn) occur in sulfides rather than silicates. This indicates formation under extremely reducing conditions, thus in a region of the solar nebula distinct from those that supplied the more abundant ordinary and carbonaceous chondrites. Previously, we observed a variety of REE patterns in the oldhamite of UEC's; they range from almost flat to some with pronounced positive Eu and Yb anomalies. Here, we searched for complementary REE patterns in other minerals from E chondrites and found them in the major mineral, enstatite. Whenever Eu and Yb anomalies are present in this mineral, they are always negative.
2017-01-01
Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling. Model predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing model-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative model-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. Model predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation. PMID:28164700
Uptake and partitioning of zinc in Lemnaceae.
Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John
2011-11-01
Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.
NASA Astrophysics Data System (ADS)
Nagoji, Siddhesh S.; Tiwari, Manish
2017-09-01
The earlier studies show a contrasting long-term trend of the South Asian Summer Monsoon (SASM) after attaining the precessional forcing induced mid-Holocene maximum. The increasing total organic carbon (TOC) concentration of marine sediments in the Southeastern Arabian Sea (SEAS) has been interpreted to imply strengthening SASM since mid-Holocene by a few studies. However, TOC concentration is also influenced by redox conditions, sedimentation rate, and an influx of terrigenous matter depending on the regional settings. So, it needs to be ascertained whether the TOC concentration of the sediments in the SEAS is a signal of productivity related to the SASM strength or preservation. Therefore, we studied multiple proxies (TOC, total nitrogen, atomic C/N, δ13Corg, CaCO3, and major and trace elements concentration) for determining the productivity, redox conditions, detrital supply, and provenance in a sediment core from the upper continental slope of the SEAS spanning the past ˜4700 years at centennial scale resolution. The present study shows that the observed increase in the TOC values since the mid-Holocene is a result of better preservation caused by increased sedimentation rate and enhanced reducing conditions. We further show that the SASM has been declining since mid-Holocene after attaining a precession-forced maximum, which corroborates the earlier model ensemble studies.
Dolan, Kevin J; Ciesielski, Tomasz M; Lierhagen, Syverin; Eulaers, Igor; Nygård, Torgeir; Johnsen, Trond V; Gómez-Ramírez, Pilar; García-Fernández, Antonio J; Bustnes, Jan O; Ortiz-Santaliestra, Manuel E; Jaspers, Veerle L B
2017-10-01
Information on trace element pollution in the terrestrial environment and its biota is limited compared to the marine environment. In the present study, we collected body feathers and blood of 37 Northern goshawk (Accipiter gentilis) nestlings from Tromsø (northern Norway), Trondheim (central Norway), and Murcia (southeastern Spain) to study regional exposure, hypothesizing the potential health risks of metals and other trace elements. Blood and body feathers were analyzed by a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) for aluminum (Al), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), mercury (Hg) and lead (Pb). The influence of regional differences, urbanization and agricultural land usage in proximity to the nesting Northern goshawks was investigated using particular spatial analysis techniques. Most trace elements were detected below literature blood toxicity thresholds, except for elevated concentrations (mean ± SD µgml -1 ww) found for Zn (5.4 ± 1.5), Cd (0.00023 ± 0.0002), and Hg (0.021 ± 0.01). Corresponding mean concentrations in feathers (mean ± SD µgg -1 dw) were 82.0 ± 12.4, 0.0018 ± 0.002, and 0.26 ± 0.2 for Zn, Cd and Hg respectively. Multiple linear regressions indicated region was a significant factor influencing Al, Zn, Se and Hg feather concentrations. Blood Cd and Hg concentrations were significantly influenced by agricultural land cover. Urbanization did not have a significant impact on trace element concentrations in either blood or feathers. Overall metal and trace element levels do not indicate a high risk for toxic effects in the nestlings. Levels of Cd in Tromsø and Hg in Trondheim were however above sub-lethal toxic threshold levels. For holistic risk assessment purposes it is important that the concentrations found in the nestlings of this study indicate that terrestrial raptors are exposed to various trace elements. Copyright © 2017 Elsevier Inc. All rights reserved.
Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Martinez-Serrano, Raymundo G; Alatorre, Miguel Angel; Armstrong-Altrin, John S
2015-04-01
Two oceanographic cruises were taken during the winter (SAV I, November and December 2007) and summer (SAV II, July and August 2008) across the mouth of the Papaloapan River in the Gulf of Mexico. Surficial sediment samples were collected from shallow (16-30 m), intermediate (30 to 80 m), and deeper areas (≥300 m). Shallow water sediments are coarser, better-sorted, and primarily composed of sands during the winter, while those found in the summer are finer. At depths greater than 30 m, sediments are primarily fine-grained no matter the season. Major element analysis from shallow areas indicates higher SiO2 concentrations during the windy season with negative correlation against Al2O3 during both seasons, following the respective abundances of sand and muds. High organic carbon content was observed in shallow areas during the summer. Trace metals V, Ni, Cu, Zn, Pb, Li, Cr, Co, and Ba were evaluated. The first six metals showed higher average concentration in the deeper areas, although the highest values at some individual sampling sites for Cr, Co, Cu, and Ba were observed in the coastal area. Factor and cluster analysis were used to explain the sediment distribution pattern and the factors that determine the sediment characteristics within the study area. In shallow areas, four clusters were observed during the winter and five during the summer. The geochemical characteristics of the samples in each cluster suggest association with fluvial sediment input, textural characteristics, heavy minerals, and Cu and Ba concentration. To evaluate the variations in heavy metal concentration, metal enrichment factors (EFs) were calculated. Enrichment in V, Cr, Co, Zn, Ba, and Pb was detected at certain sites, whereas Cu behaved differently. The distribution of Cu enrichment suggests that it may be of natural origin, associated with the lithology of the volcanic continental area. The minor enrichment observed for other elements may be associated with river discharge. According to sediment quality guidelines, trace metal concentrations of Cu, Pb, and Zn present occasional risks to aquatic organisms.
Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.
2014-01-01
Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles.
Radial patterns of tree-ring chemical element concentration in two Appalachian hardwood stands
D.R. Dewalle; B.R. Swistock; W.E. Sharpe
1991-01-01
Radial patterns in tree-ring chemical element concentration in red oak (Quercus rubra L.) and black (Prunus serotina Ehrh.) were analyzed to infer past environmental changes at two mature Appalachian forest sites.
Major and trace elements in organically or conventionally produced milk.
Hermansen, John E; Badsberg, Jens H; Kristensen, Troels; Gundersen, Vagn
2005-08-01
A total of 480 samples of milk from 10 organically and 10 conventionally producing dairy farms in Denmark and covering 8 sampling periods over 1 year (triplicate samplings) were analysed for 45 trace elements and 6 major elements by high-resolution inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. The dairy cattle breeds were Danish-Holstein or Jersey. Sources of variance were quantified, and differences between production systems and breeds were tested. The major source of variation for most elements was week of sampling. Concentrations of Al, Cu, Fe, Mo, Rb, Se, and Zn were within published ranges. Concentrations of As, Cd, Cr, Mn and Pb were lower, and concentrations of Co and Sr were higher than published ranges. Compared with Holsteins, Jerseys produced milk with higher concentrations of Ba, Ca, Cu, Fe, Mg, Mn, Mo, P, Rh, and Zn and with a lower concentration of Bi. The organically produced milk, compared with conventionally produced milk, contained a significantly higher concentration of Mo (48 v. 37 ng/g) and a lower concentration of Ba (43 v. 62 ng/g), Eu (4 v. 7 ng/g), Mn (16 v. 20 ng/g) and Zn (4400 v. 5150 ng/g respectively). The investigation yielded typical concentrations for the following trace elements in milk, for which no or very few data are available: Ba, Bi, Ce, Cs, Eu, Ga, Gd, In, La, Nb, Nd, Pd, Pr, Rh, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, Y, and Zr.
Monteiro, Sílvia S; Pereira, Andreia T; Costa, Élia; Torres, Jordi; Oliveira, Isabel; Bastos-Santos, Jorge; Araújo, Helder; Ferreira, Marisa; Vingada, José; Eira, Catarina
2016-12-15
The common dolphin (Delphinus delphis) is one of the most abundant species in Atlantic Iberia, representing a potentially important tool to assess the bioaccumulation of trace elements in the Iberian marine ecosystem. Nine elements (As, Cd, Cu, Hg, Mn, Ni, Pb, Se and Zn) were evaluated in 36 dolphins stranded in continental Portugal. Dolphins had increasing Hg concentrations (16.72μg·g -1 ww, liver) compared with previous studies in Atlantic Iberia, whereas Cd concentrations (2.26μg·g -1 ww, kidney) fell within reported ranges. The concentrations of some trace elements (including Cd and Hg) presented positive relationships with dolphin length, presence of parasites and gross pathologies. Common dolphins may help biomonitoring more offshore Atlantic Iberian areas in future studies, which would otherwise be difficult to assess. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hargreaves, Anna L; Whiteside, Douglas P; Gilchrist, Grant
2010-07-15
Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and this is of particular concern in the arctic. However, little information exists on contaminant levels in arctic-breeding shorebirds, especially in Canada. We studied potential contaminants in three biparental shorebird species nesting in Nunavut, Canada: ruddy turnstones (Arenaria interpres), black-bellied plovers (Pluvialis squatarola) and semipalmated plovers (Charadrius semipalmatus). Blood, feathers and eggs were analyzed for As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn. We assessed whether element concentrations a) differed among species and sexes, b) were correlated among pairs and their eggs, and c) were related to fitness endpoints, namely body condition, blood-parasite load, nest survival days, and hatching success. Non-essential elements were found at lower concentrations than essential elements, with the exception of Hg. Maximum Hg levels in blood approached those associated with toxicological effects in other bird species, but other elements were well below known toxicological thresholds. Reproductive success was negatively correlated with paternal Hg and maternal Pb, although these effects were generally weak and varied among tissues. Element levels were positively correlated within pairs for blood-Hg (turnstones) and feather-Ni and Cr (semipalmated plovers); concentrations in eggs and maternal blood were never correlated. Concentrations of many elements differed among species, but there was no evidence that any species had higher overall exposure to non-essential metals. In conclusion, whereas we found little evidence that exposure to the majority of these elements is leading to declines of the species studied here, Hg levels were of potential concern and both Hg and Pb warrant further monitoring. Copyright 2010 Elsevier B.V. All rights reserved.
Tatara, Marcin R; Łuszczewska-Sierakowska, Iwona; Krupski, Witold
2017-12-20
The optimal content of macro-, micro-, and trace elements in tissues ensures proper systemic growth and development and optimal health status in animals and humans. However, very little is known on the elemental content in the plasma compartment in Silver fox. The aim of this study was to determine the content of selected elements in serum obtained from 8-month-old female (N = 8) and male (N = 7) silver foxes. Moreover, relationships of the evaluated elements with the morphological, densitometric, and mechanical parameters of the mandible were determined. Serum content of 12 different elements was measured using inductively coupled plasma-atomic emission spectrometry. The morphometric and densitometric properties of the mandible were determined using quantitative computed tomography method, while mechanical endurance was tested using a three-point bending test. Serum concentration of calcium was significantly higher by 20% in male foxes (P = 0.01), while manganese concentration was significantly lower in males by over 17% (P = 0.03). Positive correlations of serum concentration of calcium, phosphorus, and magnesium with the morphological traits of the mandible such as weight, length, and bone volume were stated (P < 0.05). In the group of elements playing regulatory functions, the positive relationships between serum concentrations of selenium, chromium, manganese, copper, and cobalt were found (P < 0.05). The elaborated experimental model may serve for further studies on foxes, especially focused on nutritional factors affecting elemental homeostasis, whole-body metabolism, and systemic growth and development. Daily diet formulation and precise delivery for farm foxes, together with relatively large animal population maintained at the same environmental conditions, regularly subjected to slaughter procedure, enable economical experimentation with various dietary and pharmacological manipulations.
Suchocki, Piotr; Misiewicz-Krzemińska, Irena; Skupińska, Katarzyna; Niedźwiecka, Katarzyna; Lubelska, Katarzyna; Fijałek, Zbigniew; Kasprzycka-Guttman, Teresa
2010-01-01
Selenitetriglycerides are a group of compounds that contain selenium (Se) (IV). In this paper, we present the results of examinations of three structurally-related selenitetriglicerydes that contain various Se concentrations: 2%, 5% and 7% Selol. The present study concentrates on the effect of Selol on phase 1 and 2 enzyme activity and the implications of free radicals and the nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway in the activity of this compound. The cytotoxic and cytostatic activities of the three kinds of Selol were evaluated; however, the cytotoxic effect was observed only for 7% Selol. Our results show that 2% Selol acts as a monofunctional inducer of phase 2 enzyme activity, and the induction is mediated by the Nrf2 transcription factor. Selol 7% acts in an opposite manner and induces phase 1 with simultaneous inhibition of phase 2 enzyme activity. The differential effect can be associated with the increase in Se content, leading to a change in the structure of the compound.
NASA Astrophysics Data System (ADS)
Gemenetzis, Panagiotis; Moussas, Panagiotis; Arditsoglou, Anastasia; Samara, Constantini
The mass concentration and the elemental composition of PM 2.5 and PM 10 were measured in 40 rooms (mainly offices or mixed office-lab rooms, and photocopying places) of the Aristotle University of Thessaloniki, northern Greece. A total of 27 major, minor and trace elements were determined by ED-XRF analysis. The PM 2.5/PM 10 concentration ratios averaged 0.8±0.2, while the corresponding elemental ratios ranged between 0.4±0.2 and 0.9±0.2. The concentrations of PM 2.5 and PM 10 were significantly higher (by 70% and 50%, respectively) in the smokers' rooms compared to the non-smokers' places. The total elemental concentrations were also higher in the smokers' rooms (11.5 vs 8.2 μg m -3 for PM 2.5, and 10.3 vs 7.6 μg m -3 for PM 2.5-10). Fine particle concentrations (PM 2.5) were found to be quite proportional to smoking strength. On the contrary, the two environments exhibited similar coarse (PM 2.5-10) particle fractions not related to the number of cigarettes smoked. A slight decrease of particle concentrations with increasing the floor level was also observed, particularly for PM 2.5, suggesting that high-level floors are less impacted by near ground-level sources like traffic emissions. Finally, the removal efficiency of air purification systems was evaluated.
Concentrations of trace elements in marine fish and its risk assessment in Malaysia.
Agusa, Tetsuro; Kunito, Takashi; Yasunaga, Genta; Iwata, Hisato; Subramanian, Annamalai; Ismail, Ahmad; Tanabe, Shinsuke
2005-01-01
Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.
PDF file of Concentrations of Prioritized Pharmaceuticals in Effluents from 50 Large Wastewater Treatment Plants in the US and Implications for Risk Estimation by Mitchell Kostich, Angella Batt, and James Lazorchak
Omanović, Dario; Pižeta, Ivanka; Vukosav, Petra; Kovács, Elza; Frančišković-Bilinski, Stanislav; Tamás, János
2015-04-01
The distribution and speciation of elements along a stream subjected to neutralised acid mine drainage (NAMD) effluent waters (Mátra Mountain, Hungary; Toka stream) were studied by a multi-methodological approach: dissolved and particulate fractions of elements were determined by HR-ICPMS, whereas speciation was carried out by DGT, supported by speciation modelling performed by Visual MINTEQ. Before the NAMD discharge, the Toka is considered as a pristine stream, with averages of dissolved concentrations of elements lower than world averages. A considerable increase of element concentrations caused by effluent water inflow is followed by a sharp or gradual concentration decrease. A large difference between total and dissolved concentrations was found for Fe, Al, Pb, Cu, Zn and As in effluent water and at the first downstream site, with high correlation factors between elements in particulate fraction, indicating their common behaviour, governed by the formation of ferri(hydr)oxides (co)precipitates. In-situ speciation by the DGT technique revealed that Zn, Cd, Ni, Co, Mn and U were predominantly present as a labile, potentially bioavailable fraction (>90%). The formation of strong complexes with dissolved organic matter (DOM) resulted in a relatively low DGT-labile concentration of Cu (42%), while low DGT-labile concentrations of Fe (5%) and Pb (12%) were presumably caused by their existence in colloidal (particulate) fraction which is not accessible to DGT. Except for Fe and Pb, a very good agreement between DGT-labile concentrations and those predicted by the applied speciation model was obtained, with an average correlation factor of 0.96. This study showed that the in-situ DGT technique in combination with model-predicted speciation and classical analysis of samples could provide a reasonable set of data for the assessment of the water quality status (WQS), as well as for the more general study of overall behaviour of the elements in natural waters subjected to high element loads. Copyright © 2014 Elsevier B.V. All rights reserved.
Concentration and distribution of sixty-one elements in coals from DPR Korea
Hu, Jiawen; Zheng, B.; Finkelman, R.B.; Wang, B.; Wang, M.; Li, S.; Wu, D.
2006-01-01
Fifty coal samples (28 anthracite and 22 lignites) were collected from both main and small coal mines in DPR Korea prioritized by resource distribution and coal production. The concentrations of 61 elements in 50 coal samples were determined by several multielement and element-specific techniques, including inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS), ion chromatogram (IC), cold-vapor atomic absorption spectrometry (CV-AAS), and hydride generation atomic absorption spectrometry (HGAAS). The ranges, arithmetic means and geometric means of concentrations of these elements are presented. A comparison with crustal abundances (Clarke values) shows that some potentially hazardous elements in the coals of DPR Korea are highly enriched Li, B, S, Cl, Zn, As, Se, Cd, Sn, Sb, W, Te, Hg, Ag, Pb, and La, Ce, Dy, Tm, Ge, Mo, Cs, Tl, Bi, Th and U are moderately enriched. A comparison of ranges and means of elemental concentrations in DPR Korea, Chinese, and world coals shows the ranges of most elements in DPR Korea coals are very close to the ranges of world coals. Arithmetic means of most elements in DPR Korea coals are close to that of American coals. Most elements arithmetic means are higher in Jurassic and Paleogene coals than coals of other ages. In DPR Korea coals, only seven elements in early Permian coals are higher than other periods: Li, Zn, Se, Cd, Hg, Pb, and Bi. Only five elements B, As, Sr, Mo, W in Neogene coals have arithmetic means higher than others. SiO2 and Al2O 3 in ashes are more than 70% except six samples. The correlation between ash yields and major elements from high to low is in the order of Si>Al>Ti>K>Mg>Fe>Na>Ca>P>S. Most elements have high positive correlation with ash (r>0.5) and show high inorganic affinity. ?? 2005 Elsevier Ltd. All rights reserved.
Stavros, Hui-Chen W; Stolen, Megan; Durden, Wendy Noke; McFee, Wayne; Bossart, Gregory D; Fair, Patricia A
2011-03-01
The significance of metal concentrations in marine mammals is not well understood and relating concentrations between stranded and free-ranging populations has been difficult. In order to predict liver concentrations in free-ranging dolphins, we examined concentrations of trace elements (Al, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Ni, Pb, Sb, Se, Sn, total Hg (THg), V, Zn) in skin and liver of stranded bottlenose dolphins (Tursiops truncatus) from the South Carolina (SC) coast and the Indian River Lagoon, Florida (FL) during 2000-2008. Significantly higher concentrations of Zn, Fe, Se, Al, Cu and THg were found in skin while liver exhibited significantly higher Cu, Fe, Mn and THg concentrations for both study sites. Mean skin concentrations of Cu and Mn were significantly higher in SC dolphins while higher concentrations of THg and V were found in FL dolphins. In addition, liver tissues in SC dolphins exhibited significantly higher As concentrations while higher Fe, Pb, Se, THg, and V levels were found in FL dolphins. Two elements (Cu and THg) showed significant age-related correlations with skin concentration while five elements (Cu, Se, THg, Zn and V) showed age-related correlations with liver concentrations. Geographic location influenced age-related accumulation of several trace elements and age-related accumulation of THg in hepatic tissue was observed for both sites to have the highest correlations (r² = 0.90SC; r² = 0.69FL). Mean THg concentration in liver was about 10 times higher in FL dolphins (330 μg g⁻¹ dw) than those samples from SC dolphins (34.3 μg g⁻¹ dw). The mean molar ratio of Hg to Se was 0.93 ± 0.32 and 1.08 ± 0.38 for SC and FL dolphins, respectively. However, the Hg:Se ratio varied with age as much lower ratios (0.2-0.4) were found in younger animals. Of the 18 measured elements, only THg was significantly correlated in skin and liver of stranded dolphins and skin of free-ranging dolphins from both sites suggesting that skin may be useful in predicting Hg concentrations in liver tissue of free-ranging dolphins. Results indicate that 33% of the stranded and 15% of the free-ranging dolphins from FL exceed the minimum 100 μg g⁻¹ wet weight (ww) (~ 400 dw) Hg threshold for hepatic damage while none from SC reached this level. Hepatic concentrations of As in SC dolphins and V in FL dolphins were also highly correlated with skin concentrations which may have some regional specificity predictive value. The present study provides the first application of trace element concentrations derived from stranded bottlenose dolphins to predict liver concentrations in free-ranging populations. Copyright © 2010. Published by Elsevier Ltd.
Distribution of transuranic elements in bone.
Durbin, P W
1992-01-01
The transport, retention, and excretion of transuranic elements from the body have been widely studied for many years. A summary of the results is given with an emphasis on the distribution of these elements in bone. Implications of these studies for understanding the relationships between lead in blood and lead in bone are presented. The expected distribution of lead at various bone sites is also considered.
Herndon, J Marvin
2016-01-01
U.S. military perception of nuclear warfare led to countless unethical nuclear experiments performed on unsuspecting individuals without their informed consent. As evidenced here, subsequent perception of weather warfare has led to exposing millions of unsuspecting individuals to toxic coal fly ash with no public disclosure, no informed consent, and no health warnings. Three methods were used: (1) comparison of eight elements analyzed in rainwater samples, thought to have leached from aerosolized coal fly ash, with corresponding coal fly ash laboratory leachate; (2) comparison of 14 elements analyzed in air filter dust with corresponding elements in coal fly ash; and (3) comparison of 23 elements analyzed in fibrous mesh found after snow melted with corresponding elements in coal fly ash. The rainwater element ratios show that the aerial particulate matter has essentially the same water-leach characteristics as coal fly ash. The air filter dust element ratios occur in the same range of compositions as coal fly ash, as do element ratios in fibrous mesh found on grass after snow melted. The fibrous mesh provides an inferred direct connection with the aerosolizing jet aircraft via coal fly ash association with the jet combustion environment. Strong evidence for the correctness of the hypothesis: coal fly ash is likely the aerosolized particulate emplaced in the troposphere for geoengineering, weather modification, and/or climate alteration purposes. The documented public health associations for ≤2.5 μm particulate pollution are also applicable to aerosolized coal fly ash. The ability of coal fly ash to release aluminum in a chemically mobile form upon exposure to water or body moisture has potentially grave human and environmental consequences over a broad spectrum, including implications for neurological diseases and biota debilitation. The ability of coal fly ash to release heavy metals and radioactive elements upon exposure to body moisture has potentially grave human health implications including cancer, cardiovascular disease, diabetes, respiratory diseases, reduced male fertility, and stroke. The fibrous mesh data admit the possibility of environmentally disastrous formation of methylmercury and ozone-depleting chlorinated-fluorinated hydrocarbons in jet exhaust. Geophysical implications include atmospheric warming and rainfall retardation.
NASA Astrophysics Data System (ADS)
Imaoka, Teruyoshi; Kawabata, Hiroshi; Nagashima, Mariko; Nakashima, Kazuo; Kamei, Atsushi; Yagi, Koshi; Itaya, Tetsumaru; Kiji, Michio
2017-10-01
We studied a 107 Ma vogesite (a kind of lamprophyre with alkali-feldspar > plagioclase, and hornblende ± clinopyroxene ± biotite) dike in the Kinki district of the Tamba Belt, Kyoto Prefecture, SW Japan, using petrography, mineralogy, K-Ar ages, and geochemistry to evaluate its petrogenesis and tectonic implications. The dike has the very specific geochemical characteristics of a primitive high-Mg basalt, with 48-50 wt.% SiO2 (anhydrous basis), high values of Mg# (67.3-72.4), and high Cr ( 431 ppm), Ni ( 371 ppm), and Co ( 52 ppm) contents. The vogesite is alkaline and ne-normative with high concentrations of large ion lithophile elements (LILEs: Sr = 1270-2200 ppm, Ba = 3910-26,900 ppm), light rare earth elements (LREEs) [(La/Yb)n = 58-62), and high field strength elements (HFSEs: TiO2 = 1.5-1.8 wt.%, Nb = 24-33 ppm, Zr = 171-251 ppm), and the vogesite can be classified as a high-Nb basalt (HNB). The vogesite was formed by the lowest degree of melting of metasomatized mantle in the garnet stability field, and it may also have been formed at higher melting pressures than other Kyoto lamprophyres. The low degree of melting is the primary reason for the high-Nb content of the vogesite, not mantle metasomatism, and a higher degree of melting would have changed the primary magma composition from a HNB to a Nb-enriched basalt (NEB). The vogesite magma was contaminated at an early stage of its development by melts derived from sediments drawn down a subduction zone, as indicated by some geochemical indices and the initial Nd isotope ratios. The vogesite exhibits positive correlations between εSr(107 Ma) values (5.4-50.9) and its high Ba and Sr concentrations, and it has a limited range of εNd(107 Ma) values (+ 0.97 to + 2.4). The fact that the vogesite contains centimeter-sized xenoliths of chert, which are composed of polycrystalline quartz, calcite, barite, pyrite, and magnetite, indicates that the barium contamination took place during the ascent of the lamprophyric magma through the upper crust. The episode of magmatism at c. 107 Ma extended regionally from the Kinki district, through the Chugoku district and North Kyushu in SW Japan, to Korea as a result of slab roll-back at the eastern margin of Asia.
Anicić, M; Tomasević, M; Tasić, M; Rajsić, S; Popović, A; Frontasyeva, M V; Lierhagen, S; Steinnes, E
2009-11-15
To clarify the peculiarities of trace element accumulation in moss bags technique (active biomonitoring), samples of the moss Sphagnum girgensohnii Rusow were exposed in bags with and without irrigation for 15 days up to 5 months consequently in the semi-urban area of Belgrade (Serbia) starting from July 2007. The accumulation capacity for 49 elements determined by ICP-MS in wet and dry moss bags was compared. The concentration of some elements, i.e. Al, V, Cr, Fe, Zn, As, Se, Sr, Pb, and Sm increased continuously with exposure time in both dry and wet moss bags, whereas concentration of Na, Cl, K, Mn, Rb, Cs, and Ta decreased. Irrigation of moss resulted in a higher accumulation capacity for most of the elements, especially for Cr, Zn, As, Se, Br, and Sr. Principal component analysis was performed on the datasets of element concentrations in wet and dry moss bags for source identification. Results of the factor analysis were similar but not identical in the two cases due to possible differences in element accumulation mechanisms.
Severson, R.C.; Tidball, R.R.
1979-01-01
PART A: To objectively determine the changes in chemical character of an area subjected to mining and reclamation, prior information is needed. This study represents a broadscale inventory of total chemical composition of the surficial materials of the Northern Great Plains coal region (western North and South Dakota, eastern Montana, and northeastern Wyoming); data are given for 41 elements in A and C soil horizons. An unbalanced, nested, analysis-of-variance design was used to quantify variation in total content of elements between glaciated and unglaciated terrains, for four increasingly smaller geographic scales, and to quantify variation due to sample preparation and analysis. From this statistical study, reliable maps on a regional basis (>100 km) were prepared for C, K, and Rb in A and C soil horizons; for N a, Si, Th, D, and Zn in A-horizon soil; and for As, Ca, Ge, and Mg in C-horizon soil. The distribution of variance components for the remaining 29 elements did not permit the construction of reliable maps. Therefore, a baseline value for each of these elements is given as a measure of the total element concentration in the soils of the Northern Great Plains coal region. The baseline is expressed as the 95-percent range in concentration to be expected in samples of natural soils. PART B: A reconnaissance study of total concentrations of 38 elements in samples of soils (0-40 cm deep, composite) from the Bighorn and Wind River Basins of Montana and Wyoming indicates that the geographic variation for most elements occurs locally (5 km or less). However, in the Bighorn Basin, Zn exhibits significant regional variation (between geologic units); and in the Wind River Basin, AI, Cr, K, Mn, Mo, Ni, U, and V exhibit similar variation. For the remaining elements, the lack of regional variation suggests that a single summary statistic can be used to estimate a baseline value that reflects the range in concentration to be expected in samples of soils in each basin. The concentrations of most of these elements in both basins are not much different from those measured independently in the Powder River Basin of Wyoming or in the Western United States. In addition, data from an analysis of variance provide an estimate of the number of random samples within an area of specified size (10 km square, approximately a township) that are needed to prepare a reliable map of total element concentration in soils for each of the elements in each of the basins.
A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan.
Tattibayeva, Damira; Nebot, Carolina; Miranda, Jose M; Abuova, Altynai B; Baibatyrov, Torebek A; Kizatova, Maigul Z; Cepeda, Alberto; Franco, Carlos M
2016-03-01
Little information is currently available about the content of different elements in wheat samples from the Republic of Kazakhstan. The concentrations of toxic (As, Cd, Cr, Hg, Pb, and U) and essential (Co, Cu, Fe, Mn, Ni, Se, and Zn) elements in 117 sampled wheat grains from the Republic of Kazakhstan were measured. The results indicated that the mean and maximum concentrations of most investigated elements (As, Cd, Co, Cr, Mn, Se, Pb, and U) were higher in samples collected from southern Kazakhstan. The mean and maximum concentrations of toxic elements such as As, Cd, Hg, and Pb did not exceed levels specified by European, FAO, or Kazakh legislation, although the hazard quotient (HQ) values for Co, Cu, Mn, and Zn were higher than 1 and the hazard index (HI) was higher than 1 for samples collected from all areas of Kazakhstan. This indicates that there should be concern about the potential hazards of the combination of toxic elements in Kazakh wheat.
Schmitt, Christopher J.; Finger, Susan E.
1987-01-01
The influence of sample preparation on measured concentrations of eight elements in the edible tissues of two black basses (Centrarchidae), two catfishes (Ictaluridae), and the black redhorse,Moxostoma duquesnei (Catostomidae) from two rivers in southeastern Missouri contaminated by mining and related activities was investigated. Concentrations of Pb, Cd, Cu, Zn, Fe, Mn, Ba, and Ca were measured in two skinless, boneless samples of axial muscle from individual fish prepared in a clean room. One sample (normally-processed) was removed from each fish with a knife in a manner typically used by investigators to process fish for elemental analysis and presumedly representative of methods employed by anglers when preparing fish for home consumption. A second sample (clean-processed) was then prepared from each normally-processed sample by cutting away all surface material with acid-cleaned instruments under ultraclean conditions. The samples were analyzed as a single group by atomic absorption spectrophotometry. Of the elements studied, only Pb regularly exceeded current guidelines for elemental contaminants in foods. Concentrations were high in black redhorse from contaminated sites, regardless of preparation method; for the other fishes, whether or not Pb guidelines were exceeded depended on preparation technique. Except for Mn and Ca, concentrations of all elements measured were significantly lower in cleanthan in normally-processed tissue samples. Absolute differences in measured concentrations between clean- and normally-processed samples were most evident for Pb and Ba in bass and catfish and for Cd and Zn in redhorse. Regardless of preparation method, concentrations of Pb, Ca, Mn, and Ba in individual fish were closely correlated; samples that were high or low in one of these four elements were correspondingly high or low in the other three. In contrast, correlations between Zn, Fe, and Cd occurred only in normallyprocessed samples, suggesting that these correlations resulted from high concentrations on the surfaces of some samples. Concentrations of Pb and Ba in edible tissues of fish from contaminated sites were highly correlated with Ca content, which was probably determined largely by the amount of tissue other than muscle in the sample because fish muscle contains relatively little Ca. Accordingly, variation within a group of similar samples can be reduced by normalizing Pb and Ba concentrations to a standard Ca concentration. When sample size (N) is large, this can be accomplished statistically by analysis of covariance; whenN is small, molar ratios of [Pb]/[Ca] and [Ba]/[Ca] can be computed. Without such adjustments, unrealistically large Ns are required to yield statistically reliable estimates of Pb concentrations in edible tissues. Investigators should acknowledge that reported concentrations of certain elements are only estimates, and that regardless of the care exercised during the collection, preparation, and analysis of samples, results should be interpreted with the awareness that contamination from external sources may have occurred.
NASA Technical Reports Server (NTRS)
Mchale, R. M.
1974-01-01
Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.
Correlation of nasopharyngeal carcinoma with rare earth elements and the Epstein-Barr virus.
Zhang, Xiangmin; Zeng, Xiangfu; Liu, Lianbin; Lan, Xiaolin; Huang, Jing; Zeng, Hongxue; Li, Rong; Luo, Keqing; Wu, Wei; Zhou, Maohua; Li, Shaojin
2018-04-01
The concentration and distribution of rare earth elements (REE) in nasopharyngeal carcinoma (NPC) were measured to investigate connections with tumor size, lymph node metastasis, clinical stages, and Epstein-Barr virus (EBV) infection. There were 30 patients with NPC who met the criteria for inclusion in the present study. The EBV copy number, as well as the concentration and distribution of REE, was analyzed. EBV was detected using reverse transcription-polymerase chain reaction, with the concentrations of REE in NPC tissues measured using inductively coupled plasma-tandem mass spectrometry. The mean values were used when comparing concentrations of REE in NPC tissues as the standard deviation of this parameter was the lowest. Light REE had the highest concentrations, followed by medium, and then heavy REE. The concentrations of REE decreased with increasing tumor size and with the presence of lymph node metastasis. The concentrations of REE gradually increased between stage II and IVa, but markedly decreased thereafter. The elements that exhibited the greatest decreases were terbium, holmium and ytterbium. Furthermore, the concentrations of REE in NPC were not associated with sex (r=0.301, P=0.106) or age (r=-0.011, P=0.955), and were negatively associated with EBV (r=-0.744, P<0.001). By contrast, the EBV copy number increased alongside advancements in clinical stage. Changes in the concentrations of REE in NPC were more prominent for medium and heavy elements. Additionally, alterations in the concentrations of heavy REE may affect the occurrence and development of NPC.
NASA Astrophysics Data System (ADS)
Meysurova, A. F.; Notov, A. A.
2016-01-01
The gross and average contents of 15 metals (Al, As, Cd, Co, Cu, Ge, Fe, Mn, Mo, Ni, Pb, Sn, Ti, V, and Zn) in samples of Hypogymnia physodes collected from a reserve area in Tver Region were determined using inductively-coupled plasma atomic emission spectroscopy (ICP-AES). Apparently, most of these elements appeared as a result of transboundary transfer. Their concentration in lichens depended on the atmospheric humidity. An excess of moisture in ecotopes located near rivers and swamps increased the gross concentration of separate elements in the lichens. The average contents of most elements in the specimens were within permissible limits, which allowed possible baseline element concentration ranges for this region to be established.
BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.
Mikesell, J.L.; Senftle, F.E.
1987-01-01
Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.
Concentrations of Selected Elements in Liver Tissue of Grey Wolves (Canis lupus) from Serbia.
Subotić, Srđan; Višnjić-Jeftić, Željka; Penezić, Aleksandra; Ćirović, Duško
2017-12-01
The grey wolf (Canis lupus) is a large carnivore species and a top predator in the ecosystems that it inhabits. Considering its role in food webs, wolves may be exposed to high concentrations of potentially harmful elements. Therefore liver samples from 28 legally hunted wolves were analyzed for concentrations of 16 elements using inductively coupled plasma optical emission spectrometry. The Mann-Whitney U test showed a significant difference between the genders only for Li, and there were no differences between individuals caught in different years. The majority of statistically significant correlations between element levels were positive, except for three cases. Compliance with several criteria for suitable bioindicator organisms imply that wolves may serve for monitoring environmental contamination.
Horai, Sawako; Itai, Takaaki; Noguchi, Takako; Yasuda, Yusuke; Adachi, Haruki; Hyobu, Yuika; Riyadi, Adi S; Boggs, Ashley S P; Lowers, Russell; Guillette, Louis J; Tanabe, Shinsuke
2014-08-01
Concentrations of 28 trace elements (Li, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Tl, Hg, Pb, and Bi) in the livers of juvenile and adult American alligators inhabiting two central Florida lakes, Lake Apopka (LA), and Lake Woodruff National Wildlife Refuge (LW) and one lagoon population located in Merritt Island National Wildlife Refuge (MINWR; NASA), were determined. In juveniles from MINWR, concentrations of nine elements (Li, Fe, Ni, Sr, In, Sb, Hg, Pb and Bi) were significantly higher, whereas six elements (V, Fe, As, Sr, Hg and Bi) were elevated in adults (p<0.05) obtained from MINWR. Significant enrichment of some trace elements in adults, relative to juveniles, was observed at all three sampling areas. Specifically, Fe, Pb and Hg were significantly elevated in adults when compared to juveniles, suggesting age-dependent accumulation of these elements. Further, As, Se and Sn showed the same trend but only in animals collected from MINWR. Mean Fe concentrations in the livers of adults from LA, LW and MINWR were 1770 μg g(-1) DW, 3690 μg g(-1) DW and 5250 μg g(-1) DW, respectively. More than half of the adult specimens from LW and MINWR exhibited elevated hepatic Fe concentrations that exceed the threshold value for toxic effects in donkey, red deer and human. These results prompted us to express our concern on possible exposure and health effects in American alligators by some trace elements derived from NASA activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mapping Fifteen Trace Elements in Human Seminal Plasma and Sperm DNA.
Ali, Sazan; Chaspoul, Florence; Anderson, Loundou; Bergé-Lefranc, David; Achard, Vincent; Perrin, Jeanne; Gallice, Philippe; Guichaoua, Marie
2017-02-01
Studies suggest a relationship between semen quality and the concentration of trace elements in serum or seminal plasma. However, trace elements may be linked to DNA and capable of altering the gene expression patterns. Thus, trace element interactions with DNA may contribute to the mechanisms for a trans-generational reproductive effect. We developed an analytical method to determine the amount of trace elements bound to the sperm DNA, and to estimate their affinity for the sperm DNA by the ratio: R = Log [metal concentration in the sperm DNA/metal concentration in seminal plasma]. We then analyzed the concentrations of 15 trace elements (Al, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Ti, V, Zn, As, Sb, and Se) in the seminal plasma and the sperm DNA in 64 normal and 30 abnormal semen specimens with Inductively Coupled Plasma/Mass Spectrometry (ICP-MS). This study showed all trace elements were detected in the seminal plasma and only metals were detected in the sperm DNA. There was no correlation between the metals' concentrations in the seminal plasma and the sperm DNA. Al had the highest affinity for DNA followed by Pb and Cd. This strong affinity is consistent with the known mutagenic effects of these metals. The lowest affinity was observed for Zn and Ti. We observed a significant increase of Al linked to the sperm DNA of patients with oligozoospermia and teratozoospermia. Al's reproductive toxicity might be due to Al linked to DNA, by altering spermatogenesis and expression patterns of genes involved in the function of reproduction.
NASA Astrophysics Data System (ADS)
Braziewicz, Janusz; Kownacka, Ludwika; Majewska, Urszula; Korman, Andrzej
Element concentrations of K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Se, Br, Sr and Pb as well as the activity of natural radionuclides 210Pb and 226Ra in air were measured. The aerosol samples were collected during tropospheric and stratospheric aircraft flights over the Northeastern region of Poland, which is mostly an agricultural and wooded area. The air volumes were filtered using Petrianov filters at 1, 3, 6, 9, 12 and 15 km above the ground level by special equipment attached to a jet plane. Aircraft flights were provided from September 1997 to August 1998 in 5 separate sampling runs. The long sampling distances served as a good representation of mean aerosol composition and distribution. Concentrations of the same elements were also measured using stationary equipment near the ground level at the outskirts of Warsaw. The vertical profiles of element concentration were obtained and the elemental compositions for the tropospheric and stratospheric aerosols were compared with those from the near-ground level. Contribution of K, Ca, Ti and Fe, which are the main components of soil, in total mass of all detected ones was estimated. Relative concentrations of all measured elements, which show any differences in the composition of the aerosol were calculated. The results obtained confirm the fact that the stratospheric reservoir is observed in the bottom stratosphere. The XRF method based on molybdenum X-ray tube was used as an analytical tool in the determination of aerosols trace elements. The altitude distributions of radioactivity of 226Ra and 210Pb were determined using radiochemical methods.
Magmatic apatite - a window into melt evolution of the Dalgety pluton.
NASA Astrophysics Data System (ADS)
Pope, M. D.; Tailby, N.; Webster, J. D.
2017-12-01
The Dalgety Pluton is located in the Lachlan Fold Belt in southeastern Australia, and is a coarse grained, peraluminous, S-type, biotite granodiorite. Historically, pluton emplacement has been thought of as cooling from a single, large body of magma over a geologically quick period. Current studies suggest issues with this model and propose a slower, incremental model of emplacement in some settings (Glazner et al., 2004). This work proposes that the emplacement of the Dalgety Pluton occurred in incremental phases demonstrated through halogen, minor, and trace element concentrations in apatites. Apatites from 13 samples collected along a north-south transect of the pluton were analyzed using a 5-spectrometer Cameca SX-100 calibrated for seventeen elements (F, Na, Cl, P, Mg, Al, Si, Ca, S, K, Ti, Mn, Fe, Sr, Ba, La, and Ce) at the American Museum of Natural History. The majority of apatites are fluorapatites, having >50 % F, <15 % Cl, and <25 % OH (calculated from Ketchum et al., 2015). However, the concentrations of the halogens vary throughout the pluton with the highest Cl concentrations near the southern edge. Two of the minor elements, Mn and Fe, also show distinct variation with the lowest concentrations being 0.35 wt% in Mn and 0.25 wt% in Fe and the highest being 1.10 wt% and 0.95 wt%, respectively. Trace elements Ce and La vary as well with their highest concentrations being 0.29 wt% and 0.11 wt% and their lowest for both being below the detection limit of the electron probe. Elemental variation across the pluton is seen in the concentration of minor elements and halogens with a sharp increases at 10,000 meters and again at 21,000 meters from the southern rim of the pluton. Similar shifts in concentration are also seen in the trace elements, however the concentrations decrease at these distances. These wholesale elemental fluctuations in composition are indicative of a dramatic shift in melt composition supporting the hypothesis of multiple melt injection in the Dalgety Pluton. Reference: Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W. and Taylor, R.Z., 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers?. GSA today, 14(4/5), pp.4-12.
Robinson, G R; Sibrell, P L; Boughton, C J; Yang, L H
2007-03-15
Metal and bioessential element concentrations were measured in three species of 17-year periodical cicadas (Magicicada spp.) to determine how cicada tissue chemistry is affected by soil chemistry, measure the bioavailability of metals from both uncontaminated and lead-arsenate-pesticide contaminated soils, and assess the potential risks of observed metal contamination for wildlife. Periodical cicada nymphs feed on root xylem fluids for 13 or 17 years of underground development. The nymphs then emerge synchronously at high densities, before leaving their nymphal keratin exoskeleton and molting into their adult form. Cicadas are an important food source for birds and animals during emergence events, and influence nutrient cycles in woodland ecosystems. Nymphal exoskeletons and whole adult cicadas were sampled in Clarke and Frederick Counties, Virginia and Berkeley and Jefferson Counties, West Virginia during the Brood X emergence in May and June, 2004. Elements, such as Al, Fe, and Pb, are strongly enriched in the nymphal exoskeleton relative to the adult body; Cu and Zn are enriched in bodies. Concentrations of Fe and Pb, when normalized to relatively inert soil constituents such as Al and Ce, are similar in both the molt exoskeleton and their host soil, implying that passive assimilation through prolonged soil contact (adhesion or adsorption) might control these metal concentrations. Normalized concentrations of bioessential elements, such as S, P, K, Ca, Mn, Cu, Zn, and Mo, and chalcophile (sulfur-loving) elements, such as As, Se, and Au, indicate strong enrichment in cicada tissues relative to soil, implying selective absorption and retention by xylem fluids, the cicada nymphs themselves, or both. Element enrichment patterns in cicada tissues are similar to enrichment patterns observed in xylem fluids from tree roots. Chalcophile elements and heavy metals accumulate in keratin-rich tissues and may bind to sulfhydryl groups. Metal concentrations in the nymphal exoskeleton show a positive correlation with soil metal concentrations, with Au exhibiting particularly strong enrichment in the exoskeleton relative to soil concentrations. Metal concentrations in adult bodies do not correlate with soil chemistry. Bioessential elements S, Ca, Mn, Fe, and Zn differed by sex in adults, whereas Na, Mg, K, Ca, Mn, Fe, Zn, and As differed by species. Body concentrations of Ca differed by site conditions (orchard or reference setting). The high Pb contents of orchard soils contaminated by arsenical pesticide residues might inhibit Ca uptake by cicada nymphs. The adult cicadas contain concentrations of metals similar to, or less than, other invertebrates, such as earthworms. There does not appear to be a dietary threat to birds or other consumers of adult cicadas based on Maximum Tolerable Dietary Level (MTDL) Guidelines developed for agricultural animals.
Robinson, G.R.; Sibrell, P.L.; Boughton, C.J.; Yang, L.H.
2007-01-01
Metal and bioessential element concentrations were measured in three species of 17-year periodical cicadas (Magicicada spp.) to determine how cicada tissue chemistry is affected by soil chemistry, measure the bioavailability of metals from both uncontaminated and lead-arsenate-pesticide contaminated soils, and assess the potential risks of observed metal contamination for wildlife. Periodical cicada nymphs feed on root xylem fluids for 13 or 17??years of underground development. The nymphs then emerge synchronously at high densities, before leaving their nymphal keratin exoskeleton and molting into their adult form. Cicadas are an important food source for birds and animals during emergence events, and influence nutrient cycles in woodland ecosystems. Nymphal exoskeletons and whole adult cicadas were sampled in Clarke and Frederick Counties, Virginia and Berkeley and Jefferson Counties, West Virginia during the Brood X emergence in May and June, 2004. Elements, such as Al, Fe, and Pb, are strongly enriched in the nymphal exoskeleton relative to the adult body; Cu and Zn are enriched in bodies. Concentrations of Fe and Pb, when normalized to relatively inert soil constituents such as Al and Ce, are similar in both the molt exoskeleton and their host soil, implying that passive assimilation through prolonged soil contact (adhesion or adsorption) might control these metal concentrations. Normalized concentrations of bioessential elements, such as S, P, K, Ca, Mn, Cu, Zn, and Mo, and chalcophile (sulfur-loving) elements, such as As, Se, and Au, indicate strong enrichment in cicada tissues relative to soil, implying selective absorption and retention by xylem fluids, the cicada nymphs themselves, or both. Element enrichment patterns in cicada tissues are similar to enrichment patterns observed in xylem fluids from tree roots. Chalcophile elements and heavy metals accumulate in keratin-rich tissues and may bind to sulfhydryl groups. Metal concentrations in the nymphal exoskeleton show a positive correlation with soil metal concentrations, with Au exhibiting particularly strong enrichment in the exoskeleton relative to soil concentrations. Metal concentrations in adult bodies do not correlate with soil chemistry. Bioessential elements S, Ca, Mn, Fe, and Zn differed by sex in adults, whereas Na, Mg, K, Ca, Mn, Fe, Zn, and As differed by species. Body concentrations of Ca differed by site conditions (orchard or reference setting). The high Pb contents of orchard soils contaminated by arsenical pesticide residues might inhibit Ca uptake by cicada nymphs. The adult cicadas contain concentrations of metals similar to, or less than, other invertebrates, such as earthworms. There does not appear to be a dietary threat to birds or other consumers of adult cicadas based on Maximum Tolerable Dietary Level (MTDL) Guidelines developed for agricultural animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, R.G.
1979-05-01
During the summers of 1976, 1977, and 1978, 598 water and 1657 sediment samples were collected from 1775 locations within the 19,600-km/sup 2/ area of the Cortez Quadrangle, Colorado and Utah. Water samples were collected from streams, springs, and wells; sediment samples were collected from stream channels (wet and dry) and from springs. Each water sample was analyzed for 13 elements, and each sediment sample was analyzed for 43 elements. Uranium concentrations in water samples range from below the detection limit of 0.02 to 241.47 ppB and have a median of 0.87 ppB and a mean of 3.80 ppB. Backgroundmore » uranium concentrations are 2 to 5 ppB in several nonmountainous regions but are much lower in mountainous areas, particularly in the northeastern portion of the quadrangle. Water samples containing high uranium concentrations (>20 ppB) generally are associated with high conductivities, high concentrations of other metallic elements, and geologic units, such as the Mancos shale, that are unfavorable for uranium mineralization. However, four ground-water samples exhibit high uranium concentrations without concomitant high conductivities or high concentrations of other metallic elements. Two of these samples were collected from sites in the Slick Rock U--V district, and two were collected in the Morrison formation in the southern portion of the quadrangle where large uranium deposits are not known. Water samples collected from the northwestern corner of the quadrangle uniformly exhibit background uranium values but generally contain high nickel concentrations. In this area, U--Cu (White Canyon-type) deposits are hosted primarily by the Shinarump member of the Chinle formation. Uranium concentrations in sediment samples range from 0.51 to 76.41 ppM and have a median of 2.76 ppM and a mean of 3.08 ppM. Background uranium and metallic element concentrations decrease to the southwest from the highest values in the northeastern portion of the quadrangle.« less
Zduniak, Piotr; Surmacki, Adrian; Erciyas-Yavuz, Kiraz; Chudzińska, Maria; Barałkiewicz, Danuta
2014-09-01
Melanin is the most common pigment in animal integuments including bird plumage. It has been shown that several trace elements may play roles in the production and signaling function of melanin-colored plumage. We investigated coloration and content of various metal elements in the rectrices of two insectivorous passerines, Common Redstarts (Phoenicurus phoenicurus) and Blackcaps (Sylvia atricapilla), which have eumelanin- and pheomelanin-based coloration, respectively. We hypothesized that 1) the two species would differ in concentrations of metals important in melanin synthesis (Ca, Fe, Cu, Zn), 2) differences in metal concentration levels would be related to feather coloration. Our study confirmed the first prediction and provides the first evidence that selected elements may play a greater role in pheomelanin than in eumelanin synthesis. Concentrations of three elements considered as important in melanin synthesis (Ca, Fe, Zn) were 52% to 93% higher in rusty colored Common Redstart feathers compared to the dark gray Blackcap feathers. However, element concentrations were not correlated with feather coloration or sex in either species. Our study suggests that, of the two melanin forms, pheomelanin synthesis may bear higher costs associated with the acquisition of specific elements or limited elements may create trade-offs between ornamentation and other physiological functions. Our findings warrant further investigations designed to better understand the roles of macro- and microelements in the synthesis of both forms of melanin. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pourret, Olivier; Lange, Bastien; Jitaru, Petru; Mahy, Grégory; Faucon, Michel-Pierre
2014-05-01
The geochemical behavior of rare earth elements (REE) is generally assessed for the characterization of the geological systems where these elements represent the best proxies of processes involving the occurrence of an interface between different media. REE behavior is investigated according to their concentrations normalized with respect to the upper continental crust. In this study, the geochemical fingerprint of REE in plant shoot biomass of an unique metallicolous flora (i.e., Crepidorhopalon tenuis and Anisopappus chinensis) was investigated. The plants originate from extremely copper and cobalt rich soils, deriving from Cu and Co outcrops in Katanga, Democratic Republic of Congo. Some of the species investigated in this study are able to accumulate high amounts of Cu and Co in shoot hence being considered as Cu and Co hyperaccumulators. Therefore, assessing the behavior of REE may lead to a better understanding of the mechanisms of metal accumulation by this flora. The data obtained in this study indicate that REE uptake by plants is not primarily controlled by their concentration and speciation in the soil as previously shown in the literature (Brioschi et al. 2013). Indeed, the REE patterns in shoots are relatively flat whereas soils patterns are Middle REE enriched. In addition, it is worth noting that Eu enrichments occur in aerial parts of the plants. These positive Eu anomalies suggest that Eu3 + can form stable organic complexes replacing Ca2 + in several biological processes as in xylem fluids associated with the general nutrient flux. Therefore, is is possible that the Eu mobility in these fluids is enhanced by its reductive speciation as Eu2 +. Eventually, the geochemical behavior of REE illustrates that metals accumulation in aerial parts of C. tenuis and A. chinensis is mainly driven by dissolved complexation. Brioschi, L., Steinmann, M., Lucot, E., Pierret, M., Stille, P., Prunier, J., Badot, P., 2013. Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant and Soil, 366, 143-163.
Lund Rasmussen, Kaare; Skytte, Lilian; D'imporzano, Paolo; Orla Thomsen, Per; Søvsø, Morten; Lier Boldsen, Jesper
2017-01-01
The differences in trace element concentrations among 19 different bone elements procured from 10 archaeologically derived human skeletons have been investigated. The 10 individuals are dated archaeologically and some by radiocarbon dating to the medieval and post-medieval period, an interval from ca. AD 1150 to ca. AD 1810. This study is relevant for two reasons. First, most archaeometric studies analyze only one bone sample from each individual; so to what degree are the bones in the human body equal in trace element chemistry? Second, differences in turnover time of the bone elements makes the cortical tissues record the trace element concentrations in equilibrium with the blood stream over a longer time earlier in life than the trabecular. Therefore, any differences in trace element concentrations between the bone elements can yield what can be termed a chemical life history of the individual, revealing changes in diet, provenance, or medication throughout life. Thorough decontamination and strict exclusion of non-viable data has secured a dataset of high quality. The measurements were carried out using Inductively Coupled Plasma Mass Spectrometry (for Fe, Mn, Al, Ca, Mg, Na, Ba, Sr, Zn, Pb and As) and Cold Vapor Atomic Absorption Spectroscopy (for Hg) on ca. 20 mg samples. Twelve major and trace elements have been measured on 19 bone elements from 10 different individuals interred at five cemeteries widely distributed in medieval and renaissance Denmark. The ranges of the concentrations of elements were: Na (2240-5660 µg g -1 ), Mg (440-2490 µg g -1 ), Al (9-2030 µg g -1 ), Ca (22-36 wt. %), Mn (5-11450 µg g -1 ), Fe (32-41850 µg g -1 ), Zn (69-2610 µg g -1 ), As (0.4-120 µg g -1 ), Sr (101-815 µg g -1 ), Ba (8-880 µg g -1 ), Hg (7-78730 ng g -1 ), and Pb (0.8-426 µg g -1 ). It is found that excess As is mainly of diagenetic origin. The results support that Ba and Sr concentrations are effective provenance or dietary indicators. Migrating behavior or changes in diet have been observed in four individuals; non-migratory or non-changing diet in six out of the 10 individuals studied. From the two most mobile (most changing diet) individuals in the study, it is deduced that the fastest turnover is seen in the trabecular tissues of the long bones and the hands and the feet, and that these bone elements have higher turnover rates than centrally placed trabecular bone tissue, such as from the ilium or the spine. Comparing Sr and published bone turnover times, it is concluded that the differences seen in Sr concentrations are not caused by diagenesis, but by changes of diet or provenance. Finally, it is concluded that there can be two viable interpretations of the Pb concentrations, which can either be seen as an indicator for social class or a temporal development of increased Pb exposure over the centuries. © 2016 Wiley Periodicals, Inc.
Method of treating waste water
Deininger, J. Paul; Chatfield, Linda K.
1991-01-01
A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crozat, G.; Domergue, J.L.; Bogui, V.
Atmospheric aerosols were sampled on filters to the air near ground level over the Ivory Coast and the Gulf of Guinea. Several elements were measured of filters by neutron activation and gamma spectrometry. Correlation thats applied to these elements allow them to be classified in groups of common origin. Study of the sampling collected over the Ivory Coast, along a''North- South'' axis, showed an increase of the concentrations of the terrestrial elements, as one passes from the coast to the north of the country. However, no particular increase of the concentrations was observed, to ground level air, when passing frommore » one side of the intertropical front to the other. In the air above the land, concentrations of marine aerosols decrease from the coast forth, especially near it. Daily variations may be noticed for all the elements The experiments performed in marthe atmosphere, over the Guif of Guinea, show that a high number of the elements measured are of terrestrial origin. (UK)« less
NASA Astrophysics Data System (ADS)
Ovchinnikov, I. I.; Snezhkina, O. V.; Ovchinnikov, I. G.
2018-06-01
A generalized model of diffusional penetration of a chloride-containing medium into the volume of a compressed reinforced concrete element is considered. The equations of deformation values of reinforced concrete structure are presented, taking into account the degradation of concrete and corrosion of reinforcement. At the initial stage, an applied force calculation of section of the structural element with mechanical properties of the material which are determined by the initial field of concentration of aggressive medium, is carried out. Furthermore, at each discrete instant moment of time, the following properties are determined: the distribution law of concentration for chloride field, corresponding to the parameters of the stress-strain state; the calculation of corrosion damage field of reinforcing elements and the applied force calculation of section of the structural element with parameters corresponding to the distribution of the concentration field and the field of corrosion damage are carried out.
Stable finite element approximations of two-phase flow with soluble surfactant
NASA Astrophysics Data System (ADS)
Barrett, John W.; Garcke, Harald; Nürnberg, Robert
2015-09-01
A parametric finite element approximation of incompressible two-phase flow with soluble surfactants is presented. The Navier-Stokes equations are coupled to bulk and surfaces PDEs for the surfactant concentrations. At the interface adsorption, desorption and stress balances involving curvature effects and Marangoni forces have to be considered. A parametric finite element approximation for the advection of the interface, which maintains good mesh properties, is coupled to the evolving surface finite element method, which is used to discretize the surface PDE for the interface surfactant concentration. The resulting system is solved together with standard finite element approximations of the Navier-Stokes equations and of the bulk parabolic PDE for the surfactant concentration. Semidiscrete and fully discrete approximations are analyzed with respect to stability, conservation and existence/uniqueness issues. The approach is validated for simple test cases and for complex scenarios, including colliding drops in a shear flow, which are computed in two and three space dimensions.
Filella, M; Rodríguez-Murillo, J C
2017-09-01
The possible environmental impact of the recent increase in use of a group of technology-critical elements (Nb, Ta, Ga, In, Ge and Te) is analysed by reviewing published concentration profiles in environmental archives (ice cores, ombrotrophic peat bogs, freshwater sediments and moss surveys) and evaluating temporal trends in surface waters. No increase has so far been recorded. The low potential direct emissions of these elements, resulting from their absolute low production levels, make it unlikely that the increasing use of these elements in modern technology has any noticeable effect on their environmental concentrations on a global scale. This holds particularly true for those of these elements that are probably emitted in relatively high amounts from other human activities (i.e., coal combustion and non-ferrous smelting), such as In, the most studied element of the group. Copyright © 2017 Elsevier Ltd. All rights reserved.
Palmer, C.A.; Lyons, P.C.
1990-01-01
Twelve hand-picked vitrinite concentrates and companion whole-coal samples were analyzed for trace and minor elements by instrumental neutron activation analysis (INAA) and direct-current-arc spectrographic techniques (DCAS). The vitrinite concentrates contained 94 to nearly 100 vol.% vitrinite compared to 71-95 vol.% in the companion whole coals. The ash contents of the vitrinite concentrates were 2 to more than 190 times less than the ash contents of the companion whole coals. Organic and inorganic affinities were determined by comparing the elemental concentrations in the vitrinite concentrates to the concentrations in the companion whole coals. The ratios of these concentrations for 33 selected elements are shown in Figure 1. Ratios greater than 1 indicate organic affinity, and ratios less than 1 indicate inorganic affinity. Br and W generally showed organic affinity in all samples in this study. In the nine samples from the eastern United States (Fig. 1A-C) less than one-fourth of the trace elements show organic affinity compared to nearly one-half for the three English and Australian samples (Fig. 1D). The elements that generally show organic affinity in the non-U.S.A. samples studied include As, Cs, Hf, and Ni, which have generally inorganic affinities in the U.S.A. samples, and Cr, Sb, Se, and U, which have mixed (both organic and inorganic) affinities, in the U.S.A. coals studied, has an inorganic affinity in the English coals studied. B shows organic affinity in the samples from the Illinois basin (Fig. 1C). For the samples studied, Ba shows organic affinity in the Appalachian basin bituminous coals (Fig. 1B), inorganic affinity in the Illinois basin coals, and overall mixed affinities. In all the samples studied, Cu, Mn, Na, Sr, Ta, V, and Zn show mixed affinities, and A1, Co, Eu, Fe, Ga, K, La, Mg, Sc, Si, Th, Ti, and Ub have generally inorganic affinity. ?? 1990.
Total Quality Management: Implications for Educational Assessment.
ERIC Educational Resources Information Center
Rankin, Stuart C.
1992-01-01
Deming's "System of Profound Knowledge" is even more fundamental than his 14-principle system transformation guide and is based on 4 elements: systems theory, statistical variation, a theory of knowledge, and psychology. Management should revamp total system processes so that quality of product is continually improved. Implications for…
Concentrations of Trace Elements in Hemodialysis Patients: A Prospective Cohort Study.
Tonelli, Marcello; Wiebe, Natasha; Bello, Aminu; Field, Catherine J; Gill, John S; Hemmelgarn, Brenda R; Holmes, Daniel T; Jindal, Kailash; Klarenbach, Scott W; Manns, Braden J; Thadhani, Ravi; Kinniburgh, David
2017-11-01
Low concentrations and excessive concentrations of trace elements have been commonly reported in hemodialysis patients, but available studies have several important limitations. Random sample of patients drawn from a prospective cohort. 198 incident hemodialysis patients treated in 3 Canadian centers. We used mass spectrometry to measure plasma concentrations of the 25 elements at baseline, 6 months, 1 year, and 2 years following enrollment in the cohort. We focused on low concentrations of zinc, selenium, and manganese and excessive concentrations of lead, arsenic, and mercury; low and excessive concentrations of the other 19 trace elements were treated as exploratory analyses. Low and excessive concentrations were based on the 5th and 95th percentile plasma concentrations from healthy reference populations. At all 4 occasions, low zinc, selenium, and manganese concentrations were uncommon in study participants (≤5.1%, ≤1.8%, and ≤0.9% for zinc, selenium, and manganese, respectively) and a substantial proportion of participants had concentrations that exceeded the 95th percentile (≥65.2%, ≥74.2%, and ≥19.7%, respectively). Almost all participants had plasma lead concentrations above the 95th percentile at all time points. The proportion of participants with plasma arsenic concentrations exceeding the 95th percentile was relatively constant over time (9.1%-9.8%); the proportion with plasma mercury concentrations that exceeded the 95th percentile varied between 15.2% and 29.3%. Low arsenic, platinum, tungsten, and beryllium concentrations were common (>50%), as were excessive cobalt, manganese, zinc, vanadium, cadmium, selenium, barium, antimony, nickel, molybdenum, lead, and chromium concentrations. There was no evidence that low zinc, selenium, or manganese concentrations exist in most contemporary Canadian hemodialysis patients. Some patients have excessive plasma arsenic and mercury concentrations, and excessive lead concentrations were common. These findings require further investigation. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Concentration of trace elements on branded cigarette in Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul
Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing themore » neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 10{sup 12} n cm{sup -2} s{sup -1}. The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO)« less
NASA Astrophysics Data System (ADS)
Khechai, Abdelhak; Tati, Abdelouahab; Belarbi, Mohamed Ouejdi; Guettala, Abdelhamid
2018-03-01
The design of high-performance composite structures frequently includes discontinuities to reduce the weight and fastener holes for joining. Understanding the behavior of perforated laminates is necessary for structural design. In the current work, stress concentrations taking place in laminated and isotropic plates subjected to tensile load are investigated. The stress concentrations are obtained using a recent quadrilateral finite element of four nodes with 32 DOFs. The present finite element (PE) is a combination of two finite elements. The first finite element is a linear isoparametric membrane element and the second is a high precision Hermitian element. One of the essential objectives of the current investigation is to confirm the capability and efficiency of the PE for stress determination in perforated laminates. Different geometric parameters, such as the cutout form, sizes and cutout orientations, which have a considerable effect on the stress values, are studied. Using the present finite element formulation, the obtained results are found to be in good agreement with the analytical findings, which validates the capability and the efficiency of the proposed formulation. Finally, to understand the material parameters effect such as the orientation of fibers and degree of orthotropy ratio on the stress values, many figures are presented using different ellipse major to minor axis ratio. The stress concentration values are considerably affected by increasing the orientation angle of the fibers and degree of orthotropy.
An injection and mixing element for delivery and monitoring of inhaled nitric oxide.
Martin, Andrew R; Jackson, Chris; Fromont, Samuel; Pont, Chloe; Katz, Ira M; Caillobotte, Georges
2016-08-30
Inhaled nitric oxide (NO) is a selective pulmonary vasodilator used primarily in the critical care setting for patients concurrently supported by invasive or noninvasive positive pressure ventilation. NO delivery devices interface with ventilator breathing circuits to inject NO in proportion with the flow of air/oxygen through the circuit, in order to maintain a constant, target concentration of inhaled NO. In the present article, a NO injection and mixing element is presented. The device borrows from the design of static elements to promote rapid mixing of injected NO-containing gas with breathing circuit gases. Bench experiments are reported to demonstrate the improved mixing afforded by the injection and mixing element, as compared with conventional breathing circuit adapters, for NO injection into breathing circuits. Computational fluid dynamics simulations are also presented to illustrate mixing patterns and nitrogen dioxide production within the element. Over the range of air flow rates and target NO concentrations investigated, mixing length, defined as the downstream distance required for NO concentration to reach within ±5 % of the target concentration, was as high as 47 cm for the conventional breathing circuit adapters, but did not exceed 7.8 cm for the injection and mixing element. The injection and mixing element has potential to improve ease of use, compatibility and safety of inhaled NO administration with mechanical ventilators and gas delivery devices.
Atmospheric wet deposition of trace elements to a suburban environment, Reston, Virginia, USA
Conko, Kathryn M.; Rice, Karen C.; Kennedy, Margaret M.
2004-01-01
Wet deposition from a suburban area in Reston, Virginia was collected during 1998 and analyzed to assess the anion and trace-element concentrations and depositions. Suburban Reston, approximately 26 km west of Washington, DC, is densely populated and heavily developed. Wet deposition was collected bi-weekly in an automated collector using trace-element clean sampling and analytical techniques. The annual volume-weighted concentrations of As, Cd, and Pb were similar to those previously reported for a remote site on Catoctin Mt., Maryland (70 km northwest), which indicated a regional signal for these elements. The concentrations and depositions of Cu and Zn at the suburban site were nearly double those at remote sites because of the influence of local vehicular traffic. The 1998 average annual wet deposition (μg m−2 yr−1) was calculated for Al (52,000), As (94), Cd (54), Cr (160), Cu (700), Fe (23,000), Mn (2000), Ni (240), Pb (440), V (430), and Zn (4100). The average annual wet deposition (meq m−2 yr−1) was calculated for H+ (74), Cl− (8.5), NO3− (33), and SO42− (70). Analysis of digested total trace-element concentrations in a subset of samples showed that the refractory elements in suburban precipitation comprised a larger portion of the total deposition of trace elements than in remote areas.
Shoults-Wilson, W. A.; Peterson, J.T.; Unrine, J.M.; Rickard, J.; Black, M.C.
2009-01-01
In the present study, specimens of the invasive clam, Corbicula fluminea, were collected above and below possible sources of potentially toxic trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the Altamaha River system (Georgia, USA). Bioaccumulation of these elements was quantified, along with environmental (water and sediment) concentrations. Hierarchical linear models were used to account for variability in tissue concentrations related to environmental (site water chemistry and sediment characteristics) and individual (growth metrics) variables while identifying the strongest relations between these variables and trace element accumulation. The present study found significantly elevated concentrations of Cd, Cu, and Hg downstream of the outfall of kaolin-processing facilities, Zn downstream of a tire cording facility, and Cr downstream of both a nuclear power plant and a paper pulp mill. Models of the present study indicated that variation in trace element accumulation was linked to distance upstream from the estuary, dissolved oxygen, percentage of silt and clay in the sediment, elemental concentrations in sediment, shell length, and bivalve condition index. By explicitly modeling environmental variability, the Hierarchical linear modeling procedure allowed the identification of sites showing increased accumulation of trace elements that may have been caused by human activity. Hierarchical linear modeling is a useful tool for accounting for environmental and individual sources of variation in bioaccumulation studies. ?? 2009 SETAC.
Delavari, Armin; Baltus, Ruth
2017-01-01
Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined. PMID:28796197
Li, Sanshu; Smith, Kathryn D; Davis, Jared H; Gordon, Patricia B; Breaker, Ronald R; Strobel, Scott A
2013-11-19
Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, (18)F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.
Li, Sanshu; Smith, Kathryn D.; Davis, Jared H.; Gordon, Patricia B.; Breaker, Ronald R.; Strobel, Scott A.
2013-01-01
Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, 18F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions. PMID:24173035
NASA Astrophysics Data System (ADS)
Sánchez de la Campa, A. M.; de la Rosa, J. D.
2014-12-01
A temporal series study of atmospheric aerosol was performed over the last ten years (2003-2012) in an urban background monitoring station with ceramic industrial influence, in Bailén, SE Spain. Temporal trends of major and minor chemical components of PM10 for a long term data series were investigated, showing that PM10 concentrations have been steadily decreasing over almost a decade, with a statistical significance. Measurements indicate a reduction of elements and components related to the industrial activity of brick-ceramic production (V, Cd, Rb, La, Cr, Ni, As, Pb and SO42-). Conversely, Cu levels define an increasing trend from the beginning of the study period but with the highest step trend since 2011-2012, coinciding with the beginning of the financial and economic crisis in 2008. A similar time evolution pattern of Cu and OC, EC, and K levels may be a tracer of domestic local combustion source, and a new biomass burning source has been identified. Chemical composition of olive tree logs suggest as the combustion of wood with high concentration of Cu can imply an increase of Cu concentration in the atmospheric particles compared with other sources such as traffic.
NASA Astrophysics Data System (ADS)
Chorover, Jon; Derry, Louis A.; McDowell, William H.
2017-11-01
Critical zone science seeks to develop mechanistic theories that describe critical zone structure, function, and long-term evolution. One postulate is that hydrogeochemical controls on critical zone evolution can be inferred from solute discharges measured down-gradient of reactive flow paths. These flow paths have variable lengths, interfacial compositions, and residence times, and their mixing is reflected in concentration-discharge (C-Q) relations. Motivation for this special section originates from a U.S. Critical Zone Observatories workshop that was held at the University of New Hampshire, 20-22 July 2015. The workshop focused on resolving mechanistic CZ controls over surface water chemical dynamics across the full range of lithogenic (e.g., nonhydrolyzing and hydrolyzing cations and oxyanions) and bioactive solutes (e.g., organic and inorganic forms of C, N, P, and S), including dissolved and colloidal species that may cooccur for a given element. Papers submitted to this special section on "concentration-discharge relations in the critical zone" include those from authors who attended the workshop, as well as others who responded to the open solicitation. Submissions were invited that utilized information pertaining to internal, integrated catchment function (relations between hydrology, biogeochemistry, and landscape structure) to help illuminate controls on observed C-Q relations.
Mashburn, Shana L.; Smith, S. Jerrod
2007-01-01
The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.
Elemental signatures in otoliths (fish ear-stones) have become a powerful tool in fisheries science for identifying fish migration patterns, reconstructing environmental histories, and for delineating the nursery origins of adult fish populations. Assessing connectivity between a...
DeWeese, Lawrence R.; Stephens, Verlin C.; Short, Terry M.; Dubrovsky, Neil M.
2007-01-01
The U.S. Geological Survey National Water-Quality Assessment Program collected tissue samples from a variety of aquatic organisms during 1992-1999 within 47 study units across the United States. These tissue samples were collected to determine the occurrence and distribution of 20 major and minor trace elements in aquatic organisms. This report presents the tissue trace-element concentration data, sample summaries, and concentration statistics for 1,457 tissue samples representing 76 species or groups of fish, aquatic invertebrates, and plants were collected at 824 sampling sites.
PIXE as a complement to ICP-OES trace metal analysis in Sudanese medicinal plants.
Mubark Ebrahim, Ammar; Etayeb, M A; Khalid, H; Noun, Manale; Roumie, M; Michalke, B
2014-08-01
This paper compares trace element concentrations (Ca, K, Sr, Fe, Mn, Zn, Ni, Cu, Co and Cr) in 27 Sudanese medical plants determined in parallel by PIXE and ICP-OES to get information on which technique is preferable at different matrices and element concentrations. PIXE correlates well to ICP-OES for Sr, Mn, Ca, K, Zn and Fe determinations. ICP-OES seems to be the superior technique over PIXE when measuring low concentrated elements (chromium, cobalt, nickel and copper) in the medicinal plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Romanok, Kristin M.; Fischer, Jeffrey M.; Riva-Murray, Karen; Brightbill, Robin; Bilger, Michael
2006-01-01
As part of the National Water-Quality Assessment (NAWQA) program activities in the Delaware River Basin (DELR), samples of fish tissue from 21 sites and samples of bed sediment from 35 sites were analyzed for a suite of organic compounds and trace elements. The sampling sites, within subbasins ranging in size from 11 to 600 square miles, were selected to represent 5 main land-use categories in the DELR -forest, low-agricultural, agricultural, urban, and mixed use. Samples of both fish tissue and bed sediment were also collected from 4 'large-river' sites that represented drainage areas ranging from 1,300 to 6,800 square miles, areas in which the land is used for a variety of purposes. One or more of the organochlorine compounds-DDT and chlordane metabolites, polychlorinated biphenyls (total PCBs), and dieldrin- were detected frequently in samples collected over a wide geographic area. One or more of these compounds were detected in fish-tissue samples from 92 percent of the sites and in bed-sediment samples from 82 percent of the sites. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in whole white suckers and in bed sediment were significantly related to urban/industrial basin characteristics, such as percentage of urban land use and population density. Semi-volatile organic compounds (SVOCs)-total polycyclic aromatic hydrocarbons (PAHs), total phthalates, and phenols- were detected frequently in bed-sediment samples. All three types of SVOCs were detected in samples from at least one site in each land-use category. The highest detection rates and concentrations typically were in samples from sites in the urban and mixed land-use categories, as well as from the large-river sites. Concentrations of total PAHs and total phthalates in bed-sediment samples were found to be statistically related to percentages of urban land use and to population density in the drainage areas represented by the sampling sites. The samples of fish tissue and bed sediment collected throughout the DELR were analyzed for a large suite of trace elements, but results of the analyses for eight elements-arsenic, cadmium, chromium, copper, lead, nickel, mercury, and zinc- that are considered contaminants of concern are described in this report. One or more of the eight trace elements were detected in samples from every fish tissue and bed-sediment sampling site, and all of the trace elements were detected in samples from 97 percent of the bed-sediment sites. The concentrations of organic compounds and trace elements in the DELR samples were compared to applicable guidelines for the protection of wildlife and other biological organisms. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in fish-tissue samples from 14 sites exceeded one or more of the Wildlife Protective Guidelines established by the New York State Department of Environmental Conservation. Concentrations of one or more organic compounds in samples from 16 bed-sediment sites exceeded the Threshold Effects Concentrations (TEC) of the Canadian Sediment Quality Guidelines, and concentrations of one or more of the eight trace elements in samples from 38 bed-sediment sites exceeded the TEC. (The TEC is the concentration below which adverse biological effects in freshwater ecosystems are expected to be rare.) Concentrations of organic compounds in samples from some bed-sediment sites exceeded the Canadian Probable Effects Concentrations (PEC), and concentrations of trace elements in samples from 18 sites exceeded the PEC. (The PEC is the concentration above which adverse effects to biological organisms are expected to occur frequently). Concentrations of organic compounds and trace elements in samples from the DELR were compared to similar data from other NAWQA study units in the northeastern United States and also data from the Mobile River (Alabama) Basin and the Northern Rockies Intermontane Basin study units. Median concentrations of to
NASA Technical Reports Server (NTRS)
Pun, A.; Papike, J. J.
1994-01-01
We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.
Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-10-01
The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.
Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health?
Warming, Marlies; Hansen, Mette G; Holm, Peter E; Magid, Jakob; Hansen, Thomas H; Trapp, Stefan
2015-07-01
This study investigates the potential health risk from urban gardening. The concentrations of the trace elements arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) in five common garden crops from three garden sites in Copenhagen were measured. Concentrations (mg/kg dw) of As were 0.002-0.21, Cd 0.03-0.25, Cr < 0.09-0.38, Cu 1.8-8.7, Ni < 0.23-0.62, Pb 0.05-1.56, and Zn 10-86. Generally, elemental concentrations in the crops do not reflect soil concentrations, nor exceed legal standards for Cd and Pb in food. Hazard quotients (HQs) were calculated from soil ingestion, vegetable consumption, measured trace element concentrations and tolerable intake levels. The HQs for As, Cd, Cr, Cu, Ni, and Zn do not indicate a health risk through urban gardening in Copenhagen. Exposure to Pb contaminated sites may lead to unacceptable risk not caused by vegetable consumption but by unintentional soil ingestion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John
In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less
Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale
Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; ...
2015-06-26
In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less