Science.gov

Sample records for elemental energy spectra

  1. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  2. An Instrument to Measure Elemental Energy Spectra of Cosmic Ray Nuclei Up to 10(exp 16) eV

    NASA Technical Reports Server (NTRS)

    Adams, J.; Bashindzhagyan, G.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov,S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    A longstanding goal of cosmic ray research is to measure the elemental energy spectra of cosmic rays up to and through the "knee" (approx. equal to 3 x 10 (exp 15) eV. It is not currently feasible to achieve this goal with an ionization calorimeter because the mass required to be deployed in Earth orbit is very large (at least 50 tonnes). An alternative method will be presented. This is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer using silicon microstrip detector technology. The proposed technique can be used over a wide range of energies (10 (exp 11)- 10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a design for a new lightweight instrument with a large aperture (KLEM) will be described.

  3. Energy spectra of elements with 18 or = Z or = 28 between 10 and 300 GeV/amu

    NASA Technical Reports Server (NTRS)

    Jones, M. D.; Klarmann, J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Garrard, T. L.; Israel, M. H.

    1985-01-01

    The HEAO-3 Heavy Nuclei Experiment is composed of ionization chambers above and below a plastic Cerenkov counter. The energy dependence of the abundances of elements with atomic number, Z, between 18 and 28 at very high energies where they are rare and thus need the large area x time are measured. The measurements of the Danish-French HEAO-3 experiment (Englemann,, et al., 1983) are extended to higher energies, using the relativistic rise of ionization signal as a measure of energy. Source abundances for Ar and Ca were determined.

  4. Speciation of Energy Critical Elements in Marine Ferromanganese Crusts and Nodules by Principal Component Analysis and Least-squares fits to XAFS Spectra

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Klofas, J. M.; Hein, J. R.; Koschinsky, A.; Bargar, J.; Dunham, R. E.; Conrad, T. A.

    2011-12-01

    Marine ferromanganese crusts and nodules ("Fe-Mn crusts") are considered a potential mineral resource due to their accumulation of several economically-important elements at concentrations above mean crustal abundances. They are typically composed of intergrown Fe oxyhydroxide and Mn oxide; thicker (older) crusts can also contain carbonate fluorapatite. We used X-ray absorption fine-structure (XAFS) spectroscopy, a molecular-scale structure probe, to determine the speciation of several elements (Te, Bi, Mo, Zr, Pt) in Fe-Mn crusts. As a first step in analysis of this dataset, we have conducted principal component analysis (PCA) of Te K-edge and Mo K-edge, k3-weighted XAFS spectra. The sample set consisted of 12 homogenized, ground Fe-Mn crust samples from 8 locations in the global ocean. One sample was subjected to a chemical leach to selectively remove Mn oxides and the elements associated with it. The samples in the study set contain 50-205 mg/kg Te (average = 88) and 97-802 mg/kg Mo (average = 567). PCAs of background-subtracted, normalized Te K-edge and Mo K-edge XAFS spectra were performed on a data matrix of 12 rows x 122 columns (rows = samples; columns = Te or Mo fluorescence value at each energy step) and results were visualized without rotation. The number of significant components was assessed by the Malinowski indicator function and ability of the components to reconstruct the features (minus noise) of all sample spectra. Two components were significant by these criteria for both Te and Mo PCAs and described a total of 74 and 75% of the total variance, respectively. Reconstruction of potential model compounds by the principal components derived from PCAs on the sample set ("target transformation") provides a means of ranking models in terms of their utility for subsequent linear-combination, least-squares (LCLS) fits (the next step of data analysis). Synthetic end-member models of Te4+, Te6+, and Mo adsorbed to Fe(III) oxyhydroxide and Mn oxide were

  5. Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    NASA Technical Reports Server (NTRS)

    Nalesnik, W. J.; Devlin, T. J.; Merker, M.; Shen, B. S. P.

    1972-01-01

    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator.

  6. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Lutz, L.; Malinin, A.; Allison, P.; Beatty, J. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Mognet, S. I.; Jeon, J. A.; Minnick, S.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of {approx}70 days, which indicate hardening of the elemental spectra above {approx}200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at {approx}10{sup 15} eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  7. Comprehensive Analyses of the Spectra of Iron-group Elements

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Sansonetti, Craig J; Pickering, Juliet C; Liggins, Florence

    2014-06-01

    For many decades, the Atomic Spectroscopy Group at NIST has measured atomic data of vital use to astronomy and other fields using high resolution spectrometers that are found in few other places in the world. These now include the 2-m Fourier transform (FT) spectrometer covering the region 285 nm to 5500 nm, the FT700 vacuum ultraviolet (VUV) FT spectrometer covering the region 143 nm to 900 nm, and a 10.7-m normal incidence spectrograph (NIVS) covering 30 nm to 500 nm. Recent work focused on the measurement and analysis of wavelengths and energy levels of iron-group elements to provide extensive data for the analysis of astrophysical spectra. Our comprehensive linelist for Fe II from 90 nm to 5500 nm contains over 13 600 lines with order of magnitude improvements in the wavelengths compared to previous work [Nave & Johansson, ApJSS 204, 1(2013)]. The spectra were observed in high-current continuous and pulsed hollow cathode (HCL) discharges using FT spectrometers and our NIVS spectrograph. A similar analysis of Cr II contains over 5300 lines and extends the knowledge of this spectrum to the previously unobserved region between 731 nm at 5500 nm [Sansonetti, Nave, Reader & Kerber, ApJSS 202, 15 (2012); Sansonetti & Nave, ApJSS (in prep.)]. Our analysis of the Co III spectrum contains 750 lines observed in Penning discharge lamps and an additional 900 lines compiled from previous work, including Ritz wavelengths, optimized energy levels, and calculated log(gf) values [Smillie, Pickering, Nave & Smith, ApJSS (in prep.)]. NIST and ICL are currently collaborating to complete the measurement and analysis of wavelengths, energy levels, and hyperfine structure parameters for all singly-ionized iron-group elements of astrophysical interest, covering the wavelength range 80 nm to 5500 nm. This project uses archival data from FT spectrometers at NIST, ICL and Kitt Peak National Observatory, with additional spectra of HCL and Penning discharge sources taken using our FT and

  8. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    PubMed

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone. PMID:25302914

  9. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    NASA Astrophysics Data System (ADS)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  10. Determination of the Light Element Fraction in MSL APXS Spectra

    NASA Astrophysics Data System (ADS)

    Perrett, G. M.; Pradler, I.; Campbell, J. L.; Gellert, R.; Leshin, L. A.; Schmidt, M. E.; Team, M.

    2013-12-01

    Additional light invisible components (ALICs), measured using the alpha particle X-ray spectrometer (APXS), represent all light elements (e.g. CO3, OH, H2O) present in a sample below Na, excluding bound oxygen. The method for quantifying ALICs was originally developed for the Mars Exploration Rover (MER) APXS (Mallet et al, 2006; Campbell et al, 2008). This method has been applied to data collected by the Mars Science Laboratory (MSL) APXS up to sol 269 using a new terrestrial calibration. ALICs are investigated using the intensity ratio of Pu L-alpha Compton and Rayleigh scatter peaks (C/R). Peak areas of the scattered X-rays are determined by the GUAPX fitting program. This experimental C/R is compared to a Monte Carlo simulated C/R. The ratio of simulated and experimental C/R values is called the K-value. ALIC concentrations are calculated by comparing the K-value to the fraction of all invisibles present; the invisible fraction is produced from the spectrum fit by GUAPX. This method is applied to MSL spectra with long integration duration (greater than 3 hours) and with energy resolution less than 180 eV at 5.9 keV. These overnight spectra encompass a variety of geologic materials examined by the Curiosity Rover, including volcanic and sedimentary lithologies. Transfer of the K-value calibration produced in the lab to the flight APXS has been completed and temperature, geometry and spectrum duration effects have been thoroughly examined. A typical limit of detection of ALICs is around 5 wt% with uncertainties of approximately 5 wt%. Accurate elemental concentrations are required as input to the Monte Carlo program (Mallet et al, 2006; Lee, 2010). Elemental concentrations are obtained from the GUAPX code using the same long duration, good resolution spectra used for determining the experimental C/R ratios (Campbell et al. 2012). Special attention was given to the assessment of Rb, Sr, and Y as these element peaks overlap the scatter peaks. Mineral effects

  11. Energy spectra in elasto-inertial turbulence

    NASA Astrophysics Data System (ADS)

    Valente, P. C.; da Silva, C. B.; Pinho, F. T.

    2016-07-01

    Direct numerical simulations of statistically steady homogeneous isotropic turbulence in viscoelastic fluids described by the FENE-P model are presented. Emphasis is given to large polymer relaxation times compared to the eddy turnover time, which is a regime recently termed elasto-inertial turbulence. In this regime the polymers are ineffective in dissipating kinetic energy but they play a lead role in transferring kinetic energy to the small solvent scales which turns out to be concomitant with the depletion of the usual non-linear energy cascade. However, we show that the non-linear interactions are still highly active, but they lead to no net downscale energy transfer because the forward and reversed energy cascades are nearly balanced. Finally, we show that the tendency for a steeper elasto-inertial power-law spectra is reversed for large polymer relaxation times and the spectra tend towards the usual k-5/3 functional form.

  12. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  13. Energy spectra of high energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  14. The energy spectra of solar flare electrons

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.; Hovestadt, D.; Meyer, P.; Moses, D.

    1985-01-01

    A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft X-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares.

  15. Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1992-01-01

    The Heliosphere Instrument for Spectra, Composition, and Anisotropy at Low Energies (HI-SCALE) is designed to make measurements of interplanetary ions and electrons throughout the entire Ulysses mission. The ions (E(i) greater than about 50 keV) and electrons (E(e) greater than about 30 keV) are identified uniquely and detected by five separate solid-state detector telescopes that are oriented to give nearly complete pitch-angle coverage from the spinning spacecraft. Ion elemental abundances are determined by Delta E vs E telescope using a thin (5 microns) front solid state detector element in a three-element telescope. Experimental operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on telescope covers which can be closed for calibration purposes and for radiation protection during the course of the mission. Ion and electron spectral information is determined using both broad-energy-range rate channels and a 32 channel pulse-height analyzer for more detailed spectra. Some initial in-ecliptic measurements are presented which demonstrate the features of the instrument.

  16. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  17. SOHO/EPHIN energy spectra during GLE 69 and 70

    NASA Astrophysics Data System (ADS)

    Heber, Bernd; Kühl, Patrick; Dresing, Nina; Klassen, Andreas

    2016-04-01

    Ground Level Enhancements (GLEs) are solar energetic particle (SEP) events that are recorded by ground-based instrumentation. The energy of the particles is so high that they produce secondary particles in the Earth's atmosphere, i.e. protons and neutrons, which are detected as sudden increases in cosmic ray intensities measured by e.g. neutron monitors. Since the launch of SOHO in December 1995 the neutron monitor network recorded 16 GLEs. The Electron Proton Helium INstrument on board SOHO has been designed to measure protons and helium up to 53 MeV/nucleon as well as electrons up to 8.3 MeV. Above these energies, particles penetrate all detector elements and thus, a separation between different particle species becomes more complicated. Recently we developed a method that allows deriving the energy spectrum for penetrating protons up to more than 1 GeV. In this contribution we present the proton energy spectra for two of the 16 above-mentioned GLEs and compare them to previous measurements. Although there are differences of up to a factor two the overall shape of the energy spectra agree surprisingly well. Thus it has been demonstrated that EPHIN measurements are a valuable tool for understanding GLE. In addition our measurements allow the investigation of SUB GLEs that are events that are below the threshold of GLEs but may affect the ionization in the upper atmosphere.

  18. Bremsstrahlung spectra from atoms and ions at low relativistic energies

    NASA Astrophysics Data System (ADS)

    Avdonina, N. B.; Pratt, R. H.

    1999-09-01

    Analytic expressions for bremsstrahlung spectra from neutral atoms and ions, including the polarizational bremsstrahlung contribution in a stripped atom approximation, are developed for electron scattering at energies of 10-2000 keV. A modified Elwert factor and a simple higher Born correction are used for the Coulomb spectrum, with ordinary bremsstrahlung screening effects in ions and atoms adequately characterized in the non-relativistic Born approximation. In parallel with the development of this analytic description, new numerical results are obtained for ordinary bremsstrahlung from ions and from bare nuclei, appreciably extending the available data set which can be used to study dependences on element, ionicity, energy and the fraction of incident energy radiated. The accuracy of predictions with the analytic expressions is then determined by comparison with the full numerical relativistic partial-wave results for ordinary bremsstrahlung and with non-relativistic numerical results in the Born approximation or in partial waves for the polarizational amplitude.

  19. Determination of primary energy spectra from Maket Ani data

    NASA Astrophysics Data System (ADS)

    Chilingarian, A. A.; Gharagyozyan, G. V.; Ghazaryan, S. S.; Hovsepyan, G. G.; Melkumyan, L. G.; Sokhoyan, S. H.; Ter-Antonyan, S. V.; Vardanyan, A. A.

    The unfolding of the primary energy spectra from size spectra measured by MAKET ANI installation is performed. The nonparametric regression method was used for estimation of energy of each detected shower. Simple method of the unfolding of size spectra was introduced as robust alternative to event-by-event analysis of EAS data. Both methods agree within experimental and methodical errors. The ways to utilize a priori knowledge for physical inference are discussed.

  20. Surface energies of elemental crystals.

    PubMed

    Tran, Richard; Xu, Zihan; Radhakrishnan, Balachandran; Winston, Donald; Sun, Wenhao; Persson, Kristin A; Ong, Shyue Ping

    2016-01-01

    The surface energy is a fundamental property of the different facets of a crystal that is crucial to the understanding of various phenomena like surface segregation, roughening, catalytic activity, and the crystal's equilibrium shape. Such surface phenomena are especially important at the nanoscale, where the large surface area to volume ratios lead to properties that are significantly different from the bulk. In this work, we present the largest database of calculated surface energies for elemental crystals to date. This database contains the surface energies of more than 100 polymorphs of about 70 elements, up to a maximum Miller index of two and three for non-cubic and cubic crystals, respectively. Well-known reconstruction schemes are also accounted for. The database is systematically improvable and has been rigorously validated against previous experimental and computational data where available. We will describe the methodology used in constructing the database, and how it can be accessed for further studies and design of materials. PMID:27622853

  1. Emission spectra of selected SSME elements and materials

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.; Vandyke, David B.; Bircher, Felix E.; Gardner, Donald G.; Chenevert, Donald J.

    1992-01-01

    Stennis Space Center (SSC) is pursuing the advancement of experimental techniques and theoretical developments in the field of plume spectroscopy for application to rocket development testing programs and engine health monitoring. Exhaust plume spectral data for the Space Shuttle Main Engine (SSME) are routinely acquired. The usefulness of this data depends upon qualitative and quantitative interpretation of spectral features and their correlation with the engine performance. A knowledge of the emission spectral characteristics of effluent materials in the exhaust plume is essential. A study of SSME critical components and their materials identified 30 elements and 53 materials whose engine exhaust plume spectral might be required. The most important were evaluated using SSC's Diagnostic Testbed Facility Thruster (DTFT), a 1200-lbf, liquid oxygen/gaseous hydrogen rocket engine which very nearly replicates the temperature and pressure conditions of the SSME exhaust plume in the first Mach diamond. This report presents the spectral data for the 10 most important elements and 27 most important materials which are strongly to moderately emitting in the DTFT exhaust plume. The covered spectral range is 300 to 426 nm and the spectral resolution is 0.25 nm. Spectral line identification information is provided and line interference effects are considered.

  2. Study on Properties of Energy Spectra of the Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Chen, Xiang-Rong

    The energy-spectra of nonlinear vibration of molecular crystals such as acetanilide have been calculated by using discrete nonlinear Schrödinger equation appropriate to the systems, containing various interactions. The energy levels including higher excited states are basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide. We further give the features of distribution of the energy-spectra for the acetanilide. Using the energy spectra we also explained well experimental results obtained by Careri et al..

  3. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  4. Comparative analysis of characteristic electron energy loss spectra and inelastic scattering cross-section spectra of Fe

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-05-01

    The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.

  5. Surface energies of elemental crystals

    PubMed Central

    Tran, Richard; Xu, Zihan; Radhakrishnan, Balachandran; Winston, Donald; Sun, Wenhao; Persson, Kristin A.; Ong, Shyue Ping

    2016-01-01

    The surface energy is a fundamental property of the different facets of a crystal that is crucial to the understanding of various phenomena like surface segregation, roughening, catalytic activity, and the crystal’s equilibrium shape. Such surface phenomena are especially important at the nanoscale, where the large surface area to volume ratios lead to properties that are significantly different from the bulk. In this work, we present the largest database of calculated surface energies for elemental crystals to date. This database contains the surface energies of more than 100 polymorphs of about 70 elements, up to a maximum Miller index of two and three for non-cubic and cubic crystals, respectively. Well-known reconstruction schemes are also accounted for. The database is systematically improvable and has been rigorously validated against previous experimental and computational data where available. We will describe the methodology used in constructing the database, and how it can be accessed for further studies and design of materials. PMID:27622853

  6. Definition of energy-calibrated spectra for national reachback

    SciTech Connect

    Kunz, Christopher L.; Hertz, Kristin L.

    2014-01-01

    Accurate energy calibration is critical for the timeliness and accuracy of analysis results of spectra submitted to National Reachback, particularly for the detection of threat items. Many spectra submitted for analysis include either a calibration spectrum using 137Cs or no calibration spectrum at all. The single line provided by 137Cs is insufficient to adequately calibrate nonlinear spectra. A calibration source that provides several lines that are well-spaced, from the low energy cutoff to the full energy range of the detector, is needed for a satisfactory energy calibration. This paper defines the requirements of an energy calibration for the purposes of National Reachback, outlines a method to validate whether a given spectrum meets that definition, discusses general source considerations, and provides a specific operating procedure for calibrating the GR-135.

  7. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances.

    PubMed

    Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf

    2014-12-13

    Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars. PMID:25368345

  8. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances.

    PubMed

    Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf

    2014-12-13

    Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars.

  9. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  10. Anomalies in vibrational spectra of hydrides of the VA group elements in the condensed state

    NASA Astrophysics Data System (ADS)

    Nabiev, Shavkat S.; Sennikov, Petr G.

    2000-12-01

    The results of a study of vibrational spectra of volatile hydrides of the VA group elements of periods 2 - 4 in the liquid state and in solutions of liquefied noble gases have been generalized and analyzed over wide frequency and temperature ranges. A number of anomalies have been revealed in the spectra of these hydrides that manifest themselves through an unusual behavior of band intensities of basic, composite vibrations and overtones on a transition from the gas phase to the condensed state, and dependences of spectroscopic and dynamic parameters as well as a non- coincidence of the line maxima in isotropic and anisotropic Raman spectra ((delta) v equals vaniso-viso) on the temperature of liquid hydrides. Mechanisms of intermolecular interactions in these liquids are discussed with the use of the as-obtained data on the intensity, frequency and shape of vibrational band contours.

  11. Calculating fusion neutron energy spectra from arbitrary reactant distributions

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.

    2016-02-01

    The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

  12. Modeling energy-loss spectra due to phonon excitation

    NASA Astrophysics Data System (ADS)

    Forbes, B. D.; Allen, L. J.

    2016-07-01

    We discuss a fundamental theory of how to calculate the phonon-loss sector of the energy-loss spectrum for electrons scattering from crystalline solids. A correlated model for the atomic motion is used for calculating the vibrational modes. Spectra are calculated for crystalline silicon illuminated by a plane wave and by an atomic-scale focused coherent probe, in which case the spectra depend on probe position. These spectra are also affected by the size of the spectrometer aperture. The correlated model is contrasted with the Einstein model in which atoms in the specimen are assumed to vibrate independently. We also discuss how both the correlated and Einstein models relate to a classical view of the energy-loss process.

  13. High-energy X-ray spectra of five sources.

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Mcclintock, J. E.; Gerassimenko, M.; Lewin , W. H. G.

    1973-01-01

    On October 15-16, 1970, we carried out balloon X-ray observations from Australia at energies above 15 keV. We present the high-energy X-ray spectra of three sources discovered by us, GX 301-2, GX 304-1, and GX 1 + 4. The data suggest that these high-energy sources correspond to the sources 2U 1223-62, 2U 1258-61, and 2U 1728-24 respectively. We also present the spectra for two additional sources, GX 5-1 (2U 1757-25) and GX 3 + 1 (2U 1744-26). The average intensity of the highly variable source GX 301-2 was observed to be as great as Tau X-1 in the energy range 15-50 keV.

  14. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  15. Investigating the atmospheric energy spectra using ECMWF analysis: Regional dependence

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.; Zhang, M.

    2010-12-01

    The atmospheric turbulence energy spectrum has been a subject of active research for a long time. Beginning with Kolmogorov’s theory of three-dimensional turbulence, to Kraichnan’s two-dimensional turbulence and its extension to the quasi-geostrophic case by Charney, various theoretical models and hypothesis have tried to explain the energy spectrum slope. However, the success or failure of a theory can only be gauged by comparing its output with actual observational data. Nastrom and Gage were able to do just that by analyzing thousands of flight observation data and plotting the wave number spectra of wind and temperature in 1980’s. But, the flight data was confined only to the upper atmosphere and mostly mid-latitudes of northern hemisphere. We use the high-resolution ECMWF analysis data, as a part of Year of Tropical Convection (YOTC) to study the atmospheric energy spectra over a wide range of conditions. We compared and interpreted the differences of the atmospheric energy spectra in the tropics and mid-latitudes, in the winter (DJF) and summer (JJA), at the surface and in the upper troposphere. Our results conform to the previously observed -3 power law for mid-latitude data in the upper troposphere, but the slope of the energy spectrum from the surface wind data and for the tropics exhibited quite different shapes. The causes of these differences are discussed.

  16. Cosmic-ray energy spectra between 10 and several hundred GeV per atomic mass unit for elements from Ar-18 to Ni-28 - Results from HEAO 3

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Jones, Michael D.; Kamionkowski, M. P.; Garrard, T. L.

    1988-01-01

    Results from the Heavy Nuclei experiment on HEAO 3 are used to determine the primary abundances of Ni and Fe. Ni and Fe are found to have nearly constant relative abundances over the interval of 10 to about 500 GeV per amu. Individual secondary elements derived principally from interactions of primary Fe nuclei are shown to display a power-law decrease in relative abundance up to about 150 GeV per amu. Ar/Fe and Ca/Fe ratios of 2.6 + or - 0.7 percent and 8.8 + or - 0.7 percent, respectively, are found, confirming a fractionation of source abundances in which elements with high values of the first ionization potential are depleted relative to those with low first ionization potential.

  17. PROPAGATION AND SOURCE ENERGY SPECTRA OF COSMIC RAY NUCLEI AT HIGH ENERGIES

    SciTech Connect

    Ave, M.; Boyle, P. J.; Hoeppner, C.; Marshall, J.; Mueller, D.

    2009-05-20

    A recent measurement of the TRACER instrument on long-duration balloon has determined the individual energy spectra of the major primary cosmic ray nuclei from oxygen (Z = 8) to iron (Z = 26). The measurements cover a large range of energies and extend to energies beyond 10{sup 14} eV. We investigate if the data set can be described by a simple but plausible model for acceleration and propagation of cosmic rays. The model assumes a power-law energy spectrum at the source with a common spectral index {alpha} for all nuclear species, and an energy-dependent propagation path length ({lambda} {proportional_to} E {sup -0.6}) combined with an energy-independent residual path length {lambda}{sub 0}. We find that the data can be fitted with a fairly soft source spectrum ({alpha} = 2.3-2.4), and with a residual path length {lambda}{sub 0} as high as 0.3 g cm{sup -2}. We discuss this model in the context of other pertinent information, and we determine the relative abundances of the elements at the cosmic ray source.

  18. Fragmentation of water by ion impact: Kinetic energy release spectra

    SciTech Connect

    Rajput, Jyoti; Safvan, C. P.

    2011-11-15

    The fragmentation of isolated water molecules on collision with 450-keV Ar{sup 9+} has been studied using time-of-flight mass spectrometry employing multihit detection. The kinetic energy release spectrum for the dissociation of [H{sub 2}O]{sup 2+ White-Star} into (H{sup White-Star },H{sup +},O{sup +}) fragments has been measured where H{sup White-Star} is a neutral Rydberg hydrogen atom. Ab initio calculations are carried out for the lowest states of [H{sub 2}O]{sup q+} with q=2 and 3 to help interpret the kinetic energy release spectra.

  19. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1992-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1-100 MeV region is reported. Most of the events studied are dominated by He and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. Spectra of H, He-3, O, and Fe have spectral indices that are consistent with a value of about 3.5 above about 2 MeV/amu. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. Alternative interpretations are that trapping in the acceleration region directly causes a peak in the resulting ion spectrum or that low-energy particles encounter significant additional scattering during transport from the flare.

  20. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1991-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1 to 100 MeV region is reported with data from the combined observations of experiments on the ISEE 3 and IMP 8 spacecraft. Most of the events studied are dominated by He, and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. An alternative interpretation is that trapping in the acceleration region directly causes a peak in the spectrum.

  1. (e,2e) Angular Distributions and Energy Spectra in Cadmium

    NASA Astrophysics Data System (ADS)

    Martin, N. L. S.; Bauman, R. P.; Ross, K. J.; Wilson, M.

    1996-05-01

    Early angular distribution measurements on the Cd 4d^95s^25p ^3P1 autoionizing level( N.L.S. Martin and K.J. Ross, J. Phys. B 17), 4033 (1984). did not correspond with those expected from a single level of mixed ^3P+^1P character. An analysis indicated that the results were consistent with the combined angular distributions of the ^3P1 level and a previously unknown ^1D2 even parity autoionizing level at a slightly displaced ejected-electron energy. Recent (e,2e) energy spectra measurements( N.L.S. Martin, D.B. Thompson, R.P. Bauman, M. Wilson, Phys.Rev.A 50), 3878 (1994). that spanned the 4d^95s^25p energy region were interpreted with the help of ab initio structure and plane wave Born amplitude calculations. It was found that the experimental data could be modeled satisfactorily without including a ^1D2 level close to the ^3P1 level. We will present new calculations which reconcile these apparent contradictions between the angular distributions and energy spectra.

  2. On the use of Lineal Energy Measurements to Estimate Linear Energy Transfer Spectra

    NASA Technical Reports Server (NTRS)

    Adams, David A.; Howell, Leonard W., Jr.; Adam, James H., Jr.

    2007-01-01

    This paper examines the error resulting from using a lineal energy spectrum to represent a linear energy transfer spectrum for applications in the space radiation environment. Lineal energy and linear energy transfer spectra are compared in three diverse but typical space radiation environments. Different detector geometries are also studied to determine how they affect the error. LET spectra are typically used to compute dose equivalent for radiation hazard estimation and single event effect rates to estimate radiation effects on electronics. The errors in the estimations of dose equivalent and single event rates that result from substituting lineal energy spectra for linear energy spectra are examined. It is found that this substitution has little effect on dose equivalent estimates in interplanetary quiet-time environment regardless of detector shape. The substitution has more of an effect when the environment is dominated by solar energetic particles or trapped radiation, but even then the errors are minor especially if a spherical detector is used. For single event estimation, the effect of the substitution can be large if the threshold for the single event effect is near where the linear energy spectrum drops suddenly. It is judged that single event rate estimates made from lineal energy spectra are unreliable and the use of lineal energy spectra for single event rate estimation should be avoided.

  3. PARTICLE ENERGY SPECTRA AT TRAVELING INTERPLANETARY SHOCK WAVES

    SciTech Connect

    Reames, Donald V.

    2012-09-20

    We have searched for evidence of significant shock acceleration of He ions of {approx}1-10 MeV amu{sup -1} in situ at 258 interplanetary traveling shock waves observed by the Wind spacecraft. We find that the probability of observing significant acceleration, and the particle intensity observed, depends strongly upon the shock speed and less strongly upon the shock compression ratio. For most of the 39 fast shocks with significant acceleration, the observed spectral index agrees with either that calculated from the shock compression ratio or with the spectral index of the upstream background, when the latter spectrum is harder, as expected from diffusive shock theory. In many events the spectra are observed to roll downward at higher energies, as expected from Ellison-Ramaty and from Lee shock-acceleration theories. The dearth of acceleration at {approx}85% of the shocks is explained by (1) a low shock speed, (2) a low shock compression ratio, and (3) a low value of the shock-normal angle with the magnetic field, which may cause the energy spectra that roll downward at energies below our observational threshold. Quasi-parallel shock waves are rarely able to produce measurable acceleration at 1 AU. The dependence of intensity on shock speed, seen here at local shocks, mirrors the dependence found previously for the peak intensities in large solar energetic-particle events upon speeds of the associated coronal mass ejections which drive the shocks.

  4. Use of thin ionization calorimeters for measurements of cosmic ray energy spectra

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Ormes, J. S.; Schmidt, W. K. H.

    1976-01-01

    The reliability of performing measurements of cosmic ray energy spectra with a thin ionization calorimeter was investigated. Monte Carlo simulations were used to determine whether energy response fluctuations would cause measured spectra to be different from the primary spectra. First, Gaussian distributions were assumed for the calorimeter energy resolutions. The second method employed a detailed Monte Carlo simulation of cascades from an isotropic flux of protons. The results show that as long as the energy resolution does not change significantly with energy, the spectral indices can be reliably determined even for sigma sub e/e = 50%. However, if the energy resolution is strongly energy dependent, the measured spectra do not reproduce the true spectra. Energy resolutions greatly improving with energy result in measured spectra that are too steep, while resolutions getting much worse with energy cause the measured spectra to be too flat.

  5. Electron Emission Sites on Carbon Nanotubes and the Energy Spectra

    NASA Astrophysics Data System (ADS)

    Oshima, Chuhei; Matsuda, Kohei; Kona, Takayuki; Mogami, Yuhta; Komaki, Masashi; Murata, Yoshitaka; Yamashita, Tetsutane; Saito, Yahachi; Hata, Koichi; Takakura, Akihiro

    2001-11-01

    Two kinds of electron emission sites on carbon nanotubes have been clarified; one is a nanoprotrusion exhibiting deformed honeycomb structures composed of carbon hexagons,pentagons and possibly heptagons. The other is either an edged species or adsorbates. The emission spectra show two characteristic features; a broad main peak as compared with theoretical curves based on Fowler-Nordheim theory, and an additional shoulder at about 0.5 eV from EF, of which the features are observed independent of the emission direction. The broad main peak may indicate that energy band bending occurs near the emission sites.

  6. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    SciTech Connect

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A.; Antonsson, E.; Neville, J. J.; Miron, C.

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  7. Determination of Endpoint Energy and Bremsstrahlung Spectra for High-Energy Radiation-Therapy Beams

    NASA Astrophysics Data System (ADS)

    Landry, Danny Joe

    Few attempts have been made to experimentally determine thick-target bremsstrahlung spectra of megavoltage therapy beams. For spectral studies using the Compton scattering technique, sodium iodine (NaI) detectors with relatively poor energy resolution have been used. Other experimental techniques for determining spectra are generally not suited for a clinical environment with the inherent time and space constraints. To gather more spectral information than previously obtained in the region near the endpoint energy, the use of a high-resolution intrinsic-germanium (Ge) detector was proposed. A response function matrix was determined from experimentally obtained pulse height distributions on the multichannel analyzer. The distributions were for nine various monoenergetic sources between 280 adn 1525 keV. The response function was used to convert the measured pulse height distributions to photon flux spectra using an iterative approximation technique with a computer. Photon flux spectra from the Sagittaire Linear Accelerator were obtained at average-electron endpoint energies of 15, 20, and 25 MeV. Two spectra were measured at the 25 MeV setting; one spectrum was measured along the central axis and one spectrum at 4(DEGREES) off axis. Photon spectra were also obtained for a Van de Graaff generator at the nominal endpoint energies of 2.2, 2.35, and 2.5 MeV. The results for both the linac and the Van de Graaff generator were compared with theoretical spectra and previously measured spectra where available. Also, photon spectra from a Theratron-80 (('60)Co) unit were determined for three field sizes and for a 10 x 10 cm. field with a lucite tray or a 45(DEGREES) wedge in the beam. The resulting spectra were compared to previously measured ('60)Co spectra.

  8. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  9. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  10. Cadmium (e,2e) Energy Spectra in the Autoionizing Region

    NASA Astrophysics Data System (ADS)

    Martin, N. L. S.; Bauman, R. P.; Wilson, M.

    1997-04-01

    We will present an analysis of our comprehensive set of (e,2e) measurements in the Cd 4d^95s^25p autoionizing region, carried out for an incident electron-beam energy of 150 eV and scattering angles between 2^circ and 18^circ, corresponding to momentum transfer K=0.2 → 1 au. The results are presented as the sum and difference of k_ej=±hat k pairs of (e,2e) ejected-electron energy spectra(N.L.S. Martin, D.B. Thompson, R.P. Bauman and M. Wilson, Phys.Rev.Lett 72), 2163 (1994); Phys. Rev. A 50, 3878 (1994). for three special directions hat k, and compared with plane wave Born calculations that include ejected-electron partial waves l=0→7. It is found that the relative Born phases are incorrect for l=0,1,2 by amounts that are independent of scattering angle. The relative Born magnitudes are extremely good for hat k=hat K, but are extremely bad for the other two hat k directions. With increasing scattering angle we observe a reduction in the ^3P_1/^1P1 intensity ratio in the sum spectra, probably due to an increase in exchange scattering, and we also see a previously unobserved Cd 4d^95s^25p J=3 autoionizing level.

  11. Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Jianying; Tang, Guodong; Zhu, Longgen

    2005-11-01

    The vibrational spectra of some group IIIB elements halides MX 3 and their dimmers, M 2X 6 (M = Sc(III), Y(III), La(III); X = F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.

  12. An inhomogeneous reference catalogue of identified intervening heavy element systems in spectra of QSOs

    NASA Technical Reports Server (NTRS)

    York, Donald G.; Yanny, Brian; Crotts, Arlin; Carilli, Chris; Garrison, Etoi

    1991-01-01

    Identifications of heavy element line systems, observed in spectra of quasi-stellar objects between 1965 and 1989 inclusive, are collected and tabulated with references. Each system is assigned a quality grade based on the apparent reliability of the data. The highest quality systems are used to characterize the absorbers as a sample. A decrease in C IV line strength with redshift (z), and the corresponding decrease in line density per unit z with z are confirmed. The weakest C IV systems, at high z, are accompanied by relatively stronger Si IV lines, compared to the relative line strengths at low z. The space density of systems with strong lines of first ions is nearly independent of z below z = 3, though it drops at z greater than 3. Preliminary tests for quasar lensing by intervening systems and for clustering of absorbers on large scales are presented.

  13. High-Energy Neutron Spectra and Flux Measurements Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-03-01

    High-energy neutrons are a ubiquitous and often poorly measured background. Below ground, these neutrons could potentially interfere with antineutrino based reactor monitoring experiments as well as other rare-event neutral particle detectors. We have designed and constructed a transportable fast neutron detection system for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The spectrometer uses a multiplicity technique in order to have a higher effective area than traditional transportable high-energy neutron spectrometers. Transportability ensures a common detector-related systematic bias for future measurements. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. A high-energy neutron may interact in the lead producing many secondary neutrons. The detector records the correlated secondary neutron multiplicity. Over many events, the response can be used to infer the incident neutron energy spectrum and flux. As a validation of the detector response, surface measurements have been performed; results confirm agreement with previous experiments. Below ground measurements have been performed at 3 depths (380, 600, and 1450 m.w.e.); results from these measurements will be presented.

  14. Analysis of X-ray Spectra of High-Z Elements obtained on Nike with high spectral and spatial resolution

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2014-10-01

    The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.

  15. MAGNETIC HELICITY AND ENERGY SPECTRA OF A SOLAR ACTIVE REGION

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2014-04-01

    We compute for the first time the magnetic helicity and energy spectra of the solar active region NOAA 11158 during 2011 February 11-15 at 20° southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of the magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ≈ 0.4 Mm{sup –1}, corresponding to a scale of 2π/k ≈ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k {sup –11/3} power law at large wavenumbers, which implies a k {sup –5/3} spectrum for the modulus of the current helicity. A k {sup –5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm{sup –1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artifacts at small scales.

  16. Progress towards an unassisted element identification from Laser Induced Breakdown Spectra with automatic ranking techniques inspired by text retrieval

    NASA Astrophysics Data System (ADS)

    Amato, G.; Cristoforetti, G.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Sorrentino, F.; Tognoni, E.

    2010-08-01

    In this communication, we will illustrate an algorithm for automatic element identification in LIBS spectra which takes inspiration from the vector space model applied to text retrieval techniques. The vector space model prescribes that text documents and text queries are represented as vectors of weighted terms (words). Document ranking, with respect to relevance to a query, is obtained by comparing the vectors representing the documents with the vector representing the query. In our case, we represent elements and samples as vectors of weighted peaks, obtained from their spectra. The likelihood of the presence of an element in a sample is computed by comparing the corresponding vectors of weighted peaks. The weight of a peak is proportional to its intensity and to the inverse of the number of peaks, in the database, in its wavelength neighboring. We suppose to have a database containing the peaks of all elements we want to recognize, where each peak is represented by a wavelength and it is associated with its expected relative intensity and the corresponding element. Detection of elements in a sample is obtained by ranking the elements according to the distance of the associated vectors from the vector representing the sample. The application of this approach to elements identification using LIBS spectra obtained from several kinds of metallic alloys will be also illustrated. The possible extension of this technique towards an algorithm for fully automated LIBS analysis will be discussed.

  17. CALCULATION OF GAMMA SPECTRA IN A PLASTIC SCINTILLATOR FOR ENERGY CALIBRATIONAND DOSE COMPUTATION.

    PubMed

    Kim, Chankyu; Yoo, Hyunjun; Kim, Yewon; Moon, Myungkook; Kim, Jong Yul; Kang, Dong Uk; Lee, Daehee; Kim, Myung Soo; Cho, Minsik; Lee, Eunjoong; Cho, Gyuseong

    2016-09-01

    Plastic scintillation detectors have practical advantages in the field of dosimetry. Energy calibration of measured gamma spectra is important for dose computation, but it is not simple in the plastic scintillators because of their different characteristics and a finite resolution. In this study, the gamma spectra in a polystyrene scintillator were calculated for the energy calibration and dose computation. Based on the relationship between the energy resolution and estimated energy broadening effect in the calculated spectra, the gamma spectra were simply calculated without many iterations. The calculated spectra were in agreement with the calculation by an existing method and measurements. PMID:27127208

  18. The low energy spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Lamb, F. K.

    1982-01-01

    The implications of observed gamma-ray burst spectra for the physical conditions and geometries of the sources are examined. It is noted that an explanation of the continua in terms of optically thin thermal bremsstrahlung requires a relatively large area but a fairly shallow depth. On the other hand, a spectrum similar to that observed could be produced by rapid flickering of sources with less extreme geometries if each flicker emits a Comptonized thermal spectrum. Either field inhomogeneities or plasma motions are required to interpret the low energy features as cyclotron extinction. An alternative explanation is photoelectric absorption by heavy atoms; this requires a field strength high enough to make one-photon electron positron annihilation possible. Observational tests of these possibilities are proposed

  19. The Energy Spectra of Heavy Nuclei Measured by the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Panov, A. D.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazley, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon-borne experiment to measure the spectra and composition of primary cosmic rays in the region of total energy from 100 GeV to near 100 TeV for Z from 1 to 26. ATIC consists of a pixelated silicon matrix detector to measure charge plus a fully active BGO calorimeter, to measure energy, located below a carbon target interleaved with three layers of scintillator hodoscope. The ATIC instrument had a second (scientific) flight from McMurdo, Antarctica from 12/29/02 to 1/18/03, yielding 20 days of good data. The GEANT 3.21 Monte Carlo code with the QGSM event generator and the FLUKA code with the DPMJET-II event generator were used to convert energy deposition measurements to primary energy. We present the preliminary energy spectra for the abundant elements C, O, Ne, Mg, Si and Fe and compare them with the results of the first (test) flight of ATIC in 2000-01 and with results from the HEAO-3 and CRN experiments.

  20. The energy spectra of heavy nuclei measured by the ATIC experiment

    NASA Astrophysics Data System (ADS)

    Panov, A.; Atic Team

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon-borne experiment to measure the spectra and composition of primary cosmic rays in the region of total energy from 100 GeV to near 100 TeV for Z from 1 to 26. ATIC consists of a pixelated silicon matrix detector to measure charge plus a fully active BGO calorimeter, to measure energy, located below a carbon target interleaved with three layers of scintillator hodoscope. The ATIC instrument had a second (scientific) flight from McMurdo, Antarctica from 12/29/02 to 1/18/03, yielding 18 days of good data. The GEANT 3.21 Monte Carlo code with the QGSM event generator and the FLUKA code with the DPMJET-II event generator were used to convert energy deposition measurements to primary energy. We present the preliminary energy spectra for the abundant elements C, O, Ne, Mg, Si and Fe and compare them with the results of the first (test) flight of ATIC in 2000-01 and with results from the HEAO-3 and CRN experiments.

  1. Neutron-capture gamma-ray data for obtaining elemental abundances from planetary spectra.

    SciTech Connect

    Reedy, Robert; Frankle, S. C.

    2001-01-01

    Determination of elemental abundances is a top scientific priority of most planetary missions. Gamma-ray spectroscopy is an excellent method to determine elemental abundances using gamma rays made by nuclear reactions induced by cosmic-ray particles and by the decay of radioactive nuclides [Re73,Re78]. Many important planetary gamma rays are made by neutron-capture reactions. However, much of the data for the energies and intensities of neutron-capture gamma rays in the existing literature [e.g. Lo81] are poor [RF99,RF00]. With gamma-ray spectrometers having recently returned data from Lunar Prospector and NEAR and soon to be launch to Mars, there is a need for good data for neutron-capture gamma rays.

  2. BATSE Observations of Gamma-Ray Burst Spectra. Part 3; Low-Energy Behavior of Time-Averaged Spectra

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Pendleton, G. N.; Paciesas, W. S.; Matteson, J. L.; Band, D. L.; Skelton, R. T.; Meegan, C. A.

    1996-01-01

    We analyze time-averaged spectra from 86 bright gamma-ray bursts from the first 5 years of the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory to determine whether the lowest energy data are consistent with a standard spectra form fit to the data at all energies. The BATSE Spectroscopy Detectors have the capability to observe photons as low as 5 keV. Using the gamma-ray burst locations obtained with the BATSE Large Area Detectors, the Spectroscopy Detectors' low-energy response can be modeled accurately. This, together with a postlaunch calibration of the lowest energy Spectroscopy Detector discriminator channel, which can lie in the range 5-20 keV, allows spectral deconvolution over a broad energy range, approx. 5 keV to 2 MeV. The additional coverage allows us to search for evidence of excess emission, or for a deficit, below 20 keV. While no burst has a significant (greater than or equal to 3 sigma) deficit relative to a standard spectra model, we find that 12 bursts have excess low-energy emission, ranging between 1.2 and 5.8 times the model flux, that exceeds 5 sigma in significance. This is evidence for an additional low-energy spectral component in at least some bursts, or for deviations from the power-law spectral form typically used to model gamma-ray bursts at energies below 100 keV.

  3. Neutron emission profiles and energy spectra measurements at JET

    SciTech Connect

    Giacomelli, L.; Conroy, S.; Belli, F.; Riva, M.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Syme, B.; Collaboration: JET EFDA Contributors

    2014-08-21

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  4. Breaking of modulated wave trains: energy and spectra evolution

    NASA Astrophysics Data System (ADS)

    De Vita, Francesco; Verzicco, Roberto; Iafrati, Alessandro

    2016-04-01

    process is completed. At least for the conditions considered in the present study, the whole breaking process lasts 10-12 wave periods. Results are presented in terms of energy amount dissipated by the whole breaking process and changes operated to the pre-breaking spectra. Some analyses concerning the maximum wave steepness and the energy content of the single wave components are also presented with the aim of deriving a criteria which might explain the conditions leading the breaking to stop.

  5. Elemental Selenium for Electrochemical Energy Storage.

    PubMed

    Yang, Chun-Peng; Yin, Ya-Xia; Guo, Yu-Guo

    2015-01-15

    To meet the increasing demand for electrochemical energy storage with high energy density, elemental Se is proposed as a new attractive candidate with high volumetric capacity density similar to that of S. Se is chemically and electrochemically analogous to S to a large extent but is saliently featured owing to its semiconductivity, compatibility with carbonate-based electrolytes, and activity with a Na anode. Despite only short-term studies, many advanced Se-based electrode materials have been developed for rechargeable Li batteries, Na batteries, and Li ion batteries. In this Perspective, we review the advances in Se-based energy storage materials and the challenges of Li-Se battery in both carbonate-based and ether-based electrolytes. We also discuss the rational design strategies for future Se-based energy storage systems based on the strengths and weaknesses of Se. PMID:26263460

  6. Elemental Selenium for Electrochemical Energy Storage.

    PubMed

    Yang, Chun-Peng; Yin, Ya-Xia; Guo, Yu-Guo

    2015-01-15

    To meet the increasing demand for electrochemical energy storage with high energy density, elemental Se is proposed as a new attractive candidate with high volumetric capacity density similar to that of S. Se is chemically and electrochemically analogous to S to a large extent but is saliently featured owing to its semiconductivity, compatibility with carbonate-based electrolytes, and activity with a Na anode. Despite only short-term studies, many advanced Se-based electrode materials have been developed for rechargeable Li batteries, Na batteries, and Li ion batteries. In this Perspective, we review the advances in Se-based energy storage materials and the challenges of Li-Se battery in both carbonate-based and ether-based electrolytes. We also discuss the rational design strategies for future Se-based energy storage systems based on the strengths and weaknesses of Se.

  7. General purpose computational tools for simulation and analysis of medium-energy backscattering spectra

    NASA Astrophysics Data System (ADS)

    Weller, Robert A.

    1999-06-01

    This paper describes a suite of computational tools for general-purpose ion-solid calculations, which has been implemented in the platform-independent computational environment Mathematica®. Although originally developed for medium energy work (beam energies < 300 keV), they are suitable for general, classical, non-relativistic calculations. Routines are available for stopping power, Rutherford and Lenz-Jensen (screened) cross sections, sputtering yields, small-angle multiple scattering, and back-scattering-spectrum simulation and analysis. Also included are a full range of supporting functions, as well as easily accessible atomic mass and other data on all the stable isotopes in the periodic table. The functions use common calling protocols, recognize elements and isotopes by symbolic names and, wherever possible, return symbolic results for symbolic inputs, thereby facilitating further computation. A new paradigm for the representation of backscattering spectra is introduced.

  8. Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Zhang, Huai-Wu

    We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.

  9. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    NASA Technical Reports Server (NTRS)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; VonRosenvinge, T. T.

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 <= Z <= 28 in the energy range approx. 50-550 MeV / nucleon. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  10. Fermi energy dependence of first- and second-order Raman spectra in graphene: Kohn anomaly and quantum interference effect

    NASA Astrophysics Data System (ADS)

    Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Intensities of the first- and the second-order Raman spectra are calculated as a function of the Fermi energy. We show that the Kohn anomaly effect, i.e., phonon frequency renormalization, in the first-order Raman spectra originates from the phonon renormalization by the interband electron-hole excitation, whereas in the second-order Raman spectra, a competition between the interband and intraband electron-hole excitations takes place. By this calculation, we confirm the presence of different dispersive behaviors of the Raman peak frequency as a function of the Fermi energy for the first- and the second-order Raman spectra, as observed in some previous experiments. Moreover, the calculated results of the Raman intensity sensitively depend on the Fermi energy for both the first- and the second-order Raman spectra, indicating the presence of the quantum interference effect. The electron-phonon matrix element plays an important role in the intensity increase (decrease) of the combination (overtone) phonon modes as a function of the Fermi energy.

  11. The energy spectra of solar energetic protons in the large energy range: their functional form and parameters.

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho; Pervaia, Taisia

    2016-07-01

    Experimental data on the fluxes of protons of solar energetic particles (SEP) are analyzed. It is known that above energies of 2-45 MeV (averaging 27-30 MeV), the proton spectra are a power-law function of the energy (at relativistic energies - from the momentum) of the particles. At lower energies, the spectra become harder, with the high-energy part of the spectra forming the "knee". This report is devoted to the determination of the parameters of the SEP spectra, having the form of a "double power-law shape", to ascertain the reliability of the parameters of the approximations of the experimental data.

  12. Numerical Study of the Generation of Linear Energy Transfer Spectra for Space Radiation Applications

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Wilson, John W.; Hunter, Abigail

    2005-01-01

    In analyzing charged particle spectra in space due to galactic cosmic rays (GCR) and solar particle events (SPE), the conversion of particle energy spectra into linear energy transfer (LET) distributions is a convenient guide in assessing biologically significant components of these spectra. The mapping of LET to energy is triple valued and can be defined only on open energy subintervals where the derivative of LET with respect to energy is not zero. Presented here is a well-defined numerical procedure which allows for the generation of LET spectra on the open energy subintervals that are integrable in spite of their singular nature. The efficiency and accuracy of the numerical procedures is demonstrated by providing examples of computed differential and integral LET spectra and their equilibrium components for historically large SPEs and 1977 solar minimum GCR environments. Due to the biological significance of tissue, all simulations are done with tissue as the target material.

  13. Track Structure Model for Radial Distributions of Electron Spectra and Event Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Katz, R.; Wilson, J. W.

    1998-01-01

    An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.

  14. Studies of the fast ion energy spectra in TJ-II

    SciTech Connect

    Bustos, A.; Fontdecaba, J. M.; Arevalo, J.; Castejon, F.; Velasco, J. L.; Tereshchenko, M.

    2013-02-15

    The dynamics of the neutral beam injection fast ions in the TJ-II stellarator is studied in this paper from both the theoretical and experimental points of view. The code Integrator of Stochastic Differential Equations for Plasmas (ISDEP) is used to estimate the fast ion distribution function in 3D:1D in real space and 2D in velocity space, considering the 3D structure of TJ-II, the electrostatic potential, non turbulent collisional transport, and charge exchange losses. The results of ISDEP are compared with the experimental data from the compact neutral particle analyzer, which measures the outgoing neutral flux spectra in the energy range E Element-Of (1-45) keV.

  15. A Study of the Elements Copper through Uranium in Sirius A: Contributions from STIS and Ground-Based Spectra

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Ayres, T. R.; Castelli, F.; Gulliver, A. F.; Monier, R.; Wahlgren, G. M.

    2016-08-01

    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic Mercury-manganese (HgMn) stars. Our primary observational material consists of Hubble Space Telescope (HST) spectra taken with the Space Telescope Imaging Spectrograph in the ASTRAL project. We have also used archival material from the COPERNICUS satellite, and from the HST Goddard High-Resolution Spectrograph, as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.

  16. Measurements and parameterization of neutron energy spectra from targets bombarded with 120 GeV protons

    NASA Astrophysics Data System (ADS)

    Kajimoto, T.; Shigyo, N.; Sanami, T.; Iwamoto, Y.; Hagiwara, M.; Lee, H. S.; Soha, A.; Ramberg, E.; Coleman, R.; Jensen, D.; Leveling, A.; Mokhov, N. V.; Boehnlein, D.; Vaziri, K.; Sakamoto, Y.; Ishibashi, K.; Nakashima, H.

    2014-10-01

    The energy spectra of neutrons were measured by a time-of-flight method for 120 GeV protons on thick graphite, aluminum, copper, and tungsten targets with an NE213 scintillator at the Fermilab Test Beam Facility. Neutron energy spectra were obtained between 25 and 3000 MeV at emission angles of 30°, 45°, 120°, and 150°. The spectra were parameterized as neutron emissions from three moving sources and then compared with theoretical spectra calculated by PHITS and FLUKA codes. The yields of the theoretical spectra were substantially underestimated compared with the yields of measured spectra. The integrated neutron yields from 25 to 3000 MeV calculated with PHITS code were 16-36% of the experimental yields and those calculated with FLUKA code were 26-57% of the experimental yields for all targets and emission angles.

  17. The energy spectra of solar flare hydrogen, helium, oxygen, and iron - Evidence for stochastic acceleration

    NASA Technical Reports Server (NTRS)

    Mazur, J. E.; Mason, G. M.; Klecker, B.; Mcguire, R. E.

    1992-01-01

    The time-integrated differential energy spectra of H, He, O, and Fe measured in 10 large flare events observed at 1 AU over the energy range of 0.3-80 MeV/nucleon showed consistent patterns in their spectral shapes: particles with larger mean mass-to-charge ratios were generally less abundant at higher energies. A steady state model of stochastic particle acceleration with rigidity-dependent diffusion coefficients fit the spectra best; spectra representative of diffusive shock acceleration also described the spectra of some events with the same number of free parameters, but often fell off faster in energy above 30 MeV per nucleon than the observations. The two model predictions differed most at energies near 0.1 MeV per nucleon, below the lowest energies observed in this study. The stochastic model quantitatively described the observed spectral ordering with less efficient acceleration of species with larger mean mass-to-charge ratios.

  18. Measurement of Neutron Energy Spectra behind Shielding of a 120 GeV/c Hadron Facility

    SciTech Connect

    Nakao, N.; Rokni, S.H.; Vincke, H.; Khater, Hesham; Prinz, A.A.; Taniguchi, S.; Roesler, S.; Brugger, M.; Hagiwara, Masayuki; /Tohoku U.

    2005-12-14

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (mainly a mixture of protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. Neutron energy spectra in the energy range between 12 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been experimentally verified in the neutron energy range up to 380 MeV in separate experiments. The corresponding MARS15 Monte Carlo simulations generally gave good agreements with the experimental energy spectra.

  19. Reconstruction of Elemental Distribution Images from Synchrotron Radiation X-Ray Fluorescence Spectra

    NASA Astrophysics Data System (ADS)

    Toque, Jay Arre; Ide-Ektessabi, Ari

    Synchrotron radiation X-ray fluorescence spectroscopy (SRXRF) is a powerful technique for studying trace elements in biological samples and other materials in general. Its features including capability to perform measurements in air and water, noncontact and nondestructive assay are superior to other elemental analysis techniques. In this study, a technique for reconstructing elemental distribution mapping of trace elements from spectral data was developed. The reconstruction was made possible by using the measured fluorescent signals to obtain local differences in elemental concentrations. The proposed technique features interpolation and background subtraction using matrix transformations of the spectral data to produce an enhanced distribution images. It is achieved by employing polychromatic or monochromatic color assignments proportional to the fluorescence intensities for displaying single-element or multiple-element distributions respectively. Some typical applications (i.e., macrophage and tissue surrounding an implant) were presented and the samples were imaged using the proposed method. The distribution images of the trace elements of the selected samples were used in conjunction with other analytical techniques to draw relevant observations, which cannot be achieved using conventional techniques such as metallic uptake and corresponding cellular response. The elemental distribution images produced from this study were found to have better quality compared to images produced using other analytical techniques (e.g., SIMS, PIXE, XPS, etc).

  20. A study of the generation of linear energy transfer spectra for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.

    1992-01-01

    The conversion of particle-energy spectra into a linear energy transfer (LET) distribution is a guide in assessing biologically significant components. The mapping of LET to energy is triple valued and can be defined only on open subintervals. A well-defined numerical procedure is found to allow generation of LET spectra on the open subintervals that are integrable in spite of their singular nature.

  1. Trends in Ionization Energy of Transition-Metal Elements

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  2. VIBA-Lab 3.0: Computer program for simulation and semi-quantitative analysis of PIXE and RBS spectra and 2D elemental maps

    NASA Astrophysics Data System (ADS)

    Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana

    2015-11-01

    VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.

  3. GALACTIC COSMIC-RAY ENERGY SPECTRA AND COMPOSITION DURING THE 2009-2010 SOLAR MINIMUM PERIOD

    SciTech Connect

    Lave, K. A.; Binns, W. R.; Israel, M. H.; Wiedenbeck, M. E.; Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T.; Cummings, A. C.; Davis, A. J.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.

    2013-06-20

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 {<=} Z {<=} 28 in the energy range {approx}50-550 MeV nucleon{sup -1}. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than {approx}7%, and the relative abundances changed by less than {approx}4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2{sigma}, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple ''leaky-box'' galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  4. Transport analysis of measured neutron leakage spectra from spheres as tests of evaluated high energy cross sections

    NASA Technical Reports Server (NTRS)

    Bogart, D. D.; Shook, D. F.; Fieno, D.

    1973-01-01

    Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.

  5. Formation of SCR Energy Spectra during Stochastic Acceleration with Allowance for Coulomb Losses

    NASA Astrophysics Data System (ADS)

    Ostryakov, V. M.; Kartavykh, Yu. Yu.; Koval'Tsov, G. A.

    2000-02-01

    The stochastic acceleration of heavy ions by Alfven turbulence is considered with allowance for Coulomb losses. The pattern of energy dependence of these losses gives rise to characteristic features in the energy spectra of the accelerated particles at energies of the order of several MeV per nucleon. The manifestation of these features in the spectra is sensitive to the temperature and density of the medium, which can serve as a basis for plasma diagnostics in the flare region. Some impulsive solar energetic particle events during which features in the spectra of He-3 and He-4 were observed are considered as an example.

  6. The multiplicity and the spectra of secondaries correlated with the leading particle energy

    NASA Technical Reports Server (NTRS)

    Kruglov, N. A.; Proskuryakov, A. S.; Sarycheva, L. I.; Smirnova, L. N.

    1985-01-01

    The spectra of leading particles of different nature in pp-collisions at E sub 0 = 33 GeV are obtained. The multiplicities and the spectra of secondaries, mesons, gamma-quanta, lambda and lambda-hyperons and protons for different leading particle energy ranges are determined.

  7. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    SciTech Connect

    Helton, L. Andrew; Vacca, William D.; Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P.; Wagner, R. Mark; Evans, Aneurin; Krautter, Joachim; Schwarz, Greg J.; Starrfield, Sumner

    2012-08-10

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  8. Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence

    NASA Astrophysics Data System (ADS)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-06-01

    Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.

  9. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  10. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  11. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. PMID:26802538

  12. On the Energy Spectra of Individual Terrestrial Gamma ray Flashes

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Briggs, M. S.; Cramer, E. S.; Connaughton, V.; Dwyer, J. R.; Fitzpatrick, G.

    2015-12-01

    The Fermi Gamma-ray Burst Monitor (GBM) receives enough photons from some TGFs that spectral fitting of individual TGFs is possible. Previous TGF spectral fits relied upon summing the data from many TGFs. However, this spectral analysis of individual GBM TGFs is difficult because the number of photons is only adequate and because the extreme intensity of TGFs requires the analysis to correct for spectral distortions caused by pulse pileup. For each TGF in the sample, we compare Monte Carlo simulated TGF spectra to the observed detector counts. For each comparison, the best fit intensity is found, including correcting the predicted spectrum for pulse pileup. Using likelihood, we determine which of the simulations are consistent with each TGF, thus constraining the properties (e.g., altitude, beam width, etc.) of the TGF.

  13. Pyroxene Spectroscopy: Effects of Major Element Composition on Near, Mid and Far-Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Klima, R. L.; Pieters, C. M.; Dyar, M. D.

    2005-01-01

    Pyroxene is one of the most common minerals in both evolved and undifferentiated solid bodies of the solar system. Various compositions of pyroxene have been directly studied in meteorites and lunar samples and remotely observed by telescopic and orbital measurements of the moon, Mars, Mercury, and several classes of asteroids. Laboratory studies of pyroxene spectra have shown that absorption features diagnostic of pyroxene in both the near and mid infrared are composition dependent. The challenge for remote analyses has been to reduce the level of ambiguity to allow a quantitative assessment of mineral chemistry. This study focuses on the analysis of a comprehensive set of synthetic Ca-Fe-Mg pyroxenes from the visible through far-IR (0.3-50 m) to address the fundamental constraints of crystal structure on absorption.

  14. Energy spectra of Penning electrons in non-local plasma at middle and high pressures

    NASA Astrophysics Data System (ADS)

    Stefanova, M.; Pramatarov, P.; Kudryavtsev, A.; Peyeva, R.

    2014-05-01

    A recently-developed collisional electron spectroscopy (CES) method enabled us to measure the energy spectra of groups of fast non-local electrons in a collisional mode at high pressures, where no collisional energy relaxation of electrons in the different groups takes place in the volume, and the different groups of electrons behave independently of each other. We recorded the energy spectra of groups of fast electrons created via Penning ionization of Ar and N2 impurities by metastable He atoms at He pressures of 30 and 200 Torr. The experiments were conducted in the non-local negative glow plasma of a short dc microdischarge. The Penning electrons' energy spectra were recorded by means of an additional electrode - a sensor located at the boundary of the discharge volume, in contrast with the classical Langmuir probe. The spectra are characterized by the appearance of maxima at characteristic energies corresponding to the energy of the electrons released via Penning reactions. Using the Penning electrons' energy spectra, one can detect and identify the presence of different atomic and molecular admixtures in He at high pressures.

  15. Composition and energy spectra of low energy ions observed upstream of the earth's bow shock on ISEE-1

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1980-01-01

    The characteristics of eleven locally accelerated particle events in the energy range from 30 to 125 keV/Q observed upstream of the earth's bow shock have been determined, including composition, energy spectra, and intensity versus time profiles. The measurements were made with the Ultra Low Energy Charge Analyzer sensor on ISEE-1. The composition in these events is similar to that of the solar wind, with a He to proton ratio of 8% and a CNO to He ratio of 6%. The composition is reasonably constant only when evaluated at equal energy per charge. The energy spectra cannot be adequately fit by a single power law in energy; an exponential or Maxwellian in energy per charge gives a satisfactory representation of the spectra. The time-intensity profiles of these upstream events show an inverse velocity dispersion, which may provide clues to the responsible acceleration mechanism.

  16. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  17. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra.

    PubMed

    Vos, M; Marmitt, G G; Finkelstein, Y; Moreh, R

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2) taken at relatively high incoming electron energies (5-40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E - Egap)(1.5). For CaCO3, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first experimental estimate.

  18. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    NASA Astrophysics Data System (ADS)

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; Haynes, P. D.; Hine, N. D. M.

    2016-05-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.

  19. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory.

    PubMed

    Tait, E W; Ratcliff, L E; Payne, M C; Haynes, P D; Hine, N D M

    2016-05-18

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. PMID:27094207

  20. Energy Spectra of Strongly Stratified and Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Mahalov, Alex; Nicolaenko, Basil; Zhou, Ye

    1998-01-01

    Turbulence under strong stratification and rotation is usually characterized as quasi-two dimensional turbulence. We develop a "quasi-two dimensional" energy spectrum which changes smoothly between the Kolmogorov -5/3 law (no stratification), the -2 scalings of Zhou for the case of strong rotation, as well as the -2 scalings for the case of strong rotation and stratification. For strongly stratified turbulence, the model may give the -2 scaling predicted by Herring; and the -5/3 scaling indicated by some mesoscale observations.

  1. A versatile detector system to measure the change states, mass compositions and energy spectra of interplanetary and magnetosphere ions

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1977-01-01

    An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.

  2. Differential neutron energy spectra measured on spacecraft low Earth orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Dudkin, E. V.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.

    1995-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n.x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  3. Measurement of low to middle energy neutron spectra in aircraft at aviation altitude

    NASA Astrophysics Data System (ADS)

    Yajima, Kazuaki; Goka, Tateo; Yasuda, Hiroshi; Takada, Masashi; Nakamura, Takashi

    Neutron energy spectra ranging from thermal to 10 MeV were measured at aviation altitude (9.1-11 km) with Bonner-Boll-type neutron spectral measurement system named BBND which has been developed for use on board the International Space Station (ISS) by NASDA (currently JAXA). The BBND was set and manipulated in a business jet chartered for observation experiments, and 4 flights were carried out around the Nagoya Airport, which located in the middle of Japan. It is found that the variation of neutron flux on the flight traced the altitude variation. The estimated energy spectra will be incorporated into the determination of whole energy spectra of cosmic neutrons from thermal to hundreds MeV using the prototype neutron monitor based on the phoswich-type detector.

  4. Prototype development for real-time monitoring of neutron energy spectra in space

    NASA Astrophysics Data System (ADS)

    Yasuda, Hiroshi; Takada, Masashi; Yajima, Kazuaki; Goka, Tateo; Sato, Tatsuhiko; Nakamura, Takashi

    A prototype instrument for real-time monitoring of neutron spectra in a spacecraft has been developed for ISS and future interplanetary missions to moon and Mars. The monitor consists of a phoswich-type scintillation detector with a photomultiplier and a data processing unit including an unfolding program running on Windows PC. The monitor detects the signals of high-energy neutrons(>5MeV) separately from other particles and can give a whole energy spectra by incorporating the low to middle energy spectra that are estimated by calculation or with another detector such as a Bonner-Ball neutron spectrometer. The prototype has been processed in calibrations at accelerator facilities in Japan and measurements on a business jet aircraft. Results of the observations were compared to model calculations using the PHITS code.

  5. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Xiang, M.-S.; Liu, X.-W.; Shi, J.-R.; Yuan, H.-B.; Huang, Y.; Luo, A.-L.; Zhang, H.-W.; Zhao, Y.-H.; Zhang, J.-N.; Ren, J.-J.; Chen, B.-Q.; Wang, C.; Li, J.; Huo, Z.-Y.; Zhang, W.; Wang, J.-L.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2016-10-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters - effective temperature Teff, surface gravity log g and metallicity [Fe/H], absolute magnitudes MV and MKs, α-element to metal (and iron) abundance ratio [α/M] (and [α/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the LAMOST spectra with a multivariate regression method based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, APOGEE) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ˜100 K for Teff, ˜0.1 dex for log g, 0.3 - 0.4 mag for MV and MKs, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [α/M] ([α/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on the observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

  6. Mass measurement using energy spectra in three-body decays

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; Wardlow, Kyle

    2016-05-01

    In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this work we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay products and the factorization of the multi-body phase space. The mass measurement strategy that we propose is distinct from alternative methods because it does not require an accurate reconstruction of the entire event, as it does not involve, for instance, the missing transverse momentum, but rather requires measuring only the visible decay products of the decay of interest. To demonstrate the general strategy, we study a supersymmetric model wherein pair-produced gluinos each decay to a stable neutralino and a bottom quark-antiquark pair via an off -shell bottom squark. The combinatorial background stemming from the indistinguishable visible final states on both decay sides can be treated by an "event mixing" technique, the performance of which is discussed in detail. Taking into account dominant backgrounds, we are able to show that the mass of the gluino and, in favorable cases, that of the neutralino can be determined by this mass measurement strategy.

  7. Mass measurement using energy spectra in three-body decays

    DOE PAGESBeta

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; Wardlow, Kyle

    2016-05-24

    In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this study, we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay products and the factorization of the multi-body phase space. The mass measurement strategy that we propose is distinct from alternative methods because it does not require an accurate reconstruction ofmore » the entire event, as it does not involve, for instance, the missing transverse momentum, but rather requires measuring only the visible decay products of the decay of interest. To demonstrate the general strategy, we study a supersymmetric model wherein pair-produced gluinos each decay to a stable neutralino and a bottom quark-antiquark pair via an off -shell bottom squark. The combinatorial background stemming from the indistinguishable visible final states on both decay sides can be treated by an “event mixing” technique, the performance of which is discussed in detail. In conclusion, taking into account dominant backgrounds, we are able to show that the mass of the gluino and, in favorable cases, that of the neutralino can be determined by this mass measurement strategy.« less

  8. Method for measuring dose-equivalent in a neutron flux with an unknown energy spectra and means for carrying out that method

    DOEpatents

    Distenfeld, Carl H.

    1978-01-01

    A method for measuring the dose-equivalent for exposure to an unknown and/or time varing neutron flux which comprises simultaneously exposing a plurality of neutron detecting elements of different types to a neutron flux and combining the measured responses of the various detecting elements by means of a function, whose value is an approximate measure of the dose-equivalent, which is substantially independent of the energy spectra of the flux. Also, a personnel neutron dosimeter, which is useful in carrying out the above method, comprising a plurality of various neutron detecting elements in a single housing suitable for personnel to wear while working in a radiation area.

  9. Monte Carlo determination of emerging energy spectra for diagnostically realistic radiopharmaceutical distributions

    NASA Astrophysics Data System (ADS)

    Zubal, L. G.; Harrell, C. R.; Esser, P. D.

    1990-12-01

    In order to realistically define the internal organs of a representative human, 150 transverse CT scans of an (average) male patient were acquired from head to mid-thigh on the GE 9800 Quick scanner. The reconstructed transverse slices were read into a microVAX 3500 and members of the medical staff outlined 42 separate internal organs contained in the transverse slice. This digitized human phantom serves as an input to a Monte Carlo program which models photoelectric absorption and scatter processes of gamma-rays in matter. The organs can be "filled" with variable amounts of radiopharmaceuticals and the simulation computes the emerging energy spectra for a given source distribution and detector position. The simulation follows gamma-ray histories out to a maximum of 32 scatter events. Scatter spectra are histogrammed into energy distributions of gamma-rays which have undergone a specific number of scatter events before emerging from the phantom. A sum of all these scatter spectra yields the simulated total spectra. Simulated total spectra of diagnostically relevant human distributions are compared to spectra acquired from nuclear medicine clinical patients.

  10. Unfolding linac photon spectra and incident electron energies from experimental transmission data, with direct independent validation

    SciTech Connect

    Ali, E. S. M.; McEwen, M. R.; Rogers, D. W. O.

    2012-11-15

    Purpose: In a recent computational study, an improved physics-based approach was proposed for unfolding linac photon spectra and incident electron energies from transmission data. In this approach, energy differentiation is improved by simultaneously using transmission data for multiple attenuators and detectors, and the unfolding robustness is improved by using a four-parameter functional form to describe the photon spectrum. The purpose of the current study is to validate this approach experimentally, and to demonstrate its application on a typical clinical linac. Methods: The validation makes use of the recent transmission measurements performed on the Vickers research linac of National Research Council Canada. For this linac, the photon spectra were previously measured using a NaI detector, and the incident electron parameters are independently known. The transmission data are for eight beams in the range 10-30 MV using thick Be, Al and Pb bremsstrahlung targets. To demonstrate the approach on a typical clinical linac, new measurements are performed on an Elekta Precise linac for 6, 10 and 25 MV beams. The different experimental setups are modeled using EGSnrc, with the newly added photonuclear attenuation included. Results: For the validation on the research linac, the 95% confidence bounds of the unfolded spectra fall within the noise of the NaI data. The unfolded spectra agree with the EGSnrc spectra (calculated using independently known electron parameters) with RMS energy fluence deviations of 4.5%. The accuracy of unfolding the incident electron energy is shown to be {approx}3%. A transmission cutoff of only 10% is suitable for accurate unfolding, provided that the other components of the proposed approach are implemented. For the demonstration on a clinical linac, the unfolded incident electron energies and their 68% confidence bounds for the 6, 10 and 25 MV beams are 6.1 {+-} 0.1, 9.3 {+-} 0.1, and 19.3 {+-} 0.2 MeV, respectively. The unfolded spectra

  11. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    SciTech Connect

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law ${\\gamma }^{-\\alpha }$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.

  12. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    DOE PAGESBeta

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less

  13. The Extent of Power-law Energy Spectra in Collisionless Relativistic Magnetic Reconnection in Pair Plasmas

    NASA Astrophysics Data System (ADS)

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2016-01-01

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law {γ }-α , with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. For large L and σ, the power-law index α approaches about 1.2.

  14. Monte Carlo analysis of energy dependent anisotropy of bremsstrahlung x-ray spectra

    SciTech Connect

    Kakonyi, Robert; Erdelyi, Miklos; Szabo, Gabor

    2009-09-15

    The energy resolved emission angle dependence of x-ray spectra was analyzed by MCNPX (Monte Carlo N particle Monte Carlo) simulator. It was shown that the spectral photon flux had a maximum at a well-defined emission angle due to the anisotropy of the bremsstrahlung process. The higher the relative photon energy, the smaller the emission angle belonging to the maximum was. The trends predicted by the Monte Carlo simulations were experimentally verified. The Monte Carlo results were compared to both the Institute of Physics and Engineering in Medicine spectra table and the SPEKCALCV1.0 code.

  15. Source energy spectra from demodulation of solar particle data by interplanetary and coronal transport

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez-Madrigal, M.; Rivero, F.; Miroshnichenko, L. I.

    1985-01-01

    The data on source energy spectra of solar cosmic rays (SCR), i.e. the data on the spectrum form and on the absolute SCR are of interest for three reasons: (1) the SCR contain the energy comparable to the total energy of electromagnetic flare radiation (less than or equal to 10 to the 32nd power ergs); (2) the source spectrum form indicates a possible acceleration mechanism (or mechanism); and (3) the accelerated particles are efficiently involved in nuclear electromagnetic and plasma processes in the solar atmosphere. Therefore, the data on SCR source spectra are necessary for a theoretical description of the processes mentioned and for the formulation of the consistent flare model. Below it is attempted to sound solar particle sources by means of SCR energy spectrum obtained near the Sun, at the level of the roots of the interplanetary field lines in the upper solar corona. Data from approx. 60 solar proton events (SPE) between 1956-1981. These data were obtained mainly by the interplanetary demodulation of observed fluxes near the Earth. Further, a model of coronal azimuthal transport is used to demodulate those spectra, and to obtain the source energy spectra.

  16. Reconstructing supernova-neutrino spectra using low-energy beta beams.

    PubMed

    Jachowicz, N; McLaughlin, G C

    2006-05-01

    Neutrinos are the principal messengers reaching us from the center of a supernova. Terrestrial neutrino telescopes can provide precious information about the processes in the core of the star. But the information that a neutrino detector can supply is restricted by the fact that little experimental data on the neutrino-nucleus cross sections exist and by the uncertainties in theoretical calculations. In this Letter, we propose a novel procedure that determines the response of a target nucleus in a supernova-neutrino detector, by using low-energy beta beams. We show that fitting "synthetic" spectra, constructed by taking linear combinations of beta-beam spectra, to the original supernova-neutrino spectra reproduces the folded differential cross sections very accurately. Comparing the response in a detector to these synthetic responses provides a direct way to determine the main parameters of the supernova-neutrino energy distribution.

  17. Comparison between Monte Carlo and experimental aluminum and silicon electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Dapor, Maurizio; Calliari, Lucia; Scarduelli, Giorgina

    2011-07-01

    A Monte Carlo (MC) simulation is described and used to calculate the energy distribution spectra of backscattered electrons from Al and Si. For the simulations, elastic scattering cross sections are calculated by numerically solving the Dirac equation in a central field. Inelastic scattering cross sections are computed within the dielectric response theory developed by Ritchie, and by Tung et al. Extension from the optical case to non-zero momentum transfer is done according to Ritchie and Howie. To evaluate surface and bulk contributions to the spectra, the Monte Carlo model treats the surface excitations according to the Werner differential surface and volume excitation probability theory. The Monte Carlo calculations are compared with the experimental reflection electron energy loss (REEL) spectra acquired in our laboratory.

  18. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  19. Excitonic spectra and energy band structure of ZnAl2Se4 crystals

    NASA Astrophysics Data System (ADS)

    Syrbu, N. N.; Zalamai, V. V.; Tiron, A. V.; Tiginyanu, I. M.

    2015-11-01

    Absorption, reflection and wavelength modulated reflection spectra were investigated in ZnAl2Se4 crystals. The energy positions of ground and excited states for three excitonic series (A, B and C) were determined. The main parameters of excitons and more precise values of energy intervals V1(Γ7)-C1(Γ6), V2(Γ6)-C1(Γ6), and V3(Γ7)-C1(Γ6) were estimated. Values of splitting due to crystal field and spin-orbital interaction were calculated. Effective masses of electrons (mC1∗) and holes (mV1∗, mV2∗, mV3∗) were estimated. Reflection spectra contours in excitonic region were calculated using dispersion equations. Optical functions for E > Eg from measured reflection spectra were assigned on the base of Kramers-Kronig relations.

  20. Theoretical Study of FH2– Electron Photodetachment Spectra on New Ab Initio Potential Energy Surfaces.

    PubMed

    Yu, Dequan; Chen, Jun; Cong, Shulin; Sun, Zhigang

    2015-12-17

    The FH2– anion has a stable structure that resembles a configuration in the vicinity of the transition state for neutral reaction F + H2 → HF + H. Electron photodetachment spectra of the FH2– anion reveal the neutral reaction dynamics in the critical transition-state region. Accurate quantum dynamics simulations of the photodetachment spectra using highly accurate new ab initio potential energy surfaces for both anionic and neutral FH2 are performed and compared with all available experimental results. The results provide reliable interpretations for the experimental observations of FH2– photoelectron detachment and reveal a detailed picture of the molecular dynamics around the transition state of the F + H2 reaction. The latest high-resolution photoelectron detachment spectra [Kim et al. Science, 2015, 349, 510-513] confirm the high accuracy of our new potential energy surface for describing the resonance-enhanced reactivity of the neutral F + H2 reaction.

  1. Atomic site sensitivity of the energy loss magnetic chiral dichroic spectra of complex oxides

    SciTech Connect

    Calmels, L.; Rusz, J.

    2011-04-01

    The quantitative analysis of magnetic oxide core level spectra can become complicated when the magnetic atoms are located at several nonequivalent atomic sites in the crystal. This is, for instance, the case for Fe atoms in magnetite, which are located in tetrahedral and octahedral atomic sites; in this case, the x-ray magnetic circular dichroic (XMCD) spectra recorded at the L{sub 2,3} edge of Fe contain contributions from the different nonequivalent atomic sites, which unfortunately cannot be separated. Energy loss magnetic chiral dichroic (EMCD) spectra are the transmission electron microscope analogies of the XMCD spectra. One of the important differences between these two techniques of magnetic analysis is that EMCD uses a fast electron beam instead of polarized light. The fast electrons behave like Bloch states in the sample, and the fine structure of the EMCD spectra is strongly influenced by channeling and dynamical diffraction effects. These effects can be adjusted by changing the experimental configuration. We use theoretical calculations, which include dynamical diffraction effects and in which electronic transitions are treated in the atomic multiplet formalism, to show that the relative weight of the Fe atoms in different nonequivalent atomic sites can be changed by a proper choice of the position of the detector and of the magnetite sample orientation and thickness. We conclude that EMCD spectra could be used to isolate the magnetic contribution of atoms in each of the nonequivalent atomic sites, which would not be possible with XMCD techniques.

  2. Internal energy distribution of peptides in electrospray ionization : ESI and collision-induced dissociation spectra calculation.

    PubMed

    Pak, Alireza; Lesage, Denis; Gimbert, Yves; Vékey, Károly; Tabet, Jean-Claude

    2008-04-01

    The internal energy of ions and the timescale play fundamental roles in mass spectrometry. The main objective of this study is to estimate and compare the internal energy distributions of different ions (different nature, degree of freedom 'DOF' and fragmentations) produced in an electrospray source (ESI) of a triple-quadrupole instrument (Quattro I Micromass). These measurements were performed using both the Survival Yield method (as proposed by De Pauw) and the MassKinetics software (kinetic model introduced by Vékey). The internal energy calibration is the preliminary step for ESI and collision-induced dissociation (CID) spectra calculation. meta-Methyl-benzylpyridinium ion and four protonated peptides (YGGFL, LDIFSDF, LDIFSDFR and RLDIFSDF) were produced using an electrospray source. These ions were used as thermometer probe compounds. Cone voltages (V(c)) were linearly correlated with the mean internal energy values () carried by desolvated ions. These mean internal energy values seem to be slightly dependent on the size of the studied ion. ESI mass spectra and CID spectra were then simulated using the MassKinetics software to propose an empirical equation for the mean internal energy () versus cone voltage (V(c)) for different source temperatures (T): < E(int) > = [405 x 10(-6) - 480 x 10(-9) (DOF)] V(c)T + E(therm)(T). In this equation, the E(therm)(T) parameter is the mean internal energy due to the source temperature at 0 V(c).

  3. Similarity between turbulent kinetic energy and temperature spectra in the near-wall region

    NASA Technical Reports Server (NTRS)

    Antonia, R. A.; Kim, J.

    1991-01-01

    The similarity between turbulent kinetic energy and temperature spectra, previously confirmed using experimental data in various turbulent shear flows, is validated in the near-wall region using direct numerical simulation data in a fully developed turbulent channel flow. The dependence of this similarity on the molecular Prandtl number is also examined.

  4. Energy loss and dynamical evolution of quark p{sub T} spectra

    SciTech Connect

    Roy, Pradip; Dutt-Mazumder, Abhee K.

    2006-04-15

    Average energy loss of light quarks has been calculated in a two stage equilibrium scenario where the quarks are executing Brownian motion in a gluonic heat bath. The evolution of the quark p{sub T} spectra is studied by solving Fokker-Planck equation in an expanding plasma. Results are finally compared with experimentally measured pion p{sub T} spectrum at RHIC.

  5. Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra

    SciTech Connect

    Baldwin, G.T.; Craven, R.E.

    1986-01-01

    X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

  6. Energy spectra of primary knock-on atoms under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Marian, J.; Sublet, J.-Ch.

    2015-12-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main "measure" of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared.

  7. Features of spectra of low-energy neon ions scattered from gallium phosphide

    NASA Astrophysics Data System (ADS)

    Tolstoguzov, A. B.; Belykh, S. F.; Gololobov, G. P.; Suvorov, D. V.

    2016-09-01

    Using mass-resolved ion scattering spectrometry, spectra of Ne+ ions scattered at an angle of 120° from the surface of GaP in the energy range of 0.4-1.96 keV have been studied in detail. In the spectra, in addition to the peaks of elastic binary Ne+/P and Ne+/Ga collisions, the peak of sputtered neon ions has been found, as well as the wide peak (a "hump"), the energy of which slightly depends on the energy of primary ions and the intensity considerably increases with an increase in this energy. In our opinion, the main contribution to this peak is made by neon ions that undergo multiple collisions with gallium and phosphorus atoms on the surface and deeper layers of the sample and keep their charge due to reionization processes.

  8. Impact of rare earth element added filters on the X-ray beam spectra: a Monte Carlo approach.

    PubMed

    Eskandarlou, Amir; Jafari, Amir Abbas; Mohammadi, Mohammad; Zehtabian, Mehdi; Faghihi, Reza; Shokri, Abbas; Pourolajal, Jalal

    2014-01-01

    The effectiveness of added filters including conventional and rare earth materials for dental radiography tasks was investigated using a simulation approach. Current study focuses on the combination of a range of various filters to investigate the reduction of radiation absorbed dose and improving the quality of a radiography image. To simulate the X-ray beam spectrum, a MCNP5 code was applied. Relative intensity, beam quality, and mean energy were investigated for a typical dental radiography machine. The impact of different rare-earth materials with different thicknesses and tube voltages on the X-ray spectrum was investigated. For Aluminum as a conventional filter, the modeled X-ray spectra and HVL values were in a good agreement with those reported by IPEM. The results showed that for a 70 kVp voltage, with an increase of the thickness and atomic number of a given added filters, an increase of HVL values were observed. However, with the increase of the attenuator thickness, X-ray beam intensity decreases. For mean energy, different results were observed. It was also found that rare earth made filters reduce high energy X-ray radiation due to k-edge absorption. This leads to an ideal beam for intra-oral radiography tasks. However, as a disadvantage of rare earth added filters, the reduction of the tube output levels should also be considered.

  9. Teager Energy Spectrum for Fault Diagnosis of Rolling Element Bearings

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Wang, Tianjin; Zuo, Ming J.; Chu, Fulei; Yan, Shaoze

    2011-07-01

    Localized damage of rolling element bearings generates periodic impulses during running. The repeating frequency of impulses is a key indicator for diagnosing the localized damage of bearings. A new method, called Teager energy spectrum, is proposed to diagnose the faults of rolling element bearings. It exploits the unique advantages of Teager energy operator in detecting transient components in signals to extract periodic impulses of bearing faults, and uses the Fourier spectrum of Teager energy to identify the characteristic frequency of bearing faults. The effectiveness of the proposed method is validated by analyzing the experimental bearing vibration signals.

  10. A triangular element based on generalized potential energy concepts

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1976-01-01

    Stiffness equations are formulated for a doubly-curved triangular thin shell finite element. The strain energy component of the potential energy is first expressed in terms of displacements and displacement gradients with the aid of consistent deep shell strain-displacement equations. The element in-plane and normal displacement fields are approximated by complete cubic polynomials. These functions do not satisfy the interelement displacement admissibility conditions. Satisfaction is forced by the imposition of constraint conditions on the interelement boundaries; the constraints represent the modification of the potential energy. Some numerical results for a pinched cylinder, a cylindrical sphere, and a pinched sphere are examined.

  11. Characterizing horizontal variability and energy spectra in the Arctic Ocean halocline

    NASA Astrophysics Data System (ADS)

    Marcinko, Charlotte L. J.; Martin, Adrian P.; Allen, John T.

    2015-01-01

    transfer from the atmosphere into the upper Arctic Ocean is expected to become more efficient as summer sea-ice coverage decreases and multiyear ice thins due to recent atmospheric warming. However, relatively little is known about how energy is transferred within the ocean by turbulent processes from large to small scales in the presence of ice and how these pathways might change in future. This study characterizes horizontal variability in several regions of the Eurasian Arctic Ocean under differing sea-ice conditions. Historic along track CTD data collected by a Royal Navy submarine during summer 1996 allow a unique examination of horizontal variability and associated wavenumber spectra within the Arctic Ocean halocline. Spectral analysis indicates that potential energy variance under perennial sea-ice in the Amundsen Basin is O(100) less than within the marginal ice zone (MIZ) of Fram Strait. Spectra from all regions show a transition in scaling at wavelengths of approximately 5-7 km. At scales greater than the transition wavelength to 50 km, energy spectra are consistent with a k-3 scaling (where k is a wavenumber) and interior quasigeostrophic dynamics. The scaling of spectra at these scales is extremely similar between regions suggesting similar dynamics and energy exchange pathways. The k-3 scaling is steeper than typically found in regions of midlatitude open ocean. At scales below the transition wavelength to 300 m, spectra are close to a k-5/3 scaling or flatter, indicating a change in dynamics, which is potentially due to internal waves dominating variability at small scales.

  12. Linear energy transfer (LET) spectra of cosmic radiation in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Akopova, A. B.; Magradze, N. V.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Parnell, T. A.; Watts, J. W. Jr

    1990-01-01

    Integral linear energy transfer (LET) spectra of cosmic radiation (CR) particles were measured on five Cosmos series spacecraft in low Earth orbit (LEO). Particular emphasis is placed on results of the Cosmos 1887 biosatellite which carried a set of joint U.S.S.R.-U.S.A. radiation experiments involving passive detectors that included thermoluminescent detectors (TLDs), plastic nuclear track detectors (PNTDs), fission foils, nuclear photo-emulsions, etc. which were located both inside and outside the spacecraft. Measured LET spectra are compared with those theoretically calculated. Results show that there is some dependence of LET spectra on orbital parameters. The results are used to estimate the CR quality factor (QF) for the Cosmos 1887 mission.

  13. Linear Energy Transfer (LET) spectra of cosmic radiation in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Watts, J. W., Jr.; Akopova, A. B.; Magradze, N. V.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.

    1995-01-01

    Integral linear energy transfer (LET) spectra of cosmic radiation (CR) particles were measured on five Cosmos series spacecraft in low Earth orbit (LEO). Particular emphasis is placed on results of the Cosmos 1887 biosatellite which carried a set of joint U.S.S.R.-U.S.A. radiation experiments involving passive detectors that included thermoluminescent detectors (TLD's), plastic nuclear track detectors (PNTD's), fission foils, nuclear photo-emulsions, etc. which were located both inside and outside the spacecraft. Measured LET spectra are compared with those theoretically calculated. Results show that there is some dependence of LET spectra on orbital parameters. The results are used to estimate the CR quality factor (QF) for the COSMOS 1887 mission.

  14. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.

  15. Geant4 Predictions of Energy Spectra in Typical Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Sabra, M. S.; Barghouty, A. F.

    2014-01-01

    Accurate knowledge of energy spectra inside spacecraft is important for protecting astronauts as well as sensitive electronics from the harmful effects of space radiation. Such knowledge allows one to confidently map the radiation environment inside the vehicle. The purpose of this talk is to present preliminary calculations for energy spectra inside a spherical shell shielding and behind a slab in typical space radiation environment using the 3D Monte-Carlo transport code Geant4. We have simulated proton and iron isotropic sources and beams impinging on Aluminum and Gallium arsenide (GaAs) targets at energies of 0.2, 0.6, 1, and 10 GeV/u. If time permits, other radiation sources and beams (_, C, O) and targets (C, Si, Ge, water) will be presented. The results are compared to ground-based measurements where available.

  16. Energy of hydrodynamic and magnetohydrodynamic waves with point and continuous spectra

    SciTech Connect

    Hirota, M.; Fukumoto, Y.

    2008-08-15

    Energy of waves (or eigenmodes) in an ideal fluid and plasma is formulated in the noncanonical Hamiltonian context. By imposing the kinematical constraint on perturbations, the linearized Hamiltonian equation provides a formal definition of wave energy not only for eigenmodes corresponding to point spectra but also for singular ones corresponding to a continuous spectrum. The latter becomes dominant when mean fields have inhomogeneity originating from shear or gradient of the fields. The energy of each wave is represented by the eigenfrequency multiplied by the wave action, which is nothing but the action variable and, moreover, is associated with a derivative of a suitably defined dispersion relation. The sign of the action variable is crucial to the occurrence of Hopf bifurcation in Hamiltonian systems of finite degrees of freedom [M. G. Krein, Dokl. Akad. Nauk SSSR, Ser. A 73, 445 (1950)]. Krein's idea is extended to the case of coalescence between point and continuous spectra.

  17. Symmetry breaking gives rise to energy spectra of three states of matter

    PubMed Central

    Bolmatov, Dima; Musaev, Edvard T.; Trachenko, K.

    2013-01-01

    A fundamental task of statistical physics is to start with a microscopic Hamiltonian, predict the system's statistical properties and compare them with observable data. A notable current fundamental challenge is to tell whether and how an interacting Hamiltonian predicts different energy spectra, including solid, liquid and gas phases. Here, we propose a new idea that enables a unified description of all three states of matter. We introduce a generic form of an interacting phonon Hamiltonian with ground state configurations minimising the potential. Symmetry breaking SO(3) to SO(2), from the group of rotations in reciprocal space to its subgroup, leads to emergence of energy gaps of shear excitations as a consequence of the Goldstone theorem, and readily results in the emergence of energy spectra of solid, liquid and gas phases. PMID:24077388

  18. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.

    PubMed

    Fang, Tao; Jia, Junteng; Li, Shuhua

    2016-05-01

    The generalized energy-based fragmentation (GEBF) approach for molecular crystals with periodic boundary condition (PBC) (denoted as PBC-GEBF) is extended to allow vibrational spectra of molecular crystals to be easily computed at various theory levels. Within the PBC-GEBF approach, the vibrational frequencies of a molecular crystal can be directly evaluated from molecular quantum chemistry calculations on a series of nonperiodic molecular systems. With this approach, the vibrational spectra of molecular crystals can be calculated with much reduced computational costs at various theory levels, as compared to those required by the methods based on periodic electronic structure theory. By testing the performance of the PBC-GEBF method for two molecular crystals (CO2 and imidazole), we demonstrate that the PBC-GEBF approach can reproduce the results of the methods based on periodic electronic structure theory in predicting vibrational spectra of molecular crystals. We apply the PBC-GEBF method at second-order Møller-Plesset perturbation theory (PBC-GEBF-MP2 in short) to investigate the vibrational spectra of the urea and ammonia borane crystals. Our results show that the PBC-GEBF-MP2 method can provide quite accurate descriptions for the observed vibrational spectra of the two systems under study.

  19. AUTOMATED ELEMENTAL COMPOSITION DETERMINATION AND CORRELATION OF PRECURSOR WITH PRODUCT IONS BASED ON ORTHOGONAL ACCELERATION, TIME-OF-FLIGHT MASS SPECTRA

    EPA Science Inventory

    For more than a decade in our laboratory, elemental compositions of ions in mass spectra havebeen routinely determined by measuring exact masses and relative isotopic abundances of ions in isotopicclusters using a GC coupled to a double focusing mass spectrometer.1 HPLC interfac...

  20. Kinetic energies to analyze the experimental auger electron spectra by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Endo, Kazunaka

    2016-02-01

    In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.

  1. NEW Fe I LEVEL ENERGIES AND LINE IDENTIFICATIONS FROM STELLAR SPECTRA

    SciTech Connect

    Peterson, Ruth C.; Kurucz, Robert L.

    2015-01-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond. Measurements of the energies of its high-lying levels remain woefully incomplete, however, despite extensive laboratory and solar analysis. In this work, we use high-resolution archival absorption-line ultraviolet and optical spectra of stars whose warm temperatures favor moderate Fe I excitation. We derive the energy for a particular upper level in Kurucz's semiempirical calculations by adopting a trial value that yields the same wavelength for a given line predicted to be about as strong as that of a strong unidentified spectral line observed in the stellar spectra, then checking the new wavelengths of other strong predicted transitions that share the same upper level for coincidence with other strong observed unidentified lines. To date, this analysis has provided the upper energies of 66 Fe I levels. Many new energy levels are higher than those accessible to laboratory experiments; several exceed the Fe I ionization energy. These levels provide new identifications for over 2000 potentially detectable lines. Almost all of the new levels of odd parity include UV lines that were detected but unclassified in laboratory Fe I absorption spectra, providing an external check on the energy values. We motivate and present the procedure, provide the resulting new energy levels and their uncertainties, list all the potentially detectable UV and optical new Fe I line identifications and their gf values, point out new lines of astrophysical interest, and discuss the prospects for additional Fe I energy level determinations.

  2. Reconciling the light component and all-particle cosmic ray energy spectra at the knee

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Jia, Huan-Yu; Zhu, Feng-Rong

    2015-12-01

    The knee phenomenon of the cosmic ray spectrum, which plays an important role in studying the acceleration mechanism of cosmic rays, is still an unsolved mystery. We try to reconcile the knee spectra measured by ARGO-YBJ and Tibet-III. A simple broken power-law model fails to explain the experimental data. Therefore a modified broken power-law model with non-linear acceleration effects is adopted, which can describe the sharp knee structure. This model predicts that heavy elements dominate at the knee. Supported by NSFC (11175147)

  3. Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment

    NASA Astrophysics Data System (ADS)

    Fiandrini, E.

    2016-05-01

    The Alpha Magnetic Spectrometer 02 (AMS-02) is a large acceptance high-energy physics experiment operating since May 2011 on board the International Space Station. More than 60 billion events have been collected by the instrument in the first four years of operation. AMS-02 offers a unique opportunity to study the Cosmic Rays (CRs) since it measures the spectra of all the species simultaneously. We report on the precision measurements of primary and secondary nuclear spectra, in the GeV-TeV energy interval. These measurements allow for the first time a detailed study of the spectral index variation with rigidity providing a new insight on the origin and propagation of CR.

  4. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Tran, Vy; Fei, Ruixiang; Yang, Li

    2015-12-01

    We report first-principles GW-Bethe-Salpeter-equation (BSE) studies of excited-state properties of few-layer black phosphorus (BP) (phosphorene). With improved GW computational methods, we obtained converged quasiparticle band gaps and optical absorption spectra by the single-shot (G0W0) procedure. Moreover, we reveal fine structures of anisotropic excitons, including the series of one-dimensional like wave functions, spin singlet-triplet splitting, and electron-hole binding energy spectra by solving BSE. An effective-mass model is employed to describe these electron-hole pairs, shedding light on estimating the exciton binding energy of anisotropic two-dimensional semiconductors without expensive ab initio simulations. Finally, the anisotropic optical response of BP is explained by using optical selection rules based on the projected single-particle density of states at band edges.

  5. Comparison of species-resolved energy spectra from ACE EPAM and Van Allen Probes RBSPICE

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Manweiler, J. W.; Armstrong, T. P.; Lanzerotti, L. J.; Gerrard, A. J.; Gkioulidou, M.

    2013-12-01

    We present a comparison between energy spectra measured by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument and the Van Allen Probe Ion Composition Experiment (RBSPICE) for two significant and distinct events in early 2013. The first is an impulsive solar particle event on March 17th. While intense, this event presented no significant surprises in terms of its composition or anisotropy characteristics, thus providing a good baseline for response of the trapped radiation belts as observed by the Van Allen Probes. The second solar event occurred late May 22nd and early May 23rd. This event has a much greater concentration of medium and heavy ions than the St. Patrick's Day event, as well as having very peculiar energy spectra with evidence of two distinct populations. During the St. Patrick's Day Event, the energy spectra for helium, carbon, oxygen, neon, silicon, and iron all show the same spectral power law slope -3.1. The event shows strong anisotropy with intensities differing by a factor of four for both protons and Z>1 ions. The late May event also has strong anisotropy, and in the same directions as the St. Patrick's Day Event, but with very different composition and energy spectra. The spectra are much harder with power law spectral slopes of -0.5. Additionally, there is a significant spectral bump at 3 MeV/nuc for helium that is not present in the spectra of the heavier ions. The intensities of the heavier ions, however, show an increase that is an order of magnitude greater than the increase seen for helium. The March 17 RBSPICE observations show multiple injection events lasting for less than an hour each during the Van Allen Probes B apogees. These injections are seen in protons as well as Helium and only somewhat observed in Oxygen. Spectral slopes for the observations range from approximately -5 during quiet times to double peaked events with a spectral slope of approximately -2 at the beginning of the injection

  6. Contribution of Recently Measured Nuclear Data to Reactor Antineutrino Energy Spectra Predictions

    NASA Astrophysics Data System (ADS)

    Estienne, M.; Fallot, M.; Cormon, S.; Algora, A.; Bui, V. M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Jordan, D.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Taín, J. L.; Yermia, F.; Zakari-Issoufou, A.-A.

    2014-06-01

    The aim of this work is to study the impact of the inclusion of the recently measured β decay properties of the 102,104,105,106,107Tc, 105Mo, and 101Nb nuclei in the calculation of the antineutrino (anti-ν) energy spectra arising after the fissions of the four main fissile isotopes 235,238U, and 239,241Pu in PWRs. These β feeding probabilities, measured using the Total Absorption Technique (TAS) at the JYFL facility of Jyväskylä, have been found to play a major role in the γ component of the decay heat for 239Pu in the 4-3000 s range. Following the fission product summation method, the calculation was performed using the MCNP Utility Reactor Evolution code (MURE) coupled to the experimental spectra built from β decay properties of the fission products taken from evaluated databases. These latest TAS data are found to have a significant effect on the Pu isotope energy spectra and on the spectrum of 238U showing the importance of their measurement for a better assessment of the reactor anti-ν energy spectrum, as well as importance for fundamental neutrino physics experiments and neutrino applied physics.

  7. Contribution of Recently Measured Nuclear Data to Reactor Antineutrino Energy Spectra Predictions

    SciTech Connect

    Estienne, M.; Bui, V.M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Yermia, F.; Zakari-Issoufou, A.-A.

    2014-06-15

    The aim of this work is to study the impact of the inclusion of the recently measured β decay properties of the {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei in the calculation of the antineutrino (anti-ν) energy spectra arising after the fissions of the four main fissile isotopes {sup 235,238}U, and {sup 239,241}Pu in PWRs. These β feeding probabilities, measured using the Total Absorption Technique (TAS) at the JYFL facility of Jyväskylä, have been found to play a major role in the γ component of the decay heat for {sup 239}Pu in the 4-3000 s range. Following the fission product summation method, the calculation was performed using the MCNP Utility Reactor Evolution code (MURE) coupled to the experimental spectra built from β decay properties of the fission products taken from evaluated databases. These latest TAS data are found to have a significant effect on the Pu isotope energy spectra and on the spectrum of {sup 238}U showing the importance of their measurement for a better assessment of the reactor anti-ν energy spectrum, as well as importance for fundamental neutrino physics experiments and neutrino applied physics.

  8. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    SciTech Connect

    Aloisio, R.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion σ(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ∼ E{sup -γ} with γ∼ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ∼ 5Z× 10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ∼ E{sup -2.7}). In this sense, at the ankle E{sub A}≈ 5× 10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  9. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Berezinsky, V.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate Xmax(E) and dispersion σ(Xmax) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ~ E-γ with γ~ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ~ 5Z× 1018 eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ~ E-2.7). In this sense, at the ankle EA≈ 5× 1018 eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  10. Shape of the absorption and fluorescence spectra of condensed phases and transition energies.

    PubMed

    Lagos, Miguel; Paredes, Rodrigo

    2014-11-13

    General integral expressions for the temperature-dependent profile of the spectral lines of photon absorption and emission by atomic or molecular species in a condensed environment are derived with no other hypothesis than: (a) The acoustic vibrational modes of the condensed host medium constitute the thermodynamic energy reservoir at a given constant temperature, and local electronic transitions modifying the equilibrium configuration of the surroundings are multiphonon events, regardless of the magnitude of the transition energy. (b) Electron-phonon coupling is linear in the variations of the bond length. The purpose is to develop a theoretical tool for the analysis of the spectra, allowing us to grasp highly accurate information from fitting the theoretical line shape function to experiment, including those spectra displaying wide features. The method is illustrated by applying it to two dyes, Lucifer Yellow CH and Coumarin 1, which display fluorescence maxima of 0.41 and 0.51 eV fwhm. Fitting the theoretical curves to the spectra indicates that the neat excitation energies are 2.58 eV ± 2.5% and 3.00 eV ± 2.0%, respectively.

  11. The Energy Spectra of Proton and Helium Measured from the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Seo, E. S.; Adams, J. H.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon experiment is designed to investigate the composition and energy spectra of cosmic rays at the highest energies currently accessible from direct measurements, the region up to 100 TeV. The instrument consists of a silicon matrix for charge measurement, a graphite target (0.75 nuclear interaction length) to induce hadronic fragmentation, 3 scintillator strip hodoscopes for triggering and helping reconstruct trajectory, and a BGO calorimeter (18 radiation lengths) to measure the energy of incident particles. ATIC had two successful Long Duration Balloon (LDB) flights from McMurdo, Antarctica: from 12/28/00 to 01/13/01 and from 12/29/02 to 01/18/03. We present the energy spectra of proton and helium extracted from the ATIC flights, over the energy range from 100 GeV to 100 TeV, and compare them with the results from other experiments at both the lower and higher energy ends.

  12. Coda-derived source spectra, moment magnitudes, and energy-moment scaling in the western Alps

    NASA Astrophysics Data System (ADS)

    Morasca, P.; Mayeda, K.; Malagnini, L.

    2003-04-01

    the obtained source spectra validate our path and site corrections and also shows that the coda is effectively averaging over any source radiation pattern as well as any lateral crustal heterogeneity. These source spectra were then used to estimate stable MW for the entire dataset. Furthermore, we tied our coda-derived source amplitude at 2-3 Hz with the RSNI averaged ML. As expected, plotting our MW versus our ML, we show that the coda-moment magnitude scales with 2/3 slope for small events (less than ML ~3) and scales 1-to-1 for the intermediate magnitude events. The coda methodology can extend the network's capability in measuring stable MW and ML. In addition to magnitude, we studied the effect of dynamic stress drop scaling by computing the radiated S-wave energy from the source spectra. We first extrapolated the observed spectra to both high and low frequency limits, converted to velocity, squared the spectra and then integrated to obtain the radiated S-wave energy. Using these estimates, we show that the dynamic stress-drop has a non-constant trend in this region, and increases with increasing seismic moment, in good agreement with results from the western United States (e.g., Abercrombie, 1995; Mayeda &Walter, 1996).

  13. Diagnosing Energy Loss: PHENIX Results on High-pT Hadron Spectra

    SciTech Connect

    Sahlmueller, B.; Awes, Terry C; Batsouli, Sotiria; Cianciolo, Vince; Efremenko, Yuri; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; Young, Glenn R; Zhang, Chun; PHENIX, Collaboration

    2007-01-01

    Measurements of inclusive spectra of hadrons at large transverse momentum over a broad range of energy in different collision systems have been performed with the PHENIX experiment at RHIC. The data allow us to study the energy and system size dependence of the suppression observed in R{sub AA} of high-p{sub T} hadrons at {radical}s{sub NN} = 200 GeV. Due to the large energy range from {radical}s{sub NN} = 22 GeV to 200 GeV, the results can be compared to results from CERN SPS at a similar energy. The large Au+Au dataset from the 2004 run of RHIC also allows us to constrain theoretical models that describe the hot and dense matter produced in such collisions. Investigation of particle ratios such as {eta}/{pi}{sup 0} helps in understanding the mechanisms of energy loss.

  14. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    SciTech Connect

    Dey, Sanjib Fring, Andreas Mathanaranjan, Thilagarajah

    2014-07-15

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided.

  15. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  16. Potential energy landscapes of elemental and heterogeneous chalcogen clusters

    SciTech Connect

    Mauro, John C.; Loucks, Roger J.; Balakrishnan, Jitendra; Varshneya, Arun K.

    2006-02-15

    We describe the potential energy landscapes of elemental S{sub 8}, Se{sub 8}, and Te{sub 8} clusters using disconnectivity graphs. Inherent structures include both ring and chain configurations, with rings especially dominant in Se{sub 8}. We also map the potential energy landscapes of heterogeneous Se{sub n}(S,Te){sub 8-n} clusters, which offer insights into the structure of heterogeneous chalcogen glasses.

  17. AKARI observations of brown dwarfs. IV. Effect of elemental abundances on near-infrared spectra between 1.0 and 5.0 μm

    SciTech Connect

    Sorahana, S.; Yamamura, I.

    2014-09-20

    The detection of the CO{sub 2} absorption band at 4.2 μm in brown dwarf spectra by AKARI has made it possible to discuss CO{sub 2} molecular abundance in brown dwarf atmospheres. In our previous studies, we found an excess in the 4.2 μm CO{sub 2} absorption band of three brown dwarf spectra, and suggested that these deviations were caused by high C and O elemental abundances in their atmospheres. To validate this hypothesis, we have constructed a set of models of brown dwarf atmospheres with various elemental abundance patterns, and we investigate the variations of the molecular composition and the thermal structure, and how they affect the near-infrared spectra between 1.0 and 5.0 μm. The 4.2 μm CO{sub 2} absorption band in some late-L and T dwarfs taken by AKARI is stronger or weaker than predicted by corresponding models with solar abundance. By comparing the CO{sub 2} band in the model spectra to the observed near-infrared spectra, we confirm possible elemental abundance variations among brown dwarfs. We find that the band strength is especially sensitive to O abundance, but C is also needed to reproduce the entire near-infrared spectra. This result indicates that both the C and O abundances should increase and decrease simultaneously for brown dwarfs. We find that a weaker CO{sub 2} absorption band in a spectrum can also be explained by a model with lower 'C and O' abundances.

  18. X-ray ionization yields and energy spectra in liquid argon

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Shekhtman, L.; Sokolov, A.

    2016-04-01

    The main purpose of this work is to provide reference data on X-ray ionization yields and energy spectra in liquid Ar to the studies in the field of Cryogenic Avalanche Detectors (CRADs) for rare-event and other experiments, based on liquid Ar detectors. We present the results of two related researches. First, the X-ray recombination coefficients in the energy range of 10-1000 keV and ionization yields at different electric fields, between 0.6 and 2.3 kV/cm, are determined in liquid Ar based on the results of a dedicated experiment. Second, the energy spectra of pulsed X-rays in liquid Ar in the energy range of 15-40 keV, obtained in given experiments including that with the two-phase CRAD, are interpreted and compared to those calculated using a computer program, to correctly determine the absorbed X-ray energy. The X-ray recombination coefficients and ionization yields have for the first time been presented for liquid Ar in systematic way.

  19. Measurements of the secondary particle energy spectra in the Space Shuttle.

    PubMed

    Badhwar, G D; Patel, J U; Cucinotta, F A; Wilson, J W

    1995-01-01

    Measurements of the energy spectra of secondary particles produced by galactic cosmic rays and trapped protons due to the nuclear interactions of these particles with the Shuttle shielding provide a powerful tool for validating radiation transport codes. A code validated in this way can be used to better estimate the dose and dose equivalent to body organs, measurements that cannot be made directly. The principal cause of single event upsets in electronic devices in the region of the South Atlantic Anomaly is secondary particles, and even in the region of galactic cosmic radiation a significant fraction is produced by secondary particles. In this paper, we describe the first direct measurements of the energy spectra of secondary protons, deuterons, tritons, 3He and 4He produced by galactic cosmic rays inside the Space Shuttle using a charged particle spectrometer. A comparison of these spectra with radiation transport code HZETRN showed reasonably good agreement for secondary protons. However, the code seriously underestimated the flux of all other light ions. The code has been modified to include pick-up and knock-on processes. The modified code leads to good agreement for deuterons and 3He but not for other light ions. This revised code leads to about 10% higher dose equivalent than the original code under moderate shielding, if we assume that higher charge ion fluxes are correctly predicted by the model.

  20. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products.

    PubMed

    Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A

    2012-11-16

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra. PMID:23215477

  1. New Antineutrino Energy Spectra Predictions from the Summation of Beta Decay Branches of the Fission Products

    NASA Astrophysics Data System (ADS)

    Fallot, M.; Cormon, S.; Estienne, M.; Algora, A.; Bui, V. M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Jordan, D.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Taín, J. L.; Yermia, F.; Zakari-Issoufou, A.-A.

    2012-11-01

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the Tc102;104;105;106;107, Mo105, and Nb101 nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes U235,238 and Pu239,241. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of Pu239, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of U235, Pu239,241, and, in particular, U238 for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.

  2. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products.

    PubMed

    Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A

    2012-11-16

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.

  3. Sources of High-Energy Emission in the Green Pea Galaxies: New Constraints from Magellan Spectra

    NASA Astrophysics Data System (ADS)

    Carroll, Derek Alexander

    2016-01-01

    The recently discovered Green Pea galaxies display extreme starburst activity and may be some of the only possible Lyman continuum emitting galaxies at low redshift. Green Peas are characterized by their unusually high [O III]/[O II] ratios, similar to the ratios observed in high-redshift galaxies. In addition, the presence of the high-energy He II 4686 line shows that the Green Peas are highly ionized. However, the origin of the He II emission in the Green Peas, and many other starburst galaxies, is still an open question. We analyze IMACS and MagE spectra from the Magellan telescopes in order to evaluate the most probable cause of this He II emission. We also analyze other properties like dust content, temperature and density, and kinematic components. Our IMACS spectra show no Wolf-Rayet (WR) features. We set upper limits on the WR populations in our sample and conclude that Wolf-Rayet stars are not a likely candidate for the He II emission. With deeper MagE spectra we investigate energetic shocks as a possible source of the He II, and move one step closer to uncovering the origin of high-energy photons in these unique starbursts.

  4. Observed and simulated power spectra of kinetic and magnetic energy retrieved with 2D inversions

    NASA Astrophysics Data System (ADS)

    Danilovic, S.; Rempel, M.; van Noort, M.; Cameron, R.

    2016-10-01

    Context. Information on the origin of internetwork magnetic field is hidden at the smallest spatial scales. Aims: We try to retrieve the power spectra with certainty to the highest spatial frequencies allowed by current instrumentation. Methods: To accomplish this, we use a 2D inversion code that is able to recover information up to the instrumental diffraction limit. Results: The retrieved power spectra have shallow slopes that extend further down to much smaller scales than has been found before. They do not seem to show any power law. The observed slopes at subgranular scales agree with those obtained from recent local dynamo simulations. Small differences are found for the vertical component of kinetic energy that suggest that observations suffer from an instrumental effect that is not taken into account. Conclusions: Local dynamo simulations quantitatively reproduce the observed magnetic energy power spectra on the scales of granulation down to the resolution limit of Hinode/SP, within the error bars inflicted by the method used and the instrumental effects replicated.

  5. Thermomodulation spectra of high-energy interband transitions in Cu, Pd, Ag, Pt, and Au

    SciTech Connect

    Olson, C.G.; Lynch, D.W.; Rosei, R.

    1980-07-15

    Thermotransmission and thermoreflectance spectra were obtained for Cu, Pd, Ag, Pt, and Au in the 10 --30 eV spectral region. Structures due to transitions from the Fermi level to high-density bands 15 eV above the Fermi level were identified in Pt. All metals showed structures arising from interband transitions between the d bands and the same flat bands, 15--20 eV above the Fermi energy. Attempts to fit to interband critical points in Au revealed over 40 possible critical points in the region of these structures, most of them near the Brillouin-zone centers. Systematic trends in the series of metals make the qualitative identification of the structures more secure, and no energy shifts of calculated energy bands are required. The observed widths of structures are sometimes much narrower than the widths of free-electron-like bands at comparable energies.

  6. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    SciTech Connect

    Kinyanjui, M. K. Kaiser, U.; Benner, G.; Pavia, G.; Boucher, F.; Habermeier, H.-U.; Keimer, B.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presented approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.

  7. Time dependence of energy spectra of brachytherapy sources and its impact on the half and the tenth value layers

    SciTech Connect

    Yue, Ning J.; Chen Zhe; Hearn, Robert A.; Rodgers, Joseph J.; Nath, Ravinder

    2009-11-15

    Purpose: Several factors including radionuclide purity influence the photon energy spectra from sealed brachytherapy sources. The existence of impurities and trace elements in radioactive materials as well as the substrate and encapsulation may not only alter the spectrum at a given time but also cause change in the spectra as a function of time. The purpose of this study is to utilize a semiempirical formalism, which quantitatively incorporates this time dependence, to calculate and evaluate the shielding requirement impacts introduced by this time dependence for a {sup 103}Pd source. Methods: The formalism was used to calculate the NthVL thicknesses in lead for a {sup 103}Pd model 200 seed. Prior to 2005, the {sup 103}Pd in this source was purified to a level better than 0.006% of the total {sup 103}Pd activity, the key trace impurity consisting of {sup 65}Zn. Because {sup 65}Zn emits higher energy photons and has a much longer half-life of 244 days compared to {sup 103}Pd, its presence in {sup 103}Pd seeds led to a time dependence of the photon spectrum and other related physical quantities. This study focuses on the time dependence of the NthVL and the analysis of the corresponding shielding requirements. Results: The results indicate that the first HVL and the first TVL in lead steadily increased with time for about 200 days and then reached a plateau. The increases at plateau were more than 1000 times compared to the corresponding values on the zeroth day. The second and third TVLs in lead reached their plateaus in about 100 and 60 days, respectively, and the increases were about 19 and 2.33 times the corresponding values on the zeroth day, respectively. All the TVLs demonstrated a similar time dependence pattern, with substantial increases and eventual approach to a plateau. Conclusions: The authors conclude that the time dependence of the emitted photon spectra from brachytherapy sources can introduce substantial variations in the values of the NthVL with

  8. Energy Spectra of Ions Accelerated in Impulsive and Gradual Solar Events

    NASA Astrophysics Data System (ADS)

    Reames, D. V.; Barbier, L. M.; Von Rosenvinge; T. T.; Mason, G. M.; Mazur, J. E.; Dwyer; J. R.

    1997-07-01

    We report new high-sensitivity measurements of the energy spectra of ions from five impulsive solar flares and one gradual event observed during solar minimum by the Energetic Particles, Acceleration, Composition, and Transport (EPACT) experiment aboard the WIND spacecraft. All of the impulsive-flare events had intensities too low to be visible on previous spacecraft such as ISEE 3, which observed hundreds of impulsive-flare events. Often these events cluster in or behind a coronal mass ejection (CME) where magnetic field lines provide an excellent connection to a solar active region where flares are occurring. In most cases we can see velocity dispersion as the ions of 20 keV amu-1 to 10 MeV amu-1 streamed out from the impulsive flare at the Sun, arriving in inverse order of their velocity. Ions from a large, magnetically well-connected gradual event, associated with a CME-driven shock, also show velocity dispersion early in the event but show identical time profiles that last for several days late in the event. These time-invariant spectra of H, 4He, C, O, and Fe in this gradual event are well represented as power laws in energy from 20 keV amu-1 to ~100 MeV amu-1. In the impulsive-flare events, H, 3He, 4He, C, O, and Fe have more rounded spectra that flatten somewhat at low energies; yet the intensities continue to increase down to 20 keV amu-1. Most of the ion energy content appears to lie below 1 MeV in the impulsive events, where it would be invisible to γ-ray line observations.

  9. Comprehensive study of the surface peak in charge-integrated low-energy ion scattering spectra

    SciTech Connect

    Draxler, M.; Gruber, R.; Bauer, P.; Beikler, R.; Taglauer, E.; Schmid, K.; Ermolov, S. N.

    2003-08-01

    Low-energy ion scattering is very surface sensitive if scattered ions are analyzed. By time-of-flight (TOF) techniques, the neutral and the charge-integrated spectra (ions plus neutrals) are obtained, which yield information about deeper layers. It is well known that charge integrated spectra may exhibit a surface peak which is more pronounced for heavier projectiles, e.g., Ne ions. Aiming at a more profound physical understanding of this surface peak, we performed TOF experiments and computer simulations for H, He, and Ne projectiles scattered from a polycrystalline copper target. Measurements were done in the range of 1-9 keV for a scattering angle of 129 degree sign under UHV conditions. The simulations were performed using the MARLOWE code for the given experimental parameters and a polycrystalline target. In the experiments, a pronounced surface peak was observed at low energies, which fades away at higher energies. This peak is quantitatively reproduced by the simulation. Several atomic layers may contribute to the surface peak, depending on the energy. Analyzing the contributions of the individual outermost atomic layers, one finds that the binary collisions of the projectiles with atoms in the first and the second layer yield a narrow energy distribution, while the contribution from the deeper layers is dominated by multiple scattering and therefore exhibits a very broad energy spectrum. It is shown that the appearance of a more or less pronounced surface peak is due to the relative contributions of single scattering and multiple scattering and thus depends on the projectile energy and mass.

  10. Comparison of univariate and multivariate models for prediction of major and minor elements from laser-induced breakdown spectra with and without masking

    NASA Astrophysics Data System (ADS)

    Dyar, M. Darby; Fassett, Caleb I.; Giguere, Stephen; Lepore, Kate; Byrne, Sarah; Boucher, Thomas; Carey, CJ; Mahadevan, Sridhar

    2016-09-01

    This study uses 1356 spectra from 452 geologically-diverse samples, the largest suite of LIBS rock spectra ever assembled, to compare the accuracy of elemental predictions in models that use only spectral regions thought to contain peaks arising from the element of interest versus those that use information in the entire spectrum. Results show that for the elements Si, Al, Ti, Fe, Mg, Ca, Na, K, Ni, Mn, Cr, Co, and Zn, univariate predictions based on single emission lines are by far the least accurate, no matter how carefully the region of channels/wavelengths is chosen and despite the prominence of the selected emission lines. An automated iterative algorithm was developed to sweep through all 5485 channels of data and select the single region that produces the optimal prediction accuracy for each element using univariate analysis. For the eight major elements, use of this technique results in a 35% improvement in prediction accuracy; for minors, the improvement is 13%. The best wavelength region choice for any given univariate analysis is likely to be an inherent property of the specific training set that cannot be generalized. In comparison, multivariate analysis using partial least-squares (PLS) almost universally outperforms univariate analysis. PLS using all the same wavelength regions from the univariate analysis produces results that improve in accuracy by 63% for major elements and 3% for minor element. This difference is likely a reflection of signal to noise ratios, which are far better for major elements than for minor elements, and likely limit their prediction accuracy by any technique. We also compare predictions using specific wavelength ranges for each element against those employing all channels. Masking out channels to focus on emission lines from a specific element that occurs decreases prediction accuracy for major elements but is useful for minor elements with low signals and proportionally much higher noise; use of PLS rather than univariate

  11. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  12. A model of galactic cosmic rays for use in calculating linear energy transfer spectra

    NASA Technical Reports Server (NTRS)

    Chen, J.; Chenette, D.; Clark, R.; Garcia-Munoz, M.; Guzik, T. G.; Pyle, K. R.; Sang, Y.; Wefel, J. P.

    1994-01-01

    The Galactic Cosmic Rays (GCR) contain fully stripped nuclei, from Hydrogen to beyond the Iron group, accelerated to high energies and are a major component of the background radiation encountered by satellites and interplanetary spacecraft. This paper presents a GCR model which is based upon our current understanding of the astrophysics of GCR transport through interstellar and interplanetary space. The model can be used to predict the energy spectra for all stable and long-lived radioactive species from H to Ni over an energy range from 50 to 50,000 MeV/nucleon as a function of a single parameter, the solar modulation level phi. The details of this model are summarized, phi is derived for the period 1974 to present, and results from this model during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission are presented.

  13. Kinetic energy spectra in thermionic emission from small tungsten cluster anions: evidence for nonclassical electron capture.

    PubMed

    Concina, Bruno; Baguenard, Bruno; Calvo, Florent; Bordas, Christian

    2010-03-14

    The delayed electron emission from small mass-selected anionic tungsten clusters W(n)(-) has been studied for sizes in the range 9 < or = n < or = 21. Kinetic energy spectra have been measured for delays of about 100 ns after laser excitation by a velocity-map imaging spectrometer. They are analyzed in the framework of microreversible statistical theories. The low-energy behavior shows some significant deviations with respect to the classical Langevin capture model, which we interpret as possibly due to the influence of quantum dynamical effects such as tunneling through the centrifugal barrier, rather than shape effects. The cluster temperature has been extracted from both the experimental kinetic energy spectrum and the absolute decay rate. Discrepancies between the two approaches suggest that the sticking probability can be as low as a few percent for the smallest clusters.

  14. Application of adjusted data in calculating fission-product decay energies and spectra

    NASA Astrophysics Data System (ADS)

    George, D. C.; Labauve, R. J.; England, T. R.

    1982-06-01

    The code ADENA, which approximately calculates fussion-product beta and gamma decay energies and spectra in 19 or fewer energy groups from a mixture of U235 and Pu239 fuels, is described. The calculation uses aggregate, adjusted data derived from a combination of several experiments and summation results based on the ENDF/B-V fission product file. The method used to obtain these adjusted data and the method used by ADENA to calculate fission-product decay energy with an absorption correction are described, and an estimate of the uncertainty of the ADENA results is given. Comparisons of this approximate method are made to experimental measurements, to the ANSI/ANS 5.1-1979 standard, and to other calculational methods. A listing of the complete computer code (ADENA) is contained in an appendix. Included in the listing are data statements containing the adjusted data in the form of parameters to be used in simple analytic functions.

  15. The Properties and Origins of Resonant Patterns in the Energy Spectra of the Inner Electron Belt

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sitnov, M. I.; Mitchell, D. G.; Takahashi, K.; Lanzerotti, L. J.

    2013-12-01

    The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the Van Allen Probes mission provides electron and ion measurements from ~20 keV to ~10 MeV. High temporal and energy resolution electron measurements at RBSPICE show that energy spectra of the inner belt electrons exhibit regular resonance patterns which are more pronounced during intervals of increased geomagnetic activity. While these modulations were previously inferred from electron precipitation measurements on the low orbiting spacecraft, RBSPICE provides important insights into their properties at the equator where these patterns are formed. The modulations are observed over the entire inner belt and approximately follow 1/L energy dependence. This suggests that the modulation patterns are produced in the process of drift-resonant interaction of radiation belt electrons with large-scale fluctuations in the geomagnetic field. In this paper we describe properties of the resonant patterns and discuss their generation mechanisms.

  16. Kendrick-analogous network visualisation of ion cyclotron resonance Fourier transform mass spectra: improved options for the assignment of elemental compositions and the classification of organic molecular complexity.

    PubMed

    Tziotis, D; Hertkorn, N; Schmitt-Kopplin, Ph

    2011-01-01

    Here, we propose a novel computational and visual approach for the analysis of high field Fourier transform ion cyclotron resonance mass spectra (FTICR/MS) based on successive and multiple atomic and Kendrick analogous mass difference analyses. Compositional networks based on elemental compositions and functional networks based on selected functional groups equivalents enable improved assignment options of elemental composition and classification of organic complexity with tunable validation windows. The approach is demonstrated through the analysis of a 12T FTICR mass spectrum of an intricate water soluble extract of a secondary organic aerosol with a previously established abundance in CHNOS molecules.

  17. N2 positive and N2/+/ band systems and the energy spectra of auroral electrons.

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.; Donahue, T. M.; Zipf, E. C., Jr.

    1972-01-01

    Use of the relative emission rates of the auroral N2 positive and N2(+) band systems to limit the permissible range of differential electron fluxes in auroras, due to remarkable differences in electron excitation functions for the two kinds of systems. Use of recently measured electron cross sections and many observational data from ground based and rocket studies shows that the results are consistent with spectra equivalent to a power law E to the minus 1.4 power for primaries and secondaries combined. The unified primary spectra of Rees (1969) and secondary spectra of Rees et al. (1969) fail seriously to predict the optical ratios. It is shown that Rees' primary spectrum is deficient in slow primaries, owing to the use of defective Monte Carlo results of Maeda (1965). Doubt is thereby cast on the validity of experimental results for the differential spectrum below 50 eV reported by Feldman et al. (1971) because of the rapid decrease in flux with energy shown by those measurements.

  18. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    NASA Astrophysics Data System (ADS)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2014-07-01

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean-Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.

  19. Localization, time histories, and energy spectra of a new type of recurrent high-energy transient source

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.; Boer, M.; Hurley, K.; Niel, M.; Vedrenne, G.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.; Kuznetsov, A. V.; Kouveliotou, C.

    1987-01-01

    The detection of a recurrent high-energy transient source which is neither a classical X-ray nor a gamma-ray burster, but whose properties are intermediate between the two, is reported. The energy spectra of 12 recurrent events are found to be soft, characterized by kT's of 34-56 keV. The time histories are short with rise and fall times as fast as about 10 ms. The source location is a 0.12 sq deg region about 10 deg from the Galactic center.

  20. Theory of High-Energy Features in the Tunneling Spectra of Quantum-Hall Systems

    NASA Astrophysics Data System (ADS)

    MacDonald, A. H.

    2010-11-01

    We show that the low-temperature sash features in lowest Landau-level (LLL) tunneling spectra recently discovered by Dial and Ashoori are intimately related to the discrete Haldane-pseudopotential interaction energy scales that govern fractional quantum-Hall physics. Our analysis is based on expressions for the tunneling density of states which become exact at filling factors close to ν=0 and ν=1, where the sash structure is most prominent. We comment on other aspects of LLL correlation physics that can be revealed by accurate temperature-dependent tunneling data.

  1. Theory of high-energy features in the tunneling spectra of quantum-Hall systems.

    PubMed

    MacDonald, A H

    2010-11-12

    We show that the low-temperature sash features in lowest Landau-level (LLL) tunneling spectra recently discovered by Dial and Ashoori are intimately related to the discrete Haldane-pseudopotential interaction energy scales that govern fractional quantum-Hall physics. Our analysis is based on expressions for the tunneling density of states which become exact at filling factors close to ν=0 and ν=1, where the sash structure is most prominent. We comment on other aspects of LLL correlation physics that can be revealed by accurate temperature-dependent tunneling data. PMID:21231254

  2. Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters.

    PubMed

    Ahmad, Q R; Allen, R C; Andersen, T C; Anglin, J D; Barton, J C; Beier, E W; Bercovitch, M; Bigu, J; Biller, S D; Black, R A; Blevis, I; Boardman, R J; Boger, J; Bonvin, E; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Browne, M C; Bullard, T V; Bühler, G; Cameron, J; Chan, Y D; Chen, H H; Chen, M; Chen, X; Cleveland, B T; Clifford, E T H; Cowan, J H M; Cowen, D F; Cox, G A; Dai, X; Dalnoki-Veress, F; Davidson, W F; Doe, P J; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Ferraris, A P; Ford, R J; Formaggio, J A; Fowler, M M; Frame, K; Frank, E D; Frati, W; Gagnon, N; Germani, J V; Gil, S; Graham, K; Grant, D R; Hahn, R L; Hallin, A L; Hallman, E D; Hamer, A S; Hamian, A A; Handler, W B; Haq, R U; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hepburn, J D; Heron, H; Hewett, J; Hime, A; Howe, M; Hykawy, J G; Isaac, M C P; Jagam, P; Jelley, N A; Jillings, C; Jonkmans, G; Kazkaz, K; Keener, P T; Klein, J R; Knox, A B; Komar, R J; Kouzes, R; Kutter, T; Kyba, C C M; Law, J; Lawson, I T; Lay, M; Lee, H W; Lesko, K T; Leslie, J R; Levine, I; Locke, W; Luoma, S; Lyon, J; Majerus, S; Mak, H B; Maneira, J; Manor, J; Marino, A D; McCauley, N; McDonald, A B; McDonald, D S; McFarlane, K; McGregor, G; Meijer Drees, R; Mifflin, C; Miller, G G; Milton, G; Moffat, B A; Moorhead, M; Nally, C W; Neubauer, M S; Newcomer, F M; Ng, H S; Noble, A J; Norman, E B; Novikov, V M; O'Neill, M; Okada, C E; Ollerhead, R W; Omori, M; Orrell, J L; Oser, S M; Poon, A W P; Radcliffe, T J; Roberge, A; Robertson, B C; Robertson, R G H; Rosendahl, S S E; Rowley, J K; Rusu, V L; Saettler, E; Schaffer, K K; Schwendener, M H; Schülke, A; Seifert, H; Shatkay, M; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, A R; Smith, M W E; Spreitzer, T; Starinsky, N; Steiger, T D; Stokstad, R G; Stonehill, L C; Storey, R S; Sur, B; Tafirout, R; Tagg, N; Tanner, N W; Taplin, R K; Thorman, M; Thornewell, P M; Trent, P T; Tserkovnyak, Y I; Van Berg, R; Van de Water, R G; Virtue, C J; Waltham, C E; Wang, J-X; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Yeh, M

    2002-07-01

    The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.3%(+1.5%)(-1.4%) of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the nu(e) asymmetry is found to be 7.0%+/-4.9%(+1.3%)(-1.2%). A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution.

  3. The Flux and Energy Spectra of the Protons in the Inner Van Allen Belt

    NASA Technical Reports Server (NTRS)

    Naugle, John E.; Kniffen, Donald A.

    1961-01-01

    A cylindrical stack of G-5 nuclear emulsions housed in the payload section of a four-stage research rocket was flown into the northern edge of the inner Van Allen belt on September 19, 1960. The experimental design permitted, for the first time, measurements of the particle fluxes and energy spectra as functions of position along the rocket trajectory. Eight points along the trajectory have been selected for analysis. Results are presented herein for three of these points, and they are discussed in the light of various theories on the trapped radiation.

  4. Energy-weighted sum rules and the analysis of vibrational structure in molecular spectra

    NASA Astrophysics Data System (ADS)

    Smith, W. L.

    2015-10-01

    The energy-weighted sum SV = Σn (E‧n - E″m)|<ψ″m|ψ‧n>|2 = <ψ″m|ΔV|ψ″m> for the vibrational potential functions V‧, V″ associated with transitions between two electronic states of diatomic molecular species is investigated and specific formulae are given using Morse functions for V‧ and V″. It is found that these formulae are useful approximations which provide a convenient way to analyse the vibrational structure of real spectra to give estimates of molecular parameters such as the change in internuclear distance accompanying a transition.

  5. Electron energy spectra in helium observed in a microplasma collisional electron spectroscopy detector

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. A.; Mustafaev, A. S.; Tsyganov, A. B.; Chirtsov, A. S.; Yakovleva, V. I.

    2012-10-01

    The energy spectra of fast electrons resulting from pair collisions between metastable atoms and from collisions of the second kind with electrons are observed in the afterglow of a helium-filled microplasma collisional electron spectroscopy (CES) detector at a pressure of 5-40 Torr. It is demonstrated that impurities present in the main inert gas can be detected and their composition can be determined using a planar double-electrode detector in which the cathode simultaneously serves as an analyzer of electrons in the afterglow.

  6. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas.

    PubMed

    Culfa, O; Tallents, G J; Rossall, A K; Wagenaars, E; Ridgers, C P; Murphy, C D; Dance, R J; Gray, R J; McKenna, P; Brown, C D R; James, S F; Hoarty, D J; Booth, N; Robinson, A P L; Lancaster, K L; Pikuz, S A; Faenov, A Ya; Kampfer, T; Schulze, K S; Uschmann, I; Woolsey, N C

    2016-04-01

    An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (10^{20}Wcm^{-2}) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 μm). PMID:27176413

  7. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.

    PubMed

    Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay; Rühmann, Antje; Poppe, Björn

    2011-09-01

    The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of

  8. Detailed parametrization of neutrino and gamma-ray energy spectra from high energy proton-proton interactions

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.

    2016-02-01

    Gamma rays and neutrinos are produced as a result of proton-proton interactions that occur in different astrophysical contexts. The detection of these two types of messengers is of great importance for the study of different physical phenomena, related to nonthermal processes, taking place in different astrophysical scenarios. Therefore, the knowledge of the energy spectrum of these two types of particles, as a function of the incident proton energy, is essential for the interpretation of the observational data. In this paper, parametrizations of the energy spectra of gamma rays and neutrinos, originated in proton-proton collisions, are presented. The energy range of the incident protons considered extends from 102 to 108 GeV . The parametrizations are based on Monte Carlo simulations of proton-proton interactions performed with the hadronic interaction models QGSJET-II-04 and EPOS-LHC, which have recently been updated with the data taken by the Large Hadron Collider.

  9. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Optional elements of State Energy Program plans. 420.17 Section 420.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Formula Grant Procedures § 420.17 Optional elements of State Energy Program plans. (a) Other appropriate activities...

  10. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Optional elements of State Energy Program plans. 420.17 Section 420.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Formula Grant Procedures § 420.17 Optional elements of State Energy Program plans. (a) Other appropriate activities...

  11. 10 CFR Appendix D to Part 436 - Energy Program Conservation Elements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy Program Conservation Elements D Appendix D to Part 436 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Pt. 436, App. D Appendix D to Part 436—Energy Program Conservation Elements (a) In all successful...

  12. 10 CFR Appendix D to Part 436 - Energy Program Conservation Elements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy Program Conservation Elements D Appendix D to Part 436 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Pt. 436, App. D Appendix D to Part 436—Energy Program Conservation Elements (a) In all successful...

  13. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Optional elements of State Energy Program plans. 420.17 Section 420.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Formula Grant Procedures § 420.17 Optional elements of State Energy Program plans. (a) Other appropriate activities...

  14. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Optional elements of State Energy Program plans. 420.17 Section 420.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Formula Grant Procedures § 420.17 Optional elements of State Energy Program plans. (a) Other appropriate activities...

  15. 10 CFR Appendix D to Part 436 - Energy Program Conservation Elements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy Program Conservation Elements D Appendix D to Part 436 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Pt. 436, App. D Appendix D to Part 436—Energy Program Conservation Elements (a) In all successful...

  16. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Optional elements of State Energy Program plans. 420.17 Section 420.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Formula Grant Procedures § 420.17 Optional elements of State Energy Program plans. (a) Other appropriate activities...

  17. Explanation of the local galactic cosmic ray energy spectra measured by Voyager 1. I. Protons

    SciTech Connect

    Schlickeiser, R.; Kempf, A.; Webber, W. R. E-mail: ank@tp4.rub.de

    2014-05-20

    Almost exactly 100 yr after the original discovery of cosmic rays, the V1 spacecraft has observed, for the first time, the local interstellar medium energy spectra of cosmic ray H, He, C/O nuclei at nonrelativistic kinetic energies, after leaving the heliosphere modulation region on 2012 August 25. We explain these observations by modeling the propagation of these particles in the local Galactic environment with an updated steady-state spatial diffusion model including all particle momentum losses with the local interstellar gas (Coulomb/ionization, pion production, adiabatic deceleration, and fragmentation interactions). Excellent agreement with the V1 cosmic ray H observations is obtained if the solar system resides within a spatially homogeneous layer of distributed cosmic ray sources injecting the same momentum power law ∝p {sup –s} with s = 2.24 ± 0.12. The best fit to the V1 H observations also provides an estimate of the characteristic break kinetic energy T{sub C} = 116 ± 27 MeV, representing the transition from ionization/Coulomb energy losses at low energies to pion production and adiabatic deceleration losses in a Galactic wind at high energies. As the determined value is substantially smaller than 217 MeV in the absence of adiabatic deceleration, our results prove the existence of a Galactic wind in the local Galactic environment.

  18. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1997-01-01

    UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.

  19. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Berdyugin, A.; Bernard, J. P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Gehrels, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  20. Studies of the Energy Spectra of Incident Cosmic Radiation by the Networks of Particle Detectors

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot A.; Hovsyapayan, Gagik G.

    2007-08-01

    ^14 - 10^17eV. Results from the MAKET-ANI experiment on the energy spectra of the light (p+He) and heavy (O+Si+Fe) nuclear groups are compared with spectra obtained by balloon experiments, as well as with other available EAS spectra.

  1. Modeling of fluorescence line-narrowed spectra in weakly coupled dimers in the presence of excitation energy transfer

    SciTech Connect

    Lin, Chen; Reppert, Mike; Feng, Ximao; Jankowiak, Ryszard

    2014-07-21

    This work describes simple analytical formulas to describe the fluorescence line-narrowed (FLN) spectra of weakly coupled chromophores in the presence of excitation energy transfer (EET). Modeling studies for dimer systems (assuming low fluence and weak coupling) show that the FLN spectra (including absorption and emission spectra) calculated for various dimers using our model are in good agreement with spectra calculated by: (i) the simple convolution method and (ii) the more rigorous treatment using the Redfield approach [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)]. The calculated FLN spectra in the presence of EET of all three approaches are very similar. We argue that our approach provides a simplified and computationally more efficient description of FLN spectra in the presence of EET. This method also has been applied to FLN spectra obtained for the CP47 antenna complex of Photosystem II reported by Neupane et al. [J. Am. Chem. Soc. 132, 4214 (2010)], which indicated the presence of uncorrelated EET between pigments contributing to the two lowest energy (overlapping) exciton states, each mostly localized on a single chromophore. Calculated and experimental FLN spectra for CP47 complex show very good qualitative agreement.

  2. Energy spectra of protons, deuterium, and helium nuclei during quiet solar activity periods in 1996-97

    NASA Astrophysics Data System (ADS)

    Kecskemety, Karoly

    A background reduction method based on pulse-height analysis (see accompanying paper by Valtonen et al.) is applied for the data of the ERNE and EPHIN energetic particle telescopes aboard SOHO. Energy spectra of protons, deuterons, 3He and 4He nuclei have been obtained during very low activity periods in 1996-97 in the energy range of 1.3 to 22 MeV/n. The proton spectra are comparable to the lowest spectra of the Ulysses (COSPIN/LET, 1996) and near-Earth IMP-8 (1985-87) measurements. Deuterons and 3He are only significantly seen above about 10 MeV/n, their spectra are consistent with an increase proportional to kinetic energy, expected for purely galactic origin.

  3. NON-STANDARD ENERGY SPECTRA OF SHOCK-ACCELERATED SOLAR PARTICLES

    SciTech Connect

    Kocharov, Leon; Vainio, Rami; Pomoell, Jens; Valtonen, Eino; Klassen, Andreas; Young, C. Alex

    2012-07-01

    We consider a numerical model for the shock acceleration of energetic ions in the magnetic environment of the solar corona. The model is motivated by observations of the deka-to-hecto-MeV proton energy spectra, ion and electron timing, and abundances in the beginning of major solar energetic particle (SEP) events, prior to the event's main phase associated with coronal mass ejection (CME) driven shock in the solar wind. Inasmuch as the obliquity of the CME-liftoff-associated shocks in solar corona and hence the seed-particle supply for the shock acceleration are essentially time dependent, a steady state energy spectrum of accelerated protons near the shock could not be attained. Energy spectrum of the SEP emission depends on the spatial and energy distribution of seed particles for the coronal shock acceleration, on the shock wave history, and on the location and scenario of the energetic particle escape into the interplanetary medium. We use a numerical model of the shock acceleration on a semicircular magnetic field line to learn a significance of different effects. If the shock geometry in a particular magnetic tube changes from nearly parallel to perpendicular, the resulting SEP spectrum in most distant sections of the tube, e.g., at the top of a transequatorial loop, resembles a wide beam, which is very different from the standard power-law spectrum that would be expected in a steady state. Possible escape of the shock-accelerated particles from more than one coronal location, stochastic re-acceleration, and the magnetic tube expansion can make the SEP spectra even more complicated.

  4. Investigation on energy conversion technology using biochemical reaction elements, 2

    NASA Astrophysics Data System (ADS)

    1994-03-01

    For measures taken for resource/energy and environmental issues, a study is made on utilization of microbial biochemical reaction. As a reaction system using chemical energy, cited is production of petroleum substitution substances and food/feed by CO2 fixation using hydrogen energy and hydrogen bacteria. As to photo energy utilization, regarded as promising are CO2 fixation using photo energy and microalgae, and production of hydrogen and useful carbon compound using photosynthetic organisms. As living organism/electric energy interconversion, cited is the culture of chemoautotrophic bacteria which fix CO2 using electric energy. For enhancing its conversion efficiency, it is important to develop a technology of gene manipulation of the bacteria and a system to use functional biochemical elements adaptable to the electrode reaction. With regard to utilization of the microorganism metabolic function, the paper presents emission of soluble nitrogen in the hydrosphere into the atmosphere using denitrifying bacteria, removal of phosphorus, reduction in environmental pollution caused by heavy metal dilute solutions, and recovery as resources, etc.

  5. Energy spectra of massive two-body decay products and mass measurement

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Franceschini, Roberto; Hong, Sungwoo; Kim, Doojin

    2016-04-01

    We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a mass less product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the standard model particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial because (in general) both the above-mentioned properties are no longer valid. Nonetheless, we propose a suitably modified parametrization of the energy distribution that was used successfully for the massless case, which can deal with the massive case as well. We test this parametrization on concrete examples of energy spectra of Z bosons from the decay of a heavier supersymmetric partner of top quark (stop) into a Z boson and a lighter stop. After establishing the accuracy of this parametrization, we study a realistic application for the same process, but now including dominant backgrounds and using foreseeable statistics at LHC14, in order to determine the performance of this method for an actual mass measurement. The upshot of our present and previous work is that, in spite of energy being a Lorentz-variant quantity, its distribution emerges as a powerful tool for mass measurement at hadron colliders.

  6. Energy spectra of massive two-body decay products and mass measurement

    DOE PAGESBeta

    Agashe, Kaustubh; Franceschini, Roberto; Hong, Sungwoo; Kim, Doojin

    2016-04-26

    Here, we have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, wemore » utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the standard model particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial because (in general) both the above-mentioned properties are no longer valid. Nonetheless, we propose a suitably modified parametrization of the energy distribution that was used successfully for the massless case, which can deal with the massive case as well. We test this parametrization on concrete examples of energy spectra of Z bosons from the decay of a heavier supersymmetric partner of top quark (stop) into a Z boson and a lighter stop. After establishing the accuracy of this parametrization, we study a realistic application for the same process, but now including dominant backgrounds and using foreseeable statistics at LHC14, in order to determine the performance of this method for an actual mass measurement. The upshot of our present and previous work is that, in spite of energy being a Lorentz-variant quantity, its distribution emerges as a powerful tool for mass measurement at hadron colliders.« less

  7. Single-atom electron energy loss spectroscopy of light elements

    PubMed Central

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  8. Spectra and energy levels of Tm3+ (4 f12 ) in AlN

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Vetter, Ulrich; Hofsäss, Hans; Zandi, Bahram; Reid, Michael F.

    2004-12-01

    We report a detailed analysis of the cathodoluminescence spectra of Tm3+ -implanted 2H-aluminum nitride (AlN) covering the wavelength range between 290 and 820nm at temperatures between 12 and 60K . More than 200 transitions are observed, of which more than 100 of these transitions can be identified from emitting multiplet manifolds I61 , D21 , and G41 . Although the emitting levels are not observed directly, emission is also attributed to the P23 and P13 multiplet manifolds based on analyses of transitions to terminal levels F43 , H53 , and F33 . The observed crystal-field splitting of the ground-state multiplet manifold, H63 , and manifolds F43 , H53 , H43 , F33 , F23 , and G41 is established from an analysis based on matching repeated energy differences between transitions. This method is similar to one used in analyzing arc and spark spectra. Temperature-dependent spectra also establish the crystal-field splitting of the P13 and part of the manifold splitting of emitting levels such as I61 . To establish an initial set of crystal-field splitting parameters, Bnm , that can be related to a physical model, we carried out a lattice-sum calculation by computing the crystal-field components, which are the coefficients in a multipolar expansion of the crystal field about the Al3+ sites that have C3v symmetry in the lattice. Emission channeling experiments indicate that the Al3+ sites serve as the substitutional sites for Tm3+ in AlN. With only minor adjustments to the calculated centroids to account for J -mixing, the calculated crystal-field splitting of most multiplet manifolds, LJ2S+1 , of Tm3+(4f12) based on the Bnm obtained from the lattice-sum calculations, is in good agreement with the reported experimental splitting.

  9. Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.

    2012-01-01

    We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.

  10. An electromechanical finite element model for piezoelectric energy harvester plates

    NASA Astrophysics Data System (ADS)

    De Marqui Junior, Carlos; Erturk, Alper; Inman, Daniel J.

    2009-10-01

    Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper, an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton's principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit.

  11. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  12. Impact of low-energy photons on the characteristics of prompt fission γ -ray spectra

    NASA Astrophysics Data System (ADS)

    Oberstedt, A.; Billnert, R.; Hambsch, F.-J.; Oberstedt, S.

    2015-07-01

    In this paper we report on a new study of prompt γ -rays from the spontaneous fission of 252Cf . Photons were measured in coincidence with fission fragments by employing four different lanthanide halide scintillation detectors. Together with results from a previous work of ours, we determined characteristic parameters with high precision, such as the average γ -ray multiplicity ν¯γ=(8.29 ±0.13 ), the average energy per photon ɛγ=(0.80 ±0.02 ) MeV, and the total γ -ray energy release per fission Eγ ,tot=(6.65 ±0.10 ) MeV. The excellent agreement between the individual results obtained in all six measurements proves the good repeatability of the applied experimental technique. The impact of low-energy photons, i.e., below 500 keV, on prompt fission γ -ray spectra characteristics has been investigated as well by comparing our results with those taken with the DANCE detector system, which appears to suffer from absorption effects in the low-energy region. Correction factors for this effect were estimated, giving results comparable to ours as well as to historical ones. From this we demonstrate that the different techniques of determining the average γ -ray multiplicity, either from a properly measured and normalized spectrum or a measured multiplicity distribution, give equivalent and consistent results.

  13. Magnetic field effects on the energy deposition spectra of MV photon radiation.

    PubMed

    Kirkby, C; Stanescu, T; Fallone, B G

    2009-01-21

    Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.

  14. Finite element modeling of electrically rectified piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Wu, P. H.; Shu, Y. C.

    2015-09-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique.

  15. Large-scale kinetic energy spectra from Eulerian analysis of EOLE wind data

    NASA Technical Reports Server (NTRS)

    Desbois, M.

    1975-01-01

    A data set of 56,000 winds determined from the horizontal displacements of EOLE balloons at the 200 mb level in the Southern Hemisphere during the period October 1971-February 1972 is utilized for the computation of planetary- and synoptic-scale kinetic energy space spectra. However, the random distribution of measurements in space and time presents some problems for the spectral analysis. Two different approaches are used, i.e., a harmonic analysis of daily wind values at equi-distant points obtained by space-time interpolation of the data, and a correlation method using the direct measurements. Both methods give similar results for small wavenumbers, but the second is more accurate for higher wavenumbers (k above or equal to 10). The spectra show a maximum at wavenumbers 5 and 6 due to baroclinic instability and then decrease for high wavenumbers up to wavenumber 35 (which is the limit of the analysis), according to the inverse power law k to the negative p, with p close to 3.

  16. Light and Heavy Cosmic-Ray Mass Group Energy Spectra as Measured by the MAKET-ANI Detector

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Gharagyozyan, G.; Hovsepyan, G.; Ghazaryan, S.; Melkumyan, L.; Vardanyan, A.

    2004-03-01

    Standard models of cosmic-ray origin link the space accelerators of our Galaxy to the supernova remnants (SNRs)-expanding shells driven by very fast blast waves, usually with gamma-ray pulsars near the morphological center. Energy spectra of fully stripped ions with charges from Z=1 to Z=26 can provide clues to the validity of the standard model. Unfortunately, smeared data from the extensive air shower experiments do not provide enough information for such ion ``spectroscopy.'' Nonetheless, the measurement of energy spectra of two or three broad mass groups (so-called light, intermediate, and heavy) will allow us to prove or disprove the ``rigidity-dependent'' acceleration. Recently, using multidimensional classification methods, the ``all-particle'' spectra from the MAKET-ANI experiment on Mount Aragats, in Armenia, was categorized into two distinct primary mass groups. We present, for the first time, the light and heavy nuclei spectra from the MAKET-ANI experiment.

  17. Energy and optical absorption spectra of endohedral metallofullerenes with Gd or Ho as strongly correlated π-electron systems

    NASA Astrophysics Data System (ADS)

    Bubnov, V. P.; Kareev, I. E.; Lobanov, B. V.; Murzashev, A. I.; Nekrasov, V. M.

    2016-08-01

    Isomerically pure endohedral metallofullerenes Gd@C82(C2v), Ho@C82( C 2 v ), and their monoanions have been synthesized and separated. The optical absorption spectra of solutions of obtained compounds in o-dichlorobenzene have been studied. Within the Hubbard model, the energy spectrum of isomer of C 2 v symmetry (no. 9) of fullerene C82 has been calculated. Based on the obtained spectrum, optical absorption spectra of endohedral metallofullerenes Gd@C82 and Ho@C82 and their monoanions have been simulated. The calculated optical absorption spectra have been compared with experimental ones; it has been found that qualitative agreement between them is observed.

  18. Simulation of the energy spectra of original versus recombined H{sub 2}{sup +} molecular ions transmitted through thin foils

    SciTech Connect

    Barriga-Carrasco, Manuel D.; Garcia-Molina, Rafael

    2004-09-01

    This work presents the results of computer simulations for the energy spectra of original versus recombined H{sub 2}{sup +} molecular ions transmitted through thin amorphous carbon foils, for a broad range of incident energies. A detailed description of the projectile motion through the target has been done, including nuclear scattering and Coulomb repulsion as well as electronic self-retarding and wake forces; the two latter are calculated in the dielectric formalism framework. Differences in the energy spectra of recombined and original transmitted H{sub 2}{sup +} molecular ions clearly appear in the simulations, in agreement with the available experimental data. Our simulation code also differentiates the contributions due to original and to recombined H{sub 2}{sup +} molecular ions when the energy spectra contain both contributions, a feature that could be used for experimental purposes in estimating the ratio between the number of original and recombined H{sub 2}{sup +} molecular ions transmitted through thin foils.

  19. Observations of solar flare photon energy spectra from 20 keV to 7 MeV

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.; Nitta, N.

    1985-01-01

    Solar flare photon energy spectra in the 20 keV to 7 MeV range are derived from the Apr. 1, Apr. 4, apr. 27 and May 13, 1981 flares. The flares were observed with a hard X-ray and a gamma-ray spectrometers on board the Hinotori satellite. The results show that the spectral shape varies from flare to flare and the spectra harden in energies above about 400 keV. Effects of nuclear line emission on the continuum and of higher energy electron bremsstrahlung are considered to explain the spectral hardening.

  20. The chemistry of the light rare-earth elements as determined by electron energy loss spectroscopy

    SciTech Connect

    Fortner, J.A.; Buck, E.C.

    1996-06-01

    The energy loss spectra of the rare earths are characterized by sharp {ital M}{sub 4,5} edges, the relative intensities of which are characteristic of the 4{ital f}-shell occupancy of the excited ion. For the light rare earths, the dependence of these relative peak heights on 4{ital f}-shell occupancy is quite pronounced. Thus they may be used to determine the oxidation state of the multivalent elements Ce and Pr. The second derivative of the spectrum is shown to be extremely sensitive to the chemical environment. Modern instrumentation and detection techniques allow the oxidation state of Ce and Pr to be determined even when they are present as only minor constituents. {copyright} {ital 1996 American Institute of Physics.}

  1. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    SciTech Connect

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S.

    2009-04-15

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve should be

  2. On the energy spectra of secondary ions emitted from silicon and graphite single crystals

    NASA Astrophysics Data System (ADS)

    Khvostov, V. V.; Khrustachev, I. K.; Minnebaev, K. F.; Zykova, E. Yu.; Ivanenko, I. P.; Yurasova, V. E.

    2014-03-01

    Secondary ion emission from silicon and graphite single crystals bombarded by argon ions with energies E 0 varied from 1 to 10 keV at various angles of incidence α has been studied. The evolution of the energy spectra of C+ and Si+ secondary ions has been traced in which the positions of maxima ( E max) shift toward higher secondary-ion energies E 1 with increasing polar emission angle θ (measured from the normal to the sample surface). The opposite trend has been observed for ions emitted from single crystals heated to several hundred degrees Centigrade; the E max values initially remain unchanged and then shift toward lower energies E 1 with increasing angle θ. It is established that the magnitude and position of a peak in the energy spectrum of secondary C+ ions is virtually independent of E 0, angle α, and the surface relief of the sample (in the E 0 and α intervals studied). Unusual oscillating energy distributions are discussed, which have been observed for secondary ions emitted from silicon (111) and layered graphite (0001) faces. Numerical simulations of secondary ion sputtering and charge exchange have been performed. A comparison of the measured and calculated data for graphite crystals has shown that C+ ions are formed as a result of charge exchange between secondary ions and bombarding Ar+ ions, which takes place both outside and inside the target. This substantially differs from the ion sputtering process in metals and must be taken into account when analyzing secondary ion emission mechanisms and in practical applications of secondary-ion mass spectrometry.

  3. Water complexes of important air pollutants: geometries, complexation energies, concentrations, infrared spectra, and intrinsic reactivity.

    PubMed

    Galano, Annia; Narciso-Lopez, Marcela; Francisco-Marquez, Misaela

    2010-05-13

    Water complexes involving methanol, ethanol, formaldehyde, formic acid, acetone, ammonia, acetylene, ethylene, chloroethene, trichloroethene, 1,1,1-trichloroethane, hydroxyl radical, and hydroperoxyl radical have been studied. Enthalpies, entropies, and Gibbs free energies of association have been estimated, as well as the concentrations of the complexes under lower-troposphere conditions. The influence of the relative air humidity on the complexation processes has been analyzed. The association processes yielding water complexes of methanol, ethanol, formic acid, ammonia, acetone, hydroxyl radical, and hydroperoxyl radical were found to be more exothermic than that of the water dimer. General trends for the reactivity of the studied water complexes, compared to those of the corresponding free species, are proposed based on global reactivity indexes. The previously reported increased reactivity of the (*)OOH self-reaction, when there is water present, has been explained. The IR spectra of the complexes have been analyzed and compared with those of the free species. PMID:20394451

  4. Solar Modulation of Low-Energy Antiproton and Proton Spectra Measured by BESS

    NASA Technical Reports Server (NTRS)

    Mitchell, John W.; Abe, Ko; Fuke, Hideyuki; Haino, Sadakazu; Hams, Thomas; Horikoshi, Atsushi; Kim, Ki-Chun; Lee, MooHyun; Makida, Yashuhiro; Matsuda, Shinya; Moiseev, Alexander; Nishimura, Jun; Nozaki, Mitsuaki

    2007-01-01

    The spectra of low-energy cosmic-ray protons and antiprotons have been measured by BESS in nine high-latitude balloon flights between 1993 and 2004. These measurements span a range of solar activity from the previous solar minimum through solar ma>:im%am and the onset of the present solar minimum, as well as a solar magnetic field reversal from positive to negative in 2000. Because protons and antiprotons differ only in charge sign, these simultaneous measurements provide a sensitive probe of charge dependent solar modulation. The antiproton to proton ratio measured by BESS is consistent with simple spherically symmetric models of solar modulation during the Sun's positive polarity phase, but favor charge-sign-dependent drift models during the negative phase. The BESS measurements will be presented and compared to various models of solar modulation.

  5. Optical absorption and energy-loss spectra of aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    García-Vidal, F. J.; Pitarke, J. M.

    2001-07-01

    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.

  6. The variation of solar proton energy spectra size distribution with heliolongitude

    NASA Technical Reports Server (NTRS)

    Vanhollebeke, M. A. I.; Masung, L. S.; Mcdonald, F. B.

    1974-01-01

    A statistical study of the initial phases of 185 solar particle events was carried out using the data from cosmic ray experiments on IMP 4 and IMP 5. Special emphasis was placed on the identification of the associated solar flare, as the parent flare can be determined for 68% of the events. It appears probable that most of the unidentified increases occur on the non-visible disc of the sun. The existence of a 'preferred-connection' longitude between 20 W and 80 W was established by examining the heliolongitude of all the flare associated events. It is demonstrated that the energy spectra determined at the time of maximum particle in the 20 to 80 MeV or 4 to 20 Mev interval range give results identical to that obtained by the 'distance-travelled' method.

  7. Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers

    NASA Astrophysics Data System (ADS)

    Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel

    2016-09-01

    Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.

  8. Exciton-Like Behavior in Low-Energy Absorption Spectra of Simple Alloys

    NASA Astrophysics Data System (ADS)

    Bakshi, Mira Hemendraray

    The valence excitation (ns('2) (--->) nsnp) spectra of Mg, Zn, and Ca impurities at various concentrations in Li have been measured. Polarization modulation ellipsometry was used to determine the impurity-induced changes in real and imaginary parts of the dielectric function simultaneously, together with the differential reflectivity, in the energy range 1.5 - 4.5 eV. The most important result at sufficiently dilute alloy compositions, is that the system investigated display a distinct absorption peak above the Drude background. The height of this peak varies linearly with impurity content. The impurity-specific character of these spectral features points to exciton-like behavior at low-energy, arising from atomic-like excitations in which the electron and the hole linger together at the impurity site. Existing theories of alloy spectra do not explain these effects, because they do not include the Coulomb correlations between the interacting quasiparticles created in the optical event, or the way in which the interacting pair is confined to the impurity site by the mutual field. A remarkable added result of this research is that the exciton-like behavior can be followed with increasing impurity content, all the way to the pure Mg response, when it becomes the interband transition. This has led Kunz and Flynn to reformulate the theory of optical absorption including excited state interactions; and to apply the theory to the spectrum of pure Mg. The Coulomb interaction causes striking effects which are in generally good agreement with experiment. Zn-Li alloys behave differently. At an alloy composition for which Zn-Zn interactions become prevalent, the local, impurity-specific character of the spectrum disappears, leaving only a featureless Drude-like absorption. These results have provoked cluster calculations by Boisvert and Kunz, which predict the spectral shifts, and exhibit qualitatively similar persistence for Mg-Li, and broadening for Zn-Li.

  9. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.

    2016-06-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k < 10 h Mpc-1, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for k < 10 h Mpc-1. For chameleon screened models, we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales k > 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.

  10. Influence of inner-sphere processes on the paramagnetic shifts in the {sup 1}H NMR spectra of some mixed-ligand complexes of rare-earth elements

    SciTech Connect

    Khachatryan, A.S.; Vashchuk, A.V.; Panyushkin, V.T.

    1995-12-20

    Concentration dependences of the observed chemical shifts in the NMR spectra of 1:1:1 and 1:2:1 mixed-ligand complexes of rare-earth elements with acetylacetone and acrylic, methacrylic, maleic, and fumaric acids were analyzed. The complexes undergo inner-sphere structural transformations involving different modes of coordination of the unsaturated acid, which is capable of coordination to the central ion through both the carboxylic group and {pi} electrons of the double bond. The possibility of determining equilibrium constants and limiting chemical shifts of the isomeric forms of the complexes was demonstrated. 9 refs., 4 figs.

  11. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1998-01-01

    The accomplishments of the participation in the Compton Gamma Ray Observatory Guest investigator program is summarized in this report. The work involved the study of Energetic Gamma Ray Experiment Telescope (EGRET)/Total Absorption Shower Counter(TASC) flare data. The specific accomplishments were the use of the accelerator neutron measurements obtained at the University of New Hampshire to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution, and to determine a high energy neutron contribution to the emissions from the 1991 June 11, solar flare. The next step in the analysis of this event was doing fits to the TASC energy-loss spectra as a function of time. A significant hardening of the solar proton spectrum over time was found for the flare. Further data was obtained from the Yohkoh HXT time histories and images for the 1991 October 27 flare. The results to date demonstrate that the TASC spectral analysis contributes crucial information on the particle spectrum interacting at the Sun. The report includes a paper accepted for publication, a draft of a paper to be delivered at the 26th International Cosmic Ray Conference and an abstract of a paper to be presented at the Meeting of the American Physical Society.

  12. Neutron influences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.; Rshtuni, Sh. B.; Benton, E, V.; Frank, A. L.

    1995-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (E(sub n) less than or equal to 0.2 eV), resonance (0.2 eV less than E(sub n) less than 1.0 MeV) and fast (E(sub n) greater than or equal to 1.0 MeV) neutrons. The first two groups were measured with U.S. (6)LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d(exp -1) were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d(exp -1). Inside the spacecraft, a value of 3.5 mrem d(exp -1) was found.

  13. Neutron fluences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.

    1992-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (En < or = 0.2 eV), resonance (0.2 eV < En < 1.0 MeV) and fast (En > or = 1.0 MeV) neutrons. The first two groups were measured with U.S. 6LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d-1 were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d-1. Inside the spacecraft, a value of 3.5 mrem d-1 was found.

  14. Constructing multiscale gravitational energy spectra from molecular cloud surface density PDF - interplay between turbulence and gravity

    NASA Astrophysics Data System (ADS)

    Li, Guang-Xing; Burkert, Andreas

    2016-09-01

    Gravity is believed to be important on multiple physical scales in molecular clouds. However, quantitative constraints on gravity are still lacking. We derive an analytical formula which provides estimates on multiscale gravitational energy distribution using the observed surface density probability distribution function (PDF). Our analytical formalism also enables one to convert the observed column density PDF into an estimated volume density PDF, and to obtain average radial density profile ρ(r). For a region with N_col ˜ N^{-γ _N}, the gravitational energy spectra is E_p(k)˜ k^{-4(1 - 1/γ _N)}. We apply the formula to observations of molecular clouds, and find that a scaling index of -2 of the surface density PDF implies that ρ ˜ r-2 and Ep(k) ˜ k-2. The results are valid from the cloud scale (a few parsec) to around ˜ 0.1 pc. Because of the resemblance the scaling index of the gravitational energy spectrum and the that of the kinetic energy power spectrum of the Burgers turbulence (where E ˜ k-2), our result indicates that gravity can act effectively against turbulence over a multitude of physical scales. This is the critical scaling index which divides molecular clouds into two categories: clouds like Orion and Ophiuchus have shallower power laws, and the amount of gravitational energy is too large for turbulence to be effective inside the cloud. Because gravity dominates, we call this type of cloud g-type clouds. On the other hand, clouds like the California molecular cloud and the Pipe nebula have steeper power laws, and turbulence can overcome gravity if it can cascade effectively from the large scale. We call this type of cloud t-type clouds. The analytical formula can be used to determine if gravity is dominating cloud evolution when the column density PDF can be reliably determined.

  15. Ionization energies of W I-LXXIV and critical compilation of spectra and energy levels of Ga I-XXX

    NASA Astrophysics Data System (ADS)

    Kramida, Alexander; Reader, Joseph

    2006-05-01

    Both tungsten and gallium are important materials for fusion energy research. In this work, a semi-empirical method is used to determine ionization energies (IE) of multiply charged W ions [A.E. Kramida, J. Reader, Ionization Energies of Tungsten Ions: W^2+ through W^71+, At. Data Nucl. Data Tables, 2006, in press]. The method is based on Hartree-Fock calculations of electron binding energies with empirical scale factors. Relative uncertainties vary from 1.7 % for W III^ to 0.015 % for W LXXII. Combined with previously known experimental or theoretical IE values for W I-II and LXXIII-LXXIV, these new semiempirical results allow us to build a complete table of IEs of tungsten in all stages of ionization. For gallium, all available experimental data on wavelengths and energy levels are critically compiled and evaluated [T. Shirai, J. Reader, A.E. Kramida, J. Sugar, Spectral Data for Gallium: Ga I through Ga XXXI, J. Phys. Chem. Ref. Data, 2006, in press]. Such data exist for spectra Ga I-VII, XIII-XXVI, and XXX. For Li-like Ga XXIX through H-like Ga XXXI, theoretical data on energy levels and line wavelengths are compiled. For Ga I-III, XV-XX, XXIII-XXVI, and XXX, radiative transition probabilities are included where available. The ground state configuration and term and a value of IE are included for each ion. This work was supported in part by the Office of Fusion Energy Sciences of the U. S. Department of Energy.

  16. FITPULS: a code for obtaining analytic fits to aggregate fission-product decay-energy spectra. [In FORTRAN

    SciTech Connect

    LaBauve, R.J.; George, D.C.; England, T.R.

    1980-03-01

    The operation and input to the FITPULS code, recently updated to utilize interactive graphics, are described. The code is designed to retrieve data from a library containing aggregate fine-group spectra (150 energy groups) from fission products, collapse the data to few groups (up to 25), and fit the resulting spectra along the cooling time axis with a linear combination of exponential functions. Also given in this report are useful results for aggregate gamma and beta spectra from the decay of fission products released from /sup 235/U irradiated with a pulse (10/sup -4/ s irradiation time) of thermal neutrons. These fits are given in 22 energy groups that are the first 22 groups of the LASL 25-group decay-energy group structure, and the data are expressed both as MeV per fission second and particles per fission second; these pulse functions are readily folded into finite fission histories. 65 figures, 11 tables.

  17. The effects of ion temperature on the energy spectra of T + T → 2n + α reaction products

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2016-06-01

    The effects of ion temperature on the energy spectra of products of the T + T → 2n + α reaction are modelled and analysed. A model is derived by assuming that the spectra in the centre of mass (CM) frame for a given reaction energy are known. The model is then applied to two different sets of data for the energy spectra in the CM frame. In both cases, it is shown that varying the ion temperature causes significant changes in the shapes of the n and α spectra. For the n spectrum, the apparent intensity of sequential decay through the ground state of 5He decreases with increasing temperature. For the α spectrum, the sharp edge in the CM frame spectrum near 3.75 MeV caused by the dineutron reaction channel results in a thermally broadened spectrum with a high-energy tail at energies > 4 MeV. Knowledge of such features may help to interpret data from experiments designed to investigate the T + T reaction at low reaction energies.

  18. Comparison of pka energy spectra, gas-atom production and damage energy deposition in neutron irradiation at various facilities

    NASA Astrophysics Data System (ADS)

    Nishiguchi, R.; Shimomura, Y.; Hahn, P. A.; Guinan, M. W.; Kiritani, M.

    1991-03-01

    By dividing neutron-energy spectrum into four energy groups, (I) <10 eV, (II) 10 eV to 0.1 MeV, (III) 0.1 MeV to 10 MeV and (IV) > 10 MeV, contributions to damage parameters (PKA spectrum, damage energy and gas-atom production) from each of the energy group were calculated for neutron irradiations at various facilities with the SPECTER code developed by Greenwood and Smither [1]. The normalized PKA spectra and the gas-atom productions were compared to examine differences in damage parameters. Such comparisons were carried out among (1) irradiations at various positions in different fission reactors (i.e. KUR, JOYO and FFTF-MOTA), and among (2) those at various fission reactors. Damage parameters were also calculated at STARFIRE fusion reactor and RTNS-II. A possible method to correlate damages at different fission reactors is discussed. It is suggested that damages in fusion reactor can be simulated by the superposition of irradiations with fission and D-T neutrons.

  19. Nuclear composition and energy spectra in the 1969 April 12 solar-particle event.

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Fichtel, C. E.; Reames, D. V.

    1972-01-01

    Measurement of the charge composition for several of the multicharged nuclei and the energy spectra for hydrogen, helium, and medium (6 less than or equal to Z less than or equal to 9) nuclei in the Apr. 12, 1969, solar-particle event. The energy/nucleon spectral shape of the medium nuclei was again the same as that of the helium nuclei, and the ratio of these two species was consistent with the present best average of 58 plus or minus 5. By combining the results obtained here with previous work, improved estimates of the Ne/O and Mg/O values of 0.16 plus or minus 0.03 and 0.056 plus or minus 0.014, respectively, were obtained. Silicon and sulfur abundances relative to O were determined to be 0.208 plus or minus 0.008 plus or minus 0.006, respectively, and 85% confidence upper limits for Ar and Ca relative to O of 0.017 and 0.010 were obtained. Previously, these last four nuclei had only been listed as a group.

  20. Determination Of The Elements In The Olive Oil Responsible For The Luminescence Spectra Using A Green Laser

    NASA Astrophysics Data System (ADS)

    Fawaz, Saiof; Mahmod, Al-gafary; Lamia, Al-mamouly

    2009-09-01

    In this paper, we were able to record luminescence spectra of olive, sunflower, corn, gourd and laurel oils, chlorophyll and carotene by using an argon laser (488-514 nm) and second harmonic Nd-YAG laser (532 nm) along with a monochromator whose spectral range is 400-900 nm. Only when the luminescence light is vertical to laser light, two new peaks 540 nm and 673 nm have been detected with the latter one is more intense. In discussing our results, we succeeded in determining which materials in olive oil are responsible for producing the luminescence spectral peak; 673 nm. The experimental data has shown that the chlorophyll is the main part of the olive components which gives the olive oil luminescence spectral peak; 673 nm. The other luminescence spectral peak; 540 nm was common to all different kinds of oil in general.

  1. Rapid and non-destructive analysis of metallic dental restorations using X-ray fluorescence spectra and light-element sampling tools

    NASA Astrophysics Data System (ADS)

    Furuhashi, K.; Uo, M.; Kitagawa, Y.; Watari, F.

    2012-12-01

    IntroductionRecently, allergic diseases caused by dental metals have been increasing. Therefore, rapid and accurate analytical methods for the metal restorations in the oral cavities of patients are required. The purpose of this study was to develop a non-destructive extraction method for dental alloys, along with a subsequent, rapid and accurate elemental analysis. Materials and methodSamples were obtained by polishing the surfaces of metal restorations using a dental rotating tool with disposable buffs and polishing pastes. As materials for the analysis, three dental alloys were used. To compare the sampling and analysis efficiencies, two buffs and seven pastes were used. After polishing the surface of a metal restoration, the buff was analyzed using X-ray scanning analytical microscopy (XSAM). ResultsThe efficiency of the analysis was judged based on the sampling rate achieved and the absence of disturbing elements in the background in fluorescence X-ray spectra. The best results were obtained for the combination of TexMet as a buff with diamond as a paste. This combination produced a good collection efficiency and a plain background in the fluorescence X-ray spectra, resulting in a high precision of the analysis.

  2. Energy-time entanglement, elements of reality, and local realism

    NASA Astrophysics Data System (ADS)

    Jogenfors, Jonathan; Larsson, Jan-Åke

    2014-10-01

    The Franson interferometer, proposed in 1989 (Franson 1989 Phys. Rev. Lett. 62 2205-08), beautifully shows the counter-intuitive nature of light. The quantum description predicts sinusoidal interference for specific outcomes of the experiment, and these predictions can be verified in experiment. In the spirit of Einstein, Podolsky, and Rosen it is possible to ask if the quantum-mechanical description (of this setup) can be considered complete. This question will be answered in detail in this paper, by delineating the quite complicated relation between energy-time entanglement experiments and Einstein-Podolsky-Rosen (EPR) elements of reality. The mentioned sinusoidal interference pattern is the same as that giving a violation in the usual Bell experiment. Even so, depending on the precise requirements made on the local realist model, this can imply (a) no violation, (b) smaller violation than usual, or (c) full violation of the appropriate statistical bound. Alternatives include (a) using only the measurement outcomes as EPR elements of reality, (b) using the emission time as EPR element of reality, (c) using path realism, or (d) using a modified setup. This paper discusses the nature of these alternatives and how to choose between them. The subtleties of this discussion needs to be taken into account when designing and setting up experiments intended to test local realism. Furthermore, these considerations are also important for quantum communication, for example in Bell-inequality-based quantum cryptography, especially when aiming for device independence. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

  3. Energy response of LiF (TLD-100) and CaSO4:Dy TL dosimeters to different diagnostic spectra.

    PubMed

    Servomaa, A J

    1985-08-01

    Energy response of LiF (TLD-100) and CaSO4:Dy TL dosimeters to different diagnostic X-ray spectra has been studied. Through energy response the X-ray spectrum influences the dose to be measured with a thermoluminescence dosimeter. The energy responses of both dosimeters were calculated with typical diagnostic high voltages 60-140 kVp and with 1-50 mmAl total filtrations for 2-pulse and constant potential generators. Theoretical X-ray spectra were used. Pulse form and small differences in high voltage and in total filtration do not cause any significant error in measured dose due to energy response. The ratio of the energy responses of CaSO4: Dy and LiF does not produce a sufficiently strongly sloping curve as a function of high voltage for the determination of the half-value layer with typical diagnostic exposure values.

  4. Modular multi-element high energy particle detector

    DOEpatents

    Coon, D.D.; Elliott, J.P.

    1990-01-02

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins projecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array. 5 figs.

  5. Modular multi-element high energy particle detector

    DOEpatents

    Coon, Darryl D.; Elliott, John P.

    1990-01-02

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins porjecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array.

  6. R-matrix description of particle energy spectra produced by low-energy 3H + 3H reactions

    DOE PAGESBeta

    Brune, C. R.; Caggiano, J. A.; Sayre, D. B.; Bacher, A. D.; Hale, G. M.; Paris, M. W.

    2015-07-20

    An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the 3H + 3H→ 2n + α reaction. The calculation includes the n alpha and n n interactions in the final state, angular momentum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from 3H + 3H as well as particle spectra from 3He + 3He. The R-matrix approach presented heremore » is very general, and can be adapted to a wide variety of problems with three-body final states.« less

  7. Enforcing elemental mass and energy balances for reduced order models

    SciTech Connect

    Ma, J.; Agarwal, K.; Sharma, P.; Lang, Y.; Zitney, S.; Gorton, I.; Agawal, D.; Miller, D.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length, as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a

  8. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    SciTech Connect

    Kroc, T.K.; /Fermilab

    2009-10-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  9. Derivation of photon energy spectra from transmission measurements using large fields

    NASA Astrophysics Data System (ADS)

    Nes, Elena

    Modern treatment planning systems based on Monte Carlo technique require, in order to calculate the dose, knowledge of the photon spectra produced by medical linear accelerators. The accuracy of the dose determination will increase when the spectra are better known. In the present work the 6 MV photon spectrum of a Varian 2100C linear accelerator was determined from attenuation measurements performed in large fields. The iterative algorithm written in MathematicaRTM used as input data Monte Carlo-predetermined pencil beam monoenergetic scatter kernels for various water phantom thicknesses, open beam fluences and beam fluences measured in air with phantoms of different thicknesses placed in the beam. The experimental data was measured using an ionization chamber and two types of film, GAFCHROMICRTMEBT film and KODAK EDR2 film. The iteration started with a flat spectrum used to calculate the polyenergetic kernels for each water thickness. The spectrum-dependent scatter for different thicknesses of water was calculated convolving the corresponding polyenergetic kernel with the signal obtained with the water phantom removed from the beam. For each thickness of water, transmissions on the central axis were given by the ratios of central axis primary fluences to the open beam fluence. The reconstructed energy spectrum was determined from the transmission values using the simulated annealing technique. Simulated annealing was preferred because it reaches the true global minimum better than other optimization techniques. The spectrum determined at the end of the simulated annealing loop was compared to the input spectrum of the general algorithm. If they matched within acceptable errors this was the final primary spectrum. If not, the spectrum was fed as input for a new iteration. Monte Carlo monoenergetic scatter kernels were derived for six water thicknesses. The amplitude of the monoenergetic scatter kernels increases with energy and water phantom thickness. For thin

  10. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    SciTech Connect

    Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  11. Additions to the spectra and energy levels of the zinc-like ions Y X-Cd XIX

    NASA Astrophysics Data System (ADS)

    Litzén, Ulf; Hansson, Anna

    1989-10-01

    Transitions from 4p4d 1F and 3F have been identified in the spectra Y X-Cd XIX emitted from laserproduced plasmas. Energy levels have been derived, and the term structure has been studied with special emphasis on the 4s4f-4p4d configuration interaction.

  12. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

    DOE PAGESBeta

    Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.

    2014-12-15

    The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introducedmore » by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.« less

  13. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

    SciTech Connect

    Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.

    2014-12-15

    The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introduced by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.

  14. A comparison of depth dependence of dose and linear energy transfer spectra in aluminum and polyethylene

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.

    2000-01-01

    A set of four tissue-equivalent proportional counters (TEPCs), with their detector heads at the centers of 0 (bare), 3, 7 and 9-inch-diameter aluminum spheres, were flown on Shuttle flight STS-89. Five such detectors at the centers of polyethylene spheres were flown 1 year earlier on STS-81. The results of dose-depth dependence for the two materials convincingly show the merits of using material rich in hydrogen to decrease the radiation exposure to the crew. A comparison of the calculated galactic cosmic radiation (GCR) absorbed dose and dose-equivalent rates using the radiation transport code HZETRN with nuclear fragmentation model NUCFRG2 and the measured GCR absorbed dose rates and dose-equivalent rates shows that they agree within root mean square (rms) error of 12.5 and 8.2%, respectively. However, there are significant depth-dependent differences in the linear energy transfer (LET) spectra. A comparison for trapped protons using the proton transport code BRYNTRN and the AP-8 MIN trapped-proton model shows a systematic bias, with the model underpredicting dose and dose-equivalent rates. These results show the need for improvements in the radiation transport and/or fragmentation models.

  15. Moments, magnitudes, and radiated energies of non-volcanic tremor near Cholame, CA, from ground motion spectra at UPSAR

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2011-01-01

    By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f−2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω−2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.

  16. Analysis of Electron and Antineutrino Energy Spectra from Fissile Samples under Irradiation based on Gross Theory of Beta-decay

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Tachibana, T.; Chiba, S.

    2016-06-01

    We applied the gross theory of β-decay to calculate the reactor electron and antineutrino ({{{bar ν }}{e}}) spectra emitted from 235,238U and 239,241Pu by summing up all the contributions from a large number of decaying fission-products (FPs). We make it clear what kinds of transition types and FP nuclides are important to shape the lepton spectra. After taking the ambiguity in the current data for fission yields and Qβ-values into account, we suggested a possibility that the high-energy part of the widely referred electron-spectra by Schreckenbach et al., almost only one experimental data set available now, might possibly be too low. Arguments on a special role of the odd(Z)-odd(N) nuclides and on the consistency between U-238 and other fissiles in the experimental data lead to the importance of a new and independent measurement of electron energy spectra which could be converted into the reactor {{{bar ν }}{e}} spectra.

  17. Changes in local energy spectra with SPECT rotation for two Anger cameras

    SciTech Connect

    Koral, K.F.; Luo, J.Q.; Ahmad, W.; Buchbinder, S.; Ficaro, E.

    1995-08-01

    The authors investigated the shift of local energy spectra with SPECT rotation for the GE 400 AT and the Picker Prism 3000 tomographs. A Co-57 flood source was taped to the parallel-beam collimator of the GE 400 AT; a Tc-99m line source was placed at the focus of the fan-beam collimator of one head of the Picker Prism. The count-based method, which employs a narrow window (about 4 keV) on the maximum slope of the photopeak, was used with both systems. Non-linear, polynomial spectral fittings was applied to x-y-E data acquisitions with the GE camera. The fitting yielded either shifts or shifts and width changes. Results show (1) the shifts are pseudo-sinusoidal with angle and similar for different spatial locations, (2) the average of their absolute value is 0.71 keV and 0.13 keV for the GE and Picker cameras, respectively, (3) width changes for the GE camera are small and appear random, (4) the calculated shifts from the count-based method for the central part of the GE camera are correlated with those from the spectral fitting method. They are 12% smaller. The conclusion is that energy shift with angle may be present with many rotating cameras although they may be smaller with newer cameras. It might be necessary to account for them in schemes designed for high-accuracy compensation of Compton-scattered gamma rays although they possibly could be ignored for newer cameras.

  18. Investigating Possible Departures from Maxwellian Energy Distributions in Nebulae using High-Resolution Emission Line Spectra

    NASA Astrophysics Data System (ADS)

    Turbyfill, Amanda; Dinerstein, H. L.; Sterling, N. C.

    2014-01-01

    The derivation of ionic abundance ratios from collisionally excited emission lines in gaseous nebulae requires knowledge of the physical state of the gas, particularly the electron kinetic temperature, Te, to which the resulting abundances are highly sensitive. A long-standing problem in nebular analyses has been pervasive discrepancies among values of Te obtained from different diagnostic ratios for a single nebula. Recently, Nicholls et al. (2012, ApJ, 752, 148) have suggested that the nebular electrons may not obey an equilibrium Maxwell-Boltzmann (M-B) energy distribution, but instead follow a “κ distribution” seen in many solar system plasmas, a family of distributions for which the M-B distribution is the limiting case where κ → ∞. The high-energy tail of supra-thermal electrons in κ distributions have a disproportionate effect on strongly energy dependent quantities, such as Te diagnostics, for even modest departures from M-B distributions. We apply prescriptions given by Nicholls et al. (2013, ApJS, 207, 21) to high-resolution (R=36,700) optical spectra of 10 planetary nebulae obtained with the 2d-coudé echelle spectrograph on the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The advantages of these data include their broad spectral coverage and sufficiently high spectral resolution to separate blended lines and assess possible atmospheric absorption issues. The line fluxes were obtained using ROBOSPECT, an automated spectral line measurement package developed by Waters & Hollek (2013, PASP, 125, 1164). We solve both for Te under the assumption of M-B distributions, and the parameters of κ distributions consistent with the data. Our goal is to test whether the κ distribution hypothesis provides a better fit to the observed line ratios. Finally, we discuss effects on the derived ionic abundances under this alternate description of the particle energy distributions. This research was supported by NSF grant AST 0708245 and the John W

  19. Simulated vibrational spectra of aflatoxins and their demethylated products and the estimation of the energies of the demethylation reactions

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Móricz, Ágnes M.; Tyihák, Ernő; Mikosch, Hans

    2006-06-01

    The structure of four natural mycotoxins, the aflatoxin B 1, B 2, G 1 and G 2 and their demethylated products were optimized with quantum chemical method. The energies and the thermodynamic functions of the molecules were calculated and applied to calculation of the reaction energies of the demethylations. Further results of the calculations are the vibrational force constants, the infrared spectra of the molecules and the assignments of the spectral bands.

  20. Predictions on the transverse momentum spectra for charged particle production at LHC-energies from a two component model

    NASA Astrophysics Data System (ADS)

    Bylinkin, A. A.; Chernyavskaya, N. S.; Rostovtsev, A. A.

    2015-04-01

    Transverse momentum spectra, , of charged hadron production in -collisions are considered in terms of a recently introduced two component model. The shapes of the particle distributions vary as a function of the c.m.s. energy in the collision and the measured pseudorapidity interval. As a result the pseudorapidity of a secondary hadron in the moving proton rest frame is shown to be a universal parameter describing the shape of the spectra in pp-collisions. In order to extract predictions on the double-differential cross sections of hadron production for future LHC-measurements the different sets of available experimental data have been used in this study.

  1. Source indicators of humic substances and proto-kerogen - Stable isotope ratios, elemental compositions and electron spin resonance spectra

    NASA Technical Reports Server (NTRS)

    Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.

    1978-01-01

    Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.

  2. Uranium and Plutonium Average Prompt-fission Neutron Energy Spectra (PFNS) from the Analysis of NTS NUEX Data

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.; Shores, E. F.

    2014-05-01

    In neutron experiments (NUEX) conducted at the Nevada Test Site (NTS) by Los Alamos National Laboratory, the time-of-flight of fission-neutrons emitted from nuclear tests were observed by measuring the current generated by the collection of protons scattered from a thin CH2 foil many meters from the nuclear device into a Faraday cup. The time dependence of the Faraday cup current is a measure of the energy spectrum of the neutrons that leak from the device. With good device models and accurate neutron-transport codes, the leakage spectra can be converted into prompt fast-neutron-induced fission-neutron energy spectra. This has been done for two events containing plutonium, and for an earlier event containing uranium. The prompt-fission neutron spectra have been inferred for 1.5-MeV 239Pu(n,f) and 235U(n,f) reactions for outgoing neutron energies from 1.5 to ∼10.5 MeV, in 1-MeV steps. These spectra are in good agreement with the Los Alamos fission model.

  3. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    SciTech Connect

    Kawano, Toshihiko; Moller, Peter; Wilson, William B

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  4. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES

    SciTech Connect

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Rockosi, Constance M.; Geha, Marla C.; Sneden, Christopher; Sohn, Sangmo Tony; Majewski, Steven R.; Siegel, Michael

    2010-12-15

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([{alpha}/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

  5. Study of extensive air showers and primary energy spectra by MAKET-ANI detector on mountain Aragats

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Gharagyozyan, G.; Ghazaryan, S.; Hovsepyan, G.; Mamidjanyan, E.; Melkumyan, L.; Romakhin, V.; Vardanyan, A.; Sokhoyan, S.

    2007-09-01

    Small and middle size surface detectors measuring extensive air showers (EAS) initiated by primary cosmic rays (PCR) incident on terrestrial atmosphere have been in operation for the last 50 years. Their main goal is to explore the "knee" in all particle spectrum to solve the problem of cosmic ray (CR) origin and acceleration. The recent achievements of atmospheric Cherenkov telescopes and X-ray space laboratories, establishing the supernova remnants (SNRs) as a source of hadronic cosmic rays, pose stringent conditions on the quality of EAS evidence. After establishing the existence of the "knee" itself, the most pronounced result from EAS studies is the rigidity dependent shift of the knee position to the highest energies. This feature was first observed by separation of the primary flux in different mass groups in MAKET-ANI, EAS-TOP and KASCADE experiments. The MAKET-ANI detector is placed on Mt. Aragats (Armenia) at 3200 m above the sea level (40°25'N, 44°15'E). More than 1.3 × 10 6 showers with size greater than 10 5 particles were registered in 1997-2004. The detector effectively collected the cores of EAS, initiated by primaries with energies of 10 14-10 17 eV. After proving that the quality of the EAS size and shape reconstruction was reasonably high, we present the lateral distribution function (LDF) for distances from 10 to 120 m from EAS core and EAS size spectra in 5 zenith angle intervals. We use CORSIKA simulations to present the energy spectra. The results from the MAKET-ANI experiment on the energy spectra of the "light"(p + He) and "heavy" (O + Si + Fe) nuclear groups are compared to the spectra obtained by balloon experiments and to other available spectra.

  6. Simulation studies for operating electron beam ion trap at very low energy for disentangling edge plasma spectra

    SciTech Connect

    Jin Xuelong; Fei Zejie; Xiao Jun; Lu Di; Hutton, Roger; Zou Yaming

    2012-07-15

    Electron beam ion traps (EBITs) are very useful tools for disentanglement studies of atomic processes in plasmas. In order to assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. In this work, simulation studies for factors which hinder an EBIT to operate at very low electron energies were made based on the Tricomp (Field Precision) codes. Longitudinal, transversal, and total kinetic energy distributions were analyzed for all the electron trajectories. Influences from the electron current and electron energy on the energy depression caused by the space charge are discussed. The simulation results show that although the energy depression is most serious along the center of the electron beam, the electrons in the outer part of the beam are more likely to be lost when an EBIT is running at very low energy. Using the simulation results to guide us, we successfully managed to reach the minimum electron beam energy of 60 eV with a beam transmission above 57% for the SH-PermEBIT. Ar and W spectra were measured from the SH-PermEBIT at the apparent electron beam energies (read from the voltage difference between the electron gun cathode and the central drift tube) of 60 eV and 1200 eV, respectively. The spectra are shown in this paper.

  7. Simulation studies for operating electron beam ion trap at very low energy for disentangling edge plasma spectra

    NASA Astrophysics Data System (ADS)

    Jin, Xuelong; Fei, Zejie; Xiao, Jun; Lu, Di; Hutton, Roger; Zou, Yaming

    2012-07-01

    Electron beam ion traps (EBITs) are very useful tools for disentanglement studies of atomic processes in plasmas. In order to assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. In this work, simulation studies for factors which hinder an EBIT to operate at very low electron energies were made based on the Tricomp (Field Precision) codes. Longitudinal, transversal, and total kinetic energy distributions were analyzed for all the electron trajectories. Influences from the electron current and electron energy on the energy depression caused by the space charge are discussed. The simulation results show that although the energy depression is most serious along the center of the electron beam, the electrons in the outer part of the beam are more likely to be lost when an EBIT is running at very low energy. Using the simulation results to guide us, we successfully managed to reach the minimum electron beam energy of 60 eV with a beam transmission above 57% for the SH-PermEBIT. Ar and W spectra were measured from the SH-PermEBIT at the apparent electron beam energies (read from the voltage difference between the electron gun cathode and the central drift tube) of 60 eV and 1200 eV, respectively. The spectra are shown in this paper.

  8. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Hamilton, A. J. S.

    1991-01-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results.

  9. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    SciTech Connect

    Leahy, D.A.; Nousek, J.; Hamilton, A.J.S. Pennsylvania State University, University Park Joint Institute for Laboratory Astrophysics, Boulder, CO )

    1991-06-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results. 29 refs.

  10. Predominance of multielectron processes contributing to the intrinsic spectra of low-energy Auger transitions in copper and gold

    SciTech Connect

    Mukherjee, S. F.; Shastry, K.; Weiss, A. H.

    2011-10-15

    Positron-annihilation-induced Auger electron spectroscopy (PAES) was used to obtain Cu and Au Auger spectra that are free of primary-beam-induced backgrounds by impinging the positrons at an energy below the secondary-electron-emission threshold. The removal of the core electron via annihilation in the PAES process resulted in the elimination of postcollision effects. The spectra indicate that there is an intense low-energy tail (LET) associated with the Auger peak that extends all the way to 0 eV. The LET is interpreted as indicative of processes in which filling of the core hole by a valence electron results in the ejection of two or more valence electrons which share the energy of the conventional core-valence-valence Auger electron.

  11. The knee in the cosmic ray energy spectrum from the simultaneous EAS charged particles and muon density spectra

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Banik, Prabir; Bhadra, Arunava

    2016-09-01

    In this work we examine with the help of Monte Carlo simulation whether a consistent primary energy spectrum of cosmic rays emerges from both the experimentally observed total charged particles and muon size spectra of cosmic ray extensive air showers considering primary composition may or may not change beyond the knee of the energy spectrum. It is found that EAS-TOP observations consistently infer a knee in the primary energy spectrum provided the primary is pure unchanging iron whereas no consistent primary spectrum emerges from simultaneous use of the KASCADE observed total charged particle and muon spectra. However, it is also found that when primary composition changes across the knee the estimation of spectral index of total charged particle spectrum is quite tricky, depends on the choice of selection of points near the knee in the size spectrum.

  12. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  13. MEMS electrostatic vibration energy harvester without switches and inductive elements

    NASA Astrophysics Data System (ADS)

    Dorzhiev, V.; Karami, A.; Basset, P.; Dragunov, V.; Galayko, D.

    2014-11-01

    The paper is devoted to a novel study of monophase MEMS electrostatic Vibration Energy Harvester (e-VEH) with conditioning circuit based on Bennet's doubler. Unlike the majority of conditioning circuits that charge a power supply, the circuit based on Bennet's doubler is characterized by the absence of switches requiring additional control electronics, and is free from hardly compatible with batch fabrication process inductive elements. Our experiment with a 0.042 cm3 batch fabricated MEMS e-VEH shows that a pre-charged capacitor as a power supply causes a voltage increase, followed by a saturation which was not reported before. This saturation is due to the nonlinear dynamics of the system and the electromechanical damping that is typical for MEMS. It has been found that because of that coupled behavior there exists an optimal power supply voltage at which output power is maximum. At 187 Hz / 4 g external vibrations the system is shown to charge a 12 V supply with a output power of 1.8 μW.

  14. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  15. Thermomodulation spectra of high-energy interband transitions in Cu, Pd, Ag, Pt, and Au

    SciTech Connect

    Olson, C.G.; Lynch, D.W.; Rosei, R.

    1980-05-01

    Many f.c.c. metals exhibit a rise in the reflectance at about 18 eV, leading to a broad peak. Thermomodulation spectra in this region reveal a richly-structured spectra. We have made thermotransmission measurements on unsupported thin films of Cu, Pd, Ag, and Au, and thermoreflectance measurements on Pt in the 15 to 30 eV spectral region. The temperature-modulated transmittance spectrum can be shown to be simply -d..delta mu.., the sample thickness multiplied by the negative of the temperature-induced change in the absorption coefficient. No data treatment is necessary. For Pt the thermoreflectance spectra were Kramers-Kronig analyzed to get ..delta mu... The data obtained for these metals are given. The spectra do not change appreciably when the ambient temperature is changed.

  16. Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation

    NASA Astrophysics Data System (ADS)

    Richard, E.; Okumura, K.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.; Akutsu, R.; Irvine, T.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Labarga, L.; Fernandez, P.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Kropp, W. R.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Cao, S. V.; Hiraki, T.; Hirota, S.; Huang, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Xu, C.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.; Martin, J. F.; Konaka, A.; Chen, S.; Zhang, Y.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2016-09-01

    A comprehensive study of the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande (SK) water Cherenkov detector is presented in this paper. The energy and azimuthal spectra, and variation over time, of the atmospheric νe+ν¯ e and νμ+ν¯μ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the νe and νμ samples at 8.0 σ and 6.0 σ significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 σ level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is performed, and a weak preference for a correlation was seen at the 1.1 σ level, using SK-I-SK-IV data spanning a 20-year period. For several particularly strong solar activity periods, corresponding to Forbush decrease events, no theoretical prediction is available but a deviation below the typical neutrino event rate is seen at the 2.4 σ level. The seasonal modulation of the neutrino flux is also examined, but the change in flux at the SK site is predicted to be negligible, and, as expected, no evidence for a seasonal correlation is seen.

  17. Effects of Incident Electron Fluence and Energy on the Election Yield Curves and Emission Spectra of Dielectrics

    NASA Technical Reports Server (NTRS)

    Sim, Alec; Dennison, J. R.; Thomson, Clint

    2005-01-01

    We present an experimental study of evolution of electron emission yields and spectra as a result of internal charge build up due to electron dose. Reliable total, backscattered and secondary yield curves and electron emission spectra for un-charged insulators using a low fluence, pulsed electron beam (= or < 5 microsec at = or < 3 nA/sq mm or = or < 10(exp 5) e/sq mm per pulse) with low energy electron and UV flooding to neutralize the charging between pulses. Quantifiable changes in yield curves are observed due to < 100 fC/sq mm fluences for several excellent dielectric thin film materials. We find good agreement with a phenomenological argument based on insulator charging predicted by the yield curve; this includes an approximately linear decrease in the magnitude of the yield as incident energies approach the crossover energies and an exponential decrease in yield as accumulated internal charge reduces the landing energy to asymptotically approach a steady state surface charge and unity yield. We also find that the exponential decay of yield curves with fluence exhibit an energy dependent decay constant, alpha(E), over a broad range of incident energies below, between and above the crossover energies. Finally, we present some preliminary physics-based models for this energy dependence and attempt to relate our charging measurements to knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and transport, and how the profile of trapped charge affects the transport and emission of charges from insulators.

  18. ''Magic'' Energies for Detecting Light Elements with Resonant Alpha Particle Backscattering

    SciTech Connect

    Wetteland, C.J.; Maggiore, C.J.; Tesmer, J.R.; He, X-M.; Lee, D-H.

    1998-11-04

    Resonant backscattering is widely used to improve the detection limit of the light elements such as B, C, N and O. One disadvantage, however, is that several incident energies are normally needed if the sample contains a number of the light elements. There are ''magic'' energies at which several light elements can be detected simultaneously with suitable sensitivities. When these energies are used along with the elastic recoil detection of hydrogen, multiple elements can be detected without changing the beam energy, and the analysis time is greatly reduced. These reactions along with examples will be discussed.

  19. The quiet time spectra of low energy hydrogen and helium nuclei. [suggesting protons and alphas of solar origin

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1975-01-01

    Measurements of the 1972-1973 quiet time hydrogen and helium spectra from 1.3-40 MeV/nuc are discussed. For both spectra the relative-intensity minimum occurs at lower energies than those reported for earlier years. There is no evidence of a low energy turnup in the He spectrum down to 2.4 MeV/nuc. The spectra indicate that the galactic component dominates down to about 10 MeV; a stable, non-solar He-4 component extends from higher energies down to about 2.4 MeV/nuc. At lower energies the periods of minimum H and He intensity do not coincide, and the relative abundance of H and He at 1.3-2.3 MeV/nuc is variable, with H/He ratios ranging from about 3 to about 10. The observations suggest that the 1.3-2.3 MeV/nuc protons and alphas are of solar origin.

  20. Oxygen-induced changes in electron-energy-loss spectra for Al, Be and Ni. [Al; Be; Ni

    SciTech Connect

    Madden, H.H.; Landers, R.; Kleiman, G.G. , 13081-970 Campinas, Sao Paulo, Brasil); Zehner, D.M. )

    1999-09-01

    Electron-energy-loss spectroscopy (EELS) data are presented to illustrate line shape changes that occur as a result of oxygen interaction with metal surfaces. The metals were aluminum, beryllium and nickel. Core-level EELS data were taken for excitations from Al(2p), Be(1s), Ni(3p/3s) and O(1s) levels to the conduction band (CB) density of states (DOS) of the materials. The primary beam energies for the spectra were 300, 450, 300, and 1135 eV, respectively. The data are presented in both the (as measured) first-derivative and the integral forms. The integral spectra were corrected for coherent background losses and analyzed for CB DOS information. These spectra were found to be in qualitative agreement with published experimental and theoretical studies of these materials. One peak in the spectra for Al oxide is analyzed for its correlation with excitonic screening of the Al(2p) core hole. Similar evidence for exciton formation is found in the Ni(3p) spectra for Ni oxide. Data are also presented showing oxygen-induced changes in the lower-loss-energy EELS curves that, in the pure metal, are dominated by plasmon-loss and interband-transition signals. Single-scattering loss profiles in the integral form of the data were calculated using a procedure of Tougaard and Chorkendorff [S. Tougaard and I. Chorkendorff, Phys. Rev. B. [bold 35], 6570 (1987)]. For all three oxides these profiles are dominated by a feature with a loss energy of around 20[endash]25 eV. Although this feature has been ascribed by other researchers as due to bulk plasmon losses in the oxide, an alternative explanation is that the feature is simply due to O(2s)-to-CB-level excitations. An even stronger feature is found at 7 eV loss energy for Ni oxide. Speculation is given as to its source. The line shapes in both the core-level and noncore-level spectra can also be used simply as [open quotes]fingerprints[close quotes] of the surface chemistry of the materials. Our data were taken using commercially

  1. Neutron Energy and Time-of-flight Spectra Behind the Lateral Shield of a High Energy Electron Accelerator Beam Dump, Part II: Monte Carlo Simulations

    SciTech Connect

    Roesler, Stefan

    2002-09-19

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  2. Experimental measurement of energy density in a vibrating plate and comparison with energy finite element analysis

    NASA Astrophysics Data System (ADS)

    Navazi, H. M.; Nokhbatolfoghahaei, A.; Ghobad, Y.; Haddadpour, H.

    2016-08-01

    In this paper, a new method and formulation is presented for experimental measurement of energy density of high frequency vibrations of a plate. By use of the new proposed method and eight accelerometers, both kinetic and potential energy densities are measured. Also, a computer program is developed based on energy finite element method to evaluate the proposed method. For several points, the results of the developed experimental formulation are compared with those of the energy finite element analysis results. It is observed that, there is a good agreement between experimental results and analyses. Finally, another test setup with reduced accelerometer spacing was prepared and based on the comparison between kinetic and potential results, it is concluded that, the kinetic and potential counterparts of the energy density are equal in high frequency bands. Based on this conclusion, the measurement procedure was upgraded to an efficient and very simple one for high frequency ranges. According to the new test procedure, another experimental measurement was performed and the results had a good agreement with the EFEA results.

  3. Statistical Energy Analysis (SEA) and Energy Finite Element Analysis (EFEA) Predictions for a Floor-Equipped Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.

    2011-01-01

    Comet Enflow is a commercially available, high frequency vibroacoustic analysis software founded on Energy Finite Element Analysis (EFEA) and Energy Boundary Element Analysis (EBEA). Energy Finite Element Analysis (EFEA) was validated on a floor-equipped composite cylinder by comparing EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) and experimental results. Statistical Energy Analysis (SEA) predictions were made using the commercial software program VA One 2009 from ESI Group. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 100 Hz to 4000 Hz.

  4. Measurement of energy spectra of small-angle scattering and distribution of optical microinhomogeneities in laser ceramics

    SciTech Connect

    Tverdokhleb, P E; Shepetkin, Yu A; Steinberg, I Sh; Belikov, A Yu; Vatnik, S M; Vedin, I A; Kurbatov, P F

    2014-06-30

    The energy spectra of small-angle light scattering from the samples of Nd:YAG ceramics and the spatial distributions of optical microinhomogeneities in them are measured. The spatial profiles of microinhomogeneities are found using the collinear heterodyne microprobe technique. Based on the obtained data, the comparison of noise and lasing characteristics of foreign and domestic samples of laser ceramics is carried out. (extreme light fields and their applications)

  5. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    SciTech Connect

    Alemi, Mallory; Loring, Roger F.

    2015-06-07

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes.

  6. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    PubMed Central

    Alemi, Mallory; Loring, Roger F.

    2015-01-01

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes. PMID:26049437

  7. ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra.

    PubMed

    Mukherjee, Bhaskar

    2004-01-01

    The thresholds of (n,xn) reactions in various activation detectors are commonly used to unfold the neutron spectra covering a broad energy span, i.e. from thermal to several hundreds of MeV. The saturation activities of the daughter nuclides (i.e. reaction products) serve as the input data of specific spectra unfolding codes, such as SAND-II and LOUHI-83. However, most spectra unfolding codes, including the above, require an a priori (guess) spectrum to starting up the unfolding procedure of an unknown spectrum. The accuracy and exactness of the resulting spectrum primarily depends on the subjectively chosen guess spectrum. On the other hand, the Genetic Algorithm (GA)-based spectra unfolding technique ANDI-03 (Activation-detector Neutron DIfferentiation) presented in this report does not require a specific starting parameter. The GA is a robust problem-solving tool, which emulates the Darwinian Theory of Evolution prevailing in the realm of biological world and is ideally suited to optimise complex objective functions globally in a large multidimensional solution space. The activation data of the 27Al(n,alpha)24Na, 116In(n,gamma)116mIn, 12C(n,2n)11C and 209Bi(n,xn)(210-x)Bi reactions recorded at the high-energy neutron field of the ISIS Spallation source (Rutherford Appleton Laboratory, UK) was obtained from literature and by applying the ANDI-03 GA tool, these data were used to unfold the neutron spectra. The total neutron fluence derived from the neutron spectrum unfolded using GA technique (ANDI-03) agreed within +/-6.9% (at shield top level) and +/-27.2% (behind a 60 cm thick concrete shield) with the same unfolded with the SAND-II code.

  8. ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra.

    PubMed

    Mukherjee, Bhaskar

    2004-01-01

    The thresholds of (n,xn) reactions in various activation detectors are commonly used to unfold the neutron spectra covering a broad energy span, i.e. from thermal to several hundreds of MeV. The saturation activities of the daughter nuclides (i.e. reaction products) serve as the input data of specific spectra unfolding codes, such as SAND-II and LOUHI-83. However, most spectra unfolding codes, including the above, require an a priori (guess) spectrum to starting up the unfolding procedure of an unknown spectrum. The accuracy and exactness of the resulting spectrum primarily depends on the subjectively chosen guess spectrum. On the other hand, the Genetic Algorithm (GA)-based spectra unfolding technique ANDI-03 (Activation-detector Neutron DIfferentiation) presented in this report does not require a specific starting parameter. The GA is a robust problem-solving tool, which emulates the Darwinian Theory of Evolution prevailing in the realm of biological world and is ideally suited to optimise complex objective functions globally in a large multidimensional solution space. The activation data of the 27Al(n,alpha)24Na, 116In(n,gamma)116mIn, 12C(n,2n)11C and 209Bi(n,xn)(210-x)Bi reactions recorded at the high-energy neutron field of the ISIS Spallation source (Rutherford Appleton Laboratory, UK) was obtained from literature and by applying the ANDI-03 GA tool, these data were used to unfold the neutron spectra. The total neutron fluence derived from the neutron spectrum unfolded using GA technique (ANDI-03) agreed within +/-6.9% (at shield top level) and +/-27.2% (behind a 60 cm thick concrete shield) with the same unfolded with the SAND-II code. PMID:15353654

  9. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source.

    PubMed

    Leitner, D; Benitez, J Y; Lyneis, C M; Todd, D S; Ropponen, T; Ropponen, J; Koivisto, H; Gammino, S

    2008-03-01

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency. PMID:18377002

  10. MEASUREMENT OF THE HIGH ENERGY COMPONENT OF THE X-RAY SPECTRA INTHE VENUS ECR ION SOURCE

    SciTech Connect

    Leitner, Daniela; Benitez, Janilee Y.; Lyneis, Claude M.; Todd,Damon S.; Ropponen,Tommi; Ropponen,Janne; Koivisto, Hannu; Gammino, Santo

    2007-11-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for Nuclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental set-up to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular the collimation and background shielding can be problematic. In this paper we will discuss the experimental set-up for such a measurement, the energy calibration and background reduction, the correction for detector efficiency, the shielding of the detector and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power and heating frequency.

  11. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  12. The effect of dispersion forces on the interaction energies and far infrared spectra of protic ionic liquids.

    PubMed

    Ludwig, Ralf

    2015-06-01

    We could show by means of dispersion-corrected DFT calculations that the interaction energy in protic ionic liquids can be dissected into Coulomb interaction, hydrogen bonding and dispersion interaction. The H-bond energy as well as the dispersion energy can be quantified to be 50 kJ mol(-1) each representing ten percent of the overall interaction energy. The dispersion interaction could be dissected into two portions. One third could be related to the dispersion interaction within an ion-pair enhancing the H-bond strength, two thirds stem from dispersion interaction between the ion-pairs. This distribution of dispersion interaction is reflected in the far infrared (FIR) spectra. The H-bond band is shifted weaker than the low frequency band where the latter indicates diffuse cation-anion interaction and H-bond bending motions. Finally, we can dissect the different types of interaction energies indicating their characteristic influence on vibrational modes in the FIR.

  13. X-Ray Spectra of Young Pulsars and Their Wind Nebulae: Dependence on Spin-Down Energy Loss Rate

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.

    2003-01-01

    An observational model is presented for the spectra of young rotation-powered pulsars and their nebulae based on a study of nine bright Crab-like pulsar systems observed with the Chandra X-ray observatory. A significant correlation is discovered between the X-ray spectra of these pulsars and that of their associated pulsar wind nebulae, both of which are observed to be a function of the spin-down energy loss rate, E. The 2-10 keV spectra of these objects are well characterized by an absorbed power-law model with photon indices, Gamma, in the range of 0.6 < Gamma (sub PSR) < 2.1 and 1.3 < Gamma(sub PWN) < 2.3, for the pulsars and their nebulae, respectively. A linear regression fit relating these two sets of indexes yields Gamma(sub PWN) = 0.91 +/- 0.18 + (0.66 +/- 0.11) Gamma (sub PSR), with a correlation coefficient of r = 0.97. The spectra of these pulsars are found to steepen as Gamma = Gamma(sub max) + alpha E (exp -1/2), with Gamma(sub max) providing an observational limit on the spectral slopes of young rotation-powered pulsars. These results reveal basic properties of young pulsar systems, allow new observational constraints on models of pulsar wind emission, and provide a means of predicting the energetics of pulsars lacking detected pulsations.

  14. Raman spectra of normal and cancerous mouse mammary gland tissue using near infrared excitation energy

    NASA Astrophysics Data System (ADS)

    Naik, Vaman; Serhatkulu, G. K.; Dai, H.; Shukla, N.; Weber, R.; Thakur, J. S.; Freeman, D. C.; Pandya, A. K.; Auner, G. W.; Naik, R.; Miller, R. F.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra of normal mammary gland tissues, malignant mammary gland tumors, and lymph nodes have been recorded using fresh tissue from mice. Tumors were induced in mice by subcutaneously injecting 4T1 BALB/c mammary tumor (a highly malignant) cell line. The Raman spectra were collected using the same tissues that were examined by histopathology for determining the cancerous/normal state of the tissue. Differences in various peak intensities, peak shifts and peak ratios were analyzed to determine the Raman spectral features that differentiate mammary gland tumors from non-tumorous tissue. Tissues that were confirmed by pathology as cancerous (tumors) show several distinctive features in the Raman spectra compared to the spectra of the normal tissues. For example, the cancerous tissues show Raman peaks at 621, 642, 1004, 1032, 1175 and 1208 cm-1 that are assignable to amino acids containing aromatic side-chains such as phenylalanine, tryptophan and tyrosine. Further, the cancerous tissues show a greatly reduced level of phospholipids compared to the normal tissues. The Raman spectral regions that are sensitive to pathologic alteration in the tissue will be discussed.

  15. Extreme ultraviolet ionization of pure He nanodroplets: mass-correlated photoelectron imaging, Penning ionization, and electron energy-loss spectra.

    PubMed

    Buchta, D; Krishnan, S R; Brauer, N B; Drabbels, M; O'Keeffe, P; Devetta, M; Di Fraia, M; Callegari, C; Richter, R; Coreno, M; Prince, K C; Stienkemeier, F; Ullrich, J; Moshammer, R; Mudrich, M

    2013-08-28

    The ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He(+), He2(+), and He3(+). Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we observe inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.

  16. The fluorescence action spectra of some saturated hydrocarbon liquids for excitation energies above and below their ionization thresholds

    SciTech Connect

    Ostafin, A.E.; Lipsky, S. )

    1993-04-01

    Fluorescence action spectra have been obtained for the neat liquids, [ital cis]-decalin, [ital trans]-decalin, bicyclohexyl, cyclohexane, methylcyclohexane, isobutylcyclohexane, 2,3,4-trimethylpentane, 2,3-dimethylbutane, 3-methylhexane, 3-methylpentane, [ital n]-decane, [ital n]-dodecane, and [ital n]-pentadecane at excitation energies, [epsilon], ranging from their absorption onsets (at ca. 7 eV) to 10.3 eV. For all compounds, with the exception of [ital cis]-decalin, the fluorescence quantum yield is observed to monotonically decline with increasing [epsilon], reaching a minimum value at an energy, [epsilon][sub [ital m

  17. Preparation, crystal structure, spectra and energy levels of the trivalent ytterbium ion doped into rare earth stannates

    NASA Astrophysics Data System (ADS)

    Ning, Kaijie; Zhang, Qingli; Sun, Dunlu; Yin, Shaotang; Jiang, Haihe

    2011-11-01

    Yb3+-doped Rare Earth Stannates Ln2Sn2O7(Ln=Y, Gd) with space group Fd3m were synthesized by co-precipitation technique. Their structures were determined by Rietveld refinement to their X-ray diffraction, and their atom coordinates, lattice parameters and temperature factors were given. From emission, absorption and excitation spectra, the energy levels of Yb3+ in Ln2Sn2O7(Ln=Y, Gd) were assigned and the crystal field parameters were fitted to energy splitting of Yb3+-doped Ln2Sn2O7 (Ln=Y, Gd).

  18. Preparation, crystal structure, spectra and energy levels of the trivalent ytterbium ion doped into rare earth stannates

    NASA Astrophysics Data System (ADS)

    Ning, Kaijie; Zhang, Qingli; Sun, Dunlu; Yin, Shaotang; Jiang, Haihe

    2012-01-01

    Yb3+-doped Rare Earth Stannates Ln2Sn2O7(Ln=Y, Gd) with space group Fd3m were synthesized by co-precipitation technique. Their structures were determined by Rietveld refinement to their X-ray diffraction, and their atom coordinates, lattice parameters and temperature factors were given. From emission, absorption and excitation spectra, the energy levels of Yb3+ in Ln2Sn2O7(Ln=Y, Gd) were assigned and the crystal field parameters were fitted to energy splitting of Yb3+-doped Ln2Sn2O7 (Ln=Y, Gd).

  19. Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)

    2006-01-01

    Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.

  20. Transport analysis of measured neutron energy spectra in a graphite stack with a collimated deuterium-tritium neutron beam

    SciTech Connect

    Tsechanski, A.; Ofek, R.; Goldfeld, A.; Shani, G.

    1989-02-01

    The Ben-Gurion University measurements of neutron energy spectra in a graphite stack, resulting from the scattering of 14.7-MeV neutrons streaming through a 6-cm-diam collimator in a 121-cm-thick paraffin wall, have been used as a benchmark for the compatability and accuracy of discrete ordinates, P/sub n/, and transport calculations and as a tool for fusion reactor neutronics. The transport analysis has been carried out with the DOT 4.2 discrete ordinates code and with cross sections processed with the NJOY code. Most of the parameters affecting the accuracy of the flux and L system scattering cross sections in the P/sub n/ approximation, the quadrature set employed, and the energy multigroup structure. First, a spectrum calculated with DOT 4.2, with a detector located on the axis of the system, was compared with a spectrum calculated with the MCNP Monte Carlo code, which was a preliminary verification of the DOT 4.2 results. Both calculated spectra were in good agreement. Next, the DOT 4.2 calculations were compared with the measured spectra. The comparison showed that the discrepancies between the measurements and the calculations increase as the distance between the detector and the system axis increases. This trend indicates that when the flux is determined mainly by multiple scatterings, a more divided multigroup structure should be employed.

  1. XUV spectra of 2nd transition row elements: identification of 3d-4p and 3d-4f transition arrays

    NASA Astrophysics Data System (ADS)

    Lokasani, Ragava; Long, Elaine; Maguire, Oisin; Sheridan, Paul; Hayden, Patrick; O'Reilly, Fergal; Dunne, Padraig; Sokell, Emma; Endo, Akira; Limpouch, Jiri; O'Sullivan, Gerry

    2015-12-01

    The use of laser produced plasmas (LPPs) in extreme ultraviolet/soft x-ray lithography and metrology at 13.5 nm has been widely reported and recent research efforts have focused on developing next generation sources for lithography, surface morphology, patterning and microscopy at shorter wavelengths. In this paper, the spectra emitted from LPPs of the 2nd transition row elements from yttrium (Z = 39) to palladium (Z = 46), with the exception of zirconium (Z = 40) and technetium (Z = 43), produced by two Nd:YAG lasers which delivered up to 600 mJ in 7 ns and 230 mJ in 170 ps, respectively, are reported. Intense emission was observed in the 2-8 nm spectral region resulting from unresolved transition arrays (UTAs) due to 3d-4p, 3d-4f and 3p-3d transitions. These transitions in a number of ion stages of yttrium, niobium, ruthenium and rhodium were identified by comparison with results from Cowan code calculations and previous studies. The theoretical data were parameterized using the UTA formalism and the mean wavelength and widths were calculated and compared with experimental results.

  2. Relative Abundances and Energy Spectra of C, N, and 0 as Measured by the Advanced Thin Ionization Calorimeter Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Fazely, A. R.; Gunasingha, R. M.; Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.

    2003-01-01

    We present results on the spectra and the relative abundances of C, N, and 0 nuclei in the cosmic radiation as measured from the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) . The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate calorimeter. It is equipped with a large area mosaic of silicon detector pixels capable of charge identification from H to Fe. As a redundancy check for the charge identification and a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target.

  3. Spectra and energy levels of Tm3+:Y3Al5O12

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Hills, Marian E.; Macfarlane, Roger M.; Morrison, Clyde A.; Turner, Gregory A.; Quarles, Gregory J.; Kintz, Gregory J.; Esterowitz, Leon

    1989-11-01

    Absorption spectra of Tm3+:Y3Al5O12 are reported between 1.9 and 0.26 μm at 15 and 90 K, and between 0.80 and 0.35 μm at 1.6 K. Laser-excited emission obtained at 80 K is also reported from the Tm3+ manifolds 1D2, 1G4, 3H4, and 3F4 to the ground-state manifold, 3H6. The emission from 1D2 also includes transitions to Stark levels in manifolds 3F4, 3F3, and 3F2. Analysis of the emission spectra confirms the experimental crystal-field splitting deduced from an analysis of the hot-band absorption data. Both emission and absorption spectra indicate that Tm3+ ions occupy several different sites although the majority of Tm3+ ions appear to substitute for Y3+ ions in dodecahedral lattice sites (D2 point-group symmetry). The most intense spectra are analyzed assuming selection rules for D2 symmetry. A lattice-sum calculation predicts a symmetry of Γ2 for the ground state. Using this result the symmetries of 20 Γ1, 11 Γ2, 17 Γ3, and 18 Γ4 Stark levels were identified experimentally and compared with results from a crystal-field splitting calculation. A Hamiltonian consisting of Coulombic, spin-orbit, interconfiguration-interaction, and crystal-field (D2 symmetry) terms was parametrized and diagonalized for all manifolds of the Tm3+(4f12) configuration. The rms deviation between 66 experimental and calculated Stark levels was 11 cm-1.

  4. Multisite optical spectra and energy levels of trivalent thulium ions in yttrium scandium gallium garnet

    NASA Astrophysics Data System (ADS)

    Seltzer, Michael D.; Gruber, John B.; Hills, Marian E.; Quarles, Gregory J.; Morrison, Clyde A.

    1993-08-01

    Intrinsic structural disorder in scandium-substituted garnets, attributed to mixed occupancy of certain sites in the crystal lattice by different cations, has direct consequences for the optical spectra of rare-earth activator ions dispersed over multiple sites. In trivalent thulium-doped yttrium scandium gallium garnet (Tm3+:YSGG), site-selective laser excitation spectra reveal the presence of Tm3+ ions in regular D2 sites, disturbed regular sites, and in octahedral C3i sites. Absorption spectra obtained at 4 K between 0.26 and 1.85 μm are broader than those observed in more-ordered crystal hosts and include structure attributed to Tm3+ ions in sites of other than D2 symmetry. A crystal-field splitting calculation was carried out in which a parametrized Hamiltonian (including Coulombic, spin-orbit, and crystal-field terms for Tm3+ ions in D2 symmetry) was diagonalized for all manifolds of the Tm3+ (4f12) configuration. The rms deviation between 52 experimental and calculated Stark levels of Tm3+ in regular D2 sites was 5 cm-1.

  5. Differential energy spectra of low energy (less than 8.5 MeV per nucleon) heavy cosmic rays during solar quiet times. [from Explorer 47 satellite observation

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Vollmer, O.; Gloeckler, G.; Fan, C. Y.

    1973-01-01

    Explorer 47 satellite observations of carbon, oxygen, and heavier nuclei differential energy spectra below 8.5 MeV/nucleon are presented for solar quiet time periods. A dE/dx vs E method for particle identification and energy determination was used. The instrumentation telescope included an isobutane proportional counter, a surface barrier Si detector, and a cylindrical plastic scintillator anticoincidence shield. The observations were performed outside the bow-shock and in the ecliptic plane. Results show an anisotropy of about 25% at 22 degrees west of the sun with a C/O ratio of 0.5 supporting a solar origin. The low energy portions of the C and O spectra have steep negative slopes, and the corresponding power law is given. Peculiarities in the O spectrum are discussed.

  6. Evaluation of turbulent magnetic energy spectra in the three-dimensional wave vector domain in the solar wind

    SciTech Connect

    Gary, S Peter; Narita, Y; Glassmeier, K H; Goldstein, M L; Safraoui, F; Treumann, R A

    2009-01-01

    Using four-point measurements of the CLUSTER spacecraft, the energy distribution of magnetic field fluctuations in the solar wind is determined directly in the three-dimensional wave vector domain in the range 3 x 10{sup -4} rad/km < k < 3 x 10{sup -3} rad/km. The analysis method takes account of a regular tetrahedron configuration of CLUSTER and the Doppler effect. The energy distribution in the flow rest frame is anisotropic, characterized by two distinct extended structures perpendicular to the mean magnetic field and furthermore perpendicular to the flow direction. The three-dimensional distribution is averaged around the direction of the mean magnetic field direction, and then is further reduced to one-dimensional distributions in the wave number domain parallel and perpendicular to the mean magnetic field. The one-dimensional energy spectra are characterized by the power law with the index -5/3 and furthermore very close energy density between parallel and perpendicular directions to the mean magnetic field at the same wave numbers. Though the distributions and the spectra are not covered in a wide range of wave vectors, our measurements suggest that the solar wind fluctuation is anisotropic in the three-dimensional wave vector space. It is, however, rather isotropic when reduced into the parallel and perpendicular wave vector geometries due to the second anisotropy imposed by the flow direction.

  7. Neutron energy and time-of-flight spectra behind the lateral shield of a high energy electron accelerator beam dump. Part II: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Roesler, S.; Liu, J. C.; Rokni, S. H.; Taniguchi, S.

    2003-05-01

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight spectra were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  8. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  9. Spectra and energy levels of Er3+(4f11) in NaBi(WO4)2

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Sardar, Dhiraj K.; Russell, Charles C.; Yow, Raylon M.; Zandi, Bahram; Kokanyan, Edvard P.

    2003-12-01

    Absorption and fluorescence spectra of Er3+(4f11) in crystals of NaBi(WO4)2 (NBW) are reported at temperatures between 15 K and room temperature. The absorption spectra include the details of the crystal-field splitting of 11 multiplet manifolds, 2S+1LJ of Er3+(4f11), spanning the wavelength range between 350 nm and 1550 nm. The crystal-field splitting of the ground-state 4I15/2, is obtained from an analysis of the fluorescence spectrum, 4S3/2→4I15/2. Spectra are characterized by inhomogeneous broadening due to the disordered crystal structure in which different valency cations, Na+ and Bi3+, statistically fill the S4 symmetry sites. The Er3+ ions likely replace the Bi3+ ions in these sites. A quasi-center model has been chosen to interpret the crystal-field splitting of each manifold, using D2d rather than S4 symmetry as the site for the rare-earth ion in the lattice. To test the feasibility of the model, the splitting of the energy levels of Nd3+ in NBW was carried out first and compared with experimental levels reported in literature. A least-squares fitting analysis between 26 calculated-to-observed energy (Stark) levels gave a root-mean-square (rms) deviation of 8 cm-1 for the 4IJ and 4F3/2 multiplet manifolds of Nd3+ in NBW. Using the phenomenological lattice-sum parameters, Anm, obtained from the analysis of the Nd3+ energy levels, we predicted an initial set of crystal-field parameters, Bnm, for Er3+. With only a modest fitting of the multiplet centroids, these Bnm predict the observed splitting in the Er3+ spectra remarkably well. In a fitting of the energy levels in which both the Bnm and centroids are allowed to vary, we obtained a rms deviation of 6 cm-1 for 57 calculated-to-observed Stark levels. The results suggest that the quasi-center model has merit when used to calculate the crystal-field splitting of the energy levels of the trivalent rare-earth ions in crystal hosts having a disordered structure.

  10. Elemental composition of low energy Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Ferrando, P.; Lal, N.; McDonald, F. B.

    1989-03-01

    This paper describes new measurements (at about 100 MeV/n) of elemental ratios in cosmic rays, made from Voyager 2 at about 22.5 AU. These data are characterized by a very low level of solar modulation, which results from the combination of the 1986-1987 solar minimum period and the large heliocentric distance. The data were obtained from one of the two HET telescopes on board Voyager 2, collected during 1986 and 1987; the charges were derived from a double dE/dx vs E analysis. The results on the secondary/primary elemental ratios are presented along with previous results obtained at 1 AU by IMP-8 and ISEE-3.

  11. Calculation of gain and luminescence spectra of quantum-cascade laser structures taking into account asymmetric emission line broadening

    SciTech Connect

    Ushakov, D V; Manak, I S; Kononenko, V K

    2010-05-26

    The energy levels, wave functions, and matrix elements of optical dipole transitions are calculated numerically for superlattice quantum-cascade structures. The effect of spectral broadening on the shape of emission spectra is estimated and semiphenomenological asymmetric profiles of emission line broadening are proposed. It is shown that the electroluminescence spectra well agree with the calculated spontaneous recombination spectra. (lasers)

  12. A new background subtraction method for energy dispersive X-ray fluorescence spectra using a cubic spline interpolation

    NASA Astrophysics Data System (ADS)

    Yi, Longtao; Liu, Zhiguo; Wang, Kai; Chen, Man; Peng, Shiqi; Zhao, Weigang; He, Jialin; Zhao, Guangcui

    2015-03-01

    A new method is presented to subtract the background from the energy dispersive X-ray fluorescence (EDXRF) spectrum using a cubic spline interpolation. To accurately obtain interpolation nodes, a smooth fitting and a set of discriminant formulations were adopted. From these interpolation nodes, the background is estimated by a calculated cubic spline function. The method has been tested on spectra measured from a coin and an oil painting using a confocal MXRF setup. In addition, the method has been tested on an existing sample spectrum. The result confirms that the method can properly subtract the background.

  13. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791—ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    SciTech Connect

    Merchant Boesgaard, Ann; Lum, Michael G.; Deliyannis, Constantine P. E-mail: mikelum@ifa.hawaii.edu

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  14. The Old, Super-metal-rich Open Cluster, NGC 6791—Elemental Abundances in Turn-off Stars from Keck/HIRES Spectra

    NASA Astrophysics Data System (ADS)

    Boesgaard, Ann Merchant; Lum, Michael G.; Deliyannis, Constantine P.

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]n with a mean of -0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  15. Implementation of a strain energy-based nonlinear finite element in the object-oriented environment

    NASA Astrophysics Data System (ADS)

    Wegner, Tadeusz; Pęczak, Andrzej

    2010-03-01

    The objective of the paper is to describe a novel finite element computational method based on a strain energy density function and to implement it in the object-oriented environment. The original energy-based finite element was put into the known standard framework of classes and handled in a different manner. The nonlinear properties of material are defined with a modified strain energy density function. The local relaxation procedure proposed as a method used to resolve a nonlinear problem is implemented in C++ language. The hexahedral element with eight nodes as well as the adaptation of the nonlinear finite element is introduced. The chosen numerical model is made of nearly incompressible hyperelastic material. The application of the proposed element is shown on the example of a rectangular parallelepiped with a hollow port.

  16. Simple formulas for strain-energy release rates with higher order and singular finite elements

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1986-01-01

    A general finite element procedure for obtaining strain-energy release rates for crack growth in isotropic materials is presented. The procedure is applicable to two-dimensional finite element analyses and uses the virtual crack-closure method. The procedure was applied to non-singular 4-noded (linear), 8-noded (parabolic), and 12-noded (cubic) elements and to quarter-point and cubic singularity elements. Simple formulas for strain-energy release rates were obtained with this procedure for both non-singular and singularity elements. The formulas were evaluated by applying them to two mode I and two mixed mode problems. Comparisons with results from the literature for these problems showed that the formulas give accurate strain-energy release rates.

  17. Calculation of strain-energy release rates with higher order and singular finite elements

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1987-01-01

    A general finite element procedure for obtaining strain-energy release rates for crack growth in isotropic materials is presented. The procedure is applicable to two-dimensional finite element analyses and uses the virtual crack-closure method. The procedure was applied to nonsingular 4-noded (linear), 8-noded (parabolic), and 12-noded (cubic) elements and to quarter-point and cubic singularity elements. Simple formulas for strain-energy release rates were obtained with this procedure for both nonsingular and singularity elements. The formulas were evaluated by applying them to two mode I and two mixed mode problems. Comparisons with results from the literature for these problems showed that the formulas give accurate strain-energy release rates.

  18. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  19. High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.

  20. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles

    PubMed Central

    Slater, Thomas J. A.; Lewis, Edward A.; Haigh, Sarah J.

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  1. Measurements of energy spectra in two-dimensional turbulence with sheared mean flow.

    NASA Astrophysics Data System (ADS)

    Fontana, P. W.; Kearney-Fischer, M.; Rogers, S.; Windell, S.

    2006-11-01

    Measurements of forced turbulence in the presence of mean flow shear in quasi-two-dimensional flows in a circular Couette cell are underway. Initial observations indicate suppression of the turbulence by the shear, as suggested by observations of transport barriers in geostrophic flows and laboratory fusion plasmas. The apparatus generates flows in a liquid film of dilute soap solution suspended freely in a horizontal annular channel. The channel is 7 cm wide with an average radius of 46.5 cm. Turbulence is forced electromagnetically, while mean flow shear is generated independently by rotating the outer boundary. The mean sheared flow profiles provide a new method of estimating the coefficient of drag between the films and the air; the result, ˜9 s-1, is compared with estimates from other soap film experiments using different techniques. Two-dimensional turbulence spectra are measured using particle imaging velocimetry, and data showing the effect of shear on the spectrum are presented.

  2. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    SciTech Connect

    Tucker, Lucas P.; Shores, Erik F.; Myers, Steven C.; Felsher, Paul D.; Garner, Scott E.; Solomon, Clell J. Jr.

    2012-08-14

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  3. Plastic identification based on molecular and elemental information from laser induced breakdown spectra: a comparison of plasma conditions in view of efficient sorting

    NASA Astrophysics Data System (ADS)

    Barbier, Sophie; Perrier, Sébastien; Freyermuth, Pierre; Perrin, Didier; Gallard, Benjamin; Gilon, Nicole

    2013-10-01

    This work is dedicated to a comparison of plasma conditions for the accurate determination of some elements: Br, Cl, Ca, P and Sb, in polymers. The comparison of the plasma conditions to sort plastics according to CN, C2 and element signals was also investigated. The comparison of a helium atmosphere and an air atmosphere led to improved results using helium as a buffer gas. The improvement is obtained in two areas, it increased the detection of halogens (Br, Cl) usually employed as flame retardants. It was also found to significantly improve the discrimination based on simple calculations of C2/He and CN/He ratios. Best conditions were based on a laser emitting at 266 nm, with a low 6 mJ energy focalized on a 50 μm spot and the helium buffer gas. A plot of C2/He against CN/He was efficient to identify the four groups of plastics employed in this study: polystyrene, polypropylene, acrylonitryle-butadiene-styrene and acrylonitryle-butadiene-styrene/polycarbonate.

  4. The Crab nebula energy origin and its high frequency radiation spectra

    NASA Astrophysics Data System (ADS)

    Machabeli, George Z.; Rogava, A.; Chkheidze, N.; Osmanov, Z.; Shapakidze, D.

    2016-06-01

    > In the present work there is presented a model describing transfer of the Crab pulsar's spin-down energy into the powerful synchrotron emission of the nebula. The process of the energy transfer consists of several consecutive stages. The physical processes underlying the theoretical model provide us with the synchrotron emission spectrum, which fits well with the observed one.

  5. Relativistic Quantum Chemistry of Heavy Ions and Hadronic Atomic Systems: Spectra and Energy Shifts

    SciTech Connect

    Glushkov, A. V.; Khetselius, O.; Gurnitskaya, E.; Loboda, A.; Sukharev, D.

    2009-03-09

    The levels energies and energy shifts are calculated for superheavy Li-like ions and some kaonic atoms on the basis of the gauge-invariant QED perturbation theory (PT) with an account of nuclear, exchange-correlation and radiative effects.

  6. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    SciTech Connect

    Warshaw, S I

    2001-07-11

    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity {sigma}v is calculated, where {sigma} is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the

  7. Test of primary model predictions by EAS size spectra

    NASA Astrophysics Data System (ADS)

    Ter-Antonyan, S. V.; Biermann, P. L.

    High statistical accuracy of experiments KASCADE and ANI allowed to obtain approximations of primary energy spectra and elemental composition in the "knee" region. Obtained results point out to the correctness of QGSJET interaction model and 2-component model of primary cosmic ray origin up to 100 PeV energies.

  8. The beta-SiC(100) surface studied by low energy electron diffraction, Auger electron spectroscopy, and electron energy loss spectra

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1986-01-01

    The beta-SiC(100) surface has been studied by low energy electron diffraction, Auger electron spectroscopy, high resolution electron energy loss spectra (HREELS), and core level excitation EELS. Two new Si-terminated phases have been discovered, one with (3 x 2) symmetry, and the other with (2 x 1) symmetry. Models are presented to describe these phases. New results, for the C-rich surface, are presented and discussed. In addition, core level excitation EELS results are given and compared with theory.

  9. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  10. Relativistic X-ray reverberation modelling of the combined time-averaged and lag-energy spectra in AGN

    NASA Astrophysics Data System (ADS)

    Chainakun, P.; Young, A. J.; Kara, E.

    2016-08-01

    General relativistic ray tracing simulations of the time-averaged spectrum and energy-dependent time delays in active galactic nuclei (AGN) are presented. We model the lamp-post geometry in which the accreting gas is illuminated by an X-ray source located on the rotation axis of the black hole. The spectroscopic features imprinted in the reflection component are modelled using REFLIONX. The associated time delays after the direct continuum, known as reverberation lags, are computed including the full effects of dilution and ionization gradients on the disc. We perform, for the first time, simultaneous fitting of the time-averaged and lag-energy spectra in three AGN: Mrk 335, IRAS 13224-3809 and Ark 564 observed with XMM-Newton. The best-fitting source height and central mass of each AGN partly agree with those previously reported. We find that including the ionization gradient in the model naturally explains lag-energy observations in which the 3 keV and 7-10 keV bands precede other bands. To obtain the clear 3 keV and 7-10 keV dips in the lag-energy profile, the model requires either a source height >5 rg, or a disc that is highly ionized at small radii and is colder further out. We also show that fitting the lag or the mean spectra alone can lead to different results and interpretations. This is therefore important to combine the spectral and timing data in order to find the plausible but self-consistent fits which are achievable with our model.

  11. Characteristics of the KUR Heavy Water Neutron Irradiation Facility as a neutron irradiation field with variable energy spectra

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2000-10-01

    The Heavy Water Neutron Irradiation Facility (HWNIF) of the Kyoto University Research Reactor (KUR) was updated in March 1996, mainly for the improvement in neutron capture therapy (NCT). A striking feature of the updated facility is that the energy spectrum of the neutron beam can be controlled from almost pure thermal to epi-thermal, within 5 min by remote control under a continuous reactor operation. This feature is advantageous not only to medical science such as NCT, but also to the other research fields such as physics, engineering, biology, etc. The performance of the updated facility as a neutron irradiation field with variable energy spectra, was characterized. Thermal neutron flux, cadmium ratio, gamma-ray dose rate, etc., at the normal irradiation position for various irradiation modes were determined, mainly on the basis of the measurement using gold activation foils and thermo-luminescent dosimeters (TLDs). The emphasis was on the performance of the new neutron energy spectrum shifter and cadmium thermal neutron filter, that control the mixing ratio of thermal and epi-thermal neutrons, through the change in the heavy water thickness of the spectrum shifter and the aperture size of the cadmium filter. The evaluation of neutron energy spectra at the normal irradiation position was also performed for three representative irradiation modes, in which the neutron intensities are largest of all the irradiation modes. In addition, the irradiation characteristics of two irradiation devices, namely the Irradiation Rail Device and the Remote Patient Carrier, which were updated concurrently with the facility update, were evaluated.

  12. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.

    PubMed

    Puchalska, Monika; Sihver, Lembit

    2015-06-21

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  13. A new potential energy surface and microwave and infrared spectra of the He-OCS complex

    SciTech Connect

    Wang, Zhongquan Zhang, Chunzao; Sun, Chunyan; Feng, Eryin

    2014-11-07

    A new high quality potential energy surface for the He-OCS van der Waals complex was calculated using the CCSD(T) method and avqz+33221 basis set. It is found that the global minimum energy is −51.33 cm{sup −1} at R{sub e} = 6.30a{sub 0} and θ{sub e} = 110.0°, the shallower minimum is located at R = 8.50a{sub 0} and θ = 0° with well depth −32.26 cm{sup −1}. Using the fitted potential energy surface, we have calculated bound energy levels of the He-OCS, He-O{sup 13}CS, He-OC{sup 34}S, and {sup 3}He-OCS complexes. The theoretical results are all in better agreement compared to previous theoretical work.

  14. Feynman scaling violation on baryon spectra in pp collisions at LHC and cosmic ray energies

    SciTech Connect

    Arakelyan, G. H.; Merino, C. Pajares, C.; Shabelski, Yu. M.

    2013-03-15

    A significant asymmetry in baryon/antibaryon yields in the central region of high energy collisions is observed when the initial state has nonzero baryon charge. This asymmetry is connected with the possibility of baryon charge diffusion in rapidity space. Such a diffusion should decrease the baryon charge in the fragmentation region and translate into the corresponding decrease of the multiplicity of leading baryons. As a result, a new mechanism for Feynman scaling violation in the fragmentation region is obtained. Another numerically more significant reason for the Feynman scaling violation comes from the fact that the average number of cut Pomerons increases with initial energy. We present the quantitative predictions of the Quark-Gluon String Model for the Feynman scaling violation at LHC energies and at even higher energies that can be important for cosmic ray physics.

  15. Investigation of Coulombic bremsstrahlung spectra of metallic targets for the photon energy region of 1-100keV.

    PubMed

    Singh, Amrit; Dhaliwal, A S

    2016-09-01

    In the present paper, the formation of bremsstrahlung spectra by ordinary bremsstrahlung (OB) and polarization bremsstrahlung (PB) in metallic targets by (35)S beta particles has been investigated in the photon energy region of 1-100keV. From the experimental measurements and the theoretical results obtained from Elwert corrected (non-relativistic) Bethe Heitler (EBH) theory, modified Elwert factor (relativistic) (FmodBH) theories for OB and Avdonina and Pratt (FmodBH+PB) theory for total bremsstrahlung (BS) having the contribution of PB into OB, it has been found that the contribution of PB into BS in a target is limited to a low energy region only and also varies with the atomic number of target material. The FmodBH+PB theory is in agreement with the experimental results in low energy regions of the target, whereas at high energy region FmodBH is found to give better agreement. Further, the present experimental results indicate that the screening effects in the Coulombic bremsstrahlung process cannot be neglected in the high energy region, and the multiple scattering and secondary electron emissions effects in thick target are required to be taken into account in describing the bremsstrahlung process. PMID:27400163

  16. Investigation of Coulombic bremsstrahlung spectra of metallic targets for the photon energy region of 1-100keV.

    PubMed

    Singh, Amrit; Dhaliwal, A S

    2016-09-01

    In the present paper, the formation of bremsstrahlung spectra by ordinary bremsstrahlung (OB) and polarization bremsstrahlung (PB) in metallic targets by (35)S beta particles has been investigated in the photon energy region of 1-100keV. From the experimental measurements and the theoretical results obtained from Elwert corrected (non-relativistic) Bethe Heitler (EBH) theory, modified Elwert factor (relativistic) (FmodBH) theories for OB and Avdonina and Pratt (FmodBH+PB) theory for total bremsstrahlung (BS) having the contribution of PB into OB, it has been found that the contribution of PB into BS in a target is limited to a low energy region only and also varies with the atomic number of target material. The FmodBH+PB theory is in agreement with the experimental results in low energy regions of the target, whereas at high energy region FmodBH is found to give better agreement. Further, the present experimental results indicate that the screening effects in the Coulombic bremsstrahlung process cannot be neglected in the high energy region, and the multiple scattering and secondary electron emissions effects in thick target are required to be taken into account in describing the bremsstrahlung process.

  17. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  18. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  19. Rovibrational spectra of ammonia. I. Unprecedented accuracy of a potential energy surface used with nonadiabatic corrections

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2011-01-01

    In this work, we build upon our previous work on the theoretical spectroscopy of ammonia, NH3. Compared to our 2008 study, we include more physics in our rovibrational calculations and more experimental data in the refinement procedure, and these enable us to produce a potential energy surface (PES) of unprecedented accuracy. We call this the HSL-2 PES. The additional physics we include is a second-order correction for the breakdown of the Born-Oppenheimer approximation, and we find it to be critical for improved results. By including experimental data for higher rotational levels in the refinement procedure, we were able to greatly reduce our systematic errors for the rotational dependence of our predictions. These additions together lead to a significantly improved total angular momentum (J) dependence in our computed rovibrational energies. The root-mean-square error between our predictions using the HSL-2 PES and the reliable energy levels from the HITRAN database for J = 0-6 and J = 7/8 for 14NH3 is only 0.015 cm-1 and 0.020/0.023 cm-1, respectively. The root-mean-square errors for the characteristic inversion splittings are approximately 1/3 smaller than those for energy levels. The root-mean-square error for the 6002 J = 0-8 transition energies is 0.020 cm-1. Overall, for J = 0-8, the spectroscopic data computed with HSL-2 is roughly an order of magnitude more accurate relative to our previous best ammonia PES (denoted HSL-1). These impressive numbers are eclipsed only by the root-mean-square error between our predictions for purely rotational transition energies of 15NH3 and the highly accurate Cologne database (CDMS): 0.00034 cm-1 (10 MHz), in other words, 2 orders of magnitude smaller. In addition, we identify a deficiency in the 15NH3 energy levels determined from a model of the experimental data .

  20. Rovibrational spectra of ammonia. I. Unprecedented accuracy of a potential energy surface used with nonadiabatic corrections.

    PubMed

    Huang, Xinchuan; Schwenke, David W; Lee, Timothy J

    2011-01-28

    In this work, we build upon our previous work on the theoretical spectroscopy of ammonia, NH(3). Compared to our 2008 study, we include more physics in our rovibrational calculations and more experimental data in the refinement procedure, and these enable us to produce a potential energy surface (PES) of unprecedented accuracy. We call this the HSL-2 PES. The additional physics we include is a second-order correction for the breakdown of the Born-Oppenheimer approximation, and we find it to be critical for improved results. By including experimental data for higher rotational levels in the refinement procedure, we were able to greatly reduce our systematic errors for the rotational dependence of our predictions. These additions together lead to a significantly improved total angular momentum (J) dependence in our computed rovibrational energies. The root-mean-square error between our predictions using the HSL-2 PES and the reliable energy levels from the HITRAN database for J = 0-6 and J = 7∕8 for (14)NH(3) is only 0.015 cm(-1) and 0.020∕0.023 cm(-1), respectively. The root-mean-square errors for the characteristic inversion splittings are approximately 1∕3 smaller than those for energy levels. The root-mean-square error for the 6002 J = 0-8 transition energies is 0.020 cm(-1). Overall, for J = 0-8, the spectroscopic data computed with HSL-2 is roughly an order of magnitude more accurate relative to our previous best ammonia PES (denoted HSL-1). These impressive numbers are eclipsed only by the root-mean-square error between our predictions for purely rotational transition energies of (15)NH(3) and the highly accurate Cologne database (CDMS): 0.00034 cm(-1) (10 MHz), in other words, 2 orders of magnitude smaller. In addition, we identify a deficiency in the (15)NH(3) energy levels determined from a model of the experimental data. PMID:21280738

  1. Neutron Energy and Time-of-flight Spectra Behind the Lateral Shield of a High Energy Electron Accelerator Beam Dump,Part I: Measurements

    SciTech Connect

    Roesler, Stefan

    2002-09-24

    Neutron energy and time-of-flight spectra were measured behind the lateral shield of the electron beam dump at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were produced by a 28.7 GeV electron beam hitting the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shield. The measurements were performed using a NE213 organic liquid scintillator behind different thicknesses of the concrete shield of 274 cm, 335 cm, and 396 cm, respectively. The neutron energy spectra between 6 and 800 MeV were obtained by unfolding the measured pulse height spectrum with the detector response function. The attenuation length of neutrons in concrete was then derived. The spectra of neutron time-of-flight between beam on dump and neutron detection by NE213 were also measured. The corresponding experimental results were simulated with the FLUKA Monte Carlo code. The experimental results show good agreement with the simulated results.

  2. Neutron energy and time-of-flight spectra behind the lateral shield of a high energy electron accelerator beam dump. Part I: measurements

    NASA Astrophysics Data System (ADS)

    Taniguchi, S.; Nakamura, T.; Nunomiya, T.; Iwase, H.; Yonai, S.; Sasaki, M.; Rokni, S. H.; Liu, J. C.; Kase, K. R.; Roesler, S.

    2003-05-01

    Neutron energy and time-of-flight spectra were measured behind the lateral shield of the electron beam dump at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were produced by a 28.7 GeV electron beam hitting the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shield. The measurements were performed using an NE213 organic liquid scintillator behind different thicknesses of the concrete shield of 274, 335, and 396 cm, respectively. The neutron energy spectra between 6 and 800 MeV were obtained by unfolding the measured pulse height spectrum with the detector response function. The attenuation length of neutrons in concrete was then derived. The spectra of neutron time-of-flight between beam on dump and neutron detection by NE213 were also measured. The corresponding experimental results were simulated with the FLUKA Monte Carlo code. The experimental results show good agreement with the simulated results.

  3. Derivation of dielectric function and inelastic mean free path from photoelectron energy-loss spectra of amorphous carbon surfaces

    NASA Astrophysics Data System (ADS)

    David, Denis; Godet, Christian

    2016-11-01

    Photoelectron Energy Loss Spectroscopy (PEELS) is a highly valuable non destructive tool in applied surface science because it gives access to both chemical composition and electronic properties of surfaces, including the near-surface dielectric function. An algorithm is proposed for real materials to make full use of experimental X-ray photoelectron spectra (XPS). To illustrate the capabilities and limitations of this algorithm, the near-surface dielectric function ε(ℏω) of a wide range of amorphous carbon (a-C) thin films is derived from energy losses measured in XPS, using a dielectric response theory which relates ε(ℏω) and the bulk plasmon (BP) loss distribution. Self-consistent separation of bulk vs surface plasmon excitations, deconvolution of multiple BP losses and evaluation of Bethe-Born sensitivity factors for bulk and surface loss distributions are crucial to obtain several material parameters: (1) energy loss function for BP excitation, (2) dielectric function of the near-surface material (3-5 nm depth sensitivity), (3) inelastic mean free path, λP (E0), for plasmon excitation, (4) surface excitation parameter, (5) effective number NEFF of valence electrons participating in the plasma oscillation. This photoelectron energy loss spectra analysis has been applied to a-C and a-C:H films grown by physical and chemical methods with a wide range of (sp3/sp2 + sp3) hybridization, optical gap and average plasmon energy values. Different methods are assessed to accurately remove the photoemission peak tail at low loss energy (0-10 eV) due to many-body interactions during the photo-ionization process. The σ + π plasmon excitation represents the main energy-loss channel in a-C; as the C atom density decreases, λP (970 eV) increases from 1.22 nm to 1.6 nm, assuming a cutoff plasmon wavenumber given by a free electron model. The π-π* and σ-σ* transitions observed in the retrieved dielectric function are discussed as a function of the average (sp3/sp

  4. Neutron irradiation of superconductors and damage energy scaling of different neutron spectra

    SciTech Connect

    Hahn, P.A.; Weber, H.W.; Guinan, M.W.; Birtcher, R.C.; Brown, B.S.; Greenwood, L.R.

    1985-08-01

    Three different neutron sources were used to irradiate identical sets of NbTi superconductors up to about half the lifetime dose of a superconducting magnet in a fusion reactor. Based on a careful source characterization of the TRIGA Mark-II reactor in Vienna, the spallation neutron source IPNS at Argonne and the 14 MeV neutron source RTNS-II at Livermore, the damage energy cross sections were calculated for four different types of NbTi alloys (42, 46.5, 49 and 54 wt % Ti). The experimental results on the variations of critical current densities j/sub c/ with neutron dose are found to scale within the experimental uncertainties with the appropriate damage energy cross sections. This first explicit proof of damage energy scaling for j/sub c/-variations in superconductors is considered to be most valuable for the evaluation of radiation damage in superconductors under fusion reactor conditions. 12 refs., 5 figs., 2 tabs.

  5. Neutron irradiation of superconductors and damage energy scaling of different neutron spectra

    NASA Astrophysics Data System (ADS)

    Hahn, P. A.; Weber, H. W.; Guinan, M. W.; Birtcher, R. C.; Brown, B. S.; Greenwood, L. R.

    1985-08-01

    Three different neutron sources were used to irradiate identical sets of NbTi superconductors up to about half the lifetime dose of a superconducting magnet in a fusion reactor. Based on a careful source characterization of the TRIGA Mark-II reactor in Vienna, the spallation neutron source IPNS at Argonne and the 14 MeV neutron source RTNS-II at Livermore, the damage energy cross sections were calculated for four different types of NbTi alloys (42, 46.5, 49 and 54 wt % Ti). The experimental results on the variations of critical current densities j sub c with neutron dose are found to scale within the experimental uncertainties with the appropriate damage energy cross sections. This first explicit proof of damage energy scaling for j sub c-variations in superconductors is considered to be most valuable for the evaluation of radiation damage in superconductors under fusion reactor conditions.

  6. Energy spectra of electrons and positrons produced in semi-infinite and infinite water phantoms irradiated by photons with energies up to 1 GeV.

    PubMed

    Rustgi, M L; Pandey, L N; Kassaee, A; Long, S A

    1989-04-01

    Previous Monte Carlo calculations for the energy spectra of electrons produced in water irradiated by photons are extended to 1 GeV. All of the physical processes believed to be important in the transport of electrons and positrons above 100 keV and photons starting with the ejection of L photoelectrons are considered. The results are presented in tabular form and can be conveniently used to compute kerma in water. The contributions of several physical processes, such as Compton scattering and pair-production to electron spectra, are separately tabulated. The results are compared with those of Todo et al. (1982) for the single interactions of monoenergetic photons. It is found that the inclusion of processes such as multiple Compton scattering, bremsstrahlung production, positron annihilation in flight, Møhiller and Bhabha scattering from electrons and Molière multiple scattering from atomic nuclei make a considerable difference in the inferred electron spectrum in water.

  7. Survey of quantitative data on the solar energy and its spectra distribution

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1976-01-01

    This paper presents a survey of available quantitative data on the total and spectral solar irradiance at ground level and outside the atmosphere. Measurements from research aircraft have resulted in the currently accepted NASA/ASTM standards of the solar constant and zero air mass solar spectral irradiance. The intrinsic variability of solar energy output and programs currently under way for more precise measurements from spacecraft are discussed. Instrumentation for solar measurements and their reference radiation scales are examined. Insolation data available from the records of weather stations are reviewed for their applicability to solar energy conversion. Two alternate methods of solarimetry are briefly discussed.

  8. PCM-crete energy storage and building element

    SciTech Connect

    Mumma, S.A.; Liu, T.C.

    1980-01-01

    The objective of the research project was the production of a material combining the high thermal conductivity of concrete with the high thermal energy storage capacity of paraffin wax. The following points are discussed; location of a suitable paraffin wax, method of preparation of the composition material, evaluation of materials, and different ratios of mixture, and thermal characteristics of composite materials. The results show that it is possible to manufacture a concrete paraffin composite material with up to 40% by volume paraffin content. A marked increase in the apparent specific heat of the composite material over its pure concrete counterpart is easily obtained.

  9. [Investigation on internal energy transfer and relaxation kinetics of NO2 by photoacoustic and fluorescence emission spectra].

    PubMed

    Zhang, Gui-yin; Ma, Jin-ying; Jin, Yi-dong

    2011-03-01

    With 532 nm laser as excitation source, the excitation and relaxation process of NO2 molecule was investigated by the technique of photoacoustic and fluorescence emission spectra. The results show that NO2 molecules will be pumped to the first excited electronic state by laser photon. When the sample pressure is lower, some of the excited molecules relax to the ground state by radiation process directly; the other parts are redistributed to a few of the excited rovibronic energy levels by the process of fast internal energy transfer. With the increase in the sample pressure, continual collisions dominate the relaxation process gradually. This makes the excited molecules to be redistributed to many excited rovibronic energy levels. Emission from these excited levels forms a continuous spectrum. Just then, the efficiency of fluorescence emission from laser excited level decreases and the fluorescence intensity on the long wavelength side increases. The intensity of PA signals increases also. These phenomena indicate that besides the relaxation process of radiation, there is a strong relaxation process of continual collision under the condition of higher sample pressure. It converts vibration energy of the excited molecules into translation one. This induces the increase in gas temperature and a sound wave is produced.

  10. Sharp low-energy feature in single-particle spectra due to forward scattering in d-wave cuprate superconductors.

    PubMed

    Hong, Seung Hwan; Bok, Jin Mo; Zhang, Wentao; He, Junfeng; Zhou, X J; Varma, C M; Choi, Han-Yong

    2014-08-01

    There is an enormous interest in the renormalization of the quasiparticle (qp) dispersion relation of cuprate superconductors both below and above the critical temperature T_{c} because it enables the determination of the fluctuation spectrum to which the qp's are coupled. A remarkable discovery by angle-resolved photoemission spectroscopy (ARPES) is a sharp low-energy feature (LEF) in qp spectra well below the superconducting energy gap but with its energy increasing in proportion to T_{c} and its intensity increasing sharply below T_{c}. This unexpected feature needs to be reconciled with d-wave superconductivity. Here, we present a quantitative analysis of ARPES data from Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} (Bi2212) using Eliashberg equations to show that the qp scattering rate due to the forward scattering impurities far from the Cu-O planes is modified by the energy gap below T_{c} and shows up as the LEF. This is also a necessary step to analyze ARPES data to reveal the spectrum of fluctuations promoting superconductivity. PMID:25126930

  11. Sharp low-energy feature in single-particle spectra due to forward scattering in d-wave cuprate superconductors.

    PubMed

    Hong, Seung Hwan; Bok, Jin Mo; Zhang, Wentao; He, Junfeng; Zhou, X J; Varma, C M; Choi, Han-Yong

    2014-08-01

    There is an enormous interest in the renormalization of the quasiparticle (qp) dispersion relation of cuprate superconductors both below and above the critical temperature T_{c} because it enables the determination of the fluctuation spectrum to which the qp's are coupled. A remarkable discovery by angle-resolved photoemission spectroscopy (ARPES) is a sharp low-energy feature (LEF) in qp spectra well below the superconducting energy gap but with its energy increasing in proportion to T_{c} and its intensity increasing sharply below T_{c}. This unexpected feature needs to be reconciled with d-wave superconductivity. Here, we present a quantitative analysis of ARPES data from Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} (Bi2212) using Eliashberg equations to show that the qp scattering rate due to the forward scattering impurities far from the Cu-O planes is modified by the energy gap below T_{c} and shows up as the LEF. This is also a necessary step to analyze ARPES data to reveal the spectrum of fluctuations promoting superconductivity.

  12. Probing high-lying N2 ++ and CO++ states via energy-selective fragment spectra

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Saha, K.; Bapat, B.; Kumar, P.; Banerjee, S. B.; Subramanian, K. P.

    2016-07-01

    Dissociation of molecular ions from highly excited states is difficult to probe, so our knowledge of their dynamical evolution and the parameters governing the dissociation is limited. The main complication is due to the large density of high-lying states and crossing of states. The latter may change the kinematics of the fragments, but in general, the contributions from different states to the fragment kinetic energy distributions cannot be separated. Consequently, the exact nature of the evolution remains elusive. In the present work, we have performed kinematic analysis of the dissociation dynamics of di-cations of N2 and CO formed by photoionization, aiming to probe their highly excited states. Correlated fragment ion momenta are measured in coincidence with energy-analyzed ejected electrons, allowing us to estimate energy of the transient molecular ions. These measurements bring out the differences in kinematics of the fragmentation of transient molecular ions having different internal energies. Our analysis indicates that highly excited states decay primarily to their own asymptotic limits with only weak coupling to states decaying to lower asymptotes.

  13. Time-development of energy spectra in the simulation of quantum turbulence

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shinji; Tsubota, Makoto; Vinen, W. F.

    2012-12-01

    Bradley et al. studied experimentally the emission of vortex rings by a vibrating grid in superfluid 3He-B.1. They observed a sharp transition from ballistic propagation of vortex rings at low grid velocities to a cloud of quantum turbulence at higher velocities, the turbulence being generated by coalescence of the rings. This behaviour is consistent with the results of a full Biot-Savart numerical simulation with the vortex filament model.2 Bradley et al suggested that in the quantum turbulent regime a Kolmogorov energy spectrum develops at small wave numbers (presumably less than 2π/l, where l is the vortex line spacing) and they suggested that the observed rate of free decay of the turbulence is consistent with this idea. In this work we have studied numerically the time-development of the energy spectrum. For the separated rings the spectrum contains very little energy at small wave numbers. After the transition to turbulence the energy at small wavenumbers increases, but it remains much less than would be the case for a Kolmogorov spectrum. We consider why the assumptions underlying the numerical simulations do not lead to the generation of a Kolmogorov spectrum.

  14. 78 FR 35658 - Spectra Energy Corp., Application for a New or Amended Presidential Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... operates a large diversified portfolio of natural gas-related energy assets in the areas of gathering and processing, transmission, and distribution. Its natural gas pipeline systems consist of over 19,000 miles of... Pipeline has been in operation since 1997 and transports crude oil from Hardisty, Alberta Canada to...

  15. Energy spectra of a particle confined in a finite ellipsoidal shaped potential well

    NASA Astrophysics Data System (ADS)

    Kereselidze, Tamaz; Tchelidze, Tamar; Nadareishvili, Teimuraz; Kezerashvili, Roman Ya.

    2016-07-01

    A charged particle confined in a strongly prolate ellipsoidal shaped finite potential well is studied. In the case when a distance R between foci is large and accordingly R-1 is small, the asymptotic solutions of quasiradial and quasiangular equations in prolate spheroidal coordinates are found. We demonstrate that quasiangular wave functions inside and outside of the potential well coincide on the entire surface of strongly prolate ellipsoid if separation parameters are chosen appropriately. This allows us to obtain the transcendental equation for the energy levels by equating the quasiradial wave function and its derivative on the surface of ellipsoid. The obtained equation is solved numerically and algebraically. The calculated energies are in good qualitative and quantitative agreement with the results obtained earlier for the infinitely high ellipsoidal potential well via a numerical solution of the quasiradial and quasiangular equations. An importance of the actual shape of ellipsoidal potential well for calculation of the energy spectrum for the trapped particle is shown. A dependence of the energy spectrum on the effective mass when it is a different constant inside and outside of the ellipsoid is addressed.

  16. Depth profiling code for analyzing ERD-TOF spectra

    NASA Astrophysics Data System (ADS)

    Mathot, G.; Terwagne, G.; Bodart, F.

    2001-07-01

    A computer program calculating depth profiles of light elements in surface layer of various materials from experimental ERD-TOF spectra has been developed. The program, which is able to identify the recoil particles, makes multi-element profiling by sorting the spectra by mass. The interactive spectrum synthesis compare the real recoils spectra with simulated spectra of the assumed target. The program is also able to calculate the atomic concentration ratios without any a priori assumption of the composition of an unknown target. The stopping power used in the analysis package respect the Alegria [1] format and can be easily upgraded and modified by the user. It can be calculated for any particle target combination and beam energy between 100 keV and 15 MeV. The calculation takes also into account for the straggling, the energy loss in the carbon foils of the start and the stop detectors and the entry window of the particle detector.

  17. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    SciTech Connect

    Fouka, M.; Ouichaoui, S. E-mail: souichaoui@usthb.dz

    2011-12-10

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N({gamma}) {approx} {gamma}{sup -p} with {gamma}{sub 1} < {gamma} < {gamma}{sub 2}, especially for a finite high-energy limit, {gamma}{sub 2}, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> {eta}{sup 2} with parameter {eta} = {gamma}{sub 2}/{gamma}{sub 1}. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, {alpha}{sub {nu}}, for the high-frequency range {nu} >> {nu}{sub 2} (with {nu}{sub 2} the synchrotron frequency corresponding to {gamma}{sub 2}). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  18. Measurements of the linear energy transfer spectra on the Mir orbital station and comparison with radiation transport models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Konradi, A.; Atwell, W.; Golightly, M. J.; Cucinotta, F. A.; Wilson, J. W.; Petrov, V. M.; Tchernykh, I. V.; Shurshakov, V. A.; Lobakov, A. P.

    1996-01-01

    A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.

  19. DISENTANGLING PROTOSTELLAR EVOLUTIONARY STAGES IN CLUSTERED ENVIRONMENTS USING SPITZER-IRS SPECTRA AND COMPREHENSIVE SPECTRAL ENERGY DISTRIBUTION MODELING

    SciTech Connect

    Forbrich, Jan; Tappe, Achim; Robitaille, Thomas; Muench, August A.; Lada, Charles J.; Teixeira, Paula S.; Lada, Elizabeth A.; Stolte, Andrea

    2010-06-20

    When studying the evolutionary stages of protostars that form in clusters, the role of any intracluster medium cannot be neglected. High foreground extinction can lead to situations where young stellar objects (YSOs) appear to be in earlier evolutionary stages than they actually are, particularly when using simple criteria like spectral indices. To address this issue, we have assembled detailed spectral energy distribution characterizations of a sample of 56 Spitzer-identified candidate YSOs in the clusters NGC 2264 and IC 348. For these, we use spectra obtained with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope and ancillary multi-wavelength photometry. The primary aim is twofold: (1) to discuss the role of spectral features, particularly those due to ices and silicates, in determining a YSO's evolutionary stage, and (2) to perform comprehensive modeling of SEDs enhanced by the IRS data. The SEDs consist of ancillary optical-to-submillimeter multi-wavelength data as well as an accurate description of the 9.7 {mu}m silicate feature and of the mid-infrared continuum derived from line-free parts of the IRS spectra. We find that using this approach, we can distinguish genuine protostars in the cluster from T Tauri stars masquerading as protostars due to external foreground extinction. Our results underline the importance of photometric data in the far-infrared/submillimeter wavelength range, at sufficiently high angular resolution to more accurately classify cluster members. Such observations are becoming possible now with the advent of the Herschel Space Observatory.

  20. [MEASUREMENT OF SPACE RADIATION DOSES AND LINEAR ENERGY TRANSFER SPECTRA INSIDE BIOLOGICAL SATELLITE BION-M1].

    PubMed

    Inozemtsev, K O; Kushin, V V; Tolochek, R V; Shurshakov, V A

    2015-01-01

    The paper presents the results of measuring biologically significant characteristics of space radiation (spectra of linear energy transfer (LET), absorbed and equivalent doses and averaged quality factors) inside the descend capsule of biosatellite Bion-M1 in space experiment Bioradiation. Measurements combined the use of thermoluminescent detectors DTG-4 (TDL) and solid state nuclear track detectors CR-39 (Tastrak) (SSNTD). Differential and integral LET spectra of high-LET space radiation were determined in 4 points inside spacecraft using passive detectors assembles (PDA). Total absorbed dose rates for PDA boxes No 1-4 made up 2.4 ± 0.2; 1.1 ± 0.1; 1.6 ± 0.2; 2.0 ± 0.1 mGy/d respectively, whereas total equivalent dose rates estimated based on ICRP Publication 60 recommendations made up 3.4 ± 0.2; 2.0 ± 0.1; 2.6 ± 0.2; 3.1 ± 0.1 mSv/d respectively. Values of the averaged quality factor for different PDSs were in the range between 1.4 and 1.8. PMID:26087582

  1. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement

    SciTech Connect

    Ma, Jian; Cao, Jianshu

    2015-03-07

    We study the Förster resonant energy transfer rate, absorption and emission spectra in multichromophoric systems. The multichromophoric Förster theory (MCFT) is determined from an overlap integral of generalized matrices related to the donor’s emission and acceptor’s absorption spectra, which are obtained via a full 2nd-order cumulant expansion technique developed in this work. We calculate the spectra and MCFT rate for both localized and delocalized systems, and calibrate the analytical 2nd-order cumulant expansion with the exact stochastic path integral method. We present three essential findings: (i) The role of the initial entanglement between the donor and its bath is found to be crucial in both the emission spectrum and the MCFT rate. (ii) The absorption spectra obtained by the cumulant expansion method are nearly identical to the exact spectra for both localized and delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii) For the emission spectra, the cumulant expansion can give reliable results for localized systems, but fail to provide reliable spectra of the high-lying excited states of a delocalized system, when the system-bath coupling is large and the thermal energy is small. This paper also provides a simple golden-rule derivation of the MCFT, reviews existing methods, and motivates further developments in the subsequent papers.

  2. Elements of proximal formative assessment in learners' discourse about energy

    NASA Astrophysics Data System (ADS)

    Harrer, Benedikt W.; Scherr, Rachel E.; Wittmann, Michael C.; Close, Hunter G.; Frank, Brian W.

    2012-02-01

    Proximal formative assessment, the just-in-time elicitation of students' ideas that informs ongoing instruction, is usually associated with the instructor in a formal classroom setting. However, the elicitation, assessment, and subsequent instruction that characterize proximal formative assessment are also seen in discourse among peers. We present a case in which secondary teachers in a professional development course at SPU are discussing energy flow in refrigerators. In this episode, a peer is invited to share her thinking (elicitation). Her idea that refrigerators move heat from a relatively cold compartment to a hotter environment is inappropriately judged as incorrect (assessment). The "instruction" (peer explanation) that follows is based on the second law of thermodynamics, and acts as corrective rather than collaborative.

  3. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons

    SciTech Connect

    Stawarz, Lukasz; Petrosian, Vahe; Blandford, Roger D.; /KIPAC, Menlo Park

    2011-08-19

    Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of cosmic ray positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding the dark matter distribution or particle acceleration. In this paper we show that the observed excesses in the electron spectrum may be easily reproduced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local interstellar medium, we can reproduce the most recent observations by Fermi and HESS experiments. Interestingly, in our model the injection spectral index of cosmic ray electrons becomes comparable to, or even equal to that of cosmic ray protons. The Klein-Nishina effect may also affect the propagation of the secondary e{sup {+-}} pairs, and therefore modify the cosmic ray positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e{sup {+-}} pairs within the Galaxy. The first is due to the decay of {pi}{sup {+-}}'s produced by interaction of cosmic ray nuclei with ambient protons

  4. ON THERMALIZATION IN GAMMA-RAY BURST JETS AND THE PEAK ENERGIES OF PHOTOSPHERIC SPECTRA

    SciTech Connect

    Vurm, Indrek; Piran, Tsvi; Lyubarsky, Yuri

    2013-02-20

    The low-energy spectral slopes of the prompt emission of most gamma-ray bursts (GRBs) are difficult to reconcile with radiatively efficient optically thin emission models irrespective of the radiation mechanism. An alternative is to ascribe the radiation around the spectral peak to a thermalization process occurring well inside the Thomson photosphere. This quasi-thermal spectrum can evolve into the observed non-thermal shape by additional energy release at moderate to small Thomson optical depths, which can readily give rise to the hard spectral tail. The position of the spectral peak is determined by the temperature and Lorentz factor of the flow in the thermalization zone, where the total number of photons carried by the jet is established. To reach thermalization, dissipation alone is not sufficient and photon generation requires an efficient emission/absorption process in addition to scattering. We perform a systematic study of all relevant photon production mechanisms searching for possible conditions in which thermalization can take place. We find that a significant fraction of the available energy should be dissipated at intermediate radii, {approx}10{sup 10} to a few Multiplication-Sign 10{sup 11} cm, and the flow there should be relatively slow: the bulk Lorentz factor could not exceed a few tens for all but the most luminous bursts with the highest E {sub pk} values. The least restrictive constraint for successful thermalization, {Gamma} {approx}< 20, is obtained if synchrotron emission acts as the photon source. This requires, however, a non-thermal acceleration deep below the Thomson photosphere transferring a significant fraction of the flow energy to relativistic electrons with Lorentz factors between 10 and 100. Other processes require bulk flow Lorentz factors of order of a few for typical bursts. We examine the implications of these results to different GRB photospheric emission models.

  5. Absolute energy distribution in the spectra of 32 Cygni. Eclipses of 1987 and 1990

    NASA Astrophysics Data System (ADS)

    Burnashev, V. I.; Burnasheva, B. A.

    2011-06-01

    The photometric observations during 1953-1994 were used for the construction of the summary light curve for 32 Cygni in the photometric UBV-system. On the basis of energy distribution data, the spectral classes and luminosities of the components of this binary system were obtained. The column density of HI during several ingresses and egresses was estimated, suggesting that the depression at λ 3650 Å was caused by hydrogen absorption.

  6. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra

    SciTech Connect

    Murphy, T. J.

    2014-07-15

    Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma.

  7. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  8. Reconstruction of Time-Resolved Neutron Energy Spectra in Z-Pinch Experiments Using Time-of-flight Method

    SciTech Connect

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.

    2009-01-21

    We present the reconstruction of neutron energy spectra from time-of-flight signals. This technique is useful in experiments with the time of neutron production in the range of about tens or hundreds of nanoseconds. The neutron signals were obtained by a common hard X-ray and neutron fast plastic scintillation detectors. The reconstruction is based on the Monte Carlo method which has been improved by simultaneous usage of neutron detectors placed on two opposite sides from the neutron source. Although the reconstruction from detectors placed on two opposite sides is more difficult and a little bit inaccurate (it followed from several presumptions during the inclusion of both sides of detection), there are some advantages. The most important advantage is smaller influence of scattered neutrons on the reconstruction. Finally, we describe the estimation of the error of this reconstruction.

  9. Waste to energy – key element for sustainable waste management

    SciTech Connect

    Brunner, Paul H. Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  10. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  11. Numerical values of the surface free energies of solid chemical elements

    NASA Astrophysics Data System (ADS)

    Mezey, L. Z.; Giber, J.

    1984-10-01

    The applicability of a 'standard table' of values of surface free energies (or enthalpies) obtained by the CCSS (complex calculation of surface segregation) method is demonstrated by comparing calculated surface-free-energy values with several recently published experimental results. The investigation (encompassing temperatures from 1023 to 2075 K) shows that a simplified variation of the second step of CCSS is applicable in the calculation of the surface free energies of polycrystalline solid elements for any temperature of interest.

  12. A theoretical investigation of spectra utilization for a CMOS based indirect detector for dual energy applications

    NASA Astrophysics Data System (ADS)

    Kalyvas, N.; Martini, N.; Koukou, V.; Michail, C.; Sotiropoulou, P.; Valais, I.; Kandarakis, I.; Fountos, G.

    2015-09-01

    Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. Currently commercially available detectors may be suitable for dual energy mammographic applications. The scope of this work was to theoretically examine the performance of the Radeye CMOS digital indirect detector under three low- and high-energy spectral pairs. The detector was modeled through the linear system theory. The pixel size was equal to 22.5μm and the phosphor material of the detector was a 33.9 mg/cm2 Gd2O2S:Tb phosphor screen. The examined spectral pairs were (i) a 40kV W/Ag (0.01cm) and a 70kV W/Cu (0.1cm) target/filter combinations, (ii) a 40kV W/Cd (0.013cm) and a 70kV W/Cu (0.1cm) target/filter combinations and (iii) a 40kV W/Pd (0.008cm) and a 70kV W/Cu (0.1cm) target/filter combinations. For each combination the Detective Quantum Efficiency (DQE), showing the signal to noise ratio transfer, the detector optical gain (DOG), showing the sensitivity of the detector and the coefficient of variation (CV) of the detector output signal were calculated. The second combination exhibited slightly higher DOG (326 photons per X-ray) and lower CV (0.755%) values. In terms of electron output from the RadEye CMOS, the first two combinations demonstrated comparable DQE values; however the second combination provided an increase of 6.5% in the electron output.

  13. Electronic energy loss spectra from mono-layer to few layers of phosphorene

    NASA Astrophysics Data System (ADS)

    Mohan, Brij; Thakur, Rajesh; Ahluwalia, P. K.

    2016-05-01

    Using first principles calculations, electronic and optical properties of few-layers phosphorene has been investigated. Electronic band structure show a moderate band gap of 0.9 eV in monolayer phosphorene which decreases with increasing number of layers. Optical properties of few-layers of phosphorene in infrared and visible region shows tunability with number of layers. Electron energy loss function has been plotted and huge red shift in plasmonic behaviours is found. These tunable electronic and optical properties of few-layers of phosphorene can be useful for the applications of optoelectronic devices.

  14. Energy spectra of field emission electrons from a W<310> tip

    NASA Astrophysics Data System (ADS)

    Ogawa, H.; Arai, N.; Nagaoka, K.; Uchiyama, S.; Yamashita, T.; Itoh, H.; Oshima, C.

    1996-06-01

    Total energy distributions of field emission electrons from a single crystal <310>-oriented tungsten tip have been measured at temperatures of 80 and 300 K and in the emission current region from 10 -8 to 10 -6 A. We have used a high resolution field emission spectrometer computer-controlled by a low-noise power supply developed in this experiment. The main part of the observed distributions agree with the theoretical ones calculated on the basis of the Fowler-Nordheim theory, while discrepancies have been observed in two regions.

  15. Processing and quantification of x-ray energy dispersive spectra in the Analytical Electron Microscope

    SciTech Connect

    Zaluzec, N.J.

    1988-08-01

    Spectral processing in x-ray energy dispersive spectroscopy deals with the extraction of characteristic signals from experimental data. In this text, the four basic procedures for this methodology are reviewed and their limitations outlined. Quantification, on the other hand, deals with the interpretation of the information obtained from spectral processing. Here the limitations are for the most part instrumental in nature. The prospects of higher voltage operation does not, in theory, present any new problems and may in fact prove to be more desirable assuming that electron damage effects do not preclude analysis. 28 refs., 6 figs.

  16. The weakly bound He-HCCCN complex: High-resolution microwave spectra and intermolecular potential-energy surface

    NASA Astrophysics Data System (ADS)

    Topic, Wendy C.; Jäger, Wolfgang

    2005-08-01

    Rotational spectra of the weakly bound He-HCCCN and He-DCCCN van der Waals complexes were observed using a pulsed-nozzle Fourier-transform microwave spectrometer in the 7-26-GHz frequency region. Nuclear quadrupole hyperfine structures due to the N14 and D nuclei (both with nuclear-spin quantum number I =1) were resolved and assigned. Both strong a and weaker b-type transitions were observed and the assigned transitions were used to fit the parameters of a distortable asymmetric rotor model. The dimers are floppy, near T-shaped complexes. Three intermolecular potential-energy surfaces were calculated using the coupled-cluster method with single and double excitations and noniterative inclusion of triple excitations. Bound-state rotational energy levels supported by these surfaces were determined. The quality of the potential-energy surfaces was assessed by comparing the experimental and calculated transition frequencies and also the corresponding spectroscopic parameters. Simple scaling of the surfaces improved both the transition frequencies and spectroscopic constants. Five other recently reported surfaces [O. Akin-Ojo, R. Bukowski, and K. Szalewicz, J. Chem. Phys. 119, 8379 (2003)], calculated using a variety of methods, and their agreement with spectroscopic properties of He-HCCCN are discussed.

  17. A new ab initio potential energy surface and microwave and infrared spectra for the Ne-CO(2) complex.

    PubMed

    Chen, Rong; Jiao, Erqiang; Zhu, Hua; Xie, Daiqian

    2010-09-14

    We report a new three-dimensional potential energy surface for Ne-CO(2) including the Q(3) normal mode for the υ(3) antisymmetric stretching vibration of the CO(2) molecule. The potential energies were calculated using the supermolecular method at the coupled-cluster singles and doubles level with noniterative inclusion of connected triples [CCSD(T)], using a large basis set supplemented with midpoint bond functions. Two vibrationally averaged potentials with CO(2) at both the ground (υ=0) and the first (υ=1) vibrational υ(3) excited states were generated from the integration of the three-dimensional potential over the Q(3) coordinate. Each potential was found to have a T-shaped global minimum and two equivalent linear local minima. The radial DVR/angular FBR method and the Lanczos algorithm are applied to calculate the rovibrational energy levels. Comparison with the available observed values showed an overall excellent agreement for the microwave and infrared spectra. The calculated band origin shifts were found to be 0.1306 and 0.1419 cm(-1) for Ne-CO(2) and Ne-C(18)O(2), respectively, which are very close to the experimental values of 0.1303 and 0.1432 cm(-1).

  18. Ab initio potential energy surface and predicted rotational spectra for the Ne-H2O complex.

    PubMed

    Sun, Xueli; Hu, Yun; Zhu, Hua

    2013-05-28

    A new three-dimensional potential energy surface for the Ne-H2O complex was calculated using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)] with a large basis set supplemented with bond functions. The interaction energies were obtained by the supermolecular approach with the full counterpoise correction for the basis set superposition error. The CCSD(T) potential was found to have a planar T-shaped global minimum, two first-order saddle points, and a second-order saddle point. The global minimum is located at R = 3.23 Å, θ = 101.4°, and φ = 0.0° with a well depth of 64.14 cm(-1). The radial discrete variable representation∕angular finite basis representation method and the Lanczos algorithm were employed to calculate the rovibrational energy levels for four isotopic species (20)Ne-H2 (16)O, (22)Ne-H2 (16)O, (20)Ne-H2 (17)O, and (20)Ne-H2 (18)O. Rotational spectra within two internal rotor states, namely, the Σ(000) and Σ(101) states, were predicted. The average structural parameters of four Ne-H2O isotopomers on the two states were also calculated and analyzed.

  19. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  20. Measurement and calculation of high-energy neutron spectra behind shielding at the CERF 120 GeV/c hadron beam facility

    NASA Astrophysics Data System (ADS)

    Nakao, N.; Taniguchi, S.; Roesler, S.; Brugger, M.; Hagiwara, M.; Vincke, H.; Khater, H.; Prinz, A. A.; Rokni, S. H.; Kosako, K.

    2008-01-01

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133°. Neutron energy spectra in the energy range between 32 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.

  1. Measurement And Calculation of High-Energy Neutron Spectra Behind Shielding at the CERF 120-GeV/C Hadron Beam Facility

    SciTech Connect

    Nakao, N.; Taniguchi, S.; Roesler, S.; Brugger, M.; Hagiwara, M.; Vincke, H.; Khater, H.; Prinz, A.A.; Rokni, S.H.; Kosako, K.; /Shimizu, Tokyo

    2009-06-09

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133{sup o}. Neutron energy spectra in the energy range between 32 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.

  2. Quasi-particle energy spectra in local reduced density matrix functional theory.

    PubMed

    Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids. PMID:25362285

  3. Energy levels and spectral lines in the X-ray spectra of highly charged W XLIV

    NASA Astrophysics Data System (ADS)

    Hao, Liang-Huan; Kang, Xiao-Ping

    2014-07-01

    The multi-configuration Dirac-Hartree-Fock method is employed to calculate the fine-structure energy levels, wavelengths, transition probabilities, and oscillator strengths for electric dipole allowed (E1) and forbidden (M1, E2, M2) lines for the 4 s 24 p and 4 s4 p 2 configurations of W XLIV. The valence-valence and core-valence correlation effects are accounted for in a systematic way. Breit interactions and quantum electrodynamics (QED) effects are estimated in subsequent relativistic configuration interaction (CI) calculations. The present results are in good agreement with other available theoretical and experimental values, and we predict new data for several levels where no other theoretical and/or experimental results are available, precise measurements are clearly needed here.

  4. Quasi-particle energy spectra in local reduced density matrix functional theory

    SciTech Connect

    Lathiotakis, Nektarios N.; Helbig, Nicole; Rubio, Angel

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C{sub 20} isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.

  5. Differential neutron energy spectra measured on spacecraft in low Earth orbit.

    PubMed

    Dudkin, V E; Potapov YuV; Akopova, A B; Melkumyan, L V; Benton, E V; Frank, A L

    1990-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the 6Li(n,alpha)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%. PMID:11537519

  6. Differential neutron energy spectra measured on spacecraft in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.

    1990-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the 6Li(n,alpha)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  7. Anharmonic Effects on the Electron-Energy Spectra of Surface Vibrations

    NASA Astrophysics Data System (ADS)

    Ariyasu, Janice Carol

    First, we consider the effect of lateral interactions on double losses and overtones in electron-energy-loss studies of surface vibrations. We develop a theory of two-phonon losses in the dipole-dominated regime of small -angle scattering. Our calculation employs the simple model of an ordered overlayer of molecules adsorbed on a crystal surface. With this model, we can identify two features; one which corresponds to the double loss and another which corresponds the excitation of an overtone. We then study the role of lateral interactions in each. We find that the presence of lateral interactions affects the position of the overtone relative to the double loss, and influences both its width and shape. The implications of these results are discussed, particularly as they relate to estimates of dissociation energies by the Birge-Sponer procedure. Next, we consider the anharmonic damping of adsorbate vibrations, with specific applications to species (S, O, and CO) adsorbed on the Ni(100) and Ni(111) surfaces. Our attention is restricted to adsorbate modes that can decay by two-phonon processes to one substrate phonon and either another substrate mode phonon or to a phonon of a mode that is localized on the adsorbate. The magnitude and temperature variation of the linewidth of adsorbate modes by this mechanism is explored; we find that near room temperature the calculated linewidths vary linearly with temperature. We also simulate the inhomogeneous broadening produced by disorder by considering the eigenfrequencies of infrared -active modes. Finally, we consider the diffuse scattering of electrons from surfaces by long-wavelength, acoustic phonons. The mechanism that we explore is the modulation of the image potential from ripples induced in the surface profile by thermally-excited surface and bulk phonons. We compare our results with earlier studies, and with the scattering produced by the dynamic-dipole moment of the surface atoms.

  8. The role of high-energy synchrotron radiation in biomedical trace element research

    SciTech Connect

    Pounds, J.G.; Long, G.J.; Kwiatek, W.M.; Jones, K.W.; Gordon, B.M.; Hanson, A.L.

    1987-01-01

    This paper will present the results of an investigation of the distribution of essential elements in the normal hepatic lobule. the liver is the organ responsible for metabolism and storage of most trace elements. Although parenchymal hepatocytes are rather uniform histologically, morphometry, histochemistry, immunohistochemistry, and microdissection with microchemical investigations have revealed marked heterogeneity on a functional and biochemical level. Hepatocytes from the periportal and perivenous zones of the liver parrenchyma differ in oxidative energy metabolism, glucose uptake and output, unreagenesis, biotransformation, bile acid secretion, and palsma protein synthesis and secretion. Although trace elements are intimately involved in the regulation and maintenance of these functions, little is known regarding the heterogeneity of trace element localization of the liver parenchyma. Histochemical techniques for trace elements generally give high spatial resolution, but lack specificity and stoichiometry. Microdissection has been of marginal usefulness for trace element analyses due to the very small size of the dissected parenchyma. The characteristics of the high-energy x-ray microscope provide an effective approach for elucidating the trace element content of these small biological structures or regions. 5 refs., 1 fig., 1 tab.

  9. Energy flow prediction in built-up structures through a hybrid finite element/wave and finite element approach

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Collet, M.; Ichchou, M.; Li, L.; Bareille, O.; Dimitrijevic, Z.

    2016-01-01

    This paper presents a rapid and accurate numerical tool for the energy flow evaluation in a periodic substructure from the near-field to the far-field domain. Here we suppose that the near-field part contains a point source characterized by the injected power in the structure. The near-field part is then modeled by Finite Element Method (FEM) while the periodic structure and the far-field part are regarded as waveguides and modeled by an enhanced Wave and Finite Element Method (WFEM). Enhancements are made on the eigenvalue scheme, the condensation of the unit cell and the consideration of a reduced wave basis. Efforts are made to adapt substructures modeled by different strategies in a multi-scale manner such that the final matrices dimensions of the built-up structure are largely reduced. The method is then validated numerically and theoretically. An application is presented, where a structural dynamical system coupled with periodic resistive piezoelectric shunts is discussed.

  10. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    SciTech Connect

    Deta, U. A.; Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.

  11. Dielectric Function Spectra and Critical-Point Energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV

    SciTech Connect

    Choi, S. G.; Zhao, H. Y.; Persson, C.; Perkins, C. L.; Donohue, A. L.; To, B.; Norman, A. G.; Li, J.; Repins, I. L.

    2012-02-01

    We present dielectric function {var_epsilon} = {var_epsilon}{sub 1} + i{var_epsilon}{sub 2} spectra and critical-point energies of Cu{sub 2}ZnSnSe{sub 4} determined by spectroscopic ellipsometry from 0.5 to 9.0 eV. We reduce artifacts from surface overlayers to the maximum extent possible by performing chemical-mechanical polishing and wet-chemical etching of the surface of a Cu{sub 2}ZnSnSe{sub 4} thin film. Ellipsometric data are analyzed by the multilayer model and the {var_epsilon} spectra are extracted. The data exhibit numerous spectral features associated with critical points, whose energies are obtained by fitting standard lineshapes to second energy derivatives of the data. The experimental results are in good agreement with the {var_epsilon} spectra calculated within the GW quasi-particle approximation, and possible origins of the pronounced critical-point structures are identified.

  12. RELATIVE COMPOSITION AND ENERGY SPECTRA OF LIGHT NUCLEI IN COSMIC RAYS: RESULTS FROM AMS-01

    SciTech Connect

    Aguilar, M.; Alcaraz, J.; Berdugo, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Barao, F.; Barreira, G.; Basile, M.; Bellagamba, L.; Bartoloni, A.; Becker, R.; Becker, U.; Bene, P.

    2010-11-20

    Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper, the relative abundances of light-nuclei lithium, beryllium, boron, and carbon are presented. The secondary-to-primary ratios Li/C, Be/C, and B/C have been measured in the kinetic energy range 0.35-45 GeV nucleon{sup -1}. The isotopic ratio {sup 7}Li/{sup 6}Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model. A 10%-15% overproduction of Be is found in the model predictions and can be attributed to uncertainties in the production cross-section data.

  13. Photofragmentation spectra of halogenated methanes in the VUV photon energy range

    SciTech Connect

    Cartoni, Antonella; Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH{sub 2}X{sub 2} (X = F, Cl, Br, I) and chlorinated methanes (CH{sub n}Cl{sub 4−n} with n = 0–3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH{sub 2}F{sub 2} as a source of both fluorine and hydrogen atoms and the characteristic formation of I{sub 2}{sup +} and CH{sub 2}{sup +} ions from the photofragmentation of the CH{sub 2}I{sub 2} molecule.

  14. Rapid, Automated Determination of Elemental Compositions of Ions in Mass Spectra Obtained with an Open-Air Ion Source (2 of 2)

    EPA Science Inventory

    An inexpensive autosampler for a DART/TOFMS provides mass spectra from analytes absorbed on 76 cotton swab, wipe samples in 7.5 min. A field sample carrier simplifies sample collection and provides swabs nearly ready for analysis to the lab. Applications of the high throughput pr...

  15. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ≲ 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ≅ 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  16. Distribution function representation of energy spectra of H, He, C, O and Fe in corotating particle streams

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Ipavich, F. M.; Mason, G. M.; Hovestadt, D.

    1980-01-01

    From an analysis of nine corotating events observed near 1 AU during the 1974-1976 solar minimum, the spectral parameters for H, He, C, O and Fe and relative abundances of these elements and of Ne, Mg, Si, and S-Ca were determined. The distribution functions of H, He, O and Fe are well represented by an exponential in particle speed over the energy range of the measurements from 0.3 to 5 MeV/nucleon. The composition resembles that of the solar corona, particularly in the O/C ratio which is 0.95 + or - 0.19, and the He/H and He/Ne ratios are similar to the respective ratios in the solar wind. The results are consistent with interplanetary statistical acceleration of these particles out of the high-energy tail of the high-speed solar wind.

  17. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  18. A model for meteoritic and lunar 40Ar/39Ar age spectra: Addressing the conundrum of multi-activation energies

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Harrison, T. Mark; Heizler, M. T.; Warren, P. H.

    2016-11-01

    Results of whole-rock 40Ar/39Ar step-heating analyses of extra-terrestrial materials have been used to constrain the timing of impacts in the inner solar system, solidification of the lunar magma ocean, and development of planetary magnetic fields. Despite the importance of understanding these events, the samples we have in hand are non-ideal due to mixed provenance, isotopic disturbances from potentially multiple heating episodes, and laboratory artifacts such as nuclear recoil. Although models to quantitatively assess multi-domain, diffusive 40Ar* loss have long been applied to terrestrial samples, their use on extra-terrestrial materials has been limited. Here we introduce a multi-activation energy, multi-diffusion domain model and apply it to 40Ar/39Ar temperature-cycling, step-heating data for meteoritic and lunar samples. We show that age spectra of extra-terrestrial materials, the Jilin chondrite (K-4) and Apollo 16 lunar breccia (67514 , 43), yielding seemingly non-ideal behavior commonly interpreted as either laboratory artifacts or localized shock heating of pyroxene, are meaningful and can be understood in context of the presence of multi-diffusion domains containing multiple activation energies. Internally consistent results from both the meteoritic and lunar samples reveal high-temperature/short duration thermal episodes we interpret as due to moderate shock heating.

  19. Primary proton and helium spectra in the energy range 10 to the 12th to 10 to the 14th eV

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Ogata, T.; Saito, T.; Holynski, R.; Jurak, A.; Wolter, W.; Wosiek, B.; Dake, S.; Fuki, M.; Parnell, T. A.; Jones, W. V.

    1982-01-01

    Measurements of proton and helium spectra have been made in the energy range 10 to the 12th to 10 to the 14th eV. Large area thin emulsion calorimeters were used in the Japanese American Cooperative Emulsion Experiment balloon flight series. Power indices of the integral spectra for both nuclei are consistent with published data at lower energies. Absolute intensities are also consistent for helium and proton fluxes with extrapolations of previous data. No steepening of the proton spectrum is indicated.

  20. Electron energy spectra of H{sup {minus}} autodetaching states resulting from collisions of H{sup {minus}} with He at 1 keV

    SciTech Connect

    Kimura, M.; Sato, H. |; Hino, K.; Matsuzawa, M.

    1995-06-01

    Electron energy spectra for H{sup {minus}} autodetaching states resulting from collisions H{sup {minus}} with He at 1 keV are rigorously calculated by including couplings between doubly excited states and continuum states and their interference with direct detachment processes. An energy sampling procedure, based on the Gauss quadratures, is used to discretize continuum states. The present theoretical result, for the first time, clarifies mechanisms of excitation to doubly excited states, quantitatively reproduces the experimental spectra first observed by Risley and Geballe in 1974, separates the contributions from each of three autodetaching states, and identifies the cause of the interference between autodetaching and direct-detaching excitation channels.

  1. Wave energy in white dwarf atmospheres. I - Magnetohydrodynamic energy spectra for homogeneous DB and layered DA stars

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1987-01-01

    The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.

  2. Calculation of Neutron Time-of-Flight and Energy Spectra Behind Thick Shielding of an Electron Accelerator and Comparison to Experimental Data

    NASA Astrophysics Data System (ADS)

    Roesler, S.

    2002-05-01

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  3. Calculation of Neutron Time-of-Flight and Energy Spectra Behind Thick Shielding of an Electron Accelerator and Comparison to Experimental Data

    SciTech Connect

    Roesler, Stefan

    2002-05-06

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  4. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

    PubMed

    Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A

    2010-10-01

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.

  5. Infrared and Raman spectra, theoretical calculations, conformations, and two-dimensional potential energy surface of 2-cyclopenten-1-one ethylene ketal.

    PubMed

    Sheu, Hong-Li; Meinander, Niklas; Laane, Jaan

    2015-03-01

    The infrared and Raman spectra of the bicyclic spiro molecule 2-cyclopenten-1-one ethylene ketal (CEK) have been recorded. Density functional theory (DFT) calculations were used to compute the theoretical spectra, and these agree well with the experimental spectra. The structures and conformational energies for the two pairs of conformational minima, which can be defined in terms of ring-bending (x) and ring-twisting (τ) vibrational coordinates, have also been calculated. Utilizing the results from ab initio MP2/cc-PVTZ computations, a two-dimensional potential energy surface (PES) was calculated. The energy levels and wave functions for this PES were then calculated, and the characteristics of these were analyzed. At lower energies, all of the quantum states are doubly degenerate and correspond to either the lower-energy conformation L or to conformation H, which is 154 cm(-1) higher in energy. At energies above the barrier to interconversion of 264 cm(-1), the wave functions show that the quantum levels have significant probabilities for both conformations. PMID:25133325

  6. Two-center interference in molecular photoelectron energy spectra with intense attosecond circularly polarized XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bian, Xue-Bin; Bandrauk, André D.

    2014-08-01

    We study two-center electron interference in molecular photoionization processes by intense attosecond circularly polarized extreme ultraviolet (XUV) laser pulses in both symmetric H2+ and nonsymmetric HHe2+ one-electron diatomic systems. Simulations from numerical solutions of time-dependent Schrödinger equations for the oriented symmetric molecular ion H2+ exhibit a signature of interference with double peaks (minima) in molecular attosecond photoelectron energy spectra (MAPES) at critical angles ϑc between the continuum electron momentum pe and the molecular internuclear R axis. The interference patterns are shown to be influenced by the molecular Coulomb potential, leading to a shift of the critical angle ϑc. Dependence of the two-center interference on the pulse ellipticity is also investigated. Furthermore, it is found that the interference phenomena are critically sensitive to the molecular orbital symmetry. For the nonsymmetric molecular ion HHe2+, such double peaks in MAPES also occur, thus suggesting a method for imaging orbitals in molecules by intense ultrashort circularly polarized XUV pulses on the attosecond time scale.

  7. Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, Ollie; Ropponen, Tommi; Jones, Peter; Kalvas, Taneli

    2008-01-01

    Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

  8. Quantum-mechanical study of energies, structures, and vibrational spectra of the H(D)Cl complexed with dimethyl ether

    SciTech Connect

    Boda, Łukasz Boczar, Marek; Gług, Maciej; Wójcik, Marek J.

    2015-11-28

    Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.

  9. Effect of noise, order and range in fitting the photopeak region of local, Anger-camera energy spectra

    NASA Astrophysics Data System (ADS)

    Wang, X.; Koral, K. F.; Clinthorne, N. H.; Rogers, W. L.; Floyd, C. E.; Jaszczak, R. J.

    1990-12-01

    In order to estimate and correct Compton scattering in nuclear-medicine Anger-camera imaging, we have previously required the least-mean-square error between the locally measured energy spectrum and one dependent on a model. The model assumes a fixed-order polynomial for the spectrum of scatter and fits the data over a specified energy range. In this study, a Monte Carlo simulation program produces spectra at specified locations in a projection image of a 99mTc "hot" sphere in a "cold" cylinder. Poisson noise is subsequently added to each spectral channel, modelling a given count level within the acceptance window. Tests were done at two pixel locations, one at the center of the sphere and the other near the edge. Without noise, we find that the calculated-to-true ratio for unscattered counts is reasonably close to 1.0 (average 1.03, range 0.85 to 1.16) for all of the 16 order-range combinations that were tested. Tests on experimental data yield comparable results. For comparison, without any Compton-scatter correction the average ratio is 1.39. Optimizing the fitting parameters is difficult because, for example, the best set for location 1 is the worst for location 2. With noisy data, the relative standard deviation, and sometimes the bias for the estimate of direct (i.e. unscattered) counts, increases as the statistical noise increases. The average relative error for the estimate is 10% for the 3 cases measured with about 5000 unscattered counts but increases to 20% if that number decreases to 700.

  10. Energy-dependent existence of soliton in the synthesis of chemical elements

    NASA Astrophysics Data System (ADS)

    Iwata, Yoritaka

    2015-05-01

    Light chemical elements are, for instance, produced through ion collisions taking place in the core of stars, where fusion is particularly important to the synthesis of chemical elements. Meanwhile soliton provides transparency leading to the hindrance of fusion cross-section. In order to explain high fusion cross-section actually observed in low incident energies, it is necessary to discover the suppression mechanism of soliton propagation. In this paper, based on a systematic three-dimensional time-dependent density functional calculation, the existence of soliton is examined for ion collisions with some incident energies, impact parameters, and nuclear force parameter sets. As a result, solitons are suggested to exist highly depending on the energy. The suppression of soliton is consequently due to the spin-orbit force and the momentum-dependent components of the nuclear force.

  11. Could the extensive use of rare elements in renewable energy technologies become a cause for concern?

    NASA Astrophysics Data System (ADS)

    Bradshaw, A. M.; Reuter, B.; Hamacher, T.

    2015-08-01

    The energy transformation process beginning to take place in many countries as a response to climate change will reduce substantially the consumption of fossil fuels, but at the same time cause a large increase in the demand for other raw materials. Whereas it is difficult to estimate the quantities of, for example, iron, copper and aluminium required, the situation is somewhat simpler for the rare elements that might be needed in a sustainable energy economy based largely on photovoltaic sources, wind and possibly nuclear fusion. We consider briefly each of these technologies and discuss the supply risks associated with the rare elements required, if they were to be used in the quantities that might be required for a global energy transformation process. In passing, we point out the need in resource studies to define the terms "rare", "scarce" and "critical" and to use them in a consistent way.

  12. R-matrix description of particle energy spectra produced by low-energy 3H + 3H reactions

    SciTech Connect

    Brune, C. R.; Caggiano, J. A.; Sayre, D. B.; Bacher, A. D.; Hale, G. M.; Paris, M. W.

    2015-07-20

    An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the 3H + 3H→ 2n + α reaction. The calculation includes the n alpha and n n interactions in the final state, angular momentum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from 3H + 3H as well as particle spectra from 3He + 3He. The R-matrix approach presented here is very general, and can be adapted to a wide variety of problems with three-body final states.

  13. Element partitioning in combustion- and gasification-based waste-to-energy units

    SciTech Connect

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-15

    Highlights: ► Element partitioning of waste-to-energy units by means of a substance flow analysis. ► A comparison between moving grate combustors and high temperature gasifiers. ► Classification of key elements according to their behavior during WtE processes. ► Slags and metals from waste gasifiers are completely and immediately recyclable. ► Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

  14. Relationship between energy flux Q and mean energy of auroral electron spectra based on radar data from the 1987 CEDAR Campaign at Sondre Stromfjord, Greenland

    SciTech Connect

    Strickland, D.J.; Hecht, J.H.; Christensen, A.B.; Kelly, J.

    1994-10-01

    The incoherent scatter radar at Sondre Stromfjord, Greenland, measured electron density profiles from 90 to 500 km during four auroral events over a 3-hour period on February 28, 1987. The profiles were obtained with the radar pointed along the magnetic field near zenith at 15-s intervals. Under the assumption that proton/H atom precipitation was unimportant during these events a representation of the incident electron flux was obtained by fitting calculated profiles with measured profiles in the vicinity of their peaks (lower E region). Maxwellian and Gaussian electron distributions with high- and low-energy tails were used to generate the calculated profiles. The distributions were specified in terms of average energy and energy flux Q. The authors find that they can clearly distinguish between profiles that result from a Maxwellian incident electron spectrum and those that result from a Gaussian spectrum. Interpreting Gaussian and Maxwellian spectra as representative of discrete and diffuse aurora, respectively, the measurements indicated good correlation between and Q for discrete aurora, while essentially no correlation was observed for diffuse aurora. This is consistent with current understanding that discrete auroras are produced by electrons accelerated by magnetic field-aligned potential drops whereas diffuse auroras are produced by pitch angle diffusion of plasma sheet electrons into the loss cone. 27 refs., 8 figs., 2 tabs.

  15. A Measurement of the Energy Spectra of Cosmic Rays from 20 to 1000 GeV Per Amu

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Thoburn, C.; Smith, A. E.; Petruzzo, J. J., III; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.; Masheder, M. R. W.; Fowler, P. H.

    1997-01-01

    The design features and operational performance from the test flight of the fourth generation of spherical geometry cosmic ray detectors developed at Bristol University (Bristol University Gas Scintillator 4 - BUGS-4) are presented. The flight from Ft. Sumner (NM) in Sept. 1993 was the premier flight of a large (1m radius) spherical drift chamber which also gave gas scintillation and Cerenkov signals. The combinations of this chamber with one gas and two solid Cerenkov radiators lead to a large aperture factor (4.5 m2sr), but low (approximately 3.5 g/sq cm) instrument mass over the energy sensitive range 1 to several hundred GeV/a. Moreover, one simple timing measurement determined the impact parameter which provided a trajectory (path length) correction for all detector elements. This innovative and efficient design will be of interest to experimental groups engaged in studies of energetic charged particles. Although there were technical problems on the flight, which were compounded by the total destruction of BUGS-4 by fire while landing in Oklahoma, there was a period of stable operation during which the instrument was exposed at float altitude (approximately 125,000 ft.) to high energy cosmic rays. We present the performance of the instrument as determined from the analysis of these data and an appraisal of its novel design features. Suggestions for design improvements in a future instrument are made.

  16. Optical glow spectra arising from low-energy N2, N2(+) and electron bombardment of MgF2 surfaces

    NASA Technical Reports Server (NTRS)

    Qi, J.; Barnes, A. V.; Espy, S. L.; Riehl-Chudoba, M.; Sun, C.-N.; Albridge, R. G.; Tolk, N. H.

    1991-01-01

    Photon emission spectra resulting from the impact of N2, N2(+), and electron beams on magnesium fluoride in an ultrahigh vacuum environment were measured and compared for beam energies in the range 200-2000 eV. Unexpectedly, only the ion- and electron-induced spectra exhibited broad fluorescence. The observed data suggest that the broad fluorescence arising from low-energy ion bombardment is due primarily to the transfer of electronic energy to the surface by resonance or Auger neutralization. Since molecular nitrogen is a major constituent of the atmosphere at orbital altitudes, these measurements bear directly on radiation-induced glow and erosion processes on surfaces of spacecraft in low-earth orbit.

  17. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage

    PubMed Central

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.

    2016-01-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance. PMID:27001915

  18. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage.

    PubMed

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L; Sadoway, Donald R

    2016-01-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.

  19. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage.

    PubMed

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L; Sadoway, Donald R

    2016-01-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance. PMID:27001915

  20. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.

    2016-03-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.

  1. A Monte Carlo-finite element model for strain energy controlled microstructural evolution - 'Rafting' in superalloys

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1989-01-01

    This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.

  2. Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    White, Shane A.; Landry, Guillaume; van Gils, Francis; Verhaegen, Frank; Reniers, Brigitte

    2012-06-01

    The aim of this paper is to determine the dosimetric impact of trace elements in human tissues for low-energy photon sources used in brachytherapy. Monte Carlo dose calculations were used to investigate the dosimetric effect of trace elements present in normal or cancerous human tissues. The effect of individual traces (atomic number Z = 11-30) was studied in soft tissue irradiated by low-energy brachytherapy sources. Three other tissue types (prostate, adipose and mammary gland) were also simulated with varying trace concentrations to quantify the contribution of each trace to the dose distribution. The dose differences between cancerous and healthy prostate tissues were calculated in single- and multi-source geometries. The presence of traces in a tissue produces a difference in the dose distribution that is dependent on Z and the concentration of the trace. Low-Z traces (Na) have a negligible effect (<0.3%) in all tissues, while higher Z (K) had a larger effect (>3%). There is a potentially significant difference in the dose distribution between cancerous and healthy prostate tissues (4%) and even larger if compared to the trace-free composition (15%) in both single- and multi-sourced geometries. Trace elements have a non-negligible (up to 8% in prostate D90) effect on the dose in tissues irradiated with low-energy photon sources. This study underlines the need for further investigation into accurate determination of the trace composition of tissues associated with low-energy brachytherapy. Alternatively, trace elements could be incorporated as a source of uncertainty in dose calculations. This work was part of an invited presentation at the ‘International Workshop on Recent Advances in Monte Carlo Techniques for Radiation Therapy’, held in Montreal, June 8-10, 2011.

  3. IMP-8 observations of the spectra, composition, and variability of solar heavy ions at high energies relevant to manned space missions.

    PubMed

    Tylka, A J; Dietrich, W F

    1999-06-01

    In more than 25 years of almost continuous observations, the University of Chicago's Cosmic Ray Telescope (CRT) on IMP-8 has amassed a unique database on high-energy solar heavy ions of potential relevance to manned spaceflight. In the very largest particle events, IMP-8/CRT has even observed solar Fe ions above the Galactic cosmic ray background up to approximately 800 MeV/nucleon, an energy sufficiently high to penetrate nearly 25 g/cm2 of shielding. IMP-8/CRT observations show that high-energy heavy-ion spectra are often surprisingly hard power laws, without the exponential roll-offs suggested by stochastic acceleration fits to lower energy measurements alone. Also, in many solar particle events the Fe/O ratio grows with increasing energy, contrary to the notion that ions with higher mass-to-charge ratios should be less abundant at higher energies. Previous studies of radiation hazards for manned spaceflight have often assumed heavy-ion composition and steeply-falling energy spectra inconsistent with these observations. Conclusions based on such studies should therefore be re-assessed. The significant event-to-event variability observed in the high-energy solar heavy ions also has important implications for strategies in building probabilistic models of solar particle radiation hazards. PMID:11543141

  4. The elemental abundances of hydrogen through nickel in the low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Simpson, J. A.

    1980-01-01

    The relative abundances of the elements H through Ni in the galactic cosmic rays have been measured in the energy range 70-280 MeV/nucleon with the University of Chicago cosmic ray telescope on board the satellite IMP-8 from January 1973 to September 1978. Cosmic ray source abundances have been derived by extrapolating the measured composition back to the source. A key factor in the propagation calculation is the use of a pathlength distribution and a solar modulation level shown to be consistent with the secondary to primary ratios and their energy dependence below about 1 GeV/n.

  5. Element partitioning in combustion- and gasification-based waste-to-energy units.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-01

    A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

  6. Mean excitation energies for stopping powers in various materials composed of elements hydrogen through argon

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Xu, Y. J.; Kamaratos, E.; Chang, C. K.

    1984-01-01

    The local plasma model is used to study the effects of the chemical and physical state of a medium on its stopping power. The relationship between that model and a more exact quantum treatment of bound systems is elucidated by examining related quantities in both theories for the case of one and two-electron systems. Atomic mean excitation energies and straggling parameters in the local plasma model are compared with the accurate calculations of Inokuti et al. (1975, 1978, 1981). The use of the Gordon-Kim electron gas model of molecular bonding is used to determine the effects of covalent chemical bond shifts on the mean excitation energies for elements of the first two rows. Calculations of mean excitation energies of ionic bonded substances are presented, and the mean excitation energies of metals are discussed.

  7. Measurement of very forward neutron energy spectra for 7 TeV proton-proton collisions at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Berti, E.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A.-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W. C.; Zhou, Q. D.

    2015-11-01

    The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC √{ s} = 7 TeV proton-proton collisions with the pseudo-rapidity η ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results, and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However, no model perfectly explains the experimental results over the entire pseudo-rapidity range. The experimental data indicate a more abundant neutron production rate relative to the photon production than any model predictions studied here.

  8. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  9. Spectra of electrons emitted as a result of the sticking and annihilation of low energy positrons to the surfaces of graphene and highly oriented pyrolytic graphite (HOPG)

    NASA Astrophysics Data System (ADS)

    Chrysler, M.; Chirayath, V.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.

    Positron annihilation induced Auger electron spectroscopy (PAES) was used to study the positron induced low energy electron spectra from HOPG and a sample composed of 6-8 layers of graphene grown on polycrystalline copper. A low energy (~2eV) beam of positrons was used to implant positrons into a surface localized state on the graphene and HOPG samples. Measurements of the energy spectra of the positron induced electrons obtained using a TOF spectrometer indicate the presence of an annihilation induced KLL C Auger peak (at ~263 eV) along with a narrow low energy secondary peak due to an Auger mediated positron sticking (AMPS) process. A broad spectral feature was also observed below ~15 eV which we believe may be due to a VVV C Auger transition not previously observed. The energy dependence of the integrated intensity of the AMPS peak was measured for a series of incident positron kinetic energies ranging from ~1.5 eV up to 11 eV from which the binding energy of the surface localized positron state on graphene and HOPG was estimated. The implication of our results regarding the applicability of AMPS and PAES to the study of graphene surfaces and interfaces will be discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  10. Vibrational spectra, theoretical calculations, and two-dimensional potential energy surface for the ring-puckering vibrations of 2,4,7-trioxa[3.3.0]octane.

    PubMed

    Chun, Hye Jin; Meinander, Niklas; Villarreal, John R; Laane, Jaan

    2015-01-15

    2,4,7-Trioxa[3.3.0]octane (247TOO) is an unusual bicyclic molecule which can exist in four different conformational forms which are determined by the directions of the two ring- puckering motions. The vibrational assignments of 247TOO have been made based on its infrared and Raman spectra and theoretical density functional theory (DFT) calculations. The two ring-puckering motions (in-phase and out-of-phase) were observed in the Raman spectra of the liquid at 249 and 205 cm(-1) and these values correspond well to the DFT values of 247 and 198 cm(-1). Ab initio calculations were utilized to calculate the structures and conformational energies for the four energy minima and the barriers to interconversion and the data was utilized to generate a two-dimensional potential energy surface (PES) for the two ring-puckering motions. The resulting quantum state energies for this PES were then calculated in order to better understand the patterns that are produced when the PES has four energy minima at different energy values. The wave functions corresponding to the different quantum states were also calculated. The NMR spectrum of 247TOO showed the presence of the two lowest energy conformations, consistent with the results of the ab initio calculations. PMID:25514365

  11. Vibrational spectra, theoretical calculations, and two-dimensional potential energy surface for the ring-puckering vibrations of 2,4,7-trioxa[3.3.0]octane.

    PubMed

    Chun, Hye Jin; Meinander, Niklas; Villarreal, John R; Laane, Jaan

    2015-01-15

    2,4,7-Trioxa[3.3.0]octane (247TOO) is an unusual bicyclic molecule which can exist in four different conformational forms which are determined by the directions of the two ring- puckering motions. The vibrational assignments of 247TOO have been made based on its infrared and Raman spectra and theoretical density functional theory (DFT) calculations. The two ring-puckering motions (in-phase and out-of-phase) were observed in the Raman spectra of the liquid at 249 and 205 cm(-1) and these values correspond well to the DFT values of 247 and 198 cm(-1). Ab initio calculations were utilized to calculate the structures and conformational energies for the four energy minima and the barriers to interconversion and the data was utilized to generate a two-dimensional potential energy surface (PES) for the two ring-puckering motions. The resulting quantum state energies for this PES were then calculated in order to better understand the patterns that are produced when the PES has four energy minima at different energy values. The wave functions corresponding to the different quantum states were also calculated. The NMR spectrum of 247TOO showed the presence of the two lowest energy conformations, consistent with the results of the ab initio calculations.

  12. New Measurements of Doubly Ionized Iron Group Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smillie, D. G.; Pickering, J. C.; Blackwell-Whitehead, R. J.; Smith, Peter L.; Nave, G.

    2006-01-01

    We report new measurements of doubly ionized iron group element spectra, important in the analysis of B-type (hot) stars whose spectra they dominate. These measurements include Co III and Cr III taken with the Imperial College VUV Fourier transform (FT) spectrometer and measurements of Co III taken with the normal incidence vacuum spectrograph at NIST, below 135 nm. We report new Fe III grating spectra measurements to complement our FT spectra. Work towards transition wavelengths, energy levels and branching ratios (which, combined with lifetimes, produce oscillator strengths) for these ions is underway.

  13. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd

    NASA Astrophysics Data System (ADS)

    Peterson, Kirk A.; Figgen, Detlev; Dolg, Michael; Stoll, Hermann

    2007-03-01

    Scalar-relativistic pseudopotentials and corresponding spin-orbit potentials of the energy-consistent variety have been adjusted for the simulation of the [Ar]3d10 cores of the 4d transition metal elements Y-Pd. These potentials have been determined in a one-step procedure using numerical two-component calculations so as to reproduce atomic valence spectra from four-component all-electron calculations. The latter have been performed at the multi-configuration Dirac-Hartree-Fock level, using the Dirac-Coulomb Hamiltonian and perturbatively including the Breit interaction. The derived pseudopotentials reproduce the all-electron reference data with an average accuracy of 0.03eV for configurational averages over nonrelativistic orbital configurations and 0.1eV for individual relativistic states. Basis sets following a correlation consistent prescription have also been developed to accompany the new pseudopotentials. These range in size from cc-pVDZ-PP to cc-pV5Z-PP and also include sets for 4s4p correlation (cc-pwCVDZ-PP through cc-pwCV5Z-PP), as well as those with extra diffuse functions (aug-cc-pVDZ-PP, etc.). In order to accurately assess the impact of the pseudopotential approximation, all-electron basis sets of triple-zeta quality have also been developed using the Douglas-Kroll-Hess Hamiltonian (cc-pVTZ-DK, cc-pwCVTZ-DK, and aug-cc-pVTZ-DK). Benchmark calculations of atomic ionization potentials and 4dm -25s2→4dm -15s1 electronic excitation energies are reported at the coupled cluster level of theory with extrapolations to the complete basis set limit.

  14. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd.

    PubMed

    Peterson, Kirk A; Figgen, Detlev; Dolg, Michael; Stoll, Hermann

    2007-03-28

    Scalar-relativistic pseudopotentials and corresponding spin-orbit potentials of the energy-consistent variety have been adjusted for the simulation of the [Ar]3d(10) cores of the 4d transition metal elements Y-Pd. These potentials have been determined in a one-step procedure using numerical two-component calculations so as to reproduce atomic valence spectra from four-component all-electron calculations. The latter have been performed at the multi-configuration Dirac-Hartree-Fock level, using the Dirac-Coulomb Hamiltonian and perturbatively including the Breit interaction. The derived pseudopotentials reproduce the all-electron reference data with an average accuracy of 0.03 eV for configurational averages over nonrelativistic orbital configurations and 0.1 eV for individual relativistic states. Basis sets following a correlation consistent prescription have also been developed to accompany the new pseudopotentials. These range in size from cc-pVDZ-PP to cc-pV5Z-PP and also include sets for 4s4p correlation (cc-pwCVDZ-PP through cc-pwCV5Z-PP), as well as those with extra diffuse functions (aug-cc-pVDZ-PP, etc.). In order to accurately assess the impact of the pseudopotential approximation, all-electron basis sets of triple-zeta quality have also been developed using the Douglas-Kroll-Hess Hamiltonian (cc-pVTZ-DK, cc-pwCVTZ-DK, and aug-cc-pVTZ-DK). Benchmark calculations of atomic ionization potentials and 4d(m-2)5s(2)-->4d(m-1)5s(1) electronic excitation energies are reported at the coupled cluster level of theory with extrapolations to the complete basis set limit. PMID:17411102

  15. Energy transfer pathways in light-harvesting complexes of purple bacteria as revealed by global kinetic analysis of two-dimensional transient spectra.

    PubMed

    Ostroumov, Evgeny E; Mulvaney, Rachel M; Anna, Jessica M; Cogdell, Richard J; Scholes, Gregory D

    2013-09-26

    Excited state dynamics in LH2 complexes of two purple bacterial species were studied by broad-band two-dimensional electronic spectroscopy. The optical response was measured in the 500-600 nm spectral region on the 0-400 fs time scale. Global target analysis of two-dimensional (2D) transient spectra revealed the main energy transfer pathways between carotenoid S2, 1Bu(-) and S1 states and bacteriochlorophyll Qx state. Global analysis ascertained the evolutionary and vibration-associated spectra, which also indicated the presence of a higher-lying vibrational level in the carotenoid S1 state. The estimation of the spectral overlap between the 1Bu(-) state and the Qx state indicated a significant contribution of the 1Bu(-) state to the overall S2-to-Qx excitation energy transfer.

  16. Far-infrared spectra and ring-puckering potential energy functions of two oxygen-containing ring molecules with unusual bonding interactions

    NASA Astrophysics Data System (ADS)

    Choo, J.; Cortez, E.; Laane, Jaan; Majors, R.; Verastegui, R.; Villareal, Genaro R.

    1994-01-01

    Over the past quarter century we have carried out a large number of studies of the ring- puckering vibrations of small ring-molecules. The far-infrared and Raman spectra of these large amplitude motions have been used to determine the molecular conformation and 1-D potential energy functions. The forces which are usually the principal contributors to the potential functions are the ring-angle strain and torsional forces, which often result when CH2 groups are next to each other. In the present study we have examined the far-infrared and Raman spectra of two oxygen-containing molecules which have turned out to have unusual potential energy functions. 1,3-dioxole and 4H-pyran.

  17. Monomeric C-phycocyanin at room temperature and 77 K. Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants

    SciTech Connect

    Debreczeny, M.P.; Sauer, K. Univ. of California, Berkeley, CA ); Zhou, J.; Bryant, D.A. )

    1993-09-23

    At both room temperature (RT) and 77 K, the absorption and fluorescence spectra of the three individual chromophore types ([alpha][sub 84], [beta][sub 84], and [beta][sub 155]) found in monomeric C-phycocyanin ([alpha][sup PC][beta][sup PC]), isolated from the cyanobacterium Synechococcus sp. PCC 7002, were resolved along with the rates of energy transfer between the chromophores. The cpcB/C155S mutant, whose PC is missing the [beta][sub 155] chromophore, was useful in effecting this resolution. At RT, the single broad peak in the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) was resolved into its three-component spectra by comparing the steady-state absorption spectra of the isolated wild-type [alpha] subunit of PC ([alpha][sup PC]) (containing only the [alpha][sub 84] chromophore) with those of the monomeric PCs isolated from the mutant strain ([alpha][sup PC][beta]*) and the wild-type strain ([alpha][sup PC][beta][sup PC]). At 77 K, the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) splits into two peaks. This partial resolution at 77 K of the chromophore spectra of ([alpha][sup PC][beta][sup PC]) when compared with the 77 K absorption spectra of [alpha][sup PC], [beta][sup PC], and ([alpha][sup PC][beta]*) provided a confirmation of our RT assignments of the chromophore absorption spectra. 38 refs., 9 figs., 6 tabs.

  18. Power flow as a complement to statistical energy analysis and finite element analysis

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.

  19. Non-LTE models for synthetic spectra of type Ia supernovae. III. An accelerated lambda-iteration procedure for the mutual interaction of strong spectral lines in SN Ia models with and without energy deposition

    NASA Astrophysics Data System (ADS)

    Pauldrach, A. W. A.; Hoffmann, T. L.; Hultzsch, P. J. N.

    2014-09-01

    Context. In type Ia supernova (SN Ia) envelopes a huge number of lines of different elements overlap within their thermal Doppler widths, and this problem is exacerbated by the circumstance that up to 20% of these lines can have a line optical depth higher than 1. The stagnation of the lambda iteration in such optically thick cases is one of the fundamental physical problems inherent in the iterative solution of the non-LTE problem, and the failure of a lambda iteration to converge is a point of crucial importance whose physical significance must be understood completely. Aims: We discuss a general problem related to radiative transfer under the physical conditions of supernova ejecta that involves a failure of the usual non-LTE iteration scheme to converge when multiple strong opacities belonging to different physical transitions come together, similar to the well-known situation where convergence is impaired even when only a single process attains high optical depths. The convergence problem is independent of the chosen frequency and depth grid spacing, independent of whether the radiative transfer is solved in the comoving or observer's frame, and independent of whether a common complete-linearization scheme or a conventional accelerated lambda iteration (ALI) is used. The problem appears when all millions of line transitions required for a realistic description of SN Ia envelopes are treated in the frame of a comprehensive non-LTE model. The only solution to this problem is a complete-linearization approach that considers all ions of all elements simultaneously, or an adequate generalization of the established ALI technique that accounts for the mutual interaction of the strong spectral lines of different elements and which thereby unfreezes the "stuck" state of the iteration. Methods: The physics of the atmospheres of SN Ia are strongly affected by the high-velocity expansion of the ejecta, which dominates the formation of the spectra at all wavelength ranges

  20. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design.

  1. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. PMID:24863223

  2. From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy p p and p p ¯ collisions

    NASA Astrophysics Data System (ADS)

    Wong, Cheuk-Yin; Wilk, Grzegorz; Cirto, Leonardo J. L.; Tsallis, Constantino

    2015-06-01

    Transverse spectra of both jets and hadrons obtained in high-energy p p and p p ¯ collisions at central rapidity exhibit power-law behavior of 1 /pTn at high pT . The power index n is 4-5 for jet production and is 6-10 for hadron production. Furthermore, the hadron spectra spanning over 14 orders of magnitude down to the lowest pT region in p p collisions at the LHC can be adequately described by a single nonextensive statistical mechanical distribution that is widely used in other branches of science. This suggests indirectly the possible dominance of the hard-scattering process over essentially the whole pT region at central rapidity in high-energy p p and p p ¯ collisions. We show here direct evidences of such a dominance of the hard-scattering process by investigating the power indices of UA1 and ATLAS jet spectra over an extended pT region and the two-particle correlation data of the STAR and PHENIX collaborations in high-energy p p and p p ¯ collisions at central rapidity. We then study how the showering of the hard-scattering product partons alters the power index of the hadron spectra and leads to a hadron distribution that may be cast into a single-particle nonextensive statistical mechanical distribution. Because of such a connection, the nonextensive statistical mechanical distribution may be considered as a lowest-order approximation of the hard-scattering of partons followed by the subsequent process of parton showering that turns the jets into hadrons, in high-energy p p and p p ¯ collisions.

  3. Computation of strain energy release rates for skin-stiffener debonds modeled with plate elements

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Raju, I. S.; Davila, C. G.; Sleight, D. W.

    1993-01-01

    An efficient method for predicting the strength of debonded composite skin-stiffener configurations is presented. This method, which is based on fracture mechanics, models the skin and the stiffener with two-dimensional (2D) plate elements instead of three-dimensional (3D) solid elements. The skin and stiffener flange nodes are tied together by two modeling techniques. In one technique, the corresponding flange and skin nodes are required to have identical translational and rotational degrees-of-freedom. In the other technique, the corresponding flange and skin nodes are only required to have identical translational degrees-of-freedom. Strain energy release rate formulas are proposed for both modeling techniques. These formulas are used for skin-stiffener debond cases with and without cylindrical bending deformations. The cylindrical bending results are compared with plane-strain finite element results. Excellent agreement between the two sets of results is obtained when the second technique is used. Thus, from these limited studies, a preferable modeling technique for skin-stiffener debond analysis using plate elements is established.

  4. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    SciTech Connect

    Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  5. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source (abstract only)

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-02-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (versatile ECR for nuclear science), produce large amounts of x rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power, and heating frequency.

  6. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  7. Crossover from inelastic magnetic scattering of Cooper pairs to spin-wave dispersion produces the low-energy kink structure in the spectra of cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Markiewicz, R. S.; Bansil, A.

    2012-04-01

    We present GW-based-self-energy calculations for the state of the coexisting spin-density-wave and d-wave superconductivity in a series of cuprate superconductors. The spin-resonance spectrum is found to exhibit the typical “hourglass” form whose upward and downward dispersion branches come from the gapped-spin-wave and magnetic scattering, of Cooper pairs, respectively. We show that the crossover between these two different dispersion features leads to an abrupt change of slope in the quasiparticle self-energy, and hence, the low-energy kink commences in the single-particle quasiparticle spectrum. The calculated electron-boson-coupling strength agrees well with experimental data as a function of temperature, doping, and material. The results demonstrate that electronic correlations dominate the quasiparticle spectra of cuprates near the low-energy kink, suggesting a relatively smaller role for phonons in this energy range.

  8. Measurement of neutron energy spectra and neutron dose rates from 7Li(p,n)7Be reaction induced on thin LiF target

    NASA Astrophysics Data System (ADS)

    Atanackovic, Jovica; Matysiak, Witold; Dubeau, Jacques; Witharana, Sampath; Waker, Anthony

    2015-02-01

    The measurements of neutron energy spectra and neutron dose rates were performed using the KN Van de Graaff accelerator, located at the McMaster University Accelerator Laboratory (MAL). Protons were accelerated on the thin lithium fluoride (LiF) target and produced mono-energetic neutrons which were measured using three different spectrometers: Bonner Sphere Spectrometer (BSS), Nested Neutron Spectrometer (NNS), and Rotational Proton Recoil Spectrometer (ROSPEC). The purpose of this work is (1) measurement and quantification of low energy accelerator neutron fields in terms of neutron fluence and dose, (2) comparison of results obtained by three different instruments, (3) comparison of measurements with Monte Carlo simulations based on theoretical neutron yields from 7Li(p,n)7Be nuclear reaction, and (4) comparison of results obtained using different neutron spectral unfolding methods. The nominal thickness of the LiF target used in the experiment was 50 μg /cm2, which corresponds to the linear thickness of 0.19 μm and results in approximately 6 keV energy loss for the proton energies used in the experiment (2.2, 2.3, 2.4 and 2.5 MeV). For each of the proton energies, neutron fluence per incident proton charge was measured and several dosimetric quantities of interest in radiation protection were derived. In addition, theoretical neutron yield calculations together with the results of Monte Carlo (MCNP) modeling of the neutron spectra are reported. Consistent neutron fluence spectra were obtained with three detectors and good agreement was observed between theoretically calculated and measured neutron fluences and derived dosimetric quantities for investigated proton energies at 2.3, 2.4 and 2.5 MeV. In the case of 2.2 MeV, some plausibly explainable discrepancies were observed.

  9. Construction of minimum energy high-order Helmholtz bases for structured elements

    NASA Astrophysics Data System (ADS)

    Rodrigues, Caio F.; Suzuki, Jorge L.; Bittencourt, Marco L.

    2016-02-01

    We present a construction procedure for high-order expansion bases for structured finite elements specific for the operator under consideration. The procedure aims to obtain bases in such way that the condition numbers for the element matrices are almost constant or have a moderate increase in terms of the polynomial order. The internal modes of the mass and stiffness matrices are made simultaneously diagonal and the minimum energy concept is used to make the boundary modes orthogonal to the internal modes. The performance of the proposed bases is compared to the standard basis using Jacobi polynomials. This is performed through numerical examples for Helmholtz problem and transient linear elasticity employing explicit and implicit time integration algorithms and the conjugate gradient method with diagonal, SSOR and Gauss-Seidel pre-conditioners. The sparsity patterns, conditioning and solution costs are investigated. A significant speedup and reduction in the number of iterations are obtained when compared to the standard basis.

  10. Radioactive sample effects on EDXRF spectra

    SciTech Connect

    Worley, Christopher G

    2008-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward method to determine sample elemental composition. A spectrum can be collected in a few minutes or less, and elemental content can be determined easily if there is adequate energy resolution. Radioactive alpha emitters, however, emit X-rays during the alpha decay process that complicate spectral interpretation. This is particularly noticeable when using a portable instrument where the detector is located in close proximity to the instrument analysis window held against the sample. A portable EDXRF instrument was used to collect spectra from specimens containing plutonium-239 (a moderate alpha emitter) and americium-241 (a heavy alpha emitter). These specimens were then analyzed with a wavelength dispersive XRF (WDXRF) instrument to demonstrate the differences to which sample radiation-induced X-ray emission affects the detectors on these two types of XRF instruments.

  11. The thick-target sup 9 Be(d,n) neutron spectra for deuteron energies between 2. 6 and 7. 0-MeV

    SciTech Connect

    Meadows, J.W.

    1991-11-01

    The measurement of the zero deg. neutron spectra and yields from deuterons incident on thick beryllium metal targets is described. {sup 235}U and {sup 238}U fission ion chambers were used as neutron detectors to span the neutron energy range above 0.05-MeV with a time resolution of {le} 3 nanosec. Measurements were made for incident deuteron energies from 2.6 to 7.0-MeV, at 0.4-MeV intervals, using time-of-flight techniques with flight paths of 2.7 and 6.8 meters. The results are presented in graphical form and in tables.

  12. The thick-target {sup 9}Be(d,n) neutron spectra for deuteron energies between 2.6 and 7.0-MeV

    SciTech Connect

    Meadows, J.W.

    1991-11-01

    The measurement of the zero deg. neutron spectra and yields from deuterons incident on thick beryllium metal targets is described. {sup 235}U and {sup 238}U fission ion chambers were used as neutron detectors to span the neutron energy range above 0.05-MeV with a time resolution of {le} 3 nanosec. Measurements were made for incident deuteron energies from 2.6 to 7.0-MeV, at 0.4-MeV intervals, using time-of-flight techniques with flight paths of 2.7 and 6.8 meters. The results are presented in graphical form and in tables.

  13. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  14. Relativistically parametrized extended Hueckel calculations. 11. Energy bands for elemental tellurium and polonium

    SciTech Connect

    Lohr, L.L.

    1987-06-17

    An extension of the REX relativistically parametrized extended Hueckel LCAO molecular orbital method to periodic solids is outlined. The method provides a simple and systematic approach to the description of the spin-orbit splitting of energy bands. The method is illustrated with results for the main-group elements tellurium and polonium, with trigonal-helical and simple-cubic structures, respectively. The helical structure of tellurium is described as a distortion of a simple-cubic structure, with the distortion being quenched in the case of polonium by its very large spin-orbit coupling. 36 references, 10 figures, 1 table.

  15. Status of the low-energy super-heavy element facility at RIKEN

    NASA Astrophysics Data System (ADS)

    Schury, P.; Wada, M.; Ito, Y.; Arai, F.; Kaji, D.; Kimura, S.; Morimoto, K.; Haba, H.; Jeong, S.; Koura, H.; Miyatake, H.; Morita, K.; Reponen, M.; Ozawa, A.; Sonoda, T.; Takamine, A.; Wollnik, H.

    2016-06-01

    In order to investigate nuclei produced via fusion-evaporation reactions, especially super-heavy elements (SHE), we have begun construction of a facility for conversion of fusion-evaporation residues (EVR) to low-energy beams. At the base of this facility is a small cryogenic gas cell utilizing a traveling wave RF-carpet, located directly following the gas-filled recoil ion separator GARIS-II, which will thermalize EVRs to convert them into ion beams amenable to ion trapping. We present here the results of initial studies of this small gas cell.

  16. Core-level binding-energy shifts for the metallic elements

    NASA Astrophysics Data System (ADS)

    Johansson, Börje; Mårtensson, Nils

    1980-05-01

    A general treatment of core-level binding-energy shifts in metals relative to the free atom is introduced and applied to all elemental metals in the Periodic Table. The crucial ingredients of the theoretical description are (a) the assumption of a fully screened final state in the metallic case and (b) the (Z+1) approximation for the screening valence charge distribution around the core-ionized site. This core-ionized site is, furthermore, treated as an impurity in an otherwise perfect metal. The combination of the complete screening picture and the (Z+1) approximation makes it possible to introduce a Born-Haber cycle which connects the initial state with the final state of the core-ionization process. From this cycle it becomes evident that the main contributions to the core-level shift are the cohesive energy difference between the (Z+1) and Z metal and an appropriate ionization energy of the (Z+1) atom (usually the first ionization potential). The appearance of the ionization potential in the shift originates from the assumption of a charge-neutral final state, while the contribution from the cohesive energies essentially describes the change of bonding properties between the initial and final state of the site. The calculated shifts show very good agreement with available experimental values (at present, for 19 elements). For the other elements we have made an effort to combine experimental ionization potentials with theoretical calculations in order to obtain accurate estimates of some of the atomic-core-level binding energies. Such energies together with measured metallic binding energies give "pseudoexperimental" shifts for many elements. Our calculated core-level shifts agree exceedingly well also with these data. For some of the transition elements the core-level shift shows a deviating behavior in comparison with that of neighboring elements. This is shown to be due to a difference in the atomic ground-state configuration, such as, for example, d5s in

  17. Numerical values of the surface free energies of solid chemical elements

    NASA Astrophysics Data System (ADS)

    Mezey, L. Z.; Giber, J.

    1984-10-01

    The knowledge of the surface free energies γ {i/o}of solid chemical elements is necessary in many practically important subjects. The description of the quantities γ {i/o}(more correctly termed as the surface free enthalpies) is a part of a new “complex calculation of surface segregation” (CCSS) method, proposed by the authors. Here the applicability of a “standard table” of the values of γ {/i o }, obtained in that part of CCSS is shown by comparing the calculated values of γ {/i o }with several recently published experimental results.

  18. Cluster size dependence of double ionization energy spectra of spin-polarized aluminum and sodium clusters: All-electron spin-polarized GW+T -matrix method

    NASA Astrophysics Data System (ADS)

    Noguchi, Yoshifumi; Ohno, Kaoru; Solovyev, Igor; Sasaki, Taizo

    2010-04-01

    The double ionization energy (DIE) spectra are calculated for the spin-polarized aluminum and sodium clusters by means of the all-electron spin-polarized GW+T -matrix method based on the many-body perturbation theory. Our method using the one- and two-particle Green’s functions enables us to determine the whole spectra at once in a single calculation. The smaller is the size of the cluster, the larger the difference between the minimal double ionization energy and the twice of the ionization potential. This is because the strong Coulomb repulsion between two holes becomes dominant in small confined geometry. Due to Pauli’s exclusion principle, the parallel spin DIE is close to or smaller than the antiparallel spin DIE except for Na4 that has well-separated highest and second highest occupied molecular-orbital levels calculated by the spin-dependent GW calculation. In this paper, we compare the results calculated for aluminum and sodium clusters and discuss the spin-polarized effect and the cluster size dependence of the resulting spectra in detail.

  19. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi

    2015-09-01

    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  20. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    NASA Technical Reports Server (NTRS)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  1. Cooperativity and interaction energy threshold effects in recognition of the -10 promoter element by bacterial RNA polymerase.

    PubMed

    Mekler, Vladimir; Severinov, Konstantin

    2013-08-01

    RNA polymerase (RNAP) melts promoter DNA to form transcription-competent open promoter complex (RPo). Interaction of the RNAP σ subunit with non-template strand bases of a conserved -10 element (consensus sequence T-12A-11T-10A-9A-8T-7) is an important source of energy-driving localized promoter melting. Here, we used an RNAP molecular beacon assay to investigate interdependencies of RNAP interactions with -10 element nucleotides. The results reveal a strong cooperation between RNAP interactions with individual -10 element non-template strand nucleotides and indicate that recognition of the -10 element bases occurs only when free energy of the overall RNAP -10 element binding reaches a certain threshold level. The threshold-like mode of the -10 element recognition may be related to the energetic cost of attaining a conformation of the -10 element that is recognizable by RNAP. The RNAP interaction with T/A-12 base pair was found to be strongly stimulated by RNAP interactions with other -10 element bases and with promoter spacer between the -10 and -35 promoter elements. The data also indicate that unmelted -10 promoter element can impair RNAP interactions with promoter DNA upstream of the -11 position. We suggest that cooperativity and threshold effects are important factors guiding the dynamics and selectivity of RPo formation.

  2. Visit the journal at http://www.elsevier.nl/locate/jnlnr/05327 Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves

    NASA Astrophysics Data System (ADS)

    Caillol, P.; Zeitlin, V.

    2000-07-01

    An ensemble of random-phase internal gravity waves is considered in the dynamical framework of the Euler-Boussinesq equations. For flows with zero mean potential vorticity, a kinetic equation for the mean spectral energy density of the waves is obtained under hypothesis of Gaussian statistics with zero correlation length. Stationary scaling solutions of this equation are found for almost vertically propagating waves. The resulting spectra are anisotropic in vertical and horizontal wave numbers. For flows with small but non-zero mean potential vorticity, under the same statistical hypothesis applied to the wave part of the flow, it is shown that the vortex part and the wave part decouple. The vortex part obeys a limiting slow dynamics equation exhibiting vertical collapse and layering which may contaminate the wave-part spectra. Relation of these results to the in situ atmospheric measurements and previous work on oceanic gravity waves is discussed.

  3. First predictions of rotationally resolved infrared spectra of dideuteromethane ((12)CH2D2) from potential energy and dipole moment surfaces.

    PubMed

    Rey, Michaël; Nikitin, Andrei V; Tyuterev, Vladimir G

    2015-05-21

    We report the variationally computed infrared spectrum of (12)CH2D2 using our recent potential energy and dipole moment methane surfaces, which have been initially derived in the irreducible tensor representation adapted to the tetrahedral symmetry of the major isotopologue (12)CH4. The nuclear motion calculations are accomplished by combining the normal-mode Eckart-Watson Hamiltonian with isotopic and symmetry transformations. Our direct vibrational calculations are compared to the 93 observed band centers up to 6300 cm(-1). Except for two outliers the root-mean-square deviation is 0.22 cm(-1) and the maximum error is 0.7 cm(-1) without empirical adjustment of parameters. The work aims at filling the gap concerning missing line strength information for this molecule. Theoretical spectra predictions are given up to J = 25 and, for the very first time, ab initio intensity predictions for rovibrational line transitions are in good qualitative agreement with available experimental spectra. PMID:25905903

  4. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  5. Determination of Elemental Ratio in an Atomic Column by Electron Energy Loss Spectroscopy.

    PubMed

    Haruta, Mitsutaka; Hosaka, Yoshiteru; Ichikawa, Noriya; Saito, Takashi; Shimakawa, Yuichi; Kurata, Hiroki

    2016-07-26

    Atomic-resolution quantification of the elemental ratio of Fe to Mn at the octahedral and tetrahedral sites in brownmillerite Ca2Fe1.07Mn0.93O5 was determined using electron energy-loss spectroscopy combined with aberration-corrected scanning transmission electron microscopy. The combined techniques revealed that oversampling of the spectral imaging data yielded a spatially resolved area that very nearly reflects atomic resolution (∼1.2 Å radius). The average experimental ratios of Fe to Mn within this region were 17.5:82.5 for the octahedral sites and 81.6:18.4 for the tetrahedral sites. The elemental ratio in an octahedral atomic column was successfully extracted by estimating the mixing of signals from nearest neighbor columns. The results indicated that the ratio of Fe to Mn was 13:87 at the octahedral site, which is in good agreement with the results of neutron diffraction analysis. In addition, the uncertainty of experimental results obtained by using an average 1.2 Å radius was less than 10% at octahedral sites, depending on the sample thickness. In contrast, the experimental error due to dechanneling of incident electrons was larger at the tetrahedral sites. This experimental procedure has wide application for determining the spatially resolved composition ratio of elements in perovskite-like compounds. PMID:27341006

  6. Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, O.; Queralt, I.; Carvalho, M. L.; Garcia, G.

    2007-08-01

    An energy dispersive X-ray fluorescence (EDXRF) tri-axial geometry experimental spectrometer has been employed to determine the concentrations of 13 different elements (K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr and Pb) in mine wastes from different depths of two mine tailings from the Cartagena-La Union (Spain) mining district. The elements were determined and quantified using the fundamental parameters method. The concentrations of Cr, Ni, Cu, Zn and Pb were compared to the values from the European and Spanish legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control land-filled. The results obtained demonstrate that these wastes can be considered as inert for the considered elements, apart from the concentration levels of Zn and Pb. Whilst Zn slightly overpasses the regulatory levels, Pb mean value exceeds three to six times the value to be considered as Class I potential land-filling material.

  7. Determination of Elemental Ratio in an Atomic Column by Electron Energy Loss Spectroscopy.

    PubMed

    Haruta, Mitsutaka; Hosaka, Yoshiteru; Ichikawa, Noriya; Saito, Takashi; Shimakawa, Yuichi; Kurata, Hiroki

    2016-07-26

    Atomic-resolution quantification of the elemental ratio of Fe to Mn at the octahedral and tetrahedral sites in brownmillerite Ca2Fe1.07Mn0.93O5 was determined using electron energy-loss spectroscopy combined with aberration-corrected scanning transmission electron microscopy. The combined techniques revealed that oversampling of the spectral imaging data yielded a spatially resolved area that very nearly reflects atomic resolution (∼1.2 Å radius). The average experimental ratios of Fe to Mn within this region were 17.5:82.5 for the octahedral sites and 81.6:18.4 for the tetrahedral sites. The elemental ratio in an octahedral atomic column was successfully extracted by estimating the mixing of signals from nearest neighbor columns. The results indicated that the ratio of Fe to Mn was 13:87 at the octahedral site, which is in good agreement with the results of neutron diffraction analysis. In addition, the uncertainty of experimental results obtained by using an average 1.2 Å radius was less than 10% at octahedral sites, depending on the sample thickness. In contrast, the experimental error due to dechanneling of incident electrons was larger at the tetrahedral sites. This experimental procedure has wide application for determining the spatially resolved composition ratio of elements in perovskite-like compounds.

  8. Inclusive spectra in the upsilon energy region and a study of quark-jet versus gluon-jet fragmentation

    SciTech Connect

    Brown, D.N.

    1992-01-01

    A study of particle yields from [Upsilon] and [Chi][prime][sub b] states has been performed using the CLEO II detector operating at the Cornell Electron Storage Ring (CESR). The [Chi][prime][sub b] states are tagged by their associated photon lines from decay of the [Gamma](3S). Produced particle species are identified using specific ionization, time-of-flight measurements, and vertex reconstruction. The momentum spectra of [pi][sup [+-

  9. From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy pp and pp¯ collisions

    DOE PAGESBeta

    Wong, Cheuk-Yin; Wilk, Grzegorz; Cirto, Leonardo J. L.; Tsallis, Constantino

    2015-06-22

    Transverse spectra of both jets and hadrons obtained in high-energymore » $pp$ and $$p\\bar p $$ collisions at central rapidity exhibit power-law behavior of $1/p_T^n$ at high $p_T$. The power index $n$ is 4-5 for jet production and is slightly greater for hadron production. Furthermore, the hadron spectra spanning over 14 orders of magnitude down to the lowest $p_T$ region in $pp$ collisions at LHC can be adequately described by a single nonextensive statistical mechanical distribution that is widely used in other branches of science. This suggests indirectly the dominance of the hard-scattering process over essentially the whole $p_T$ region at central rapidity in $pp$ collisions at LHC. We show here direct evidences of such a dominance of the hard-scattering process by investigating the power index of UA1 jet spectra over an extended $p_T$ region and the two-particle correlation data of the STAR and PHENIX Collaborations in high-energy $pp$ and $$p \\bar p$$ collisions at central rapidity. We then study how the showering of the hard-scattering product partons alters the power index of the hadron spectra and leads to a hadron distribution that can be cast into a single-particle non-extensive statistical mechanical distribution. Lastly, because of such a connection, the non-extensive statistical mechanical distribution can be considered as a lowest-order approximation of the hard-scattering of partons followed by the subsequent process of parton showering that turns the jets into hadrons, in high energy $pp$ and $$p\\bar p$$ collisions.« less

  10. Transverse energy distribution analysis in a field emission element with an insulator funnel

    NASA Astrophysics Data System (ADS)

    Min, Liu; Xiaobing, Zhang; Wei, Lei; Hongping, Zhao; Baoping, Wang

    2005-06-01

    In a field emission display panel, an insulator funnel, which is called Hop funnel, has been used to separate the cathode and the anode. Secondary electrons generated on top of the insulating surface due to the primary electron bombardment are drawn to the exit hole of the funnel by the electric field. Therefore, the energy distribution of these secondary electrons influences the quality of the FED. In this paper, an experimental instrument has been built to study the energy distribution of the secondary electrons on the anode screen in a field emission display element. Simultaneously, the relevant simulation with different primary conditions has been made. The both numerical simulation and experimental results are compared, and it is found that: (1) The experimental results can be well described by the numerical simulations; (2) the distance between the emitting center and the funnel hole has a dramatic influence to the number of electrons that can leave the hop funnel; (3) the distance between the anode and the funnel does not have a strong influence on the energy distribution; (4) the transverse energy distribution of hop electrons is very low.

  11. Rotationally resolved vibrational spectra of AsH3 (+)X̃(2)A2 (″): Tunneling splittings studied by zero-kinetic-energy photoelectron spectroscopy.

    PubMed

    Sun, Wei; Dai, Zuyang; Wang, Jia; Mo, Yuxiang

    2016-06-21

    The rotationally resolved vibrational spectra of AsH3 (+)X̃(2)A2 (″) have been measured for the first time with vibrational energies up to 6000 cm(-1) above the ground state using the zero-kinetic-energy photoelectron method. The symmetric inversion vibrational energy levels (v2 (+)) and the corresponding rotational constants for v2 (+)=0-15 have been determined. The tunneling splittings of the inversion vibration energy levels have been observed and are 0.8 and 37.7 (±0.5) cm(-1) for the ground and the first excited vibrational states, respectively. The first adiabatic ionization energy for AsH3 was determined as 79 243.3 ± 1 cm(-1). The geometric parameters of AsH3 (+)X̃(2)A2 (″) as a function of inversion vibrational numbers have been determined, indicating that the geometric structure of the cation changes from near-planar to pyramidal with increasing inversion vibrational excitation. In addition to the experimental measurements, a two-dimensional theoretical calculation considering the two symmetric vibrational modes was performed to determine the energy levels of the symmetric inversion, which are in good agreement with the experimental results. The inversion vibrational energy levels of SbH3 (+)X̃(2)A2 (″) have also been calculated and are found to have much smaller energy splittings than those of AsH3 (+)X̃(2)A2 (″).

  12. Rotationally resolved vibrational spectra of AsH3 + (" separators=" X ˜ 2 A2 ″) : Tunneling splittings studied by zero-kinetic-energy photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Dai, Zuyang; Wang, Jia; Mo, Yuxiang

    2016-06-01

    The rotationally resolved vibrational spectra of AsH3 + (" separators=" X ˜ 2 A2 ″) have been measured for the first time with vibrational energies up to 6000 cm-1 above the ground state using the zero-kinetic-energy photoelectron method. The symmetric inversion vibrational energy levels ( v2 +) and the corresponding rotational constants for v2 + = 0 -15 have been determined. The tunneling splittings of the inversion vibration energy levels have been observed and are 0.8 and 37.7 (±0.5) cm-1 for the ground and the first excited vibrational states, respectively. The first adiabatic ionization energy for AsH3 was determined as 79 243.3 ± 1 cm-1. The geometric parameters of AsH3 + (" separators=" X ˜ 2 A2 ″) as a function of inversion vibrational numbers have been determined, indicating that the geometric structure of the cation changes from near-planar to pyramidal with increasing inversion vibrational excitation. In addition to the experimental measurements, a two-dimensional theoretical calculation considering the two symmetric vibrational modes was performed to determine the energy levels of the symmetric inversion, which are in good agreement with the experimental results. The inversion vibrational energy levels of SbH3 + (" separators=" X ˜ 2 A2 ″) have also been calculated and are found to have much smaller energy splittings than those of AsH3 + (" separators=" X ˜ 2 A2 ″) .

  13. Elemental relationships in rock varnish as seen with SEM/EDX (scanning electron microscopy/energy dispersive x-ray) elemental line profiling

    SciTech Connect

    Raymond, R. Jr.; Reneau, S.L.; Harrington, C.D.

    1990-01-01

    The heterogeneous nature of rock varnish requires a thorough survey of elemental and mineralogic compositions before relating chemical variability of rock varnish to past geochemical environments. Elemental relationships in rock varnish can be examined using scanning electron microscopy (SEM) in conjunction with an elemental line profiling routine using semi-quantitative, energy dispersive x-ray (EDX) analysis. Results of SEM/EDX analysis suggest: variations in cation concentrations used in varnish cation ratio dating relate more specifically to variations in detritus within the varnish than to element mobility as defined by weathering indices; Mn concentration rather than Mn:Fe ratios may be a more appropriate indicator of paleoclimatic fluctuations; and the Mn-oxide phase existing in varnish is most likely a Ba-enriched phase rather than birnessite. Element line profiling offers great potential for gaining insights into geochemical processes affecting the deposition and diagenesis of rock varnish and for testing hypotheses relating to its chemical variability. 27 refs., 9 figs.

  14. The Equilibrium and Pre-equilibrium Triton Emission Spectra of Some Target Nuclei for ( n, xt) Reactions up to 45 MeV Energy

    NASA Astrophysics Data System (ADS)

    Tel, E.; Kaplan, A.; Aydın, A.; Özkorucuklu, S.; Büyükuslu, H.; Yıldırım, G.

    2010-08-01

    Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, working out the systematics of ( n,t) reaction cross sections and triton emission differential data are important for the given reaction taking place on various nuclei at different energies. In this study, ( n,xt) reactions for some target nuclei as 16O, 27Al, 59Co and 209Bi have been investigated up to 45 MeV incident neutron energy. In the calculations of the triton emission spectra, the pre-equilibrium and equilibrium effects have been used. The calculated results have been compared with the experimental data taken from the literature.

  15. Derivation of a Relation for the Steepening of TeV Selected Blazar Gamma-Ray Spectra with Energy and Redshift

    NASA Technical Reports Server (NTRS)

    Stecker, F.

    2010-01-01

    We derive a relation for the steepening of blazar gamma-ray spectra between the multi-GeV Fermi energy range and the TeV energy range observed by atmospheric Cerenkov telescopes. The change in spectral index is produced by two effects: (1) an intrinsic steepening, independent of redshift, owing to the properties of emission and absorption in the source, and (2) a redshift-dependent steepening produced by intergalactic pair production interactions of blazar gamma-rays with low energy photons of the "intergalactic background light" (IBL). Given this relation, with good enough data on the mean gamma-ray SED of TeV Selected BL Lacs, the redshift evolution of the IBL can, in principle, be determined independently of stellar evolution models. We apply our relation to the results of new Fermi observations of TeV selected blazars.

  16. Measurements of neutron energy spectra from 7Li(p,n)7Be reaction with Bonner sphere spectrometer, Nested Neutron Spectrometer and ROSPEC.

    PubMed

    Atanackovic, J; Matysiak, W; Witharana, S; Dubeau, J; Waker, A J

    2014-10-01

    Neutron spectrometry measurements were carried out at the McMaster Accelerator Laboratory (MAL), which is equipped with a 3-MV Van de Graaff-type accelerator. Protons were accelerated onto a thick natural lithium target inducing the (7)Li(p,n)(7)Be threshold reaction. Depending on the proton energy, slightly different poly-energetic neutron fields were produced. Neutron spectra were measured at two incident proton energies: 2.15 and 2.24 MeV, which produced poly-energetic neutrons with maximum kinetic energies of 401 and 511 keV, respectively. Measurements were performed at a distance of 1.5 m from the target in the forward direction with three different instruments: Bonner sphere spectrometer, Nested Neutron Spectrometer and ROtational proton recoil SPECtrometer.

  17. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    PubMed

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel. PMID:27081973

  18. Effect of the reducing-terminal substituents on the high energy collision-induced dissociation matrix-assisted laser desorption/ionization mass spectra of oligosaccharides.

    PubMed

    Küster, B; Naven, T J; Harvey, D J

    1996-01-01

    High-energy collision-induced dissociation (CID) matrix-assisted laser desorption/ionization mass spectra of N-linked oligosaccharides bearing different, commonly encountered, reducing terminal modifications (hydroxyl, 2-aminobenzamide, asparagine and a tetrapeptide) were recorded on a magnetic sector instrument equipped with an orthogonal-acceleration time-of-flight (OA-TOF) analyser. All the compounds formed abundant molecular (MNa+) and fragment ions, the latter corresponding to glycosidic and cross-ring cleavages as well as to internal fragment ions, all of which provided much insight into the oligosaccharide structure. The nature of the modification considerably influenced the CID behaviour. The strongest and most complete series of glycosidic cleavage ions (mainly Y and B--Domon and Costello nomenclature) was formed by the underivatized oligosaccharide whereas most cross-ring fragment ions, diagnostic of linkage, were found in the spectra of the glycopeptides. A-type cross-ring cleavage ions were particularly abundant in the spectrum of the asparagine derivative. Reductive amination using 2-aminobenzamide resulted in an opened reducing-terminal sugar ring and suppression of the cross-ring fragment ions carrying information associated with that ring. This information was present in the spectra of the free carbohydrate and the peptide derivatives. PMID:8914337

  19. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for 235U (n ,fission) at Thermal and Fast Neutron Energies

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  20. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    PubMed

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  1. Comparative assessment of density functional methods for evaluating essential parameters to simulate SERS spectra within the excited state energy gradient approximation

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Mozhdeh; Jamshidi, Zahra

    2016-05-01

    The prospect of challenges in reproducing and interpretation of resonance Raman properties of molecules interacting with metal clusters has prompted the present research initiative. Resonance Raman spectra based on the time-dependent gradient approximation are examined in the framework of density functional theory using different methods for representing the exchange-correlation functional. In this work the performance of different XC functionals in the prediction of ground state properties, excitation state energies, and gradients are compared and discussed. Resonance Raman properties based on time-dependent gradient approximation for the strongly low-lying charge transfer states are calculated and compared for different methods. We draw the following conclusions: (1) for calculating the binding energy and ground state geometry, dispersion-corrected functionals give the best performance in comparison to ab initio calculations, (2) GGA and meta GGA functionals give good accuracy in calculating vibrational frequencies, (3) excited state energies determined by hybrid and range-separated hybrid functionals are in good agreement with EOM-CCSD calculations, and (4) in calculating resonance Raman properties GGA functionals give good and reasonable performance in comparison to the experiment; however, calculating the excited state gradient by using the hybrid functional on the hessian of GGA improves the results of the hybrid functional significantly. Finally, we conclude that the agreement of charge-transfer surface enhanced resonance Raman spectra with experiment is improved significantly by using the excited state gradient approximation.

  2. On the energy dependence of the radial diffusion coefficient and spectra of inner radiation belt particles - Analytic solutions and comparison with numerical results

    NASA Technical Reports Server (NTRS)

    Westphalen, H.; Spjeldvik, W. N.

    1982-01-01

    A theoretical method by which the energy dependence of the radial diffusion coefficient may be deduced from spectral observations of the particle population at the inner edge of the earth's radiation belts is presented. This region has previously been analyzed with numerical techniques; in this report an analytical treatment that illustrates characteristic limiting cases in the L shell range where the time scale of Coulomb losses is substantially shorter than that of radial diffusion (L approximately 1-2) is given. It is demonstrated both analytically and numerically that the particle spectra there are shaped by the energy dependence of the radial diffusion coefficient regardless of the spectral shapes of the particle populations diffusing inward from the outer radiation zone, so that from observed spectra the energy dependence of the diffusion coefficient can be determined. To insure realistic simulations, inner zone data obtained from experiments on the DIAL, AZUR, and ESRO 2 spacecraft have been used as boundary conditions. Excellent agreement between analytic and numerical results is reported.

  3. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method.

    PubMed

    Subashchandrabose, S; Saleem, H; Erdogdu, Y; Rajarajan, G; Thanikachalam, V

    2011-11-01

    FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π* transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation.

  4. Attained energy densities and neutral pion spectra in nucleus-nucleus collisions at 200 GeV/nucleon

    SciTech Connect

    Plasil, F.; Albrecht, R.; Awes, T.C.; Baktash, C.; Beckmann, P.; Berger, F.; Bock, R.; Claesson, G.; Clewing, G.; Dragon, L.

    1989-01-01

    The main goal of the CERN heavy-ion experiments is the search for an indication that the predicted state of deconfined quarks and gluons, the quark-gluon plasma (QGP), has been produced. The quantity most crucial to the probability of QGP formation is the thermalized energy density attained during the heavy-ion reaction. The amount of energy radiated transverse to the beam direction is the experimental quantity which is believed to be a measure of the amount of energy deposition in the reaction, and hence to reflect the energy density attained. In this presentation we consider the systematics of transverse energy production at CERN SPS energies, and we use the results to make estimates, under various assumptions, of attained energy densities. 18 refs., 2 figs.

  5. Depth dependence of absorbed dose, dose equivalent and linear energy transfer spectra of galactic and trapped particles in polyethylene and comparison with calculations of models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.

  6. Generating a Reduced-energy Antiproton beam using Channeling Electrostatic elements (GRACE)

    NASA Astrophysics Data System (ADS)

    Lawler, Gerard; Pacifico, Nicola; Aegis Collaboration

    2016-03-01

    A device was designed for Generating a Reduced-energy Antiproton-beam using Channeling Electrostatic elements (GRACE). A series of einzel lenses and electrodes are used to create a slow beam of antiprotons with tunable mean energy (0 to 16 keV with root mean squared value below 20%) using antiprotons (mean energy of 5 MeV) from the Antiproton Decelerator (AD) at CERN. Degrader foil is in place, so GRACE further deflects the beam bunches away from the annihilation products, focusing them on a 14 mm x 14 mm detector. Manufacturing parameters were found using simulations written in C++. The device is currently in use by the Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) collaboration at CERN, which seeks to measure the sign of the gravitational constant for antimatter by performing interferometry studies on an antihydrogen beam. GRACE delivers on the order of 10 events per beam bunch from the AD. Antiprotons will eventually be used together with a pulse of positronium atoms to make antihydrogen atoms with horizontal velocity. GRACE is being used to perform intermediary experiments concerning interferometry of antiprotons, an important stepping stone on the way to measuring the sign of gravity. Special thanks to Boston University Undergraduate Research Opportunities Program, Lawrence Sulak, and Michael Doser.

  7. Government-to-private sector energy programs: Identification of common elements leading to successful implementation

    NASA Astrophysics Data System (ADS)

    Stockton, Keith M.

    This dissertation examines six distinct government energy programs implemented in the United States during the last three decades. A common element within these programs is an attempt by government to drive commercialization of energy technologies leading to changes in energy production or consumptive behavior. We seek to understand the factors that lead to success or failure of these programs with two goals in mind. The first is theoretical in that we test a hypothesis that market-based energy programs have substantially higher success rates than command-and-control programs. The second goal is operational in nature, in which we desire to identify common factors within energy programs that lead either to program success or to failure. We investigate and evaluate three market-based and three command-and-control energy programs. The market-based programs include the federal Corporate Average Fuel Economy and Sulfur Dioxide Emissions Control programs as well as Colorado's Amendment 37. The command-and-control programs include the federal Synthetic Fuels Corporation and Corn Based Ethanol programs as well as Colorado's Solar Electric Power program. We conduct the analysis of each program based on composite methodology derived from leading academics within the Policy Sciences. From our research findings, we conclude that both market-based and command-and-control programs can achieve their legislative goals and objectives, resulting in permanent changes in energy production or consumptive behavior. However, we also find that the economic efficiency is the differentiator between market-based and command-and-control programs. Market-based programs, because of the inherent flexibility, allow participants to react to changing economic and/or technical conditions. In contrast, command-and-control programs lack such flexibility and often result in economic inefficiency when economic conditions change. The financial incentives incorporated in the three command

  8. Flame Spectra.

    ERIC Educational Resources Information Center

    Cromer, Alan

    1983-01-01

    When salt (NaCl) is introduced into a colorless flame, a bright yellow light (characteristic of sodium) is produced. Why doesn't the chlorine produce a characteristic color of light? The answer to this question is provided, indicating that the flame does not excite the appropriate energy levels in chlorine. (JN)

  9. Computed secondary-particle energy spectra following nonelastic neutron interactions with sup 12 C for E sub n between 15 and 60 MeV: Comparisons of results from two calculational methods

    SciTech Connect

    Dickens, J.K.

    1991-04-01

    The organic scintillation detector response code SCINFUL has been used to compute secondary-particle energy spectra, d{sigma}/dE, following nonelastic neutron interactions with {sup 12}C for incident neutron energies between 15 and 60 MeV. The resulting spectra are compared with published similar spectra computed by Brenner and Prael who used an intranuclear cascade code, including alpha clustering, a particle pickup mechanism, and a theoretical approach to sequential decay via intermediate particle-unstable states. The similarities of and the differences between the results of the two approaches are discussed. 16 refs., 44 figs., 2 tabs.

  10. Element by Element Abundances in Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Worthey, Guy; Serven, Jedidiah

    2006-02-01

    Element-by-element abundances will be derived from high quality long slit KPNO 4m spectra of nearby elliptical galaxies that span the range of velocity dispersion. Analysis of these spectra will give the abundances of 18 individual elements to bring to extragalactic astronomy the same luxurious situation now enjoyed only by stellar spectroscopists. These spectra will reveal the basic element ratio behavior as a function of galaxy velocity dispersion. For example, [Mg/Fe] is seen to be enhanced in large galaxies, but not small ones. We propose to expand our purview from 2 elements (Mg and Fe) to 18 elements. This, in turn, will tie directly to chemical evolution and chemical enrichment mechanisms. As a byproduct, we also decrease the stellar population age uncertainty by about a factor of ten from today's Balmer-metal index diagram techniques.

  11. The relative abundances of the elements silicon through nickel in the low energy galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1978-01-01

    Measurements of the relative abundances of the elements Si through Ni in galactic cosmic rays in the energy interval 72 to 450 MeV/nucleon are reported based on data collected by a cosmic-ray telescope on the IMP 8 satellite. The measured abundances are compared with propagation calculations using various distributions of path lengths. It is found that the measurements favor an exponential distribution of path lengths truncated at short path lengths. The source abundances of Si, Ca, Fe, and Ni derived by extrapolating the measured abundances back to the source are shown to be comparable to the solar-system abundances. The relevance of the measurements of Sc through Mn to the Mn-54 radioactive decay is examined.

  12. Boundary element solution of macromolecular electrostatics: interaction energy between two proteins.

    PubMed Central

    Zhou, H X

    1993-01-01

    The boundary element technique is implemented to solve for the electrostatic potential of macromolecules in an ionic solution. This technique entails solving surface integral equations that are equivalent to the Poisson and the Poisson-Boltzmann equations governing the electrostatic potential inside the macromolecules and and in the solvent. A simple but robust method is described for discretizing the macromolecular surfaces in order to approximate the integral equations by linear algebraic equations. Particular attention is paid to the interaction energy between two macromolecules, and an iterative procedure is devised to make the calculation more efficient. This iterative procedure is illustrated in the electron transfer system of cytochrome c and cytochrome c peroxidase. PMID:8218918

  13. A finite-element visualization of quantum reactive scattering. II. Nonadiabaticity on coupled potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Warehime, Mick; Kłos, Jacek; Alexander, Millard H.

    2015-01-01

    This is the second in a series of papers detailing a MATLAB based implementation of the finite element method applied to collinear triatomic reactions. Here, we extend our previous work to reactions on coupled potential energy surfaces. The divergence of the probability current density field associated with the two electronically adiabatic states allows us to visualize in a novel way where and how nonadiabaticity occurs. A two-dimensional investigation gives additional insight into nonadiabaticity beyond standard one-dimensional models. We study the F(2P) + HCl and F(2P) + H2 reactions as model applications. Our publicly available code (http://www2.chem.umd.edu/groups/alexander/FEM) is general and easy to use.

  14. A finite-element visualization of quantum reactive scattering. II. Nonadiabaticity on coupled potential energy surfaces

    SciTech Connect

    Warehime, Mick; Kłos, Jacek; Alexander, Millard H.

    2015-01-21

    This is the second in a series of papers detailing a MATLAB based implementation of the finite element method applied to collinear triatomic reactions. Here, we extend our previous work to reactions on coupled potential energy surfaces. The divergence of the probability current density field associated with the two electronically adiabatic states allows us to visualize in a novel way where and how nonadiabaticity occurs. A two-dimensional investigation gives additional insight into nonadiabaticity beyond standard one-dimensional models. We study the F({sup 2}P) + HCl and F({sup 2}P) + H{sub 2} reactions as model applications. Our publicly available code (http://www2.chem.umd.edu/groups/alexander/FEM) is general and easy to use.

  15. The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Kanasaki, M.; Jinno, S.; Sakaki, H.; Kondo, K.; Oda, K.; Yamauchi, T.; Fukuda, Y.

    2016-03-01

    The diagnosis method, using a combination of a permanent magnet and CR-39 track detectors, has been developed to separately measure the energy spectrum of the laser-accelerated MeV/n-class high-Z ions and that of MeV protons. The main role of magnet is separating between high-Z ions and protons, not for the usual energy spectrometer, while ion energy was precisely determined from careful analysis of the etch pit shapes and the etch pit growth behaviors in the CR-39. The method was applied to laser-driven ion acceleration experiments using CO2 clusters embedded in a background H2 gas. Ion energy spectra with uncertainty ΔE  =  0.1 MeV n-1 for protons and carbon/oxygen ions were simultaneously obtained separately. The maximum energies of carbon/oxygen ions and protons were determined as 1.1  ±  0.1 MeV and 1.6  ±  0.1 MeV n-1, respectively. The sharp decrease around 1 MeV n-1 observed in the energy spectrum of carbon/oxygen ions could be due to a trace of the ambipolar hydrodynamic expansion of CO2 clusters. Thanks to the combination of the magnet and the CR-39, the method is robust against electromagnetic pulse (EMP).

  16. Quiet-Time Spectra and Abundances of Energetic Particles During the 1996 Solar Minimum

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    We report the energy spectra and abundances of ions with atomic number, Z, in the interval Z is greater than or equal to 2 and Z is less than or equal to 36 and energies approximately 3-20 MeV/amu for solar and interplanetary quiet periods between 1994 November and 1998 April as measured by the large-geometry Low Energy Matrix Telescope (LEMT) telescope on the Wind spacecraft near Earth. The energy spectra show the presence of galactic (GCR) and "anomalous" cosmic ray (ACR) components, depending on the element. ACR components are reported for Mg and Si for the first time at 1 AU and the previous observation of S and Ar is confirmed. However, only GCR components are clearly apparent for the elements Ca, Ti, Cr, Fe, as well as for C. New limits are placed on a possible ACR contribution for other elements, including Kr.

  17. A measurement of the energy spectra of cosmic rays from 20 to 1000 GeV per amu

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Y.; Hayashi, T.; Thoburn, C.; Parnell, T. A.; Watts, John W., Jr.; Fowler, P. H.; Masheder, M. R. W.; Derrickson, James H.

    1991-01-01

    A group collaboration was made in the development of the Bristol University Gas Spectrometer number 4 (BUGS 4). The BUGS 4 detector is designed to measure the charge spectrum for species between oxygen and the iron peak as a function of energy per nucleon, between 20 and 1000 GeV/amu. It is particularly concerned with energies above 50 GeV/amu. The high energy component is considerably less affected by propagation through the interstellar medium than the lower energy component and is expected to approach the original charge spectrum of the source more closely. This information allows one to unravel the effects of cosmic ray production, acceleration, and propagation. The detector is described in total detail. The method of estimating the charge and energy of a cosmic ray depends on the energy of the particle. Calculations and experiments lead to the expectation of a nearly constant charge resolution of about 0.2 charge units over the whole energy range except 4.5 less than gamma less than 20. In this band, the experiment is insensitive to energy. A balloon flight is planned in 1993.

  18. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  19. LASER SPECTROSCOPY AND TRACE ELEMENT ANALYSIS Chapter from the Energy and Environment Division Annual Report 1980

    SciTech Connect

    Various, Authors

    1981-05-01

    In order to control pollutants resulting from energy production and utilization, adequate methods are required for monitoring the level of various substances often present at low concentrations. The Energy and Environment Division Applied Research in Laser Spectroscopy & Analytical Techniques Program is directed toward meeting these needs, Emphasis is on the development of physical methods, as opposed to conventional chemical analysis techniques. The advantages, now widely recognized, include ultra-high sensitivity coupled with minimal sample preparation. In some instances physical methods provide multi-parameter measurements which often provide the only means of achiev·ing the sensitivity necessary for the detection of trace contaminants. Work is reported in these areas: APPLIED PHYSICS AND LASER SPECTROSCOPY RESEARCH; MICROPROCESSOR CONTROLLER ANODIC STRIPPING VOLTAMETER FOR TRACE METALS ANALYSIS IN WATER; THE SURVEY OF INSTRUMENTATION FOR ENVIRONMENTAL MONITORING; THE POSSIBLE CHRONDRITIC NATURE OF THE DANISH CRETACEOUS~TERTIARY BOUNDARY; IMPROVEMENT OF THE SENSITIVITY AND PRECISION OF NEUTRON ACTIVATION ANALYSIS OF SOME ELEMENTS IN PLANKTON AND PLANKTONIC FISH; and SOURCES OF SOME SECONDARILY WORKED OBSIDIAN ARTIFACTS FROM TIKAL, GUATEMALA.

  20. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Al Derzi, Afaf R.; Fábri, Csaba; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Lodi, Lorenzo; Mizus, Irina I.

    2013-03-01

    This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O containstwo components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system